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Abstract 
Introduction: Smoking lapses after the quit date often lead to full relapse. To inform the development of real time, tailored lapse prevention 
support, we used observational data from a popular smoking cessation app to develop supervised machine learning algorithms to distinguish 
lapse from non-lapse reports.
Aims and Methods: We used data from app users with ≥20 unprompted data entries, which included information about craving severity, mood, 
activity, social context, and lapse incidence. A series of group-level supervised machine learning algorithms (eg, Random Forest, XGBoost) 
were trained and tested. Their ability to classify lapses for out-of-sample (1) observations and (2) individuals were evaluated. Next, a series of 
individual-level and hybrid algorithms were trained and tested.
Results: Participants (N = 791) provided 37 002 data entries (7.6% lapses). The best-performing group-level algorithm had an area under the 
receiver operating characteristic curve (AUC) of 0.969 (95% confidence interval [CI] = 0.961 to 0.978). Its ability to classify lapses for out-of-
sample individuals ranged from poor to excellent (AUC = 0.482–1.000). Individual-level algorithms could be constructed for 39/791 participants 
with sufficient data, with a median AUC of 0.938 (range: 0.518–1.000). Hybrid algorithms could be constructed for 184/791 participants and had 
a median AUC of 0.825 (range: 0.375–1.000).
Conclusions: Using unprompted app data appeared feasible for constructing a high-performing group-level lapse classification algorithm but its 
performance was variable when applied to unseen individuals. Algorithms trained on each individual’s dataset, in addition to hybrid algorithms 
trained on the group plus a proportion of each individual’s data, had improved performance but could only be constructed for a minority of 
participants.
Implications: This study used routinely collected data from a popular smartphone app to train and test a series of supervised machine learning 
algorithms to distinguish lapse from non-lapse events. Although a high-performing group-level algorithm was developed, it had variable perfor-
mance when applied to new, unseen individuals. Individual-level and hybrid algorithms had somewhat greater performance but could not be 
constructed for all participants because of the lack of variability in the outcome measure. Triangulation of results with those from a prompted 
study design is recommended prior to intervention development, with real-world lapse prediction likely requiring a balance between unprompted 
and prompted app data.

Introduction
About 40% of smokers make a quit attempt each year,1 but 
of these, less than 5% who use no support remain abstinent 
for one year.2,3 Smoking lapses (ie, a temporary smoking ep-
isode after the quit date) are a key reason why people fail to 
quit, as they quickly lead to full relapse.4,5 The majority of 
those who experience an initial lapse during a quit attempt 
progress to full relapse, and this transition takes ~19 days 
on average.5 A recent Cochrane review concluded that brief, 
skills-based behavioral interventions do not help to prevent 

relapse.6 Studies harnessing real time, ecological momen-
tary assessments (EMAs) of smokers’ internal and external 
contexts indicate that lapse risk fluctuates over time, with 
different contextual and psychological variables important 
for different individuals. For example, situational cravings, 
stress, negative affect, and the presence of other smokers 
are associated with momentary lapse incidence.7–11 With 
hardware and software advances, real-time lapse risk sup-
port can be delivered via technology-mediated just-in-time 
adaptive interventions (JITAIs). Here, we used longitudinal, 
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observational, unprompted craving feature data from a pop-
ular smoking cessation app (“Smoke Free”) to train and test 
supervised machine learning algorithms to classify lapse in-
cidence at the group- and individual-level, with a view to 
informing the development of a JITAI to prevent lapses in 
smokers attempting to quit.

Supervised machine learning has previously been used to 
classify or predict smoking behavior in non-treatment-seeking 
smokers,12 smoking environments from images taken in non-
treatment-seeking smokers’ daily lives,13 smoking “opportu-
nity”14 or cravings15,16 in smokers attempting to quit, time to 
first lapse in smokers attempting to quit,17–19 and lapse “vul-
nerability” in smokers attempting to quit.20 Although findings 
to date indicate that supervised machine learning algorithms 
can predict several smoking-related events with acceptable ac-
curacy and precision, sample sizes tend to be small (N = 5 to 
349 participants), with few studies focusing specifically on the 
classification or prediction of lapses in smokers attempting to 
quit—thereby missing and important opportunity for future 
intervention. In addition, the few studies that have focused 
on lapse incidence or risk prediction tend to have deployed 
specialist equipment, including bespoke wearable physio-
logical sensors,19,20 which are not yet widely available in the 
general population of smokers. That said, machine learning 
algorithms incorporated into widely used smart watches for 
detecting smoking events are currently being developed, with 
a view to extending the work to lapse prediction in smokers 
attempting to stop.21

