
1. Introduction
Surface ozone pollution is one of the key environmental concerns in China. In contrast to the remarkable reduction 
in fine particle (PM2.5) pollution driven by clean air policies (Zhang et al., 2019), many studies report a worsening 
of ozone pollution in urban regions of China over the last decade (Li et al., 2020; Y. Liu & Wang, 2020a; X. Lu 
et al., 2018, 2020; Weng et al., 2022). Earlier worsening ozone pollution, from 2013 to 2017, have been attributed 
to ozone's nonlinear response to large reductions in nitrogen oxides (NOx) emissions without equivalent reduc-
tions in volatile organic compounds (VOCs) emissions (Y. Liu & Wang, 2020b; N. Wang et al., 2019; T. Wang 
et al., 2017), particularly in many urban regions that were within the NOx-saturated regime (H. Lu et al., 2019; 
Ou et  al.,  2016). Nevertheless, with the continuous reductions in NOx, the sensitivity of summertime ozone 
production to VOCs in some urban areas of China may have gradually weakened (W. Wang et al., 2021, 2022). 
Furthermore, it has been suggested that the turning point between NOx-saturated and NOx-limited regimes in 
some densely populated urban areas of China was reached in 2019 (Chen et al., 2021).

A key question is how ozone pollution in China can be effectively mitigated through future emission controls, 
especially considering potential co-benefits from policy measures aimed at climate change mitigation. For 
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transport model (WRF-Chem). With emission reductions in ozone precursors introduced by climate policies, 
both mechanisms show promising ozone mitigation for most parts of China. However, they disagree starkly in 
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ozone chemical regimes affecting its sensitivity to emission changes. We recommend an intercomparison 
project to examine this critical modeling uncertainty among other models/mechanisms, which would be 
invaluable for informing local and regional emission control strategies that are based on single-model results.

Plain Language Summary Surface ozone pollution is harmful to both human health and 
ecosystems. Reducing ozone formation through effective emission control strategies has therefore been 
identified as a pressing need. Chemical transport models (CTMs) are important tools that can help scientists 
and policymakers assess how effectively the emission reductions may alleviate ozone pollution. However, we 
show that the predicted effectiveness of emission control strategies for ozone mitigation in areas within the 
three city clusters of China are strongly dependent on the choice of chemical mechanism commonly employed 
in CTMs. For example, given emission reductions driven by ambitious climate action, we find that projected 
ozone pollution in these regions could be improved or worsened by the year 2030 depending on the model 
mechanism used. Our work underlines the importance of considering and understanding this disagreement 
when it comes to projecting even near-term emission-control strategies. Furthermore, we highlight the potential 
benefits of conducting a multi-model/mechanism intercomparison project to better understand how and why 
different models/mechanisms disagree on the simulated ozone response to emission changes, as to produce 
more robust mitigation scenario assessments.
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instance, in 2016, China committed its Nationally Determined Contribution (NDC) pledges within the context 
of Paris Agreement; and further scaled up its commitment in 2020, by proposing the goal of achieving carbon 
neutrality (Cheng et al., 2021; Z. Liu et al., 2022). This ambitious climate action may bring large emission reduc-
tions in CO2 accompanied by reductions in emissions of other pollutants such as PM2.5 and ozone precursors, 
which may lead to air quality improvements in the near future. For example, Cheng et al. (2021) suggested that 
by 2030, following the emission reduction plans in NDC pledges, the majority of the Chinese population may be 
exposed to less PM2.5 pollution (<35 μg · m −3). For surface ozone, long-term projections under the Representa-
tive Concentration Pathways (RCPs) using chemical transport models (CTMs) have been conducted by previous 
studies (Hong et al., 2019; Y. Wang, Hu, et al., 2021; Zhu & Liao, 2016) but fewer studies (e.g., Shi et al., 2021) 
have examined the effectiveness of emission controls on ozone mitigation following recent carbon neutrality plan 
which reflects China's up-to-date emission control strategies. Moreover, projections by these studies were often 
heavily dependent on the results from a single CTM. This presents a limiting factor as varying uncertainties and 
configurations in model setup can produce inconsistent predictions (Gilliam et al., 2015; Thomas et al., 2019). For 
instance, it has been well documented that the choice of chemical mechanism in a model can lead to discrepan-
cies in simulated gaseous species and aerosols (Archibald et al., 2020; Balzarini et al., 2015; Crippa et al., 2019; 
Mar et al., 2016; Visser et al., 2019; Yang et al., 2018). Consequently, disagreement in ozone projections from 
different chemical mechanisms can ultimately affect policymaking for ozone mitigation. Nevertheless, this issue 
has not been considered in sufficient detail in recent CTM studies that assess the effectiveness of current or future 
nationwide ozone mitigation strategies in China.

