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Abstract
Reaction diffusion systems describe the behaviour of dynamic, interacting, par-
ticulate systems. Quantum stochastic processes generalise Brownian motion
and Poisson processes, having operator valued Itô calculus machinery. Here it
is shown that the three standard noises of quantum stochastic processes can be
extended to model reaction diffusion systems, the methods being exemplified
with spatial birth–death processes. The usual approach for these systems are
master equations, or Doi-Peliti path integration techniques. The machinery
described here provide efficient analyses for many systems of interest, and
offer an alternative set of tools to investigate such problems.

Keywords: Doi-Peliti, quantum stochastic process, path integration,
reaction–diffusion, birth–death process

1. Introduction

Reaction diffusion systems involve models with discrete entities that have continuous modes
of location, transport and interaction [5, 38, 55]. The classic cases are those of molecular reac-
tions, wheremolecules diffuse through amedium, and are able to interact in some fashion, once
reactive molecules move within sufficient proximity, for example [13, 29, 30]. Other examples
include birth–death processes where members of the population have spatial dependencies
[11], and age-structured populations [8, 20, 23].

Themethods of analysis for these systems are varied. Classical master equations can be con-
structed for these systems. This usually results in an infinite series of equations to solve, known
as BBGKY hierarchies [1, 2, 29, 30, 58], which are difficult to solve, and so approximation
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techniques such as moment closure are applicable [33]. Doi developed continuous field theory
techniques adapting the machinery from quantum field theory [12, 13]. Notably, Peliti [49]
developed a lattice framework (rather than Doi’s continuous approach) to construct path
integral techniques. Together these have seen a wealth of applications, including glass phase
transition [19], branching random walks [6], phylogeny [27], age structured systems [8, 20,
23], neural network fluctuations [3], exclusion processes [21, 52, 53], predator prey systems
[11], stochastic duality [22, 38, 45], knot diagram dynamics [51], to name a few. See [55] for
a broad coverage of related topics. Other approaches that have seen utility in this area include
configuration spaces [36, 37], system size expansion methods [56] and techniques from semi-
groups [14]. Whatever the technique, the variable dimension size makes the analyses difficult
and finding alternative techniques is always a worthwhile endeavour.

Quantum stochastic processes can be viewed in a generalisation of Brownian motion and
Poisson processes. Brownian motion in particular has an Itô calculus associated with it that has
seen a plethora of applications across physics, finance and biology [31]. Quantum stochastic
processes also have an associated Itô calculus machinery, although the processes involved
are operator rather than vector valued. These techniques most commonly find application in
quantum optics [10] and open quantum systems with heat baths [18, 57]. Here we report a cor-
respondence between Doi field theory and quantum stochastic processes. This has the advant-
age that quantum Itô calculus can be brought to bear on reaction diffusion systems. For local
processes (where interactions occur when entities meet at a single location), this machinery
allows probability generating functions to be constructed exactly without recourse to field the-
ory methods such as path integrals. For non-local processes (where interactions occur between
physically separated entities), perturbation expansions are still necessary (as they are in field
theory methods). However, the expansions can also be formulated with the aid of Itô calculus.
This work thus reveals a new set of tools that reaction diffusion systems can be approached
with.

The operator valued nature of quantum stochastic processes means extracting probabilities
involves an extra step (an inner product). This is also a fundamental feature of obtaining prob-
abilities in quantummechanical systems, randommatrix theory, as well as Doi-Peliti methods.
The study of such properties in systems is generally known as non-commutative probability
(or sometimes quantum probability) [7, 41]. It has also seen development in abstract settings
such as graph theory, where it is also referred to as algebraic probability [26].

Now, multi-particle systems are described by Fock spaces, which can be discrete (when
particle numbers are modelled) or continuous (where spatial properties are incorporated) in
nature. The simplest discrete Fock space is perhaps formed from the ladder operators seen
in quantum harmonic oscillators. In [26] these are extended, where Jacobi sequences are
employed to give more general ladder processes applied to graph spectral theory. Discrete
Doi-Peliti methods [49] also employ such structures to model birth–death processes. These
are also extended in [44], meaning a broader class of discrete random processes can be mod-
elled (including fermionic systems that model exclusive processes). Continuous Fock spaces
are described by quantum stochastic processes [7, 15, 25, 41, 43, 47]. As well as applica-
tions to heat baths and optics, connections with classical stochastic processes are also known,
where natural formulations of Brownian motion and Poisson processes can be constructed.
Furthermore, an Evans–Hudson flow can be formed to describe birth–death processes [16,
48], although these do not exhibit the spatial dependency seen in reaction diffusion systems.

The spacial aspect of continuous Fock spaces thus opens the possibility of utilising quantum
stochastic process techniques for reaction diffusion systems. There are three standard noise
processes in quantum stochastic processes; the creation, annihilation and gauge (or number)
operators [9]. We show that the vast range of classical operators used in Doi field theory can be
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interpreted as quantum stochastic noise processes, along with corresponding modes of multi-
plication (that is, an associated Itô table). This involves the development of additional quantum
noise processes, although some standard behaviour can be lost. In particular, multiplication
in the corresponding Itô tables are not always associative. However, these constructions still
provide utility, and lead to alternative methods of analysis for some reaction diffusion systems
that usually entail path integrals.

The next two sections give brief overviews of Doi field theory used in reaction diffusion
systems, and the Fock spaces analysed in quantum stochastic processes. A mapping between
quantum stochastic processes and Doi field theory is then described. Applications to a range
of local birth–death and reaction diffusion processes then follow. Perturbation theory for non-
local processes are then considered, and conclusions complete the work.

2. Field theory

In all that follows, a population of mobile interacting discrete entities is considered. These
are referred to as particles, although they could be molecules, individuals or any other class
of objects modelled this way. They are assumed to be identical and indistinguishable. The
particles are also presumed to exist in some spaceΥ. For example, this could be R3 for spatial
variation, R+ for age dependency, or more general spaces of interest. This property is referred
to as the particle’s position.

There are two general approaches to field theory for these systems. One is the original con-
tinuous methods used by Doi [12, 13], the other involves lattice representation as described by
Peliti [49]. We consider both representations below. However, although the latter method has
probably seen more applications, we will see that the continuous representation of Doi is more
naturally interpretable as a quantum stochastic processes and will be the main representation
used.

2.1. Doi continuous field theory

Doi field theory will now be used to portray a population of interacting particles moving in
a spatial continuum. This representation starts with the vacuum state, representing an empty
population. This is denoted by the bra ⟨ϕ| or dual ket state |ϕ⟩, which are given normalisation,

⟨ϕ|ϕ⟩= 1. (1)

To describe particles and interactions, we introduce (bosonic) creation a†q and annihilation
ap operators, which act on the vacuum state via,

⟨ϕ|a†q = 0, ap|ϕ⟩= 0,

and satisfy commutation relations,

[ap,a
†
q] = δ(p− q), [ap,aq] = 0, [a†p,a

†
q] = 0. (2)

Although ap kills the vacuum state |ϕ⟩, the creation operators do not, and so we find states of
the following form,

|pn⟩ ≡ |p1,p2, . . . ,pn⟩ ≡ a†p1a
†
p2 . . .a

†
pn |ϕ⟩,

⟨pn| ≡ ⟨p1,p2, . . . ,pn| ≡ ⟨ϕ|ap1ap2 . . .apn .

3
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Notionally, the creation operators are creating particles, and the state |pn⟩ represents a popu-
lation of n indistinguishable individuals with locations p1,p2, . . . ,pn. The commutation rela-
tions and normalisation in equation (1) can then be used to reveal single particle normalisation
⟨p|q⟩= δ(p− q), and more generally (where Sn denotes the symmetric group),

⟨qm|pn⟩= δm,n
∑
σ∈Sn

n∏
i=1

δ(qi− pσ(i)). (3)

This machinery provides a description for a known, fixed configuration of n particles. To
model a stochastic system, a time dependent state is defined as,

|ψt⟩=
∞∑
n=0

¨
Υn

dpn
n!

f(n)(pn; t)|pn⟩,

where the symmetric function f(n)(pn; t)dpn is the probability density for the population con-
taining n particles at time t, such that a labelling 1,2, . . . ,n exists where the ith particle lies in
interval [pi,pi+ dpi] (by ‘interval’, this is the hypercube from pi to pi+ dpi in Υ; see [12, 20]
for a more detailed description). The density can be extracted with the aid of equation (3) to
find,

f(n)(pn; t) = ⟨pn|ψt⟩. (4)

Now, the dynamics are described by the evolution equation,

|ψt⟩= etL|ψ0⟩,

for a suitable initial distribution |ψ0⟩ and evolution operator L. This is often referred to as a
Liouvillian operator, and the form taken by L incorporates both interactions that can change
the number and class of particles, and also the dynamics of the mobile particles in space Υ.

For example,

L=

ˆ
Υ

(
µ(p)

(
(a†p)

2ap− a†pap
)
+D(p)a†p∆ap

)
dp, (5)

would represent a birth process at rate µ(p) for particles diffusing at rate D(p). The first term
kills a particle and replaces it with two new ones (birth of a single new particle). The second
term provides the neutral balancing term in the master equation (note the creation and destruc-
tion of a particle having no net effect). The third term describes the dynamics, with Laplacian
operator ∆ modelling diffusion.

