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ABSTRACT: We have developed carbon quantum dots (CQDs) with excellent photoluminescence (PL) properties 

from macaúba (Acrocomia aculeate) fibers; a widely available cellulosic biomass species of palm trees in South 

America. As-prepared CQDs showed quasi-spherical morphology with high aqueous solubility and strong 

excitation-dependent fluorescence behaviour. Interestingly, the CQDs display fluorescence 'turn-off' response with 

excellent sensitivity toward multi-metal ions including Fe3+, Cu2+ and Hg2+ with very low detection limits of 0.69 

μM, 0.99 μM, 0.25 μM, respectively. Notably, ascorbic acid (AA) induced a change in the (turn-off) fluorescence of 
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Fe3+-CQDs, which caused an almost 70% revival of fluorescence (turn-on) by displacing Fe3+ ions. We have also 

harnessed CQDs as the visible-light-induced photocatalyst to reduce CO2 in water. Especially, the CQDs efficiently 

promote the photocatalytic reduction of CO2 into methane (CH4) with an evolution rate of 99.8 nmol/g at 436 nm in 

aqueous conditions. This indicates that the CQDs provide abundant active sites for CO2 adsorption and thus enhance 

the separation and migration of photo-induced charge carriers that efficiently reduce CO2 into CH4 without any co-

catalyst in 100% water.

Keywords: Macaúba, Carbon quantum dots, Metal ion detection, On-off-on, Visible-light, Photocatalytic CO2 

reduction

1. Introduction

Carbon quantum dots (CQDs) are a novel class of emerging fluorescent nanoparticles (NPs) with discrete and quasi-

spherical morphology, consisting mostly of carbon atoms with sizes smaller than 10 nm. Since the discovery of 

CQDs by Xu et al. in 2004 [1], much attention has been paid to the development of these fascinating nanomaterial 

systems as they are easily be synthesized from two main routes:  top-down and bottom-up, including laser ablation, 

chemical oxidation, arc discharge, solvothermal, hydrothermal, and microwave reactions by using diverse chemical 

and natural precursors [2, 3]. Notably, CQDs derived from natural precursors are of great interest because of their 

low-cost, carbon-rich nature, wide availability, facile synthetic approach, and environmentally benign [4-6]. 

Moreover, converting such low-cost natural precursors into value-added products is a crucial and economical way 

for waste management since it allows to put up the solid wastes into valuable products [7]. Among all the methods 

of CQD synthesis, the hydrothermal approach is renowned and the most popular due to its simple, greener, and 

economic point of view. Recently, biomass residues including banana peels [8], watermelon peel [9], peanut husks 

[10], Leek [11], waste rice straw [12], Kentucky bluegrass [13], pineapple [14] agro-industrial residues [15-19], 

have been utilized as a renewable carbon feedstock for the generation of CQDs. Moreover, strong fluorescence 

properties, chemical inertness, high resistance to photobleaching, tunable photophysical behaviors, and facile 

surface modification enable CQDs potential nanomaterial candidates for chemosensing [20], photocatalysis [21], 

energy [22], and biomedical [23, 24] applications.
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Ferric ion (Fe3+) plays critical roles in a wide range of biological and environmental processes such as intracellular 

anion transport, enzymatic reaction, oxygen-carrying, and various bio-syntheses [25, 26]. Some human diseases 

such as anemia, liver damage, hemochromatosis, and Alzheimer's disease are closely associated with the 

concentration of Fe(III) ions [26, 27]. Similarly, a comprehensive report on Cupric (Cu2+) ion-based compounds has 

been utilized in a range of both biological and environmental reactions [28-32]. Also, heavy metal like mercuric 

(Hg2+) ion is highly toxic even in lower concentration, causing DNA damage to the kidney and neurological 

disorders [31-33]. Thus, monitoring or regulating such Mn+ ions in biological and environmental scenarios is vital. 