Therefore, we here conduct simulations with two widely used chemical mechanisms employed in a state-of-art 
CTM. We highlight and discuss noticeable discrepancies in ozone projections when considering near-future 
emission reductions driven by climate actions.

2. Materials and Methods
2.1. Model Setup

We use the Weather Research and Forecasting Model with Chemistry (WRF-Chem; Grell et al., 2005) standard 
version 4.1.5 to conduct simulations for the boreal summer period (i.e., June, July, and August). The simula-
tion domain covers the entirety of China (see Figure S1 in Supporting Information  S1). The model setup is 
based on the settings of Silver et al. (2020). The details of the setup are documented in Text S1 of Supporting 
Information S1.

To simulate gas phase chemistry, we use WRF-Chem in two configurations (i.e., chemical mechanisms) with 
(a) the Model for Ozone and Related Chemical Tracers (MOZART; Emmons et al., 2010) and (b) the Carbon 
Bond Mechanism Z (CBMZ; Zaveri & Peters, 1999). Aerosols are simulated using a 4-bin Model for Simulating 
Aerosol Interactions and Chemistry (MOSAIC; Zaveri et  al.,  2008) which is coupled to these two gas-phase 
mechanisms (i.e., MOZART and CBMZ) in WRF-Chem. Biogenic emissions for both mechanisms are calculated 
online by the Model of Emissions of Gases and Aerosol from Nature (MEGAN; Guenther et al., 2000). Biomass 
burning emission is not included in all the simulation runs, following Crippa et al. (2019), in order to avoid the 
inconsistence in processing fire emission between MOZART and CBMZ. Simulations by both chemical mecha-
nisms share the same settings of physics and dynamics.

2.2. Simulations of Emission Scenarios

A total of five scenarios are simulated. These include a base simulation for which emissions are set at the level 
of summer 2017 to represent a real-world scenario. The remaining four simulations project ozone under different 
emission pathways for the summer of 2030. All scenarios are run for both chemical mechanisms.

The emission data used in the base simulation are from Multi-resolution Emission Inventory for China (MEIC) 
version 1.3, and we denote the base simulation as “Base-2017” hereafter. For model evaluation, we compare the 
simulated pollutants from Base-2017 with observational data (see Text S2 in Supporting Information S1). For 
simulations with emissions projected for summer 2030, data from the Dynamic Projection model for Emissions 
in China (DPEC) version 1.1 (Cheng et al., 2021) are used. The development of DPEC is based on MEIC (Tong 
et al., 2020).
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For the future projections, we consider four emission pathways from DPEC. These include three projected 
emission reduction pathways from a moderate reduction scenario considering current released and upcoming 
emission control policies (i.e., “Current-goals”) to the other two ambitious scenarios for the pursuit of carbon 
neutrality (“Ambitious-pollution-Neutral-goals”) and 1.5°C temperature limit (“Ambitious-pollution-1.5°C-go
als”). Besides, we also include an additional pathway named “Baseline” by Cheng et  al.  (2021), which has 
overall increases of emissions compared to 2017 levels as it represents limited actions in emission controls. 
To avoid confusion with “Base-2017” (i.e., the real-world scenario), we term simulations of “Baseline” as 
“Limited-controls-2030” herein. A more detailed description of all these emission pathways is presented in Text 
S3 in Supporting Information S1 and can be referred to Cheng et al. (2021). In Table 1, we list all scenarios and 
their labels together with their relative-to-2017 changes of summertime NOx and non-methane VOC (NMVOC) 
total emissions in China. Overall, relative to 2017, the sign of emission changes (i.e., increases or decreases) are 
spatially consistent over eastern China in each 2030 scenario (Figure S8 in Supporting Information S1).