Some care is neededwhen incorporating operators into Liouvillians (such as with the Lapla-
cian above). In [12] such operators are written L=

´
Υ
dpa†pG(p)ap, where the action of the

operator is meant in the sense that (shorthand notation such as Gp ≡ G(p) will frequently be
adopted for brevity),
ˆ
Υ

dpa†pGpap ·
∞∑
n=0

¨
Υn

dpn
n!

f(n)(pn; t)|pn⟩=
∞∑
n=0

¨
Υn

dpn
n!

n∑
i=1

(
Gpi f

(n)
)
(pn; t)|pn⟩.

Thus the position of G between a†p and ap is not important, with a†pap acting on the ket and G
acting on the coefficient (see [12] for a more general description).

Lastly, coherent states are introduced. The coherent state |v⟩, for an integrable function v
acting on Υ, is defined as,

|v⟩= e
´
Υ
v(p)a†p dp|ϕ⟩=

∞∑
n=0

¨
Υn

dpn
n!

v(p1) . . .v(pn)|pn⟩. (6)
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The coherent states have the following eigenfunction and normalisation properties,

ap|v⟩= v(p)|v⟩,

a†p|v⟩=
δ

δv(p)
|v⟩,

⟨u|v⟩= exp

{ˆ
Υ

ūvdp

}
. (7)

Note that the second equation is a functional derivative meant in the sense that ⟨u|a†p|v⟩=
δ

δv(p) ⟨u|v⟩. The third equation tells us that for v ∈ L2(Υ), the state |v⟩ is normalisable. In all
that follows, coherent state functions (such as u from ⟨u| above) shall be assumed real and
conjugation can safely be ignored.

One coherent state of particular importance (that is not generally normalisable) is the coher-
ent state |1⟩ for the constant function 1. This plays a crucial role in finding moments. For
example, probability conservation, and the m point correlation function are given by,

1= ⟨1|ψt⟩, (8)

Xm(pm; t) = ⟨1|ap1 . . .apn |ψt⟩, (9)

where Xm(pm; t)dpm is the probability we can find and labelm particles (from a possibly larger
population) such that the ith lies in the interval [pi,pi+ dpi]. The function X1(p; t) is thus the
regular density. Note also from equations (7) and (8) that for a coherent state to be probab-
ility state, it must be normalised properly. For an initial probability state we could use, for
example,

|ψ0⟩= e−
´
Υ
v(p)dp|v⟩. (10)

Further properties of the Doi framework can be found in [12, 20].

2.2. Peliti lattice methods

For lattice methods, the changes are not substantial and we just point out the main differences.
The space Υ is now assumed to be a discrete regular cubical lattice that particles hop about
and interact upon. The distance between nearest neighbour sites of the lattice is known as
the lattice constant ϵ, which is usually later reduced to zero in a limiting process to the con-
tinuum. The lattice is characterised by a set of integer occupation numbers {ni} counting the
number of particles occupying site i. To represent movements and interactions, we now use a
bosonic ladder operator algebra, with annihilation and creation operators ai and a

†
i that satisfy

commutation relations,

[ai,a
†
j ] = δij, [aj,aj] = 0, [a†i ,a

†
j ] = 0.

Fundamental states of the system are represented as |{ni}⟩ ≡ | . . . ,ni, . . .⟩, where ni counts
the number of particles occupying site i, and the operators have actions,

aj| . . . ,ni, . . .⟩= nj| . . . ,ni− 1, . . .⟩,
a†j | . . . ,ni, . . .⟩= | . . . ,ni+ 1, . . .⟩.

Coherent states are very similar to the continuous formalism, and can be defined as,

|u⟩=
∏
i∈Υ

euia
†
i |ϕ⟩,
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which is just a discretised form of equation (6), from which standard eigenfunction properties
such as ai|u⟩= ui|u⟩ follow.

The general state of a stochastic system is then represented as,

|ψt⟩=
∑
{ni}

P({ni}; t)|{ni}⟩,

where P({ni}; t) represents the probability that state occupation numbers are {ni} at time t.
The dynamics are similar to the continuous formalism, where we have the form,

∂|ψt⟩
∂t

= L|ψt⟩,

with Liouvillian L capturing movements and interactions.

For example, in L= λ
∑

i (1− a
†2

i )a
2
i +D

∑
<i,j>(a

†
i − a

†
i )(ai− aj), the first term would

represent pairwise annihilation A+A→ 0 (for pairs of particles annihilating on the same site)
and the second term represents a hoping process to nearest neighbours (< i, j> represents
nearest neighbour pairs). In the limit to the continuum this term becomes a diffusion term,
although some care is needed in the limiting process ϵ→ 0 as we need to rescale coefficients
correctly. For example, Dϵ2 would become the diffusion rate coefficient (see [5, 49, 55] for
more details).

3. Fock space

Fock space provides a framework that more rigorously describes the space used in the previ-
ous section. This section gives a brief overview of the important features. Note that it follows
the framework used in Meyer [41], the construction used in Parthasarathy [47] differs slightly.
There is a basic Hilbert space H. Elements of this space represent the single particle config-
urations (that is, elements of H act on Υ). For n particle configurations, we have elements
in the tensor product H⊗H⊗ ·· ·⊗H=H⊗n. This is used to describe configurations where
particles are labelled (that is, individual particles can be identified and differentiated).

For the case where particles cannot be differentiated, we consider the subspace of H⊗n

formed by symmetric components. Specifically, terms of the following form,

u1 ◦ u2 ◦ · · · ◦ un =
1
n!

∑
σ∈Sn

uσ(1)⊗ uσ(2)⊗ ·· ·⊗ uσ(n).

This space is denoted H◦n and represents n particle space, also known as the nth symmetric
power ofH, or more archaically as the nth chaos. This is the space used to represent bosonic
systems in quantum mechanics and is the form used throughout this work. There also exists
antisymmetric space, used to represent fermionic systems [41, 47], although these will not
play any role in this work. We also have the 0th symmetric space defined as H◦0 =H0 = C.
The element 1 ∈H0 is known as the vacuum vector.

The Fock space is then formed by taking the direct sum of these spaces, denoted as,

Γ(H) =⊕∞
n=0H◦n.

Now the space H is endowed with an inner product, denoted < ·, ·>H, with subscript to
distinguish from bras and kets. This has a natural extension to n particle space, given by the
permanent of individual inner products,

< u1 ◦ u2 ◦ · · · ◦ un,v1 ◦ v2 ◦ · · · ◦ vn >◦n = per(< ui,vj >H) =
∑
σ∈Sn

n∏
i=1

< ui,vσ(i) >H .

6
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For example, if f◦n and g◦n represent the symmetric product of n copies of the functions f,g ∈
H, then,

< f◦n,g◦n >◦n = n!(< f,g>H)n. (11)

Then for the full Fock space, taking elements F=⊕∞
n=0 f

(n) and G=⊕∞
n=0g

(n), where
f(n),g(n) ∈H◦n, we define inner product,

< F,G>Γ =
∞∑
n=0

< f(n),g(n) >◦n . (12)

If we abuse notation and also write f(n) ∈H◦n for Fock space element 0⊕ ·· ·⊕ 0⊕ f(n)⊕
0 ⊕ . . . ⊕ 0 ∈ Γ(H), we find< f(m),g(n) >Γ= δm,n < f(m),g(m) >◦m. That is, firstly, elements
from distinct symmetric spaces are orthogonal, and secondly, that the inner product on Γ(H)
is the naturally induced one from the symmetric spaces.

Now, exponential vectors are a subset of vectors in Fock space that are well behaved. They
are defined as,

ξ(u) =
∞∑
n=0

u◦n

n!
. (13)

Note in particular from equations (11) and (12) that we have normalisation,

< ξ(u), ξ(v)>Λ= exp< u,v>H .

The space generated by exponential vectors is a dense subspace of Γ(H) and subsequently
proves to be the testing ground for many results in Fock space [41, 47], but they also behave
well under the action of important operators.

In particular, we have annihilation, creation and gauge operators that act as follows,

Af(u1 ◦ · · · ◦ un) =
n∑
i=1

< f,ui >H u1 ◦ · · · ûi · · · ◦ un,

A†
g(u1 ◦ · · · ◦ un) = g ◦ u1 ◦ · · · ◦ un,

ΛH(u1 ◦ · · · ◦ un) = H(u1) ◦ u2 ◦ · · · ◦ un+ u1 ◦H(u2) ◦ · · · ◦ un+ · · ·+ u1 ◦ u2 ◦ · · · ◦H(un),

where ûi indicates an element removed from the product, H is a linear operator acting on H,
and f,g ∈H. These operators have well behaved actions on exponential vectors. Specifically,

Afξ(u) =< f,u>H ξ(u),

A†
gξ(u) = lim

ϵ→0

∂

∂ϵ
ξ(u+ ϵg),

ΛHξ(u) = A†
Huξ(u). (14)

Now to construct quantum stochastic processes with associated noises, the Fock space usu-
ally employed is Γ(L2(R+)). Functions taken from space H= L2(R+) are then one dimen-
sional square integrable functions that are usually viewed as acting on time t. The Itô calculus
associated with Brownian motion can now be generalised to this space. This first requires the
restriction offered by indicator functions, where,

χ[a,b](t) =

{
1, if t ∈ [a,b].

