
A Novel Physics-informed Framework for Real-time Adaptive Modal Parameters
Estimation of Offshore Structures

Fushun Liua,b,∗, Qianxiang Yua, Hong Songa, Xingguo Lia, Lihua Liua, Dianzi Liuc

aCollege of Engineering, Ocean University of China, Qingdao 266100, China
bShandong Province Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao 266100, China

cSchool of Engineering, University of East Anglia, Norwich, NR14 7TH, United Kingdom

Abstract

Singular value decomposition provides a rigorous mathematical foundation for these monitoring meth-

ods, such as modal analysis, damage detection, etc. As substantial limitations including computational

efficiency and adaptive capabilities have been identified in the matrix process, data-driven algorithms with

enhanced efficiency and accuracy to adapt the rapid development of information and technologies have been

highly required in offshore structures monitoring. To meet this demand, a novel physics-informed frame

work enabling the real-time adaptive monitoring has been proposed in this paper. The working principle

of the developed framework has been represented by the smart conversion of physics-informed modal i-

dentification into the optimal process of fast and accurate solving an eigensystem governed by differential

equations via recurrent neural network. The ingenious design of the proposed framework has complied

with the rule of singular value decomposition used for modal identification and therefore, learning capa-

bilities of the physics-informed framework have been remarkably enhanced by successfully addressing two

bottleneck problems including proper initialized input values and the optimal time increment of the devel-

oped recurrent neural network. Both numerical simulations and the field-data based study of a mono-pile

offshore wind turbine structure have been presented to examine the superior performance of the proposed

framework. Results have shown that the proposed framework has the ability to adaptively identify modal

parameters with a higher level of computational efficiency as compared with traditional methods. Further-

more, the computational advantage of the develop framework has demonstrated the potential to integrate

with sensor networks and edge computing for smart monitoring and maintenance in various engineering

subjects.

Keywords:

Offshore structures; Singular value decomposition; Physics-informed; Adaptive modal identification;

Recurrent neural network;

1

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



1. Introduction

Machine learning (ML) techniques have demonstrated the powerful ability to conduct analysis, predic-

tion, diagnosis and other mathematically formulated experiments arising from a broad range of engineering

and science projects. With the rapid development of information and sensing technologies, ML has been

extensively employed to solve the problems in the areas of structural health monitoring and safety assess-

ment by researchers in the last few decades. To realize adaptive capabilities, distributed edge computing

and adaptive identification for real-time health monitoring, big-data analysis-based ML techniques have

been used to assist modal analysis, data anomaly identification (Ahmad et al., 2017, Erhan et al., 2021, Mao

et al., 2020), structural damage monitoring and detection (Avci et al., 2021, Feijo et al., 2021, Puruncajas

et al., 2020, Yao et al., 2019), life evaluation and prediction (Weijtjens et al., 2016), etc., leveraging to their

advantages in intelligent optimization, non-linear expression, data modelling, and fast execution (Flah et al.,

2021, Lei et al., 2022, Lu et al., 2018, Yuan et al., 2020).

In the long-term service life, the potential fatigue or damage of offshore structures, such as offshore

wind turbine (OWT) and platforms can be caused by environmental and operational loadings, leading to

the changes in modal parameters. Therefore, the real-time and adaptive monitoring is essential for offshore

structures safely operating in complex ocean environment, such as modal analysis, damage detection, etc.

Benefiting from advances in modal analysis technology, the operational modal analysis (OMA) method has

become more popular and extensively applied in offshore engineering practices. It enables the extraction

of modal parameters based on measuring the responses of offshore structures under the ambient or oper-

ational excitation that is not required to be measured (Bao and Shi, 2019, Dong et al., 2018, Zhou et al.,

2019). To achieve reliable inspections of structures and maintain the serviceability at acceptable levels, the

improved demand on self-autonomy of modal identification has been an emerging challenge in the field

of structural health monitoring. Many researchers have been working on the realization of more adaptive

modal analysis methods using ML technologies. Devriendt et al. (Devriendt et al., 2014) combined the

traditional stability diagram with data clustering algorithm to realize the automatic modal identification of a

mono-pile offshore wind turbine structure. Su et al. (Su et al., 2020) applied the uncertainty map method to
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achieve the autonomous identification of modal parameters using the convolutional neural network (CNN)

image recognition algorithm and solved the problems including the large computational complexity and

manual dependence on the stability graph. Torbol et al. (Torbol and Park, 2018) introduced an innovative

non-contact sensing technique for vision-based displacement measurement using the K-means clustering

algorithm to identify structure modal parameters. Worden et al. (Worden and Green, 2017) demonstrated

a data-based approach motivated by Shaw-Pierre method to exploit the non-linear modal analysis. Olivi-

er et al. (Olivieri et al., 2020) developed an online modal parameters identification system to exploit the

frequency measurements obtained from actual PMU devices by a ML approach with offline training. Mean-

while, many researchers have tried to obtain modal parameters directly by neural networks. Qin et al.

(Qin et al., 2021) proposed a new parameter identification method under non-white noise excitation using

the transformer encoder and long short-term memory networks (LSTMs) and applied the random decre-

ment technique (RDT) to preprocess the noised input data. Fang et al. (Fang et al., 2017) developed an

unsupervised-learning CNN to identify the modal parameters only from acceleration signals. In general, it

is difficult to directly apply neural networks to precisely identify modal parameters because of the specific

physical constraints between modalities, which obstruct the network convergence to the expected modal

characteristics. For many cases related to physical system modellings, there are a lot of prior knowledge

hidden in the response data. These rules can act as a regularization agent in the network to limit the space

of admissible solutions to a manageable size. Inspired by the physics-informed learning models, Facchini

et al. (Facchini et al., 2014) defined a feed-forward back-propagation (FFBP) network which was fed with

four frequency-dependent indicators based on specific properties of the spectral tensor extracted from vi-

bration measurements, and applied this network to assess structural eigenvalues and eigenmodes. Bao et al.

(Bao and Li, 2020) proposed a self-coding deep neural network using a novel loss function to constrain the

independent feature under the consideration of uncorrelated and non-Gaussian relationship between each

modal component for the realization of structural modal parameters.

