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Abstract
A split system S on a finite set X , |X | ≥ 3, is a set of bipartitions or splits of X which
contains all splits of the form {x, X − {x}}, x ∈ X . To any such split system S we can
associate the Buneman graph B(S) which is essentially a median graph with leaf-set
X that displays the splits in S. In this paper, we consider properties of injective split
systems, that is, split systemsS with the property that medB(S)(Y ) �= medB(S)(Y ′) for
any 3-subsets Y ,Y ′ in X , where medB(S)(Y ) denotes the median in B(S) of the three
elements in Y considered as leaves in B(S). In particular, we show that for any set X
there always exists an injective split system on X , and we also give a characterization
for when a split system is injective.We also consider how complex the Buneman graph
B(S) needs to become in order for a split system S on X to be injective. We do this by
introducing a quantity for |X |which we call the injective dimension for |X |, as well as
two related quantities, called the injective 2-split and the rooted-injective dimension.
We derive some upper and lower bounds for all three of these dimensions and also
prove that some of these bounds are tight. An underlying motivation for studying
injective split systems is that they can be used to obtain a natural generalization of
symbolic tree maps. An important consequence of our results is that any three-way
symbolic map on X can be represented using Buneman graphs.
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1 Introduction

Let X be a finite set |X | ≥ 3.A (three-way) symbolicmap (on X ) is amap δ : (X
3

) → M
to some set M of symbols. In [16], a special type of symbolic map was studied, called
a symbolic tree mapwhich arises as follows. Let T be a phylogenetic tree with leaf-set
X (i.e. an unrooted tree with no vertices of degree two and leaf set X [20]) in which
each interior vertex v of T is labelled by some element l(v) in M by some labelling
map l. The symbolic tree map δ associated to T is the map from

(X
3

)
to M that is

obtained by setting

δ(Y ) = l(medT (Y )), Y ∈
(
X

3

)
,

where medT (Y ) is the unique interior vertex of T that belongs to the shortest paths
between each pair of the three vertices in Y , and

(X
3

)
denotes the set of all 3-subsets of

X . For example, for the symbolic tree map δ associated to the labelled tree in Fig. 1(i),
δ({1, 2, 3}) = c, and δ({2, 3, 4}) = b. Symbolic tree maps are closely related to
symbolic ultrametrics [6] and also appear in the theory of hypergraph colourings
[14]—see [16] for more details, where amongst other results, a characterization of
symbolic tree maps is presented. There are also close connections with cograph theory
[15] and modular decompositions [7].

In [16] it was asked how results on symbolic tree maps might be extended to
Buneman graphs [10] (see also [7, p.8]), as these graphs provide a natural way to
generalize phylogenetic trees and have useful applications in evolutionary biology
[2]. More specifically, given a split system (on X ), i. e. a set S of bipartitions or splits
of X that contains all splits of the form {{x}, X−{x}}, x ∈ X , then the Buneman graph
B(S) on X associated to S is essentially a median graph with leaf-set X (see Sect. 2 for
more details). The fact that B(S) is a median graph implies that for any 3-subset Y of
X , there exists a unique vertex medB(S)(Y ) in B(S) (or median), that lies on shortest
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Fig. 1 For X = {1, . . . , 5}, a phylogenetic tree on X in (i) and a Buneman graph on X in (ii). In (i) the
internal vertices are labelled by the elements in M = {a, b, c} and in (ii) they are labelled by the elements
in M = {a, b, . . . , k}
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paths between any pair of elements in Y . Since every phylogenetic tree is a Buneman
graph, the notion of a symbolic tree map naturally generalises by considering labelling
maps δ that can be represented by labelling the internal vertices of some Buneman
graph B(S), and, for any 3-subset Y of X , taking δ(Y ) to be the label of medB(S)(Y ).
For example, for the map δ associated to the interior vertex-labelled Buneman graph
depicted in Fig. 1(ii), δ({1, 2, 3}) = k, and δ({3, 4, 5}) = f .

It is therefore of interest to understand under what circumstances we can represent
for a split system S on X a symbolic map δ on X by labelling the vertices of some
Buneman graph B(S) on X and vertex set V . In other words, we want to find some
labelling map l : V −X → M such that δ({x, y, z}) = l(medB(S)(Y )) for all Y ∈ (X

3

)
.

Clearly this is the case if there is some split system S on X such that

medB(S)(Y ) �= medB(S)(Y
′) for all distinct Y ,Y ′ ∈

(
X

3

)
, (1)

since then we can just label the vertex medB(S)(Y ) by δ(Y ) for every 3-subset Y
of X . For example, the Buneman graph depicted in Fig. 1(ii) enjoys Property (1),
whereas the phylogenetic tree T (which is a Buneman graph for the split system
obtained by deleting all seven edges in turn) in Fig. 1(i) does not since, for example,
medT ({1, 5, 3}) = medT ({1, 5, 4}). Motivated by these considerations, we call a split
system S injective if Property (1) holds. In this paper we shall focus on understanding
such split systems, in particular presenting some results concerning their properties.
We now briefly summarize them.

In the next section,we begin by presenting somepreliminaries concerningBuneman
graphs and also briefly explain how they arise in evolutionary applications. In Sect. 3
we then prove that for any finite set X with |X | ≥ 3, there always exists some injective
split system on X . In particular, we show that the split system on X which contains
all those splits {A, B} of X with min{|A|, |B|}| ≤ 2, and the split system that is
obtained by deleting any pair of edges in a cycle with vertex set X are both injective
(Theorem 1). In particular, as mentioned above, it follows that any symbolic map δ on
a set X can be represented by some Buneman graph.

In Sect. 4, we provide a characterization of injective split systems (Theorem 2).
This characterization is obtained by considering how the restriction of a split system
on X to small subsets of X partitions these subsets. In particular, it implies that it can
be decided if a split system S on X is injective or not by considering the restriction of
S to subsets of X with size at most 6.

In general, since we can always represent a symbolic map by some Buneman graph,
we would like to find representations that are as simple as possible. Since for any split
system S the Buneman graph B(S) is an isometric subgraph of an |S|-cube in which
the convex hull of any isometric cycle of length k is a k-cube, k ≥ 3, a natural measure
for the complexity of a split system S is the dimension of the largest isometric k-cube
in B(S). We call this quantity the dimension of S; for example, the split systems in
Fig. 1(i) and (ii) have dimension 1 and 2, respectively.

In Sect. 5, we investigate the notion of the injective dimension I D(n) which we
define to be the smallest dimension of any injective split system on a set of size n,
n ≥ 3. In particular, as well as giving the values of ID(n) for all n ≤ 8, we show
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that ID(n) ≤ � n
2 	, and that ID(n) ≥ 3 for all n ≥ 8 (Theorem 3). As an immediate

corollary to this result it follows that to represent arbitrary symbolic maps on sets X
of size 6 or more using Buneman graphs, Buneman graphs that contain 3-cubes are
required.

Wecontinuebyconsidering twovariants of the injective dimension.Thefirst variant,
ID2(n), is considered in Sect. 6 and is given by restricting the definition of ID(n) to
split systems S for which every split {A, B} ∈ S has min{|A|, |B|}| ≤ 2. We show
that for all n ≥ 5, � n

2 	 ≤ ID2(n) ≤ n−3 (Theorem 4) which implies that ID2(5) = 2.
The second variant, IDr (n), is considered in Sect. 7, and is defined by modifying the
definition of injectivity as follows:We say that a split systemS on X is rooted-injective
relative to some r ∈ X if

medB(S)(Z ∪ {r}) �= medB(S)(Z
′ ∪ {r}) for all distinct Z , Z ′ ∈

(
X

2

)
.

The quantity IDr (n) is given in an analogousway to ID(n) by taking theminimumover
rooted-injective splits systems relative to r . Using a recent result from [7] concerning
rooted median graphs, we show that, in contrast to ID2(n), IDr (n) = 2 for all n ≥ 4.
We conclude in Sect. 8 with a discussion of some open problems.

2 Preliminaries

2.1 Graphs andMedian Graphs

We consider undirected graphs G = (V , E) whose vertex sets V are finite with
|V | ≥ 2, and whose edge sets E are contained in

(V
2

)
, i.e., graphs without loops

and multiple edges. A leaf in such a graph is a vertex with degree one. A cycle is a
connected graph in which every vertex has degree two. The length of a cycle C is the
number of edges or, equivalently, the number of vertices in C . A connected graph that
does not contain a cycle is called a tree.

