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We study the model theory of vector spaces with a bilinear form over a fixed field. 
For finite fields this can be, and has been, done in the classical framework of full 
first-order logic. For infinite fields we need different logical frameworks. First we take 
a category-theoretic approach, which requires very little set-up. We show that linear 
independence forms a simple unstable independence relation. With some more work 
we then show that we can also work in the framework of positive logic, which is 
much more powerful than the category-theoretic approach and much closer to the 
classical framework of full first-order logic. We fully characterise the existentially 
closed models of the arising positive theory. Using the independence relation from 
before we conclude that the theory is simple unstable, in the sense that dividing has 
local character but there are many distinct types. We also provide positive version of 
what is commonly known as the Ryll-Nardzewski theorem for ω-categorical theories 
in full first-order logic, from which we conclude that bilinear spaces over a countable 
field are ω-categorical.
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1. Introduction

Vector spaces with a bilinear form, or bilinear spaces as we will call them, appear in many different 
places in mathematics. Examples include inner product spaces (such as Hilbert spaces) and symplectic 
spaces arising from symplectic geometry. The model theory of bilinear spaces has been studied using various 
approaches. One approach is to study K-bilinear spaces over some fixed finite field K [15,6]. As K is finite, 
its elements can simply be named in the signature (e.g. as constants). The arising theory turns out to be 
simple unstable. In [9] another approach is taken to study bilinear spaces over infinite fields. Their set-up 
is to consider a bilinear space as a two-sorted structure, with one vector space sort V and one field sort K. 
They prove that the arising theory is non-simple. Later it was shown in [7] that the theory is NSOP1 when 
K is algebraically closed.

When studying the model theory of vector spaces we generally take a one-sorted approach, where scalar 
multiplication is coded by introducing a unary function symbol for each field element. The arising theory is 
well known to be very well-behaved (i.e. stable), regardless of the field. In contrast, when taking a two-sorted 
approach the arising theory will be at least as complicated as the theory of the field sort. So by making 
the field part of the language, and thus fixing it, it no longer complicates the arising theory. The main idea 
of this paper is to do something similar for bilinear spaces, namely fix the field and then study its model 
theory.

The main problem with the classical first-order approach to vector spaces with a bilinear form [·, ·] over 
some infinite field K, such as the approach in [9], is the strength of compactness. If [x, y] = λ is definable for 
every λ ∈ K, as it should be in any reasonable signature, then the set {[x, y] �= λ : λ ∈ K} has a realisation. 
This means that either the field needs to vary with the models, as in the approach in [9], or there are 
models where the bilinear form [·, ·] is incomplete. In this paper we sidestep these issues by working in 
different logical frameworks. We first take a category-theoretic approach. This is a very general framework 
that requires very little set-up. Then we consider the more powerful setting of positive logic, which is much 
closer to the classical framework of full first-order logic, but still allows us to fix the field K to be any field 
we like.

Independence relations are a central tool in determining where a theory belongs in Shelah’s stability 
hierarchy, at least in the class of NSOP theories. General theory for simple independence relations has been 
developed for positive logic [17,3,4] and for the category-theoretic approach [13]. These results are roughly 
of the form “a given theory/category can only have one nice enough independence relation (the canonical 
independence relation), which reveals its place in the stability hierarchy”. In [11] such tools are used to study 
the positive theory of exponential fields. In this paper we will, in a similar way, employ these tools to show 
that linear independence is the canonical independence relation in bilinear spaces over a fixed field, and 
that this implies simplicity and non-stability.

Main results. We study the category BilK of K-bilinear spaces with bilinear monomorphisms (injective 
linear maps that respect the bilinear form). We write BilsK and BilaK for the full subcategories of symmetric 
and alternating K-bilinear spaces respectively, and we write Bil∗K when we mean any of these three cat-
egories. To study the model-theoretic behaviour of bilinear spaces using a category-theoretic approach we 
use the framework of abstract elementary categories, or AECats, from [13], see section 2.2 for the relevant 
details.