Taking into account the aforementioned situations, the ML techniques can provide a feasible and effec-

tive approaches to realize a more adaptive modal analysis for health monitoring of offshore structures and

further implemented in the structural performance evaluation, such as fatigue analyses (Liao et al., 2022)

and reliability analyses (Luo et al., 2022a,b, Teng et al., 2022). What’s more, the neural network-based

modal identification can achieve a more convincing modal identification using prior physical knowledge

than the methods simply implemented by neural networks. Therefore, a novel physics-informed framework
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enabling the real-time adaptive performance monitoring has been proposed and verified by an in-service

OWT structure in this paper to realize a more efficient and accurate modal parameters extraction from

structural vibration responses. The ingenious design of the proposed framework has complied with the rule

of singular value decomposition (SVD) used for modal parameters identification by the smart conversion of

physics-informed modal identification into the optimal process of fast and accurate solving a set of differ-

ential equations via a novel designed recurrent neural network (RNN). It should be noted that the proposed

RNN-SVD is rigorously governed by the differential equations following the recurrent calculation process,

whilst the traditional RNN is a data-driven method without the guidance of mathematical or physical knowl-

edge in post-propagation updating, causing the gradient vanishing, high computational cost, etc.(Choe et al.,

2021, Qiu et al., 2020, Schmidt, 2019) Therefore, the computational complexity of SVD has been effective-

ly reduced, leading to its more applications in embedding systems and edge computations. Meanwhile,

considering the changeable external load conditions in practical offshore engineering problems, a data pat-

tern matching mechanism has been implemented into the proposed framework to adaptively determine the

network hyper-parameters throughout the offline pre-training process. Following that, numerical examples

have been examined to demonstrate the correctness and effectiveness of the developed physics-informed

network in terms of the time step and initial conditions. To further prove the ability of the proposed frame-

work on real-time modal monitoring under time-varying external conditions, a vibration response dataset of

an in-service OWT structure subject to different operational environments has been tested.

2. Methodology

SVD is a mathematical representation for general matrices used in many modal analysis methods such

as stochastic subspace identification (SSI) (Peeters and De Roeck, 1999), eigensystem realization algorithm

(ERA) (Ibrahim and Mikulcik, 1977, James et al., 1995, Juang and Pappa, 1985), Pole-residues method

(Liu et al., 2016, Zhou et al., 2019) etc. which are an important class of OMA algorithms and have been

extensively developed in the field of structural health monitoring. The common principle for the aforemen-

tioned methods is to establish the mathematical model of the system representing the relationship between

the structural response and system eigenvalues for the identification of modal parameters. In order to re-

alize a more adaptive and efficient modal identification method, the proposed framework has replaced the

traditional SVD used in these methods with a RNN to effectively reduce the calculation complexity for

real-time structural monitoring. Meanwhile, the pre-training mechanism has been implemented into the
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framework by the mapping of structural responses to the specific data pattern prior to modal identification

in order to enable the framework with the more adaptability to offshore structures subject to different exter-

nal loadings. To demonstrate the proposed physics-informed modal identification framework leveraging the

working principle of SVD-based methods, the Pole-residues method as an example of signal decomposition

technique for singular values, has been briefly introduced as follows. For simplicity, the standard notation

has been applied throughout the paper: The lowercase letter, bold lowercase letter and bold uppercase letter

represent the scalar, vector and matrix, respectively.

2.1. Principle of the Pole-residues method

The transfer function in the Pole-residues method provides a foundation to determine key characteristics

of the system response using poles and zeros, instead of solving the complex differential equation. In the

digital signal analysis, a discrete structural response signal yk in finite time steps can be formulated in a

Pole-residues form shown in Eq. (1):

yk ≡ y(tk) =
L∑
n=1

rne
λnk∆t (1)

where yk encompasses a complex series of components. λn and rn are poles and residues of the nth

component, respectively. λn is expressed in the form of λn = −αn + jωn, αn represents the damping

factor and ωn means the frequency in radians, j =
√
−1. ∆t denotes the finite time step and tk = k∆t.

The structural response can be determined by a Hankel matrix H(k) that is defined as:

H(k) =


y
k

y
k+1

· · · y
k+η−1

y
k+1

y
k+2

... y
k+η

...
...

. . .
...

y
k+ξ−1

y
k+ξ

· · · y
k+ξ+η−1

 (2)

where ξ and η represent the selected row and column of H(k). Then, substituting k = 0 into Eq. (2) and

applying the SVD:

H(0) =
[
U1 U2

]S1 0

0 0

V
>
1

V
>
2

 = U1S1V
>
1 (3)

where the superscript > denotes the matrix transpose.

Note that the H(k) can be expressed as the product of three matrices: H(k) = PξA
kQη, where Pξ

is the observability matrix, Qη is the controllability matrix and A is the system matrix (Lam and Mevel,
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2011). Then, the H(0) and H(1) yield:

H(0) = PξQη (4)

H(1) = PξAQη (5)

The comparison of Eqs. (3) and (4) suggests a ”possible balanced choice” (Hu et al., 2013): Pξ =

U1S
1/2
1 and Qη = S

1/2
1 V>1 , so the Eq. (5) can be reformulated as Eq. (6):

H(1) = U1S
1/2
1 AS

1/2
1 V>1 (6)

Thus, the realization of the system matrix A is achieved by Eq. (7) below:

A = S
−1/2
1 U>1 H(1)V1S

−1/2
1 (7)

For more details about solving Eq. (1) with a stable numerical solution, see Hu (Hu et al., 2013).

Usually, the poles λn can be formulated as a function of the eigenvalues zn of the system matrix A: λn =

ln(zn)/∆t. Substituting the calculated λn into Eq. (1), the residues rn can be obtained using the linear

least square method.

The aforementioned principle enables the Pole-residues method a powerful tool for modal analysis of

structures subject to arbitrary external excitations. However, in the practical engineering, the following

three deficiencies greatly limit the application of these methods for online modal monitoring:

1) The complexity of traditional SVD in the computation process is increased with the order of O(N3)

(N means the dimension of Hankel matrix);

2) The dimension of response matrix needs to be determined based on much experience and prior

knowledge;

3) There is no standard guidance for the model order estimation which needs to be adapted to the time-

varying environment in real-time monitoring.

To overcome the above limitations, a physics-informed framework with higher computational efficiency

and better adaption to the real-time monitoring has been proposed in the following section.

2.2. Physics-informed framework

To achieve the higher efficiency and more adaptive modal identification, a physics-informed framework

has been proposed to solve an eigensystem governed by differential equations using RNN. The developed
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framework aims at achieving two features: 1) the advantages of traditional OMA methods should be max-

imally inherited to enable the designed network encompassing the physical principle-based information by

strict mathematical constraints; 2) the measured field-data based on different operational conditions should

be adaptively recognized by its pattern for the determination of appropriate hyper-parameters, such as de-

composition orders. Based on these understandings, a RNN with optimized parameter and data-pattern

matching ability has been designed to solve modal identification problems arising in the adaptive real-time

structural monitoring process.