Several techniques including electrochemical [34], atomic absorption spectrometry [35], colorimetry [36], and 

plasma-optical emission spectrometry [37] have been investigated for the detection of Mn+ ions. In recent years, the 

development of CQDs-based fluorescent sensors for detecting metal ions is becoming a promising area of 

chemosensor research due to their simple sampling protocols, high selectivity, and rapid detection. By using this 

technique, various Mn+ ions including Fe3+ [14, 16, 38-42], Cu2+ [17, 29, 43-45], Hg2+ [46, 47], Cr6+ [48, 49], Al3+ 

[50], and etc. have already been investigated as single analyte-specific systems. But, CQDs with multiple analytes-

responsive fluorescent sensors are sparse in the literature [31-33, 51]. Such a platform is essential to detect multiple 

analytes at a single solution.

Besides, the CQDs-based sensor materials can also be used to develop chip-like optoelectronic devices due to their 

compact space and economic point of view [31, 32]. For instance, different types of CQDs, including N-doped 

systems, have been used for the simultaneous detection of a range of metal ions such as Co2+, Fe3+, Cu2+, Pb2+, Hg2+, 

and Fe3+ with the significantly lower limit of detections (LODs) in an aqueous medium [31-33]. Therefore, 

exploring the novel CQDs as a single fluorescent probe for detecting multiple metal ions will allow them to harness 

high-performance carbon nanomaterials for environmental applications. 

On the other hand, using CQDs as the photocatalysts in CO2 reduction reactions is a promising approach since they 

mimic natural photosynthesis and help to deprive the atmosphere's CO2 level. It has also been considered one of the 

most sustainable strategies to mitigate global warming and environmental problems due to the elevated CO2 levels 

in the atmosphere [52, 53]. Therefore, the multifunctional properties of CQDs, including reliable stability, chemical 

inertness, optoelectronics, light-harvesting, and photo-induced electron transfer capability, are allowing them to be 

harnessed as the most potential catalytic candidates in photochemical reactions, including dye degradation [54], H2 
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evolution [55], CO2 reduction [56] and other chemical reactions [57]. But, efficient light absorption, electron 

transfer, and separation of photogenerated charge carrier properties of CQDs efficiently promote them as potential 

visible-light responsive photocatalysts [21, 58, 59]. Various biomass residues have been used as the carbon 

feedstock for the synthesis of CQDs. Yet, utilization of cellulose-based one, in particular, for the synthesis of CQDs 

are scarce in the literature. Moreover, most of the reported CQDs showed capability of sensing only single analyte in 

an aqueous system. Besides, only few CQDs showed the catalytic ability of converting CO2 in to value-added 

products via visible-light photocatlysis. Therefore, the synthesis of CQDs from the cheap and readily available 

biomass residues, cellulose-based ones, with improved photophysical properties, is to be exploited as a potential 

fluorescent nanosensor for multi-metal ions, and visible-light photocatalysts for CO2 reduction in aqueous 

conditions is an essential objective.

Acrocomia aculeate (macaúba) [60] is a significant and most abundant biomass precursor from native palm species 

in tropical regions of South America. The lignocellulosic fibers of macaúba have great potential in industries since 

they possess high cellulose content [61]. Such components are rich in carbon (C), hydrogen (H) and oxygen (O) 

elements which serve as an essential resource for the formation of CQDs with high content of hydroxyl (OH) and 

carboxyl (COOH) functionalities on their surface. Such functionalities trigger the increased aqueous solubility and 

fluorescence property of CQDs. Recently; we developed CQDs from biomass precursors (i.e., Curauá) and 

investigated their Fe3+ ion sensing efficiencies and cellular imaging applications [62]. 

Herein, we report highly water-soluble and fluorescent CQDs using macaúba as a renewable carbon feedstock 

through a green hydrothermal synthetic approach. We have utilised as-synthesised CQDs as a fluorescent 

"nanoprobe" to detect three different metal ions such as Fe3+, Cu2+ and Hg2+ ions. Also, we found that the 

completely quenched photoluminescence (PL) of Fe3+-bound CQDs was almost revived upon the addition of 

biologically relevant reducing agent Vitamin-C (ascorbic acid-AA), thus resulting in on-off-on behaviour. 

