1	
2	
3	Elucidation of the pathway for biosynthesis of saponin adjuvants
4	from the soapbark tree
5	
6	James Reed ^{1,a} , Anastasia Orme ^{1,a, §} , Amr El-Demerdash ^{1,a, §§} , Charlotte Owen ¹ ,
7	Laetitia B.B. Martin ¹ , Rajesh Chandra Misra ¹ , Shingo Kikuchi ¹ , Martin Rejzek ¹ , Azahara C.
8 9	Martin ¹ , Alex Harkess ^{2,3} , Jim Leebens-Mack ⁴ , Thomas Louveau ^{1, 838} , Michael J. Stephenson ¹ and Anne Osbourn ¹ *
10	
11	Affiliations:
12	¹ John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
13 14	² Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn AL, 36849, US.
15	³ HudsonAlpha Institute for Biotechnology, Huntsville AL, 35806, US.
16	⁴ Department of Plant Biology, 4505 Miller Plant Sciences, University of Georgia,
17	Athens, GA 30602-7271, US.
18	[§] Current address, Illumina Centre, Great Abington, Cambridge, CB21 6DF, UK.
19 20	^{§§} Department of Chemistry, Faculty of Sciences, Mansoura University, Mansoura 35516, Egypt.
21 22	^{§§§} Current address, GTP Technology, 52 L'Occitane, Immeuble Gould, 31670 Labège, France.
23	
24	^a These authors contributed equally to this work
25	
26	*Correspondence to: <u>anne.osbourn@jic.ac.uk</u>

27 Abstract:

28 The Chilean soapbark tree *Quillaja saponaria* produces soap-like molecules (OS saponins) 29 that are important vaccine adjuvants. These highly valuable compounds are sourced by 30 extraction from the bark, and their biosynthetic pathway is unknown. Here we sequence the O. saponaria genome. Through genome mining and combinatorial expression in tobacco, we 31 32 identify 16 pathway enzymes that together enable the production of advanced QS pathway 33 intermediates that represent a bridgehead for adjuvant bioengineering. We further identify 34 the enzymes needed to make QS-7, a saponin with excellent therapeutic properties and low 35 toxicity that is present in low abundance in *Q. saponaria* bark extract. Our results enable production of O. saponaria vaccine adjuvants in tobacco and open the way for new routes to 36 37 access and engineer natural and new-to-nature immunostimulants.

38

39 **One-Sentence Summary:**

40 Uncovering the biosynthetic route to vaccine adjuvants produced by the soapbark tree,

41 Quillaja saponaria.

42

43 Introduction

44 Vaccination is a huge success story in the fight against infectious diseases. Vaccines 45 frequently require an adjuvant component (an immunostimulant) to enhance the immune 46 response to the antigen. However, to date only a few adjuvants are licensed for human use. 47 Triterpene glycosides (saponins) from the Chilean soapbark tree (Quillaja saponaria) have proven to be highly effective adjuvants due to their ability to elicit both antibody and cellular 48 49 immune responses (1). These saponins are collectively known as QS saponins. The QS-21 50 fraction, comprising isomeric forms of a complex triterpene saponin, is an immunepotentiator used in the adjuvant 'AS01'. AS01 has been licensed for use in two human 51 52 vaccines (the GSK vaccines Shingrix and Mosquirix, for shingles and malaria, respectively). 53 A mixture of QS saponins, including QS-21, QS-17 and QS-7, is also included in 'Matrix-M', 54 a combination adjuvant used in the NVX-CoV2373 COVID-19 vaccine produced by 55 Novavax (2). QS-17 is a glycosylated derivative of QS-21. QS-7 has the same core structure 56 as QS-21 but the two saponins differ in the nature of their modifications at the C-28 position. 57 QS-7 has a simple acetyl group instead of the long (C-18) acyl chain present in QS-21, and

58 there are also differences in the C-28 sugar moieties (Fig. 1A). Due to their chemical

- 59 complexity, the only current commercial source of these saponins is from the bark of the
- 60 soapbark tree itself. However, these key immunogenic saponins represent only a portion of
- >100 structurally related molecules produced by *Q. saponaria* (3), and so require extensive
- 62 purification. This issue is further exacerbated by variation in saponin content and
- 63 composition between individual trees due to environmental and genetic factors (4-6).
- 64 Although a number of saponin biosynthetic enzymes have been characterized in recent years
- from taxonomically diverse plant species (e.g. 7-10), much remains to be learned about the
- 66 enzymes that generate the enormous structural diversity of saponins. Indeed, QS-21 has a
- 67 total of seven different types of glycosidic moieties, including unusual sugars such as D-
- fucose, D-apiose and L-arabinofuranose, for which the cognate enzymes are not yet known.
- 69 Understanding the biosynthetic pathways for QS saponins will therefore provide new insights
- 70 into how these molecules are made and diversified. It will further open up opportunities to
- 71 produce saponins optimized for their immunostimulatory properties and low toxicity in
- heterologous hosts for use in the vaccines of the future.

73 **Results**

74 Biosynthesis of the quillaic acid scaffold

75 Triterpenes are biosynthesized from the linear isoprenoid precursor 2,3-oxidosqualene (1),

- 76 which can be cyclized into >100 different diverse scaffold products (11). The most common
- of these scaffolds is β -amyrin (2). The core structure of OS-7, OS-21 and OS-17 is quillaic
- acid (QA) (5), which is based on β -amyrin, but with oxidized groups at the C-16 α , C-23 and
- 79 C-28 positions (Fig. 1B). We therefore initiated our investigations of saponin biosynthesis in
- 80 *Q. saponaria* by searching for the enzymes required for β -amyrin biosynthesis and oxidation.
- 81 QS saponins are normally extracted commercially from bark. At the time of starting this
- 82 work, transcriptome data derived from *Q. saponaria* leaves were available through the 1000
- 83 Plants (1KP) Project (12). We obtained saplings of *Q. saponaria* (JIC accession S10) and
- 84 verified the presence of QS-21 in the leaves, consistent with previous reports (13) (Fig. S1).
- A BLAST search against the 1KP data was conducted using a characterized β -amyrin
- 86 synthase (GgbAS1, Genbank accession AB037203) from licorice (Glycyrrhiza glabra) as a
- query (14). This revealed a single full-length candidate with 88% amino acid sequence
- identity to GgbAS1. We used gene-specific primers (Data S1) to clone the corresponding
- 89 sequence from cDNA prepared from the leaves of *Q. saponaria* S10. We then investigated
- 90 the function of this candidate by *Agrobacterium*-mediated transient expression in the leaves

91 of *Nicotiana benthamiana*. GC-MS analysis of leaf extracts revealed a peak with the same

- 92 retention time and mass spectrum as an authentic β -amyrin standard (2), confirming that this
- 93 enzyme (hereafter named QsbAS1) is indeed a β -amyrin synthase (Fig. S2).

94 We next considered candidates for oxidation of β -amyrin (2). Most known triterpene oxidases 95 are members of the cytochrome P450 monooxygenase (CYP) superfamily (8). Of these, the 96 CYP716 family is commonly associated with triterpene biosynthesis and includes enzymes 97 known to perform C-28 and C-16α oxidation (8,15). A BLAST search of the 1KP Q. 98 saponaria transcriptome dataset was carried out using a known C-28 oxidase from Medicago 99 truncatula (CYP716A12, Genbank accession FN995112) (16), a saponin-producing species that (like *Q. saponaria*) belongs to the Fabales order. From this, the two highest scoring hits 100 101 were selected for further investigation. Transient expression of the first of these 102 (CYP716A224) with OsbAS1 in N. benthamiana resulted in near total conversion of *B*-amyrin (2) to oleanolic acid (3) (Fig. S3). The second enzyme (CYP716A297) showed very little 103 104 activity towards β -amyrin. However co-expression of both *CYP716A224* and *CYP716A297* in 105 combination with QsbAS1 resulted in formation of a new product which we identified as 106 echinocystic acid (4) using an authentic standard (Fig. S3). These two CYPs are therefore 107 able to oxidize two (C-28 and C-16 α) of the three positions that are oxidized in QA (5) (Fig. 108 1C). In searching for the final oxidase, we compiled a list of all CYP sequences in the 1KP Q. 109 saponaria transcriptome dataset that appeared to be full length (n = 35). After eliminating 110 enzymes that were closely related to known CYPs associated with primary metabolism we 111 were left with 26 candidates, of which 17 were successfully cloned and transiently expressed 112 in N. benthamiana (Data S2). Using this approach, a single candidate (CYP714E52) was identified which, when co-expressed with OsbAS1, CYP716A224 and CYP716A297, resulted 113 114 in production of QA (5) in N. benthamiana (Fig. 1B). We then carried out large-scale 115 transient expression by vacuum agro-infiltration of 209 plants, purified ~30 mg of this product, and confirmed its structure as QA (5) by ¹H NMR (Fig. S4; Fig. 1C). A phylogenetic 116 tree showing the relatedness of the three CYPs required for QA biosynthesis to other 117 previously characterized triterpene modifying CYPs from plants is shown in Fig. S5. 118

119 Generation of a pseudochromosome-level genome assembly for *Q. saponaria*

120 Genes for plant specialized metabolic pathways are commonly co-expressed and may also be

- 121 physically co-localized or 'clustered' within the genome (17). Co-expression analysis
- 122 requires availability of RNA-seq data for multiple different tissues/treatments, while
- 123 discovery of biosynthetic gene clusters is dependent on availability of a genome assembly,

124 neither of which were available for *Q. saponaria*. To facilitate discovery of the saponin biosynthetic steps downstream of QA, we therefore generated de novo transcriptome and 125 126 genome sequence resources for *Q. saponaria* accession S10. RNA-seq data were generated for six different tissues (primordia; expanding, mature and old leaves; green stems, and roots) 127 128 using Illumina HiSeq4000. OS-21 was present in all tissues examined (Fig. S1). The 129 estimated genome size of *Q. saponaria* based on flow cytometry is 411 Mbp (18). PacBio 130 long read sequencing and Hi-C (high-throughput/resolution chromosome conformation 131 capture) were used to generate a chromosome-scale assembly (Table S1, Fig. S6, see Materials and Methods). The draft genome was annotated by RNA-seq read alignment, 132 filtering, gene model generation and selection of final gene models (Table S1, Fig S7, see 133 134 Materials and Methods). Karyotype analysis revealed 28 chromosomes, consistent with a 135 haploid chromosome number of 14 (Fig. 2A). The 14 scaffolds therefore represent the 14 chromosomes of Q. saponaria S10. Synteny analysis provided evidence for a whole genome 136 duplication event in Q. saponaria S10 (Fig. 2B), consistent with hypothesised polyploidy 137 events observed across members of the Fabales (19). 138 139 Investigation of the expression profiles of the characterized QA biosynthesis genes in

140 different *Q. saponaria* tissues revealed that these genes are highly significantly co-expressed

141 (Fig. 2C), with highest absolute expression in the leaf primordia and lowest in old leaves

142 (Fig. 2C; Fig. S8), suggesting that it may be possible to identify further candidate

143 downstream QS pathway genes based on co-expression using these genes as bait.

144 We next mined the *Q. saponaria* genome assembly using plantiSMASH, an algorithm

145 designed to predict biosynthetic gene clusters (BGC) in plant genomes (20). plantiSMASH

146 predicted a total of 51 candidate clusters, of which 34 were assigned to the 'saccharide'

147 and/or 'terpene' classes (Fig. S9; Data S3) and so may be relevant to triterpene glycoside (i.e.

148 saponin) biosynthesis. The four QA biosynthetic genes (QsbAS1, CYP714E52, CYP716A224,

149 *CYP716A297*) are not physically clustered with each other. Of note, however, the gene

150 encoding one of the CYPs required for QA biosynthesis (CYP716A297) is located adjacent to

151 a 'saccharide' biosynthetic gene cluster (cluster #45) which includes genes predicted to

152 encode sugar transferases and other enzymes with potential functions in specialized

153 metabolism (Fig. 2D). Some of these genes have similar expression profiles to *CYP716A297*,

154 potentially suggesting functional association (Fig. 2D).

155 Addition of the C-3 sugar chain

156 Having discovered the biosynthetic steps to QA (5) (Fig. 1C), we next focused on identification of the enzymes required for addition of sugars at the C-3 and C-28 positions of 157 158 the QA scaffold. The enzymes typically responsible for glycosylation of plant natural products belong to glycosyltransferase family 1 (GT1) (21, 22). GT1 enzymes use uridine 159 160 diphosphate (UDP)-activated sugar donors to transfer sugar units onto small molecules and so are referred to as UDP-dependent glycosyltransferases (UGTs). We therefore mined the Q. 161 162 saponaria genome annotation to find all predicted full length (>410 aa) UGT genes by 163 searching with InterPro code IPR002213. This yielded a total of 166 predicted UGT genes, which were then prioritized based on strength of co-expression with *QsbAS1* (PCC cut-off of 164 0.7) and on absolute gene expression levels in primordia (TPM>1600), resulting in a shortlist 165 of 20 UGT genes (Table S2). The two most highly co-expressed UGTs Qs0321930 and 166 Qs0321920 (PCC 0.987 and 0.985, respectively) are co-located in the BGC shown in Fig. 2D, 167 along with a third co-expressed UGT gene Os0321940 (PCC 0.956). This cluster also 168 contains a gene for another class of carbohydrate-active enzyme – Qs0321900, which is 169 predicted to encode a cellulose synthase-like (CSL) protein. Qs0321900 is not co-expressed 170 with *QsbAS1* (PCC -0.59), although it is expressed at moderate levels in primordial tissue. 171 Interestingly, another unlinked but closely related predicted CSL gene *Qs0000870* is very 172 highly co-expressed with *QsbAS1* (PCC 0.992), suggestive of a role in the QS pathway. We 173 cloned all 20 UGT candidates and both CSL genes in order to evaluate their functions. 174 175 Co-expression of each of the UGT and CSL genes with the four QA pathway genes was 176 carried out by transient expression in N. benthamiana, and modification of QA (5) monitored 177 by untargeted LC-MS. No conversion of OA (5) was observed when the UGT candidates were co-expressed. However, when either of the two CSL genes were co-expressed with the 178 179 QA pathway genes, LC-MS analysis of leaf extracts revealed a peak with a mass corresponding to QA plus D-glucuronic acid and a concomitant reduction in QA (5) levels 180 (Fig. 3A). We then scaled up our transient plant expression experiments. Following vacuum 181 infiltration of 104 N. benthamiana plants co-expressing the QA pathway genes with CSL1, 182 183 we were able to purify 9.5 mg of product (Data S4). We also obtained 2.1 mg of the product of co-expression of the QA pathway genes with CSL2 (from 80 N. benthamiana plants) (Data 184 S4). ¹H NMR revealed that the spectra for the two products were identical (Fig. S10). 185

186 Extensive 2D NMR analysis (COSY, HSQC, HMBC and ROESY) confirmed that both

187 products were 3-O-{ β -D-glucopyranosiduronic acid}-quillaic acid (6; abbreviated to QA-

188 Mono) (Tables S3 and S4).

- 189 Phylogenetic analysis revealed that CSL-1 and -2 belong to the CSL-M subfamily, and they
- 190 are hereafter named CSLM1 and CSLM2 (Fig. S11). Although CSL proteins have not
- 191 traditionally been regarded as small molecule glycosyltransferases, two other examples have
- 192 recently been reported from other plant species (9,23). The strong co-expression of CSLM2
- 193 with *QsbAS1* suggests that CSLM2 may be primarily responsible for 3-*O*-{ β -D-
- 194 glucopyranosiduronic acid}-quillaic acid (6) biosynthesis in *Q. saponaria*.
- 195 We next screened our suite of cloned UGT candidates for the ability to glycosylate 3-O-{ β -D-
- 196 glucopyranosiduronic acid}-quillaic acid (6). Co-expression of *Qs0123860* (ranked third in
- 197 Table S2) based on co-expression with *QsbAS1*) with the QA pathway genes and *CSLM1*
- resulted in a new product with the mass of QA-GlcA plus a hexose (Fig. 3B). Following
- 199 scale-up by vacuum infiltration of 104 N. benthamiana plants, 7.3 mg of this product was
- 200 purified and its structure determined to be 3-O-{ β -D-galactopyranosyl-(1 \rightarrow 2)- β -D-
- 201 glucopyranosiduronic acid}-quillaic acid (7; abbreviated to QA-Di) by NMR (COSY, HSQC,
- HMBC and ROESY) (Table S5 and Data S4). Thus *Qs0123860* (UGT73CU3) encodes a
- 203 QA-3-O-glucuronoside- β -1,2-galactosyltransferase capable of adding the second sugar to the
- 204 C-3 position of *Q. saponaria* saponins.
- 205 Another round of co-expression experiments led to the identification of two UGTs that were
- able to further glycosylate 3-O-{ β -D-galactopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosiduronic
- 207 acid}-quillaic acid (7). One of these (*Qs0283870*) generated a product with a mass consistent
- with addition of a pentose, while the product of the second (*Qs0283850*) had a mass
- 209 consistent with addition of a deoxyhexose (Fig. 3B). It is known that saponins from Q.
- 210 saponaria show variation in the terminal sugar of the C-3 oligosaccharide chain, and that
- 211 either D-xylose or L-rhamnose can occur at this position (3, 5, 24). Following large-scale
- 212 vacuum infiltration, the two products were purified and their structures determined by
- 213 extensive 2D NMR as 3-O-{ β -D-xylopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-
- 214 glucopyranosiduronic acid}-quillaic acid (8; abbreviated to QA-TriX) (21.6 mg purified) and
- 215 3-*O*-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic
- acid}-quillaic acid (9; abbreviated to QA-TriR) (43.3 mg purified), respectively (Tables S6,
- 217 S7 and Data S4). Thus *Qs0283870* (UGT73CX1) encodes a xylosyltransferase, and
- 218 *Qs0283850* (UGT73CX2) a rhamnosyltransferase. These genes are ranked sixth and
- thirteenth respectively in Table S2 based on co-expression with *QsbAS1*. Phylogenetic
- analysis reveals that all three UGTs (UGT73CU3/UGT73CX1/UGT73CX2) belong to
- subgroup D of the GT1 family (Fig. S12). This subgroup includes several other enzymes that

- are known to glycosylate triterpenes from both monocots and dicots (21). In summary,
- 223 CSLM1/2 together with the three UGT enzymes characterised here collectively enable the
- 224 conversion of QA (5) to either QA-TriX (8) or QA-TriR (9) (Fig. 3C).

225 Addition of the C-28 sugar chain

226 QS-7, QS-21 and QS-17 share a common core consisting of the QA scaffold, the C-3 sugar 227 chain and a tetrasaccharide moiety at C-28 consisting of D-fucose, L-rhamnose, D-xylose, and 228 D-apiose (Fig. 1A). They differ in the nature of the other sugar and acyl groups attached to 229 the C-28 sugar chain. A survey of the structures of saponins reported from *Q. saponaria* 230 indicates that C-3 glycosylation is likely to precede the modifications at the C-28 position 231 (Fig. S13). Our results thus far are consistent with this hypothesis. Having successfully 232 reconstituted the pathway for addition of the C-3 trisaccharide chain, we next turned our 233 attention to elucidation of the steps needed for glycosylation at C-28. The sugar that is linked 234 directly to the QA scaffold at this position is D-fucose, which is attached via an ester linkage. 235 The UGT gene Os0321930 (UGT74BX1) shows the highest level of co-expression with 236 QsbAS1 (PCC 0.987) (Table S2). It is located in biosynthetic gene cluster #45 (Fig. 2D). 237 Furthermore, *Qs0321930* is the only gene on the UGT candidate list that is predicted to 238 encode a member of subgroup L of the GT1 family (Fig. S12), a subgroup known to contain 239 ester-forming UGTs (21). Indeed, transient expression of *Qs0321930* together with the previously identified Q. saponaria saponin biosynthesis genes (the four QA genes, CSLM2, 240 241 *UGT73CU3* and *UGT73CX1*, producing **8**) resulted in formation of small amounts of a new 242 product with a mass consistent with addition of a deoxyhexose, which we anticipated to be 243 the C-28 fucoside of 8 (abbreviated as QA-TriX-F (10)) (Fig. S14). UDP- α -D-fucose has 244 been suggested to be limiting in N. benthamiana, which could account for the low abundance 245 of the new product (9). Nevertheless, screening of additional UGT candidates against the 246 putative QA-TriX-F (10) resulted in identification of a UGT in subgroup A capable of 247 addition of a further deoxyhexose, with a mass consistent with addition of L-rhamnose as the second sugar in the C-28 sugar chain, to form QA-TriX-FR (12) (Fig. S14). The activity of 248 249 this putative rhamnosyltransferase (UGT91AR1) was dependent on the presence of D-fucose. The gene encoding it (Qs0321920) has the second highest level of co-expression with 250 251 OsbAS1 (PCC 0.985; Table S2) and is located in biosynthetic gene cluster #45 adjacent to the putative fucosyltransferase gene (UGT74BX1) to which it shares only ~30% amino acid 252 sequence identity. A further round of screening identified another subgroup A UGT encoded 253 254 by *Qs0234120* (*UGT91A01*) that appeared to modify QA-TriR-FR by addition of a pentose,

suggesting that this may be the C-28 xylosyltransferase producing QA-TriX-FRX (14) (Fig.
S14).

257 In contrast to the QA C-3 glycosides, only trace amounts of the three putative C-28 258 glycosides were observed, with large quantities of unconverted precursor QA-TriX (8) remaining (Fig. S14). It was apparent that the poor conversion from the QA-TriX (8) product 259 to QA-TriX-F (10) was likely to represent a significant bottleneck, impeding further pathway 260 261 elucidation and structural verification of the products. We noted that biosynthetic gene cluster 262 #45 also harbors two predicted short chain dehydrogenase/reductase (SDR) genes. One of these (Os0321910) is located immediately adjacent to the UGT91AR1 gene and has a similar 263 264 expression pattern to the OS enzymes characterized so far (co-expression with OsbAS1, PCC 265 0.871) (Fig. 2D). Most of the known sugar nucleotide interconverting enzymes are members of the SDR superfamily (25, 26). Transient co-expression of this SDR enzyme with the gene 266 267 set for QA-TriX-F (10) biosynthesis resulted in substantial increases in the levels of the QA-TriX-F (10) product, suggesting that the SDR has a role in D-fucosylation, potentially by 268 converting an endogenous UDP-sugar substrate in N. benthamiana to UDP-D-fucose, thereby 269 270 furnishing enhanced FucT activity (Fig. 4A). Further, co-expression of the additional C-28 271 sugar transferases including UGT91AR1 and UGT91AQ1 demonstrated that the amounts of 272 the relevant products [QA-TriX-FR (12) and QA-TriX-FRX (14), respectively] were likewise 273 substantially increased in the presence of the *Qs0321910* SDR (Fig. S15).

We next exploited the new SDR to perform large-scale transient expression experiments in *N*.

benthamiana in order to purify the new UGT products. During the previous purifications of

the C-3 quillaic acid trisaccharide products, we obtained around two-fold higher yields of the

277 the C-3 rhamnose (QA-TriR (9)) compared to the C-3 xylose version (QA-TriX (8)) (Data

S4). We therefore opted to generate and purify the putative C-28 glycosides based on the QA-

279 TriR (9) scaffold. Following infiltration of 100-200 *N. benthamiana* plants, the products

280 were purified and their identities confirmed by extensive 1D- and 2D-NMR analysis as

follows: UGT74BX1 product $(3-O-\{\alpha-L-rhamnopyranosyl-(1\rightarrow 3)-[\beta-D-galactopyranosyl-$

- 282 $(1\rightarrow 2)$]- β -D-glucopyranosiduronic acid}-28-O-{ β -D-fucopyranosyl ester}-quillaic acid) (11)
- 283 (abbreviated to QA-TriR-F) (1 mg purified); UGT91AR1 product (3-O-{ α -L-
- 284 rhamnopyranosyl- $(1\rightarrow 3)$ - $[\beta$ -D-galactopyranosyl- $(1\rightarrow 2)$]- β -D-glucopyranosiduronic acid}-28-
- 285 $O-\{\alpha-L-rhamnopyranosyl-(1\rightarrow 2)-\beta-D-fucopyranosyl ester\}$ -quillaic acid) (13) (abbreviated to
- 286 QA-TriR-FR) (43.9 mg purified); and the UGT91AQ1 product (3-O-{ α -L-rhamnopyranosyl-
- 287 $(1\rightarrow 3)-[\beta-D-galactopyranosyl-(1\rightarrow 2)]-\beta-D-glucopyranosiduronic acid -28-O-{\beta-D-glucopyranosiduronic acid}-28-O-{\beta-D-glucopyranosiduronic acid}-28-O-{\beta-D-g$

288 xylopyranosyl- $(1\rightarrow 4)$ - α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - β -D-fucopyranosyl ester}-quillaic acid) (15) (abbreviated to QA-TriR-FRX) (3.1 mg purified) (Tables S8, S9 and S10; Data S4). 289 290 The terminal sugar in the linear tetrasaccharide at C-28 in saponins such as QS-21 can be 291 either D-xylose or D-apiose (Fig. 1A). Having identified the enzymes that add the first three 292 sugars in the C-28 sugar chain, we carried out a final round of screening to identify the sugar 293 transferases that add these sugars. This led to the identification of two further functional 294 UGTs that each generated a product consistent with QA-TriX-FRX plus a pentose, but with 295 slightly different retention times (Fig. 4B). The genes encoding these enzymes (*Qs0234130* and *Qs0234140*, ranked fourteenth and eighteenth respectively in Table S2) were both 296 297 located in the chromosome 7 biosynthetic gene cluster #31 with the previously characterized 298 C-28 xylosyltransferase UGT91AQ1 (Data S3). This region is syntenic to the chromosome 11 299 biosynthetic gene cluster #45, suggesting that the two clusters may share a common 300 evolutionary origin and may have arisen as a consequence of genome duplication (Fig. S16). 301 We also noted that a predicted UDP-D-apiose/UDP-D-xylose synthase gene (Qs0088320) was 302 highly expressed in Q. saponaria leaf primordia. This gene was not physically clustered with 303 the previously characterized saponin biosynthesis genes but showed strong co-expression 304 with them (co-expression with OsbAS1, PCC 0.943). Transient expression of this putative 305 UDP-apiose/UDP-xylose synthase (QsAXS) with either Qs0234130 and Qs0234140 resulted 306 in a marked increase (around 11-fold) in the amount of the Os0234140 product generated 307 (Fig. S17).