0, otherwise.

7
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Table 1. Standard quantum stochastic process Itô table.

dΛG dAg dA†
g dt

dΛF dΛFG 0 dA†
Fg 0

dAf dAG†f 0 < f,g>H dt 0
dA†

f 0 0 0 0
dt 0 0 0 0

Then fχ[0,t] and fχ[t,t+dt] represent the function f restricted to support from intervals [0, t] and
infinitesimal [t, t+ dt], respectively. Associated with these, the time dependent operatorAf(t) =
Afχ[0,t]

and differential dAf(t) = Afχ[t,t+dt]
are defined, with similar expressions for creation and

gauge operators. It is these differentials that follow Itô multiplication rules, as given in table 1.
From this machinery, processes of interest can be constructed. For example, consider the

process dX= dΛ+
√
ℓ(dA+ dA†)+ ℓdt (function and operator subscripts are defined as unity

and dropped for a moment). This gives a realisation of the Poisson process (Itô table multiplic-
ations readily give dX2 = dX), and dA+ dA† gives a realisation of Brownian motion (note that
(dA+ dA†)2 = dt). More general birth–death processes have also been constructed [16, 48],
although (as with many applications) these utilise an extension of Fock space with an initial
spaceH ′ toH ′⊗Γ(H). We do not require or make use of such extensions.

Next we see how these processes and the Doi framework can be unified, resulting in an
alternative method to path integration.

4. Non-associative Ito calculus and normal ordering

Now, some of the operators seen in Doi calculus directly correspond to standard quantum
stochastic noise processes. For this connection, the Fock space Γ(L2(Υ)) is used. For quantum
stochastic processes, the space Υ= R+ is usually employed and acts as a time variable. This
is not the case here, and Υ= R3 is the more usual interpretation, representing position, with
time a separate variable. Conversely, the initial spaceH ′ that proves so useful in applications
plays no role here.

4.1. Doi field theory and quantum stochastic process equivalence

The correspondence between quantum stochastic processes and Doi field theory can be found
from,

f1 ◦ · · · ◦ fn ≡
¨

Υn

dqn f(q1) . . . f(qn)|qn⟩, (15)

where fi ∈H and |qn⟩= a†q1 . . .a
†
qn |ϕ⟩ are the fundamental states in Doi field theory. The

vacuum states are also identified under this correspondence. Note that in Fock space, the states
|qn⟩ in isolation are singular, and equation (15) would require f i to be delta functions, which
do not sit in H. That is, a distribution version of Fock space would be required. Instead, we
find Fock states are in effect smeared fundamental Doi states.

Note from equations (6) and (13) that coherent states and exponential vectors are equivalent
under the correspondence of equation (15). That is,

ξ(u)≡ |u⟩.

8
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There is also correspondence between operators. Consider first the annihilation operators,
where,

Af ≡
ˆ
Υ

f(p)ap dp.

To see this connection note the equivalent action on exponential vectors and coherent states
given by,

Afξ(u) =< f,u>H ξ(u) =
ˆ
Υ

f(p)u(p)dpξ(u)≡
ˆ
Υ

f(p)u(p)dp|u⟩=
ˆ
Υ

f(p)ap dp|u⟩.

Secondly, the creation operators have equivalent actions. Specifically, we have operators,

A†
f ≡
ˆ
Υ

f(p)a†p dp,

along with actions,

A†
f ξ(u) = lim

ϵ→0

∂

∂ϵ
ξ(u+ ϵf) =

ˆ
Υ

f(p)
δξ(u)
δu(p)

dp≡
ˆ
Υ

f(p)
δ

δu(p)
|u⟩dp=

ˆ
Υ

f(p)a†p dp|u⟩.

Thirdly, we note that the gauge process has the following Doi interpretation,

ΛH ≡
ˆ
Υ

a†pHap dp,

with equivalence seen as follows,

ΛHξ(u) = A†
Huξ(u) = lim

ϵ→0

∂

∂ϵ
ξ(u+ ϵHu) =

ˆ
Υ

dp(Hu)(p)
δ

δu(p)
ξ(u)

≡
ˆ
Υ

dp(Hu)(p)
δ

δu(p)
|u⟩=

ˆ
Υ

dp(Hu)(p)a†p|u⟩=
ˆ
Υ

dpa†pHap|u⟩.

Finally we note that more general operators of Doi field theory do not naturally fit
into this formalism. Firstly, the birth operator

´
Υ
µ(p)(a†p)

2ap seen in equation (5) can-
not be written in terms of the creation, annihilation or gauge processes of Fock space.
Secondly, consider the annihilation process A+A→ ϕ, which can be described by Liouvil-
lian 1

2

˜
Υ2 R(|p− q|)(a†pa†qapaq− apaq)dpdq. This describes interaction over a distance, with

R(|p− q|) giving the rate of annihilation for particles separated by distance |p− q|, and the
process is not obviously described by Fock space. Thirdly, different species also occur natur-
ally in such reactions. The conversion process A→ B, which can be described by Liouvillian´
Υ
µ(p)(b†pap− a†pap)dp also needs to be adapted to this formalism.
General Fock space methods for these kind of operators are needed. This requires a rein-

terpretation of Wick ordering, which we now detail.

4.2. Process multiplication

To adapt Fock space methods for general operators from Doi field theory, a method to multiply
operators is first needed. This can be achieved the aid ofWick’s theorem on normal ordering of
operators, where all creation operators are positioned left of all annihilation operators [34, 39,
50]. Let the parentheses : : indicate normal ordering of operators within, so : apa†q := a†qap, for
example. Any annihilation operator ap left of a creation operator a†q (that is, a pair of operators
not in normal form) are denoted a contractible pair, meaning the commutator in equation (2)

9
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can be used to turn them into a delta function, and variables p= q can be identified as one
variable. Then Wick’s theorem tells us that the integral over a product of operators is found by
summing the normal ordered product across all choices of contractions. A branch connecting
a contractible pair in an equation indicates the pair will be contracted.

For example, consider the operator apa†q that arises when the product AfA†
g is evaluated. This

product is not in normal form, and there are two possible contractions, the null contraction
(doing nothing) and the contraction between the pair. Then we write,

Note that the same result can be found by using the commutator in equation (2) directly.
Now, if Υ is restricted to the infinitesimal hypercube dp we find the first term is of order

dp2 and negligible compared to the second term. This recovers the well known result from
quantum stochastic process Itô products (see table 1), dAf dA†

g = f(p)g(p)dp.
Similarly we find the product,

Again, restricting to infinitesimal Υ≡ dp, the first term is negligible and we end up with
the familiar product dΛGdΛH = dΛGH. The other products in standard quantum stochastic Itô
tables can be found similarly.

However, we now find that these have natural extensions for other operators from Doi field
theory. For example, consider the operatorΞR =

1
2

˜
Υ2 R(|p− q|)a†pa†qapaq dpdq that appeared

in the annihilation model A+A→ ϕ above. The product of these operators becomes (using
shorthand Rp−q = R(|p− q|)),

Thus we get seven contractions resulting in three terms. The first term is an integral over Υ4

involving a new operator not of the form ΞR. The next four terms involve one contraction (or

10
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one use of the commutator relation) and result in another new operator, over Υ3. The final
two terms have two contractions each (the maximum possible) and result in integrals over
Υ2, the same space that each operator ΞR and ΞS is defined over, resulting in operator ΞRS.
Then restricting to infinitesimal Υ≡ dq, only the two full contractions survive, the remaining
integrals being of order dq3 or higher. In particular, we end up with the simple relation,

dΞRdΞS = dΞRS.

Thus Wick contractions allow us to construct quantum Itô product tables for more general
operators seen in Doi field theory. We note that these generalised products are not necessarily
associative.

For example, consider the operator B(m)
G =

´
Υ
G(p)(a†p)

map. This form of operator can

occur in birth processes, as seen in equation (5) for example. Then multiplying B(m)
G to B(n)

H
results in one non-trivial contraction, and we find,

B(m)
G B(n)

H = n
ˆ
Υ

G(p)H(p)(a†p)
m+n−1ap dp+

¨
Υ2

G(p)H(q)(a†p)
m(a†q)

napaq dpdq,

from which we find,

dB(m)
G dB(n)

H = ndB(m+n−1)
GH . (16)

This is not an associative multiplication. In order to put operator products into normal form,
the rightmost creation operators are moved left. This has the effect that multiplication of
differentials is from the right. For example, one finds that dB(ℓ)

F dB(m)
G dB(n)

H = n(m+ n− 1)

dB(ℓ+m+n−2)
FGH , as can be shown by explicit expansion into normal form.
The final observation is crucial in the construction of alternative methods to path integra-

tion, where we note that Fock space differentials for distinct positions commute. If we write,
for example, dΛG(p) =

´
Υp

dΛG for the regionΥp ≡ dp, then [dΛG(p),dΛG(q)] = 0 for p ̸= q.
This is because the delta function in equation (2) cannot be implicated because the regionsΥp

and Υq do not overlap. Thus none of the pairwise contractions are possible and only higher
order terms remain in the products dΛG(p)dΛG(q) and dΛG(q)dΛG(p), meaning the commut-
ator only contains high order terms and can be regarded as zero.