Theorem 1.1. The category Bil∗K is an AECat with the amalgamation property that has a canonical simple 
unstable independence relation |� given by linear independence.

We then move to positive logic and define a theory TK for K-bilinear spaces, again with the notation T s
K

and T a
K for the symmetric and alternating cases respectively and T ∗

K for any of these theories. The signature 
LK will be the standard signature for K-vector spaces, i.e. where we have a unary function symbol for scalar 
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multiplication for each λ ∈ K, a symbol �= for inequality and the bilinear form is coded by binary relation 
symbols of the form [x, y] = λ for every λ ∈ K. The important part is that [x, y] �= λ will not be positively 
definable when K is infinite, resulting in the fact that the e.c. (existentially closed) models are K-bilinear 
spaces. In fact, we fully characterise the e.c. models.

Theorem 1.2. The following are equivalent for an LK-structure V :

(i) V is an e.c. model of T ∗
K ,

(ii) V is a finitely injective K-bilinear space,
(iii) V is an infinite dimensional non-degenerate finitely injective K-bilinear space.

If the theory T ∗
K in (i) is T s

K or T a
K then the conditions in (ii) and (iii) should be further restricted to 

symmetric or alternating K-bilinear spaces respectively.

We then prove some results about T ∗
K that are useful for technical reasons. We prove that the quantifier-

free part of a type determines the entire type (Theorem 4.9), but T ∗
K has positive quantifier elimination 

precisely when K is finite (Theorem 4.13). If K is finite then T ∗
K is Boolean (every full first-order formula 

is equivalent to a positive formula), so we are essentially back in the classical first-order case mentioned 
earlier in this introduction. However, when K is infinite then T ∗

K cannot be Boolean (not even Hausdorff, 
see Definition 2.23), but we still have that equality of types is type-definable (i.e. semi-Hausdorff, see 
Definition 2.23). Putting everything together we can cast Theorem 1.1 in the setting of positive logic.

Theorem 1.3. The theory T ∗
K is simple unstable, and non-dividing coincides with linear independence. That 

is, for every ā, b̄ and C in some e.c. model M we have ā |�
M

C
b̄ iff tp(ā/Cb̄) does not divide over C.

In the above |� is the relation given by linear independence, see Definition 3.1. Dividing, simplicity, 
unstability and the type tp(ā/Cb̄) should all be read in the sense of positive logic, see Definition 2.20 and 
the definitions at the end of section 4.

We also extend [10, Theorem 6.5] to Theorem 5.8, resulting in a characterisation of ω-categorical positive 
theories (i.e. theories where there is exactly one countable e.c. model, up to isomorphism). This includes a 
positive variant of being an isolated type. Using this reformulation we then conclude that T ∗

K is ω-categorical 
(for countable K), see Corollary 5.9.

Overview. We start with some preliminaries in section 2 about bilinear spaces, the category-theoretic 
framework of AECats and positive logic. Then in section 3 we establish the properties that make linear 
independence a simple unstable independence relation in bilinear spaces (over a fixed field). In section 4 we 
study the positive theory of bilinear spaces over a fixed field. In the stand-alone section 5 we prove a theorem 
characterising ω-categorical theories. Finally, in section 6 we discuss two other model-theoretic approaches 
to certain bilinear spaces, and compare them to our approach: Hilbert spaces in continuous logic and the 
approach of [9] to bilinear spaces over an infinite field.

Acknowledgements. I would like to thank Jan Dobrowolski, Jonathan Kirby and Rosario Mennuni for 
their feedback on earlier versions of this paper. I would also like to thank the anonymous referee for their 
comments which have helped improve the presentation of this paper.

2. Preliminaries

We discuss some preliminaries about bilinear spaces and the logical frameworks of AECats and positive 
logic. All claims made in this section are well-known and are either trivial or can be found in the references 
given at the start of each subsection.