As a further consideration, previous research has fo-
cused on the development of group-level prediction 
algorithms. However, with growing evidence that lapse risk 
is idiosyncratic, with different factors important for different 
individuals,7–11 it is important to examine the performance 
of group-level algorithms for new, “unseen” individuals (ie, 
people who have just started using a smoking cessation app). 
Alternatively, algorithms using a combination of data from 
the group and a proportion of data from each individual—re-
ferred to as a “warm start”22—may lead to improved accu-
racy at the individual-level, important for the development 
of technology-mediated JITAIs. Such a hybrid approach has 
recently been applied within the weight loss domain, with the 
best-performing algorithms identified in preliminary develop-
ment work used to underpin a smartphone-based JITAI to 
prevent dietary lapses.23–25 However, to the best of our knowl-
edge, this approach has not yet been tested in the smoking 
cessation domain.

To develop algorithms that can be directly implemented 
in real-world contexts, it is important to study smoking 
lapses in the context of empirically supported yet popular 
and widely available smoking cessation tools. The Smoke 
Free app includes behavior change techniques that research 
suggests are likely to improve the chances of quitting.26 The 
app is live on app stores and has a large user base with >1 
million global downloads per year. The “pro” (paid) version 
of Smoke Free includes a craving feature, which allows users 
to self-initiate a new entry when experiencing a craving and 
asks them to indicate whether they have lapsed, their craving 
strength, how they are feeling, what they are doing and who 
they are with. With its large user base and embedded features 
to assess (near) real-time lapse risk in smokers attempting to 
stop, the Smoke Free app acts as a useful testbed for the de-
velopment of supervised machine learning algorithms to dis-
tinguish lapse and non-lapse reports.

Specifically, this study aimed to address the following 
objectives:

1. To develop a series of group-level algorithms (ie, 
algorithms trained on the entire dataset minus a hold-
out sample) and evaluate their ability to classify lapses 
for out-of-sample observations (ie, randomly selected 
observations in the dataset).

2. To evaluate the ability of the best-performing group-level 
algorithm to classify lapses for out-of-sample individuals 
(ie, each individual in the dataset).

3. To develop a series of individual-level algorithms and e-
valuate their ability to classify lapses for out-of-sample in-
dividual observations (ie, randomly selected observations 
in each individual’s dataset).

4. To evaluate the ability of a hybrid (ie, group- and 
individual-level) algorithm to classify lapses for out-of-
sample individuals.

Methods
Study Design
This was a longitudinal, observational study with unprompted 
(ie, self-initiated) repeated measures of lapse incidence nested 
within participants. The Smoke Free app is available in com-
mercial app stores (ie, the Apple App Store and the Google 
Play Store). The study protocol and exploratory analysis plan 
were preregistered on the Open Science Framework (osf.
io/rx3pn). Decisions as to whom to include in the analytic 
sample (eg, users with ≥10 or ≥20 craving feature entries 
made within the first 3 months after app registration) were 
made based on the empirical distribution, following inspec-
tion of the data.

Eligibility Criteria
Smokers were eligible for inclusion if they: (1) had purchased 
the “pro” version of Smoke Free on or after January 1st, 2020 
(when the app had migrated to a new backend server), (2) 
had their phone set to English language, and (3) had set a quit 
date for the 16-day period beginning 2 days before (t−2) and 
ending 14 days after (t+14) their date of registration (t).

Sample Recruitment
There was no active recruitment; participants had voluntarily 
downloaded the Smoke Free app and agreed for their data 
to be analyzed by researchers at University College London 
via an in-app agreement. Ethical approval for the study was 
obtained from UCL’s Research Ethics Committee (Project ID: 
15297/003).