4.3. Evolution operator expansion

Now, when Doi field theory is employed for many stochastic processes of interest, we have
an evolution operator of the form U= etL, for some Liouvillian operator L. Path integral
approaches split time into infinitesimal intervals, andU into a product over small time chunks,
with resolutions of identity used to bridge the gaps and form a path integral [20, 32, 49]. How-
ever, the Fock space calculus described above can instead be used to convert the evolution
operator into a useful form.

Specifically, given that Fock space differentials for distinct loci commute, U can be broken
into a product over infinitesimals dp. That is, if L=

´
Υ
dX is written as an integral over Fock

space operators, we find,

U= etL = et
´
Υ

dX =
∏
dp∈Υ

etdX(p) =
∏
dp∈Υ

(
1+

∞∑
n=1

tn

n!
dX(p)n

)
.

11
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For example, consider a simple death-diffusion process A→ ϕ with Liouvillian given by,

L=

ˆ
χ

(
µ(p)(ap− a†pap)+D(p)a†p∆ap

)
dp, (17)

where the death rate is µ(p) and particles diffuse at rate D(p). The evolution operator can then
be written as follows (where we have operator H= µ−D∆),

U= exp

{
t
ˆ
Υ

(dAµ− dΛµ+ dΛD∆)

}
= exp

{
t
ˆ
Υ

(dAµ− dΛH)

}
=
∏
dp∈Υ

exp{−t(dΛH− dAµ)}=
∏
dp∈Υ

(
1+

∞∑
n=1

(−t)n

n!
(dΛH− dAµ)

n

)
.

The multiplication relations between dAµ and dΛH are given in table 1 and can be used to
simplify (dΛµ− dAH)n. Note that the only surviving terms in an expansion of brackets involve
either no dAµ terms, or a single one on the left. This results in,

U=
∏
dp∈Υ

(
1+

∞∑
n=1

(−t)n

n!
(dΛHn − dA(H†)n−1µ)

)
=
∏
dp∈Υ

(
1+ dΛ[e−tH−1]− dA[e−tH1−1]

)
. (18)

In the last termwemake the simplifying assumption that diffusionD(p) = D is uniform, mean-
ing H is self adjoint and we can put (H†)n−1µ= Hn1, where Hn acts on constant function 1.
The evolution operator is now in a useful form whereby properties such as the moments and
probability densities can be extracted.

4.4. Moments

In order to extract moments from the evolution operator, the initial distribution in equation (10)
and them point correlation function of equation (9) needs to be interpreted in Fock formalism.

Firstly, for the initial distribution we have equivalence,

|v⟩e−
´
Υ
v(p)dp ≡ ξ(v)e−

´
Υ
v(p)dp.

Note that the normalisation factor requires v ∈ L1(Υ), whereas ∥ξ(v)∥Γ <∞ requires v ∈
L2(Υ).

The correlation function itself involves singular operators of the form ap, so instead we find
that,
¨

Υm

dpm f1(p1) . . . fm(pm)Xm(pm; t) =
¨

Υm

dpm f1(p1) . . . fm(pm)⟨1|ap1 . . .apm |ψt⟩

≡ lim
u→1

<ξ(u),Af1 . . .AfmUξ(v)>Γ e
−
´
Υ
v(p)dp = lim

u→1
<A†

fm
. . .A†

f1
ξ(u),Uξ(v)>Γ e

−
´
Υ
v(p)dp

= lim
u→1,ϵ→0

∂m

∂ϵ1 . . .∂ϵm
< ξ(u+ ϵ.f),Uξ(v)>Γ e

−
´
Υ
v(p)dp

=

¨
Υm

dpm f1(p1) . . . fm(pm)
δm

δu(p1) . . . δu(pm)
< ξ(u),Uξ(v)>Γ e

−
´
Υ
v(p)dp

∣∣∣∣
u≡1

. (19)

Thus the mth correlation function is obtained as a general mth functional derivative of the
generating functional.

12
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Consider using this to find the probability density X1(p; t)≡ X(p; t) for the death-diffusion
model of equation (17). From the actions in equation (14) and the evolution operator expansion
in equation (18) we find generating functional,

< ξ(u),Uξ(v)>Γ =
∏
dp∈Υ

(
1+ u(e−tH− 1)vdp− v(e−tH1− 1)dp

)
< ξ(u), ξ(v)>Γ

= exp

{ˆ
Υ

(
ue−tHv− v(e−tH1− 1)

)
dp

}
.

If we further assume that µ(p) = µ is also constant, note that e−tH1= e−µt. Furthermore,
if V= et∆v we find ∂V

∂t =∆V with V(p;0) = v(p). That is, it satisfies the heat equation

and so V(p, t) =
´
Υ
dpΦ(p− q; t)v(q) where Φ(p; t) = 1

(4πDt)d/2 exp(
−|p|2
4Dt ) is the standard

heat equation solution for a point source, and d= dim(Υ). The generating functional then
becomes,

< ξ(u),Uξ(v)>Γ e
−
´
Υ
v(p)dp = exp

{
e−µt
¨

Υ2

u(p)Φ(p− q; t)v(q)dpdq− e−µt
ˆ
Υ

vdp

}
.

(20)

Note this can also be derived via path integral techniques (see appendix).
Then from equation (19), the density X(p; t) has weighted integral,
ˆ
Υ

f(p)X(p; t)dp=
∂

∂ϵ
< ξ(u+ ϵf),Uξ(v)>Γ

∣∣∣∣
u≡1
ϵ=0

e−
´
Υ
v(p)dp

= e−µt
¨

Υ2

f(p)Φ(p− q; t)v(q)dpdq,

resulting in density,

X(p; t) = e−µt
ˆ
Υ

Φ(p− q; t)v(q)dp.

Thus we find initial density v(p) undergoing diffusion, down-weighted by death factor e−µt,
as expected.

4.5. Probability density

The probability density in equation (4) can also be interpreted in a similar manner. In the Doi
formalism we find that the probability density is given by,

f(n)(pn; t) = ⟨pn|U|v⟩e−
´
Υ
vdp.

Thus the bra ⟨pn|= ⟨ϕ|ap1 . . .apn needs interpretation. To this end, we utilise the
correspondence,

A†
f1
. . .A†

fn
≡
¨

Υn

f1(p1) . . . fn(pn)a
†
p1 . . .a

†
pn dpn.

Then the probability density can be found via this formalism in much that same way as
equation (19),

13
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¨
Υn

f1(p1) . . . fn(pn)f
(n)(pn; t)dpn =< A†

f1
. . .A†

fm
ξ(0),Uξ(v)>Γ e

−
´
Υ
v(p)dp

= lim
ϵ→0

∂n

∂ϵ1 . . .∂ϵn
< ξ(ϵ.f),Uξ(v)>Γ e

−
´
Υ
vdp

=

¨
dpn f1(p1) . . . fn(pn)

δn

δu(p1) . . . δu(pn)
< ξ(u),Uξ(v)>Γ e

−
´
Υ
v(p)dp

∣∣∣∣
u=0

.

Thus the weighted probability density can also be written as a functional derivative. If we apply
this to the death-diffusion model above, for example, substituting the generating functional
from equation (20) we get,

f(n)(pn; t) = exp

{
−e−µt

ˆ
Υ

v(p)dp

} n∏
i=1

(ˆ
Υ

v(p)Φ(p− pi; t)dp
)
.

5. Applications to local processes

Now consider processes where interactions are local. That is, where effects occur at a single
position. This could be creation of a daughter particle at the same location as a parent particle,
or direct collision between two annihilating particles. For many such systems, the generat-
ing function can be calculated exactly using the expansion methods of the previous section,
as are now shown with several examples. These include a Brownian tree process (to show
non-associativity of Itô multiplication), the conversion reaction A+A→ B (for multi-species
interactions), the reversible reaction A↔ ϕ (to examine a model with time dependent rates),
and a classical death processes (to look at a discrete, non-spatial model).

5.1. Brownian tree process

Consider a set of particles undergoing diffusion, such that fission into daughter particles can
also occur. That is, we have the process A→ A+A. Then the Doi operator takes the form of
equation (5), which has the following formulation using Fock space operators,

L=

ˆ
Υ

µ(p)
(
(a†p)

2ap− a†pap
)
+D(p)a†p∆ap dp≡

ˆ
Υ

(dB(2)
µ − dΛH)

where H= µ−D∆. The requisite Itô multiplication can be found from equation (16). First
then, the evolution operator becomes, using the independence of differentials at different
positions,

U= etL =
∏
dp∈Υ

(
1+

∞∑
n=1

tn

n!
(dB(2)

µ − dΛH)
n

)
. (21)

Next we use the non-associative multiplication rule of equation (16), in which multiplica-
tion occurs from the right. Note in particular that,

dB(2)
G1

dB(2)
G2

. . .dB(2)
Gn

= n!dB(n+1)
G1G2...Gn

.