4 M. Kamsma / Annals of Pure and Applied Logic 174 (2023) 103268
Lowercase letters such as a, b, c and x, y, z will generally denote single elements or variables. We write ā
to mean a (possibly empty, possibly infinite) tuple. The exact length of a tuple often does not matter, so 
we write ā ∈ A instead of ā ∈ An. We write unions in juxtaposition, so AB means A ∪B.

2.1. Bilinear spaces

Throughout this subsection we fix a field K. We will drop the K from any names and terms, e.g. we 
write “vector space” instead of “K-vector space”.

Definition 2.1. Let V be a vector space. A bilinear form is a map [·, ·] : V × V → K that is linear in each 
argument. That is, for all x, y, z ∈ V and λ ∈ K:

• [x, y + z] = [x, y] + [x, z] and [x, λy] = λ[x, y],
• [x + y, z] = [x, z] + [y, z] and [λx, y] = λ[x, y].

A bilinear space is a vector space equipped with a bilinear form.

For any A ⊆ V we write 〈A〉 for the linear span of A. If V is a bilinear space we naturally view 〈A〉 as a 
bilinear space by restricting the bilinear form.

Definition 2.2. Let V be a bilinear space, we call V or the bilinear form on V :

• symmetric if [x, y] = [y, x] for all x, y ∈ V ;
• alternating if [x, x] = 0 for all x ∈ V .

Note that in an alternating bilinear space V we always have [x, y] = −[y, x] for all x, y ∈ V , this is easily 
seen by expanding [x + y, x + y].

Example 2.3. We give some common examples of bilinear spaces.

(i) For any field K we can consider the n-dimensional vector space Kn with the dot product as bilinear 
form, which yields a symmetric K-bilinear space.

(ii) A real Hilbert space H is a real vector space with an inner product such that the associated metric 
makes it into a complete space. In particular, H together with the inner product is a symmetric real 
bilinear space.

(iii) The standard symplectic space R2n: let x1, . . . , xn, y1, . . . , yn be the standard basis, then the bilinear 
form is determined by [xi, yi] = −[yi, xi] = 1 and 0 for any other combination of basis vectors.

We will use the following straightforward fact implicitly throughout this paper.

Fact 2.4. Let V be a vector space with basis B. To specify a bilinear form on V it suffices to specify the value 
for [a, b] for every pair a, b ∈ B (extend linearly in each argument). In fact, any bilinear form is uniquely 
determined by the values [a, b] for all a, b ∈ B. It is symmetric precisely when [a, b] = [b, a] for all a, b ∈ B

and it is alternating precisely when [a, a] = 0 and [a, b] = −[b, a] for all a, b ∈ B.

Definition 2.5. We call a bilinear space V non-degenerate if [x, y] = 0 for all y ∈ V implies x = 0 and, 
symmetrically, [x, y] = 0 for all x ∈ V implies y = 0.
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All examples in Example 2.3 are non-degenerate. One might normally only be interested in non-degenerate 
spaces. However, we will not worry about this so much as every degenerate space embeds into a non-
degenerate one. This last claim follows from Theorem 1.2 and Fact 2.19, but we give a sketch of a direct 
proof here. Start with some bilinear space V0. We extend V0 to V1 by adding a new basis vector yx for each 
x ∈ V0 and extend the bilinear form so that x and yx have non-zero bilinear product. We repeat this process 
ω times and then take the union of the resulting chain of bilinear spaces.

Definition 2.6. Let K be a field. We write VecK for the category of K-vector spaces with injective linear 
maps as arrows.

Definition 2.7. A bilinear homomorphism is a linear map between bilinear spaces that respects the bilinear 
forms. That is, a linear map f : V → W where V and W are bilinear spaces, such that [x, y] = [f(x), f(y)]
for all x, y ∈ V . A bilinear monomorphism is an injective bilinear homomorphism.