2.2.1. Singular solution using recurrent network

In modal analysis methods such as ERA method, the SVD process is a key step to obtain the system

eigenvalues from the Hankel matrix. However, the expensive computation involved in the SVD refrains the

modal analysis techniques from streaming data processing in online monitoring. Researches on the efficient

realization of SVD have been paid attention by many scholars, such as Feng (Feng et al., 1995), Oja (Oja,

1982), Cichocki (Cichocki, 2002) etc. Based on the understanding of the SVD decomposition process

assimilated into the solution to an eigensystem governed by differential equations, Feng (Feng et al., 1995)

proposed a combination of the first principal component analysis with anti − Hebb rules to iteratively

extract the singular values and their corresponding left and right singular vectors. Thus, the process of SVD

is converted into the problem of solving non-linear differential equations which have been defined by Eqs.

(8 - 10):

dpj(t)

dt
= δa(Gjqj(t)− ‖pj(t)‖22 pj(t)) j = 1, 2, · · · ,M ; (8)

dqj(t)

dt
= δb(G

>
j pj(t)− ‖qj(t)‖22 qj(t)) j = 1, 2, · · · ,M ; (9)

Gj =

 G, j = 1

G− ljσjrj , others
(10)

where G represents a general matrix with M × N(M < N) dimensions (it will be replaced by the Han-

kel matrix H(0) in Eq. (3) for the modal analysis). δa and δb are constant coefficients. The subscript j

is the order number of singular values (in descending order). The pj and qj are the given vector vari-

ables, pj ∈ RM , qj ∈ RN . When t becomes infinite, (||pj ||22)−1pj → ±lj , (||qj ||22)−1qj → ±rj , and

||pj ||22(||qj ||22) → σj that indicates the solutions to Eqs. (8) and (9) reach the balance point in an equi-

librium state, where lj , rj and σj are the jth left singular vector, right singular vector and corresponding

7

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



singular value, respectively. Meanwhile, the loss equations of Gjqj(∞) − ‖pj(∞)‖22 pj(∞) = 0 and

Gjp
>
j (∞) − ‖qj(∞)‖22 qj(∞) = 0 are satisfied. Here, the p1(∞) and q1(∞) are called the first prin-

cipal components. The first principle component rule is explained by Eq. (10) which indicates that each

component is independently extracted from G and the previous component would affect the next one.

It should be noted that the proposed framework in this paper is a recurrent neural network directly

constructed by two-dimensional differential equations (Eqs. 8 - 9) for solving the SVD (singular value

decomposition) problem, whilst the traditional PINN (physics-informed neural network) focuses on solving

partial differential equations. To validate the convergence of Eqs. (8 - 10), Feng etc. (Feng et al., 1997)

introduced the energy function defined by Eq. (11):

Ej(t) = p>j (t)Gqj(t)−
1

4
(‖pj(t)‖42 + ‖qj(t)‖42) (11)

Following the first principle component rule, the differential equation of the first energy function E1(t) can

be formulated as follows:

dE1(t)

dt
= (

dp>1
dt

)[Gq1(t)− ‖p1(t)‖22 p1(t)] + (
dq1

dt
)[p>1 (t)H − ‖q1(t)‖22 q>1 (t)]

=

∥∥∥∥dp1

dt

∥∥∥∥2

2

+

∥∥∥∥dq1

dt

∥∥∥∥2

2

≥ 0

(12)

The result of Eq. (12) indicates that the E1(t) is monotonically increasing, which means the system

of Eqs. (8) and (9) would not be convergent until getting to the balance points. Actually, there are totally

M + 1 balance points in the form of (0, 0) & (
√
σmlm,

√
σmrm) (m = 1, ...,M). And the first non-zero

point(
√
σ1l1,

√
σ1r1) is the true and global balance point which is known by employing the ”First Method

of Lyapunov”. Similarly, the second principal component can be obtained using Eqs. (13) and (14):

dp2(t)

dt
= δa(G2q2(t)− ‖p2(t)‖22 p1(t)) (13)

dq2(t)

dt
= δb(G

>
2 p2(t)− ‖q2(t)‖22 q1(t)) (14)

where G2 is obtained by Eq.(10):

G2 = G− l1σ1r1 (15)

It should be noted that Eq. (10) is a key procedure in the whole recurrent process to lead the system

converge to the next global balance point. In Eq. (15), the system matrix G is updated by eliminating the
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first component from the original system matrix. After that, the system of Eqs. (13) and (14) remains M

balance points: (0, 0) & (
√
σmlm,

√
σmrm) (m = 2, ...,M) and the second non-zero point (

√
σ2l2,

√
σ2r2)

represents the new global balance point. The reason for the matrix reduction lies in the fact that all principal

components are coupled but orthogonalized with each other. The first principle component rule is used

to realize the de-orthogonalization each of the component in the recurrent process. Following the above

procedures, all singular values (in descend order) and its corresponding left and right vectors of matrix G

can be accurately obtained.

To realize the above process, a linear recurrent neural network has been developed as RNN-SVD shown

in Fig. 1. In the network, the linear fully connected (FC) layer is utilized to represent the matrix multipli-

cation operation in Eqs. (8) and (9). The loss function is defined by Eq. (16). And G, pj(0), qj(0) and

∆tj(0) are the inputs of the network. pj(t), qj(t) and ∆tj are the training parameters of RNN-SVD in

the recurrent process. As proved by Eq. (12), the network could be convergent with any non-zeros inputs

of pj(0) and qj(0). Moreover, it should be noted that the PINN uses the loss function to assess the differ-

ence before and after the iteration of the physical equation using auto-differential method. The differential

equation adopted in this paper is directly transformed into a recurrent neural network, in which the iterative

process of solving the SVD is analogous to the convergence process of the loss function defined in the PINN

network.

tj

pj(t)

qj(t)

(Uj, Vj, j)

Loss < ε

Gj+1Gj

RNN-SVD 

S
ig

n
a

l 

se
g

m
e

n
t

((UjjUUUjjU , , jj VjVV ,jjV j)jj

Singular Value 

Matrix

Right Singular  

Matrix

Left Singular  

Matrix

Fig. 1: The proposed RNN-SVD network.