We compare results for each of the projected emission scenarios in 2030 with the Base-2017 levels. In particu-
lar, we are interested in how future scenarios may induce changes of summertime maximum daily 8 hr average 
(MDA8) ozone pollution relative to 2017 levels across China. To account for emissions from outside of China, 
EDGAR version 5.0 at 2015 levels (Mogno & Marvin, 2022) is used. These emissions from outside China, as 
well as other settings of WRF-Chem, initial and boundary conditions for both meteorology and chemistry (set at 
the summer of 2017, see Text S1 in Supporting Information S1 for details) and biogenic emissions, remain fixed 
for all of the simulations. This setup reflects our objective to isolate the effect of emission changes within China 
on its own ozone levels by 2030.

3. Results and Discussion
3.1. Projected Ozone Changes

Figure 1 shows projections of summertime ozone changes for 2030, relative-to-2017, for the two different chem-
ical mechanisms.

Both mechanisms show overall agreement in predicting the sign of ozone changes in areas outside of the three 
highly populated city clusters which are Beijing–Tianjin–Hebei (BTH), Yangtze River Delta (YRD) and Pearl River 
Delta (PRD). Specifically, due to the lax control policies in Limited-controls-2030, ozone increases occur in these 
areas; whereas decreases in ozone are found under the three emission reduction pathways (Current-goals-2030, 
Neutral-goals-2030 and 1.5°C-goals-2030). As the ozone sensitivity in these areas have been mostly classified as 
NOx-limited and transitional regime (e.g., Ren et al., 2022; W. Wang et al., 2021), it is not unexpected that ozone 
changes over these areas follow a similar trend as the changes in NOx emissions (see Table 1 and Figure S8 in 
Supporting Information S1): lower NOx emissions lead to ozone decreases and vice versa.

In contrast, in regions within the three city clusters where ozone sensitivity has been classified to be mostly in the 
NOx-saturated regime (Li et al., 2019; Y. Liu & Wang, 2020b; Ren et al., 2022), even whether ozone may increase 
or decrease is disagreed by the two mechanisms. For example, in Current-goals-2030, despite the emissions 
of NOx and NMVOC in these three city clusters being reduced when compared with the Base-2017 emissions 
(Figure S8 in Supporting Information S1), the surface ozone levels in some of these areas are predicted to be 
enhanced by 4–10 ppbv by MOZART (Figure 1b), lifting pollution levels further above the threshold of air qual-
ity guideline for short-term ozone exposure (100 μg m −3 for MDA8 ozone, roughly 50 ppbv) proposed by World 

Table 1 
Summary of the Emissions Scenarios and Their Corresponding Labels

Emission scenario
Change of NOx emissions relative to 

2017
Change of NMVOC emissions relative 

to 2017 Scenario label

MEIC emissions in 2017 – – Base-2017

Baseline emissions in 2030 41.0% 12.4% Limited-controls-2030

Current-goals emissions in 2030 −41.5% −23.2% Current-goals-2030

Ambitious-pollution-Neutral-goals emissions in 2030 −60.2% −28.9% Neutral-goals-2030

Ambitious-pollution-1.5°C-goals emissions in 2030 −60.4% −30.4% 1.5°C-goals-2030
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Health Organization. Moreover, most of these simulated increases persist despite stronger emission reductions 
in Neutral-goals-2030 and 1.5°C-goals-2030 (Figures 1c and 1d). In stark contrast, CBMZ predicts that ozone 
concentrations in these regions decrease or remain close to the 2017 levels under the three emission reduction 
pathways (Figures 1f–1h). Crucially, this would imply different requirements for policymakers to further control 
emissions of ozone precursors on top of emission reductions aimed at achieving already ambitious climate policy 
goals. To quantitatively summarize these results, we compare averaged ozone changes for the polluted urban and 
industrial regions within the three city clusters and the rest of China in Figure 2.