Definition 2.8. Let K be a field. We write BilK for the category of K-bilinear spaces with bilinear monomor-
phisms. Furthermore, we write BilsK and BilaK for the full subcategory of symmetric and alternating 
K-bilinear spaces respectively. We will write Bil∗K if something applies to all of BilK , BilsK and BilaK .

2.2. Abstract Elementary Categories (AECats)

We first recall the basic notions concerning accessible categories. A great reference for this is [1].

Definition 2.9. Let C be a category and let λ be a regular cardinal. An object X in C is called λ-presentable
if whenever Y = colimi∈I Yi is a λ-directed colimit then every arrow X → Y factors essentially uniquely as 
X → Yi → Y for some i ∈ I. Equivalently: Hom(X, −) preserves λ-directed colimits.

Definition 2.10. A category C is called λ-accessible if:

(i) C has λ-directed colimits;
(ii) there is a set A of λ-presentable objects, such that every object in C can be written as a λ-directed 

colimit of objects in A.

In the case where λ = ω we say that C is finitely accessible. A category is called accessible if it is λ-accessible 
for some λ.

In [13, Definition 2.5] an AECat is defined as a pair of categories (C, M) satisfying some properties. We 
will only be interested in the case where C = M, so when we say “C is an AECat” we will actually mean 
“(C, C) is an AECat”. This also allows us to simplify the definition.

Definition 2.11. An accessible category C is called an AECat if it has all directed colimits and all arrows 
are monomorphisms.

Definition 2.12. A category C is said to have the amalgamation property if any span of arrows Y1 ← X → Y2
can be completed to a commuting square.

There are many examples of AECats with the amalgamation property, such as the motivating example: 
any category of models of some first-order theory with elementary embeddings. In this paper we will just 
be interested in VecK and Bil∗K . Note that the arrows are injective maps in both cases, because all arrows 
in an AECat have to be monomorphisms. The following is straightforward to check.
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Fact 2.13. For any K, the categories VecK and Bil∗K are finitely accessible. An object V in any of these 
categories is λ-presentable precisely when dim(V ) < λ. In particular, each of these categories is an AECat.

It is easily seen that VecK has the amalgamation property. Later, we will see that Bil∗K also has the 
amalgamation property (Proposition 3.9). This is mainly relevant for the notion of Galois type, which we 
define below. The amalgamation property ensures that “having the same Galois type” is indeed transitive 
and thus an equivalence relation. Once again, we simplify the definition for our specific case.

Definition 2.14. Let C be one of VecK or Bil∗K . Let V and V ′ be objects in C, ā ∈ V , ā′ ∈ V ′ and let 
B ⊆ V, V ′ be a shared subset. Then we say that ā and ā′ have the same Galois type over B, and we write

gtp(ā/B;V ) = gtp(ā′/B;V ′),

if there are arrows V f−→ W
g←− V ′ in our category C that agree on B and are such that f(ā) = g(ā′). If 

B = ∅ we drop it from the notation altogether.

We can make sense of arbitrary elements and subsets of the objects in VecK and Bil∗K because any tuple 
ā ∈ V uniquely determines a subspace 〈ā〉 ⊆ V , which is then again an object in our category. Furthermore, 
as ā generates 〈ā〉 arrows with domain ā are in one-to-one correspondence with arrows with domain 〈ā〉.

2.3. Positive logic

For a more extensive treatment we refer to [2,18].

Definition 2.15. Fix a signature L. A positive existential formula in L is one that is built using atomic 
formulas and ∧, ∨, , ⊥ and ∃. An h-inductive sentence is a sentence of the form ∀x̄(ϕ(x̄) → ψ(x̄)), where 
ϕ(x̄) and ψ(x̄) are positive existential formulas. A positive theory is a set of h-inductive sentences.

Convention 2.16. Whenever we say “formula” or “theory” we will mean “positive existential formula” and 
“positive theory” respectively, unless explicitly stated otherwise. This also means that every formula and 
theory we consider will be implicitly assumed to be positive (existential).