- 308 We next carried out large-scale transient expression in *N. benthamiana* and purified each of
- 309 the two new UGT products using the QA-TriR-FRX scaffold (15). Their structures were
- determined by extensive 1D- and 2D-NMR as $(3-O-\{\alpha-L-rhamnopyranosyl-(1\rightarrow 3)-[\beta-D-$
- 311 galactopyranosyl- $(1\rightarrow 2)$]- β -D-glucopyranosiduronic acid}-28-O-{ β -D-xylopyranosyl- $(1\rightarrow 3)$ -
- 312 β -D-xylopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-fucopyranosyl ester}-quillaic
- acid) (17) (*Qs0234140*; 13.2 mg purified) (abbreviated to QA-TriR-FRXX) and $(3-O-\{\alpha-L-$
- 314 rhamnopyranosyl- $(1\rightarrow 3)$ - $[\beta$ -D-galactopyranosyl- $(1\rightarrow 2)$]- β -D-glucopyranosiduronic acid}-28-
- 315 $O-\{\beta-D-apiofuranosyl-(1\rightarrow 3)-\beta-D-xylopyranosyl-(1\rightarrow 4)-\alpha-L-rhamnopyranosyl-(1\rightarrow 2)-\beta-D-$
- fucopyranosyl ester}-quillaic acid) (19) (Qs0234130; 13.2 mg purified) (abbreviated to QA-
- 317 TriR-FRXA) (Tables S11, S12 and Data S4). Thus *Qs0234130* (*UGT73CY3*) encodes the
- 318 terminal xylosyltransferase, and *Qs0234140* (*UGT73CY2*) encodes the terminal C-28
- apiosyltransferase (Fig. 4C). The importance of QsAXS in boosting the *Qs0234140* product
- 320 suggests that UDP- α -D-apiose may be lacking in *N. benthamiana*. The fully characterized

- 321 pathway up to this point is shown in Fig. 5. Around one third of characterized QS saponins
- are derived from these scaffolds (24), making this an important branch point for saponin

Given the importance of the SDR encoded by *Qs0321910* for enhancing D-fucosylation and

323 diversification.

325

324 The mechanism for D-fucosylation

326 subsequent addition of the sugar chain at C-28, we sought to further understand the function 327 of this enzyme. We hypothesized that this enzyme would be responsible for production of 328 UDP-D-fucose. Despite the fact that plant sugar biosynthetic pathways are generally well 329 characterized, the biosynthetic route to D-fucose in plants is unknown. In bacteria, dTDP-D-330 glucose is converted to dTDP-4-keto-6-deoxy-D-glucose by a dTDP-D-glucose 4,6-331 dehydratase. The 4-keto group of this intermediate is then reduced by dTDP-4-keto-6-deoxy-D-glucose reductase to form dTDP-D-fucose (Fig. 6A) (27). The first of these steps is shared 332 333 with dTDP-L-rhamnose biosynthesis, and indeed it is known that plants synthesize the 334 analogous UDP-L-rhamnose from UDP-D-glucose via UDP-4-keto-6-deoxy-D-glucose (28). 335 Since UDP-4-keto-6-deoxy-D-glucose would be expected to be present in plant cells as part 336 of UDP-L-rhamnose biosynthesis, we hypothesized that the Os0321910 SDR may function as 337 a 4-ketoreductase. Furthermore, phylogenetic analysis of this SDR revealed that it is a 338 member of the SDR114C family (Fig. S18), as previously defined by Moummou et al. (29). 339 Several members of this family have been shown to reduce carbonyl groups to alcohols in 340 alkaloid and terpenoid biosynthesis (29-32), consistent with our proposal that the Qs0321910 341 SDR may carry out C-4 reduction of UDP-4-keto-6-deoxy-D-glucose to form UDP-D-fucose.

342 To test this hypothesis, we purified the *Qs0321910* SDR for functional analysis *in vitro* (Fig.

343 S19). The anticipated UDP-4-keto-6-deoxy-D-glucose substrate is not commercially

344 available. Therefore, to generate this compound from UDP-D-glucose, we cloned and purified

- 345 a characterized UDP-D-glucose 4,6-dehydratase from the *Acanthocystis turfacea* chlorella
- 346 virus 1 (ATCV-1 UGD, Genbank accession YP_001427025.1) (33) (Fig. S19). We also

347 purified the Q. saponaria UGT74BX1 (Fig. S19). In a single reaction, we combined UDP-D-

- 348 glucose with the purified QA-TriR (9) product and the *Qs0321910* SDR, ATCV-1 UGD and
- 349 UGT74BX1 enzymes. Subsequent LC-MS analysis confirmed the conversion of QA-TriR (9)
- 350 to QA-TriR-F (11). We also demonstrated that production of 11 was dependent on the
- 351 presence of both ATCV-1 UGD and the *Qs0321910* SDR, consistent with the anticipated
- 352 pathway (Fig. 6B). Interestingly, while co-incubation of UGT74BX1 and SDR alone did not
- result in any new products, the combination of UGT74BX1 and ATCV-1 UGD resulted in

- 354 partial conversion of 9 to a product with a mass consistent with addition of 4-keto-6-deoxy-D-
- 355 glucose (hereby abbreviated to QA-TriR-4K6DG), suggesting that the UGT74BX1 can
- 356 utilize UDP-4-keto-6-deoxy-D-glucose as a substrate (Fig. 6B). Furthermore, LC-MS analysis
- 357 of leaf extracts from plants transiently expressing the QA-TriX-F (10) gene set (with the SDR
- excluded) also revealed a peak with a mass consistent with QA-TriX-4K6DG. This peak was
- 359 larger than the QA-TriX-F (10) peak (Fig. S20). A medicagenic acid-3-O-glucuronide (MA-
- 360 GlcA) C-28 D-fucosyltransferase (SOAP6 UGT74BB2) was recently described from
- 361 spinach (9). Transient expression of this enzyme in *N. benthamiana* along with the relevant
- 362 MA-GlcA enzymes has been reported to yield a new product with the mass of MA-GlcA plus
- a deoxyhexose (9), suggesting a similar phenomenon may be occurring.
- 364 We next attempted to ascertain a direct link between the *Qs0321910* SDR and UDP-D-fucose
- 365 production *in vitro*. To this end, UDP-D-glucose was first incubated with ATCV-1 UGD and
- the reaction was monitored by NMR. Initially, as anticipated, we observed the formation of
- 367 UDP-4-keto-6-deoxy-D-glucose. However, addition of the SDR did not result in production
- 368 of UDP-D-fucose (Fig. S21), despite the clear evidence that the purified *Qs0321910* SDR was
- 369 functional in our initial in vitro experiment. Furthermore, we were unable to detect UDP-D-
- 370 fucose following transient expression of the SDR in *N. benthamiana* (Fig. S22). The
- 371 identification of these sugar nucleotides was confirmed with NMR-verified standards.
- 372 The failure of the *Qs0321910* SDR to convert UDP-4-keto-6-deoxy-D-glucose to UDP-D-
- 373 fucose *in vitro* coupled with the observation that UGT74BX1 appears to utilize UDP-4-keto-
- 374 6-deoxy-D-glucose as a substrate suggested that our initial model was incorrect. We therefore
- 375 considered a new model in which UDP-4-keto-6-deoxy-D-glucose may serve as a sugar donor
- 376 for UGT74BX1, forming the QA-TriR-4K6DG product. The 4-keto-6-deoxy-D-glucose
- 377 (attached to the QA-TriR) would then be reduced at the C-4 position to give the observed
- 378 QA-TriR-F (11) product. To test this, we performed a modified version of our initial *in vitro*
- assay by combining QA-TriR with UDP-D-glucose, ATCV-1 UGD and UGT74BX1 . As
- 380 before, we observed conversion of QA-TriR to a new product consistent with addition of 4-
- 381 keto-6-deoxy-hexose (QA-TriR-4K6DG). We next heat-inactivated the ATCV-1
- 382 UGD/UGT74BX1 enzyme mix prior to addition of the *Qs0321910* SDR. Subsequent LC-MS
- 383 analysis showed the conversion of the putative QA-TriR-4K6DG to a new product identified
- as QA-TriR-F (Fig. 6C). Our results indicate that the SDR encoded by *Qs0321910* SDR does
- not operate at the sugar nucleotide level, but rather reduces 4-keto-6-deoxy-D-glucose to D-

fucose after transfer to the QA-TriR backbone (Fig. 6D). We therefore named this SDR asQsFucSyn.

388 Three further steps for production of QS-7

The enzymes discovered up until this point allow us to make the advanced saponin pathway 389 390 heptasaccharide intermediates 16, 17, 18 and 19 (Fig. 5). We next searched for the steps 391 needed to make QS-7 (Fig. 1A). Three additional modifications to the C-28 sugar chain are 392 needed to convert 18 into QS-7, specifically addition of two sugars (L-rhamnose and D-393 glucose) and an acetyl group (Fig. 7). During our screen for the terminal C-28 394 glycosyltransferases, we detected putative glucosyltransferase activity for Qs0321940 395 (UGT91AP1), and co-expression with the enzyme set for 18 resulted in a product anticipated 396 to be the glucoside of **18** (Fig. S23). The gene encoding this enzyme is located within the 397 chromosome 11 biosynthetic gene cluster #45 (Fig. 2D) and is co-expressed with the known 398 QS genes (ranked seventh in Table S2; co-expression with OsbAS1 PCC 0.956). Os0321940 399 may therefore encode a glucosyltransferase implicated in OS-7 biosynthesis (Fig. S23). Two 400 more steps would then be required to achieve biosynthesis of QS-7, namely addition of an L-401 rhamnose and an acetyl group at the C-3 and C-4 positions of D-fucose, respectively. Based 402 on the structures of known saponins from Q. saponaria, acetylation appears to precede 403 rhamnosylation (Fig. S24) (24). We shortlisted 10 candidate Q. saponaria BAHD 404 acyltransferase genes based on levels of co-expression with *QsbAS1* (PCC \ge 0.9, TPM ≥1600) (Table S13), successfully cloned and screened seven for activity towards the full 405 heptasaccharide scaffold 18, and identified a single enzyme (encoded by Qs0206480, PCC 406 407 0.900) that generated a product with a mass consistent with addition of an acetyl group (Fig. 408 S25). Qs0206480 (QsACT1) is located on chromosome 13 and is not clustered with any of 409 the previously characterised genes. We next screened the remaining unassigned UGT 410 candidates for the ability to modify this putative acetylated substrate and identified two 411 enzymes that gave products that likely corresponded to addition of either L-rhamnose or D-412 glucose (encoded by Qs0023500 (UGT73B44, ranked seventeenth in Table S2) and 413 Qs0213660 (UGT73B43, ranked twentieth in Table S2), respectively) (Fig. S26). These two 414 UGTs belong to subgroup D of the UGT1 family and share 72% amino acid sequence 415 identity. The genes encoding them are not located in predicted biosynthetic gene clusters. Coexpression of these two enzymes together with the gene set for 18 did not result in a product 416 417 featuring both sugars, suggesting that the UGTs compete for the same position (Fig. S26). 418 Indeed, saponins featuring either L-rhamnose or D-glucose at the C-3 position of fucose have

- 419 been isolated from *Q. saponaria* (24,34,35), with QS-7 featuring L-rhamnose. This therefore
- 420 strongly suggested that *Qs0023500* rhamnosyltransferase is the last outstanding step for QS-7
- 421 biosynthesis. We therefore co-expressed the gene set for (18) with the newly discovered
- 422 candidate glucosyltransferase (Qs0321940), acetyltransferase (Qs0206480), and
- 423 rhamnosyltransferase (*Qs0023500*) genes. Subsequent LC-MS analysis revealed a small peak
- 424 with the same retention time and mass as a QS-7 standard (Fig. 7). Quantification of the QS-7
- 425 levels in *N. benthamiana* (7.9 μg per gram dry leaf weight) revealed them to be comparable
- to those found in many tissues of *Q. saponaria* with the exception of bark, which was around
- 427 3-fold higher (Fig. S27). Following large scale infiltration of 410 *N. benthamiana* plants and
- 428 fractionation by reversed phase HPLC (see Materials and Methods) approximately 11 mg of
- 429 semi-pure (3-5%) QS-7 was obtained. Subsequent 1D- and 2D-NMR analysis enabled us to
- 430 assign the structure of this compound as QS-7 (20) based on comparison with published data
- 431 (*34*) (Figs. S28-43). Furthermore, our recorded ¹H-NMR spectrum showed complete
- 432 superimposition with the chemical shifts of a pure QS-7 standard under identical conditions
- 433 (Figs. S44, 45). Together these results demonstrate the successful elucidation of the QS-7
- 434 pathway and its reconstitution in a heterologous host.

435 Conclusion

436 Here we report the characterization of a total of 14 Q. saponaria enzymes that enable the 437 biosynthesis of the advanced heptasaccharide triterpene glycoside intermediates 16, 17, 18 438 and **19**. We further identify two other enzymes required for efficient glycosylation with the 439 rare sugars, D-fucose and D-apiose. A biosynthetic pathway for D-fucose had not previously 440 been characterized, despite the widespread occurrence of this sugar in the plant kingdom 441 (21). We initially expected the glycosyltransferase UGT74BX1 to add D-fucose to QA-TriR 442 (9) (Fig. 5), yet we and others found no evidence of this sugar nucleotide in representative 443 dicot plants (36). Here we provide evidence for a different route to D-fucosylation in which 444 UDP-4-keto-6-deoxy-glucose serves as the sugar donor for UGT74BX1, the 4-keto-6-deoxy-D-glucose moiety attached at the C-28 position of the saponin scaffold then being 445 446 subsequently reduced *in situ* to yield D-fucose. This discovery raises broader questions about the origin of D-fucose moieties found in other plant natural products [e.g. foxglove cardiac 447 448 glycosides (37)].

- 449 Using our transient plant expression platform, we have been able to purify all of the QS
- 450 pathway intermediates from QA to QA-TriR-FRXA in milligram quantities (in some cases
- 451 tens of milligrams), demonstrating the power of transient plant expression for rapid access to

452 these molecules. We further demonstrate the production of the vaccine adjuvant QS-7 (20). 453 QS-7, unlike QS-21, has negligible toxicity towards animal cells (1). However, despite its 454 promise as an adjuvant, supply of this saponin is limited by its low abundance in Q. 455 saponaria bark extracts. Although the levels of QS-7 in N. benthamiana were also low, our 456 work opens up for the first time the possibility of producing OS-7 and other related OS 457 molecules in a heterologous expression system. Clearly optimization of the biosynthetic 458 process with the aim of attaining commercial scale production levels is beyond the scope of 459 this current work, but our results now make this a very attractive ambition. The availability of the complete genome sequence and comprehensive transcriptome resources for *Q*. 460 saponaria now opens up opportunities to use this 'instruction manual' to access QS-21 and a 461 diverse array of other QS saponins. Collectively these advances will enable investigation of 462 463 the poorly understood relationship between QS saponin structure and adjuvant activity, and ultimately the generation of designer saponins with optimal immunostimulatory activity and 464 465 low toxicity through metabolic engineering approaches.

466

467 Materials and methods

468 Detailed materials and methods can be found in the supplementary materials.

469 Quillaja saponaria plant material and saponin quantification

470 A Quillaja saponaria sapling (approximately 1 m high) was obtained from Burncoose

- 471 Nurseries, Cornwall, UK and maintained in a glasshouse (24°C, 16 h light). We named this
- 472 accession S10. Extracts (80% methanol) of freeze-dried tissues (young, mature and old
- 473 leaves, primordium, green stem, bark and root, with four biological replicates) were analysed
- 474 using a Thermo Scientific QExactive Hybrid Quadrupole-Orbitrap Mass spectrometer HPLC
- 475 and saponin content determined relative to standard curves generated using purified QS-7 and
- 476 QS-21 samples obtained from Desert King (San Diego, CA, USA).

477 Generation of sequence resources for Q. saponaria

- 478 Genes for the biosynthesis of quillaic acid were identified by mining the assembled 1KP
- 479 transcriptome derived from *Q. saponaria* leaves (downloaded from
- 480 <u>http://www.onekp.com/public_data.html</u>) for candidate OSC and CYP sequences using
- 481 BLASTP. For discovery of the remaining QS pathway genes we generated *de novo*
- 482 transcriptome data for six different *Q. saponaria* tissues using Illumina HiSeq4000 PE150,
- 483 and a draft genome assembly using PacBio Sequel sequencing. A Hi-C library was prepared

- 484 using the Phase Genomics Plant Hi-C 2.0 Kit (Seattle, WA) and sequenced with Illumina
- 485 PE75. The draft contig assembly was scaffolded into 14 pseudomolecules by Phase
- 486 Genomics Proximo software. Following RNASeq guided genome annotation, the
- 487 completeness of the gene space was assessed by BUSCO analysis (38).

488 Cloning and transient expression

Oligonucleotide primers were designed based on predicted gene sequences and flanked with 489 attB sites for Gateway cloning (Data S1). RNA extracted from primordia and young leaves 490 491 was used for cDNA synthesis. RNA isolation was carried out using a Qiagen RNeasy® Plant 492 Mini kit with the modified protocol according to (39). Candidate sequences were amplified, 493 cloned into pDONR207 using BP clonase (ThermoFisher) and sequenced (Eurofins), before 494 being introduced into the binary expression vector pEAQ-HT-DEST1 (40) for transient 495 expression in *N. benthamiana*. For ease of performing infiltrations, in some cases, multiple 496 genes were incorporated into a single binary vector using Golden Gate cloning (41, 42). For 497 screening of candidate genes, agro-infiltrations were performed at small-scale using a 498 needleless syringe (43,44). For purification of compounds, large-scale vacuum infiltrations 499 were performed as described previously (44). Leaf material was harvested five days after infiltration and frozen at -80°C prior to lyophilization for 24-72 hours. All experiments 500 501 included co-expression of the truncated feedback-insensitive mevalonate pathway enzyme 3-

- 501 Included co-expression of the truncated recuback-insensitive mevalohate pathway enzyme 5-
- 502 hydroxy-3-methylglutaryl-CoA reductase (tHMGR) to boost triterpene yield (44).

503 Metabolite analysis

- 504 Standards were obtained from the following sources: oleanolic acid (Merck); echinocystic
- 505 acid (Extrasynthese); quillaic acid (Extrasynthese); QS-7 and QS-21 (Desert King). Internal
- 506 standards coprostanol (GC-MS) and digitoxin (LC-MS) were obtained from Merck. Leaf
- 507 extracts were analysed by GC-MS or LC-MS, depending on the polarity of the compounds
- 508 under investigation. Full details of the methods used for metabolite analysis, scale-up and
- 509 purification of compounds for structural determination by NMR, investigation of QsFucSyn
- 510 activity and sugar nucleotide analysis are provided in the supplementary materials.

511

512

References and Notes

- C. R. Kensil, U. Patel, M. Lennick, D. Marciani, Separation and characterization of saponins with adjuvant activity from *Quillaja saponaria* Molina cortex. *J. Immunol.* 146, 431-437 (1991).
- A. King, Soapbark reaches out to fill essential role in some vaccine recipes. *Chemistry World* 21 June 2022, https://www.chemistryworld.com/news/soapbark-branches-out-to-fill-essential-rolein-vaccine-recipes/4015836.article
- G. C. Kite, M. J. Howes, M. S. Simmonds, Metabolomic analysis of saponins in crude extracts of *Quillaja saponaria* by liquid chromatography/mass spectrometry for product authentication. *Rapid Commun. Mass Spectrom.* 18, 2859-2870 (2004).
- A. S. Grandon, B. M. Espinosa, D. L. Rios, O. M. Sanchez, C. K. Saez, S. V. Hernandez, A. J. Becerra, Variation of saponin contents and physiological status in *Quillaja saponaria* under different environmental conditions. *Nat. Prod. Commun.* 8, 1697-1700 (2013).
- 5. L. P. Iglesias, J. G. Castro, V. A. Artze-Vargas, R. O. Peredo, Production of biomass in ultra high density plantations. U.S. Patent No. 11,254,699 (2022).
- S. Copaja, C. Blackburn, R. Carmona, Variation of saponin contents in *Quillaja* saponica Molina. Wood Sci. Technol. 37, 103-108 (2003).
- K. Miettinen K, S. Iñigo, L. Kreft, J. Pollier, C. De Bo, A. Botzki, F. Coppens, S. Bak, A. Goossens, The TriForC database: a comprehensive up-to-date resource of plant triterpene biosynthesis. *Nuc. Acids Res.* 46, (D1), D586–D594 (2018).
- K. Malhotra, J. Franke, Cytochrome P450 monooxygenase-mediated tailoring of triterpenoids and steroids in plants. *Beilstein J. Org. Chem.* 18, 1289–1310 (2022).
- A. Jozwiak, P. D. Sonawane, S. Panda, C. Garagounis, K. K. Papadopoulou, B. Abebie, H. Massalha, E. Almekias-Siegl, T. Scherf, A. Aharoni, Plant terpenoid metabolism co-opts a component of the cell wall biosynthesis machinery. *Nat. Chem. Biol.* 16, 740-748 (2020).
- Y. Li, A. Leveau, Q. Zhao, Q. Feng, H. Lu, J. Miao, Z. Xue, A. C. Martin, E. Wegel, J. Wang, A. Orme, M. D. Rey, M. Karafiatova, J. Vrana, B. Steuernagel, R. Joynson, C. Owen, J. Reed, T. Louveau, M. J. Stephenson, L. Zhang, X. Huang, T. Huang, D. Fan, C. Zhou, Q. Tian, W. Li, Y. Lu, J. Chen, Y. Zhao, Y. Lu, C. Zhu, Z. Liu, G. Polturak, R. Casson, L. Hill, G. Moore, R. Melton, N. Hall, B. B. H. Wulff, J. Dolezel, T. Langdon, B. Han, A. Osbourn, Subtelomeric assembly of a multi-gene

pathway for antimicrobial defense compounds in cereals. *Nat Commun* **12**, 2563 (2021).

- R. Xu, G. C. Fazio, S. P. Matsuda, On the origins of triterpenoid skeletal diversity. *Phytochemistry* 65, 261-291 (2004).
- 12. J. H. Leebens-Mack *et al.* One thousand plant transcriptomes and the phylogenomics of green plants. *Nature* **574**, 679-685 (2019).
- T. Schlotterbeck, M. Castillo–Ruiz, H. Cañon–Jones, R. S. Martín, The use of leaves from young trees of *Quillaja saponaria* (Molina) plantations as a new source of saponins. *Econ. Bot.* 69, 262-272 (2015).
- H. Hayashi, P. Huang, A. Kirakosyan, K. Inoue, N. Hiraoka, Y. Ikeshiro, T. Kushiro, M. Shibuya, Y. Ebizuka, Cloning and characterization of a cDNA encoding β-amyrin synthase involved in glycyrrhizin and soyasaponin biosyntheses in licorice. *Biol. Pharm. Bull.* 24, 912-916 (2001).
- K. Miettinen, J. Pollier, D. Buyst, P. Arendt, R. Csuk, S. Sommerwerk, T. Moses, J. Mertens, P. D. Sonawane, L. Pauwels, A. Aharoni, J. Martins, D. R. Nelson, A. Goossens, The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis. *Nat. Commun.* 8, 14153 (2017).
- M. Carelli, E. Biazzi, F. Panara, A. Tava, L. Scaramelli, A. Porceddu, N. Graham, M. Odoardi, E. Piano, S. Arcioni, S. May, C. Scotti, O. Calderini, *Medicago truncatula* CYP716A12 is a multifunctional oxidase involved in the biosynthesis of hemolytic saponins. *Plant Cell* 23, 3070-3081 (2011).
- G. Polturak, Z. Liu, A. Osbourn, New and emerging concepts in the evolution and function of plant biosynthetic gene clusters. *Curr. Opin. Green Sustain. Chem.* 33, 100568 (2022).
- S. Garcia, T. Garnatje, O. Hidalgo, G. Mas de Xaxars, J. Pellicer, I. Sánchez-Jiménez,
 D. Vitales, J. Vallès, First genome size estimations for some eudicot families and
 genera. *Collect. Bot.* 29, 7-16 (2010).
- S. B. Cannon, M. R. McKain, A. Harkess, M. N. Nelson, S. Dash, M. K. Deyholos, Y. Peng, B. Joyce, C. N. Stewart, Jr, M. Rolf, T. Kutchan, X. Tan, C. Chen, Y. Zhang, E. Carpenter, G. K.-S. Wong, J. J. Doyle, J. Leebens-Mack, Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. *Mol. Biol. Evol.* 32, 193-210 (2014).