Measures and Procedure
When downloading the Smoke Free app, users are asked to 
provide information on time to first cigarette (ie, ≤5 minutes, 
6–30 minutes, 31–60 minutes, and >60 minutes), cigarettes 
smoked per day, and set a quit date. No other baseline char-
acteristics are recorded.

Outcome Variable
The outcome variable was whether participants self-
reported a lapse (no vs. yes) via the app’s craving feature (see 
Supplementary Material, Figure S1). Participants’ interactions 
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with the craving feature were unprompted. Participants were 
not given any specific instructions as to when or how often to 
use the craving feature.

Explanatory Variables
Time-Invariant Variables
The time-invariant explanatory variables included time to first 
cigarette after waking up (ie, ≤5 minutes, 6–30 minutes, 31–60 
minutes, >60 minutes) and cigarettes smoked per day (contin-
uous), both entered on app download, once per participant.

Time-Varying Variables
When self-initiating a new craving feature entry, participants 
were asked to indicate their craving severity, how they are 
feeling, what they are doing, and who they are with. Although 
each craving entry is time-stamped, it is possible for the 
craving to have occurred some time ago (ie, retrospective re-
porting). Craving feature entries where the time difference 
between when the entry was made and the date/time the 
entry referred to was >24 hours were excluded to minimize 
reporting bias. The craving feature asked participants to indi-
cate when the craving occurred.

Time-varying explanatory variables grouped under “Feeling 
states” included craving severity (as indicated on a 11-point 
Likert scale; 0-10), annoyance (no vs. yes), anxiety (no vs. 
yes), boredom (no vs. yes), sadness (no vs. yes), happiness (no 
vs. yes), hunger (no vs. yes), and loneliness (no vs. yes).

Time-varying explanatory variables grouped under 
“Activity” (no vs. yes) included whether they are at a bar or 
event, chatting, drinking coffee  or tea, drinking alcohol, 
driving, going to bed, just eaten, just had sex, reading, 
relaxing, taking a break, thinking, waking up, and working.

Time-varying explanatory variables grouped under “Social 
context” (no vs. yes) included whether they are alone, with 
colleagues, with family, with friends, with their partner, and 
with strangers.

Time-varying explanatory variables grouped under 
“Temporal” included time of day (morning, midday, evening, 
and night), day of the week (Monday to Sunday), a derived 
cumulative time variable (in days) from the quit date, a var-
iable capturing the time (in minutes) since users’ previous 
craving feature entry, and a variable capturing whether the 
previous craving feature entry was a lapse (no vs. yes).

The time-varying explanatory variables captured feeling 
states, social context, etc., when the craving was experienced 
rather than when the entry was self-initiated (when these 
differed).

Data Analysis
The analyses were conducted in the R statistical program-
ming language (v.4.1.1) with the tidymodels framework 
of packages,27 setting the engine to the relevant algorithm 
type (eg, “ranger” for Random Forest (RF) or “glmnet” for 
Penalized Logistic Regression) and the mode to “classifica-
tion.” Four different types of supervised machine learning 
algorithms were trained and tested (ie, RF, Support Vector 
Machine (SVM), Penalized Logistic Regression, and Extreme 
Gradient Boosting), selected based on their relatively low 
computational demands (as the algorithm will ultimately be 
implemented within a smartphone app or similar), the avail-
ability of off-the-shelf R packages, and their relatively good 
interpretability compared with approaches such as deep 

learning (see the Supplementary Materials for an overview 
of the algorithms). As each algorithm uses different equa-
tions (with different numbers of terms) to estimate the model 
parameters, we aimed to compare their performance. Because 
of the nonuniform frequency of craving feature entries within 
and across participants, same-time (as opposed to lagged) 
predictor-outcome relationships were modeled.