Loss = Gjqj(t)− ‖pj(t)‖22 pj(t) or Gjp
>
j (t)− ‖qj(t)‖22 qj(t) (16)
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As mentioned above, the feasibility of the designed RNN on solving singular values has been theo-

retically proved. To realize a more efficiency modal analysis framework, the advantage on computational

ability of the RNN-SVD has to be guaranteed. In the iteration process, there are three parameters determin-

ing the efficiency of getting the network to be convergent: time step, pj(0) and qj(0). More specifically,

the time step controls the convergent step length and the pj(0) and qj(0) determines the distance from the

initial value to balanced point. Therefore, both of the initial inputs which is closer to the balanced points

and the proper time step would significantly promote the computational efficiency. Generally, the standard

SVD can be formulated as Eqs. (17) and (18):

G>G = VΣ>U>UΣV> = V(Σ>Σ)V> (17)

GG> = UΣ>V>VΣU> = U(Σ>Σ)U> (18)

where U and V are the eigenvectors of GG> and G>G, respectively. And Σ is a non-zero singular

value diagonal matrix. Conducted by Eqs. (17) and (18), the computational complexity of standard SVD is

O(N3), more specifically, the decomposition of Hankel matrix (M ×N ) requires at least M3 ∗ 4 times of

multiplications. While, the developed RNN-SVD has just involved the numberM2∗Iter of multiplications,

where Iter is the iteration number. Obviously, the iteration number is greatly reduced (i.e. Iter < 4M )

leading to the considerably improvement of computational efficiency. Therefore, a time-step optimization

method and data pattern learning strategy are implemented to set the time step and pj(0) and qj(0) for

realizing an efficient SVD method.

2.2.2. Time step optimization

As described in Section 2.2.1, the time step is one of the important factors for the fast convergent speed

to reach the balance point. Eq. (19) presents the discrete process of Eq. (8) about how the time step

influences the recurrent process of pj :

pj(t+ ∆t) = δa∆t(Gjqj(t)− ‖pj(t)‖22 pj(t)) + pj(t) t = 0, · · · ; (19)

In Eq. (19), the speed of convergence depends on two factors including the loss function defined by Eq.

(16) and time step (∆t). As the loss is getting smaller in the convergent process, the speed of convergence

would be getting slower, leading to more calculations for the converged results. Thus, it is necessary for the

time step optimization to accelerate the convergent process. Based on these observations, Eq. (20) has been
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provided as the math-based formulation of the time step optimization.

min
∆tj ,Loss

M∑
j

(iterj)

s.t.

 Gjqj(t)− ‖pj(t)‖22 pj(t) ≤ ε

tj = tj + ∆tj(iter)

(20)

where the iter represents the iteration number in the calculation of the jth singular value during the en-

tire process. M is the number of total singular values. The total iteration number is defined as Iter =∑M
j (iterj).

To realize an efficient solution to Eq. (19) via Eq. (20), Eq. (21) has been proposed to remarkably update

the ∆t in each iteration by the ratio of two losses and a constant exponential index, while the convergent

speed would not be significantly reduced with the decrease of the loss function. Therefore, the optimization

process is efficiently completed to reach the balanced point for the dynamic system with the minimum

effort.

∆tj(iter) = (
Loss(iter − 1)

Loss(iter)
)1/∆tratio(j)∆tj(iter − 1) iter = 2, · · · ; (21)

where Loss(iter) means the loss of the iterth iteration in the network training process defined in Eq. (16).

The ∆tratio(j) denotes a constant ratio which should be pre-defined to calculate the jth singular value. ∆t

will be gradually increased with the decrease of the loss during the convergent progress, but its increasing

rate is gradually reduced. Therefore, the variable ∆t needs to be bounded within a reasonable range to avoid

the divergence of results. As ∆tratio(j) is adaptively determined by the loss, the upper boundary of ∆t is

mainly affected by the initial value ∆tj(0).

In the practical scenario, the ∆tj(0) would be correlated with the response data under different loading

conditions. More specifically, the initial parameters of RNN are determined by the singular values of

Hankels that are constructed by these responses. In the practical operation and maintenance of OWT, the

external loadings regularly vary with wind and rotor speed, which makes it hard to set the initials adaptively.

Nevertheless, the wind loading usually performs as a steady stochastic process within a certain time period,

indicating a stable structural response pattern. Therefore, the historical response data have been leveraged

for the selection of initial values (including ∆tj(0), pj(0) and pj(0)). Inspired by this idea, a data pattern

learning strategy is implemented into the proposed modal analysis framework to identify the data by feature

matching under the similar conditions to realize a more efficient convergent process using the developed

network.

11
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2.2.3. Data pattern matching strategy

To enable the physics-informed framework with the more adaptability to offshore structures subject to

time-varying external loadings during the real-time monitoring process, the data pattern learning algorithm

is implemented to distinguish the certain pre-selected pattern from the time-varying field data. Following

that, better initial values of inputs could be pre-trained by leveraging the similar data pattern to realize a fast

convergence in the SVD process. For OWT structures, the vibration response has divergent performances

under different loads such as wind, wave and rotor speed, etc.
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Fig. 2: The comparison of four segments acceleration data in parking condition: (a) frequency domain, (b) singular values

In the data pattern matching strategy, typical responses need to be selected from a long period monitor-

ing dataset to facilitate the SVD of field measurements with the high level of efficiency. As the impact load

is useful for accurate vibration analysis, owing to the most energy of the decomposed modal components,

the response induced by strong pulsed loads is preferred. However, this situation does not frequently occur

in the normal case. Taking into accounts this situation, the data pattern matching strategy for the identifi-

cation of operational conditions in the pre-training session is implemented in the proposed framework to

realize a more robust and efficient SVD-based monitoring system. First, several representative data patterns

are selected from the long-term monitoring dataset. The features represented by these patterns should re-

flect the shared information on responses under the similar operational conditions such as the parking or

operational status of OWT, that is to say, the external loads statistically have the similar distribution with

the change of magnitudes in an acceptable perturbation considering the typical working status. In order to

effectively measure the compactness between data segments and selected patterns, the Pearson-correlation
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is applied for pattern identification in the matching process. Mathematically, the singular values are corre-

lated with frequency components of the response signal, thus, the higher correlation in frequency domain

means the higher matching index of singular values. As shown in Fig. 2, the data in the similar operational

conditions have shared the common features and performances in terms of frequency and singular values,

leading to the values of correlation coefficients are over 0.97. In the practical monitoring, the threshold of

correlation coefficients should be determined on the basis of the matching degree of the investigated field

measurements. It is worth noting that each feature represented by a data pattern should be learned by the

network with specific hyper-parameters during the offline pre-training process. Employing the RNN-SVD

network and time step optimization, the initial inputs of the selected data patterns, such as pj(0), qj(0),

∆tj(0) etc., are trained by the offline training process. Therefore, once the pattern of monitoring data is

determined, the corresponding initial conditions are autonomously selected as inputs of RNN-SVD for SVD

with the high-level efficiency. Meanwhile, the model order can also be determined through the pre-training

process for the adaptive online monitoring of OWT structure. The pseudo-code for the pre-training and data

pattern pre-training and matching strategy has been provided in Algorithm1. It is noted that the Sacc is

an acceleration segment of structure vibration responses, the Sacc[t] and Sacc[w] represent the response in

time and frequency domains, respectively. The Spati means the ith response data pattern and i = 1, · · · , d.