If G is connected then we denote by dG(v,w) the length of a shortest path between
two vertices v and w of G. Note that dG(v,w) = 0 if and only if v = w. A connected
subgraph G ′ of G is called isometric if dG ′(v,w) = dG(v,w), for all vertices v and
w in G ′.

A vertex x in G is called a median of three vertices u, v, w ∈ V if dG(u, x) +
dG(x, v) = dG(u, v), dG(v, x) + dG(x, w) = dG(v,w) and dG(u, x) + dG(x, w) =
dG(u, w). A connected graph is called amedian graph if any three of its vertices have
a unique median [18]. In other words, G is a median graph if for all vertices u, v, and
w in G, there is a unique vertex that belongs to shortest paths between each pair of
u, v and w. We denote the unique median of three vertices u, v and w in a median
graph G by medG(u, v, w). Median graphs have several interesting characterizations
and properties, see e.g. [19]. For example, a connected graph G is a median graph if
and only if the convex hull1 of any isometric cycle of G is a hypercube (see e.g. [17]).

1 A subset G′ of a graph G is convex if for any two vertices v, w in G′ every shortest path between v and
w is a subgraph of G′.
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2.2 Buneman Graphs

From now on, we let X be a finite set with |X | ≥ 3. A split (of X ) is a bipartition
A|B = B|A of X into two non-empty subsets, that is, A, B ⊂ X , A ∩ B = ∅ and
A∪ B = X . For simplicity, we write a1 . . . ak |b1 . . . bl or a1 . . . ak |a1 . . . ak for a split
A|B if A = {a1, . . . , ak} and B = {b1, . . . , bl}, for some k, l ≥ 1. We call the sets A
and B the parts of the split A|B. If S = A|B is such that |A| < |B| then we call A
the small part of S. The size of a split A|B is defined as min{|A|, |B|}, and if a split
S has size r we call S an r -split. A split A|B of X is called trivial if it has size 1 or,
equivalently, if A|B is of the form x |x for some x ∈ X . For a split S = A|B of X , we
let S(x) denote the part of S that contains x . We say that S separates two elements x
and y in X if S(x) �= S(y). From now on we shall assume that all split systems on X
contain all trivial splits on X .

Following [10], we define for a split system S on X , the Buneman graph B(S) (on
X ) to be the graph with vertex set consisting of all maps φ : S → P(X) (where P(X)

denotes the power-set of X ) satisfying the following two conditions:

(B1) For all S ∈ S, φ(S) ∈ S.
(B2) For all S, S′ ∈ S distinct, φ(S) ∩ φ(S′) �= ∅.
Two vertices φ and φ′ in B(S) are joined by an edge if there is a unique split S ∈ S
such that φ(S) �= φ′(S). For example, the graphs in Fig. 1(i) and (ii) are Buneman
graphs on X = {1, . . . , 5} for the split systems

S1 = {15|234, 24|135} ∪ {x |x : x ∈ X}

and

S2 = {15|234, 24|135, 12|345, 34|125, 35|124} ∪ {x |x : x ∈ X},

respectively.
Note that Buneman graphs have applications in evolutionary biology, especially

to the analysis of human mitochondrial DNA [2]. More specifically, in mitochon-
drial applications DNA sequences are typically aligned and then recoded into binary
sequences to form a 0/1 matrix whose rows are indexed by a set X of taxa. Columns in
this matrix are then deleted if all of their entries are the same or have missing entries,
and repeats of columns are also removed. It follows that each column i in the resulting
binary matrix M corresponds to a different split of X , where the parts of the split are
given by checking whether the row for each element in X has 0 or a 1 in column i .
A median network is then constructed for this matrix by repeatedly taking the median
sequence for triples of binary sequences starting with the sequences in M until no
new sequences are obtained, where the median sequence for each triple is given by
taking the majority rule sequence for the three sequences. It can be shown (see e.g [9,
Theorem 4.9]) that this median network is isomorphic to the Buneman graph of the set
of splits of X corresponding to M . In this way, we see that vertices in Buneman graphs
can be thought of as maps on split systems as above, or as binary sequences; in this
paper wewill use the former terminology as this is more convenient for our arguments.
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Note that Buneman graphs can also be defined in terms of certain set families—see
e.g. [4].

2.3 Properties of Buneman Graphs

We now summarise some relevant properties of the Buneman graph (for proofs of
these facts see e.g. [12, Chapter 4]; see also [5] using different notation).

(S1) For all x ∈ X , the map φx : S → P(X) given by putting φx (S) = S(x), for all
S ∈ S, is a leaf in B(S).

(S2) Let S = A|B ∈ S. Then the removal of all edges {φ, φ′} in B(S) with φ(S) �=
φ′(S) disconnectsB(S) into precisely two connected components, one of which
contains the leaves φa , a ∈ A and the other the leaves φb, b ∈ B.

(S3) B(S) is a median graph.
(S4) B(S) is an isometric subgraph of the |S|-dimensional hypercube consisting of

all those maps φ : S → P(X) that only satisfy Property (B1) in the definition
of the Buneman graph (with edge set defined in the analogous same way).

(S5) For any three vertices φ1, φ2, φ3 in B(S), the median of φ1, φ2 and φ3 in B(S)

is the map that assigns to each split S ∈ S the part of S of multiplicity two or
more in the multiset {φ1(S), φ2(S), φ3(S)} (see also [11, p. 1905, Equ. (1)]).

Suppose that S is a split system on X . In light of Property (S1), we shall consider
X as being the leaf-set of B(S), since each x ∈ X corresponds to the map φx in B(S).
As an example for (S2), consider the tree in Fig. 1(i). Removing the edge associated to
the split 15|234 disconnects the tree into two trees with leaf sets {1, 5} and {2, 3, 4},
respectively. In this way, we see that B(S1) displays each of the splits in S1.

Note that by Property (S3) and the fact mentioned at the end Sect. 2.1, the convex
hull of any isometric cycle in B(S) is a hypercube. In light of this, we define the
dimension dim(S) of a split system S to be the dimension of the largest hypercube
contained in B(S) in case B(S) is not a phylogenetic tree and one otherwise. This
dimension can be characterized in terms of splits as follows. Suppose S = A|B and
T = C |D are two splits in S. Then S and T are called incompatible if S �= T
and A ∩ C , A ∩ D, B ∩ C and B ∩ D are all non-empty; otherwise S and T are
called compatible. Calling a set S of splits incompatible if any two splits in S are
incompatible, then dim(S) is equal to the maximum size of an incompatible subset of
S (see e.g. [8, p. 445]). If B(S) contains a cycle then it must contain a hypercube of
dimension two or more. Hence, a split system S on X is 1-dimensional if and only if
B(S) is a phylogenetic tree on X (in which case it has |S|+1 vertices and |X | leaves),
a fact which also holds if and only if every pair of splits in S is compatible (see e.g.
[10]). In particular, as mentioned in the introduction, it follows that any phylogenetic
tree is a Buneman graph of some split system, and that any two distinct splits in this
split system must be compatible.
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3 Two Families of Injective Split Systems

Let S be a split system on X . For Y = {x, y, z} ∈ (X
3

)
, we let φY = φxyz =

medB(S)(Y ) denote the median of φx , φy, φz in B(S), which exists by Property (S3).
In this notation, S is injective if for all Y ,Y ′ ∈ (X

3

)
distinct, we have φY �= φY ′ . Note

that if |X | = 3, then there is only one split system S on X (the one that contains only
trivial splits), and that S is injective, since |(X3

)| = 1. In this section, we show that for
every set X with |X | ≥ 4 there exists an injective split system on X . To do this, we
shall present two infinite families of injective split systems.

We begin with a simple but useful lemma.

Lemma 1 Let S be a split system on a set X, |X | ≥ 3, and let x, y, z ∈ X distinct.
Then φxyz is the (unique) map in B(S) that assigns to each split S ∈ S the part A ∈ S
for which |A ∩ {x, y, z}| ≥ 2.