Algorithm Training and Testing
Algorithm training and testing were performed through k-fold 
cross-validation,28 with k set to 10. For each iteration (or fold), 
algorithms were trained on 80% and tested on the remaining 
20% of the data, with the exception of the hybrid group- and 
individual-level algorithms (see Supplementary Materials for 
additional methodological detail and Supplementary Figure S2 
for an illustration of the train and test splits across the different 
objectives). The aim of the machine learning process is to min-
imize the out-of-sample error (ie, how accurately an algorithm 
can classify outcome values in a previously unseen sample). 
This is typically done by splitting the dataset (D) into a train set 
(Dtrain) of size N-K and a test set (Dtest) of size K, with the latter 
used to estimate the out-of-sample error (as it was not used 
during the learning phase). If K is too small, the out-of-sample 
error will be wide; and if K is too large, the in-sample error 
(in the training set) will be wide. Hence, the two types of error 
need to be balanced, and a widely used rule of thumb is to set 
K = N/5—that is, setting aside 20% of the dataset for testing.29

Predicted and observed outcomes were first compared to esti-
mate algorithm accuracy (ie, the proportion of true positives and 
true negatives), sensitivity (ie, the true positive rate), and spec-
ificity (ie, the true negative rate). Next, algorithm performance 
was evaluated by calculating an area under the receiver operating 
characteristic curve (AUC) estimate and an accompanying 95% 
confidence interval (CI) using the pROC package.30 The AUC 
captures the trade-off between sensitivity and specificity. AUC 
estimates with CIs that include 0.50 (ie, chance performance 
for a binary outcome) were considered unacceptable. For the 
group-level algorithms, we focused on the AUC as it provides an 
effective way to summarize the overall algorithm performance 
(ie, a single measure that takes both sensitivity and specificity 
into account, which precludes the need to present these sepa-
rately). For the individual-level algorithms, however, estimates 
were compared with prespecified thresholds for acceptable accu-
racy (0.70), sensitivity (0.70), and specificity (0.50).24 It is more 
costly for a future JITAI to miss a true positive (lapse) than a true 
negative (non-lapse) because the former may set the individual 
on a trajectory towards full relapse, and with support provided 
in lower risk situations unlikely to be harmful to individuals, 
which explains our lower specificity threshold (0.50). We, there-
fore, considered it important to present these performance 
metrics separately for the individual-level algorithms. We also 
present the AUC to enable direct comparison with the group-
level algorithms. See Supplementary Materials for additional 
details pertaining to each of the four study objectives, including 
sensitivity analyses conducted.

Results
A total of 19 365 participants registered to use the “pro” ver-
sion of the Smoke Free app within the study period, with 14 
419 (74.5%) participants eligible for inclusion (see Figure 
1). Of these participants, 791 (5.5%) had made ≥20 craving 
entries within 3 months from the date of app registration 
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and were included in the analyses, as a sufficient number of 
craving entries per participant was needed for the individual-
level algorithms to run (see Table 1). To examine algorithm 
robustness, sensitivity analyses were conducted with a dif-
ferent cutoff (ie, participants with ≥10 craving entries).

In the analytic sample (n = 791), participants provided a total 
of 37 002 craving entries with the median number of entries 
per participant being 31 (range: 20–686). The proportion of 
recorded lapse (vs. non-lapse) events across all craving entries 
were 7.6% (2816/37 002). The proportion of lapses (vs. non-
lapses) varied widely across users, with a median of 0% lapses 
(range: 0%–100%; see Supplementary Materials, Figure S3).

Objective 1 - Identifying a Best-Performing Group-Level 
Algorithm
The best-performing group-level algorithm was a RF algo-
rithm (AUC = 0.969, 95% CI = 0.961 to 0.978; see Figure 2, 

panel A). This was closely followed by an Extreme Gradient 
Boosting (XGBoost) algorithm, with an AUC of 0.966 (95% 
CI = 0.958 to 0.975), a Penalized Logistic Regression algo-
rithm (AUC = 0.952, 95% CI = 0.940 to 0.963), and a SVM 
algorithm (AUC = 0.947, 95% CI = 0.934 to 0.960). The 
parameter values and the variable importance for the best-
performing group-level algorithms selected after tuning are 
presented in Supplementary Materials, Table S1, and Figure 
S4, respectively.