In full first-order logic we consider elementary embeddings because they preserve and reflect truth of all 
first-order formulas. We do not have negation in positive logic, so there is a difference between preserving 
and reflecting truth of formulas.

Definition 2.17. A function f : M → N between L-structures is called a homomorphism if it preserves 
truth of formulas. That is, if for every ϕ(x̄) and every ā ∈ M we have

M |= ϕ(ā) =⇒ N |= ϕ(f(ā)).

We call f an immersion if the converse implication also holds.

Definition 2.18. We call a model M of T an existentially closed model or an e.c. model if the following 
equivalent conditions hold:

(i) every homomorphism f : M → N with N |= T is an immersion;
(ii) for every ā ∈ M and ϕ(x̄) such that M �|= ϕ(ā) there is ψ(x̄) with T |= ¬∃x̄(ϕ(x̄) ∧ ψ(x̄)) and 

M |= ψ(ā).
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Positive model theory generally studies the e.c. models of a theory. Every model can be completed to an 
e.c. model anyway, see the fact below.

Fact 2.19. Let M be a model of some theory T then there is a homomorphism f : M → N such that N is 
an e.c. model of T .

Definition 2.20. Let M be an e.c. model, B ⊆ M and ā ∈ M . Then the type of ā over B is defined as:

tp(ā/B) = {ϕ(x̄) with parameters in B : M |= ϕ(ā)}.

In other words, it is a maximal consistent set of formulas with parameters in B. A partial type over B is 
just any consistent set of formulas over B.

Definition 2.21. We call an e.c. model M of some theory T κ-saturated if any partial type with < κ variables 
and < κ parameters from M that is finitely satisfiable in M has a realisation in M .

Because e.c. models are generally not the same as just models of some theory there can be h-inductive 
sentences that are true in all e.c. models, but fail in some models. Such sentences can be added to the theory 
without changing the class of e.c. models. It will be useful to have some notation for this.

Definition 2.22. Let T be a theory. The Kaiser hull of T is defined as:

T ec = {χ an h-inductive sentence : M |= χ for every e.c. model M of T}.

The following definitions, except for being Boolean, are taken from [4], and are very useful for developing 
(neo)stability theory for positive logic.

Definition 2.23. Let T be a positive theory. We call T :

• Boolean if every formula in full first-order logic is equivalent to some positive existential formula modulo 
T , or equivalently: for every positive existential formula ϕ(x̄) there is a positive existential ψ(x̄) that is 
equivalent to ¬ϕ(x̄) modulo T ;

• Hausdorff if for any two distinct types p(x̄) and q(x̄) there are ϕ(x̄) /∈ p(x̄) and ψ(x̄) /∈ q(x̄) such that 
T ec |= ∀x̄(ϕ(x̄) ∨ ψ(x̄));

• semi-Hausdorff if equality of types is type-definable, so there is a partial type Ω(x̄, ȳ) such that for any 
ā, ̄b in some e.c. model M we have tp(ā) = tp(b̄) if and only if M |= Ω(ā, ̄b);

The reason for the name Hausdorff is that this corresponds to the type spaces being Hausdorff, where 
formulas correspond to closed sets.

Fact 2.24. Boolean implies Hausdorff implies semi-Hausdorff.

The reader that is familiar with the above terminology might be missing one term: thickness, which asserts 
that being an indiscernible sequence is type-definable and which is again weaker than being semi-Hausdorff. 
However, we will have no use for that notion here, so we leave it at an honourable mention.

Boolean theories are essentially the classical full first-order theories. Through a process called positive 
Morleyisation [18, section 2.3] we can view any theory in full first-order logic as a Boolean positive theory, 
and we will implicitly do so.

The following fact is useful for proving or disproving that a theory is Hausdorff.
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Fact 2.25 ([18, Theorem 8]). The following are equivalent for a theory T :

(i) T is Hausdorff;
(ii) any model of T ec is an amalgamation base, so any span of homomorphisms M1 ← M → M2 between 

models of T (not necessarily e.c.) with M |= T ec can be amalgamated to M1 → N ← M2 where N |= T .