Also, noting that ΛH ≡ B(1)
H , and from dΛG dB(k)

H = kdB(k)
GH, inserting any dΛH operators into

the above factor results in a factor k appearing at the position it was inserted (counting from
the right). Thus, for example, dB(2)

µ dB(2)
µ dΛH dB(2)

µ dB(2)
µ = 3.4!dB(5)

µ2Hµ2 . To further simplify
things, we next assume that µ and H commute. This can be achieved by assuming µ(p) = µ is
constant (or taking µ as a harmonic function, with ∆µ= 0).

14
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Then when expanding equation (21), the dΛH terms pick up factors corresponding to their
positions amongst the dB(2)

µ operators. If we have n− k operators dΛH and k operators dB(2)
µ

this results in a factor of the form (see [4]),∑
1⩽m1⩽m2⩽···⩽mn−k⩽k+1

m1m2 . . .mn−k =

{
n+ 1
k+ 1

}
,

where the latter term is a Stirling number of the second kind, which can be defined via expo-
nential generating function [54],∑

n⩾k

{
n
k

}
xn

n!
=

1
k!
(ex− 1)k. (22)

Then, the evolution operator reduces to,

U=
∏
dp∈Υ

(
1+

∞∑
n=1

tn

n!

n∑
k=0

k!(−1)n−k

{
n+ 1
k+ 1

}
dB(k+1)

µkHn−k

)
.

Now pairs of terms in the product corresponding to distinct positions commute. Then noting
that < ξ(u),dB(r)

µαHβξ(v)>= urµαHβvdp< ξ(u), ξ(v)>, we obtain generating functional,

< ξ(u),Uξ(v)>

=< ξ(u),
∏
dp∈Υ

(
1+ dp

∞∑
n=1

tn

n!

n∑
k=0

k!(−1)n−k

{
n+1
k+1

}
uk+1µkHn−kv

)
ξ(v)>

= exp
ˆ
Υ

dp

{
uv+

∞∑
n=1

tn

n!

n∑
k=0

k!(−1)n−k
{
n+ 1
k+ 1

}
uk+1µkHn−kv

}

= exp
ˆ
Υ

dp

{ ∞∑
k=0

uk+1k!(−µ)k
∞∑
n=k

(−t)n

n!
Hn−k

{
n+ 1
k+ 1

}
v

}
.

Finally, using the differential of equation (22), along with shorthand form e1(H, t) =
H−1(e−tH− 1), this reduces to,

< ξ(u),Uξ(v)>= exp
ˆ
Υ

dp

{
u

∞∑
k=0

uke−tH(−µe1(H, t))kv

}
=exp

ˆ
dp

{
ue−tH

1+µue1(H, t)
v

}
,

where the last term is written in the formal sense, with H only acting on v. Features of interest
can then be extracted. For example, using equation (19) the density becomes,

X(p; t) =
∞∑
k=0

(k+ 1)e−tH(−µe1(H, t))kv,

which for the static case (D= 0), just reduces to X(p; t) = v(p)eµt as would be expected for a
distribution v(p) undergoing growth at rate µ.

5.2. Multispecies

Multispecies can be analysed using these techniques. Field theory approaches with two species
have found applications in binary fission processes, for example [20], as well as reactions
such as A+A→ B [5, 40]. This involves two classes of commuting creation and annihilation
operators, which can combine in a single Liouvillian.
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Table 2. Quantum stochastic process Itô table for A→ B.

dMG dΛG

dMF 0 dMFG

dΛF 0 dΛFG

For example, take the case of conversion from one species to another A→ B. For a simple
demonstration we assume a static non-diffusive model. Then the Liouvillian is given by,

L=

ˆ
Υ

dpµ(p)(b†pap− a†pap) =
ˆ
Υ

(dMµ− dΛµ).

This results in the Itô multiplication rules given in table 2. The evolution operator then
becomes,

U= etL =
∏
dp∈Υ

(
1+

∞∑
n=1

tn

n!
(dMµ− dΛµ)

n

)
=
∏
dp∈Υ

(
1+

∞∑
n=1

(−t)n

n!
(dΛµn − dMµn)

)
.

Coherent states such as |u⟩= |ua,ub⟩ now involve functions in Υ2, where the ap and bp
creation operators act on the first and second functions respectively. Then the generating func-
tional becomes,

< ξ(u),Uξ(v)>Γ= exp
ˆ
Υ

dp
{
uava+ ubvb+(e−µt− 1)(ua− ub)va

}
.

Features of interest, such as the densities of the two species, can then be extracted. From
equation (19) we find (with a similar expression for Xb(p; t)),

Xa(p; t) =
δ

δua(p)
< ξ(u),Uξ(v)>Γ e

−
´
Υ
va(p)+vb(p)dp

∣∣∣∣
u≡1

.

This gives Xa(p, t) = va(p)e−µt and Xb(p, t) = vb(p)+ va(p)(1− e−µt), describing the expec-
ted decay and transfer of densities.

5.3. Time dependent evolution

When time dependent Liouvillians are involved, path integrals have to respect time ordering
[17, 32, 34, 50, 55], where we have evolution operator,

U=
←−
T
{
e
´ t
0 L(s)ds

}
=
←−
T

N∏
i=1

eL(si)ds, (23)

where si = i ds with ds= t/N. Note that the latter product indicates how the integral in the
exponent should be interpreted.Wewill see that this time integral can be done effectively when
using quantum stochastic process techniques. The case of a single time dependent function in
the Liouvillian is fairly straightforward. The case with multiple time functions is a bit more
involved, but tractable. Both cases are considered below.
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5.3.1. A single time function. Firstly, we treat the case of one time dependent function, where
time ordering will be seen to play no role. To see this, consider for example the simple model
ϕ → A of spontaneous creation of particles with Liouvillian,

L(t) =
ˆ
Υ

µ(p, t)(a†p− 1)dp.

Here µ(p, t) is the rate of particle production, varying in both space and time.
Note that [L(si),L(sj)] = 0, meaning the exponents in the time ordered product in

equation (23) can be added together in a single exponent, and so the integral
´ t
0L(s)ds can

be calculated directly. Then if M(p, t) =
´ t
0 µ(p,s)ds denotes the cumulative rate of produc-

tion, the generating functional becomes,

⟨u|U|v⟩e−
´
Υ
v(p)dp = ⟨u|

←−
T exp

{ˆ t

0
ds
ˆ
Υ

dpµ(p;s)(a†p− 1)

}
|v⟩e−

´
Υ
v(p)dp

= ⟨u|exp
{ˆ

Υ

dpM(p; t)(a†p− 1)

}
|v⟩e−

´
Υ
v(p)dp

≡< ξ(u),e
´
Υ

dA†
Mξ(v)>Γ e

−
´
Υ
(v(p)+M(p,t))dp

=< ξ(u),
∏
dp∈Υ

(
1+

∞∑
n=1

(dA†
M)

n

n!

)
ξ(v)>Γ e

−
´
Υ
(v(p)+M(p,t))dp

=< ξ(u),
∏
dp∈Υ

(1+ dA†
M)ξ(v)>Γ e

−
´
Υ
(v(p)+M(p,t))dp

= exp

{ˆ
Υ

(v(p)+M(p, t))(u(p)− 1)dp

}
.

Note that the only Itô product needed in the expansion is (dA†
M)

2 = 0. Then from equation (19),
the particle density becomes X(p; t) =M(p, t)+ v(p), with the cumulative time dependent rate
of spontaneous birth adding to the initial distribution, as expected.

5.3.2. A pair of time functions. Secondly then, we treat a case where two time dependent
functions are present. The previous model is extended, and we now consider the combined
dual processes ϕ → A and A→ ϕ of spontaneous birth and death, with Liouvillian,

L(t) =
ˆ
Υ

[µ(p, t)(a†p− 1)+ ν(p, t)(ap− a†pap)]dp.

We now find that [L(si),L(sj)] ̸= 0 (for distinct times si and sj), and we cannot simply add
the exponents to deal with the integral form of equation (23), but have to treat the time ordered
product directly. Although this product form is used to construct path integrals (which would
be one valid approach), it has also been used in Schwinger’s prescription for time depend-
ent systems, where time ordered products of the form eXNeXn−1 . . .eX2eX1 are converted into
eXN⋄···⋄X2⋄X1 , where ⋄ indicates the utilisation of Baker–Campbell–Hausdorff techniques to
combine the terms into a single exponent [42]. We now adopt a similar approach, except now
the quantum stochastic process machinery is applied to combine the terms.

To start, the evolution operator can be written as follows, where we use shorthand νi =
ν(·,si) and µi = µ(·,si) for functions acting on space Υ for a given value si of time,
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Table 3. Quantum stochastic process Itô table for joint process ϕ → A and A→ ϕ.

dXν ′ dYµ ′

dXν 0 0
dYµ −dXµν ′ −dYµν ′

U(t) =
←−
T

N∏
i=1

edsL(si) =
←−
T

N∏
i=1

eds(Xνi+Yµi ) =
←−
T

N∏
i=1

exp

{
ds
ˆ
Υ

(dXνi + dYµi)

}

=
←−
T

N∏
i=1

exp

ds
∑
dp∈Υ

(dXνi + dYµi)

=
←−
T

N∏
i=1

∏
dp∈Υ

(1+ ds(dXνi + dYµi)) . (24)

Note that order ds2 terms (or higher) in the product do not survive, and we have operators,

Xνi =
ˆ
Υ

µ(p,si)(a
†
p− I)dp≡

ˆ
Υ

(dA†
µi −µ(p,si)dp) =

ˆ
Υ

dXνi .