Moreover, CQDs paves the way to utilize sustainable feedstock as a visible-light-induced photocatalyst for CO2 

reduction in an aqueous medium.

2. Experimental Section

2.1. Chemicals 
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Macaúba fibers were donated by Embrapa Pantanal, Brazil. Metal chloride salts including NaCl, KCl, CaCl2, BaCl2, 

MnCl2.4H2O, FeCl2, FeCl3, CoCl2.6H2O, NiCl2.6H2O, CuCl2.2H2O, AgCl2, ZnCl2, CdCl2, HgCl2, AlCl3.6H2O and 

chromate salts such as Cr2O3, K2Cr2O7 and ascorbic acid (Vitamin-C) were purchased from Sigma Aldrich, Brazil. 

All the aqueous solutions were prepared by MilliQ water (18.2 MΩ cm at 25 °C). All the analytical grade reagents 

were used as purchased.

2.2. Synthesis of CQDs

Macaúba fibers (1.00 g) and sodium hydroxide (1 M, 20 mL) was transferred into a 50 mL of Teflon-lined stainless-

steel autoclave and heated to 200 °C for 18 h. Then, the autoclave was allowed to attain room temperature, and the 

reaction mixture was filtered and centrifuged at 10000 rpm for 10 min to remove the unwanted black precipitates. 

The supernatant was dialysed in MilliQ water through a dialysis membrane (MWCO of 3500) for a week. The water 

in the dialysis was changed and added fresh water every 24 h. After the dialysis, the solution was freeze-dried to 

obtain macaúba-derived CQDs as brownish-yellow solid in 28% yield.

2.3. Characterization of C-dots

FT-IR spectrum of CQDs was recorded on a spectrophotometer (Vertex 70, Bruker, Germany) using the attenuated 

total reflectance (ATR) method. TEM images of the CQDs were recorded on Tecnai TM G2 F20 equipment through 

a bright field (BF) detector by depositing a droplet of diluted suspension of CQDs on a carbon microgrid (400 mesh; 

stained with 1.5% uranyl acetate solution) followed drying. The electronic absorption spectrum of the CQDs was 

acquired by a Double Beam UV-Vis Spectrophotometer (Shimadzu UV 6300PC equipment). Photoluminescence 

(PL) emission spectral studies were performed using an RF-5301PC Fluorimeter (Shimadzu, Japan). XPS analysis 

was done in an Ultra AxisTM spectrometer (Kratos Analytical, Manchester, UK). The samples were irradiated with 

mono-energetic Al Kα1, 2 radiation (1486.6 eV) and the spectra were recorded data power of 144 W (12 kV x 12 

mA). The CQDs was analysed by an FEI Tecnai G2 F20 X-TWIN (200 kV) transmission electron microscope 

(TEM) (Philips-FEI, Netherlands) with a Gatan CCD camera. The samples were prepared dispersing the material 

into isopropanol via ultrasonication, following dropping in the copper TEM grids coated with formvar-carbon film 

(Maxtaform, 200 mesh, Plano, Wetzlar, Germany). AFM was measured at Nanosurf (Model: Flex; technique: 

tapping). Samples were loaded on the surface of mica and dried in the desiccator before analysis.
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2.4. Metal (Mn+) ion sensing analysis

The CQDs (25 mg) was dissolved in 500 mL of MilliQ water to attain the final concentration of 50 μg/mL of stock 

solution. The chromates (Cr3+& Cr6+) and chloride salts of metal ions (Na+, K+, Ca2+, Ba2+, Mn2+, Fe2+, Fe3+, Co2+, 

Ni2+, Cu2+, Zn2+, Ag+, Cd2+, Hg2+ and Al3+) were dissolved separately in MilliQ water (1 mM). The aqueous solution 

of AA was also prepared in deionised water (1 mM). In titration experiments, a 3 mL stock solution of CQDs (50 

μg/mL) was taken in a quartz cuvette of 1 cm optical path length. Then, 5-300 μM of each metal ion (1 mM) was 

added to the stock solution with a micro-pipette. For the fluorescence experiment, the emission maximum (em) of 

CQDs with and without the presence of metal ions was observed between 400 and 700 nm (ex = 340 nm) at 298 K. 