Figure 2. Simulated summertime average maximum daily 8 hr average ozone changes for each 2030 emission scenario, 
relative to Base-2017, by Model for Ozone and Related Chemical Tracers and Carbon Bond Mechanism Z. Shown are 
differences for the polluted urban and industrial regions (a) and the rest of China (b). Areas with emissions of NOx higher 
than the 80th percentile in each city cluster are defined as the polluted urban and industrial regions. Areas excluding these 
regions within China are then defined as rest of China.

Figure 1. Simulated summertime average maximum daily 8 hr average ozone changes for each emission scenario for the year 2030, relative to Base-2017 levels. 
Results are shown for the two WRF-Chem configurations, with the chemical mechanisms Model for Ozone and Related Chemical Tracers (a–d) and Carbon Bond 
Mechanism Z (e–h), respectively. The boundaries for the three city clusters, where ozone changes mostly do not agree on the sign, are highlighted and labeled in (a).
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Overall, this discrepancy highlights major modeling uncertainty in projecting future ozone changes over urban 
and industrial regions of China, with important implications for policymakers. Using CBMZ, one might conclude 
that emission controls following the three emission reduction pathways are promising for mitigating ozone pollu-
tion in most regions, including those within the city clusters. This agrees well with previous findings of Chen 
et al. (2021) and Kang et al. (2021). Using MOZART, however, would indicate that these emission reductions 
might remain insufficient in some of the most highly populated areas of China, where increasing ozone pollution 
would negatively affect a large portion of the Chinese population.

3.2. Discrepancy in Ozone Sensitivity

The striking discrepancies in the projected ozone changes may be mainly the result of differences in gas-phase 
chemistry for ozone production in MOZART and CBMZ, rather than being driven by aerosol effects (Text S4 in 
Supporting Information S1). A most likely cause is their different chemical sensitivities to NOx and VOC emis-
sion changes. To illustrate this, we conducted a set of test simulations for July 2017 in which the emissions across 
China of NOx and VOCs were reduced by 10%, 30%, and 50%, respectively.

In essence, these simulations underline the important differences in how ozone responds within the three city 
clusters to a given change in emissions, in particular for reduced NOx emissions (Figure 3). While both mech-
anisms show decreases in ozone when VOC emissions are reduced, consistent with the simulations by Kang 
et al. (2021), ozone in NOx-saturated urban and industrial regions exhibits strikingly different responses to the 
perturbation of NOx emissions. For instance, MOZART shows that the MDA8 ozone increases on average by 
over 5 ppbv in the urban and industrial regions when NOx emissions are reduced by 30% or even 50% (Figure 3a). 
However, for CBMZ, decreases in ozone are predicted given the same NOx emission reductions. In Addition, the 
ozone increases following 30% NOx emission reductions are more pronounced and more spatially extended in 
MOZART (Figure 3c) when compared to CBMZ (Figure 3e), analogous to the results for emission reductions in 
2030 (Figure 1). This suggests that the difference in how ozone responds to NOx reductions is the key factor to 
explain the mechanism dependency.

Our tests here also indicate a disagreement in categorizing ozone chemical regimes in urban and industrial 
regions: the results are consistent with MOZART tending toward a more NOx-saturated regime whereas a tran-
sitional or NOx-limited regime may be suggested by CBMZ. Similarly, an earlier study by Knote et al. (2015) 
showed that simulations using MOZART tends to predict more air quality stations within NOx-saturated regime 
in the North America than using CBMZ. Our results indicate that this phenomenon may also occur in China, 
where alleviating ozone pollution is currently pivotal for promoting public health. Such important modeling 
uncertainties, and their implications, should ideally be considered during the decision-making and design of 
future ozone control strategies.