Yµi =
ˆ
Υ

ν(p,si)(ap− a†pap)dp≡
ˆ
Υ

(dAνi − dΛνi) =
ˆ
Υ

dYµi .

Multiplication rules for dXν and dYµ can be found in table 3. Now, the terms dXνi ≡ dXν(p,si)
and dYµi ≡ dYµ(p,si) commute for distinct p, so terms from the product in equation (24) corres-
ponding to a particular interval [p,p+ dp] can be collected together, in time ordered sequence.
Then, we have U=

∏
dp∈ΥUp, where Up is given as follows (with the aid of table 3),

Up =
←−
T

N∏
i=1

(1+ ds(dXνi + dYµi)) ,

= 1+ ds
∑

N⩾i⩾0

(dXµi + dYνi)− ds2
∑

N⩾i>j⩾0

(dXνiµj + dYνiνj)

+ ds3
∑

N⩾i>j>k⩾0

(dXνiνjµk + dYνiνjνk)− . . . .

Then, noting the actions from equation (14) (for general function α),

< ξ(u),dXα(q)ξ(v)>Γ =< ξ(u), ξ(v)>Γ dq
ˆ
Υ

α(q, t)(uq− 1),

< ξ(u),dYα(q)ξ(v)>Γ =< ξ(u), ξ(v)>Γ dq
ˆ
Υ

α(q, t)(1− uq)vq,

leads to the following inner product (using shorthand such as µ(p,s)≡ µp(s) and up ≡ u(p)),

< ξ(u),Upξ(v)>Γ

< ξ(u), ξ(v)>Γ
= 1+ dp(up− 1)

[ˆ t

0
µp(s)ds−

ˆ t

0
µp(s)ds

ˆ t

s
νp(τ)dτ

+

ˆ t

0
µp(s)ds

ˆ
t⩾τ2⩾τ1⩾s

νp(τ2)νp(τ1)dτ + . . .

]
+ dp(1− up)vp

[ˆ t

0
νp(s)ds−

ˆ
t⩾τ2⩾τ1⩾0

νp(τ2)νp(τ1)dτ + . . .

]
=1+ dp(up− 1)

ˆ t

0
µp(s)e

−
´ t
s ν(τ)dτds+dp(1−up)vp

(
1−e−

´ t
0 νp(s)ds

)
.
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Finally, noting the actions of Up commute for distinct p, we finally get the generating
functional,

G(u,v) = ⟨u|Uv⟩e−
´
Υ
vpdp = exp

{ˆ
Υ

dp

[
(up− 1)

ˆ t

0
µp(s)e

−
´ t
s ν(τ)dτds

+(up− 1)vqe
−
´ t
0 νp(s)ds

]}
.

The particle density is then found to be,

X(p; t) = v(p)e−
´ t
0 νp(s)ds+

ˆ t

0
µp(s)e

−
´ t
s νp(τ)dτ ,

representing death of the initial distribution, and birth–death interaction, as expected.

5.4. Discrete models

Lastly, discrete models are considered. These are models such as classic birth and death,
where only the population size is of concern, there are no spatial dependencies. Results can
be obtained by making the spatially dependent functions of previous sections uniform, and
removing spatial kinetics such as diffusion. For example, a simple death model can be written
with Liouvillian L= µ(a− a†a) where a and a† are standard annihilation and creation oper-
ators with commutator [a,a†] = 1. This is the non-spatial version of equation (17). Then if
we assume a population initially Poisson distributed with mean v, the generating function is
given by,

⟨u|etL|v⟩e−v ≡< ξ(u),eµt(dA−dΛ)ξ(v)>Γ e
−v

=< ξ(u),

(
1+

∞∑
n=1

(µt)n

n!
(dA− dΛ)n

)
ξ(v)>Γ e

−v.

Note that the coherent states are no longer of the continuous variety found in Doi [12, 13],
but are of the discrete form found in most applications, such as those used by Peliti [49], for
example.

Then from the quantum stochastic Itô products of table 1 we get the spatially uniform
relationships dAdΛ = dA and dΛ2 = dΛ, with all other relevant products being zero. Then
using these relationships along with the spatially uniform operations< ξ(u),dAξ(v)>Γ= v<
ξ(u), ξ(v)>Γ and < ξ(u),dΛξ(v)>Γ= uv< ξ(u), ξ(v)>Γ and we end up with,

⟨u|U|v⟩e−v = e(u−1)ve−µt

.

This is the spatially uniform version of equation (20). However, this was simply derived
above by ignoring spatial aspects and extracting the algebraic properties from the Itô multi-
plication table, giving a simpler realisation than the Evans–Hudson flows in [16, 48]. Note that
this generating function can also be simply derived by classical generating function methods
[28].

Features of interest are then readily derivable. The exponential decay of mean population
size is, for example, d

du ⟨u|U|v⟩e
−v
∣∣
u=1

= ve−µt, as expected.
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6. Non-local processes and perturbation

Processes involving non-local interactions are the most general found in the Doi framework
[12, 13], and although they can be represented in the Itô framework as described below, they
do not replace perturbation expansion methods, which are still required.

Consider for example the annihilation process A+A→ ϕ, which has been studied (along
with the more general case kA→ ϕ) as a benchmark model for field theory techniques in reac-
tion diffusion systems [5, 6, 12, 13, 24, 35, 55]. They can also be viewed as a simplification
of the conversion process A+A→ B where the density of B particles is not of interest.

There are two natural approaches to this. One is the continuous Doi approach, typically used
when interactions operate over a distance. The original work of Doi, for example [13], treated
this model with annihilation occurring at rate Rr for particles separated by distance r. In many
applications interactions are local and a lattice model is used [49, 55], whereby annihilations
occur on lattice sites and scaling methods are used to go to the continuum.

We next consider how these approaches can be treated with stochastic quantum process
techniques. Specifically, we firstly see how the product expansionmethods of previous sections
do not directly work for non local interactions, and secondly, see how perturbations can instead
be formulated.

6.1. Doi Liouvillian, lattice methods and diffusion limited reactions

In continuous Doi formulation, the Liouvillian operator for process A+A→ ϕ takes the fol-
lowing form, where we assume that the diffusion rate D is fixed.

L= 1
2

¨
Υ2

Rp−q
(
apaq− a†pa†qapaq

)
dpdq+

ˆ
Υ

Da†p∆ap dp≡
¨

Υ2

(dΩR− dΞR)+

ˆ
Υ

dΛD∆.

(25)

The factor 1
2 reflects the fact that swapping p and q represents the same event.

It is worth pointing out that the model A+A→ ϕ has frequently been modelled using dis-
crete lattice methods (see section 2.2). These primarily have a model where particle pairs anni-
hilate when they meet on the same lattice site. If we use the reaction rate Rp−q = Rδ(p− q),
the Liouvillian in equation (25) becomes,

L=
R
2

ˆ
Υ

(
a2p− (a†p)

2a2p
)
dp+

ˆ
Υ

Da†p∆ap dp.

This is precisely the form seen using lattice methods after the lattice constant ϵ→ 0 goes
to the continuum limit. It would seem that in the limit particles are now unlikely to ever
meet, even if they annihilate with certainty whenever they do. However, note that if two
particles presently have spatial distributions vp then the instantaneous annihilation rate given
by 1

2

˜
Υ2 dpdqRp−qvpvq = R

2

´
Υ
dpv2p, which is positive. Thus we have a model where annihil-

ation is immediate upon contact, and where particles collide with positive probability. This is
often referred to as a diffusion limited system, used to model cases where the reaction rate is
much higher than the diffusion rate. Note that the formulation in equation (25) is more general
than this, enabling reaction models that are not necessarily diffusion limited (complications to
these behaviours, such as those revealed by renormalisation theory [35, 55], for example, are
not considered in this work).
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6.2. Limitations of previous methods

Some difficulties arising from the methods used in previous sections now become apparent.
Firstly, the operators in equation (25) are acting in distinct spaces Υ2 and Υ. It is tempting to
replace the third term with expression

˜
Υ2 Dh(q)a†p∆ap dpdq, utilising any dummy function

h(q) with unit integral. The multiplication table for the three operators could then be construc-
ted. However, this would not solve the problem. AssumeD= 0 for a moment. Now, attempting
to write the evolution operator as a product reveals a second problem,

U= etL =
∏

(dp,dq)∈Υ2

(
1+

∞∑
n=1

tn

n!
(dΩR− dΞR)

n

)
. (26)

In previous examples, where the Liouvillian L=
´
Υ
dS(p) is over spaceΥ, we find that dS(p)

and dS(q) commute for distinct p and q (because the commutator relation [ap,a†q] = δ(p−
q) is not implicated when corresponding intervals [p,p+ dp] and [q,q+ dq] do not overlap),
meaning the evolution operator U can be broken up into a product over dp. However, in the
case of equation (26) the action is over space Υ2 and we find that dS(p,p ′) and dS(q,q ′) no
longer commute for distinct pairs (p,p ′) and (q,q ′), because, for example, we can have p= q
and p ′ ̸= q. The product expression in equation (26) is therefore invalid. Using techniques such
as Zassenhaus formulae to correctly form products will likely not be helpful (even if it were
tractable), as individual terms in such a product would still not commute and finding terms
such as ⟨u|Uv⟩ would prove difficult.