- S. A. Kautsar, H. G. Suarez Duran, K. Blin, A. Osbourn, M. H. Medema, plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters. *Nucleic Acids Res.* W1, W55-W63 (2017).
- T. Louveau, A. Osbourn, The sweet side of plant-specialized metabolism. *Cold Spring Harb. Perspect. Biol.* 11, (2019).
- S. Rahimi, J. Kim, I. Mijakovic, K. Jung, G. Choi, S.-C. Kim, Y.-J. Kim, Triterpenoid-biosynthetic UDP-glycosyltransferases from plants. *Biotechnol. Adv.* 37, 107394 (2019).
- S. Y. Chung, H. Seki, Y. Fujisawa, Y. Shimoda, S. Hiraga, Y. Nomura, K. Saito, M. Ishimoto, T. Muranaka, A cellulose synthase-derived enzyme catalyses 3-*O*-glucuronosylation in saponin biosynthesis. *Nat. Commun.* 11, 5664 (2020).
- J. D. Fleck, A. H. Betti, F. P. da Silva, E. A. Troian, C. Olivaro, F. Ferreira, S. G. Verza, Saponins from *Quillaja saponaria* and *Quillaja brasiliensis*: Particular chemical characteristics and biological activities. *Molecules* 24, 171 (2019).
- 25. Y. Yin, J. Huang, X. Gu, M. Bar-Peled, Y. Xu, Evolution of plant nucleotide-sugar interconversion enzymes. *PLoS One* **6**, e27995 (2011).
- Y. Kallberg, U. Oppermann, B. Persson, Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models. *FEBS J.* 277, 2375-2386 (2010).
- Y. Yoshida, Y. Nakano, T. Nezu, Y. Yamashita, T. Koga, A novel NDP-6deoxyhexosyl-4-ulose reductase in the pathway for the synthesis of thymidine diphosphate-d-fucose. *J. Biol. Chem.* 274, 16933-16939 (1999).
- T. Oka, T. Nemoto, Y. Jigami, Functional analysis of *Arabidopsis thaliana* RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-Lrhamnose conversion, *J.B.C.* 282, 5389–5403 (2007).
- 29. H. Moummou, Y. Kallberg, L.B. Tonfack, B. Persson, B.Van der Rest. The plant short-chain dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns. *BMC Plant Biol.* **12**, 219 (2012).
- H. W. Choi, B.-G. Lee, N. Kim, Y. Park, C. W. Lim, H. K. Song, B. Hwang, A Role for a Menthone Reductase in Resistance against Microbial Pathogens in Plants. *Plant Physiol.* 148, 383-401 (2008).
- T. Czechowski, E. Forestier, S. H. Swamidatta, A. D. Gilday, A. Cording, T. R. Larson, D. Harvey, Y. Li, Z. He, A. J. King, G. D. Brown, I. A. Graham, Gene

discovery and virus-induced gene silencing reveal branched pathways to major classes of bioactive diterpenoids in Euphorbia peplus. *PNAS* **119**, e2203890119 (2022).

- J. Ziegler, S. Voigtländer, J. Schmidt, R. Kramell, O. Miersch, C. Ammer, A. Gesell,
 T. M. Kutchan, Comparative transcript and alkaloid profiling in Papaver species
 identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis.
 Plant J. 48, 177-192 (2006).
- M. P. Chothi, G. A. Duncan, A. Armirotti, C. Abergel, J. R. Gurnon, J. L. Van Etten, C. Bernardi, G. Damonte, M. Tonetti, Identification of an L-rhamnose synthetic pathway in two nucleocytoplasmic large DNA viruses. *J. Virol.* 84, 8829-8838 (2010).
- 34. S. Guo, L. Kenne, Characterization of some *O*-acetylated saponins from *Quillaja saponaria* Molina. *Phytochemistry* **54**, 615-623 (2000).
- 35. S. Guo, L. Kenne, Structural studies of triterpenoid saponins with new acyl components from *Quillaja saponaria* Molina. *Phytochemistry* **55**, 419-428 (2000).
- M. Pabst, J. Grass, R. Fischl, R. Léonard, C. Jin, G. Hinterkörner, N. Borth, F. Altmann, Nucleotide and Nucleotide Sugar Analysis by Liquid Chromatography-Electrospray Ionization-Mass Spectrometry on Surface-Conditioned Porous Graphitic Carbon. *Anal. Chem.* 82, 9782-9788 (2010).
- W. Kreis, A. Hensel, U. Stuhlemmer, Cardenolide biosynthesis in foxglove 1. *Planta Medica* 64 491-499 (1998).
- M. Manni, M. R. Berkeley, M. Seppey, F. A. Simão, E. M. Zdobnov, BUSCO Update: Novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. *Mol. Biol. Evol.* 38, 4647-4654 (2021).
- D. J. MacKenzie, M. A. McLean, S. Mukerji, M. Green, Improved RNA extraction from woody plants for the detection of viral pathogens by reverse transcriptionpolymerase chain reaction. *Plant Dis.* 81, 222-226 (1997).
- F. Sainsbury, E.C. Thuenemann, G.P. Lomonossoff, pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. *Plant Biotechnol. J.* 7, 682-693 (2009).
- 41. C. Engler, R. Kandzia, S. Marillonnet, A one pot, one step, precision cloning method with high throughput capability. *PLoS One* **3** e3647 (2008).

- 42. E. Weber, C. Engler, R. Gruetzner, S. Werner, S. Marillonnet, A modular cloning system for standardized assembly of multigene constructs. *PLoS One* **6**, e16765 (2011).
- 43. F. Sainsbury, P. Saxena, K. Geisler, A. Osbourn, G.P. Lomonossoff, Using a virusderived system to manipulate plant natural product biosynthetic pathways. *Methods Enzymol* **517**, 185-202 (2012).
- J. Reed, M. J. Stephenson, K. Miettinen, B. Brouwer, A. Leveau, P. Brett, R. J. M. Goss, A. Goossens, M. A. O'Connell, A. Osbourn, A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. *Metab. Eng.* 42, 185-193 (2017).
- 45. M. G. Grabherr, B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. di Palma, B. W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, A. Regev, Full-length transcriptome assembly from RNA-seq data without a reference genome. *Nat. Biotechnol.* 29, 644-52 (2011).
- B. J. Haas, A. Papanicolaou, M. Yassour, M. Grabherr, P. D. Blood, J. Bowden, M. B. Couger, D. Eccles, B. Li, M. Lieber, M. D. Macmanes, M. Ott, J. Orvis, N. Pochet, F. Strozzi, N. Weeks, R. Westerman, T. William, C. N. Dewey, R. Henschel, R. D. Leduc, N. Friedman, A. Regev, *De novo* transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. *Nat Protoc.* 8, 1494-512. (2013).
- 47. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: A flexible trimmer for Illumina Sequence Data. *Bioinformatics* **15**, 2114-2120 (2014).
- 48. D. L. Mapleson, L. Venturini, G. Kaithakottil, D. Swarbreck, Efficient and accurate detection of splice junctions from RNAseq with Portcullis. *GigaScience* **7**, (2018).
- L. Venturini, S. Caim, G. Kaithakottil, D.L. Mapleson, D. Swarbreck, Leveraging multiple transcriptome assembly methods for improved gene structure annotation. *GigaScience* 7, giy093, <u>doi:10.1093/gigascience/giy093</u> (2018).
- M. Stanke, B. Morgenstern, AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. *Nucleic Acids Res.* 33, W465–W467 (2005).
- R. Patro, G. Duggal, M. I. Love, R. A. Irizarry, C. Kingsford, Salmon provides fast and bias-aware quantification of transcript expression. *Nat. Methods* 14, 417-419 (2017).

- 52. A. Hallab, "Protein function prediction using phylogenomics, domain architecture analysis, data integration, and lexical scoring" dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn (2015).
- 53. S. Ou, W. Su, Y. Liao, K. Chougule, J. R. A. Agda, A. J. Hellinga, C. S. B. Lugo, T. A. Elliott, D. Ware, T. Peterson, N. Jiang, C. N. Hirsch, M. B. Hufford, Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. *Genome Biol.* 20, 1–18 (2019).
- 54. M.-D. Rey, G. Moore, A. C. Martín, Identification and comparison of individual chromosomes of three accessions of *Hordeum chilense*, *Hordeum vulgare*, and *Triticum aestivum* by FISH. *Genome* **61**, 387–396 (2018).
- 55. R.C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* **32**, 1792–1797 (2004).
- 56. A. Stamatakis, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies *Bioinformatics* **30**, 1312–1313 (2014).
- 57. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).
- 58. R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>.
- 59. D. Hoffmeister, J. Yang, L. Liu, J. S. Thorson, Creation of the first anomeric D/Lsugar kinase by means of directed evolution. *PNAS* **100**, 13184 (2003).
- M. P. Chothi, G. A. Duncan, A. Armirotti, C. Abergel, J. R. Gurnon, J. L. Van Etten,
 C. Bernardi, G. Damonte, M. Tonetti, Identification of an L-rhamnose synthetic
 pathway in two nucleocytoplasmic large DNA viruses. *J. Virol.* 84, 8829 (2010).
- J. C. Errey, B. Mukhopadhyay, K. P. R. Kartha, R. A. Field, Flexible enzymatic and chemo-enzymatic approaches to a broad range of uridine-diphospho-sugars. *Chem. Commun.* 23, 2706 (2004).
- 62. V. Martinez, M. Ingwers, J. Smith, J. Glushka, T. Yang, M. Bar-Peled, Biosynthesis of UDP-4-keto-6-deoxyglucose and UDP-rhamnose in pathogenic fungi *Magnaporthe grisea* and *Botryotinia fuckeliana*. J. Biol. Chem. **287**, 879 (2012).
- 63. M. Rejzek, B. Mukhopadhyay, C. Q. Wenzel, J. S. Lam, R. A. Field, Direct oxidation of sugar nucleotides to the corresponding uronic acids: TEMPO and platinum-based procedures. *Carbohydr. Res.* 342, 460-466 (2007).

- 64. B. A. Wagstaff, M. Rejzek, S. Kuhaudomlarp, L. Hill, I. Mascia, S. A. Nepogodiev,
 H. C. Dorfmueller, R. A. Field, Discovery of an RmlC/D fusion protein in the microalga Prymnesium parvum and its implications for NDP-β-L-rhamnose biosynthesis in microalgae. *J. Biol. Chem.* 294, 9172–9185 (2019).
- R. Behmüller, I. C. Forstenlehner, R. Tenhaken, C. G. Huber, Quantitative HPLC-MS analysis of nucleotide sugars in plant cells following off-line SPE sample preparation. *Anal. Bioanal. Chem.* 406, 3229-3237 (2014).
- J. E. Lunn, R. Feil, Janneke H. M. Hendriks, Y. Gibon, R. Morcuende, D. Osuna, W.-R. Scheible, P. Carillo, M.-R. Hajirezaei, M. Stitt, Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADP-glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. *Biochem. J.* 397, 139-148 (2006).
- M. Rejzek, L. Hill, E. S. Hems, S. Kuhaudomlarp, B. A. Wagstaff, R. A. Field, Profiling of sugar nucleotides. *Methods Enzymol.* 597, 209-238 (2017).
- A. E. Wilson, L. Tian, Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism. *Plant J.* 100, 1273-1288 (2019).
- 69. S. Guo, L. Kenne, L. N. Lundgren, B. Rönnberg, B. G. Sundquist, Triterpenoid saponins from *Quillaja saponaria*. *Phytochemistry*. **48**, 175-180 (1998).
- H. Tang, J. E. Bowers, X. Wang, R. Ming, M. Alam, A. H. Paterson, Synteny and collinearity in plant genomes. *Science*. 320, 486-488 (2008).
- 71. T. Czechowski, E. Forestier, S. H. Swamidatta, A. D. Gilday, A. Cording, T. R. Larson, D. Harvey, Y. Li, Z. He, A. J. King, G. D. Brown, I. A. Graham, Gene discovery and virus-induced gene silencing reveal branched pathways to major classes of bioactive diterpenoids in Euphorbia peplus. *PNAS* **119**, e2203890119 (2022).

Acknowledgments: We thank Drs Martin Stocks and Georgina Pope (PBL Technology) for advice and support; Rachel Melton and Mike Ambrose (John Innes Centre; JIC) for help in sourcing plant material; JIC Horticultural Services for assistance with plant cultivation; the JIC Metabolomics, NMR and Chemistry platforms for assistance with instruments and method development; and Norwich Bioscience Institutes (NBI) Research Computing for computational support. We thank Prof. David Nelson and to the UGT Nomenclature Committee for formal assignment of the *Q. saponaria* CYPs and UGTs, respectively. Finally,

we thank Professor Rob Field and our industrial collaborators for their comments and productive discussion.

Funding: This work has been supported by John Innes Centre Innovation Fund Award KEC IF29 2018 AO29 (AO), a Biotechnological and Biological Sciences Research Council (BBSRC) Super Follow-on-Fund award BB/R005508/1 (RCM, SK, AE-D, A Orme), Industrial funding (JR, RCM, SK, AE-D, CO, MR, A Orme), the joint Engineering and Physical Sciences Research Council/ Biotechnological and Biological Sciences Research Council (BBSRC)-funded OpenPlant Synthetic Biology Research Centre grant BB/L014130/1 (MS, AO), the John Innes Foundation (CO, AO), and the BBSRC Institute Strategic Programme Grant 'Molecules from Nature – Products and Pathways' (BBS/E/J/000PR9790) (TL, AO).

Author contributions: JR and AO conceived and designed the project. QS-21 and QS-7 profiling of *Q. saponaria* tissues, QS-7 quantification in *N. benthamiana* and generation of transcriptome resources, LM; purification of genomic DNA, JR, LM; preparation of Hi-C library, AH; computational analysis of the genome assembly, CO, AH, JL-M; bioinformatics analysis (including gene discovery, co-expression analysis, phylogenetics), CO, A Orme, JR, LM, TL; cloning and screening of candidate enzymes, JR, A Orme, LM, TL, SK; generation of GoldenGate vectors, RCM; initial scale-up of quillaic acid production and NMR, JR, MS; full scale-up, purification and structural analysis of pathway intermediates and QS-7, AE-D; karyotyping, ACM; enzyme purification and *in vitro* glycosylation assays, SK; synthesis, purification and NMR analysis of sugar nucleotides, MR; sugar nucleotide profiling, MR, JR. JR and AO wrote the manuscript, with input from other authors.

Competing interests: JR, A Orme, TL, LM and AO are inventors of patents arising from this work.

Data and Materials Availability: The fully assembled and annotated *Q. saponaria* genome sequence has been deposited under NCBI BioProject ID PRJNA914519. RNASeq reads are deposited under NCBI BioProject ID PRJNA914309 (SRA accessions SRR22829626 - SRR22829649). The sequences of the genes characterized in this study can also be found in GenBank as the following: *QsbAS1 (Qs0315350)*, OQ107256; *CYP716A224 (Qs0259300)*, OQ107260; *CYP716A297 (Qs0322000)*, OQ107248; *CYP714E52 (Qs0148690)*, OQ107266; *CSLM1 (Qs0321900)*, OQ107253; *CSLM2 (Qs000870)*, OQ107265; *UGT73CU3 (Qs0123860)*, OQ107259; *UGT73CX2 (Qs0283850)*, OQ107255; *UGT73CX1 (Qs0283870)*,

OQ107254; *UGT74BX1* (*Qs0321930*), OQ107250; *UGT91AR1* (*Qs0321920*), OQ107251; *UGT91AQ1* (*Qs0234120*), OQ107264; *UGT73CY3* (*Qs0234130*), OQ107263; *UGT73CY2* (*Qs0234140*), OQ107262; *UGT73B44* (*Qs0023500*), OQ107261; *UGT91AP1* (*Qs0321940*), OQ107249; *UGT73B43* (*Qs0213660*), OQ107257; *Apiose/xylose synthase* (*Qs0088320*), OQ107247; *QsFucSyn* (*Qs0321910*), OQ107252 and *QsACT1* (*Qs0206480*), OQ107258. All of the above *Q. saponaria* genes characterized in this study are available as expression constructs (either as DNA preparations or in the relevant microbial strains) from A. Osbourn under a material transfer agreement with Plant Bioscience Ltd.

Supplementary Materials

Materials and Methods Figs. S1 to S53 Tables S1 to S16 References (*45-71*) Data S1-S5

Figure legends

Fig. 1. Reconstitution of the steps to quillaic acid. (A) QS-7 and QS-21 share a core structure (shown in black) consisting of the triterpene scaffold quillaic acid, a branched trisaccharide at C-3 featuring D-glucuronic acid (D-GlcA), D-galactose (D-Gal) and D-xylose (D-Xyl) and a linear tetrasaccharide at C-28 featuring D-fucose (D-fuc), L-rhamnose (L-Rha), D-xylose and D-apiose (D-Api). This core structure is common to around a third of all reported QS saponins. Note: QS-21 variants also exist with L-rhamnose in place of D-xylose at C-3 (*) and D-xylose in place of D-apiose at C-28 (**). QS-17 is a glycosylated derivative of QS-21 (both have a D-glucose (D-Glc) attached to the L-rhamnose of the C-28 sugar chain (as shared with QS-7), while QS-17 also has an additional L-rhamnose attached to the Larabinofuranose (L-Araf) of the C-18 acyl chain). (B) LC-MS Extracted Ion Chromatograms (EIC) for *N. benthamiana* leaf extracts following co-expression of the β-amyrin synthase QsbAS1 with the CYPs CYP716A224 (a C-28 oxidase), CYP716A297 (a C16a oxidase) and CYP714E52 (a C-23 oxidase). The combination of all four enzymes results in the production of the QS scaffold, quillaic acid (QA) (m/z = 485) (5). Top, extract from control leaves that are not expressing the C-23 oxidase. (C) Biosynthetic route to QA: QsbAS1, β-amyrin synthase; CYP716A224, C-28 oxidase; CYP716A297, C16a oxidase; CYP714E52, C-23 oxidase. The structure of QA was confirmed by NMR (Fig. S4). Note that CYP714E52 was also found to be active on oleanolic acid. The resulting product is anticipated to be the C-23 aldehyde of oleanolic acid (gypsogenin) (Fig. S46).

Fig. 2. Generation of *Q. saponaria* genome and transcriptome sequences resources. (A) Karyotype analysis of *Q. saponaria* S10 meristem tissue at mitotic metaphase I, revealing 28 chromosomes. Scale bar = 5μ m. (B) Circular synteny plot showing the 14 chromosomes of *Q. saponaria* S10. Syntenic blocks (indicated by the coloured lines) provide evidence of a whole genome duplication event. (C) Hierarchical clustering of the top 50 *Q. saponaria* genes that are co-expressed with *QsbAS1*, as calculated by Pearson Correlation Coefficient (PCC) value of Z-scores (generated from DESeq2 VST- transformed read quantification values). The four QA biosynthetic genes (labelled) show tight co-expression and are expressed most strongly in primordial tissue. PCC values for the three QA CYPs with QsbAS1 are shown to the right. (D) A biosynthetic gene cluster (#45) predicted by plantiSMASH is located on chromosome 11, very close to the QA biosynthesis gene *CYP716A297*. Several of the genes in this region also show high expression in primordial tissue. Fig. 3. Addition of the C-3 sugar chain. (A) LC-MS Extracted Ion Chromatograms (EIC) of N. benthamiana leaf extracts showing that co-expression of either of the predicted cellulose synthase-like (CSL) genes CSLM1 or CSLM2 with the four QA genes results in the conversion of QA to a new more polar product (retention time 14 min). The mass spectra (right) indicate that the product is the same for CSLM1 and CSLM2, and are consistent with addition of glucuronic acid to QA to form 3-O-{ β -D-glucopyranosiduronic acid}-quillaic acid (6) (Abbreviated to QA-Mono). IS, internal standard (digitoxin). (B) LC-MS EIC of N. benthamiana leaf extracts following co-expression with UGT candidates that add additional sugars at the C-3 position. A control sample from leaves expressing the QA pathway plus glucuronosyltransferase (CSLM1) is shown at the top. In the second panel, further coexpression of Os0123860 resulted in conversion of QA-Mono (6) to a new product consistent with addition of a galactose to form 3-O-{ β -D-galactopyranosyl-(1 \rightarrow 2)- β -Dglucopyranosiduronic acid }-quillaic acid (7) (Abbreviated to OA-Di). Co-expression of either Qs0283870 (third panel) or Qs0283850 (bottom panel) with the QA-Di gene set resulted in conversion of QA-Di (7) to new products. The Qs0283870 product was consistent with addition of a xylose to form 3-O-{ β -D-xylopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid -quillaic acid (8) (abbreviated to QA-TriX) while the Qs0283850 product was consistent with addition of a rhamnose to form 3-O- $\{\alpha$ -Lrhamnopyranosyl- $(1\rightarrow 3)$ -[β -D-galactopyranosyl- $(1\rightarrow 2)$]- β -D-glucopyranosiduronic acid}quillaic acid (9) (abbreviated to QA-TriR). The mass spectra of these products and structures are shown to the right of the chromatograms. (C) Summary of the pathway from QA (5) to QA-TriX (8) and QA-TriR (9). The structures of compounds 6-9 were all confirmed by NMR following large-scale infiltration and purification (Tables S3-S7 and Data S4).

Fig. 4. Addition of the C-28 sugar chain. (A) LC-MS Extracted Ion Chromatograms (EIC) of *N. benthamiana* leaf extracts following transient expression of the gene set for production of the D-fucosylated saponin 3-*O*-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid}-28-*O*-{ β -D-fucopyranosyl ester}-quillaic acid (10) (Abbreviated to QA-TriX-F). Only low amounts of 10 accumulate in *N. benthamiana* (top). However co-expression of the short chain dehydrogenase encoded by *Qs0321910* results in marked increases in the yield of this product (bottom), as well as increasing further downstream products (Fig. S15). IS, internal standard (digitoxin). (B) Identification of the terminal xylosyl- and apiosyltransferases required for synthesis of the linear tetrasaccharide at C-28. The gene set for production of 3-*O*-{ β -D-xylopyranosyl-(1 \rightarrow 3)-[β -D-

galactopyranosyl- $(1\rightarrow 2)$]- β -D-glucopyranosiduronic acid}-28-O-{ β -D-xylopyranosyl- $(1\rightarrow 4)$ - α -L-rhamnopyranosyl- $(1\rightarrow 2)$ - β -D-fucopyranosyl ester}-quillaic acid) (14) (abbreviated to QA-TriX-FRX) was transiently co-expressed in *N. benthamiana* (top). Further co-expression of either *Qs0234130* (middle) or *Qs0234140* (bottom) resulted in the appearance of new products with identical masses (consistent with addition of pentoses) and slight differences in retention times. Large scale infiltration, purification and NMR analysis of the products (using the QA-TriR-FRX (15) scaffold) determined that *Qs0234130* is the terminal xylosyltransferase, while *Qs0234140* is the terminal apiosyltransferase (Tables S9 and S10). (C) Summary of the biosynthetic pathway for the C-28 tetrasaccharide chain. The structures of compounds 11, 13, 15, 17 and 19 were all confirmed by NMR following large-scale infiltration and purification (Tables S8-S12).

Fig. 5. The complete pathway to compounds 16-19. A summary giving full compound names, abbreviations, isolated yields, retention times and m/z data as well as the set of genes transiently expressed in *N. benthamiana* for each compound is provided as Data S4.

Fig. 6. Characterization of the SDR encoded by Qs0321910. (A) Biosynthesis of D-fucose in bacteria. dTDP-D-glucose is converted in a two-step process to dTDP-D-fucose via dTDP-4-keto-6-deoxy-D-glucose. (B) In vitro production of QA-TriR-F (11) from QA-TriR and UDP-D-glucose. Top, QA-TriR (9) incubated with UDP-D-glucose and UGT74BX1 only. Addition of ATCV-1 UGD (which converts UDP-D-glucose to UDP-4-keto-6-deoxy-glucose) resulted in new products anticipated to be QA-TriR-4-keto-6-deoxy-glucose (QA-TriR-4K6DG) (**) and its hydrate (*) (second from top). No conversion of QA-TriR was observed with the addition of the SDR alone (third from top). However, the combination of ATCV-1 UGD and SDR resulted in total conversion of QA-TriR (9) to QA-TriR-F (11). Mass spectra for the QA-TriR-4K6DG (**) and its hydrate (*) are shown in Fig. S47. (C) The SDR reduces the QA-TriR-4K6DG product to form QA-TriR-F (11). QA-TriR was incubated with UDP-D-glucose in the presence of ATCV-1 UGD and UGT74BX1, resulting in the formation of QA-TriR-4K6DG (**) and its hydrate (*). This enzyme mix was inactivated by boiling before addition of the SDR. LC-MS analysis of the reaction at 0 min (top), 60 min (middle) and 180 min (bottom) revealed that the formation of QA-TriR-F with consumption of QA-TriR-4K6DG (**) and hydrate form (*), demonstrating that the SDR reduces the 4-keto-6deoxy-glucose attached to QA-TriR to form the D-fucose in QA-TriR-F (11). (D) Proposed biosynthetic pathway to QA-TriR-F (11) from QA-TriR (9) and UDP-D-glucose.