Proof Let S ∈ S. Then φv(S) = S(v), for all v ∈ {x, y, z}. By Property (S5), φxyz(S)

is the part of S that appears twice (or more) in the multiset {S(x), S(y), S(z)}, that is,
the part of S that contains (at least) two elements of {x, y, z}. ��

Now, a split system S on X is called circular [1] if there exists a labelling
x1, . . . , xn , n = |X |, of the elements of X such that all splits of S are of the form
xi xi+1 . . . x j |xi xi+1 . . . x j , some 1 ≤ i ≤ j ≤ n. If S is a circular split system on X
and there is no circular split system S ′ on X such that S � S ′, then we say that S is a
maximal circular split system on X (for n = 4, 5, 6, see Fig. 2 for a representation of
such a split system in terms of the associated Buneman graph). Note that a maximal
circular split system on X has size

(|X |
2

)
[1, Section 3].

We now use Lemma 1 to show that there exist families of split systems that are
injective.

Theorem 1 Let S be a split system on X, |X | ≥ 4. Then:

(i) If S contains all 2-splits of X, then S is injective.
(ii) If S is maximal circular, then S is injective.

Proof For both (i) and (ii), let Y = {x, y, z} and Y ′ denote two distinct subsets of X
of size 3. Assume without loss of generality that x /∈ Y ′.
(i) By Lemma 1, φY is the uniquemapB(S) that assigns to each split S ∈ S the part A

of S such that |A∩Y | ≥ 2. It follows that for S = xy|xy (which is an element of S
as it has size two), φxyz(S) = {x, y}. Since x /∈ Y ′, we obtain φY ′(S) = X−{x, y}.
Consequently, φY �= φY ′ .

(ii) Put X = {x1, . . . , xn}, n ≥ 4. Then there exist i, j, k ∈ {1, . . . , n} with i <

j < k (mod n) such that x = xi , y = x j and z = xk . With respect to the
circular ordering of X induced by S it follows that one of the four sets {x =
xi , xi+1, . . . , y = x j }, {y = x j , x j+1, . . . , x = xi }, {x = xi , xi+1, . . . , z = xk}
and {z = xk, xk+1, . . . , x = xi } must contain at most one element of Y ′. Let A
be such a set. Since S is maximal circular by assumption, it follows that the split
S = A|X − A is contained in S. By Lemma 1, φY (S) = A �= X − A = φY ′(S).
Hence, φY �= φY ′ . ��
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Fig. 2 For X = {1, . . . , n} with n = 4, 5, 6 and the induced natural ordering of X , the respective Buneman
graphs on X of the associated maximal circular split systems on X where (i) is n = 4, (ii) is n = 5, and
(iii) is n = 6. In all cases, leaves are indicated in terms of the elements in X . Vertices that are of the form
φxyz , some x, y, z ∈ X , are indicated as unfilled circles and all other non-leaf vertices are indicated as
filled circles

In view of Theorem 1 (ii), it is interesting to understand if maximal circular split
systems admit proper subsets that are also injective. As it turns out, the answer is no
in general, as we show in our next result.

Proposition 1 Let S be a circular split system on X with |X | ≥ 4 and let S ′ denote a
split system on X that is contained in S as a proper subset. Then S ′ is not injective.

Proof Let S0 be a non-trivial split in S − S ′. We show that there exists two subsets Y
and Z of X = {1, . . . , n} distinct such that φY (S) = φZ (S) for all S ∈ S − {S0}. In
particular, φY (S) = φZ (S) for all S ∈ S ′, so S ′ is not injective.

Assume that S is circular for the natural ordering of X . Without loss of generality,
we may assume that S0 = 1 . . . k|k + 1 . . . n, some 2 ≤ k ≤ n

2 . Consider the sets
Y = {n, 1, k} and Z = {n, 1, k + 1}. Let S ∈ S − {S0}. If S(n) = S(1) then, by
Lemma 1, φY (S) = S(n) = φZ (S). If S(n) �= S(1) then S must be of the form
1 . . . �|� + 1 . . . n, some 1 ≤ � ≤ n − 1. Since S �= S0, we have � �= k. Hence,
S(k) = S(k + 1). Moreover, since S(1) �= S(n) either 1 or n must be contained in
S(k). We can then apply Lemma 1 again to conclude that φY (S) = φZ (S) which
completes the proof. ��

We remark that a similar result to Proposition 1 does not necessarily hold for non-
circular split systems even if they are injective. For example, Theorem 1(i) implies
that the split system S on X = {1, . . . , n}, n ≥ 5, that consists precisely of all trivial
splits and 2-splits on X is injective. Let S∗ denote the split system containing all splits
of S except those of the form 1x |1x , x ∈ X − {1}. Then, S∗ is injective. To see
this, consider the proof of Theorem 1(i). Then, up to potentially having to relabel the
elements of Y and Y ′, the elements x and y can always be chosen to be different from
1. Hence, the split S = xy|xy such that φY (S) �= φY ′(S) can always be chosen in such
a way that S ∈ S∗. As a consequence, it follows that for all Y ,Y ′ ∈ (X

3

)
distinct, there

exists a split S of S∗ such that φY (S) �= φY ′(S) which implies that S∗ is injective.
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4 Characterization of Injective Split Systems and Dicing

In this section, we characterize injective split systems (Theorem 2). To this end, we
shall consider the restriction of a split system on X to subsets of X which is defined
as follows. Given a split system S on X , and a subset Y ⊆ X with |Y | ≥ 3 then we
define the restriction S|Y of S to Y as the set of splits S|Y restricted to Y , that is,

S|Y = {S|Y = A ∩ Y |B ∩ Y : A|B ∈ S}.

Note that S|Y is in fact a split system on Y since S|Y contains all trivial splits on Y .
We begin by proving a useful lemma concerning such restrictions.

Lemma 2 Suppose that S is a split on X with |X | ≥ 4, and that x, y, z, p are distinct
elements of X. Then the following holds for Y = {x, y, z, p}.
(i) φxyz(S) �= φxyp(S) if and only if S|Y ∈ {xz|yp, yz|xp}. In particular, S|Y �=

xy|pz.
(ii) If |X | ≥ 5 and q ∈ X − Y then φxyz(S) �= φxpq(S) if and only if S|Y∪{q} is one

of the splits yz|xpq, pq|xyz, xy|zpq, xz|ypq, xp|yzq or xq|yzp.
(iii) If |X | ≥ 6 and q, r ∈ X − Y distinct then φxyz(S) �= φpqr (S) if and only

if S|Y∪{q,r} is a 3-split or it is a 2-split of Y ∪ {q, r} whose part of size 2 is
contained in {x, y, z} or {p, q, r}.

Proof Let S = A|B.
To see Assertion (i) observe that, by Lemma 1, we have φxyz(S) �= φxyp(S) if and

only if one of A and B, say A, contains at least two elements of {x, y, z} while B
contains at least two elements of {x, y, p}. Since A ∩ B = ∅, this is only possible if
and only if z ∈ A and p ∈ B while either x ∈ A and y ∈ B or y ∈ A and x ∈ B.
The latter is equivalent to S|Y ∈ {xz|yp, yz|xp} which, in particular, implies that
S|Y �= xy|pz. Hence, Assertion (i) must hold.

To see Assertion (ii), observe that, by Lemma 1, φxyz(S) �= φxpq(S) if and only if
one of A and B, say A, contains at least two elements of {x, y, z} and B contains at
least two elements of {x, p, q}. As is easy to see, this is the case if and only if S|Y ′
is not a trivial split on Y ′ = Y ∪ {q} and one of S(y) = S(z) or S(p) = S(q) holds.
Consideration of all ten non-trivial splits on Y ′ shows that S|Y ′ must be one of yz|xpq,
pq|xyz, xy|zpq, xz|ypq, xp|yzq or xq|yzp. Hence, Assertion (ii) must hold.

To see Assertion (iii), observe that, by Lemma 1, φxyz(S) �= φpqr (S) holds if and
only if one of A and B, say A, contains at least two elements of {x, y, z} and B contains
at least two elements of {p, q, r}. Put Y ′ = Y ∪ {q, r}, A′ = A∩Y ′ and B ′ = B ∩Y ′.
Since A∩ B = ∅ it follows that S|Y ′ must be a 2- or 3-split and that if S|Y ′ is a 2-split,
its part of size 2 is contained in {x, y, z} or {p, q, r}.