The d means the amount of data patterns. Pth(i) is the pattern matching threshold value. All the selected

data patterns are saved in the HistoryDataset. Eth(i, j) is the threshold value for loss equations and the

subscript ”(i, j)” means the jth singular value order of the ith data pattern. What’ more, output variables

in each step are either on the left of an equal sign or at an arrows tip, while input variables are either on the

right of an equal sign or at an arrows base. The initialized and return values are inputs and outputs of the

whole function, respectively.

Algorithm 1 Data pattern pre-training & matching

1: Input initialization:Sacc[t],Spati [t], Pth(i), HistoryDataset[Spati ]

2: Sacc[w]← Sacc[t],Spati [w]← Spati [t] (FFT)

3: for i = 1→ d do

4: Pi ← ρ(Sacc[w],Spati [w]) =
E[(Sacc[w]−µSacc[w])((Spati [w]−µSpati [w])]

σSacc[w]σSpati [w]
(Pearson Correlation)

5: if thenPi > Pth(i)

6: Pindex = i

7: break

8: end if
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9: end for

10: Hi ← HankelTransform(Sacc[t]) Eq. (2)

11: [Ui,Si,Vi] = SVD(Hi)

12: pij(0) =
√

Ui[:, j]) ∗ Si[j, j]; qij(0) =
√

Vi[:, j] ∗ Si[:, j] j = 1, ...,M

13: Pre-training(HistoryDataset) by repeatedly deploying RNN-SVD

14: [∆tij(0), Eth(i, j),∆tratio(i, j)]← Pre-training(HistoryDataset[Pindex])

15: return result : pij(0),qij(0),∆tij(0), Eth(i, j),∆tratio(i, j)

2.2.4. Framework configuration

By the implementation of the time step optimization and data pattern algorithm described in Sections

2.2.2 and 2.2.3 into the initial pre-training session, a more efficient singular decomposition network has been

established. Based on the RNN-SVD and Eqs. (6) and (7) for modal analysis, a novel physics-informed

modal identification framework has been proposed and its schematic illustration has shown in Fig. 3. The

pseudo-code for the realization of the proposed framework has been described in Algorithm2.
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Fig. 3: Schematic illustration of the proposed physics-informed framework.

Algorithm 2 Physical-informed modal analysis framework
1: function RNN-SVD(Sacc,pj(0),qj(0),∆tj(0), Eth(j),∆tratio(j))

2: H1(0)← HankelTransform(Sacc[t]) Eq. (2)

3: Initializing ∆tj(1) = ∆tj(0)

4: Initializing pj(1),qj(1) and Loss(1) Eqs. (8, 9, 16)

5: for j = 1→M do
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6: iter = 1

7: while Loss(iter) > Eth(j) do

8: iter ← iter + 1

9: Update pj(iter):

10: pj(iter) = ∆tj(iter−1)(Hj(0)qj(iter−1)−‖pj(iter − 1)‖22 pj(iter−1))+pj(iter−

1) Eq. (8)

11: Update qj(iter):

12: qj(iter) = ∆tj(iter−1)(Hj(0)>pj(iter−1)−‖qj(iter − 1)‖22 qj(iter−1))+qj(iter−

1) Eq. (9)

13: Update Loss(iter):

14: Loss(iter) = Gjqj(iter)− ‖pj(iter)‖22 pj(iter) Eq. (16)

15: Update ∆tj(iter):

16: ∆tj(iter) = (Loss(iter−1)
Loss(iter) )1/∆tratio(j)∆tj(iter − 1) Eq. (13)

17: end while

18: (||pj ||22)−1pj → ±lj , (||qj ||22)−1qj → ±rj , and ||pj ||22/||qj ||22 → σj

19: U[:, j] = lj ,V[:, j] = rj ,S[j, j] = σj

20: Hj+1(0) = Hj(0)− ljσjrj Eq. (10)

21: end for

22: return U,V,S

23: end function

24: ———————————————————————————

25: function MODALPARAMETER(Sacc,U,V,S)

26: H(1)← HankelTransform(Sacc[t]) Eq. (2)

27: deploying Eq. (7): A = S−1/2U>H(1)VS−1/2

28: zn ← eigen(A)

29: λn = ln(zn)/∆t

30: fn = imag(λn)/(2π)

31: return result : fn

32: end function
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3. Numerical study

In this section, two numerical examples have been studied to demonstrate the accuracy and efficiency of

the proposed physics-informed framework for solving an eigensystem governed by differential equations,

which will be further used to achieve the real-time adaptive performance monitoring of OWT structures. As

discussed on the design of RNN-SVD in Section 2.2.3, there are two most prominent factors including the

initial inputs and the time step influencing the convergent speed, to be investigated for the improved overall

performance of RNN-SVD.

3.1. General matrix validation

G =


1.0 2.1 3.2 1.2

1.3 2.1 4.0 6.0

2.3 4.0 5.0 6.0

 (22)

To validate the correctness and accuracy of the developed RNN-SVD for the computation of singular

values, a general ill-conditioned matrix G has been considered to calculate its singular values. The accurate

singular values can be obtained using Matlab(2019b), which are 11.0072, 3.0123 and 0.4984. Ideally, sev-

eral parameters of the developed RNN-SVD should be fine-tuned to work with data outside of the training

set. Here, the initial parameters have been provided in Table 1. The left and right matrix columns pj(0)

and qj(0) as inputs are randomly initialized with the normal distribution. It should be noted that the time

step optimization is not considered in this example, which is used to purely demonstrate the correctness of

RNN-SVD.

Table 1: Initial parameters of RNN-SVD for general matrix.

∆tj Eth(j) pj(0) qj(0)

0.01s 1e−6 [-1.2074, 0.7172, 1.630] [0.4888, 1.0346, 0.7268, -0.3034]

The comparison results of singular values and vectors decomposition have been shown in Table 2 and

Fig. 4, where the good agreement between the physics-informed RNN-SVD and SVD by Matlab has been

observed. That means the developed RNN-SVD has the ability to obtain the singular values of general

matrices with high accuracy. However, without considering the computational efficiency of SVD, the total

number of iterations for the general matrix G is 938, which is much larger than the estimated 12 (Iter <
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4M ) of standard SVD method with randomly defined initials. It has been also noted that the converged left

and right matrix columns during the SVD process are obviously different from the random initials shown

in Fig. 4, indicating that the pre-trained initials could potentially improve the convergent speed. Therefore,

to address the challenging initialization of the developed RNN-SVD, the time step optimization in Section

2.2.2 has been introduced in this example for the enhancement of the decomposition efficiency.

Table 2: Singular values of SVD and RNN-SVD.