Fig. 7. Production of QS-7. The gene set for production of the core heptasaccharide QA-TriX-FRXA (**18**) was transiently co-expressed in *N. benthamiana* along with the *Qs0206480*, *Qs032140*, and *Qs0206480* genes. LC-HRMS of *N. benthamiana* leaf extracts revealed a peak with the exact mass and retention time of an authentic QS-7 (**20**) standard. This peak was absent if any one of the *Qs0206480*, *Qs032140*, and *Qs0206480* genes was omitted. Large scale infiltration and purification allowed the isolation of a small quantity of semi-pure QS-7 from *N. benthamiana* and structural confirmation by NMR (Tables S14-S15).

Supplementary Materials for

Elucidation of the pathway for biosynthesis of saponin adjuvants from the soapbark tree

James Reed, Anastasia Orme, Amr El-Demerdash, Charlotte Owen, Laetitia B.B. Martin, Rajesh Chandra Misra, Shingo Kikuchi, Martin Rejzek, Azahara C. Martin, Alex Harkess, Jim Leebens-Mack, Thomas Louveau, Michael J. Stephenson and Anne Osbourn

Corresponding author: anne.osbourn@jic.ac.uk

The PDF file includes:

Materials and Methods Figs. S1 to S53 Tables S1 to S16

Other Supplementary Materials for this manuscript include the following:

Data S1 to S5 $\,$

Materials and Methods

Evaluation of QS-7 and QS-21 content in Quillaja saponaria accession S10

Seven different tissue types were analyzed (young, mature and old leaves, primordium, green stem, bark and root, with four biological replicates). Samples were freeze-dried for 24 h, and 15 mg aliquots disrupted in 2 mL graduated conical tubes (Starlab, E1420-0304) using two 3 mm tungsten beads (1000 rpm, 1 min) with a Geno/Grinder (Spex). After addition of 600 µL of 80% methanol, samples were incubated at 70°C for 30 min with shaking at 1000 rpm and then centrifuged at 13,000 x g for 10 min. The supernatants were transferred to fresh microcentrifuge tubes and defatted using 400 µL of hexane. The lower aqueous methanol phase was dried under a nitrogen flow at 60°C in a Provair sciences MiniVap®. After drying, samples were resuspended in 130 µL 80% methanol and filtered using a Spin-X 0.2 µm filter column (Costar). The filtrates were transferred into glass inserts placed in 1.5 mL sample vials (Agilent). Analysis of QS7 and QS-21 content was carried out using a Thermo Scientific QExactive Hybrid Quadrupole-Orbitrap Mass spectrometer HPLC system, calibrated using Pierce +ve/-ve calibration standards according to the manufacturer's instructions. Detection: MS (ESI ionization), scan range of 400-2500 m/z in negative mode, 70,000 resolution. Data dependent MS², isolation window of 4.0 m/z, collision energy of 30, resolution of 17,500, dynamic exclusion of 5.0 s. Method: Solvent A: $[H_2O + 0.1 \%$ formic acid] Solvent B: [acetonitrile (CH₃CN)]. Injection volume: 10 µL. Gradient: 15% [B] from 0 to 0.75 min, 15% to 60% [B] from 0.75 to 13 min, 60% to 100% [B] from 13 to 13.25 min, 100% to 15% [B] from 13.25 to 14.5 min, 15% [B] from 14.5 to 16.5 min. Method was performed using a flow rate of 0.6 mL.min⁻¹ and a Kinetex column 2.6 µm XB-C18 100 Å, 50 x 2.1 mm (Phenomenex). Analysis was performed using Xcalibur and FreeStyle softwares (Thermo Scientific). Purified QS-7 and QS-21 samples from Desert King (San Diego, CA, USA) were used to generate standard curves to determine the absolute amounts of these molecules in the samples.

Assembly of the 1KP transcriptome data and identification of QsbAS1 and oxidases

The assembled 1KP transcriptome derived from *Q. saponaria* leaves was downloaded from http://www.onekp.com/public_data.html (OQHZ; also available in the CyVerse Data Store, https://datacommons.cyverse.org/browse/iplant/home/shared/commons_repo/curated/oneKP_cap stone 2019) and BLASTP searches were carried out to identify candidate OSC and CYP genes. To ensure that all relevant sequences were recovered, the source SRA data was also downloaded from the NCBI SRA database (https://www.ncbi.nlm.nih.gov/sra/ERR706840) and re-assembled using Trinity (45, 46). Adapter sequences were trimmed with Trimmomatic (47). This dataset was mined using HMMER with the SqHop cyclase Pfams (PF13243, PF13249) and CYP Pfam (PF00067) for candidate OSC and CYP genes, respectively. To shortlist potential candidates that may oxidize the C-23position of echinocystic acid, the identified CYP sequences (164 total) were analyzed to check for sequence similarity. Where multiple sequences were found with ≥98% identity they were removed, leaving a single representative transcript, yielding a total of 151 sequences. Any truncated sequences (under 450 amino acids) were removed, leaving 37 sequences, of which a further two were removed (one due to missing start/stop codons, the other due to lacking the conserved cysteine residue) to give 35 candidates. A BLAST search was used to identify the closest homologues from Arabidopsis thaliana for each CYP. Candidates were deprioritized if the A. thaliana homologues were known to be involved in primary metabolic functions, leaving a final shortlist of 26 candidates. The candidate enzymes and their predicted sequences are provided in Data S2.

Cloning of Q. saponaria genes for transient plant expression

Oligonucleotide primers were designed based on predicted gene sequences and flanked with attB sites for Gateway cloning (Data S1). RNA extracted from primordia and young leaves (see above) was used for cDNA synthesis. The harvested tissues were flash frozen in liquid nitrogen and ground to a fine powder using a pestle and mortar (also in liquid nitrogen). RNA isolation was carried out using a Qiagen RNeasy® Plant Mini kit with the modified protocol according to (39). Following cleanup of the purified RNAs as per the protocol of the RNeasy® Mini Handbook (Qiagen), RNA quality was assessed by using nanodrop ratios and 1% agarose gel. cDNA synthesis was performed using Superscript III (Thermo Fisher) with oligo dT primers according to the manufacturer's instructions. Candidate sequences were amplified from cDNA of either primordia or young leaves using iProof polymerase (Bio-Rad), cloned into pDONR207 using BP clonase (ThermoFisher) and sequenced (Eurofins), before being introduced into the binary expression vector pEAQ-HT-DEST1 (40). The expression constructs were transformed into A. tumefaciens strains LBA4404 or GV3101. For ease of performing infiltrations, in some cases, multiple genes incorporated into a single binary vector using Golden Gate cloning were used (41, 42). The coding sequence of each gene was domesticated by removal of BpiI and/or Bsal restriction sites as needed and assembled into Golden Gate entry vector pL0-pICH41308. Genes were further assembled into level 1 expression cassettes consisting of the flanking modified 5' and 3' UTRs from Cowpea mosaic virus (40) under control of the CaMV35S promoter and Nos terminator. To enhance the expression of recombinant proteins in N. benthamiana, the P19 viral suppressor of gene silencing was also assembled under the control of CaMV35S promoter and CaMV35S terminator. Finally, multiple genes were incorporated into level 2 and/or a set of level M binary expression vectors (Figs. S48-53) and the vectors transformed into A. tumefaciens strain LBA4404 or GV3101. The Golden gate constructs were used interchangeably with the pEAQ constructs.

Preparation of Q. saponaria genomic DNA for genome sequencing

Young leaves of *Q. saponaria* S10 (2.6 g) were flash frozen in liquid N₂ and ground to a powder using a pestle and mortar. 10 mL of extraction buffer (2% w/v cetyl trimethylammonium bromide (CTAB), 100 mM Tris-HCl (pH 8.0) 1.4 M NaCl, 20 mM EDTA, 10 mg/mL proteinase K) was added, and the sample incubated at 55°C for 30 min in a 50mL falcon tube with intermittent shaking. After incubation on ice for 5 min, 5 mL chloroform was added and the tube was gently inverted several times. The sample was centrifuged at 2,100 x g for 30 min and the upper aqueous phase (approx. 7.5 mL) transferred to a fresh tube containing an equal volume of phenol:chloroform:isoamyl alcohol (25:24:1 v/v). Following mixing, a further centrifugation step (2,100 x g for 30 min) was performed. The upper aqueous phase was then transferred to a fresh tube and mixed with 10% v/v of 3 M NaOAc, (pH 5.2 with HCl) followed by 2.5 volumes of ice cold 100% ethanol and incubated on ice for 30 min to precipitate nucleic acids. The sample was centrifuged (2,100 x g for 30 min at 4°C) and the supernatant discarded. The pellet was washed with 70% ice cold ethanol, the tube centrifuged (2,100 x g for 10 min at 4°C), and the washing step repeated twice more. The tubes were then inverted over a paper towel to dry the pellet. Finally, the dried pellet was resuspended in 1 mL of H₂O containing 0.1 mg/mL RNase A.

Transcriptome analysis

RNA was extracted from six different tissue types of *Q. saponaria* S10 (young, mature and old leaves, primordium, stem, and root) with four biological replicates per tissue. The harvested

tissues were flash-frozen in liquid N₂ and ground to a fine powder using a pestle and mortar (in liquid N₂). RNA isolation was performed as described above. Aliquots (4 μ g) of each sample were sent to the Earlham Institute for quality assessment. A Tecan plate reader was used to quantify the material using fluorimetry. The RQS was measured using a Perkin Elmer GX II. Following NEXTflex directional RNA-seq library preparation, sequencing was carried out using Illumina HiSeq4000 PE150. The data were run through several QC assessment tools: firstly PAP, which consists of; FastQC, Centrifuge, FastQ Screen -> MultiQC; then EI-MAP; QualiMap, RSeQC, Picard, BamTools, Bowtie 2 / HiSAT 2, CutAdapt, SortMeRNA, FastQC (after adaptor trimming with CutAdapt), followed by Mikado.

Genome sequencing, assembly and annotation

PacBio Sequel sequencing of genomic DNA (using 11 SMRT cells) and sequence assembly by HGAP4 was carried out by the Earlham Institute. This resulted in a draft genome assembly of 769 polished contigs, with a total length of 354.9 Mbp, a maximum contig length of 18.2 Mbp and an N50 of 5.5 Mbp. A Hi-C library was prepared using the Phase Genomics Plant Hi-C 2.0 Kit (Seattle, WA), with 1 gram of flash-frozen leaf tissue as input. Fifteen PCR cycles were used to amplify the library to a final concentration of 45 ng/ul. The library was sequenced with Illumina PE75 reads to a depth of 279 million read pairs. Finally, the draft contig assembly was scaffolded into 14 pseudomolecules by Phase Genomics Proximo software. The final genome version consisted of 14 ordered clusters (i.e. pseudochromosomes) made up of 147 contigs and totaling 346.9 Mbp in length (97.4% of the genome assembly), with a remaining 8 Mbp comprised of 624 unplaced contigs and an N50 of 26.44 Mbp.

RNASeq guided genome annotation and transcript quantification was carried out by the Earlham Institute. Transcriptome reads were mapped to the draft genome and quality filtered using Portcullis (48). Following repeat identification, transcript classification was carried out in Mikado (49), which was then used to generate hints for Augustus (50). Multiple annotation runs were carried out in Augustus using varying parameter weightings, and these outputs were then integrated through Mikado to produce protein-coding genes (genes with supported ORFs or high coding potential), 'predicted' genes (genes with limited homology support (< 30%) and with low coding potential) and transposable element genes (genes with > 40% overlap with interspersed repeats). Genes were also classified into 'high' and 'low' confidence, with high confidence genes having >80% coverage to reference proteins or >60% protein coverage and with at least 40% of the structure supported by transcriptome data. This resulted in 30,780 high-confidence protein coding genes and 5,247 remaining low-confidence or transposable element encoding genes, with a total of 41,850 transcripts and a mean transcript CDS length of 1,219 bp (Table S1). Transcripts were re-aligned and quantified against final gene models using Salmon (51). Functional annotation was carried out using InterProScan and summarized by AHRD (52), giving 40,011 transcripts with a putative functional description. The completeness of the gene space was assessed by BUSCO analysis (38) using the embryophyta dataset (n = 1,440), of which 93.9% were fully represented (Fig. S7). These annotations were subsequently transferred to the final, pseudochromosome-level assembly. Repeats were annotated de novo with EDTA v2.0.0 using default parameters (53).

Data availability

The fully assembled and annotated *Q. saponaria* genome sequence has been deposited under NCBI BioProject ID PRJNA914519. RNASeq reads are deposited under NCBI BioProject ID

PRJNA914309 (SRA accessions SRR22829626 - SRR22829649). The sequences of the genes characterized in this study can also be found in GenBank as the following: *QsbAS1* (*Qs0315350*), OQ107256; *CYP716A224* (*Qs0259300*), OQ107260; *CYP716A297* (*Qs0322000*), OQ107248; *CYP714E52* (*Qs0148690*), OQ107266; *CSLM1* (*Qs0321900*), OQ107253; *CSLM2* (*Qs0000870*), OQ107265; *UGT73CU3* (*Qs0123860*), OQ107259; *UGT73CX2* (*Qs0283850*), OQ107255; *UGT73CX1* (*Qs0283870*), OQ107254; *UGT74BX1* (*Qs0321930*), OQ107250; *UGT91AR1* (*Qs0321920*), OQ107251; *UGT91AQ1* (*Qs0234120*), OQ107264; *UGT73CY3* (*Qs0234130*), OQ107263; *UGT73CY2* (*Qs0234140*), OQ107262; *UGT73B44* (*Qs0023500*), OQ107261; *UGT91AP1* (*Qs0321940*), OQ107249; *UGT73B43* (*Qs0213660*), OQ107257; *Apiose/xylose synthase* (*Qs0088320*), OQ107247; *QsFucSyn* (*Qs0321910*), OQ107252 and *QsACT1* (*Qs0206480*), OQ107258.

Karyotyping

Shoot apical meristems were obtained from two-year-old cuttings of *Q. saponaria* S10. The preparation of mitotic metaphase spreads was carried out as described previously (*54*) with minor modifications. Briefly, excised shoot meristems were treated for 2 h with nitrous oxide gas to accumulate metaphase cells. Meristems were later fixed in 90% acetic acid for 30 min and digested in 1% pectolyase Y23 and 4% cellulose Onozuka R-10 (Yakult Pharmaceutical, Tokyo, Japan) solution in 1x citrate buffer for 45 min at 37°C. Digested meristems were washed in 70% EtOH, macerated into a fine cell suspension with a dissection needle, and centrifuged to eliminate the EtOH. Finally, cells were resuspended in 100% acetic acid and used to prepare the chromosome spreads. Chromosomes were counterstained with DAPI (1 μ g/ml) and mounted in Prolong Diamond (Thermo Fisher Scientific Molecular Probes, Eugene, OR, USA). Images were acquired using a Leica DM5500B microscope equipped with a Hamamatsu ORCA-FLASH4.0 camera and controlled by Leica LAS X software v2.0.

Phylogenetic analysis

Protein sequences were extracted from the genome via Interpro annotation generated by AHRD output (UGT: IPR002213, CSL: IPR005150, GH1: IPR001360). Alignments of gene families were carried out using protein sequences in MUSCLE (55), with a maximum of 100 iterations. Phylogenetic trees were generated from alignments with RaXML (56) using the PROTGAMMAAUTO model and 100 bootstraps. Trees were cross-referenced with the established nomenclature in each case to ensure accurate tree generation and gene classification, and clades were labelled accordingly.

plantiSMASH analysis and co-expression analysis

The fully annotated *Q. saponaria* S10 genome was analyzed for the presence of putative biosynthetic gene clusters using the plantiSMASH 1.0 algorithm (20). Salmon quantification outputs were processed using DESeq2 and mean size-factor normalized read counts were generated for each tissue (51,57). Variance stabilizing transformed read counts were used to generate Pearson's correlation coefficients (PCC) for each gene versus *QsbAS1*. Hierarchical clustering of expression data was performed on subsets of genes by hclust in R (58).

Metabolite analysis

GC-MS analysis

Ten mg aliquots of lyophilized leaf material were disrupted using two 3 mm tungsten carbide beads (Qiagen) by shaking at 1000 rpm for 60 sec in a Geno/Grinder (Spex). Ethyl acetate (500 μ L) containing 50 μ g/mL coprostanol internal standard (Sigma) was added and the samples incubated at room temperature with occasional shaking for 10 min. They were then centrifuged for 1 min at 13,500 x g and 100 μ L of supernatant was transferred to 1.5 mL sample vials (Agilent) and dried at 42°C using an EZ-2 centrifugal evaporator (Genevac). Samples were derivatized using 25 μ L of Tri-Sil Z reagent prior to analysis. GC-MS analysis was performed using an Agilent 7890B fitted with a ZB5-HT column (Zebron) coupled to an Agilent 5977A mass selective detector. Injections were performed in split mode using a 20:1 split (split flow = 20mL/min) with the injection pulse pressure set to 30 psi. The GC temperature program was set to 170°C for 2 min, followed by a gradient to 300°C at 20°C per minute and held at 300°C for an additional 11.5 min (20 min total). The mass spectrometer was set to scan from 60 to 800 mass units with an initial 8-minute solvent delay. Data analysis was performed using MassHunter Qualitative Software (Agilent).

LC-MS/CAD analysis of N. benthamiana leaf extracts

Ten mg aliquots of lyophilized leaf material were disrupted as above, and 550 μ L of 80% methanol containing 20 μ g/mL digitoxin internal standard (Sigma-Aldrich) added to each sample. Samples were then incubated at 40°C for 20 minutes with shaking at 1000 rpm, before defatting by partitioning twice with 300 μ L hexane. The lower aqueous methanol phase was transferred to a fresh microcentrifuge tube and dried at 42°C in an EZ-2 centrifugal evaporator (Genevac). Samples were resuspended in 75 μ L methanol and filtered using a Spin-X 0.2 μ m filter column (Costar) before transfer to 1.5 mL sample vials (Agilent).

For analysis of compounds from quillaic acid as far as QA-Tri[X/R]-FRX, analysis was performed using a Prominence HPLC system (Shimadzu) connected to an LCMS-2020 single quadrupole mass spectrometer (Shimadzu) and a Corona Veo RS Charged Aerosol Detector (Dionex). The MS detector was set to dual ESI/APCI ionization mode scanning from masses 100-2000. Chromatography was performed using a Kinetex 2.6 μ m XB-C-18 100 Å, column (50 x 2.1 mm) (Phenomenex, part number 00B-4496-AN) with a flow rate of 0.3 mL min⁻¹ injecting 10 μ L per run. The mobile phase consisted of H₂O with 0.1% formic acid (solvent A) and acetonitrile (solvent B) and began at 15% [B] for 1.5 min, followed by a gradient from 15-60% [B] until 26.0 min and 60-100% [B] to 26.5 min and held at 100% [B] until 28.5 min. The column was re-equilibrated from 100-15% [B] until 29.0 min. Data analysis was performed using LabSolutions software (Shimadzu).

For analysis of compounds downstream of QA-Tri[X/R]-FRX, analysis was carried out using a Thermo Scientific Q Exactive Hybrid Quadrupole-Orbitrap Mass spectrometer HPLC system, calibrated using Pierce +ve/-ve calibration standards according to the manufacturer's instructions. Detection: MS (ESI ionization), scan range of 400-2500 m/z in negative mode, 70,000 resolution. Data dependent MS2, isolation window of 4.0 m/z, collision energy of 30, resolution of 17,500, dynamic exclusion of 5.0 s. Method: Solvent A: $[H_2O + 0.1 \%$ formic acid] Solvent B: [acetonitrile (CH₃CN)]. Injection volume: 10 µL. Gradient: 15% to 60% [B] from 0.75 to 13 min, 60% to 100% [B] from 13 to 13.25 min, 100% to 15% [B] from 13.25 to 14.5

min, 15% [B] from 14.5 to 16.5 min. The method was performed using a flow rate of 0.6 mL.min-1 and a Kinetex column 2.6 μ m XB-C18 100 Å, 50 x 2.1 mm (Phenomenex). Analysis was performed using Xcalibur and FreeStyle softwares (Thermo Scientific)

Semi-quantification of AXS

The gene sets for production of QA-TriX-FRXX (16) and QA-TriX-FRXA (18) were transiently expressed in *N. benthamiana*. Six plants in total were used for each of the two compounds and for half of the plants in each group, *QsAXS* was also transiently expressed. After five days, leaves were harvested, lyophilized and extracts were analyzed as detailed above using the Thermo Scientific Q Exactive Hybrid Quadrupole-Orbitrap Mass spectrometer HPLC system. Semi-quantification of the products was performed using Xcalibur software (Thermo) by dividing the peak area of the 16 and 18 products (m/z = 1511.5616) versus that of the internal standard (digitoxin, m/z = 809.4337, 1.1 µg/mg leaf tissue). These values were averaged across the three samples for each test group.

Large-scale agro-infiltration of N. benthamiana, compound purification and NMR analysis

Large-scale vacuum infiltration of *N. benthamiana* plants was carried out as described previously (44). Leaf material was harvested five days after infiltration and frozen at -80°C prior to lyophilization for 24-72 hours. Detailed methods for extraction, purification and structural analysis are provided below.

General procedures for purification of compounds

Organic solvents used for extraction and flash chromatography were reagent grade and used directly without further distillation. Extraction of the compounds 5-9 was performed using a Speed Extractor E-914 (Büchi). Briefly, lyophilized leaf material was dispersed with 1 part 0.3-0.9 mm quartz sand (by volume) and layered over 3 cm quartz sand within a 120 mL extraction cell. Unless otherwise stated, the program consisted of one cycle of defatting with hexane followed by two cycles of methanol. Cycles were performed at 100°C and 130 bar. The first cycle had zero hold time, and the second cycles two and three had 5 min hold times. The run finished with a 1 min methanol flush and 12 min N₂ flush. For compounds 11, 13, 15, 17, 19 and QS-7 (20), extraction was performed using a combination of MeOH/H₂O (90/10 (11, 13), or 80/20 (15, 17, 19 and 20)) under refluxing at 95°C for two days. Flash column chromatography (FCC) was performed using an Isolera One (Biotage). Columns were (Biotage Sfär C-18, 60 g, 50 mL/min), using a general gradient system of $[(95/5 \rightarrow 25/75) \text{ of } H_2O/ACN + 0.1 \text{ FA}]$. Analytical TLC experiments were performed on silica gel precoated aluminum plates (F254, 20 × 20 cm, Merck KGaA, Germany). TLC plates were visualized under UV light (254 nm) followed by staining with p-anisaldehyde (2% v/v p-anisaldehyde, 2% v/v, Conc. H₂SO₄). Semipreparative HPLC experiments were performed on Ultimate 3000 (Thermo Fisher Scientific) fitted with Luna C₁₈ column ($250 \times 10 \text{ mm i.d.}$; 5 µm; (Phenomenex)). Preparative HPLC experiments were performed using a 1290 preparative analytical system (Agilent) fitted with a Luna C₁₈ ($250 \times 21.2 \text{ mm i.d.}$; 5 µm; (Phenomenex)). LC-MS analysis of fractions was conducted using the systems and methods as described above. 1D and 2D NMR spectra were recorded on a Bruker Avance 400 and 600 MHz spectrometers equipped with a BBFO Plus Smart probe and a triple resonance TCI cryoprobe, respectively (JIC, UK) and were analyzed used Mestrenova software. The chemical shifts are relative to the residual signal solvent (MeOH*d*₄: δ_H 3.31; δ_C 49.15).

Isolation of quillaic acid (5)

A total of 209 *N. benthamiana* plants were infiltrated as described above with *A. tumefaciens* carrying the genes as detailed in Data S4. Lyophilized leaf material (70 g) was extracted with the SpeedExtracter using four cycles (100°C, 130 bar). The first cycle was performed using hexane with zero hold time, while cycles two to four were performed in ethanol with a five-minute hold time. The run terminated with a two-minute solvent flush and six-minute N₂ flush.

The ethanol portion of the extraction containing quillaic acid was dried onto silica gel 60 (Material Harvest) and used for flash chromatography. The collected fractions were assessed by GC-MS and thin layer chromatography (TLC) and quillaic acid-containing fractions were pooled. Column 1 consisted of a SNAP Ultra 50 g (Biotage) using a flow rate 100 mL/ min and collecting 90 mL fractions. The mobile phase consisted of hexane (solvent A) and ethyl acetate (solvent B), with a gradient from 5-100% [B] over 10 column volumes (CV) and held at 100% for 5 CV. Column 2 consisted of a SNAP Ultra 50 g (Biotage) using a flow rate 100 mL/ min and collecting 90 mL fractions. The mobile phase consisted of dichloromethane (solvent A) and ethyl acetate (solvent B), with a gradient from 10-60% [B] over 10 column volumes (CV) and held at 100% for 2 CV. These conditions were repeated for a third column using a SNAP Ultra 10 g (Biotage) with a flow rate 36 mL/ min and collecting 17 mL fractions. Quillaic acidcontaining fractions were treated with activated charcoal (Sigma). Column 4 consisted of a SNAP Ultra 10 g (Biotage) with a flow rate of 36 mL/min, 17 mL fractions. The column used an isocratic mobile phase consisting of 15% ethyl acetate in dichloromethane over 20 CV. A small amount of HCl (400 µL of concentrated HCl in 40 mL ethanol) was added to the quillaic acidcontaining fractions which helped to reduce streaking. Finally, a fifth column was run using the same conditions as column 4 but with 30 CV. The purest fractions were pooled, yielding 30 mg of quillaic acid (5) as a white powder with trace amounts of yellow impurities.