One is left then with more standard perturbation methods. Path integrals are one choice,
which circumvents the entire Itô formalism. Alternatively, there is the interaction picture, the
method employed by Doi for this model [13, 17]. We take this approach and show that per-
turbation expansion can be phrased within the Itô formalism.

6.3. Perturbative approach

In Doi’s original formulation [13], a Dyson time series expansion method is used without
using what is now known as a Doi shift (see below, or [20, 49, 55] for example). This means
the quadratic and quartic terms in the Liouvillian of equation (25) result in Feynman dia-
grams containing nodes of degrees two and four. The analysis in [13] was also carried out in
momentum space (that is, the Fourier transform of the original position space). For diffusive
models, using momentum space has the advantage of turning the Laplacian operator into a
function which are easier to handle. In later analyses, such as [5, 55] where this model (and
more general models such as mA→ nA) are analysed, path integrals are used. These employ
a Doi shift which results in a modified Liouvillian and the subsequent diagrams contain cubic
and quartic nodes. These analyses utilise a mixture of position and momentum space, and tend
to be focused on diffusion limited local reactions. In what follows we will use the Doi shift in
momentum space, with non-local reactions, which has not been presented elsewhere. We will
also frame it using quantum Itô calculus techniques.

The role quantum stochastic process operators play occurs in the earlier stages of perturb-
ation, after which methods become more standard. These will be explained in turn. Firstly, its
role in the Doi shift shall be considered. Secondly, the validity of Itô calculus in momentum
space is justified. Thirdly, we see calculation of propagators within the interaction picture
framework. Fourthly, properties of perturbative expansion will be derived. It is the intention
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of this section to highlight roles the Itô formalism can play, rather than provide an extens-
ive perturbation analysis for the model A+A→ ϕ, and only an overview of perturbation is
provided.

6.3.1. Doi shift. Now, we have a generating functional of the form,

G(u,v) = ⟨u|U|v⟩e−
´
Υ
vp dp = ⟨ϕ|e

´
Υ

dpupapU|v⟩e−
´
Υ
vpdp.

The aim of the Doi shift is to push the factor e
´
Υ

dpupap to the right of the evolution operator U.
This has a notable advantage in perturbation analysis, as the number of left arms in Feynman
diagrams is substantially reduced. To this end, noting that

´
Υ
dpupap ≡

´
Υ
dAu, we find,

e
´
Υ

dAudA†
v(q) =

∏
p

edAudA†
v(q) =

∏
p

(1+ dAu(p))dA
†
v(q)

= (dA†
v(q)+ dquqvq)

∏
p̸=q

(1+ dAu(p)) = (dA†
v(q)+ dquqvq)

∏
p

(1+ dAu(p))

= (dA†
v(q)+ dpuqvq)e

´
Υ

dAu .

Formulated in terms of Doi operators, this tells us that if e
´
Υ

dpupap acts from the left we get the
shift

´
Υ
dqvqa†q→

´
Υ
dqvq(a†q+ uq). Given that e

´
Υ

dpupap commutes with aq, we obtain the
result for general operator F(a†q,aq),

e
´
dpupapF(a†q,aq) = F(a†q+ uq,aq)e

´
dpupap .

The constant function u≡ 1 proves most useful for calculating moments, and is known as
the Doi shift. Specifically, expectations of F(aq,a†q) can be written as,

⟨F(a†q,aq)⟩ψt
= ⟨1|F(a†q,aq)etL(ap,a

†
p )|v⟩e−

´
Υ
vp dp = ⟨ϕ|e

´
Υ

dpapF(a†q,aq)e
tL(ap,a

†
p )|v⟩e−

´
Υ
vp dp

= ⟨ϕ|F(a†q + 1,aq)e
tL(ap,a

†
p+1)e

´
Υ

dpap |v⟩e−
´
Υ
vp dp = ⟨ϕ|F(a†q + 1,aq)e

tL(ap,a
†
p+1)|v⟩.

(27)

Thuswe find a simple vacuum state on the left and the normalisation factor has nicely cancelled
on the right. The Doi shifted Liouvillian thus becomes,

L=−
¨

Υ2

Rp−q

(
a†papaq+

1
2
a†pa

†
qapaq

)
dpdq+

ˆ
Υ

Da†p∆ap dp≡−ΩR−ΞR+ΛD∆.

6.3.2. Momentum space. Next then, we consider conversion into momentum space. We
start with operators,

ak =
1

(2π)d/2

ˆ
Υ

ape
i p.k dp, a†k =

1
(2π)d/2

ˆ
Υ

a†pe
−i p.k dp.

The letters k, l,m,n shall be used for momentum space, and p,q,r for position space. This will
also apply to functions, where uk will mean the Fourier transform of up, for example. We use
the same symbol for these two (distinct) functions, the context of the representation (position
or momentum) should make the meaning clear. We assume space Υ= Rd with dimension d.
Then from these definitions, standard commutation relations [ak,a

†
l ] = δ(k− l) follow, and the

Liouvillian L= ΛD∆−ΩR−ΞR can be transformed from the relations,
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ΛD∆ ≡ D
ˆ
Υ

dpa†p∆ap =−D
ˆ
Υ

dkk2a†kak ≡−
ˆ
Υ

dΛDk2 ,

ΩR ≡
¨

Υ2

dpdqRp−qa
†
papaq =

¨
Υ2

dkdlRka
†
k+lakal,

ΞR ≡
1
2

¨
Υ2

dpdqRp−qa
†
pa

†
qapaq =

1
2(2π)d/2

˚
Υ3

dkdldmRka
†
l+ka

†
m−kalam.

Note also that |up⟩= e
´
Υ

dpupa
†
p |ϕ⟩= e

´
Υ

dkuka
†
k |ϕ⟩= |uk⟩ and coherent states for a function up

are equal to coherent states for the Fourier transformed function uk.
Now, for exposition we shall restrict attention to the moments, in particular the density,

where, from equation (27) (treating the vacuum state |ϕ⟩= |0⟩ as a coherent state with constant
function 0),

X(p; t) = ⟨ap⟩ψt = ⟨1|apU|v⟩e−
´
vp dp = ⟨0|apetL(ap,a

†
p+1)|v⟩.

At this stage path integrals could be used, but we choose to use the interaction picture,
which is more amenable to the tools of Itô calculus.

6.3.3. The interaction picture. In the interaction picture [13, 17, 39, 50], the tractable part of
the Liouvillian (often referred to as the free or non-interacting part) is used to transform states
and operators. Then, using ΛD∆ =−ΛDk2 to represent the non-interactive (diffusive) part, we
have bras, kets and operators in the interaction picture defined by,

⟨u(t)|I = ⟨u|e−tΛDk2 ,

|u(t)⟩I = etΛDk2 |u⟩,
OI(t) = etΛDk2Oe−tΛDk2 .

Then in the interaction picture, the (Fourier transformed) particle density becomes,

X(k; t) = ⟨0(t)|Iak(t)
←−
T exp

{
−
ˆ t

0
ds (ΩR(s)+ΞR(s))

}
|v(0)⟩I

= ⟨0|←−T ak(t)exp
{
−
ˆ t

0
ds (ΩR(s)+ΞR(s))

}
exp

{ˆ
Υ

vpap dp

}
|0⟩.

Here, note that ⟨0(t)|I = ⟨0| and |v(0)⟩I = |v⟩, so the Doi shift has the effect that the bra and ket
simplify trivially resulting in a simpler expression thanmethods without the Doi shift (compare
with equation (34) in [13]). This expression can now be expanded and resolved into products
of propagators via Wick’s theorem [13, 39, 50], where propagators are defined by,

G(k, l; t,s) = ⟨0|←−T ak(t)a†l (s)|0⟩.

Now, these can be calculated with the aid of quantum Itô calculus. Firstly, note that
defining,

dAk(t) = etΛDk2dAke
−tΛDk2 =

∏
l

etdΛDl2dAk
∏
m

e−tdΛDm2 = etdΛDk2dAke
−tdΛDk2

=

(
1+

∞∑
n=1

tn

n!
(dΛDk2)

n

)
dAk

(
1+

∞∑
n=1

(−t)n

n!
(dΛDk2)

n

)
= (1+ dΛ[etDk2−1])dAk(1+ dΛ[e−tDk2−1]) = dAk(1+ dΛ[e−tDk2−1]) = dA[e−tDk2 ].
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Figure 1. Feynman diagrams for A+A→ ϕ perturbative expansion. (a) Nodes corres-
ponding to ΩR (top) and ΞR (bottom). (b) A third order sample diagram. (c) Recursion
for tree diagrams, where each circle represents all possible tree diagrams.