In fluorescence experiments, both excitation and emission slit widths were 3 nm. Each titration was repeated at least 

twice to get a consistent value. Analysis of the fluorescence intensity (F0/F) of CQDs as a function of increasing 

metal ion (Fe3+, Cu2+ and Hg2+) concentration ([Mn+]) was well described by the Stern−Volmer (F0/F = 1 + KSV[A]) 

equations. KSV value was determined from the slope of the linear plot of (F0/F vs [Mn+]).

2.5. pH analysis

The pH-dependent PL emission of CQDs was also carried out. The PL spectra of aqueous CQD solutions (50 

μg/mL) at various pH ranges (between 2-12) were acquired using an RF-5301PC Fluorimeter (Shimadzu, Japan) 

upon excitation at 340 nm at room temperature.

2.6. Photostability

The UV-visible absorption and PL emission intensity of CQD solutions with various irradiation times under UV 

light (Deuterium (D2) lamp; L6380) was tested. In a typical procedure, 10 mL aqueous solution of CQDs (0. 5 mg) 

or Rhodamine B (RhB) (0. 4 mg) solution was irradiated in a closed hood at a regular interval for 1 h. Then, the 

corresponding absorption and emission intensities were recorded on the UV-visible spectrophotometer (Shimadzu 

UV 6300PC equipment) and fluorescence spectrometer (RF-5301PC Fluorimeter (Shimadzu, Japan).

2.7. Photocatalytic test

The photoreduction reaction of CO2 was performed in a 250 mL quartz tube equipped with a Teflon stopper. Under 

continuous magnetic stirring, the experiments were performed at 25 °C in a photoreactor equipped with six 
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fluorescent lamps (Phillips, 15 W, the maximum intensity at 440 nm) (Fig. S5). In a typical photocatalytic reaction, 

CQDs (50 mg) was dissolved in distilled water (100 mL) followed by bubbling with high-purity CO2 gas for 20 min 

(10 mL min-1) to saturate the reactor to eliminate oxygen completely. After 6 h, the gas phase (1 mL) was collected 

with a syringe and injected into gas chromatography (TRACE 1300, Thermo Fisher Scientific) equipped with TCD 

FID detector and 13X Molecular sieve and Porapak N columns. The experiments were also conducted with and 

without the presence of catalyst and light. The calibration curve method was used to quantify the generated products 

from CO2 and compared with an external standard mixed gas. The apparent quantum yield (AQY) of CH4 was 

calculated using the actinometric method [63].

3. Results and Discussion

3.1. Synthesis and characterisation 

We have used a simple and one-pot synthetic strategy to obtain fluorescent CQDs from Acrocomia aculeate fibers, 

as illustrated in Fig. 1A. Briefly, the hydrothermal carbonization of macaúba fibers with sodium hydroxide (1 M) at 

200 °C for 18 h afforded CQDs. After filtration, dialysis, and freeze-drying process, the CQDs were isolated as a 

brownish-yellow solid. As reported in the literature [62, 64], during the above-mentioned hydrothermal reaction, the 

cellulose, hemicellulose, and lignin contents of macaúba fiber undergo hydrolysis and yield saccharides and 

aromatic alcohols. Further, these small molecules are converted into CQDs by dehydration and condensation 

reactions.