Order-1 Order-2 Order-3

SVD 11.00716783 3.01227636 0.49844497

RNN-SVD 11.00716783 3.01227636 0.49844482
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Fig. 4: Comparison of singular vectors results: (a) left singular vectors: pj , (b) right singular vectors: qj

As discussed in Section 2.2.2, the time step ∆tj and initial inputs pj(0), qj(0) have greatly influenced

the convergent speed of RNN-SVD, it is vital to explore effects of the change of time steps on the per-

formance of iteration loss. To demonstrate the convergent rate and sensitivity influenced by the time step

∆tj and initial inputs pj(0), qj(0), two studies shown in Fig. 5 have been conducted. First, five cases

considering the variable ∆t in the range of 0.01s to 0.05s have been investigated. Results have shown that
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the convergent speed of RNN-SVD is getting faster with the increase of ∆t. However, when ∆t = 0.05s,

the trend of the network convergence has suddenly changed to the divergence after 15 numbers of iterations,

leading to the failure of satisfying the error threshold for a precise singular value. It is also worth noting that

the loss gradients shown in the inset of Fig. 5(a) have gradually approached to the zeros after 20 numbers

of iterations, indicating that the closer to the balance point is achieved, the loss variation is slower. Thus,

more iterations have been required to reach the convergent results under the loss threshold. Based on these

observations, influences of the change in the time step (∆tratio) on the loss function by the equation of

∆t(iter + 1) = ∆t(iter) + ∆t(iter)/∆tratio have been illustrated in Fig. 5(b), when ∆t(0) = 0.01s. It

can be observed that the convergent speed has increased as ∆tratio has become smaller in a certain range.

Beyond that range, for example ∆tratio = 5, the divergent behaviour of the iteration loss can be easily

identified.

(a) (b)

Fig. 5: The convergent iteration number with different time steps: (a) constant ∆t, (b) ∆t with constant ratio.

Based on the discussions on results of the physics-informed RNN-SVD in terms of the time step and

initial values of inputs, it is vital to choose the proper time step by adaptively changing its rate of change

for the converged high-precision singular values with fewer iterations. It has been observed that the prop-

er time step can effectively improve the convergent speed, which significantly contributes to the higher

computational performance in the decomposition process over the standard SVD methods. Generally, the

computational cost in the standard SVD process is exponentially increased as the rank of matrices becomes

larger. Therefore, the more advantages of the developed RNN-SVD will be remarkably demonstrated by

the higher-rank matrix that will be examined in the following section.
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3.2. The Lumped-mass model validation

A three-degree-of-freedom lumped-mass model has been introduced to examine the pre-trained session

and the time step optimization, which will promote the physics-informed RNN-SVD to effectively and

precisely decompose the singular values and further identify the modal parameters. The lumped-mass model

shown in Fig. 6 with the parameters defined by Eq. (23) have been used to conduct the natural frequency

analysis. The acceleration response has been calculated by the Newmark-β method. The time-dependent

excitation force (F (t) = 0.2 ∗ sin(2π ∗ 5 ∗ t+ π/4) + 0.1 ∗ sin(2π ∗ 7.5 ∗ t+ π/6)) has been applied on

the lumped mass 3. Moreover, 40db random noise has been added to the excitation force to stochastically

simulate the practical environment condition. The acceleration responses of the lump mass 1 in the time and

frequency domains have been shown in Fig. 7, where the first three modal frequencies of 0.799 Hz, 2.200

Hz and 3.303 Hz and the force frequency of 5 Hz have been clearly observed in the frequency domain.

Based on these information, the effects of the pre-training session and adaptive time step optimization on

computational costs have been investigated to explore the advances of the physics-informed RNN-SVD.

m1 m2 m3

k1

c1

k2

c2

k3

c3

Fig. 6: A three-degree-of-freedom lumped-mass model.

K =


960 −450 0

−450 1020 −570

0 −570 570

 M =


4.5 0 0

0 3.5 0

0 0 4

 C =


0.2 −0.1 0

−0.1 0.2 −0.1

0 −0.1 0.1

 (23)
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Fig. 7: The acceleration response of Node 1 by Newmark-beta method.

As described in Section 2.2.3, the decomposed-singular values the corresponding left and right matrices

can be predicted in terms of the amplitude and sequence under the consideration of the similar external

loading conditions. Therefore, the similar data patterns and features extracted from the system responses in

the time and frequency domains can be observed in Fig. 7, where two segments have been selected from

the acceleration response at the lumped mass 1. The sampling time for each segment is 60 seconds with

the sampling rate of 50 Hz and the Hankel matrix is constructed with the rank of 1500. Two segments of

signals in the time domain and their SVD results have been compared and shown in Figs. 8 and 9.
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Fig. 8: Two acceleration segments comparison: (a) time domain responses, (b) the singular values.
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Fig. 9: Left matrix columns of two segments.

It has been noted that two segments (1 and 2) have been well agreed with each other in the time domain

shown in Fig. 8(a), indicating the similar data pattern and feature of system responses. However, a slight

discrepancy of the singular values between the orders in the range of 3 to 6 has been identified in Fig. 8(b)

due to the energy difference of the intercepted two segments. In Fig. 9, remarkable results have shown the

first eight columns in the left matrix during the SVD process have a high degree of similarity between two

segments but the acceptable differences for the column-9 and column-10 can also be observed due to the

random noise of the external force. Moreover, initial inputs of pj(0) and qj(0) can be selected from the

existing results of SVD as the initializations of the investigated segment of the signal. Taking into account

these situations, the development of the pattern matching strategy is quite necessary to mitigate the influence

by random noise in the field monitoring case. Similarly, results in Fig. 9 have proved that the effectiveness

of data pattern matching for improved computational performance of SVD can be achieved in pre-training

processes using physics-informed RNN-SVD when multiple segments intercepted from the signal are avail-

able. Similarly, the time step should also be optimized to realize the high-efficiency computation of SVD.

Based on these understanding, the developed RNN-SVD has adaptively utilized pj , qj and singular values

from Segment 1 as the inputs to identify the modal frequency of Segment 2. Considering there are only four

frequency components in the system response, the first ten singular values should be decomposed due to

the poles λn naturally presented as complex conjugate pairs. Also, the time step and its corresponding error
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threshold have been pre-trained for each singular value to achieve a faster convergent speed. The time step

optimization method defined by Eq. (21) with the initial time step ∆tj(0), ∆tratio(j) and error thresholds

valuesEth has been provided in Table 3. Using these parameters, results of SVD for the response segment 2

have been shown in Figs. 10 and 11. It is worth noting that results by the physics-informed RNN-SVD have

shown a good agreement with the solutions by the add-on SVD in Matlab. In terms of the computational

efficiency, the numbers of iterations for the calculation of each singular value have been provided in Table 4.