In much the same way, we find,

dA†
l (s) = esΛDl2dA†

l e
−sΛDl2 = dA†

[esDl2 ]
.

Then we find
←−
T dAk(t)dA

†
l (s) = dkδk,lθ(t− s)e−(t−s)Dk2 from which we infer the standard res-

ult G(k, l; t,s) = δk,lθ(t− s)e−(t−s)Dk2 .
The analysis from this point forward no longer requires Itô calculus and is similar to meth-

ods reported elsewhere [5, 6, 12, 13, 24, 35, 55], except that now we have interaction over a
distance, which results in some differences we highlight.

6.4. Perturbation

For the model A+A→ ϕ we are considering, perturbative expansion is represented by Feyn-
man diagrams, as indicated in figure 1, where we see the basic nodes, a typical diagram and a
recursion relation for all loop free diagrams.

In figure 1(a) we have nodes of degrees three and four corresponding to the cubic and quartic
terms ΩR and ΞR. Note that in the cubic term factor Rk utilises one of the incoming momenta,
whereas in the quartic term, the factor Rk introduces a momenta to be integrated over.

In figure 1(b) we have an example of a Feynman diagram of third order contributing to the
density. Note that the total momenta in any time interval is conserved (and equal to the final
momentum k for the density X(k; t)). With three incoming edges and a loop this gives three
momenta to be integrated over. Being a third order term means we have four time intervals.
This results in the following contribution to density,

−1
2(2π)d

¨
Υ3

dldmdnRlRmRnT(k, l,m,n; t)vk−m−nvmvn,

where the time term T(k, l,m,n; t), which contains the product of propagators, can be
written as,¨

t>τ3>τ2>τ1>0
dτ3 dτ2 dτ1 e

−(t−τ3)Dk2e−(τ3−τ2)D[(k−m−n+l)2+(m+n−l)2]

· e−(τ2−τ1)D[(k−m−n+l)2+(m−l)2+n2]e−τ1D[(k−m−n)2+m2+n2]

= e−tDk2 ∗ e−tD[(k−m−n+l)2+(m+n−l)2] ∗ e−tD[(k−m−n+l)2+(m−l)2+n2] ∗ e−tD[(k−m−n)2+m2+n2]

= L−1
{
L(e−tDk2)L(e−tD[(k−m−n+l)2+(m+n−l)2])

·L(e−tD[(k−m−n+l)2+(m−l)2+n2])L(e−tD[(k−m−n)2+m2+n2])
}
.
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Note that each exponent contains the total squared momenta present in the Feynman diagram
for that time period. For example (in the second exponential), (k−m− n+ l)2 +(m+ n− l)2
is the total squared momenta from the two propagator arms present across the time interval
[τ2, τ3]. As the time integral is over a simplex, which can therefore be represented as a convo-
lution product, the factor T(k, l,m,n; t) can subsequently be explicitly derived with the aid of a
Laplace transform, partial fractions and Laplace inversion (details are left to the reader). This
then leaves integration over momenta, which can be complicated, depending on the nature of
the interaction function Rp. We do not explore this further, but note that there are two situations
where things will simplify, one is the diffusion limiting case where Rp is a delta function, and
the other is where the initial density v is uniform, which has the effect that external momenta
on the right of diagrams are zero.

In figure 1(c) we have the standard Dyson recursion representing all loop free diagrams
(see [5], for example). This results in an equation of the form,

X(k; t) = e−Dtk2vk+
ˆ t

0
dse−D(t−τ)k2e−D(τ−s)[(k−m)2+m2]RmX(m,s)X(k−m,s).

If this is differentiated with respect to time and Fourier inverted back to positional space, the
following equation is obtained,

∂X(p; t)
∂t

= D∆X(p; t)+
ˆ t

0
ds
ˆ
Υ

dqX(q;s)ΦD(p− q; t− s)
ˆ
Υ

dzRp−z

×
ˆ
Υ

X(r;s)ΦD(z− r; t− s),

where ΦD(x, t) = (4πDt)−d/2 exp(−x2

4Dt ) is the heat kernel. Note in the last term we have a
particle at position q at time s diffusing to position p, and a particle at position r diffusing to
position z, along with an interaction between positions p and z, integrated over possible times
s. Thus we find that the open diagrams produce a mean field equation, as observed elsewhere
[5, 13].

7. Conclusions

This work reports a field theoretic approach to reaction diffusion systems. Specifically, the
array of operators seen in Doi field theory can be reinterpreted with the Itô calculus machinery
of quantum stochastic processes. This involves extending the usual three classes of noise asso-
ciated with quantum stochastic processes, which are not necessarily associative or finite in
number for certain systems. However, this results in techniques applicable to an array of
systems.

For local processes, where interactions occur at a single location, a product expansion
method provides a powerful alternative to path integral techniques. For example, it provides
a convenient method to describe spatially varying birth–death models with time dependent
rates, which are difficult to model by other methods. Although non-spatial time dependent
models can be approached withWei–Norman methods [46], extracting exact results for spatial
dependent models would then likely require perturbative diagram summation tricks, or pos-
sibly exact methods of path integration. For discrete processes without spatial dependency, the
machinery also provides utility, producing algebraic reduction techniques which removes the
need for path integration.
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For non-local processes, where interactions occur between physically separated particles,
the product expansion methods are not tractable. However, perturbation theory is still possible
with the use of quantum Itô calculus. In particular, the interaction picture and time series
expansion methods of Dyson can be formulated this way, as seen with the model A+A→ ϕ
used in Doi [13]. Notably, the Doi shift was not implemented in Doi’s original formulation, and
implementing this with perturbation analysis was seen to significantly simplify the resultant
expansions.

Real coherent states were utilised in this exposition. For methods without path integrals
(such as those reported here, or Doi [12, 13]), they provide sufficient flexibility. However,
complex coherent states can be useful. For example, when constructing path integrals, resol-
utions of identity can involve coherent state integration over the entire complex domain. Note
that the machinery developed here is applicable in full complex form (such as that stated in
equation (7)), which may prove useful in future work.

For many stochastic quantum processes, the space Υ is of dimension one, usually being
treated as a time variable, meaning systems can be reformulated as quantum stochastic differ-
ential equations. How to find such an interpretation for higher dimensional spaces is unclear.
Conversely, the processes involved in this work are notably simpler than standard quantum
Itô methods in one regard; they do not employ an initial space, which has proved fruitful in
many areas of application. Evans–Hudson flows, for example, have been used to describe non-
spatial birth death processes, suggesting the Itô machinery developed above may be adaptable
to more complex reaction diffusion systems of interest.

Reaction diffusion systems can be tackled with a range of other methods, including mas-
ter equations, path integral techniques, perturbative techniques, semi-group methods, system
size expansion methods, and numerical techniques, to name a few. However, the Itô calculus
methods described in this work clearly provide a useful addition to this bag of tricks.

Data availability statement

No new data were created or analysed in this study.

Appendix. Path integral for death-diffusion process

The death-diffusion process A→ ϕ with constant death rate µ and diffusion rate D has
Liouvillian L=

´
Υ

(
µ(ap− a†pap)+Da†p∆ap

)
. The generating functional for evolution oper-

ator U= etL can be written as ⟨y|U|w⟩. To evaluate this via path integration, the following
resolution of identity is used [20], where Υ≡ Rd,

I=
¨

Υ2

DuDve−i
´
χ
uvdp|iv⟩⟨u|.

Then standard time slicing results in the following expression (with uN+1 ≡ y and Ndt= t),

⟨y|U|w⟩=
N∏
i=0

¨
Υ2

Dui Dvi e−i
´
Υ
ui(p)vi(p)dp⟨ui+1|edtL|ivi⟩⟨u0|w⟩.

Then from the standard operation of creation and annihilation operators on coherent states,
this becomes, in the formal limit of N→∞,

⟨y|U|w⟩=
¨
DuDvexp

{
i
ˆ t

0
ds
ˆ
Υ

dpv

[
µ(1− u)+D∆u+

∂u
∂s

]
+

ˆ
Υ

dpu0w

}
.
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Note that there is an integration by parts to get the third term, and two integration by parts to
move the Laplacian action from the v to the u function.

Then if we do the path integration with respect to the v variable, we get a delta functional
δ(u− u ′) such that,{

∂u ′

∂s =−D∆u ′−µ(1− u ′),

u ′(p; t) = y(p).
(28)

Thus we have a reverse time heat equation with a source. After a bit of manipulation, we get
solution,

u′(p,s) = e−µ(t−s)
ˆ
Υ

Φ(p− q; t− s)y(q)dq+ 1− e−µ(t−s),

where Φ(p;s) = 1
(4πDs)d/2 exp(

−|p|2
4Ds ) is the standard heat equation solution for a point source.

Finally, substituting for u0 ≡ u ′(p;0) (that is, doing the u path integration to substitute the
condition in equation (28) forced by the delta functional), results in,

⟨y|U|w⟩e−
´
Υ
wpdp = exp

{
e−µt
¨

Υ2

w(p)Φ(p− q; t)y(q)dpdq− e−µt
ˆ
Υ

wdp

}
,

giving agreement with the expression in equation (20).
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