In a series of sensitivity analyses, algorithm performance 
remained largely robust for the best-performing RF (AUC 
= 0.947, 95% CI = 0.936 to 0.958) and XGBoost (AUC 
= 0.943, 95% CI = 0.931 to 0.954) algorithms when ex-
cluding the “prior event lapse” predictor variable (Figure 
2, panel B). However, performance somewhat deteriorated 
for the SVM (AUC = 0.858, 95% CI = 0.840 to 0.876) 
and Penalized Logistic Regression (AUC = 0.815, 95% CI 
= 0.795 to 0.835) algorithms. When excluding participants 

Figure 1. Participant flow chart.
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with 0% lapses, performance for the RF (AUC = 0.950, 95% 
CI = 0.939 to 0.962), SVM (AUC = 0.928, 95% CI = 0.913 
to 0.943), Penalized Logistic Regression (AUC = 0.934, 95% 
CI = 0.921 to 0.947), and XGBoost (AUC = 0.948, 95% CI = 
0.936 to 0.959) algorithms remained largely robust (Figure 
2, panel C). When using a different cutoff for inclusion in 
the analytic sample (ie, ≥10 craving entries), algorithm per-
formance remained largely robust for the best-performing 
RF (AUC = 0.952, 95% CI = 0.943 to 0.960), SVM (AUC 
= 0.929, 95% CI = 0.917 to 0.941), Penalized Logistic 
Regression (AUC = 0.928, 95% CI = 0.916 to 0.940), and 
XGBoost (AUC = 0.947, 95% CI = 0.938 to 0.957; Figure 
2, panel D).

The most influential predictor variables for the original, 
best-performing group-level RF algorithm included whether 
or not the immediately preceding event was a lapse (time 
varying), craving severity (time varying), cigarettes smoked 
per day (time invariant), time to first cigarette (time invar-
iant), and whether the person was alone (time varying; see 
Figure 3).

Objective 2 - Performance of the Best-Performing Group-
Level Algorithm for Out-of-Sample Individuals
After removing participants with 0% or 100% lapses, algo-
rithm performance could be computed for n = 201 (25.4%) 
participants. The median AUC was high at 0.839; how-
ever, this metric varied widely across participants (range: 
0.482–1.000).

Objective 3 - Identifying Best-Performing Individual-Level 
Algorithms
After removing participants with insufficient data, algo-
rithm performance metrics could be computed for n = 39 
(4.9%) participants. Based on the AUC, the best-performing 
individual-level algorithms were of the type RF (43.6% of 
participants; 17/39), Penalized Logistic Regression (30.8% of 
participants; 12/39), SVM (17.9% of participants; 7/39), and 
XGBoost (7.7% of participants; 3/39). Figure 4 illustrates the 

frequency distribution of the performance metrics of interest 
for participants’ best-performing algorithms. The median 
AUC for participants’ best-performing algorithms was 0.938 
(range: 0.518 to 1.000).

In a sensitivity analysis examining the number of participants 
for whom the individual-level algorithm provided a benefit 
over the group-level algorithm, the individual-level algorithm 
was superior for the majority of participants (31/39; 79.5%). 
For the participants for whom the group-level algorithm was 
superior (8/39; 20.5%), a substantial benefit was observed 
only for a small minority of participants (see Supplementary 
Materials, Figure S5).

Next, we examined the proportion of participants with 
each of the predictor variables in their top 10 from their 
best-performing individual-level algorithm (n = 39; see 
Supplementary Materials, Figure S6). For example, craving 
severity and whether the prior event was a lapse were in-
cluded in 50% of participants’ top 10 lists.

Objective 4 - Performance of a Hybrid (Group- and 
Individual-Level) Algorithm
When repeating the analyses conducted to address Objective 2 
but with 20% of the individual’s data included in the training 
set (n = 184), the median AUC was 0.825 (range: 0.375 to 
1.000). The hybrid algorithm was superior to the group-level 
algorithm for 51.6% (95/184) of participants.

In a sensitivity analysis with 40% of the individual’s 
data included in the training set (n = 158), the median AUC 
remained largely robust at 0.824 (range: 0.392 to 1.000). 
This hybrid algorithm provided a benefit over the group-level 
algorithm for a slightly greater proportion (92/158; 58.2%) 
of participants.