Isolation of the CSLM-1/CSLM-2 product (3-*O*-{ β -*D*-*glucopyranosiduronic acid*}-*quillaic acid*) (6)

For the CSLM-1 product, 104 N. benthamiana plants were infiltrated, affording 68 g of dry leaves. Dry leaf powder was defatted with hexane and then treated with exhaustive pressurized solvent extraction using methanol. The methanolic extract was collected and dried under reduced pressure before re-dissolving in a minimal amount of methanol and adding an equivalent volume of water. The extract was partitioned with ethyl acetate (3 L). The upper organic layer was collected, dried over anhydrous MgSO₄ and evaporated under reduced pressure to afford 560 mg of reddish-brown material. This was re-dissolved in methanol and saturated with cold acetone to give a pale-yellow precipitate containing crude saponins. This enriched saponin fraction was further purified by semi-preparative C_{18} HPLC. The mobile phase consisted of $H_2O + 0.1\%$ FA [solvent A] and acetonitrile + 0.1% FA [solvent B] at 4 mL/min. The run consisted of an initial isocratic run in 10% [B] for 5 min, followed by a gradient from 10-100% [B] over 50 minutes and held at 100% [B] for 5 minutes. The column was re-equilibrated from 100-90% [B] over 1 min and held at 90% [B] for 4 minutes. This method enabled isolation of 9.5 mg of $3-O-\{\beta-D-1\}$ glucopyranosiduronic acid}-quillaic acid as white amorphous material. For the CSLM-2 product, 80 N. benthamiana plants were infiltrated affording 54 g of dry leaves. Extraction and purification were performed as above for the CSLM-1 product, affording 2.1 mg of $3-O-\{\beta-D-\}$ glucopyranosiduronic acid}-quillaic acid (6).

Isolation of the C3-GalT product $(3-O-\{\beta-D-galactopyranosyl-(1\rightarrow 2)-\beta-D-glucopyranosiduronic acid\}-quillaic acid)$ (7)

102 *N. benthamiana* plants were infiltrated, affording 32 g of dry leaves. The dried leaf powder was then treated with pressurized solvent extraction and first defatted by using hexane followed by exhaustive extraction using methanol. The methanolic extract was collected and dried under reduced pressure before re-dissolving in the least amount of methanol and adding an equivalent volume of water. The extract was partitioned with ethyl acetate (4 L). The upper organic layer was collected, dried over anhydrous MgSO₄ and evaporated under reduced pressure to afford 500 mg of reddish-brown material. Afterwards, this saponin-containing fraction was further purified by semi-preparative C₁₈ HPLC according to the conditions used for the QA-GlcA product above. This enabled isolation of 7.3 mg of the product 3-O-{ β -D-galactopyranosyl-(1 \rightarrow 2)- β -Dglucopyranosiduronic acid}-quillaic acid (7) as a white amorphous material.

Isolation of the C3-XylT product $(3-O-\{\beta-D-xylopyranosyl-(1\rightarrow 3)-[\beta-D-galactopyranosyl-(1\rightarrow 2)]-\beta-D-glucopyranosiduronic acid}-quillaic acid) (8)$

100 *N. benthamiana* plants were infiltrated affording 78 g of dry leaves. Dry leaf powder was treated to pressurized solvent extraction and first defatted by using hexane followed by exhaustive extraction using methanol. The methanolic extract was collected and dried under reduced pressure before re-dissolving in the least amount of methanol and adding an equivalent volume of water. A series of liquid-liquid partitions were performed using hexane, dichloromethane, ethyl acetate and *n*-butanol. The butanol layer was dried over anhydrous NaSO₄, evaporated under reduced pressure, and re-dissolved in the least amount of methanol and subjected to semipreparative C₁₈-HPLC according to the conditions used for the QA-GlcA product above. Theis enabled isolation of 21.6 mg of $3-O-\{\beta$ -D-xylopyranosyl- $(1\rightarrow 3)-[\beta$ -D-glacopyranosiduronic acid}-quillaic acid (**8**) as a pale brown amorphous material.

Isolation of the C3-RhaT product $(3-O-\{\alpha-L-rhamnopyranosyl-(1\rightarrow 3)-[\beta-D-galactopyranosyl-(1\rightarrow 2)]-\beta-D-glucopyranosiduronic acid}-quillaic acid) (9)$

A total of 100 *N. benthamiana* plants were infiltrated, affording 70 g of dry leaves. Dry leaf powder was extracted and treated as previously described for compound **8**. The butanol layer was dried over anhydrous NaSO₄, evaporated under reduced pressure, and re-dissolved in the least amount of methanol and subjected to semipreparative C₁₈-HPLC according to the conditions used for the QA-GlcA product above. This enabled isolation of 43.3 mg of product 3-O-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid}-quillaic acid (**9**) as a pale brown amorphous material.

Isolation of the C28-FucT product $(3-O-\{\alpha-L-rhamnopyranosyl-(1\rightarrow 3)-[\beta-D-galactopyranosyl-(1\rightarrow 2)]-\beta-D-glucopyranosiduronic acid\}-28-O-\{\beta-D-fucopyranosyl ester\}-quillaic acid) (11)$

A total of 124 *N. benthamiana* plants were infiltrated, affording 40 g dry leaves. Dry leaf powder was chemically extracted under refluxing and crude aqueous-methanolic extract was treated according to the previously mentioned protocol as for compound **9**. The *n*-butanol layer was collected, evaporated under reduced pressure, re-dissolved in the least amount of methanol and saturated with cold acetone to precipitate a saponin-enriched crude fraction. This fraction was

subjected to semipreparative C₁₈-HPLC column (Luna C₁₈ column (250 × 10 mm i.d.; 5 µm; USA). The mobile phase consisted of H₂O + 0.1% FA [solvent A] and acetonitrile + 0.1% FA [solvent B]. The run consisted of a gradient from 10%-70% [B] over 35 min at 3 mL/min before re-equilibrating by 10% [B] for 5 min. A further C-18 semi-preparative purification column run was performed under isocratic conditions using 40% [B] at 1mL/min. This afforded 1 mg of (3- $O-\{\alpha-L-rhamnopyranosyl-(1\rightarrow 3)-[\beta-D-galactopyranosyl-(1\rightarrow 2)]-\beta-D-glucopyranosiduronic acid\}-28-<math>O-\{\beta-D-fucopyranosyl ester\}$ -quillaic acid) (**11**) as pale-yellow amorphous material (85-90% purity).

Isolation of C-28-RhaT product $(3-O-\{\alpha-L-rhamnopyranosyl-(1\rightarrow 3)-[\beta-D-galactopyranosyl-(1\rightarrow 2)]-\beta-D-glucopyranosiduronic acid\}-28-O-\{\alpha-L-rhamnopyranosyl-(1\rightarrow 2)-\beta-D-fucopyranosyl ester}-quillaic acid) (13)$

A total of 112 *N. benthamiana* plants were infiltrated, affording 46 g dry leaves. Dry leaf powder was processed as above for compound **11**. The saponin-enriched crude fraction was subjected to semi-preparative C₁₈-HPLC purification. The mobile phase consisted of H₂O + 0.1% FA [solvent A] and acetonitrile + 0.1% FA [solvent B]. The run consisted of a gradient from 10%-70% [B] over 50 min at 3 mL/min. This afforded 43.9 mg of $(3-O-\{\alpha-L-rhamnopyranosyl-(1\rightarrow 3)-[\beta-D-galactopyranosyl-(1\rightarrow 2)]-\beta-D-glucopyranosiduronic acid}-28-O-\{\alpha-L-rhamnopyranosyl-(1\rightarrow 2)-\beta-D-gulcopyranosiduronic acid}-28-O-\{\alpha-L-rhamnopyranosyl-(1\rightarrow 2)-\beta-D-gulcopyranosyl-(1\rightarrow 3)-[\beta-D-gulcopyranosyl-(1\rightarrow 3)-[\beta-D-gulcopyrano$

Isolation of the C28-XylT3 product $(3-O-\{\alpha-L-rhamnopyranosyl-(1\rightarrow 3)-[\beta-D-galactopyranosyl-(1\rightarrow 2)]-\beta-D-glucopyranosiduronic acid\}-28-O-\{\beta-D-xylopyranosyl-(1\rightarrow 4)-\alpha-L-rhamnopyranosyl-(1\rightarrow 2)-\beta-D-fucopyranosyl ester}-quillaic acid)(15)$

A total of 202 *N. benthamiana* were infiltrating, affording 65 g dry leaves. Dry leaf powder was chemically processed via the aforementioned protocol as compound **11**. The saponin-enriched crude fraction was subjected to semipreparative C₁₈-HPLC purifications as for compound **11**. This afforded 3.1 mg of $(3-O-\{\alpha-L-rhamnopyranosyl-(1\rightarrow3)-[\beta-D-galactopyranosyl-(1\rightarrow2)]-\beta-D-glucopyranosiduronic acid }-28-O-\{\beta-D-xylopyranosyl-(1\rightarrow4)-\alpha-L-rhamnopyranosyl-(1\rightarrow2)-\beta-D-fucopyranosyl ester}-quillaic acid) ($ **15**) as a pale-yellow amorphous material.

Isolation of C28-XylT4 (3-O-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid}-28-O-{ β -D-xylopyranosyl-(1 \rightarrow 3)- β -D-xylopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-fucopyranosyl ester}-quillaic acid) (17)

A total of 105 *N. benthamiana* plants were infiltrated, affording 58 g dry leaves. Dry leaf powder was processed as per the aforementioned protocol applied for compound **11**. The saponinenriched crude fraction was subjected to preparative C_{18} -HPLC (Luna, 250 x 21.2 mm, 5 µm; C18 (2), USA). The mobile phase consisted of H₂O + 0.1% FA [solvent A] and acetonitrile + 0.1% FA [solvent B] at 25 mL/min. The run consisted of a gradient from 10-17% [B] over 17 min. This afforded 13.2 mg of (3-*O*-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid}-28-*O*-{ β -D-xylopyranosyl-(1 \rightarrow 3)- β -D-xylopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-fucopyranosyl ester}-quillaic acid) (**17**) as a pale-yellow amorphous material. Isolation of C28-ApiT4 product $(3-O-\{\alpha-L-rhamnopyranosyl-(1\rightarrow 3)-[\beta-D-galactopyranosyl-(1\rightarrow 2)]-\beta-D-glucopyranosiduronic acid\}-28-O-{\beta-D-apiofuranosyl-(1\rightarrow 3)-\beta-D-xylopyranosyl-(1\rightarrow 4)-\alpha-L-rhamnopyranosyl-(1\rightarrow 2)-\beta-D-fucopyranosyl ester}-quillaic acid) (19)$

A total of 105 *N. benthamiana* plants were infiltrated, affording 57 g dry leaves. Dry leaf powder was proceeded as described above for compound **11**. The saponin-enriched crude fraction was purified using semipreparative C₁₈-HPLC. The mobile phase consisted of H₂O + 0.1% FA [solvent A] and acetonitrile + 0.1% FA [solvent B] at 25 mL/min. The run consisted of a gradient from 10-70% [B] over 17 min followed by a further semipreparative purification stage using an isocratic system of 40% [B] over 30 min at 2 mL/min. This afforded 13.2 mg of $(3-O-\{\alpha-L-rhamnopyranosyl-(1\rightarrow3)-\beta-D-galactopyranosyl-(1\rightarrow2)]-\beta-D-glucopyranosiduronic acid\}-28-O-{\beta-D-apiofuranosyl-(1\rightarrow3)-\beta-D-xylopyranosyl-(1\rightarrow4)-\alpha-L-rhamnopyranosyl-(1\rightarrow2)-\beta-D-fucopyranosyl ester}-quillaic acid) ($ **19**), a pale-yellow amorphous material of two rotameric conformers (1:1).

Isolation of QS-7 (20) from Nicotiana benthamiana

A total of 410 *N. benthamiana* plants were infiltrated, affording 104 g dry leaves. Dry leaf powder was extracted and processed as previously mentioned as applied for compound **11**. The crude saponin-enriched fraction was then subjected to semipreparative C₁₈-HPLC purification using an eluent system of water containing 20 mM of NH₄HCO₃ [A], adjusted to pH 8.6 (adjusted with ammonium hydroxide solution) along with acetonitrile [B]. The run consisted of a gradient from 25-70% [B] over 30 minutes at 4 mL/min. This afforded a semi-purified fraction (10-12 mg, as pale brown amorphous material) that contained 3-5% QS-7 (**20**) molecule based on ¹H-NMR analysis.

Preparation of proteins for in vitro studies

GalK Y371H

Escherichia coli galactokinase GalK with the Y371H mutation was used for enzymatic synthesis of UDP- α -D-fucose. The Y371H mutant variant has been shown to have enhanced activity towards D-fucose (*59*). Site-directed mutagenesis of GalK (in pET-15b vector) was introduced using a Q5® site-directed mutagenesis kit (New England Biolabs) with primers GalK_Y371K_F/R (Data S1) to make a T to C transition at position 1111 (codon TAC to CAC). The expression plasmid was transformed into *E. coli* Rosetta (DE3) competent cells (Novagen) and the N-terminally His-tagged GalK Y371H was purified by nickel affinity chromatography and Superdex 200 gel filtration chromatography. The eluant had a concentration of 4.6 mg protein/ml. Unit definition: one unit will convert 1.0 µmol of galactose to galactose-1-phosphate per minute at pH 7.4 at 30°C.

ATCV-1 UGD

The template DNA of UDP-D-glucose 4,6-dehydratase (UGD, Genbank accession YP_001427025.1) (60) from the Acanthocystis turfacea chlorella virus 1 (ATCV-1) was codonoptimised and synthesized by IDT (USA). ATCV-1 UGD was expressed as a fusion protein with an amino-terminally added large and highly soluble trigger factor (TF, 48 kDa) using pCold-TF expression vector (TaKaRa Bio). The ATCV-1 UGD was amplified by PCR using oligonucleotides Cold_NdeI_AtUGD_FW and Cold_XhoI_AtUGD_RV (Data S1), and the amplified fragment was inserted into pCold-TF vector between NdeI and XhoI sites by In-fusion cloning (TaKaRa Bio/Clontech). The resultant fusion protein had 6x His-tag at its aminoterminal end. The expression construct was transformed into *E. coli* Rosetta (DE3) competent cells. The protein was induced by cold shock treatment on ice-cold water and supplemented with 0.5 mM IPTG to the culture medium, and incubating the cells for overnight at 16°C. After disruption of the cells by sonication, the His-tagged fusion protein was captured with TALON metal affinity resin (TaKaRa Bio/Clontech), and then the eluant was subjected to Superdex 200 gel filtration chromatography. The peak fractions were concentrated with Vivaspin 20, 50,000 MWCO PES (Sartorius, VS2031), and the concentration was determined to be 15.3 mg protein/ml.

QsFucSyn

Q. saponaria FucSyn (*Qs0321910* SDR) was expressed as a fusion protein with an aminoterminal trigger factor using pCold-TF expression vector. The QsFucSyn was amplified by PCR using oligonucleotides Cold_NdeI_QsFucSyn_FW and Cold_XhoI_QsFucSyn_RV (Data S1), and the amplified fragment was inserted into pCold-TF vector between NdeI and XhoI sites by In-fusion cloning. The expression and purification of TF-QsFucSyn was done by the same method for ATCV-1 UGD except for use of Ni Sepharose 6 Fast Flow (Cytiva) for capturing TF-QsFucSyn. The concentrated fraction was determined to be 14.7 mg protein/ml.

UGT74BX1

Q. saponaria UGT74BX1 was expressed with a carboxy-terminal hexahistidine tag in N. benthamiana using the Agrobacterium-infiltrated transient expression (44). The His-tag was added by PCR using oligonucleotides EAQ-QsUGT-Q-His_FW and EAQ-QsUGT-Q-His_RV encoding six histidine residues (Data S1), and the amplified fragment was inserted into a unique NruI site of linearised pEAQ-HT vector (40) by In-fusion cloning. The expression construct was transformed into Agrobacterium tumefaciens strain GV3101 and infiltrated into 3-week-old N. benthamiana leaves (44). After 6 days of incubation to allow sufficient accumulation of the enzyme, infiltrated parts of the fresh leaves were collected (1 g) and was ground in 5 ml of grinding buffer (50 mM HEPES-KOH, pH 7.8, 330 mM sorbitol, 1% polyvinylpolypyrrolidone, 7 mM 2-mercaptoethanol, and cOmplete EDTA-free protease inhibitor cocktail [Roche, 11 873 580 001]) using a mortar and pestle on ice. The homogenate was filtered through two layers of Miracloth (Calbiochem), centrifuged at 3,220 x g for 10 min to remove debris, and then centrifuged at 30,000 x g for 20 min to obtain cleared lysate without microsomes. The lysate (1.5 ml) was incubated with 50 µl slurry of TALON metal affinity resin in the presence of 5 mM imidazole and 0.1% (w/v) Triton X-100 for 2 h in a cold room with end-over-end mixing. The resin was washed four times with TBS-TX-Imi buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.1% Triton X-100 and 5 mM imidazole) and once with buffer A4 (20 mM HEPES, pH 7.5, and 150 mM NaCl). His-tagged UGT74BX1 was eluted twice with 250 µl of elution buffer (20 mM HEPES, pH 7.5, 150 mM NaCl, and 150 mM imidazole). The eluant was subjected to two cycles of dilution in buffer A4 and concentration with Vivaspin 20, 50,000 MWCO PES to minimize imidazole content. The concentration of UGT74BX1 was adjusted to 0.3 mg protein/ml.

Enzymatic synthesis and in vitro transformations of UDP-sugars

General procedures for NMR and HR-MS

NMR spectra were recorded on a Bruker Avance III 400 MHz spectrometer. Chemical shifts of ¹H NMR signals recorded in D₂O are reported with respect to residual solvent peak at $\delta_H 4.79$ ppm. Chemical shifts of ³¹P NMR signals recorded in D₂O are reported with respect to external 85% H₃PO₄ at $\delta_P 0$ ppm. High resolution accurate mass spectra were obtained using a Synapt G2 Q-Tof mass spectrometer using negative electrospray ionisation.

Strong anion exchange (SAX) HPLC on Poros HQ 50

The chromatography was performed on a Dionex Ultimate 3000 (Thermo-Fisher) instrument equipped with UV/vis detector. Aqueous solution of a sample was applied on a Poros HQ 50 column (50×10 mm, column volume (CV) = 3.9 ml, Perceptive Biosystems). The column was first equilibrated with 5 CV of 5 mM ammonium bicarbonate buffer, followed by linear gradient of ammonium bicarbonate from 5 mM to 250 mM in 15 CV, then hold for 5 CV, and finally back to 5 mM ammonium bicarbonate in 1 CV and hold for 3 CV at a flow rate of 8 ml/min and an online UV detection to monitor A₂₆₅. After multiple injections, the column was washed with 3 CV of 1 M ammonium bicarbonate followed by 3 CV of Milli-Q water.

UDP- α -D-Fucose

 $UDP-\alpha$ -D-Fuc

UDP-α-D-fucose was prepared by enzymatic transformation using GalK Y371H as described previously with minor modifications(61). In brief, D-fucose (3 mg, 18.3 µmol), UTP (10 mg, 18 μmol), ATP (0.1 mg, 0.18 μmol), PEP (3.4 mg, 18 μmol) and UDP-glucose (0.1 mg, 0.16 μmol) were dissolved in buffer (500 µl, 50 mM HEPES, pH 8.0, 5 mM KCl, 10 mM MgCl₂). Pyruvate kinase (50 U), glucose-1-phosphate uridylytransferase (5 U), inorganic pyrophosphatase (5 U), GalK Y371H (5 U) and GalPUT (5 U) were added, and the volume of the mixture was adjusted to 1000 µl with the buffer. The reaction was flushed with nitrogen and stirred at 30°C whilst being monitored by SAX HPLC. After 22 hours UTP (R_f 11.5 min) was fully consumed and a new peak ($R_{\rm f}$ 7.5 min) of the title compound was detected. The reaction was quenched by addition of MeOH (1 ml) and precipitated enzymes were removed by centrifugation. The supernatant was filtered (0.45 µm PTFE disc filter) and chromatographed by SAX HPLC. Pooled fractions were freeze dried to give title compound as diammonium salt (5.3 mg, 49.7%). ¹H NMR (D₂O, 400 MHz): $\delta_{\rm H}$ 7.97 (1H, d, ${}^{3}J_{5,6}$ = 8.0 Hz, H6), 6.01-5.97 (2H, m, H5, H1'), 5.57 $(1H, dd, {}^{3}J_{1}, P_{B} = 6.8 \text{ Hz}, {}^{3}J_{1}, P_{2} = 3.5 \text{ Hz}, H1''), 4.40-4.18 (6H, m, H2', H3', H4', H5', H5''),$ 3.93 (1H, dd, ${}^{3}J_{3",2"} = 10.4$ Hz, ${}^{3}J_{3",4"} = 3.3$ Hz, H3"), 3.84 (1H, bd, ${}^{3}J_{4",5"} \sim 0$ Hz, ${}^{3}J_{4",3"} = 3.3$ Hz, H4''), 3.76 (1H, ddd, ${}^{3}J_{2",1"} = 3.5$ Hz, ${}^{3}J_{2",3"} = 10.4$ Hz, ${}^{4}J_{2",PB} = 3.5$ Hz, H2"), 1.23 (3H, d, ${}^{3}J_{6'',5''} = 6.6$ Hz, H6''). The ¹H NMR spectrum is in good agreement with the literature (62). ${}^{31}P$

NMR (D₂O, 162 MHz): δ_P -11.2 (d, 1P, $J_{P\alpha,P\beta} = 20.7$ Hz, P_β), -12.8 (d, 1P, $J_{P\alpha,P\beta} = 20.7$ Hz, P_α). ESIMS: m/z Calcd [C₁₅H₂₃N₂O₁₆P₂]⁻: 549.0528. Found: 547.0527.

UDP-4-keto-6-deoxy-a-D-Glucose and its hydrate form

UDP-4k,6d-α-D-Glc

UDP-4k,6d-α-D-Glc hydrate

UDP-4-keto-6-deoxy- α -D-glucose and its hydrate form were prepared from UDP- α -D-glucose by enzymatic transformation of TF-ATCV-1-UGD. UDP-α-D-glucose (9.8 mg, 16.1 μmol) and NAD⁺ (15.9 mg, 24.0 µmol) were dissolved in buffer (4 ml, 50 mM HEPES, 2 mM MgCl₂, pH 7.5). The mixture was split equally into 8 tubes. To each tube TF-ATCV-1-UGD (61 μ g, 0.9 nmol) was added and the mixture was incubated at 25°C with shaking at 300 rpm. An analytical sample (500 μ l) was separated, mixed with D₂O (100 μ l) and the progress of the reaction was monitored by NMR. ¹H NMR spectra showed 100% conversion after 22 hrs. The reaction was quenched by addition of equivalent volume of MeOH, mixed by vortexing, filtered through 0.45 µm disc filter (PTFE), and stored at -80°C. The product was purified by SAX HPLC with UV detection to monitor A₂₆₅ to give the target compound ($R_f = 8.2 \text{ min}$) as a diammonium salt (5.32) mg, 57 % yield) after freeze drying. In aqueous solutions UDP-4-keto-6-deoxy-α-D-glucose exists in equilibrium with its hydrate form.¹H NMR (D₂O, 400 MHz) a mixture of keto and hydrate forms in a ratio 1:4 was observed: $\delta_{\rm H}$ 7.98 (1H, d, ${}^{3}J_{5,6}$ = 8.1 Hz, H6 hydrate), 7.97 (1H, d, ${}^{3}J_{5,6} = 8.1$ Hz, H6 keto), 6.01-5.97 (2H, m, H5, H1'), 5.75 (1H, dd, ${}^{3}J_{1",PB} = 7.3$ Hz, ${}^{3}J_{1",2"} =$ 3.4 Hz, H1'' keto), 5.56 (1H, dd, ${}^{3}J_{1'',PB} = 6.9$ Hz, ${}^{3}J_{1'',2''} = 3.7$ Hz, H1'' hydrate), 4.43-4.35 (2H, m, H2', H3'), 4.32-4.19 (3H, m, H4', H5'), 4.11 (1H, q, ${}^{3}J_{5'',6''} = 6.5$ Hz, H5''), 3.86 (1H, ddd, ${}^{3}J_{2",3"} = 10.2 \text{ Hz}, {}^{3}J_{2",1"} = 3.4 \text{ Hz}, {}^{4}J_{2",PB} \sim 3.2 \text{ Hz}, \text{H2'' keto}), 3.80 (1\text{H}, \text{d}, {}^{3}J_{3",2"} = 10.2 \text{ Hz},$ H3"), 3.64 (1H, ddd, ${}^{3}J_{2",3"} = 10.0 \text{ Hz}, {}^{3}J_{2",1"} = 3.7 \text{ Hz}, {}^{4}J_{2",PB} \sim 3.2 \text{ Hz}, \text{H2" hydrate}), 1.28$ $(3H, d, {}^{3}J_{6'',5''} = 6.5 \text{ Hz}, H6'' \text{ keto}), 1.23 (3H, d, {}^{3}J_{6'',5''} = 6.5 \text{ Hz}, H6'' \text{ hydrate}).$ ¹H NMR was in good agreement with the literature data (62).