Conversely, put A = {x, y, z} and B = {p, q, r} again. If S|Y ′ = A′|B ′ is a 3-split
on Y ′ = Y ∪ {q, r} then, clearly, |A′ ∩ {x, y, z}| ≥ 2 and |B ′ ∩ {p, q, r}| ≥ 2. Since
A′ ⊆ A and B ′ ⊆ B, we obtain φxyz(S) �= φpqr (S). Furthermore, if S|Y = A′|B ′ is
a 2-split such that the part of size 2 is contained in A or B, then the other part must
be of size 4 and must contain B or A. Consequently, φxyz(S) �= φpqr (S). Hence,
Assertion (iii) must hold. ��
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We now make a key definition. We shall say that a split system S on X

• 4-dices X if |X | < 4 or for all Y ∈ (X
4

)
, S|Y contains at least two 2-splits,

• 5-dices X if |X | < 5 or for all Y ∈ (X
5

)
, S|Y contains at least five 2-splits, and

• 6-dices X if |X | < 6 or for all Y ∈ (X
6

)
, S|Y contains at least one 3-split or a

triangle of 2-splits, that is, three 2-splits of the form xy|Y − {x, y}, xz|Y − {x, z}
and yz|Y − {y, z} where x , y, and z are distinct elements in Y .

Note that, in general, if a split system on X k-dices X it need not k′-dice X , for
k, k′ ∈ {4, 5, 6} distinct. Nevertheless, some interesting relationship between these
concepts hold as the next lemma illustrates.

Lemma 3 Suppose S is a split system on X.

(i) If S 4-dices X and |X | ≥ 5 then, for all Y ∈ (X
5

)
, S|Y contains at least four

2-splits.
(ii) If S 5-dices X and |X | ≥ 6 then, for all Y ∈ (X

6

)
, S|Y contains a 3-split or (at

least) eight 2-splits.

Proof (i) Suppose that S 4-dices X and that |X | ≥ 5. Let Y = {x, y, z, t, u} ∈ (X
5

)

and Y ′ = {x, y, z, t} ∈ (X
4

)
. Since S 4-dices X , S|Y ′ contains at least two 2-splits S′

1
and S′

2. Hence, S|Y contains two splits S1 and S2 such that S1|Y ′ = S′
1 and S2|Y ′ = S′

2.
Moreover, since S′

1 and S
′
2 are both 2-splits on Y

′, the part A1 of S1 and A2 of S2 of size
2 does not contain u. Note that A1 and A2 must be parts of S′

1 and S′
2, respectively. In

particular, since S′
1 and S′

2 are splits on Y
′ and S′

1 �= S′
2 it follows that |A1 ∩ A2| = 1.

Without loss of generality, we may assume that A1 ∩ A2 = {x}. Replacing Y ′ by
Y ′′ = {y, z, t, u} and using an analogous argument implies that S|Y also contains two
distinct 2-splits on Y , call them S3 and S4, whose parts of size 2 do not contain x . In
particular, S3 and S4 are distinct from S1 and S2. In summary, S|Y contains at least
four distinct 2-splits.

(ii) Suppose that S 5-dices X and that |X | ≥ 6. Let Y ∈ (X
6

)
. If S|Y contains a

3-split we are done. Hence, assume S|Y does not contain a 3-split. Since |Y | = 6 it
follows that a split in S|Y must be trivial or a 2-split. We continue with showing that
S|Y contains at least eight 2-splits. Let x ∈ Y . Since a split in S|Y is either trivial or
a 2-splits, all 2-splits of S|Y−{x} correspond to the 2-splits of S|Y whose small part
does not contain x . We claim that there exists an element x0 of Y − {x} that belongs
to the small part of at least three 2-splits of Y . To see this, we consider the following
two cases: (a) S|Y does not contain a split whose small part contains x and (b) S|Y
contains a split whose small part contains x .

In case of (a), let Y ′ = {x, y, a, b, c} be a subset of Y of size 5. Since S 5-
dices X , it follows that S|Y ′ contains at least five of the

(4
2

) = 6 possible 2-splits in
{ya|ya, yb|yb, yc|yc, ab|ab, ac|ac, bc|bc}

that might be contained in S|Y and do not have x in their small part. It is now
straight-forward to verify that there is some x0 ∈ Y ′ − {x} such that S|Y ′ contains
three 2-splits whose small part contains x0.

Consider now Case (b). Since S 5-dices X and |X | ≥ 6, S|Y−{x} contains again
at least five 2-splits. Then if there exists an element x0 ∈ Y − {x} such that S|Y−{x}
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contains three 2-splits whose small part contains x0 then the claim follows. If this is
not the case, then consideration of all

(5
2

) = 10 possible 2-splits in S|Y−{x} shows
that S|Y−{x} must contain exactly five 2-splits and that all elements of Y − {x} must
belong to the small part of exactly two 2-splits of S|Y−{x}. In addition, by assumption
on x , there exists an element x0 of Y − {x} such that {x, x0} is the small part of a split
of S|Y . Since x0 also belongs to the small part of exactly two 2-splits in S|Y−{x}, it
follows that x0 belongs to the small part of exactly three 2-splits of S|Y . Hence, there
is some x0 ∈ Y − {x} such that S|Y contains three 2-splits whose small part contains
x0.

In summary, in both Case (a) and (b), there is some x0 ∈ Y − {x} such that S|Y
contains three 2-splits whose small part contains x0. Moreover, S|Y−{x0} contains at
least five 2-splits because S 5-dices X and |Y | = 6. Since the small part of a split in
S|Y−{x0} is also the small part of a split in S|Y whose small part does not contain x0,
it follows that there also exists at least five 2-splits in S|Y whose small part does not
contain x0. Hence, S|Y contains at least eight 2-splits. ��

To prove the main theorem of this section, we require a further result concerning
dicing.

Proposition 2 Suppose S is a split system on X with |X | ≥ 4. Then the following
holds.

(i) S 4-dices X if and only if for all A, B ∈ (X
3

)
with |A∩ B| = 2, we have φA �= φB.

(ii) If |X | ≥ 5 then S 4- and 5-dices X if and only if for all distinct A, B ∈ (X
3

)
with

A ∩ B �= ∅, we have φA �= φB.

Proof (i) Let A = {x, y, z} and B = {x, y, t} be subsets of X and let Y = A ∪ B.
Assume first thatS 4-dices X . Then S|Y contains at least two 2-splits because |Y | = 4.
In particular, S|Y contains at least one 2-split S distinct from xy|t z. By Lemma 2(i),
it follows that φA(S) �= φB(S). Consequently, φA �= φB .

Conversely, ifφA �= φB , then there exists a split S inS such thatφA(S) �= φB(S). By
Lemma 2(i), S|Y ∈ {xz|yt, yz|xt}. If S|Y = xz|yt , then consider the setC = {x, z, t}.
Since, by assumption, φA �= φC there must exist a split S′ in S such φA(S′) �= φC (S′).
By Lemma 2(i) it follows that S′|Y �= S|Y . If S|Y = yz|xt then an analogous argument
with C replaced by D = {y, z, t} implies that there exists a split S′′ with S′′|Y ∈
{yx |zt, yt |zx}. Lemma 2(i) implies again that S|Y �= S′′|Y . Hence, S|Y contains at
least two 2-splits one of which is S|Y and the other is S′|Y or S′′|Y .

(ii) Assume first that S 4-dices and 5-dices X . Let A, B ∈ (X
3

)
distinct such that

A ∩ B �= ∅. If |A ∩ B| = 2 then, by Proposition 2(i), φA �= φB must hold. So assume
that |A ∩ B| �= 2. Then |A ∩ B| = 1. Let A = {x, y, z} and B = {x, p, q}. Since
S 5-dices X and |X | ≥ 5 it follows that S|Y contains at least five 2-splits where
Y = A∪ B. Since there are exactly

(5
2

) = 10 2-splits on Y , it follows that S|Y contains
at least one of the six 2-splits in {yz|xpq, pq|xyz, xy|zpq, xz|ypq, xp|yzq, xq|yzp}.
By Lemma 2(ii), it follows that φA �= φB .