Discussion
This study aimed to train and test a series of group- and 
individual-level supervised machine learning algorithms to dis-
tinguish lapse from non-lapse events in smokers attempting 

Table 1. Participant Characteristics

Total sample 
(N = 14 419)

Analytic sample with 20+ 
craving entries (N = 791)

Sensitivity sample with 10+ 
craving entries (N = 2167)

Cigarettes per day, mean 
(SD)

15.6 (8.4) 17.9 (9.0) 17.0 (8.5)

Time to first cigarette, N 
(%)

  ≤5 min 3867 (26.8%) 246 (31.1%) 650 (30.0%)

  6–30 min 5384 (37.3%) 307 (38.8%) 808 (37.3%)

  31–60 min 2804 (19.4%) 148 (18.7%) 441 (20.4%)

  >60 min 2364 (16.4%) 90 (11.4%) 268 (12.4%)

Craving entries, median 
(range)

3 (1, 686) 31 (20, 686) 16 (10, 686)

>5 recorded lapses, N (%) 127 (0.9%) 52 (6.6%) 103 (4.8%)

>5 recorded non-lapses, 
N (%)

3682 (25.5%) 779 (98.5%) 2116 (97.6%)

>5 recorded lapses and >5 
recorded non-lapses, N (%)

54 (0.4%) 40* (5.1%) 54 (2.5%)

*Although 40 participants had sufficient data for the individual-level algorithms, performance metrics could still not be computed for 1 participant, 
resulting in a total n = 39 participants.

D
ow

nloaded from
 https://academ

ic.oup.com
/ntr/advance-article/doi/10.1093/ntr/ntad051/7086681 by U

niversity of East Anglia user on 22 M
ay 2023

http://academic.oup.com/ntr/article-lookup/doi/10.1093/ntr/ntad051#supplementary-data
http://academic.oup.com/ntr/article-lookup/doi/10.1093/ntr/ntad051#supplementary-data
http://academic.oup.com/ntr/article-lookup/doi/10.1093/ntr/ntad051#supplementary-data


6 Perski et al.

to quit with the support of a popular smartphone app. A RF 
algorithm—which drew most heavily on a combination of 
time-varying (eg, whether the immediately preceding event was 
a lapse, craving severity, whether the person was alone) and 
time-invariant (eg, cigarettes smoked per day, time to first cig-
arette after waking up) predictor variables—classified out-of-
sample observations with high levels of accuracy, sensitivity, 
and specificity. However, when the best-performing group-level 
algorithm was used to classify lapses for unseen individuals 
(which would ultimately be the aim of a technology-mediated 
JITAI), performance was variable. Individual-level algorithms 
trained and tested on each individual’s data led to improved 
performance but could only be constructed for a minority of 
participants with a sufficient number of recorded lapse and non-
lapse events. Finally, a hybrid algorithm trained on the group 
plus a proportion of each individual’s data (20%–40%) led to 
somewhat improved performance compared with the group—
but not individual-level algorithm and could be constructed for 
a much larger proportion of participants (ie, 23.3% vs. 4.9%). 
It is plausible that the hybrid algorithms need additional indi-
vidual data to provide a benefit over the group-level algorithm.

Our results add to those from a recent body of work in 
which supervised machine-learning algorithms have been de-
veloped to classify or predict smoking-related events.12–14,17 In 
addition, we drew on a recent approach taken to train and 
test individual-level algorithms to predict dietary lapses,23 al-
cohol consumption,31 and loneliness and procrastination,32 
with a view to informing the development of a technology-
mediated JITAI. Although useful, individual-level algorithms 
could only be developed for a minority of participants in the 
present study. This may be interpreted to suggest that such 
an individual-level approach may not be feasible with rou-
tinely collected smoking cessation app data. In addition, 
as we, through a systematic approach, settled on including 
smokers who had reported >5 lapses and >5 non-lapses to 
train and test the individual-level algorithms, it is important 
to note that this subsample differed from the total sample 
with regards to key smoking characteristics (and possibly 
also sociodemographic characteristics). However, there was 
relatively little encouragement or incentive for participants to 
engage with the craving feature regularly and there was no 
indication within the app that providing such data could help 

Figure 2. Panel (A) Plot of the area under the receiver operating characteristic curve (AUC) estimate for each of the group-level algorithms; panel (B) 
sensitivity analysis excluding the “prior event lapse” predictor variable; panel (C) sensitivity analysis excluding participants with 0% lapses; panel (D) 
sensitivity analysis using a different cutoff for inclusion in the analytic sample (ie, ≥10 craving entries).
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to develop better support. Adding these elements into an app 
could improve engagement and may extend the proportion of 
participants for whom this individual-level approach could be 
feasible (discussed further below).