3.3. Possible Causes of the Chemical Regime Discrepancy

Increasing ozone pollution given reductions in NOx emissions is not unexpected in a NOx-saturated regime. First, 
ozone can be consumed through its reaction with NO, which is known as NOx-titration (i.e., NO + O3 → NO2 + O2) 
(Sillman, 1999). With reductions in NOx emissions, NOx-titration can be weakened, thereby leading to less ozone 
suppression. Second, reducing NOx emissions in an NOx-polluted environment can weaken the formation of 
nitric acid (HNO3) that can be formed through a chain terminating reaction with the hydroxyl radical (OH) 
(OH + NO2 → HNO3). In this scenario, this reaction becomes a major sink of HOx (HOx ≡ OH + H + preoxy 
radicals; Jacob, 2000), which affects VOCs oxidation, thus suppressing subsequent net ozone production. Reduc-
ing NOx emissions in such a scenario leads to more available OH for atmospheric oxidation and can ultimately 
enhance ozone formation (H. Lu et al., 2019; Sillman, 1999).

Mar et al. (2016) showed that inconsistencies in rate constants of inorganic gas phase reactions among different 
mechanisms can cause a large discrepancy in simulated ozone concentrations, which may also result in differ-
ent ozone sensitivity regimes. We indeed find that the MOZART mechanism has higher rate constants for both 
NOx-titration and HNO3 formation under usual atmospheric conditions (see Text S5 in Supporting Informa-
tion S1). This suggests that MOZART may have a faster suppression of net ozone formation. In turn, ozone 
increases may also be more responsive to NOx reductions than for CBMZ. We tested this hypothesis by setting the 
rate constants for NOx-titration and HNO3 formation (or rate constants for most of the other inorganic reactions 
that are listed by Mar et al. (2016)) the same for both mechanisms. However, the discrepancy in ozone changes 
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Figure 3. Averaged maximum daily 8 hr average ozone changes in response to the emission reductions of NOx and volatile 
organic compounds (VOCs) during July 2017 in urban and industrial regions within the three city clusters (a) and the rest of 
China (b). Spatial patterns of ozone changes in Model for Ozone and Related Chemical Tracers given NOx (c) and VOCs (d) 
emissions reductions of 30%. The same, but for Carbon Bond Mechanism Z (e, f).
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persisted, suggesting that the differences in these rate constants alone cannot explain the predicted discrepancy. 
Clearly, rates of chemical reactions are not only determined by the rate constant but will also depend on the 
reactant concentrations. The simulated concentrations of key chemical compounds involved in NOx-titration and 
HNO3 formation indeed also differ significantly for the two mechanisms. For example, in Base-2017, the simu-
lated NOx are lower in CBMZ (Figure 4a) despite the fact that both of the mechanisms have the same emissions 
of NOx, suggesting that there is a stronger sink for NOx (e.g., HNO3 formation) in CBMZ. This is also consistent 
with the higher concentrations of simulated HNO3 when using the CBMZ mechanism (Figure 4b). It is likely that 
the higher simulated abundance of OH in CBMZ (Figure 4c) may be an important contributing factor that leads to 
a stronger formation of HNO3, even when considering its lower reaction rate constant than the one in MOZART. 
Higher OH can therefore lead to higher ozone concentrations (Figure 4d) and vice versa.

In summary, with respect to NOx-titration, MOZART may have an overall stronger NOx-titration as it has higher 
simulated NOx (i.e., weaker sink for NOx; see Figure 4a) and a higher rate constant for NOx-titration (Text S5 in 