Conversely, assume that for all distinct A, B ∈ (X
3

)
with A ∩ B �= ∅ we have that

φA �= φB . If |A ∩ B| = 2 then S 4-dices X in view of Proposition 2(i). To see that
S also 5-dices X , we need to show in view of |X | ≥ 5 that for all Y ∈ (X

5

)
the split

system S|Y contains at least five 2-splits.

123



   65 Page 12 of 22 Graphs and Combinatorics            (2023) 39:65 

Let Y ∈ (X
5

)
. Since S 4-dices X , it follows by Lemma 3(i) that S|Y contains at

least four 2-splits. Assume for contradiction that S|Y contains precisely four 2-splits
S1, . . . , S4. For all 1 ≤ i ≤ 4, let Ai denote the small part of Si . Then the multiset
A = A1∪ A2∪ A3∪ A4 contains eight elements. We claim that there exists no element
x ∈ Y with multiplicity three or more inA. To see the claim, assume for contradiction
that there exists some x ∈ X that is contained in three of Ai , 1 ≤ i ≤ 4. Since, for all
1 ≤ i ≤ 4, the split Si |Y−{x} is a 2-split of Y −{x} if and only if x /∈ Ai it follows that
S|Y−{x} contains at most one 2-split. But this is not possible because S 4-dices X and
|X | ≥ 5 thereby concluding the proof of the claim. Hence, every element of Y has
multiplicity at most two in A. Since Y contains five elements and A has size eight,
one of the following two cases must hold: (a) three elements of Y have multiplicity
two in A and the other two have multiplicity one and (b) four elements of Y have
multiplicity two in A and one does not appear in A.

Suppose first that Case (a) holds. Let x and y be the two elements inA that appear
only once. Then there exists an element q ∈ Y − {x, y} such that neither {x, q} nor
{y, q} is contained in {A1, A2, A3, A4}. Since q has multiplicity two inAwhile x and
y have multiplicity one each, this implies that there exist i, j ∈ {1, . . . , 4} distinct
such that the two sets Ai and A j not containing q satisfy Ai ∪ A j = {x, y, z, p}.
It follows that S|Ai∪A j only contains the split Ai |A j , contradicting the fact that S
4-dices X .

Suppose now that Case (b) holds. Let x be the element of Y not present inA. Since
each element of {y, z, p, q} appears twice inA, it follows that, up to potentially having
to relabel the elements of Y −{x}, S|Y = {yp|xzq, yq|xzp, zp|xyq, zq|xyp}. We can
now use Lemma 2(ii) to conclude that φA = φB , which contradicts our assumption
that φA �= φB . ��

Note that the assumption that S 4-dices X is necessary for the characterization in
Proposition 2 (ii) to hold. For example, the split system on X = {1, . . . 5} whose set
of non-trivial splits equals

{12|345, 23|451, 34|512, 45|123}

does not 5-dice X but φA �= φB holds for all A, B ∈ (X
3

)
with |A ∩ B| = 1.

We now show that injectivity of a split system can be characterized by considering
at most 6-points.

Theorem 2 Suppose S is a split system on X, |X | ≥ 3. Then S is injective if and only
if S 4-, 5- and 6-dices X.

Proof If |X | = 3, then the equivalence trivially holds. Hence, we may assume for the
following that |X | ≥ 4.

Assume first that S 4-, 5- and 6- dices X , and let A, B ∈ (X
3

)
distinct. If |X | = 4,

then |A ∩ B| = 2. In that case, Proposition 2(i) implies that φA �= φB . If |X | = 5,
then A∩ B �= ∅. In that case, Proposition 2(ii) implies that φA �= φB . Finally, suppose
that |X | ≥ 6. In view of Proposition 2(ii), we have that φA �= φB holds in case
A ∩ B �= ∅. It remains to show that φA �= φB also holds when A ∩ B = ∅. To see
this, let A = {x, y, z} and B = {t, u, v} be subsets of X such that A ∩ B = ∅. Let
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Y = A ∪ B. Since |X | ≥ 6 and S 6-dices X , the split system S|Y contains either a
3-split or a triangle of 2-splits. In both cases, we can use Lemma 2(iii) to conclude
that φA �= φB .

Conversely, assume that S is injective. Then φA �= φB for all distinct A, B ∈ (X
3

)

with A ∩ B �= ∅. By Proposition 2(ii), it follows that S 4-dices and 5-dices X .
To see that S also 6-dices X , suppose that |X | ≥ 6 and let Y = {x, y, z, t, u, v}
be a subset of X of size 6. Since S 5-dices X Lemma 3 implies that S|Y contains
either a 3-split or at least eight 2-splits. We claim that if S|Y does not contain a
3-split then S|Y must contain a triangle of 2-splits. To see the claim, we remark
first that if S|Y contains ten 2-splits or more, then it must contain a triangle of
2-splits. Employing a case analysis, we obtain that, up to potentially having to
relabel the elements of Y , a split system on Y containing eight 2-splits or more
without containing a triangle of 2-splits is either (a) the split system S1 whose
set of non-trivial splits is {xy|xy, xz|xz, xt |xt, xu|xu, yv|yv, zv|zv, tv|tv, uv|uv}
or (b) a subset of the split system S2 whose set of non-trivial splits is {xy|xy,
yz|yz, zt |zt, tu|tu, uv|uv, vx |vx, xt |xt, yu|yu, zv|zv}. Since S1 does not 5-dice X
because S1|Y−{x} contains only four 2-splits it follows that S|Y �= S1. Hence, Case (a)
cannot hold. But Case (b) cannot hold either since if S|Y is a subset of S2 then
Lemma 2(iii) implies φuxz = φtvy . But this is impossible because S|Y is injective.
Hence, S|Y must contain a triangle of 2-splits, as claimed. Thus, S also 6-dices X . ��

As an important consequence of the last result, we see that injectivity of a split
system is well behaved with respect to restriction:

Corollary 1 Suppose S is a split system on X with |X | ≥ 3. If S is injective, then S|Y
is injective, for all Y ⊆ X with |Y | ≥ 3.

Proof Suppose that Y ⊆ X with |Y | ≥ 3 and that S is injective. Then, by Theorem 2,
S 4-, 5- and 6-dices X . So S|Y 4-, 5- and 6-dices Y . By Theorem 2, it follows that S|Y
is injective. ��

5 The Injective Dimension

Recall that the dimension dim(S) of a split system S is defined as the dimension of the
largest hypercube in B(S) or, equivalently, the size of the largest incompatible subset
of S. For n ≥ 3, we define the injective dimension ID(n) of n to be

ID(n) = min{dim(S) : S is an injective split system on {1, . . . , n}}. (2)

Note that since Theorem 1 implies that for all X with n = |X | ≥ 4 there exists an
injective split system on X , the quantity ID(n) is well-defined. We are interested in
ID(n) since its value gives a lower bound for the number of vertices in the Buneman
graph of any injective split system on X . In particular, if ID(n) = m then the Buneman
graphB(S) of any injective split systemS on X must contain anm-cube as a subgraph.
Hence, B(S) must contain at least 2m vertices.

To be able to present some upper and lower bounds for ID(n) (Theorem 3), we first
show that ID : N≥3 → N is a monotone increasing function.
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Lemma 4 For any two integers n and m with n ≥ m ≥ 3, we have ID(n) ≥ ID(m).

Proof Let S be an injective split system on some set X with |X | = n such that
dim(S) = ID(n). Let Y be a subset of X of size m. By Corollary 1, the split system
S|Y is injective, so ID(m) ≤ dim(S|Y ). To see that dim(S|Y ) ≤ dim(S) also holds
it suffices to remark that if two splits S and S′ in S are such that S|Y and S′|Y are
incompatible then S and S′ are also incompatible. Hence, an incompatible subset of
S|Y naturally induces an incompatible subset of S of the same size. It follows that
ID(m) ≤ dim(S|Y ) ≤ dim(S) = ID(n), as desired. ��

Wenow give upper and lower bounds for ID(n)where n = |X | ≥ 4. Aswe shall see
in the proof, the upper bound comes from the fact that a maximal circular split system
on X is injective by Theorem 1(ii) and that in [8] it was shown that the maximum
dimension of a hypercube in B(S) is � n

2 	. Note that the split system S formed by all
splits of X of size two or less is injective by Theorem 1(i) and, by [8], has dimension
n−1. Indeed, two splits S and S′ inS are incompatible if there exists an element x ∈ X
such that x belongs to the small part of both S and S′. Hence, the largest incompatible
subsets of S are the subsets of the form xy|xy : y ∈ X − {x}}, some x ∈ X , and
these subsets have size n − 1.