Strengths and Limitations
This study was strengthened by drawing on routinely collected 
craving feature data from a popular smoking cessation app, 
with the data structure representing real-world conditions. 
Specifically, the data structure provides a realistic estimate of 
how much data to expect and what the data will look like in 
an unprompted study design. The study was also strengthened 
by the involvement of an interdisciplinary team of researchers 
working across the diverse fields of tobacco control, behav-
ioral science, data science, and machine learning.

There were also important limitations. First, the occur-
rence of lapses was self-reported (rather than biochemically 
verified or relying on passive sensing) and although the un-
prompted and non-incentivized study design represented 
real-world conditions, it likely influenced the data quality. For 
example, app users may have been less likely to self-initiate a 
new craving feature entry when they had lapsed. The distri-
bution of the proportion of recorded lapses (vs. non-lapses) 
lends support to this: most participants in the analytic sample 
reported 0% lapses. It remains an empirical question as to 
whether a similar pattern of lapses (vs. non-lapses) would be 
observed if using a prompted study design. However, in a re-
cent study using EMAs, 56.5% of the sample recorded at least 
one lapse in the first week of the quit attempt,8 which suggests 
that the large proportion of participants with 0% lapses in 
the present study is likely reflective of self-selection bias, 
which may have materialized in two different ways. First, by 
setting the cutoff for inclusion to ≥20 diary entries, we may 
have excluded users who lapsed early in the quit attempt and 
disengaged from the app, thus retaining only the most highly 
engaged users (and also successful quitters). The digital health 

literature shows a pattern of “reverse causality,” with those 
continuing to engage with digital health tools being more 
likely to remain abstinent from smoking.33,34 Alternatively, 
the observed pattern may reflect a bias with regard to how 
smokers engaged with the app: participants may have been 
prone to use the craving feature to record situations that did 
not result in a lapse. As our sample included participants with 
100% lapses, this lends further support to the argument that 
the distribution of lapses in the present study is likely more 
a reflection of how participants self-selected to engage with 
the app rather than the actual course of events. In a study 
using a prompted design, one would not expect any users 
with 100% lapse entries. We, therefore, recommend repeating 
the analyses using data from a prompted study design (eg, 
using both signal- and event-contingent EMAs), with results 
triangulated with those from the present study to arrive at a 
better understanding of the trajectory of lapses.

Second, also due to the unprompted study design, the fre-
quency of and temporal distance between craving feature 
entries were not uniform across participants. Craving fea-
ture entries were typically made several days rather than 
hours apart. We were therefore unable to lag measurements, 
which is typically done in EMA studies (eg, cravings meas-
ured at t1 are typically used to predict lapses at t2). Therefore, 
the present study was limited by modeling same-time (or 
“contemporaneous”) predictor-outcome associations, with 
participants potentially recording a lapse and inferring (at 
the time of reporting) that they must therefore have experi-
enced a strong craving or felt stressed. In addition, the nonu-
niform frequency of and temporal distance between craving 
feature entries also means that it took participants varying 
amounts of time to reach the minimum of 20 craving feature 
entries (and, by extension, the >5 lapses and >5 non-lapse 
reports required for the individual-level algorithms), which 
may have influenced both algorithm performance and vari-
able importance scores. Related to this, we observed that dif-
ferent predictor variables were estimated as important for the 