Sources of other UDP-sugars

UDP-GlcNAcA (UDP-2-acetamido-2-deoxy- α -D-glucuronic acid) was prepared according to published procedure (63). UDP- β -L-rhamnose was prepared as described previously (64). UDP- α -D-glucose was obtained commercially from Merck (94335).

Attempt to produce UDP-a-D-fucose in vitro using ATCV-1 UGD and QsFucSyn

UDP- α -D-glucose (4 mM), NAD⁺ (6 mM), and NADPH (6 mM) were dissolved in deuterated buffer (pD 7.5, 50 mM HEPES, 2 mM MgCl₂) to give the indicated final concentrations in total volume of 600 µl. At first, the ¹H NMR (400 MHz) spectrum of no enzyme control was acquired. TF-ATCV-1-UGD (2.3 nmol, 3.8 µM final concentration) was then added, and the reaction progress monitored by ¹H NMR at 294 K. After UDP-Glc was fully consumed following overnight incubation, TF-QsFucSyn was added (1.8 nmol, 3.0μ M final concentration) to the mixture and the reaction progress was monitored by ¹H NMR.

In vitro glycosylation assays

The sugar acceptor QA-TriR (0.1 mM), the sugar donor UDP- α -D-glucose (1 mM), cofactors NAD⁺ (1.5 mM) and NADPH (1.5 mM) were mixed in a buffer containing 50 mM HEPES, pH 7.5, 2 mM MgCl₂ and 0.5% (v/v) 2-mercaptoethanol in a final volume of 50 µl. Reactions were initiated by addition of purified TF-ATCV-1-UGD (0.3 mg/ml final), UGT74BX1 (0.01 mg/ml), and TF-QsFucSyn (0.3 mg/ml) to the mixture as indicated in the figure legends and incubated at 25°C for 14 hours. After quenching with methanol (final 50%), the filtered product (10 µl) was analysed with the Prominence HPLC system (Shimadzu) connected to the LCMS-2020 single quadrupole mass spectrometer (Shimadzu) equipped with the Corona Veo RS Charged Aerosol Detector (Dionex). Chromatography was performed using the RP-C18 column (Kinetex 2.6 µm 100 Å, 50 x 2.1 mm, Phenomenex) by the same method for *N. benthamiana* leaf extracts.

Extraction and analysis of sugar nucleotides from N. benthamiana

N. benthamiana plants were infiltrated with *A. tumefaciens* LBA4404 transformed with pEAQ-*HT*-DEST1 vectors harboring either green fluorescent protein (*GFP*) or *QsFucSyn*. After four days, leaf material was harvested and a total of 2 g (fresh weight) was taken for each test and flash frozen in liquid N₂. Samples were then spiked with 2 μ g (10 μ L of a 200 μ g / mL solution) a non-plant sugar nucleotide (UDP-GlcNAcA) for use as an internal standard. The leaves were ground to a powder in liquid N₂ using a pestle and mortar and transferred into a 50 mL falcon tube while still frozen.

Extraction of the sugar nucleotides was adapted from a previously published protocol (65,66). Briefly, 10 mL ice-cold CHCl₃:CH₃OH (3:7) was added to the frozen leaf powder along with several 2 mm tungsten beads and shaken vigorously before transfer to ⁻20°C for two hours. During this period, every 30 mins, a round of disruption was performed at 1000 rpm for 60 seconds using a Geno/Grinder (Spex). After two hours, the sugar nucleotides were extracted by adding 8 mL water and samples were centrifuged at 29, 000 x g for 20 minutes at 4°C to pellet insoluble material and separate phases. The upper aqueous phase was transferred to a fresh vessel and a second extraction with 8 mL water was performed and this was combined with the first extract. The extract was evaporated at 40°C in an EZ-2 centrifugal evaporator for approximately 2 hours (Genevac). After this period, the remaining sample (mostly water) was frozen and lyophilized overnight. The following day, the dried extract was resuspended in 500 µL 5 mM ammonium bicarbonate for solid phase extraction (SPE). The SPE cartridges (Supelclean ENVICarb graphitized carbon columns (250 mg, 3 mL) (Supelco)) were first conditioned by washing with 3 mL 80% acetonitrile containing 0.1 % trifluoroacetic acid and 2 mL of water. The sample was adsorbed onto the column and the column was washed with a further 2 mL water, followed by 2 mL 25% acetonitrile and 2 mL 50mM triethylammonium acetate (TEAA) buffer (pH 7.0). Finally, sugar nucleotides were eluted with a buffer consisting of 25% acetonitrile in 50 mM TEAA buffer (pH 7.0). Samples were filtered through 0.45 µm PTFE disc filters (Whatman) before freezing and lyophilization overnight.

Sugar nucleotide analysis was performed as previously described (67). Briefly, analysis was carried out using a Xevo TQ-S system (Waters) equipped with a Hypercarb porous graphitic carbon (PGC) column 1 x 100 mm, particle 5 μ m, CV ~ 78.5 μ L (Thermo Fisher). The mobile phase consisted of [A] 0.3% formic acid (pH 9.0 with NH₄OH) and [B] acetonitrile. A gradient elution was used at flow rate 80 μ L/min starting with 2% [B] which increased to 15% [B] over 20 minutes. This was followed by gradient to 50% [B] over 6 minutes, followed by a further increase to 90% [B] over 1 minute and held at 90% [B] for 3 mins. This was followed by a linear gradient to 2% [B] over 1 minute and finally held at 2% [B] for 19 minutes to equilibrate. Sugar nucleotides were detected by electrospray using multiple reaction monitoring (MRM). The MRM transitions for UDP-GlcNAcA and UDP-deoxyhexoses (UDP-D-fucose and UDP-L-rhamnose) are listed in Table S16. The identity of sugar nucleotides was verified using authentic standards as described above.

Fig. S1. QS-21 content of different *Q. saponaria* **tissues.** QS-21 was quantified relative to a QS-21 external standard curve and normalized based on the individual sample dry weight (15 mg dry material). The tissues are as follows: Primordium (the tip of the branch that includes the meristem and 1 leaf smaller than 0.5 cm); expanding leaf (leaf that has reached about half its mature size); mature leaf (first leaf on the branch that has reached its mature size); old leaf (leaf at the base of the branch that has not started to senesce); green stem (part of the branch that is still green in color with no sign of lignification); bark (lignified tissue covering a branch);root (roots from various developmental stages growing out of the bottom of the pot). Bars, standard error (four biological replicates). Statistical analyses comprised ANOVA and Tukey tests and were performed in R using the multcompView package

Fig. S2. *QsbAS1* encodes a functional β -amyrin synthase. GC-MS analysis of leaf extracts of *Nicotiana benthamiana* following *Agrobacterium*-mediated transient expression. Leaves were agroinfiltrated with expression constructs for *tHMGR* (control) or *tHMGR* and *QsbAS1*. IS, internal standard (coprostanol). Total ion chromatograms (TIC) are shown on the left, and mass spectra on the right. The retention time and mass spectrum for the QsbAS1 product are identical to that of a β -amyrin (2) standard.

Fig. S3. CYP716A224 and CYP716A297 convert *β***-amyrin (2) to echinocystic acid (4).** GC-MS analysis of leaf extracts of *N. benthamiana* following *Agrobacterium*-mediated transient expression. Leaves were agro-infiltrated with expression constructs for *tHMGR/QsbAS1* (control), *tHMGR/QsbAS1/CYP716A224*, *tHMGR/QsbAS1/CYP716A297* or *tHMGR/QsbAS1/CYP716A224/CYP716A297*. Total ion chromatograms (TIC) are shown on the left, and mass spectra on the right. Co-expression of *CYP716A224* with *QsbAS1* lead to complete conversion of *β*-amyrin (2) to a new product with a retention time and mass spectrum identical to that of an oleanolic acid (3) standard. Little conversion of *β*-amyrin (2) was observed from the combination of *tHMGR/QsbAS1/CYP716A297*, however co-expression of *tHMGR/QsbAS1/CYP716A224/CYP716A297*, not expression of *tHMGR/QsbAS1/CYP716A224/CYP716A297L* and *CYP716A297S*, respectively). The long variant has an extra 21 amino acids at the *N*-terminus which aligns poorly with other members of the CYP716 family. Both variants were found to be functional and the short variant was used for all experiments thereafter. IS, internal standard (coprostanol).

Fig. S4. Confirmation of the product of co-expression of QsbAS1, QsCYP716A224, QsCYP716A297 and QsCYP716A224 as quillaic acid (5) by ¹**H-NMR.** Recorded in MeOH*d*₄, 600 MHz.

Figure S5. Maximum likelihood phylogeny of CYP716 and CYP714 sequences. All *Q. saponaria* CYP714 and CYP716 protein sequences were aligned with triterpene active CYP714 and CYP716 sequences as designated in (8). CYP51G1 (*Arabidopsis thaliana*) was used as an outgroup. The three CYPs identified in this study required to make quillaic acid are highlighted in red. The remaining triterpene functional CYPs are labelled with CYP name, scaffold class, reaction and species according to (8). Bootstrap values above 95 are not shown.

Fig. S6. Hi-C contact map showing 14 chromosomes. The axes show the 14 scaffolds generated by the scaffolding of the Hi-C links within and between contigs. Hi-C links between contigs are marked on corresponding coordinates in color: the darker the color, the higher is the linkage density between the contigs, indicating a higher probability of pertaining to the same chromosome. The linkages occurring within a same contig are marked in white as they are uninformative.

Fig. S7. BUSCO assessment of *Q. saponaria* **protein complement compared to other species.** BUSCO assessment carried out using embyrophyta dataset (odb9). RefSeq genomes of species used for comparison were: *F. vesca*, GCF_000184155.1; *G. max*, GCF_000004515.6; *T. pratense*, GCF_020283565.1; *P. persica*, GCF_000346465.2; *M. truncatula*, GCF_003473485.1; *P. vulgaris*, GCF_000499845.1; *M. domestica* GCF_002114115.1.

Fig. S8. Mean absolute expression levels of genes in primordia tissue. Mean TPM counts were normalized using size-factor estimates in DESeq2 (*57*). The four genes required to produce QA are within the top 160 genes when ranked by absolute transcript abundance in primordia tissue.

Fig. S9. Results for plantiSMASH mining of the *Q. saponaria* **S10 genome assembly.** (**A**) Counts of putative BGC type classifications. The majority of BGCs annotated are of the 'saccharide' type. (**B**) Chromosomal locations of putative BGCs. Colors of bands indicate BGC type as in (**A**).

Fig. S10. ¹H NMR spectra comparison of quillaic acid 3-*O*-β-D-glucopyranosiduronic acid (6) produced by CSLM1 (Top) and CSLM2 (Bottom), MeOH-*d*4, 600 MHz

Fig. S11. Phylogeny of cellulose synthase (CesA) and cellulose synthase-like (CSL) genes. Genes from *Q. saponaria* are indicated with white circles. All UniProt sequences of this gene family were included from *Arabidopsis thaliana, Oryza sativa* Japonica and *Oryza sativa* Indica (UniProt names displayed on tree). GenBank IDs for additional genes included in the alignment and phylogeny in are from *Vitis vinifera*: *GSVIVT01018143001_VvCSLM* (CBI26389.3); *Hordeum vulgare*: *HORVV_HvCsF6* (XP_044960146.1), *HORVV_HvCsLJ* (XP_044974896.1); *Solanum lycopersicum*: *Solyc03g005450_SlCSLM* (XP_004234035.1); *Glycine max*: *BBN60792.1_GmCslM1* (XP_003536256.1), *GmCSyGT1* (XP_006582441.1); *Glycyrrhiza uralensis*: *GuCSyGT* (BBN60794.1); *Lotus japonicus*: *LjCSyGT* (BBN60795.1) and *Spinacia oleracea*: *SOAP5* (XP_021842158.1). Genes marked with yellow diamonds indicate characterised GlcA transferase activity. *QsCSLM1* and *QsCSLM2* encode functional GlcA transferase enzymes as discussed in the main text.

Fig. S12. Phylogeny of UGT genes. Genes from *Q. saponaria* are indicated with white circles. Other genes included in the alignment and phylogeny are from (21), in order to classify the UGTs into the labelled groups (68). UGTs indicated with names are functional saponin biosynthetic genes as discussed in the main text. Typical activates of UGT clades are labelled for group A, D and L as per (21).

Fig. S13. Reported structures of *Q. saponaria* **saponins indicate that C-3 glycosylation is likely to precede modification at C-28**. Isolation of C-3 glycosylated saponins from *Quillaja* bark extract has previously been reported (*69*). Figure adapted from Guo et al. (*69*) and compound numbers denoted here are taken from this paper. Compounds **1**, **2** and **3** above correspond to compounds **7** (QA-Di), **9** (QA-TriR) and **8** (QA-TriX) in the present study, respectively. To our knowledge, there are no reported saponins isolated from *Quillaja* sp. featuring glycosylation at C-28 in the absence of C-3 glycosylation.

Fig. S14. Identification of the first three glycosyltransferases at C-28. LC-MS extracted ion chromatograms (EIC) of *N. benthamiana* leaf extracts following transient expression of the QA-TriX (8) (m/z 955) gene set. Co-expression of Qs0321930 resulted in appearance of trace amounts of a new product consistent with addition of D-fucose, anticipated to be QA-TriX-F (10) (m/z 1101). Further co-expression of Qs0321920 resulted in conversion of 10 to a new product consistent with addition of L-rhamnose, anticipated to be QA-TriX-FR (12) (m/z 1248). Finally, co-expression of Qs0234120 resulted in conversion of 12 to a new product consistent with addition of a xylose and anticipated to be QA-TriX-FRX (14) (m/z 1380). Only trace amounts of these compounds were observed, with most of the QA-TriX (8) still present in the extracts, suggesting that D-fucosylation is a limiting step. IS, internal standard (digitoxin). The portion of the chromatogram showing the new compounds is expanded to the right.

Fig. S15. The SDR encoded by Qs0321910 allows increased production of C-28 glycosides. LC-MS Extracted Ion Chromatograms (EIC) of *N. benthamiana* leaf extracts following transient expression of the gene set for production of the D-fucosylated saponin QA-TriX-FR (12) (A) and QA-TriX-FRX (14) (B) in the absence (top) or presence (bottom) of Qs0321910. The presence of Qs0321910 also results in substantial increases to these products, likely arising from the increased abundance of the precursor QA-TriX-F (10). IS, internal standard (digitoxin)

Fig. S16. Microsynteny and expression of functional BGCs in *Q. saponaria*. Syntenic regions encompassing plantiSMASH clusters #45 (chromosome 11, above) and #31 (chromosome 7, below). Synteny analysis was carried out using Python-implemented MCScan (70). Heatmaps show *Z*-scores (generated from DESeq2 VST- transformed read quantification values).

Fig. S17. UDP-apiose/UDP-xylose synthase (QsAXS) substantially increases the Qs0234140 product. Transient expression of the gene set for QA-TriX-FRX (14) plus either Qs0234130 or Qs0234140 was performed. Each of these two gene sets were tested in the presence or absence of QsAXS and the relevant products were quantified based on relative peak area versus the internal standard (digitoxin). The presence of AXS resulted in approximately 11fold increases to the *Qs0234140* product. AXS did not increase the abundance of the *Qs0234130* product, however. Three separate leaves from different plants were infiltrated for each of the four conditions. Error bars show standard deviation.

Fig. S18. Maximum likelihood phylogeny of SDR114C family genes. SDR114C genes were extracted from representative plant genomes using HMMER with a profile derived from the representative genes identified in (29). Gene locus IDs and species names are displayed on the

tree. Labelled clades are according to (71). Functional SDRs are highlighted in blue, with two (+)-neomenthol dehydrogenases from *Arabidopsis thaliana* (AT3G61220, AT2G24190). In addition to the full SDR114C complements from representative species, four additional functional SDRs are included: a (+)-neomenthol dehydrogenase (Uniprot ID B2X050, *Capsicum annum*), an (-)-isopiperitenone reductase (Uniprot ID Q6WAU1, *Mentha x piperita*) and two salutaridine reductases (Uniprot ID Q071N0, *Papaver somniferum*; Uniprot ID A4UHT7, *Papaver bracteatum*). Bootstrap values above 95 are not shown.

Fig. S19. Purified enzymes for *in vitro* **studies**. GalK Y371H, *Escherichia coli* galactokinase with a Y371H mutation. TF-ATCV-1-UGD, a fusion protein of *E. coli* trigger factor (TF) and UDP-D-glucose 4,6-dehydratase from the *Acanthocystis turfacea* chlorella virus 1. TF-QsFucSyn, a fusion protein of *E. coli* trigger factor and *Qs0321910* SDR. QsUGT74BX1, *Q. saponaria* UGT74BX1. The rightmost lane is blue pre-stained protein standard, broad range (New England Biolabs, P7718).

Fig. S20. Evidence of TriX-4K6DG production in *N. benthamiana.* The gene set for QA-TriX-F production was expressed in *N. benthamiana* without the yield-boosting *QsFucSyn*. A peak with a mass consistent with QA-TriX-4K6DG (m/z = 1099) can be seen at 13.9 mins.

Fig. S21. QsFucSyn does not convert UDP-4-keto-6-deoxy-D-glucose to UDP-D-fucose in

vitro. Expanded ¹H NMR spectra to show the anomeric proton 1" (H1") resonances of starting material and products. No enzyme control shows UDP-D-glucose (panel **A**). Two hours after addition of TF-ATCV-1-UGD showing appearance of tiny peaks of H1" of UDP-4-keto-6-deoxy-D-Glucose at 5.75 ppm and H1" of its hydrate form at 5.56 ppm (panel **B**). Twenty-one hours incubation achieved complete conversion from UDP-D-glucose into UDP-4-keto-6-deoxy-D-glucose and its hydrate form (panel **C**). Another 24 h incubation after addition of TF-QsFucSyn did not cause any changes in the H1" resonance (panel **D**). H1" resonance of standard UDP-D-fucose at 5.57 ppm (panel **E**).

Fig. S22. Sugar nucleotide profiling of *N. benthamiana* following transient expression of *Qs0321910* SDR. (A) Sugar nucleotide analysis of extracts of leaves expressing either green fluorescent protein (GFP, top) or *Qs0321910* SDR (bottom). Both extracts look comparable with only a single peak observed in the UDP-deoxyhexose channel, likely corresponding to UDP- β -L-rhamnose. To the right, the channel for the internal standard (UDP-2-acetamido-2-deoxy- α -D-glucuronic acid (UDP-GlcNAcA) is shown to demonstrate equivalent amounts of sample being analyzed). (B) The *Qs0321910* SDR leaf extract sample (top) was further spiked with standards of either UDP-L-rhamnose (middle) or UDP-D-fucose (bottom). UDP-L-rhamnose co-eluted with the peak observed in the SDR leaf extract sample, demonstrating that the UDP-6-deoxy-hexose

extracted from *N. benthamiana* is UDP-L-rhamnose. In contrast, UDP-D-fucose elutes as a separate peak at 9.73 minutes (bottom), suggesting that this sugar nucleotide is not present in *N. benthamiana*. There was a significant shift in retention time of the target analytes between individual runs, a phenomenon well documented for porous graphitic carbon stationary phase (67). Thus, it was necessary to verify the identity of the UDP-sugar observed in *N. benthamiana* by spiking samples with authentic standards.

Fig. S23. Discovery of a probable glucosyltransferase encoded by *Qs0321940.* LC-HRMS total ion chromatograms of *N. benthamiana* leaf extracts following transient expression of the gene set for production of QA-TriX-FRXA (18). Further co-expression of *Qs0321940* resulted in appearance of a new product. The mass of this was consistent with addition of a hexose, anticipated to be glucose. The mass spectrum of this product is shown to the right, while the predicted structure (QA-TriX-FRXA-G) is shown below. IS, internal standard (digitoxin).

Name	Glycosylated at R3 of D-Fucose?	Acylated at R4 of D-Fucose?
4	Yes	Yes
5	Yes	Yes
6	Yes	Yes
7	Yes	Yes
8	Yes	Yes
9	Yes	Yes
10	Yes	Yes
11a/b	Yes	Yes
12a/b	Yes	Yes
13a/b	No	Yes
14a/b	Yes	Yes
15a/b	Yes	Yes
16a/b	Yes	Yes
17a/b	Yes	Yes
18a/b (QS-7)	Yes	Yes
19	Yes	Yes
20a/b	No	Yes
21a/b	No	Yes
22a/b	Yes	Yes
23	Yes	Yes
B1/2	No	Yes
B3/4	No	Yes
B5/6	No	Yes
B7/8	No	Yes
S1/2	No	Yes
S3/4 (QS-21)	No	Yes
S5/6 (QS-21)	No	Yes
S7/8	No	Yes
S9/10	No	Yes
S11/12	No	Yes
S13	Yes	Yes

Fig. S24. Glycosylation at R₃ of D-fucose is dependent on prior acylation at R₄. (A) The core structure commonly found in many *Q. saponaria* saponins. (B) Table of selected *Q. saponaria* saponins. Note that no saponins have been isolated which display glycosylation at the R₃ group of D-Fucose in the absence of an acyl group at R₄. Table adapted from Fleck et al. (24). The compound and R- numbers here correspond to those in that paper.

В

Fig. S25. Discovery of an acetyltransferase encoded by Qs0206480.

LC-HRMS total ion chromatograms of *N. benthamiana* leaf extracts following transient expression of the gene set for production of QA-TriX-FRXA (18). Further co-expression of *Qs0206480* generated a product with a mass consistent with 18 plus addition of an acetyl group. The mass spectrum of the product is shown to the right while the predicted structure of this compound (QA-TriX-FRXA-Ac) is shown below. IS, internal standard (digitoxin).

Compound	Chemical formula	Exact mass [M – H] ⁻
QA-TriX-FRXA-Ac	C ₇₁ H ₁₁₀ O ₃₇	1553.6653
QA-TriX-FRXA-Ac + L-Rha	C ₇₇ H ₁₂₀ O ₄₁	1699.7232
QA-TriX-FRXA-Ac + D-Glc	C ₇₇ H ₁₂₀ O ₄₂	1715.7181
QA-TriX-FRXA-Ac + D-Glc + L-Rha	C ₈₃ H ₁₃₀ O ₄₆	1861.7760

Fig. S26. Discovery of probable L-rhamnosyl and D-glucosyltransferases encoded by *Qs0023500* and *Qs0213660*, respectively. LC-HRMS extracted ion chromatograms (EIC) of N.

benthamiana leaf extracts following transient expression of the gene set for production of QA-TriX-FRXA-Ac (m/z 1553.6653) (top left). Further co-expression of Qs0023500 generated a product with a mass consistent with QA-TriX-FRXA-Ac plus addition of a deoxyhexose, anticipated to be L-rhamnose (EIC m/z 1699.7232) (upper right). In contrast, co-expression of Qs0213660 generated a product with a mass consistent with QA-TriX-FRXA-Ac plus addition of a hexose, anticipated to be D-glucose (EIC m/z 1715.7181) (lower left). Co-expression of both Qs0023500 and Qs0213660 did not result in a new product featuring both sugars (anticipated m/z1861.7760), suggesting that the enzymes encoded by these genes are glycosylating the same position (lower right).

Q. saponaria

Fig. S27. QS-7 quantification in *Nicotiana benthamiana* **and** *Quillaja saponaria.* QS-7 was quantified relative to a QS-7 external standard curve and normalized based on the individual sample dry weight (15 mg dry material). The *N. benthamiana* samples are dried leaves from plants expressing the *Q. saponaria* gene set necessary to produce QS-7. The *Q. saponaria* tissues are as follows: Primordium (the tip of the branch that includes the meristem and 1 leaf smaller than 0.5 cm); expanding leaf (leaf that has reached about half its mature size); mature leaf (first leaf on the branch that has reached its mature size); old leaf (leaf at the base of the branch that has not started to senesce); green stem (part of the branch that is still green in color with no sign of lignification); bark (lignified tissue covering a branch); root (roots from various developmental stages growing out of the bottom of the pot). Bars, standard error (four biological replicates). Statistical analyses comprised ANOVA and Tukey tests and were done in R using the multcompView package.

Fig. S28. Key HMBC (H \rightarrow C) observed for semi-purified QS-7 (20) produced in *N*. *benthamiana*. NMR carried out in MeOH- d_4 (600, 150 MHz).

Fig. S29. Full ¹**HNMR spectrum of semi-purified QS-7 (20) produced in** *N. benthamiana*. NMR recorded in MeOH-*d*₄, 600 MHz.

Fig. S30. Expanded ¹**HNMR spectrum (0-3 ppm) of semi-purified QS-7 (20) produced in** *N. benthamiana.* NMR recorded in MeOH-*d*₄, 600 MHz.

Fig. S31. Expanded ¹HNMR spectrum (non-anomeric region, 3.15-4.0 ppm) of semipurified QS-7 (20) produced in *N. benthamiana*. NMR recorded in MeOH-*d*₄, 600 MHz.

Fig. S32. Expanded ¹HNMR spectrum (anomeric region, 4.0-5.50 ppm) of semi-purified QS-7 (20) produced in *N. benthamiana*. NMR recorded in MeOH-*d*₄, 600 MHz.

Fig. S33. ¹H-¹³C HSQC spectrum of semi-purified QS-7 (20) produced in *N. benthamiana*. NMR recorded in MeOH-*d*₄, 600, 150 MHz.

Fig. S34. ¹H-¹³C HMBC spectrum of semi-purified QS-7 (20) produced in *N. benthamiana*. NMR recorded in MeOH-*d*₄, 600, 150 MHz.