7            



                                          ACCEPTED MANUSCRIPT                                      

Fig. 1. Synthesis and characterizations of macaúba-derived CQDs. (A) Schematic illustration for the synthesis of 

CQDs from macaúba fibers. B) Representative ATR-FTIR spectra of CQDs. (C) AFM of CQDs. Inset shows the 

height profile of CQDs. (D) HR-TEM image of CQDs. Inset shows the lattice fringes of the CQD. (E) Size 

distribution of CQDs (n > 100) calculated from TEM micrographs. 
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As shown in Fig.1B, the characteristic FT-IR absorption peaks for O-H and C-H stretching vibrations were observed 

at 3321 cm−1 and 2928 cm-1, respectively. The overlapped peak at 1580 was assigned to C=O and C=C stretching 

vibrations in the conjugated structure of CQDs. The intensive bands at 1396 cm−1 and 1042 cm-1 correspond to C-O 

and =C-H stretching vibrations. Fig.1C illustrates the CQDs' topographic morphology and height distribution, 

respectively. The height profile of CQDs was found to be approximately 3 nm (Inset). Also, a precise spherical 

shape with the uniformly dispersed topology of the TEM image confirms the absence of any apparent aggregation 

(Fig. 1D). The particle size distribution of the CQDs showed a relatively narrow size distribution ranging from 0 to 5 

nm with an average diameter of 1.9 nm (n >100) (Fig. 1E). In the XPS survey spectrum as-synthesized CQDs 

exhibited two peaks at 284.0 and 530.6 eV, which are attributed to the presence of carbon (C) and oxygen (O) 

atoms, respectively (Fig. 2A). The high-resolution spectrum of the O1s (Fig. 2B) proved the two appropriate oxygen 

states of C=O (529.1 eV) and C-O (530.4 eV). Moreover, the high-resolution spectrum of the C1s (Fig. 2C) 

exhibited three prominent peaks at 281.8, 283.4, and 285.8 eV, which were attributed to C-C, C-O, and C=O, 

respectively. The binding energy peak at 281.8 eV confirmed the graphitic structure (sp2, C-C) of the macaúba-

derived CQDs, consistent with the O1s spectrum. These results revealed that the molecular system of macaúba-

derived CQDs mainly consists of abundant carbonyl, carboxylate, and hydroxyl groups [62, 64]. In the XRD pattern, 

the CQDs own a single broad peak at 22° (2θ) due to the characteristic amorphous carbon phase (Fig.2D), which 

indicates that the synthesized CQDs are a relatively poor crystalline nature.
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Fig. 2. (A) XPS survey spectrum of CQDs. (B) XPS high-resolution spectrum of O 1s spectrum. (C) XPS high-

resolution spectrum of C 1s. (D) XRD spectra of CQDs.

3.2. Photophysical properties

The absorption spectrum (Fig. 3A) of as-prepared CQDs showed a distinct peak at 277 nm that can be attributed to 

π-π* transition of C=C bonds for carbons consistent with most of the CQDs reported in the literature [14, 16, 42, 

62]. A strong emission band at 452 nm was observed upon exciting at 340 nm (Fig. 3A). Further, the CQDs 

exhibited excitation-dependent PL behavior because their emission shifted from blue to red against the excitation 

wavelengths ranging from 280 nm to 520 nm (Fig. 3B and S2A). Such PL behavior could be attributed to different-

sized particles and the distribution of various surface emissive traps of the CQDs [20]. 
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Fig. 3. Physicochemical characterizations of CQDs. (A) UV-visible absorption, excitation, and emission profile of 

CQDs in aqueous condition at 50 μg mL-1 concentration. (B) PL emission spectra of CQDs at different excitation 

wavelengths ranging from 340 nm to 520 nm with increments of 20 nm. (C) PL emission profile of CQDs under 

acidic to basic pH ranges. (D) Photostability of CQDs at constant illumination of UV light under various time points