With the total number of 449 for the SVD computation, the physics-informed RNN-SVD has outperformed

the standard SVD as it has required 1500*4 iterations to achieve the same results.

Table 3: The initial parameters of RNN-SVD.

Order 1 2 3 4 5 6 7 8 9 10

∆t(0) 0.3 0.3 0.35 0.4 0.4 0.4 0.5 0.5 0.5 0.5

∆tratio 2.5 2.5 4 2.85 3.33 3.33 1 1 0.95 0.86

Eth 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4 1e−5 1e−5 1e−5 1e−5

1 2 3 4 5 6 7 8 9 10
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Fig. 10: The singular values comparison of SVD and RNN-SVD.
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Fig. 11: Left-columns comparison: (a) p3 (pre-training: 35 iterations; random: 5780 iterations), (b) p7 (pre-training: 29 iterations;

random: 3362 iterations)

Table 4: The time consumption comparison.

RNN-SVD

Order 1 2 3 4 5 6 7 8 9 10 Total

iterations 4 5 35 34 23 35 29 23 157 104 449

Time (10−2s) 0.32 0.49 3.97 3.88 2.53 3.83 3.29 2.63 18.41 11.85 51.2

Time (s)

RNN-SVD 0.512

Randomized SVD (Minster et al., 2021) 0.885

Standard SVD 3.540

To further demonstrate the advantage of RNN-SVD, the time consumption comparison with the stan-

dard SVD, that is to say, Eqs. (17) and (18) and a randomized SVD (Minster et al., 2021), has been provided

in Table 4. The computational complexity of two methods are 4M and M (M represents matrix dimen-

sion), respectively. Meanwhile, in order to avoid the effect caused by the acceleration of matrix operation

using different software platforms, the mean of matrix vector products (matvecs) is used as the base unit

to measure the computation time by the standard SVD and randomized SVD. The average matvecs time is

0.00059 seconds and the mean time consumption of each iteration for RNN-SVD is 0.0011. The compari-

son results have indicated that the developed RNN-SVD has reduced up to six fold of computational time.

Based on above SVD results, the modal frequencies of the system by Eqs. (3-7) can be obtained as 0.7991

Hz, 2.2008 Hz and 3.3061 Hz, when the developed RNN-SVD has converged with the MSE (Mean Square

Error) value of 1.62e−6. Meanwhile, it has been noted that initial columns obtained in the pre-training ses-
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sion have significantly increased the convergent speed and the result accuracy as compared with the random

initial in Fig. 11(a) and (b), leading to the reduction of the number of iterations, for example, from 5780 to

35 for p3 and from 3362 to 29 for p7. However, there has been a slight discrepancy between SVD results

by pre-training and the physics-informed RNN-SVD. This is mainly caused by the different singular values

of two segments depicted by Line 11 in Algorithm2. As it is hardly to find two identical segments in

the practical monitoring process, the non-overlap of two curves representing SVD computations can not be

avoided, but minimized by the implementation of pre-training session into the network. The final results

have proved that there is in excellent agreement between singular values obtained by the proposed method

and Matlab. In conclusion, numerical results have showed that the time step optimization and data pattern

learning of inputs can effectively promote the physics-informed RNN-SVD with the remarkably reduced

computational burden in the SVD process.

4. Field data study

The numerical studies in Section 3 have proved the computational effectiveness and efficiency of the

proposed framework and its adaptivity in vibration feature extractions including singular values and modal

frequencies. As a representative example, the study on field data from an in-service OWT has been con-

ducted to further validate the correctness of the proposed framework for performance monitoring of the

structure subject to the time-varying environmental and operational to explore the feasibility for adaptive

real-time monitoring. The field data has been collected from a real-time monitoring system deployed in a

mono-pile OWT structure in Yellow sea of Rudong (121◦26.5’E, 32◦47.6’N, Jiangsu, China) as shown in

Fig. 12. And the real-time monitoring procedures have been shown in Fig. 13.
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Fig. 12: Field monitoring system framework.
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Fig. 13: Real-time monitoring flow chart.

4.1. Field data pattern matching

As discussed in Section 2.2.4, to ensure the identification of the selected data patterns and features from

streaming measurements in the pre-training session, the history dataset and representative data patterns

should be well prepared in advance by the offline learning with optimal hyper-parameters. Generally, the

structural vibration performance will vary with the structure state and the time-varying external loads. Here,
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three typical stable states which frequently appear in the operational periods and their associated wind loads

and rotor speeds have been listed in Table 5. As the structure acceleration response, wind speed and the

rotor speed data (SCADA) are synchronously collected in Fig. 14, the acceleration data can be observed to

behave quite different with the varying environmental and operational conditions. In fact, the rotor speed

is more obvious to present the operational status of OWT, which can be evidenced as the stable indicators,

e.g., data pattern 1-3 labelled in Fig. 14(c).

Table 5: The three data patterns*.

Data pattern 1

(parking)

Data pattern 2

(low speed)

Data pattern 3

(rated speed)

Wind speed (m/s) 1-2 3-4 9-10

Rotor speed (r/min) 0-0.15 6.5 11.2

*Each data pattern segment includes 3000 sampling points.
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Fig. 14: The synchronized data of monitoring system: (a) acceleration data, (b) wind data, (c) rotor data
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To emphasize the importance of data pattern and feature learning in the pre-training session, four typical

operational conditions of OWT shown in Fig. 15 have been considered for structural analysis in terms

of the frequency and singular values. It has been worth noting that the results are remarkably different,

indicating the vital significance on the selection of appropriate data patterns and features for efficient and

effective computations in the practical applications of the proposed framework. As discussed in Section

2.2.3, the rule of thumb for the selection of data patterns should aim at the segments of signals reflecting a

relatively stable state for the avoidance of additional errors and fluctuations in the feature matching process.

As the energy proportion of the first modal component in the vibration response should be comparatively

larger than other components and noise in the segment for the selected data pattern learning, the few orders

need to be extracted using the physics-informed framework for the realization of a more efficient system

identification.
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Fig. 15: The comparison of acceleration data in four operational conditions: (a) frequency domain, (b) singular values.