Fig. S35. Expanded ¹H-¹³C HMBC spectrum of semi-purified QS-7 (20) produced in *N. benthamiana*. NMR recorded in MeOH-*d*₄, 600, 150 MHz.

Fig. S36. Expanded ¹H-¹³C HMBC spectrum of semi-purified QS-7 (20) produced in *N. benthamiana*. NMR recorded in MeOH-*d*₄, 600, 150 MHz.

Fig. S37. Expanded ¹H-¹³C HMBC spectrum of semi-purified QS-7 (20) produced in *N. benthamiana*. NMR recorded in MeOH-*d*₄, 600, 150 MHz.

Fig. S38. Expanded ¹H-¹³C HMBC spectrum of semi-purified QS-7 (20) produced in *N. benthamiana*. NMR recorded in MeOH-*d*₄, 600, 150 MHz.

Fig. S39. Full DEPTQ-135 NMR spectrum of semi-purified QS-7 (20) produced in *N. benthamiana*. NMR recorded in MeOH-*d*₄, 150 MHz.

Fig. S40. Expanded DEPTQ-135 NMR spectrum (10-50 ppm) of semi-purified QS-7 (20) produced in *N. benthamiana*. NMR recorded in MeOH-*d*₄, 150 MHz.

Fig. S41. Expanded DEPTQ-135 NMR spectrum (56-96 ppm) of semi-purified QS-7 (20) produced in *N. benthamiana.* NMR recorded in MeOH-*d*₄, 150 MHz.

Fig. S42. Expanded DEPTQ-135 NMR spectrum (100-150 ppm) of semi-purified QS-7 (20) produced in *N. benthamiana*. NMR recorded in MeOH-*d*₄, 150 MHz.

Fig. S43. Expanded DEPTQ-135 NMR spectrum (160-220 ppm) of semi-purified QS-7 (20) produced in *N. benthamiana*. NMR recorded in MeOH-*d*₄, 150 MHz.

Fig. S44. ¹**HNMR spectrum of QS-7 standard (Desert king).** NMR recorded in MeOH-*d*₄, 600 MHz.

Fig. S45. ¹HNMR comparison between QS-7 (20) produced in *N. benthamiana* (top) and QS-7 standard (bottom) (anomeric region, 4.0-5.50 ppm). NMR recorded in MeOH-*d*₄, 600 MHz.

Fig. S46. CYP714E52 converts oleanolic acid (3) to a new product likely to be gypsogenin. GC-MS analysis of leaf extracts of *N. benthamiana* following *Agrobacterium*-mediated transient expression. Total ion chromatograms are shown on the left, and a mass spectrum on the right. Leaves were agro-infiltrated with expression constructs for *tHMGR/QsbAS1/CYP716A224* (control), or *tHMGR/QsbAS1/CYP716A224/CYP714E52*. A new product was observed at 14.31 mins in leaves expressing *tHMGR/QsbAS1/CYP716A224/CYP714E52*. This is consistent with the addition of an aldehyde to oleanolic acid (forming gypsogenin). IS, internal standard (coprostanol).

Fig. S47. Mass spectra for the putative QA-TriR-4-keto-6-deoxy-glucose (QA-TriR-4K6DG) and hydrate form. When incubated with UDP-D-glucose, ATCV-1 UGD and UGT74BX1 *in vitro*, QA-TriR (9) is converted to a new product which is likely to be QA-TriR-4K6DG (** 13.35 mins). This product exists in equilibrium with its hydrate form, as seen by the peak at 11.12 mins (*).

Fig. S48. Plasmid map of Golden Gate vector EC81998-pL2-QA. This contains the four genes (*QsbAS1, CYP716A224, CYP716A297* and *CYP741E52*) required for biosynthesis of quillaic acid (**5**). All genes are flanked upstream by a module consisting of the cauliflower mosaic virus (CaMV) 35S promoter and modified cowpea mosaic virus (CPMV) 5' UTR (35S + 5'UTR, green) and downstream by the CPMV 3' UTR and noscaline synthase terminator (3'UTR + NosT, blue). In addition a copy of the P19 silencing suppressor flanked by the CaMV 35S promoter and terminator is included.

Fig. S49. Plasmid map of Golden Gate vector EC90003-pLM-6-TriX. This contains the three genes (*QsCSLM2, UGT73CU3* and *UGT73CX1*) required for addition of the branched trisaccharide featuring xylose to the C-3 position of quillaic acid (**5**). All genes are flanked upstream by a module consisting of the cauliflower mosaic virus (CaMV) 35S promoter and modified cowpea mosaic virus (CPMV) 5' UTR (35S + 5'UTR, green) and downstream by the CPMV 3' UTR and noscaline synthase terminator (3'UTR + NosT, blue).

Fig. S50. Plasmid map of Golden Gate vector EC90005_pLM-6-TriR. This contains the three genes (*QsCSLM2*, *UGT73CU3* and *UGT73CX2*) required for addition of the branched trisaccharide featuring rhamnose to the C-3 position of quillaic acid (**5**). All genes are flanked upstream by a module consisting of the cauliflower mosaic virus (CaMV) 35S promoter and modified cowpea mosaic virus (CPMV) 5' UTR (35S + 5'UTR, green) and downstream by the CPMV 3' UTR and noscaline synthase terminator (3'UTR + NosT, blue).

Fig. S51. Plasmid map of Golden Gate vector EC90012_pLM_2_FucT_FucSyn. This contains the gene encoding the glycosyltransferase (UGT74BX1) required for addition of the D-fucose at the C-28 position of QA-TriX (8) or QA-TriR (9) to form QA-TriX-F (10) or QA-TriR-F (11). The vector also includes the short chain dehydrogenase (QsFucSyn) which substantially increases the yields of the D-fucosylated products. All genes are flanked upstream by a module consisting of the cauliflower mosaic virus (CaMV) 35S promoter and modified cowpea mosaic virus (CPMV) 5' UTR (35S + 5'UTR, green) and downstream by the CPMV 3' UTR and noscaline synthase terminator (3'UTR + NosT, blue).

Fig. S52. Plasmid map of Golden Gate vector EC90013-pLM-4_C-28_RXA. This contains the three genes (*UGT91AR1*, *UGT91AQ1* and *UGT73CY2*) required for addition of the final three sugars (L-rhamnose, D-xylose and D-apiose) in the linear tetrasaccharide at C-28 of QA-TriX-F (10) or QA-TriR-F (11) to form QA-TriX-FRXA (18) or QA-TriR-FRXA (19), respectively. The plasmid also contains QsAXS gene which boosts the apiosylated product. All genes are flanked upstream by a module consisting of the cauliflower mosaic virus (CaMV) 35S promoter and modified cowpea mosaic virus (CPMV) 5' UTR (35S + 5'UTR, green) and downstream by the CPMV 3' UTR and noscaline synthase terminator (3'UTR + NosT, blue).

Fig. S53. Plasmid map of Golden Gate vector EC90014-pLM-4_C-28_RXX. This contains the three genes (*UGT91AR1, UGT91AQ1* and *UGT73CY3*) required for addition of the final three sugars (L-rhamnose, D-xylose and D-xylose) in the linear tetrasaccharide at C-28 of QA-TriX-F (**10**) or QA-TriR-F (**11**) to form QA-TriX-FRXX (**16**) or QA-TriR-FRXX (**17**). All genes are flanked upstream by a module consisting of the cauliflower mosaic virus (CaMV) 35S promoter and modified cowpea mosaic virus (CPMV) 5' UTR (35S + 5'UTR, green) and downstream by the CPMV 3' UTR and noscaline synthase terminator (3'UTR + NosT, blue).
	No. /%	Size (bp)
Assembly feature		
Estimated genome size		411,000,000*
Assembled sequences (contig)	769	354,911,093
L50/N50 length (contig)	19	5,518,683
Longest contig		18,205,868
L50/N50 length (scaffolds)	6	26,440,503
L90/N90 length (scaffolds)	13	19,561,049
Assembled pseudochromosomes	14	346,890,757
Longest scaffold		37,318,896
GC content	32.96%	
Transposable elements		
Class I Retrotransposons	12.3%	43,683,674
Class II DNA transposons	13.6%	48,387,773
Other (inc. MITEs)	0.5%	1,876,770
Total	26.5%	93,948,217
Genome annotation		
Gene models/mean model length (high confidence)	30,780	4,199
Gene models/mean model length (lower confidence)	3,125	2,388
Noncoding RNAs/mean model length	467	1,828

*Garcia et al. (2010) (18)

Table S1. Q. saponaria accession S10 genome statistics and gene predictions

	QsbAS1 co-expression	Primordia transcript
Gene ID	(PCC)	quantity (TPM)
Qs_0321930	0.987	15790.25
Qs_0321920	0.985	4375.86
Qs_0123860	0.975	8265.02
Qs_0131010	0.965	29496.29
Qs_0233700	0.961	4636.16
Qs_0283870	0.957	4110.90
Qs_0321940	0.956	6209.41
Qs_0152180	0.956	4380.37
Qs_0213710	0.955	3828.36
Qs_0234150	0.949	2489.59
Qs_0082400	0.946	3485.36
Qs_0234120	0.944	9140.54
Qs_0283850	0.931	3577.73
Qs_0234130	0.908	1646.18
Qs_0098610	0.907	12046.56
Qs_0187000	0.842	3451.64
Qs_0023500	0.835	2418.88
Qs_0234140	0.796	4127.94
Qs_0055340	0.786	6191.23
Qs_0213660	0.712	2673.27

Table S2. Candidate *Q. saponaria* **UGT genes.** Candidates were prioritized based on coexpression with *QsbAS1* (PCC cut-off 0.7) and expression levels in primordial tissue (TPM >1600).

Quillaic acid 3-O- β - D-glucopyranosiduronic acid (6) (CSL-M1)

No.	$\delta_{ ext{C}}$, Type	$\delta_{ extsf{H}}$ mult, (J in Hz)	No.	$\delta_{ ext{C}}$, Туре	$\delta_{ extsf{H}}$ mult, (J in Hz)
1	39.4, CH ₂	1.70, d (13.3)/1.13, m	19	47.8, CH ₂	2.30/1.04, m
2	25.8, CH ₂	2.03/1.78, m	20	31.6 <i>,</i> Cq	-
3	83.0, CH	3.94, dd (12, 4.4)	21	36.7, CH₂	1.96/1.15, m
4	56.4 <i>,</i> Cq	-	22	32.9, CH ₂	1.91/1.77, m
5	49.1, CH	1.35, m	23	209.3 <i>,</i> CH	9.42, s
6	21.6, CH ₂	1.50/0.90, m	24	10.5, CH₃	1.11, s
7	33.7, CH ₂	1.58/1.26, m	25	16.3, CH₃	1.01, s
8	41.1, Cq	-	26	17.9, CH₃	0.80, s
9	48.2, CH	1.77, m	27	27.4, CH₃	1.40, s
10	37.2, Cq	-	28	181.3 <i>,</i> Cq	-
11	24.6, CH ₂	1.94/1.94 <i>,</i> m	29	33.6, CH₃	0.89, s
12	123.3, CH	5.31, t (3.3)	30	25.0, CH₃	0.97, s
13	145.3 <i>,</i> Cq	-	GlcA-1	104.8 <i>,</i> CH	4.20, d (7)
14	42.9, Cq	-	GlcA-2	75.3, CH	3.11, t (8.3)
15	36.3, CH ₂	1.84/1.34, m	GlcA-3	77.9, CH	3.32, overlapped with methanol
16	75.4, CH	4.45, t (3.5)	GlcA-4	73.7, CH	3.42, m
17	50.0 <i>,</i> Cq	-	GlcA-5	76.6, CH	3.57, br s
18	42.2, CH	3.01, dd (14.0, 4.3)	GlcA-6	Not observed	-

Table S3. Full NMR data showing that the product generated by co-expression of CSLM1 with the QA pathway genes is quillaic acid 3-O- β -D-glucopyranosiduronic acid (6). NMR carried out in MeOH- d_4 (600, 150 MHz)

Quillaic acid 3-O- β -D-glucopyranosiduronic acid (6) (CSL-M2)

No.	$\delta_{ m c}$, Type	$\delta_{ m H}$ mult, (J in Hz)	No.	$\delta_{ ext{c}}$, Type	$\delta_{ extsf{H}}$ mult, (J in Hz)
1	39.4, CH ₂	1.70, d (13.3)/1.12, m	19	47.9, CH ₂	2.30/1.02, m
2	25.9, CH ₂	1.97/1.78, m	20	31.6, Cq	-
3	83.6, CH	3.89, dd (11.5, 3.8)	21	36.7, CH ₂	1.96/1.15, m
4	56.3, Cq	-	22	32.9, CH ₂	1.90/1.76, m
5	49.2, CH, overlapped	1.34, m	23	209.2, CH	9.41, s
6	21.5, CH ₂	1.52/0.91, m	24	10.6, CH₃	1.11, s
7	33.7, CH ₂	1.57/1.25, m	25	16.3, CH₃	1.01, s
8	41.1, Cq	-	26	17.9, CH₃	0.80, s
9	48.2, CH	1.76, m	27	27.4, CH₃	1.40, s
10	37.2, Cq	-	28	181.2, Cq	-
11	24.6, CH ₂	1.93/1.93, m	29	33.6, CH₃	0.88, s
12	123.3, CH	5.30, t (3.3)	30	25.0, CH₃	0.97, s
13	145.3 <i>,</i> Cq	-	GlcA-1	104.8 <i>,</i> CH	4.24, d (7.6)
14	42.9, Cq	-	GlcA-2	75.1, CH	3.12, t (8.2)
15	36.3, CH ₂	1.84/1.34, m	GlcA-3	77.7, CH	3.31, overlapped with methanol
16	75.4, CH	4.45, br s	GlcA-4	73.3, CH	3.46 <i>,</i> m
17	50.0, Cq	-	GlcA-5	76.7, CH	3.72, br s
18	42.2, CH	3.01, dd (14.3, 4.2)	GlcA-6	Not observed	-

Table S4. Full NMR data showing that the product generated by co-expression of CSLM2 with the QA pathway genes is quillaic acid 3-O- β - D-glucopyranosiduronic acid (6). NMR carried out in MeOH- d_4 (600, 150 MHz)

Quillaic acid 3-O-{ β -D-galactopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosiduronic acid} (7)

No.	$\delta_{ ext{c}}$, Туре	$\delta_{ extsf{H}}$ mult, (J in Hz)	No.	$\delta_{ ext{c}}$, Type	$\delta_{ extsf{H}}$ mult, (J in Hz)
1	39.4, CH ₂	1.70, d (13.1)/1.10, m	23	201.9, CH	9.46, s
2	25.6, CH ₂	2.00/1.78, m	24	10.9, CH₃	1.13, s
3	84.9, CH	3.91, dd (11.2, 2.3)	25	16.4, CH₃	1.0, s
4	56.4 <i>,</i> Cq	-	26	17.9, CH₃	0.80, s
5	49.2, CH	1.33, m	27	27.4, CH₃	1.40, s
6	21.4, CH ₂	1.48/0.91, m	28	181.3, Cq	-
7	33.7, CH ₂	1.55/1.24 <i>,</i> m	29	33.6, CH₃	0.88, s
8	41.1, Cq	-	30	25.0, CH₃	0.97, s
9	48.2, CH	1.75, m	GlcA-1	103.7, CH	4.36, d (6.1)
10	37.3 <i>,</i> Cq	-	GlcA-2	81.4, CH	3.46, m
11	24.6, CH ₂	1.92/1.92, m	GlcA-3	78.1, CH	3.54 <i>,</i> m
12	123.3 <i>,</i> CH	5.30, br s	GlcA-4	Not observed	3.47, m
13	145.3 <i>,</i> Cq	-	GlcA-5	77.0, CH	3.74 <i>,</i> m
14	42.9 <i>,</i> Cq	-	GlcA-6	Not observed	-
15	36.3, CH ₂	1.83/1.33, m	Gal-1	105.4, CH	4.49, d (7.3)
16	75.4 <i>,</i> CH	4.45, br s	Gal-2	74.0 <i>,</i> CH	3.53, m
17	49.7 <i>,</i> Cq	-	Gal-3	75.0, CH	3.46, m
18	42.2, CH	3.01, dd (14.2, 3.1)	Gal-4	70.6, CH	3.82, m
19	47.8, CH ₂	2.29/1.02, m	Gal-5	77.1, CH	3.51, m
20	31.6, Cq	-	Gal-6	62.5, CH ₂	3.80/3.73, dd (10.9, 5.5)
21	36.7, CH₂	1.94/1.13 <i>,</i> m			
22	32.9, CH ₂	1.90/1.76, m			

Table S5. Full NMR data for quillaic acid 3-*O*-{ β -D-galactopyranosyl-(1 \rightarrow 2)- β -D-glucopyranosiduronic acid} (7). NMR carried out in MeOH- d_4 (600, 150 MHz)

Quillaic acid 3-O-{ β -D-xylopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid} (8)

No.	$\delta_{ m c}$, Type	$\delta_{ extsf{H}}$ mult, (J in Hz)	No.	$\delta_{ m c}$, Туре	$\delta_{ extsf{H}}$ mult, (J in Hz)
1	39.4, CH ₂	1.70, d (13.3)/1.12, m	24	10.9, CH₃	1.15, s
2	25.9, CH ₂	1.97/1.78, m	25	16.4, CH₃	1.00, s
3	86.5 <i>,</i> CH	3.87, dd (11.7, 4.9)	26	17.9, CH₃	0.79, s
4	56.4 <i>,</i> Cq	-	27	27.4, CH₃	1.39, s
5	49.2, CH, overlapped	1.32, m	28	181.2, Cq	-
6	21.4, CH ₂	1.51/0.91, m	29	33.6, CH₃	0.88, s
7	33.7, CH ₂	1.54/1.23, m	30	25.0, CH₃	0.97, s
8	41.1, Cq	-	GlcA-1	104.6, CH	4.48, d (2.9)
9	48.2, CH	1.75, m	GlcA-2	78.3, CH	3.64, m
10	37.3, Cq	-	GlcA-3	86.7, CH	3.69, m
11	24.6, CH ₂	1.92/1.92, m	GlcA-4	71.5, CH	3.56, m
12	123.3, CH	5.30, t (3.3)	GlcA-5	76.6 <i>,</i> CH	3.80, m
13	145.3, Cq	-	GlcA-6	172.3, Cq	-
14	42.9, Cq	-	Gal-1	103.9, CH	4.79, d (7.3)
15	36.3, CH ₂	1.82/1.33, m	Gal-2	73.7, CH	3.44, m
16	75.3, CH	4.45, d (3.2)	Gal-3	75.5, CH	3.41 <i>,</i> m
17	50.0, Cq	-	Gal-4	70.9, CH	3.80, m
18	42.2, CH	3.01, dd (14.3, 4.2)	Gal-5	76.9, CH	3.48, m
19	47, 8, CH ₂	2.29, t (13.6)/1.02	Gal-6	62.4, CH ₂	3.76/3.69, m
20	31.6, Cq	-	Xyl-1	105.1, CH	4.58, d (7.6)
21	36.7, CH ₂	1.94/1.14, m	Xyl-2	75.4, CH	3.24, m
22	32.9, CH ₂	1.90/1.76, m	Xyl-3	78.4, CH	3.30, overlapped
23	210.8, CH	9.44, s	Xyl-4	71.2, CH	3.53, m
			Xyl-5	67.3, CH₂	3.90/3.25 <i>,</i> m

Table S6. ¹H, ¹³C NMR spectral data for quillaic acid 3-*O*-{ β -D-xylopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid} (8). NMR carried out in MeOH- d_4 , (400, 100 MHz)

Quillaic acid 3-*O*-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid} (9)

No.	$\delta_{ m c}$, Type	$\delta_{ extsf{H}}$ mult, (J in Hz)	No.	$\delta_{ m c}$, Type	$\delta_{ extsf{H}}$ mult, (J in Hz)
1	39.4, CH ₂	1.70/1.11, m	24	11.0, CH ₃	1.16, s
2	25.9, CH₂	1.98/1.77, m	25	16.4, CH₃	1.00, s
3	86.2 <i>,</i> CH	3.87, dd (12.3, 7.7)	26	18.0, CH₃	0.79, s
4	56.4 <i>,</i> Cq	-	27	27.4, CH₃	1.40, s
5	49.2, CH, overlapped	1.33, m	28	181.2, Cq	-
6	21.5, CH ₂	1.51/0.91, m	29	33.6, CH₃	0.88, s
7	33.7, CH ₂	1.54/1.24, m	30	25.0, CH₃	0.97, s
8	41.1, Cq	-	GlcA-1	104.3, CH	4.48, d (6.8)
9	48.2, CH	1.75, m	GlcA-2	78.3, CH	3.64, m
10	37.2, Cq	-	GlcA-3	85.9, CH	3.65, m
11	24.6, CH ₂	1.93/1.93, m	GlcA-4	73.2, CH	3.49, m
12	123.3, CH	5.30, t (3.3)	GlcA-5	76.7, CH	3.83, m
13	145.3 <i>,</i> Cq	-	GlcA-6	172.6, Cq	-
14	42.9, Cq	-	Gal-1	104.4, CH	4.46, d (1.6)
15	36.3, CH ₂	1.83/1.33, m	Gal-2	73.2, CH	3.48, m
16	75.4, CH	4.45, d (1.6)	Gal-3	75.2, CH	3.48, m
17	50.0, Cq	-	Gal-4	70.8, CH	3.81, m
18	42.2, CH	3.00, dd (14.3, 4.1)	Gal-5	77.2, CH	3.48, m
19	47.9, CH ₂	2.29/1.02	Gal-6	62.5, CH₂	3.79/3.73, m
20	31.6, Cq	-	Rha-1	103.5, CH	5.03, d (1.6)
21	36.7, CH ₂	1.94/1.14, m	Rha-2	72.2, CH	4.02, dd (3.3, 1.8)
22	32.9, CH ₂	1.91/1.76, m	Rha-3	72.3, CH	3.65, m
23	210.9, CH	9.44, s	Rha-4	73.9, CH	3.49, m
			Rha-5	70.7, CH	3.92, m
			Rha-6	17.9, CH₃	1.24, d (6.2)

Table S7. ¹H, ¹³C NMR spectral data for quillaic acid 3-*O*-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid} (9). NMR carried out in MeOH- d_4 , (400, 100 MHz)

Quillaic acid 3-O-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid}-28-O-[β -D-fucopyranosyl] (11)

No.	$\delta_{\rm C}$, Type	$\delta_{\rm H}$ mult, (J in Hz)	No.	$\delta_{\rm C}$, Type	δ_{H} mult, (J in Hz)
1	39.4, CH ₂	1.70/1.10, m	28	177.5, Cq	-
2	25.8, CH ₂	1.99/1.78, m	29	33.5, CH ₃	0.88, s
3	86.2, CH	3.84, dd (3.5, 1.8)	30	25.1, CH ₃	0.97, s
4	56.4, Cq	-	GlcA-1	104.3, CH	4.46, d (5.1)
5	49.4, CH, overlapped	1.33, m	GlcA-2	78.4, CH	3.63, m
6	21.5, CH ₂	1.52/0.92, m	GlcA-3	86.0, CH	3.64, m
7	33.6, CH ₂	1.53/1.24, m	GlcA-4	73.2, CH	3.48, m
8	41.1, Cq	-	GlcA-5	76.9, CH	3.79, m
9	48.2, CH	1.74, m	GlcA-6	Not detected	-
10	37.2, Cq	-	Gal-1	104.5, CH	4.45, d (5.9)
11	24.6, CH ₂	1.92/1.92, m	Gal-2	73.2, CH	3.48, m
12	123.5, CH	5.31, t (3.8)	Gal-3	75.2, CH	3.48, m
13	144.9, Cq	-	Gal-4	70.8, CH	3.81, m
14	42.8, Cq	-	Gal-5	77.2, CH	3.47, m
15	36.4, CH ₂	1.88/1.34, m	Gal-6	62.5, CH ₂	3.78/3.72, m
16	75.1, CH	4.53, t (4.2)	Rha-1	103.5, CH	5.02, d (2)
17	50.0, Cq	-	Rha-2	72.2, CH	4.02, dd (3.3, 1.8)
18	42.2, CH	3.01, dd (14.2, 5)	Rha-3	72.3, CH	3.65, m
19	47.9, CH ₂	2.30/1.05	Rha-4	73.2, CH	3.48, m
20	31.5, Cq	-	Rha-5	70.7, CH	3.92, m
21	36.6, CH ₂	1.94/1.16, m	Rha-6	18.0, CH ₃	1.24, d (2.2)
22	32.1, CH ₂	1.93/1.78, m	Fuc-1	96.2, CH	5.28, d (8.2)

23	210.9, CH	9.44, s	Fuc-2	79.5, CH	3.58, m
24	11.0, CH ₃	1.16, s	Fuc-3	75.5, CH	3.38, m
25	16.4, CH ₃	1.00, s	Fuc-4	73.0, CH	3.69, m
26	18.0, CH ₃	0.77, s	Fuc-5	70.8, CH	3.94, dd (4, 2.3)
27	27.4, CH ₃	1.39, s	Fuc-6	17.9, CH ₃	1.23, d (2.4)

Table S8. ¹H, ¹³C-NMR spectral data for quillaic acid 3-O-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-

glucopyranosiduronic acid}-28-O-[β -D-fucopyranosyl] (11). NMR carried out in MeOH- d_4 (600, 150 MHz)