Figure 3. Variable importance plot for the best-performing group-level Random Forest algorithm. The variable importance score does not indicate the 
direction of the relationship between the predictor and outcome variable.
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different group-level algorithm types (eg, the variable “prior 
event lapse” was estimated as key in three of four group-level 
models, but there was considerable variability in the other 
predictors estimated as important). This may be interpreted to 
suggest that care needs to be taken by researchers prior to de-
signing JITAIs that rely on estimates from the variable feature 
importance function or similar functions (eg, a JITAI designed 
to deliver a specific type of intervention/message based on the 
variables estimated as being most important for predicting 
lapse incidence), irrespective of whether the algorithm is op-
erating at the group- or individual-level. In addition, a series 
of sensitivity and stability analyses (eg, partial dependence 
plots) are recommended to ensure that predictor variables 
remain robust across different mathematical formalisms (ie, 
algorithm types), as results can be sensitive to aspects such 
as collinearity of the predictor variables.35 Such robustness 
analyses, in addition to external validation, are needed prior 
to providing additional interpretation as to which predictor 
variables appear most important and why and explains why 
we remain cautious here as to the interpretation of the results 
from the variable importance function.

Third, there is evidence to suggest that the likelihood of 
self-initiating craving feature entries during/after particular 

events (eg, drinking alcohol, lapsing, and socializing) likely 
varies,36 which may have affected the apparent importance of 
particular variables in the classification of lapses.

Fourth, the supervised machine learning algorithms tested 
in the present study assume the independence of observations. 
Although the approach taken was deemed appropriate given 
the aims of the present study, future research would benefit 
from exploring more advanced methods (eg, multilevel or re-
current neural network algorithms) that better account for 
nested observations within individuals over time.

Finally, as the dataset was imbalanced, random up- or 
down-sampling with replacement was used prior to al-
gorithm training and testing. However, it has been found 
that imbalance correction through random up- or down-
sampling can sometimes lead to poorly calibrated models, 
with the probability of belonging to the minority class being 
overestimated.37

Implications for Research and Practice
Pending data on the distribution of lapses (vs. non-lapses) at 
the within-person level in a prompted study design, a different 
outcome variable with greater within-person variability and 

Figure 4. Frequency distributions of the performance metrics of interest (ie, accuracy, sensitivity, specificity, AUC) for the best-performing individual-
level algorithms (n = 39). The shaded gray areas represent the prespecified thresholds for acceptable accuracy (0.70), sensitivity (0.70), specificity 
(0.50), and AUC (0.50). The solid vertical lines represent the median.
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frequency (eg, craving severity) may be needed. As a few 
early lapses typically lead to full relapse,38 there may be in-
sufficient variation in the outcome for individual-level mod-
eling. However, the individual-level algorithms performed 
better than the group-level algorithms for the minority of 
participants with a sufficient number of recorded lapse and 
non-lapse events. Thus, we would argue that—drawing also 
on data from several other studies highlighting the idiosyn-
cratic nature of lapse risk in smokers attempting to stop, with 
different factors important for different individuals7–11—there 
is merit in further exploring the potential of the individual-
level, or hybrid group- and individual-level, algorithms. 
Future work would also benefit from external validation of 
the algorithms trained and tested here in a different sample.

As we used routinely collected data from a popular 
smoking cessation app, we did not incorporate several 
variables that are known to be strongly associated with lapse 
risks, such as cigarette availability or self-efficacy.7,10 Apart 
from the craving severity variable, the items used to capture 
the psychological and contextual information were limited 
to binary response options. Future work would benefit from 
incorporating a wider range of theoretically and empirically 
informed predictor variables, using items with a wider range 
of response options to increase power to detect potentially 
subtle associations.

Finally, the frequent self-reports required for accurate 
individual-level classification may not be feasible under real-
world conditions and some may argue that JITAIs are limited 
insofar as they require frequent active user input (eg, EMAs) 
in order to function (eg, to estimate the need for support 
and what type of support would be most effective). Similar 
to recent work conducted in the smoking and dietary lapse 
fields,39,40 exploring the predictive power of passively col-
lected sensor data (eg, step count, GPS, heart rate variability) 
is an important avenue for future research.

Conclusion
Using unprompted app data appeared feasible for constructing 
a high-performing group-level lapse classification algorithm 
but its performance was variable when applied to unseen 
individuals. Algorithms trained on each individual’s dataset, 
in addition to hybrid algorithms trained on the group plus 
a proportion of each individual’s data, had improved per-
formance but could only be constructed for a minority of 
participants.
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