Theorem 3 For all integers n ≥ 4, we have ID(n) ≤ � n
2 	. Moreover, ID(3) = 1,

ID(4) = ID(5) = 2, ID(6) = ID(7) = ID(8) = 3, and for all n ≥ 9, ID(n) ≥ 3.

Proof Let X = {1, . . . , n}. To see that the first statement holds, let S be a maximal
circular split system on X . If n ≥ 4 then Theorem 1(ii) implies that S is injective.
Hence, ID(n) ≤ dim(S). By [8], the Buneman graphB(S ′) of a maximal circular split
system S ′ on X contains an � n

2 	-cube, and all other subcubes in B(S ′) have no larger
dimension. Hence, dim(S ′) = � n

2 	. Thus, ID(n) ≤ � n
2 	.

To see the remainder of the theorem, note first that ID(3) = 1 since, as was men-
tioned in Sect. 3 already, the unique split system on X is injective and B(S) is a
phylogenetic tree on X

To see that ID(4) = ID(5) = 2 holds, we first remark that in view of the first
statement of the theorem, we have ID(4) ≤ 2 and ID(5) ≤ 2. Now, let X be such that
n ∈ {4, 5} and assume for contradiction that there exists an injective split system S on
X with dim(S) = 1. In particular, S is compatible. Then B(S) is a phylogenetic tree
on X and has |S| + 1 vertices. Moreover, since a compatible split system on X has at
most 2n − 3 elements (see e.g. [12, Theorem 3.3]), it follows that B(S) has at most 2
internal vertices if n = 4, and at most 3 internal vertices if n = 5. But S is injective,
so B(S) must have at least

(4
3

) = 4 internal vertices if n = 4, and at least
(5
3

) = 10
internal vertices if n = 5, a contradiction. Hence, ID(4) = ID(5) = 2.

We continue with showing that ID(6) ≥ 3 from which it then follows by Lemma 4
and the first statement of the theorem that ID(6) = ID(7) = 3 and that ID(n) ≥ 3,
for all n ≥ 8. Suppose that S is an injective split system on X = {1, . . . , 6}. Bearing
in mind that, by Theorem 2, S 4-, 5- and 6-dices X we next perform a case analysis
on the number of 3-splits in S. If S contains three 3-splits or more then dim(S) ≥ 3
since all 3-splits of X are pairwise incompatible.

If S contains two 3-splits, say 123|456 and 234|561, then since S 4-dices X it
follows that there must exist a split S ∈ S such that S(2) �= S(3) and S(5) �=

123



Graphs and Combinatorics            (2023) 39:65 Page 15 of 22    65 

S(6). Since the splits S, 123|456, and 234|561 are pairwise incompatible, we obtain
dim(S) ≥ 3.

If S contains one 3-split, say 123|456, then one of the following two cases must
hold. If there exists an element x ∈ X and three splits S1, S2, and S3 in S containing
x in their small part then dim(S) ≥ 3 because {S1, S2, S3} is incompatible. If no such
element x exists then S contains at most six 2-split. An exhaustive search shows that,
up to potentially having to relabel the elements in {1, 2, 3}, there exists only one such
split system that is injective i. e.S is the split system whose subset of non-trivial splits
is the set

{123|456, 15|15, 16|16, 24|24, 26|26, 34|34, 35|35}.

One can then easily verify that {123|456, 15|15, 16|16} is incompatible. Hence,
dim(S) ≥ 3 in this case.

Finally, if S does not contain a 3-split, then it must contain a triangle of 2-splits
because S 6-dices X . Since the three splits in such a triangle are pairwise incompatible
it follows that dim(S) ≥ 3. This concludes the proof that ID(6) ≥ 3.

To show that ID(8) = 3, we employed Theorem 2 and used a computer program to
verify that S is the split system whose subset of non-trivial splits is

{1234|5678, 1357|2468, 123|123, 246|246, 478|478,
156|156, 12|12, 34|34, 56|56, 78|78, 26|26,
35|35, 17|17, 48|48, 68|68, 57|57, 23|23}

is injective. Since dim(S) = 3, it follows that ID(8) = 3. ��
Note that as ID(8) = 3, the upper bound for ID(n) given in Theorem 3 is not tight

even for n = 8. In general, it appears to be difficult to find a better upper or lower
bounds for ID(n), however in the next two sections we shall give improved bounds
for two variants of the injective dimension.

6 The Injective 2-Split-Dimension

To help better understand the injective dimension of a split system, in this section we
shall consider a restricted version of this quantity that is defined as follows. For n ≥ 3,
let S2(n) be the set of all injective split systems on X = {1, . . . , n} whose non-trivial
splits all have size 2. As mentioned in the introduction, we define ID2(n) for n ≥ 3 as

ID2(n) = min{dim(S) : S ∈ S2(n)}. (3)

By Theorem 1 (i), ID2(n) is well-defined. Clearly ID2(n) ≥ ID(n) and equality
holds for n = 3, 4, 5 since every non-trivial split of a set X of size 3, 4, or 5 is a 2-split.
In the main result of this section (Theorem 4), we provide upper and lower bounds for
ID2(n). To prove it, we shall use two lemmas.
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For S a split system on X , we denote by P(S) the graph with vertex set X and with
edge set all the pairs {x, y} such that xy|xy ∈ S. We also denote the degree of a vertex
x ∈ X in P(S) by degP(S)(x). If S contains only trivial splits and 2-splits then P(S)

and dicing are related as stated as in Lemma 5. We omit its straight-forward proof but
remark in passing that Lemma 5 is a strengthening of Theorem 2 for split systems in
S2(n), for all n ≥ 3.

Lemma 5 Let S ∈ S2(|X |) be a split system on X with |X | ≥ 3. Then,

• S 4-dices X if and only if |X | ≤ 4 or for all Y ∈ (X
4

)
, the restriction P(S|Y )

contains two edges that share a vertex.
• S 5-dices X if and only if |X | ≤ 5 or for all Y ∈ (X

5

)
, the restriction P(S|Y )

contains five edges or more.
• S 6-dices X if and only if |X | ≤ 6 or for all Y ∈ (X

6

)
, the restriction P(S|Y )

contains a 3-clique.

In terms of the dimension of a split system in S2(n), n ≥ 3, we also have the
following result.

Lemma 6 Let S ∈ S2(|X |) be a split system on X with |X | ≥ 3. Then,

(i) If P(S) does not contain a 3-clique then dim(S) = maxx∈X {degP(S)(x)}.
(ii) If P(S) contains a 3-clique then dim(S) = max{maxx∈X {degP(S)(x)}, 3}.
Proof We prove (i) and (ii) together. For this, put n = |X |. If n = 3 then P(S) consists
of three isolated vertices. So Assertion (i) holds. Since S only contains trivial splits,
it follows that Assertion (ii) holds vacuously. So assume that n ≥ 4. Let S ∈ S2(n).
Then a maximal incompatible subset S ′ of S must be of one of the following two
types:

(a) A triangle of 2-splits.
(b) The set of all 2-splits in S containing some x ∈ X in their small part.

To see that these are the only two possible types, it suffices to remark that any subset
S ′ ⊆ S with |S ′| ≥ 4 is incompatible if and only if there exists some x ∈ X such that
all splits of S ′ contain x in their small part.

If S ′ is of Type (a) then S ′ corresponds to a 3-clique in P(S) and |S ′| = 3. If S ′ is
of Type (b) then S ′ corresponds to the set of edges of P(S) that are incident with x .
Hence, |S ′| = degP(S)(x) ≥ 3. Thus, if P(S) has a vertex x with degP(S)(x) ≥ 3 or
if P(S) does not contain a 3-clique then dim(S) = maxx∈X {degP(S)(x)}. Otherwise,
dim(S) = 3. ��

We now prove the main result of this section.