Figure 4. Differences of daytime (06:00–18:00) average concentrations of NOx (a), HNO3 (b), OH (c), and O3 (d) during July 
in the Base-2017 scenario between Carbon Bond Mechanism Z (CBMZ) and Model for Ozone and Related Chemical Tracers 
(MOZART) (i.e., predicted concentration levels in CBMZ subtracted by MOZART).
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Supporting Information S1). Given this, the simulated ozone increases in MOZART may be more sensitive to a 
reduction in NOx emission. Furthermore, the higher levels of simulated OH (Figure 4c) in CBMZ may already 
be sufficient to drive more ozone formation (Figure 4d), and higher ozone also leads to more OH. If this is the 
case, then the addition of OH from the reduced HNO3 formation induced by NOx reduction might not have a 
large effect on ozone increases in CBMZ. Therefore, with the combined effect of all these factors, simulated 
ozone increases may be less pronounced in CBMZ. We further hypothesize that ozone changes in CBMZ might 
move  closer to the simulated increases by MOZART, if additional heterogenous reactions or aerosol uptakes of 
HOx and ozone (e.g., Y. Liu & Wang, 2020a) are included.

Overall, our results suggest that a more thorough intercomparison of NOx-titration, HNO3 formation along 
with their corresponding chemical species across several chemical mechanisms is necessary for elucidating the 
discrepancy in simulated ozone responses to near-term or future emission changes. We further note that soil 
NOx emissions could also be addressed in future intercomparisons, because such emissions may affect ozone 
responses to anthropogenic emissions changes (X. Lu et al., 2021; Y. Wang, Fu, et al., 2021).

4. Conclusions
Climate-action-driven emission controls will substantially change surface ozone pollution in China. Reliable 
projections of ozone changes given emission reductions in ozone precursors are key to assess which control 
strategy may be optimal for future ozone mitigation. Here, we show that two widely used chemical mechanisms 
from a CTM could produce highly inconsistent conclusions on the efficacy of planned control measures. Specif-
ically, we project ozone changes under four climate-action-driven emission pathways by summer 2030 using 
two chemical mechanisms (i.e., MOZART and CBMZ) in WRF-Chem. Although both mechanisms agree that 
summertime ozone in most parts of China can be mitigated to lower-than-2017 levels given emission reduc-
tions, we find marked discrepancies in major populated city clusters of China. In particular, MOZART simulates 
worsening ozone pollution in some of these areas by 2030 despite the ambitious emission reductions in ozone 
precursors as part of the proposed climate actions. In contrast, CBMZ typically shows reduced ozone pollution 
for the same scenarios and areas. We propose that this opposite response can mainly be attributed to differences in 
the  simulated ozone chemical regimes. Policy-making aimed at ozone mitigation that often relies on model simu-
lations should be aware of such major discrepancies, because it can lead to inconsistent conclusions regarding the 
effectiveness of emission control strategies. Therefore, we see an urgent need for a multi-model intercomparison 
project involving various chemical mechanisms from CTMs in order to achieve a more thorough understanding 
of how and why simulated ozone in different mechanisms/models responds differently to emission changes of its 
precursors.

Data Availability Statement
The source code of WRF-Chem version 4.1.5 is available at https://github.com/wrf-model/WRF/releases/tag/
v4.1.5. MEIC (version 1.3) emission data can be accessed from http://meicmodel.org.cn/?page_id=541&lang=en, 
and DPEC emission data (version 1.1) are available at http://meicmodel.org.cn/?page_id=1918&lang=en. 
EDGAR emission version 5.0 can be downloaded from https://zenodo.org/record/6130621. Meteorological data 
from National Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS)/final 
analysis (FNL) are provided at https://rda.ucar.edu/datasets/ds083.3/. Simulations by Community Atmosphere 
Model with Chemistry (CAM-chem) can be accessed from https://www.acom.ucar.edu/cam-chem/cam-chem.
shtml. Surface hourly measurement data of O3, NO2 and PM2.5 provided by the Chinese Ministry of Ecology and 
Environment (MEE) are available at https://zenodo.org/record/7629985. Model results and configuration files for 
WRF-Chem simulations can be downloaded from https://zenodo.org/record/7625666. WRF-Chem preprocess-
ing tools mozbc, anthro_emiss and bio_emiss can be downloaded from https://www.acom.ucar.edu/wrf-chem/
download.shtml.
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