In pH measurements, the PL intensity of CQDs at 452 nm was increased with increasing the pH, which indicates 

that the CQDs are accessible at a range of pH (6-12) conditions (Fig. 3C). We have also evaluated CQDs' 

photostability at continuous irradiation using a Deuterium (D2) lamp for durations of up to 60 min in UV-visible 

absorption spectroscopy. No apparent changes were observed in the absorbance of CQDs, while the absorbance of 

the commercial Rhodamine B (RhB) was decreased to ⁓30% (Fig. S1A and B). Under similar experimental 

conditions, PL intensity of RhB lost almost 100% in 60 minutes, whereas CQDs lost only 20% at continuous 

illumination of UV light (Fig. 3D). It reveals that CQDs showed superior photostability than commercial RhB dye, 
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consistent with earlier findings [62, 65]. We also analysed the surface charge of the CQDs from acidic to basic pH 

ranges resulting high negative zeta potential at neutral PH (Fig. S2B). Further, the ionic stability of CQDs was 

examined at different concentrations of NaCl ranging from 0 to 1 M (Fig. S3). No apparent changes in the PL 

intensity of CQDs at 450 nm were observed even at a higher concentration of NaCl (1 M), suggesting that CQDs 

owe excellent ionic strength even at higher concentrations.

3.3. Multi-metal (Mn+) ion detection 

The metal ion (Mn+) sensing capability of CQDs was studied by the PL emission spectroscopic method. In aqueous 

conditions, the CQDs show a strong PL emission peak ca. at 452 nm upon excitation at 340 nm. As shown in Fig. 

4A and 4B, only Fe3+, Cu2+, and Hg2+ ions elicited significant PL emission quenching response over a range of other 

metal ions (Mn+), which exhibit almost no effective quenching responses under identical conditions. In the 

competitive analysis, Fe3+ ion showed higher sensing performance than other Mn+ ions as a result of strong 

fluorescence quenching (Fig. 4B). This is mainly due to the strong affinity between many hydroxyl and carboxyl 

functionalities on the surface of CQDs and Mn+ ions that facilitate an enhanced charge-transfer mechanism [31, 32]. 

The strong PL quenching of CQDs with Fe3+, Cu2+ and Hg2+ could be attributed to the transfer of an electron from 

the excited state of CQDs to the vacant 3d orbital of the above-mentioned Mn+ ions, resulting in nonradiative 

electron-hole recombination [42].
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Fig. 4 PL intensity profiles of CQDs at the excitation wavelength of 340 nm (50 μgmL-1) under aqueous conditions. 

(A) PL intensity of CQDs against Fe3+, Cu2+ and Hg2+ ions (0.1 mM). (B) PL intensity of CQDs against various 

metal (Mn+) ions under selective and competitive analysis.

To ascertain the precise metal (Fe3+, Cu2+ and Hg2+) ion binding propensity of CQDs, we have carried out 

fluorescence titration experiments. Upon gradual addition of aqueous Fe3+ (0–150 μM), Cu2+ (0–195 μM) and Hg2+ 

(0–290 μM) ions to the solution of CQDs, the PL intensity at 452 nm was gradually decreased (Fig. 5A, B and C). 

Notably, the CQDs show significantly higher PL quenching response (~94%) towards Fe3+ (Fig. 5A) over the Cu2+ 

and Hg2+ ions, which showed only ~80% and ~71%, respectively (Fig. 5C and E). The linear ranges were observed 

at 0–30 μM, 0–25μM and 0–60 μM for Fe3+ (R2 = 0.997), Cu2+ (R2 = 0.997) and Hg2+ (R2 = 0.998), respectively (Fig. 

5B, D and F). Linear regression equations for Fe3+, Cu2+ and Hg2+ were found to be y = 0.204x + 0.769, y = 0.095x 

+ 0.909, y = 0.080x + 0.902, respectively. Moreover, the extent of the metal ion sensing capability of the CQDs was 

determined by the limit of detection (LOD) plots using the literature [42] reported equation: 3δ/m, where δ and m 

represents the standard deviation and slope of the linear fit, respectively. Quantification of the Fe3+, Cu2+ and Hg2+ 

detection of the CQDs by PL titration analysis displays a detection limit (LOD) at a shallow concentration of 0.69 × 