Quillaic acid 3-*O*-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid}-28-*O*-{[α -L-rhamnopyranosyl-(1 \rightarrow 2)-[β -D-fucopyranosyl]} (13)

No.	$\delta_{\rm C}$, Type	$\delta_{ m H}$ mult, (J in Hz)	No.	$\delta_{\rm C}$, Type	$\delta_{ m H}$ mult, (J in Hz)
1	39.4, CH ₂	1.71/1.10, m	GlcA-1	104.3, CH	4.46, br d (1.2)
2	25.8, CH ₂	1.99/1.78, m	GlcA-2	78.3, CH	3.63, m
3	86.2, CH	3.86, dd (11.9, 4.6)	GlcA-3	86.0, CH	3.64, m
4	56.5, Cq	-	GlcA-4	73.2, CH	3.48, m
5	49.3, CH, overlapped	1.33, m	GlcA-5	76.9, CH	3.79, m
6	21.5, CH ₂	1.51/0.91, m	GlcA-6	173.4, Cq	-
7	33.6, CH ₂	1.54/1.34, m	Gal-1	104.5, CH	4.46, br d (4.5)
8	41.3, Cq	-	Gal-2	73.2, CH	3.48, m
9	48.2, CH	1.74, m	Gal-3	75.2, CH	3.47, m
10	37.2, Cq	-	Gal-4	70.8, CH	3.81, m
11	24.6, CH ₂	1.92/1.92, m	Gal-5	77.2, CH	3.47, m
12	123.4, CH	5.32, m	Gal-6	62.5, CH ₂	3.78/3.72, m
13	144.8, Cq	-	C ₃ -Rha-1	103.5, CH	5.03, d (1.3)
14	42.9, Cq	-	C ₃ -Rha-2	72.2, CH	4.02, dd (3.3, 1.8)
15	36.6, CH ₂	1.90/1.36, m	C ₃ -Rha-3	72.3, CH	3.65, m
16	74.8, CH	4.46, br d (2.4)	C ₃ -Rha-4	73.2, CH	3.48, m
17	50.2, Cq	-	C ₃ -Rha-5	70.7, CH	3.94, dd (10.9, 4.6)
18	42.6, CH	2.95, dd (14.3, 4.1)	C ₃ -Rha-6	17.9, CH ₃	1.24, d (6.3)
19	48.2, CH ₂	2.29, t, (13.6)/1.04	Fuc-1	95.4, CH	5.30, d (8.1)
20	31.5, Cq	-	Fuc-2	75.2, CH	3.79, m
21	36.6, CH ₂	1.94/1.18, m	Fuc-3	76.5, CH	3.65, m
22	31.9, CH ₂	1.93/1.83, m	Fuc-4	72.1, CH	3.59, m

23	210.9, CH	9.44, s	Fuc-5	72.8, CH	3.67, m
24	11.0, CH ₃	1.15, s	Fuc-6	16.5, CH ₃	1.22, d (6.4)
25	16.5, CH ₃	1.00, s	C ₂₈ -Rha-1	101.9, CH	5.32, br d (1.3)
26	18.0, CH ₃	0.78, s	C ₂₈ -Rha-2	72.1, CH	3.91, dd (3.4, 1.9)
27	27.3, CH ₃	1.39, s	C ₂₈ -Rha-3	72.2, CH	3.62, m
28	177.5, Cq	-	C ₂₈ -Rha-4	73.7, CH	3.38, m
29	33.5, CH ₃	0.88, s	C ₂₈ -Rha-5	70.5, CH	3.72, m
30	25.1, CH ₃	0.96, s	C ₂₈ -Rha-6	18.5, CH ₃	1.26, d (6.3)

Table S9. ¹H, ¹³C-NMR spectral data for quillaic acid 3-*O*-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid}-28-*O*-{[α -L-rhamnopyranosyl-(1 \rightarrow 2)-[β -D-fucopyranosyl]} (13). NMR carried out in MeOH- d_4 (600, 150 MHz)

Quillaic acid 3-*O*-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid}-28-*O*-{[β -D-xylopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[β -D-fucopyranosyl]} (15)

No.	$\delta_{ m C}$, Type	$\delta_{ m H}$ mult, (J in Hz)	No.	$\delta_{\rm C}$, Type	$\delta_{\rm H}$ mult, (J in Hz)
1	39.4, CH ₂	1.71/1.10, m	Gal-1	104.4, CH	4.46, d (3.5)
2	25.8, CH ₂	2.01/1.78, m	Gal-2	73.2, CH	3.48, m
3	86.2, CH	3.87, m	Gal-3	75.3, CH	3.48, m
4	56.6, Cq	-	Gal-4	70.9, CH	3.82, m
5	49.3, CH, overlapped	1.32, m	Gal-5	77.1, CH	3.47, m
6	21.7, CH ₂	1.50/0.91, m	Gal-6	62.4, CH ₂	3.80/3.70, m
7	33.6, CH ₂	1.50/1.32, m	C ₃ -Rha-1	103.4, CH	5.04, d (1.8)
8	41.1, Cq	-	C ₃ -Rha-2	72.3, CH	4.01, m
9	48.1, CH	1.74, m	C ₃ -Rha-3	72.3, CH	3.67, m
10	37.2, Cq	-	C ₃ -Rha-4	73.2, CH	3.49, m
11	24.6, CH ₂	1.92/1.92, m	C ₃ -Rha-5	70.5, CH	4.01, m
12	123.4, CH	5.31, t (3.8)	C ₃ -Rha-6	18.0, CH ₃	1.24, d (6.3)
13	144.8, Cq	-	Fuc-1	95.2, CH	5.28, d (8.2)
14	42.8, Cq	-	Fuc-2	74.8, CH	3.80, m
15	36.6, CH ₂	1.92/1.45, m	Fuc-3	76.7, CH	3.68, m
16	74.8, CH	4.49, d (4.4)	Fuc-4	72.0, CH	3.53, m
17	50.2, Cq	-	Fuc-5	72.9, CH	3.68, m
18	42.3, CH	2.94, dd (14.4, 4.5)	Fuc-6	16.7, CH ₃	1.22, d (6.4)
19	48.1, CH ₂	2.29/1.04, m	C ₂₈ -Rha-1	101.4, CH	5.37, br d (1.9)
20	31.4, Cq	-	C ₂₈ -Rha-2	72.0, CH	3.94, dd (5.3, 3.4)
21	36.6, CH ₂	1.92/1.18, m	C ₂₈ -Rha-3	72.2, CH	3.83, m
22	32.1, CH ₂	1.92/1.75, m	C ₂₈ -Rha-4	84.4, CH	3.54, m
23	211.6, CH	9.44, s	C ₂₈ -Rha-5	69.0, CH	3.79, m

24	11.1, CH ₃	1.16, s	C ₂₈ -Rha-6	18.5, CH ₃	1.31, d (6.1)
25	16.5, CH ₃	1.00, s	Xyl-1	107.1, CH	4.49, d (7.7)
26	17.8, CH ₃	0.75, s	Xyl-2	76.3, CH	3.23, m
27	27.3, CH ₃	1.38, s	Xyl-3	78.2, CH	3.35, m
28	177.5, Cq	-	Xyl-4	71.0, CH	3.50, m
29	33.5, CH ₃	0.88, s	Xyl-5	67.3, CH ₂	3.85/3.20, m
30	24.9, CH ₃	0.94, s			
GlcA-1	104.3, CH	4.39, d (7.8)			
GlcA-2	78.3, CH	3.62, m			
GlcA-3	86.2, CH	3.63, m			
GlcA-4	73.2, CH	3.49, m			
GlcA-5	76.7, CH	3.80, m			
GlcA-6	Not detected	-			

Table S10. ¹H, ¹³C-NMR spectral data for quillaic acid 3-*O*-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid}-28-*O*-{[β -D-xylopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[β -D-fucopyranosyl]} (15). NMR carried out in MeOH- d_4 (600, 150 MHz)

Quillaic acid 3-O-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid}-28-O-{[β -D-xylopyranosyl-(1 \rightarrow 3)-[β -D-xylopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[β -D-fucopyranosyl]} (17)

No.	$\delta_{ m C}$, Type	$\delta_{ m H}$ mult, (J in Hz)	No.	$\delta_{\rm C}$, Type	$\delta_{\rm H}$ mult, (J in Hz)
1	39.4, CH ₂	1.71/1.10, m	Gal-1	104.4, CH	4.46, d (6.9)
2	25.8, CH ₂	2.07/1.80, m	Gal-2	73.2, CH	3.49, m
3	86.3, CH	3.89, dd (12.7, 5.3)	Gal-3	75.2, CH	3.48, m
4	56.6, Cq	-	Gal-4	70.9, CH	3.82, m
5	49.6, CH, overlapped	1.32, m	Gal-5	77.1, CH	3.48, m
6	21.7, CH ₂	1.50/0.91, m	Gal-6	62.4, CH ₂	3.80/3.71, m
7	33.6, CH ₂	1.50/1.33, m	C ₃ -Rha-1	103.4, CH	5.04, br s
8	41.2, Cq	-	C ₃ -Rha-2	72.3, CH	4.02, m
9	48.1, CH	1.75, m	C ₃ -Rha-3	72.3, CH	3.67, m
10	37.2, Cq	-	C ₃ -Rha-4	73.2, CH	3.49, m
11	24.6, CH ₂	1.92/1.92, m	C ₃ -Rha-5	70.6, CH	4.01, m
12	123.4, CH	5.32, br s	C ₃ -Rha-6	18.0, CH ₃	1.24, d (6.2)
13	144.8, Cq	-	Fuc-1	95.2, CH	5.28, d (8.2)
14	42.8, Cq	-	Fuc-2	74.8, CH	3.80, m
15	36.6, CH ₂	1.92/1.45, m	Fuc-3	76.7, CH	3.68, m
16	74.8, CH	4.50, d (7.7)	Fuc-4	72.0, CH	3.53, m
17	50.2, Cq	-	Fuc-5	72.9, CH	3.68, m
18	42.3, CH	2.94, br d (15.9)	Fuc-6	16.7, CH ₃	1.22, d (6.7)
19	48.1, CH ₂	2.27, t (13.6)/1.05, m	C ₂₈ -Rha-1	101.4, CH	5.36, br s
20	31.4, Cq	-	C ₂₈ -Rha-2	72.0, CH	3.94, m
21	36.6, CH ₂	1.92/1.18, m	C ₂₈ -Rha-3	72.2, CH	3.83, m
22	32.1, CH ₂	1.92/1.76, m	C ₂₈ -Rha-4	84.4, CH	3.54, m
23	211.7, CH	9.44, s	C ₂₈ -Rha-5	69.0, CH	3.79, m

24	11.1, CH ₃	1.17, s	C ₂₈ -Rha-6	18.5, CH ₃	1.31, d (6.4)
25	16.5, CH ₃	1.00, s	Xyl (1)-1	107.1, CH	4.50, d (7.7)
26	17.8, CH ₃	0.74, s	Xyl (1)-2	75.2, CH	3.38, m
27	27.3, CH ₃	1.37, s	Xyl (1)-3	87.4, CH	3.51, m
28	177.5, Cq	-	Xyl (1)-4	69.5, CH	3.55, m
29	33.5, CH ₃	0.87, s	Xyl (1)-5	67.3, CH ₂	3.85/3.22, m
30	24.9, CH ₃	0.94, s	Xyl (2)-1	105.7, CH	4.54, d (7.9)
GlcA-1	104.3, CH	4.41, d (7.7)	Xyl (2)-2	75.2, CH	3.39, m
GlcA-2	78.3, CH	3.63, m	Xyl (2)-3	77.8, CH	3.40, m
GlcA-3	86.3, CH	3.63, m	Xyl (2)-4	71.1, CH	3.59, m
GlcA-4	73.2, CH	3.50, m	Xyl (2)-5	67.3, CH ₂	3.95/3.29 (overlapped), m
GlcA-5	76.7, CH	3.80, m			
GlcA-6	Not detected	-			

Table S11. ¹H, ¹³C-NMR spectral data for quillaic acid 3-*O*-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid}-28-*O*-{[β -D-xylopyranosyl-(1 \rightarrow 3)-(1 \rightarrow 3)- [β -D-xylopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[β -D-fucopyranosyl]} (17). NMR carried out in MeOH- d_4 (600, 150 MHz)

Quillaic acid 3-O-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid}-28-O-{[β -D-apiofuranosyl-(1 \rightarrow 3)-[β -D-xylopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[β -D-fucopyranosyl]} (19)

No.	$\delta_{\rm C}$, Type	$\delta_{ m H}$ mult, (J in Hz)	No.	$\delta_{\rm C}$, Type	$\delta_{\rm H}$ mult, (J in Hz)
1	39.4, CH ₂	1.71/1.10, m	Gal-1	104.3/104.3, CH	4.48, m
2	25.8, CH ₂	2.01/1.80, m	Gal-2	73.1, CH	3.49, m
3	86.3/86.4, CH	3.88, m	Gal-3	74.9, CH	3.50, m
4	56.5/56.6, Cq	-	Gal-4	70.8, CH	3.83, m
5	49.1, CH, overlapped	1.33, m	Gal-5	77.1, CH	3.50, m
6	21.6, CH ₂	1.50/0.91, m	Gal-6	62.4/62.5, CH ₂	3.81/3.71, m
7	33.6, CH ₂	1.50/1.34, m	C ₃ -Rha-1	103.3/103.4, CH	5.03, br t
8	41.1, Cq	-	C ₃ -Rha-2	71.9, CH	4.03, m
9	48.0, CH	1.73, m	C ₃ -Rha-3	72.2, CH	3.67, m
10	37.2, Cq	-	C ₃ -Rha-4	73.1, CH	3.49, m
11	24.6, CH ₂	1.92/1.92, m	C ₃ -Rha-5	70.6, CH	3.97, m
12	123.4/123.4, CH	5.31, m	C ₃ -Rha-6	18.0, CH ₃	1.24, d (6.2)
13	144.7/144.8, Cq	-	Fuc-1	95.1/95.2, CH	5.28/5.29, d (8.1)
14	42.8, Cq	-	Fuc-2	74.5/74.9, CH	3.80, m
15	36.6, CH ₂	1.92/1.45, m	Fuc-3	76.8/77.1, CH	3.68/3.69, m
16	74.4, CH	4.48, m	Fuc-4	72.1/72.2, CH	3.54/3.53, m
17	50.1/50.2, Cq	-	Fuc-5	73.0/72.9, CH	3.67/3.68, m
18	42.3, CH	2.94, br d (14.2)	Fuc-6	16.7, CH ₃	1.22, d (6.7)
19	48.1, CH ₂	2.27, td (13.7, 5.6)/1.05, m	C ₂₈ -Rha-1	101.4/101.3, CH	5.36/5.42, d (1.6)
20	31.4, Cq	-	C ₂₈ -Rha-2	71.9, CH	3.94/3.95, m
21	36.6, CH ₂	1.92/1.17, m	C ₂₈ -Rha-3	72.2/72.1, CH	3.80/3.81, m

22	32.1, CH ₂	1.92/1.74, m	C ₂₈ -Rha-4	84.4, CH	3.54/3.55, m
23	211.8, CH	9.45/9.46, s	C ₂₈ -Rha-5	69.0/68.9, CH	3.79/3.78, m
24	11.1, CH ₃	1.17/1.18, s	C ₂₈ -Rha-6	18.4, CH ₃	1.32, d (6.4)
25	16.5, CH ₃	1.00, s	Xyl-1	107.1/107.4, CH	4.49, m/4.50, d (1.6)
26	17.8, CH ₃	0.74, s	Xyl-2	75.8, CH	3.33/3.34, m
27	27.3, CH ₃	1.38, s	Xyl-3	85.2/85.5, CH	3.43/3.44, m
28	177.5/177.5, Cq	-	Xyl-4	69.6, CH	3.51/3.52, m
29	33.5, CH ₃	0.88, s	Xyl-5	67.3/67.0, CH ₂	(3.85/3.22)/(3.89/3.24), m
30	24.8/24.9, CH ₃	0.93/0.94, s	Api-1	111.0, CH	5.27, d (6.4)
GlcA-1	104.2/104.3, CH	4.46, d (6.4)	Api-2	78.0, CH	4.07, d (2.9)
GlcA-2	78.2, CH	3.63, m	Api3	80.8, Cq	-
GlcA-3	85.8/85.9, CH	3.66, m	Api-4	75.1, CH ₂	4.16, d (9.7)/3.83, m
GlcA-4	73.1, CH	3.50, m	Api-5	65.4, CH ₂	3.68, m
GlcA-5	76.6, CH	3.81, m			
GlcA-6	Not detected	-			

Table S12. ¹H, ¹³C-NMR spectral data for quillaic acid 3-*O*-{ α -L-rhamnopyranosyl-(1 \rightarrow 3)-[β -D-galactopyranosyl-(1 \rightarrow 2)]- β -D-glucopyranosiduronic acid}-28-*O*-{[β -D-apiofuranosyl-(1 \rightarrow 3)-[β -D-xylopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[β -D-fucopyranosyl]} (19). NMR carried out in MeOH-*d*₄ (600, 150 MHz). Chemical shifts marked in blue are reported for the two non-separable rotamers.

Gene ID	QsbAS1 co- expression (PCC)	Primordia transcript quantity (TPM)
Qs0264740	0.970	3604.71
Qs0072520	0.964	5217.33
Qs0322030	0.955	5578.42
Qs0179550	0.950	2386.09
Qs0098630	0.950	5624.47
Qs0307390	0.942	5437.64
Qs0206480	0.940	3999.06
Qs0264720	0.934	8901.26
Qs0264710	0.908	8728.14
Qs0302420	0.906	1891.92

Table S13.	Shortlisted	acyltransferases
------------	-------------	------------------

Quillaic acid triterpene

No.	$\delta_{ m C}$, Туре	$\delta_{ extsf{H}}$ mult, (J in Hz)
1	39.1, CH ₂	1.70/1.10, m
2 3 4 5 6	Not detected 85.8, CH 56.3, Cq HMBC 48.9, CH Not detected	3.87, m - 1.33, m
7	33.4, CH ₂	1.36/1.58
8 9 10	41.1, Cq HMBC 48.0, CH 37.1, Cq HMBC	- 1.74, m -
10	24.2. CH ₂	1.92/1.92. m
12	123.2, CH	5.33, m
13	144.5 <i>,</i> Cq	-
14	42.8, Cq HMBC	-
15	36.5, CH ₂	1.58/1.45, m
16	74.5, CH	4.45, d (2)
17	50.1, Cq HMBC	-
18	42.2, CH	2.94, br d (14.3)
19	48.0, CH ₂	2.30/1.05, m
20	31.3, Cq HMBC	-
21	36.4, CH ₂	1.93/1.18, m
22	34.1, CH ₂	1.67/1.67, m
23	211.2, CH	9.46, s
24	10.9, CH₃	1.16, s
25	16.3, CH₃	1.00, s
26	17.8, CH ₃	0.80, s
27	27.1, CH₃	1.39, s
28	177.3, Cq, <mark>HMBC</mark>	-
29	33.3, CH₃	0.89, s
30	24.9, CH₃	0.97, s

Table S14. ¹H, ¹³C NMR spectral data for quillaic acid (QA) triterpene core of semipurified QS-7 (20) produced in *N. benthamiana*. NMR carried out in MeOH-*d*₄ (600, 150 MHz)

Position	Semi-purified QS-7 ¹ H, ¹³ C-NMR	Literature ¹ H, ¹³ C-NMR
GlcA-1 GlcA-2 GlcA-3	4.40/104.2 3.65/78.2 3.67/86 5	4.37/103.9 3.65/78.4 3.68/86.4
GICA-3	3.57/30.5	2 52/71 7
GICA-4	2.52/71.0 2.50/77.2	2 50/77 5
GICA-6	Not detected	172 7
Gal-1	4 79/103 3	4 80/103 4
Gal-2	3 47/73 3	3 47/73 2
Gal-3	3 46/75 2	3 46/75 1
Gal-4	3.85/70.5	3.84/70.5
Gal-5	3.50/76.3	3.50/76.3
Gal-6	3.73. 3.78/60.1	3.73. 3.77/62.0
C ₃ -Xvl-1	4.61/104.7	4.62/104.5
C ₃ -Xvl-2	3.22/75.2	3.23/75.2
C ₃ -Xvl-3	3.32/78.0	3.32/78.0
C ₃ -Xyl-4	3.50/71.1	3.51/71.0
C ₃ -Xyl-5	3.23, 3.93/66.8	3.23/3.90/66.9
Fuc-1	5.44/95.0	5.44/94.9
Fuc-2	3.92/75.5 HMBC	3.86/76.2
Fuc-3	3.96/82.7 HMBC	3.96/82.3
Fuc-4	5.18/74.3	5.18/74.3
Fuc-5	3.88/71.1	3.87/71.1
Fuc-6	1.07/16.4	1.05/16.4
Rhal-1	5.08/101.3	5.09/101.8
Rhal-2	4.11/71.2	4.11/71.3
Rhal-3	3.87/81.5	3.86/83.2
Rhal-4	3.65/78.4	3.66/78.9
Rhal-5	3.80/69.3	3.79/69.4
Rhal-6	1.29/18.4	1.29/18.7
Rhall-1	4.88/104.9	4.92/104.8
Rhall-2	3.88/72.1	3.87/72.1
Rhall-3	3.55/72.2	3.55/72.2
Rhall-4	3.38/73.8	3.37/73.8
Rhall-5	3.58/71.0	3.58/71.1
Rhall-6	1.22/17.9	1.20/17.9
C ₂₈ -Xyl-1	4.69/105.4	4.69/105.2
C ₂₈ -Xyl-2	3.19/75.4	3.19/75.3
C ₂₈ -Xyl-3	3.39/86.1	3.34/86.0
C ₂₈ -Xyl-4	3.48/70.7	3.48/70.7
C ₂₈ -Xyl-5	3.17, 3.88/66.9	3.17, 3.87/66.9
Api-1	5.25/111.2	5.29/111.3
Api-2	4.06/77.6	4.03/78.0
Api-3	80.6, HMBC	80.2
Api-4	3.81, 4.17/75.1	3.80, 4.14/75.0
Api-5	3.67/65.5	3.64/65.6
Glc-1	4.55/105.4	4.55/105.1
Glc-2	3.30/75.3	3.29/75.4
Glc-3	3.35/77.8	3.35/77.7
Glc-4	3.33/71.3	3.34/71.2
Glc-5	3.37/77.8	3.36/77.9
Glc-6	3.72, 3.86/62.2	3.71, 3.85/62.2
Acetyl-CO	172.4, HMBC	NR
Acetyl-Me	2.16/21.0, HMBC	NR

Table S15. ¹H, ¹³C NMR spectral data for C₃, C₂₈ oligosaccharides of semi-purified QS-7 (20) produced in *N. benthamiana*. NMR carried out in MeOH-*d*₄ (600, 150 MHz). NR – Not reported

Sugar Nucleotide	MRM	Fragment
	transitions	
UDP-α-D-fucose	$549 \rightarrow 323$	[NMP-H] ⁻
(UDP-D-Fuc)	$549 \rightarrow 159$	$[H_4P_2O_7-H_3O]^-$
UDP-β-L-rhamnose	$549 \rightarrow 323$	[NMP-H] ⁻
(UDP-L-Rha)	$549 \rightarrow 159$	$[H_4P_2O_7-H_3O]^-$
UDP-GlcNAcA	$620 \rightarrow 403$	[NDP-H] ⁻
	$620 \rightarrow 159$	[H ₄ P ₂ O ₇ -H ₃ O] ⁻

Table S16. Relative retention times and MRM transitions of sugar nucleotides

Data S1. (separate file) Full list of primers for *Q. saponaria* genes cloned and described in this study. Primers were designed with 5' attB overhangs for Gateway® cloning (denoted in red). The names of genes found to be involved in QS biosynthesis are given to the right. Primers for making protein expression constructs are also listed (blue text denotes initiation codon and purple text denotes the sequence encoding hexahistidine and stop codon).

Data S2. (separate file) Full list of 35 full-length P450s identified in the *Q. saponaria* **1KP transcriptome.** Gene IDs for the re-assembled SRA data are shown in column B (with sequences in columns F-H) and the top hit from the original assembled 1KP data set (prefix OQHZ) are given in column C (available from http://www.onekp.com/public_data.html). The closest *Arabidopsis thaliana* matches identified through BLAST searches are given in column D. Column E indicates whether an identified gene was successfully amplified by PCR and tested for C-23 oxidase activity.

Data S3. (separate file) Summary of *Q. saponaria* **biosynthetic gene clusters as predicted by plantiSMASH.** Results of genome analysis by plantiSMASH are summarized and ordered according to cluster number. Functional gene annotations for the clustered genes are also included.

Data S4. (separate file) Compound names, numbers, gene sets, isolated yields, retention times and m/z values. The full and abbreviated names and numbers for the major compounds identified in this study along with isolated yields. Additionally, the specific set of genes which were transiently expressed in *N. benthamiana* in order to produce each compound (for both analytical and large-scale experiments) are provided, along with the m/z values and retention times for each product.

Data S5. (separate file) Full NMR spectra for each compound isolated from *N. benthamiana*. Copies of 1D (¹H, ¹³C, DEPTQ-135, DEPT-135 NMR) and 2D NMR (COSY, TOCSY, HSQC, HMBC, ROESY) spectra for the C-3 left hand side intermediates (6-9) and the C-28 right hand side pathway intermediates 11, 13, 15, 17 and 19.