Theorem 4 For all n ≥ 5,

⌊n
2

⌋
≤ ID2(n) ≤ n − 3.
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Proof We first show that ID2(n) ≤ n − 3 by constructing an injective split system
Sn on Xn = {1, . . . , n} with dim(S) = n − 3. For this, let σn denote some circular
ordering of the elements of Xn . Let Sn denote the set of all splits xy|Xn −{x, y} such
that x, y ∈ Xn are not consecutive under σn . By definition of Sn , all vertices of P(Sn)

have degree n − 3. If n ≥ 6, it follows by Lemma 6 that dim(Sn) = n − 3. If n = 5, it
is straight-forward to check that P(Sn) does not contain a 3-clique. So, by Lemma 6,
dim(Sn) = n − 3 holds in this case too. Thus, it remains to show that Sn is injective.
In view of Theorem 2, we do this by showing that Sn 4-, 5- and 6-dices Xn .

To see that Sn 4-dices Xn , let Y ∈ (Xn
4

)
which exists as n ≥ 5. By Lemma 5,

it suffices to show that there exists an element of Y that has degree 2 or more in
P(Sn|Y ). Let x ∈ Y . If degP(Sn |Y )(x) ≥ 2, we are done by the definition of Sn .
Otherwise, Y contains two elements y and z such that y and z precede and follow
x under σn , respectively. Let t be the fourth element of Y . Then {x, t} is an edge in
P(Sn). Moreover, since n ≥ 5 and t �= x , there must be at least one of y, z that is
adjacent with t in P(Sn). Thus, degP(Sn |Y )(t) ≥ 2, as required.

To see that Sn 5-dices Xn , let Y ∈ (Xn
5

)
which again exists because n ≥ 5. By

Lemma 5, it suffices to show that P(Sn|Y ) contains at least five edges. To see this,
note first that, for all x ∈ X , there are at most two elements in Y − {x} that do not
form an edge with x in P(Sn|Y ) because Sn is circular. For all x ∈ Y , it follows that
degP(Sn |Y )(x) ≥ 2. Since Y contains five elements, this implies that P(Sn|Y ) contains
at least five edges, as required.

Finally, to see that Sn 6-dices Xn , note first that we may assume that |X | ≥ 6 as
otherwise Sn 6-dices Xn by definition. Let Y ∈ (Xn

6

)
. By Lemma 5, it suffices to show

that P(Sn|Y ) contains a 3-clique. To see this, let x ∈ Y . Then, by the definition of
P(Sn), there exist at least three elements in Y , say y, z and t , that form an edge with x
in P(Sn). Moreover, at least two of y, z and t , say y and z, must form an edge {y, z} in
P(Sn) since y, z and t cannot all be consecutive with each other under σn . It follows
that {x, y, z} is the vertex set of a 3-clique in P(Sn|Y ), as required. This concludes
the proof that ID2(n) ≤ n − 3.

We now show that � n
2 	 ≤ ID2(n). We begin by showing that ID2(n+2) > ID2(n),

for all n ≥ 3. Assume that n ≥ 3. Also, assume that σn+2 is the natural ordering of
Xn+2 = {1, 2, . . . , n, n+ 1, n+ 2}. Let S ∈ S2(n+ 2) denote a split system on Xn+2
that attains ID2(n+2). LetS ′ denote amaximal incompatible subset ofS.Weclaim that
S ′ must contain a non-trivial split that separates the elements n+1 and n+2. Clearly,
S must contain such a split as otherwise Lemma 1 implies that φY (S) = φY ′(S) holds
for all S ∈ S and all Y ,Y ′ ∈ (Xn+2

3

)
with Y ∩ Y ′ = {n + 1, n + 2}. Hence, S is not

injective which is impossible. Choose a split S0 ∈ S such that S0(n+1) �= S0(n+2).
Assume for contradiction that all splits S ∈ S ′ satisfy S(n + 1) = S(n + 2). Then S0
is incompatible with every split in S ′ because S0 and every split in S ′ have size two.
Hence, S ′ ∪ {S0} is an incompatible subset of S that contains S ′ as a proper subset
which contradicts the choice of S′.

Consider now the restriction Sn of S to Xn . By Corollary 1, Sn is injective because
S is injective. Moreover, since all maximal incompatible subsets of S contain a split
separating n + 1 and n + 2 by the previous claim, it follows that no maximal incom-
patible subset of Sn has size equal to dim(S). Hence, dim(Sn) < dim(S). Since
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dim(S) = ID2(n + 2) by the choice of S, and dim(Sn) ≥ ID2(n) by the injectivity of
Sn , it follows that ID2(n + 2) > ID2(n), as required.

We conclude with showing that ID2(n) ≥ � n
2 	 holds by performing induction on

n. If n = 5 then ID2(n) = ID(n) since all non-trivial splits on Xn are 2-splits and
ID(n) = � n

2 	 holds by Corollary 3. This implies the stated inequality in this case.
Now, let n > 5 and assume that the stated inequality holds for all 5 ≤ n′ < n. Since
ID2(n) > ID2(n − 2) it follows by induction hypothesis that ID2(n) > ID2(n − 2) ≥
� n−2

2 	. Hence, ID2(n) ≥ � n−2
2 	 + 1 = � n

2 	, as desired. ��

7 Rooted Injective Dimension

In this section, we consider another variant of the injective dimension which behaves
quite differently from ID(n). Let X denote a set with |X | = n. Choose some element
r ∈ X . For Z ∈ (X−{r}

2

)
, put Zr = Z∪{r}.We say that a split system is rooted-injective

(relative to r ) if

φZr �= φZ ′
r

for all Z , Z ′ ∈ (X
2

)
distinct. This concept is closely related to the rooted median

graphs considered in [7]. Note that if X = 3 then the (unique) split system on X is
r -rooted injective for any choice of r ∈ X . Also, note that if S is injective, then S is
rooted-injective relative to r , for all r ∈ X . The converse, however, does not hold. For
example, the split system S on X = {1, . . . , 6} whose set of non-trivial splits is:

{14|14, 15|15, 16|16, 24|24, 25|25, 26|26, 34|34, 35|35, 36|36}

is not injective because S does not 6-dice X and so Theorem 2 does not hold. But S
is rooted-injective relative to r , for all r ∈ X .

For n ≥ 3, X a set with |X | = n and some r ∈ X , we define the rooted-injective
dimension IDr (n) to be

IDr (n) = min{dim(S) : S is a rooted-injective split system on X relative to r}.

Our next result (Theorem 5) shows that IDr (n) is well-defined for all n ≥ 3, and
that, in contrast to ID2(n), IDr (n) is always equal to 2 when n ≥ 4.

Theorem 5 Suppose that X is such that n = |X | ≥ 4 and that r ∈ X. Then there
exists a rooted-injective split system S on X relative to r with dim(S) = 2. Moreover
IDr (n) = 2.

Proof Put X = {1, 2, . . . , n − 1, r}. First note that IDr (n) ≥ 2, since if IDr (n) = 1,
then there would be a rooted-injective split system S on X relative to r with dim(S) =
1. But this is not possible since then the Buneman graph B(S) associated to S would
be a phylogenetic tree on X with |S| + 1 edges. Using a similar argument to the one
used to show that ID(4) = ID(5) = 2 in the proof of Theorem 3, it is straight-forward
to check that then S is not rooted-injective which is impossible.
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Fig. 3 The Buneman graph of a
split system on
{1, 2, 3, 4, 5, 6, r} that is rooted
injective relative to r that is
constructed as described in the
proof of Theorem 5

1

2 3 4 5

6

r

Now, define the split system S on X whose subset of non-trivial splits is equal to
S1 ∪ S2, where:

S1 = {{n − 1 − i, . . . , n − 1}|{n − 1 − i, . . . , n − 1} ∪ {r} : 0 ≤ i ≤ n − 3}

and

S2 = {{n − 1 − i, . . . , 1}|{n − 1 − i, . . . , 1} ∪ {r} : 0 ≤ i ≤ n − 3}.

For example, for n = 7, the Buneman graph B(S) of S is the half-grid pictured in
Fig. 3. More precisely, in that figure, the splits in S1 and S2 are the splits associated
to edges oriented downwards from left to right and from right to left, respectively.

To see that dim(S) = 2, it suffices to remark that S1 and S2 are compatible, so a
maximal incompatible subset of S has size at most 2. Since S is not compatible, it
follows that dim(S) = 2.