10-6, 0.99 × 10-6 and 0.25 × 10-6 M, respectively, which is more effective than the several reported systems derived 

from the biomass feedstock (Table 1, 2 and 3), with the additional advantage of multi-metal ion detection. All these 

observations indicate that the macaúba-derived CQDs is the promising sensor candidate in detecting trace amounts 

of the above-mentioned Mn+ ions in the environmental and biological scenarios.
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Fig. 5. PL emission titration profiles of CQDs (50 μg mL-1) with different metal (Fe3+ (0-100 μM), Cu2+ (0-290 μM), 

and Hg2+ (0-195 μM) ions in water (A, C and E): (B) (D) and (F) Linear relationship of the change in the PL 

intensity at 452 nm versus the concentration of Fe3+, Cu2+ and Hg2+, respectively. Error bar indicates mean ± 

standard deviation.
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Table 1. Detection of Fe3+ ions by representative CQDs derived from various natural sources.

Carbon source Passivating agent Linear range (µM) LOD (µM) Reference

Cellulose Ammonia 0-100 1.14 19

Lignin - 0-300 0.77 40

Actinidia Deliciosa Ammonia 5-25 0.85 42

Ananas erectifolius - 0-30 0.77 62

Crop biomasses - 0-500 5.23 64

Dwarf banana peel - 5-25 0.66 66

Cranberry beans - 30-600 9.55 67

Acrocomia aculeate - 0-30 0.69 This work

Table 2. Detection of Cu2+ ions by representative CQDs derived from various natural sources.

Carbon source Passivating agent Linear range (µM) LOD (µM) Reference

Acacia Concinna - 0.01- 10 0.0043 68

Lily Bulbs - 0.05–2.0 0.0012 69

Spirulina powder - 0.01–0.1 0.011 70

Coccinia Indica L-cysteine 0-0.025 0.045 71

CitricAcid PEI 0.37–2.5 0.63 72
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Acrocomia Aculeate - 0-25 0.99 This work

Table 3. Detection of Hg2+ ions by representative CQDs derived from various natural sources.

Carbon source Passivating agent Linear range (µM) LOD (µM)  Reference

Psidium Guajava - 6-38 82 73

Citric Acid melamine 2-14 0.44 74

Hongcaitai - 0.2 - 15 0.06 75

Cellulose Ionic liquid 6–80 1.6 76

Citric Acid diethylenetriamine 0–80 0.20 77

Highland Barley ethanediamine 10–160 0.48 78

Acrocomia Aculeate - 0-60 0.25 This work

3.4. “On-off-on" response of CQDs

To confirm whether the Fe3+ detection event (on-off) of CQDs is reversible, an equivalent of ascorbic acid (AA) 

solution was added into the aqueous solution of CQDs, which was preincubated with an equivalent of Fe3+ solution 

(Fig. 6A, B and C). Interestingly, AA influences the Fe3+ quenched CQDs as consequences of the revival of the PL 

intensity was found to be nearly 70% (Fig. 6D). This phenomenon could be due to the redox reaction between the 

CQDs-Fe3+ and AA, in which Fe3+ can be reduced to Fe2+ by AA (Fig. 6A) that minimises nonradiative electron 

transfer and maximises the revival of PL intensity CQDs [45, 79-81]. Gradual increases in the PL intensity of 

CQDs-Fe3+ at 452 nm were observed with increasing the concentration of AA (0–150 μM) (Fig. S4A). The linear 

relationship of the PL intensity of CQDs-Fe3+ concerning the concentration of AA was observed in the range of 5–50 

μM (Fig. S4B) with 4.6 × 10-6M of LOD. No apparent changes were observed for CQDs-Fe3+ against Cu2+ and Hg2+ 

16            



                                          ACCEPTED MANUSCRIPT                                      

ions while treating with AA (data not shown). It indicates that the macaúba-derived CQDs can be developed as a 

potential probe in the nanosensor platform for the rapid detection of AA.