As mentioned in Algorithm2, the Pearson-correlation has been used as the criterion to judge the

degree of matching between the selected data patterns and the streaming monitoring signal. In this study,

the streaming data on August 1st have been selected to calculate the coefficients of three referenced data

patterns that have been labelled in Fig. 16. It should be noted that only the highly correlated streaming

segments (data patterns 1 and 3: coefficient> 0.94; data pattern 2: coefficient> 0.8) have been marked with

different symbols. It can be observed that the environmental and working conditions for segments with high

coefficients are very close to the load conditions for the selected data patterns in Table 5. This has proved

that the Pearson-correlation can be applied to effectively measure the matching of data patterns. Moreover,
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a more trustworthy coefficient threshold should be defined to reflect the degree of data pattern matching

from the long-term monitoring data. Thus, the data from August 1st to 7th in Fig. 17 has been used to

statistically determine the suitable coefficient threshold based on its distribution under wind and rotor speed

conditions. Results have shown that the coefficient distributions of data patterns 1 and 3 are distinguishably

separable when the coefficient threshold is set above 0.94. Similarly, the matching between the streaming

signal and data pattern 2 can be judged when the threshold is larger than 0.85. In summary, under the wind

and rotor speed conditions in Table 5, the threshold values of three data patterns for measuring the match

degree have been set as 0.94, 0.85 and 0.94, respectively.
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Fig. 16: The correlation coefficients of the three data pattern on August 1st.
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Fig. 17: The coefficient distribution of three data patterns in seven days: (a) wind speed, (b) rotor speed

It has been worth noting that the threshold value for data pattern 2 is comparatively lower than values

for the other two patterns, thus only the data patterns 1 and 3 have been considered for SVD computations

and the first modal frequency identification. Once the corresponding input initial conditions are obtained
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by the pre-trained using the referenced data segments, adaptively identify modal parameters with a higher

level of computational efficiency will be achieved by the proposed RNN-SVD. The initial inputs of the first

eight orders for two data patterns have been listed in Table 6.

Table 6: The initial parameters of two data patterns .

Singular value orders

1 2 3 4 5 6 7 8

Data pattern 1

∆t(0) 0.31 0.3 0.3 0.3 0.3 0.4 0.4 0.3

∆tratio 0.9 0.9 0.9 1.5 1.5 2 2 2

Eth 1e−4 1e−4 1e−4 1e−4 1e−4 1e−4 1e−5 1e−5

Data pattern 3

∆t(0) 0.02 0.1 0.1 0.1 0.1 0.15 0.15 0.2

∆tratio 0.1 0.15 0.15 0.15 0.15 0.15 0.15 0.2

Eth 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5 1e−5

4.2. The 1st modal frequency identification

Considering that data patterns and initial inputs have been obtained in Section 4.1, two groups of stream-

ing data (three segments in each group) in the range of August 1st to 7th have been used for the modal

identification analysis by the proposed framework described in Algorithm2. The comparison results of

time consumption and the first modal frequency have been provided in Table 7.
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Fig. 18: The singular value comparison results of RNN-SVD and SVD (Matlab): (a) data pattern 1 (parking), (b) data pattern 3

(rated speed)
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Table 7: The comparison results of time consumption and 1st modal frequency.

Data pattern 1 Data pattern 3

Seg-1 Seg-2 Seg-3 Seg-1 Seg-2 Seg-3

RNN-SVD
Iteration numbers 1312 916 1170 491 394 788

Time consumption (s) 2.094 1.300 1.820 0.560 0.420 0.850

Randomized SVD: time consumption (s) 0.9315 0.9214 0.9179 0.9306 0.9545 0.9440

Standard SVD: time consumption (s) 3.726 3.6856 3.6717 3.7226 3.818 3.776

1st frequency (Hz)
ERA 0.2735 0.2797 0.2765 0.2806 0.2856 0.2844

Propsoed framework 0.2735 0.2766 0.2785 0.2806 0.2856 0.2847

Fig. 19: A comprehensive illustration of results obtained by the proposed framework and ERA.

Results in Fig. 18 have showed that the proposed framework has the ability to precisely realize the

singular values decomposition of the structure responses and successfully achieved the identification of two

different patterns. In Table 7, the time consumption of RNN-SVD has been remarkably reduced as com-

pared with the results by the standard method, especially in the case of data pattern 3. With the comparison

of the randomized SVD, the RNN-SVD has the computational advantage in the pattern 3 case and a slight

different level of time cost in the case of pattern 1 as the data in the pattern 3 is more stable than in the

pattern 1. This example has provided the evidence that the data pattern selection and initial parameters set-

ting determine the efficiency of RNN-SVD in the real-time monitoring of the complex engineering system.

With the improved history dataset, the data patterns and hyper-parameters can be more efficiently selected
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to leverage the developed framework in the monitoring process of the engineering structures. The compari-

son result of the first frequency has revealed that the physics-informed framework has the great capability to

guarantee the same level of computational accuracy as ERA, especially better performances including the

convergent speed and the precision of the first frequency for the identification of data pattern 3. A compre-

hensive illustration of main results to demonstrate the outperformance of the proposed framework over the

traditional methods in terms of the iteration number and the first frequency have been presented in Fig. 19.

It has been worth noting that the small difference of singular values calculated by both the proposed frame-

work and Matlab has further proved the correctness and accuracy of RNN-SVD in Fig. 18. Moreover, data

pattern 3 represents a more stable state than the other two patterns by the evidence demonstrating the over-

lap of three segment curves in the data pattern 3. Therefore, the responses under the rated speed operation,

that is the feature represented by the data pattern 3 shown in Table 5, should be considered a characteristic

of the system in the real monitoring process. In conclusion, it has been proved that the physics-informed

modal identification framework has effectively enabled the realization of efficient monitoring suitable for

practical engineering applications.

5. Conclusion

In this paper, a novel physics-informed framework to realize an adaptive, computationally efficient and

accurate modal identification method has been proposed for real-time adaptive monitoring of offshore struc-

tures. The innovative design of the proposed framework is converting the modal identification principle into

an optimal SVD process governed by differential equations via the RNN-SVD network. The correctness and

computational efficiency have been demonstrated by two numerical studies in which the time consumption

has been reduced from 3.5504 seconds (standard SVD) to 0.512 seconds (RNN-SVD). The eminent chal-

lenges of the random input initialization and time-increment factor for the network have been successfully

addressed by the pattern matching strategy and adaptive time step optimization, respectively. Consequently,

three referenced data patterns of an in-service OWT structure for parking, low and rated speeds have been

identified by the pre-defined threshold indexes of 0.94, 0.85 and 0.94, respectively. And the 1st frequency

from the selected data segments has been efficiently and precisely identified, leading to an accurate real-time

monitoring for OWT structure.

Throughout above studies, the limitations of the proposed framework have been summarized as follow-

ing two aspects:
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1. Pre-training input parameters of the proposed framework could lead to the poor generalization per-

formance due to the over-fitting of data.

2. The computational performance of the proposed method would be compromised by the weak mode

data as the decomposition order is increased.

For the further exploration, the proposed method is expected to construct a meaningful framework for

the development of real-time smart technology applicable to a broad range of SVD-related sciences such as

modern monitoring, dimension reduction and signal processing.
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