We next show that S is rooted-injective relative to r . To see this, let Z , Z ′ ∈ (X−{r}
2

)

distinct. Also, let x− = min(Z ∪ Z ′) and x+ = max(Z ∪ Z ′). Since Z ∪ Z ′ has size
at least 3, we have that x− and x+ are distinct. Furthermore, x− ≤ n − 3 and x+ ≥ 3
must hold. In particular, the splits S− = {x− + 1, . . . , n − 1}|{1, . . . , x−} ∪ {r} and
S+ = {1, . . . , x+ − 1}|{x+, . . . , n − 1} ∪ {r} belong to S1 and S2 respectively, so
both splits belong to S. Moreover, Z ∩ Z ′ contains at most one element, so at least
one of x− and x+ does not belong to Z ∩ Z ′. If x− /∈ Z ∩ Z ′ then S− satisfies
φZr (S

−) �= φZ ′
r
(S−), and if if x+ /∈ Z ∩ Z ′ then S+ satisfies φZr (S

+) �= φZ ′
r
(S+).

So, S is rooted-injective relative to r . ��
Remark 1 Theproof that the split systemS is rooted-injective relative to r inTheorem5
gives an alternative proof that the extended half-grid for (n+1) in [7, p.7] can be used
to represent a symbolic map, since the Buneman graph B(S) with the pendant edge
containing r contracted is isomorphic to the extended half-grid on n.

Note that the rooted-injective split system S in the proof of Theorem 5 is the union
of two split systems S1 and S2 whose associated Buneman graphs are phylogenetic
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trees. In general, if S is a split system on X with this property then dim(S) ≤ 2 (since
every 3-subset of S must contain at least one pair of splits that is contained in one of
the split systems, and so this pair of splits must be compatible). Hence, by Theorem 3,
S cannot be injective in case |X | ≥ 6.

8 Discussion

In this paper we have defined and explored the concept of injective split systems, that
is, splits systems S on a set X such that two distinct sets of three elements of X have
distinct median vertex in the Buneman graph B(S) associated to S. Making use of the
notion of dicing, we have shown that a given split system is injective if and only if
its subsets of size 6 or less are injective, from which we derived a characterization of
injective split systems. We also studied the injective dimension of an integer n ≥ 3,
that is, the minimal dimension of an injective split system on some set of n elements.
On this topic, it remains an open question whether there is a lower bound for ID(n)

that is linear in n.
The notion of an injective split system also suggests to consider a matching concept

of surjective split systems. We call a split system S on some set X with |X | ≥ 3
surjective if the vertex set of B(S) is equal to

{φx : x ∈ X} ∪
{
φY : Y ∈

(
X

3

)}
, (4)

In other words, every non-leaf vertex in B(S) is the median of three leaves in B(S).
Note that every split system whose Buneman graph is a phylogenetic tree is surjective
but, for example, the split system corresponding to the Buneman graph in example in
Fig. 2(ii) is not surjective because the central vertex in the graph is not the median
of any three leaves. The general properties of surjective split systems remain to be
investigated.

Naturally, one may want to study bijective split system S that are both injective and
surjective. We conjecture that a split system S on some set X with |X | ≥ 3 is bijective
if and only if either |X | = 3 and |S| = 3 or |X | = 4, |S| = 6 (i. e. the Buneman graph
associated to S is a three-leaved phylogenetic tree or—up to leaf relabelling—the
graph in Fig. 2(i), respectively). A proof or counter-example for this conjecture might
use concepts that are related to the so-called median stabilization degree of a median
algebra—see e.g. [3, 13].

Finally, another interesting open problem is the following: Can we develop a mod-
ular decomposition theory for Buneman graphs along the lines described in [7]?

Acknowledgements This work was supported in part by the German Federal Ministry for Education and
Research (BMBF 031L0164C, RNAProNet, to P.F.S.). The authors would like to thank the Institut Mittag-
Leffler in Djursholm, Sweden for hosting the conference “Emerging Mathematical Frontiers in Molecular
Evolution” in August 2022, where this work was finalized. They also thank the two reviewers for their
careful reading of the manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL. This study was funded by Bun-
desministerium für Bildung und Forschung (No. BMBF 031L0164C).

123



Graphs and Combinatorics            (2023) 39:65 Page 21 of 22    65 

Data Availibility Not applicable.

Declarations

Conflict of Interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bandelt, H.J., Dress, A.W.M.: A canonical decomposition theory for metrics on a finite set. Adv. Math.
92(1), 47–105 (1992)

2. Bandelt, H.J., Forster, P., Sykes, B.C., Richards, M.B.: Mitochondrial portraits of human populations
using median networks. Genetics 141(2), 743–753 (1995)

3. Bandelt, H.J., Van DeVel, M.: Themedian stabilization degree of a median algebra. J. Algebr. Combin.
9(2), 115–127 (1999)

4. Barthelemy, J.: From copair hypergraphs to median graphs with latent vertices. Discrete Math. 76,
9–28 (1989)

5. Barthelemy, J., Guenoche, A.: Trees and Proximity Representations. Wiley, New York (1991)
6. Böcker, S., Dress, A.W.M.: Recovering symbolically dated, rooted trees from symbolic ultrametrics.

Adv. Math. 138(1), 105–125 (1998)
7. Bruckmann, C., Stadler, P.F., Hellmuth, M.: From modular decomposition trees to rooted median

graphs. Discrete Appl. Math. 310, 1–9 (2022)
8. Choe, Y.B., Huber, K.T., Koolen, J.H., Kwon, Y.S.,Moulton, V.: Counting vertices and cubes inmedian

graphs of circular split systems. Eur. J. Combin. 29(2), 443–456 (2008)
9. Dress, A., Huber, K.T., Koolen, J., Moulton, V., Spillner, A.: Basic Phylogenetic Combinatorics.

Cambridge University Press, Cambridge (2012)
10. Dress, A.W.M., Hendy, M., Huber, K.T., Moulton, V.: On the number of vertices and edges of the

Buneman graph. Ann. Combin. 1(1), 329–337 (1997)
11. Dress, A.W.M., Huber, K.T., Koolen, J., Moulton, V.: Blocks and cut vertices of the Buneman graph.

SIAM J. Discrete Math. 25(4), 1902–1919 (2011)
12. Dress, A.W.M., Huber, K.T., Koolen, J., Moulton, V., Spillner, A.: Basic Phylogenetic Combinatorics.

Cambridge University Press, Cambridge (2012)
13. Evans, E.: Median lattices and convex subalgebras. Universal Algebra 29, 225–240 (1982)
14. Gurvich, V.: Some properties and applications of complete edge-chromatic graphs and hypergraphs.

Sov. Math. Dokl. 30(3), 803–807 (1984)
15. Hellmuth, M., Hernandez-Rosales, M., Huber, K.T., Moulton, V., Stadler, P.F., Wieseke, N.: Orthology

relations, symbolic ultrametrics, and cographs. J. Math. Biol. 66(1), 399–420 (2013)
16. Huber, K.T., Moulton, V., Scholz, G.E.: Three-way symbolic tree-maps and ultrametrics. J. Classif.

36(3), 513–540 (2019)
17. Klavžar, S., Mulder, H.M.: Median graphs: characterizations, location theory and related structures. J.

Combin. Math. Combin. Comput. 30, 103–128 (1999)
18. Mulder, H.M.: The structure of median graphs. Discrete Math. 24(2), 197–204 (1978). https://doi.org/

10.1016/0012-365x(78)90199-1
19. Mulder, H.M.: Median graphs: a structure theory. In: Advances in Interdisciplinary Applied Discrete

Mathematics, pp. 93–125. World Scientific, Singapore (2011)
20. Semple, C., Steel, M., et al.: Phylogenetics, vol. 24. Oxford University Press on Demand, Oxford

(2003)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0012-365x(78)90199-1
https://doi.org/10.1016/0012-365x(78)90199-1


   65 Page 22 of 22 Graphs and Combinatorics            (2023) 39:65 

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Injective Split Systems
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graphs and Median Graphs
	2.2 Buneman Graphs
	2.3 Properties of Buneman Graphs

	3 Two Families of Injective Split Systems
	4 Characterization of Injective Split Systems and Dicing
	5 The Injective Dimension
	6 The Injective 2-Split-Dimension
	7 Rooted Injective Dimension
	8 Discussion
	Acknowledgements
	References