Fig. 6. Fluorescence "on-off-on" profiles of CQDs (50 μg mL-1). (A) Illustration of CQDs interaction with Fe3+ and 

AA in an aqueous medium. (B, C and D) Representative PL intensity profile of CQDs

3.5. Photocatalytic CO2 reduction

To test the photocatalytic activity of CQDs, we have used them as a potential catalyst in a CO2 reduction reaction. 

For that, the CQDs (50 mg) in MilliQ water (100 mL) were taken in a quartz tube equipped with a Teflon stopper 

and saturated the reaction mixture with high purity CO2 gas, and kept under visible-light for 6 h at 25 °C. After 6 h, 

we observed the formation of CH4 and found no traces of typical gases including CO2, CO and H2 in the quartz 

reaction chamber. However, in the absence of CQDs, the standard gases include CO2, CO and H2 being encountered. 
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This indicates that the CQDs serve as an active photocatalyst that promotes the complete and selective reduction of 

CO2 into CH4 in the presence of visible-light. Also, the significant conversion of CH4 (99.8 nmol/g) from CO2 (Fig. 

7B) confirms that the CQDs material could be considered as the suitable candidate for photocatalytic reaction. This 

behaviour could be due to the photoreduction of hydroxyl groups at the surface of the CQDs as a plausible 

photoreduction mechanism of CO2 shown in Fig. 7A [82]. This mechanism includes the physisorption of the CO2 on 

photocatalytic CQDs surface due to the presence of a large number of hydroxyl functionality and activation of 

CQDs by visible light irradiation, which generates charge carriers inducing reductive and oxidative processes. In the 

highest occupied molecular orbital level (HOMO), the water is oxidised to produce H+ and molecular oxygen while 

the excited electron transfers from the lowest unoccupied molecular orbital (LUMO) to the CO2 molecules, 

generating CO2 species [82-86]. Recently, CQDs as a bare photocatalyst showed outstanding performance for 

reducing CO2 to methanol with 100% yield under solar-driven photocatalytic reaction in water [60]. Similarly, 

CQDs decorated carbon nitride (g-C3N4) showed excellent catalytic performance of CO2 photoreduction to yield 

CH4 (25%) under UV light [59]. Our findings from this investigation pave the way to utilize macaúba-derived CQDs 

as an efficient visible-light-induced photocatalyst to reduce CO2 into CH4 without doping any co-catalyst. 

Fig. 7. Photocatalytic reduction of CO2 into CH4 in an aqueous medium. A) Plausible mechanism of CQDs. B) 

Selective production of CH4. System: CQDs in H2O; Concentration of the catalyst: 500 mg L-1. Samples were filled 

with CO2 and illuminated by a fluorescence lamp.

4. Conclusions
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In summary, a facile one-pot hydrothermal approach for synthesising highly fluorescent CQDs from cellulosic 

biomass waste (macaúba fibres) as the green carbon feedstock has been demonstrated. The obtained quasi-spherical 

CQDs with a graphitic structure own an average diameter of 1.9 nm and –COOH, –OH surface functional groups 

that provide high water solubility. Without any surface passivation, as-synthesized CQDs showed excellent 

performance as multianalyte fluorescent sensor systems for detecting Fe3+, Cu2+ and Hg2+ ions with very low 

detection limit of 0.69 μM, 0.99 μM, and 0.23 μM, respectively, in an aqueous medium. Notably, CQDs 

demonstrate favorable “on-off-on” behaviour as a function of selective recovery of fluorescence quenched by Fe3+ 

ions using ascorbic acid (AA). Besides, CQDs with promising physicochemical properties could reduce CO2 into 

CH4 under visible-light irradiation without any co-catalyst. Altogether, facile synthesis, excellent photophysical 

properties and multiple surface functionalities enable macaúba-derived CQDs as a potential nanomaterial candidate 

in sensing and photocatalysis. This work paves the way to exploit biomass waste into value-added products in favor 

of environmental protection.
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