The following is the positive analogue of being complete in full first-order logic.

Definition 2.26. A theory T has the joint embedding property, or JEP, if for any two e.c. models M1 and 
M2 there is N |= T with homomorphisms M1 → N ← M2.

3. The independence relation

Throughout this section we again fix a field K and drop it from any names and terms (except for the 
names of our categories).

The notion of linear independence can be formulated as a ternary relation on subsets of vector spaces. 
We give two equivalent formulations.

Definition 3.1. Let V be a vector space and let A, B, C ⊆ V . We say that A is (linearly) independent from 
B over C, and write A |�

V

C
B, if the following equivalent statements hold:

(i) 〈AC〉 ∩ 〈BC〉 = 〈C〉;
(ii) given a basis C0 for 〈C〉 and A0 and B0 such that A0C0 is a basis for 〈AC〉 and B0C0 is a basis for 

〈BC〉, we have that A0B0C0 is a linearly independent set.

Notation: any of A, B or C can be replaced by a tuple enumerating them. For example, if ā enumerates A
then ā |�

V

C
B just means A |�

V

C
B.

The relation |� really is a ternary relation on subobjects of objects in VecK (again using the idea that 
an arbitrary subset A is essentially the same as 〈A〉). This independence relation is known to have many 
desirable properties in VecK . Most of these properties are immediate from the definition, for the remainder 
see for example [14, Fact 2.1.4].

Fact 3.2. The independence relation |� has the following properties in VecK .

Invariance: For any arrow f : V → W we have A |�
V

C
B iff f(A) |�

W

f(C) f(B).
Monotonicity: If A |�

V

C
B and B′ ⊆ B then A |�

V

C
B′.

Base Monotonicity: If A |�
V

C
B and C ⊆ C ′ ⊆ B then A |�

V

C′ B.
Transitivity: If A |�

V

B
C and A |�

V

C
D with B ⊆ C ⊆ D then A |�

V

B
D

Symmetry: If A |�
V

C
B then B |�

V

C
A.

Existence: We always have A |�
V

C
C.

Finite Character: If A |�
V

C
B′ for all finite B′ ⊆ B then A |�

V

C
B.

Local Character: For any A, B ⊆ V there is B′ ⊆ B with dim(〈B′〉) ≤ dim(〈A〉) such that A |�
V

B′ B.
Extension: If ā |�

V

C
B then for any D ⊆ V there is an extension V ⊆ W with some ā′ in W such that 

gtp(ā/BC; V ) = gtp(ā′/BC; W ) and ā′ |�
W

C
BD.

Stationarity: If gtp(ā/C; V ) = gtp(ā′/C; V ) then ā |�
V

C
B and ā′ |�

V

C
B implies gtp(ā/BC; V ) =

gtp(ā′/BC; V ).
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Definition 3.3. An independence relation |� satisfying the properties in Fact 3.2 is called a stable indepen-
dence relation.

The fact that VecK has a stable independence relation means that it is model-theoretically very well-
behaved. The situation in Bil∗K turns out to be a little bit more complicated: we lose the Stationarity

property.

Proposition 3.4. The Stationarity property fails for |� over every C in Bil∗K . That is, for any C in 

Bil∗K there is an extension C ⊆ V with a, a′, b ∈ V such that gtp(a/C; V ) = gtp(a′/C; V ), a |�
V

C
b and 

a′ |�
V

C
b, while gtp(a/Cb; V ) �= gtp(a′/Cb; V ).

Proof. Let C be a bilinear space and introduce new linearly independent vectors a, a′, b and set V = 〈Caa′b〉. 
By construction we then have a |�

V

C
b and a′ |�

V

C
b. We make V into a bilinear space by setting [x, c] =

[c, x] = 0 for x ∈ {a, a′, b} and c ∈ C. We set [a′, b] = [b, a′] = 1 (in the alternating case we set [b, a′] = −1), 
for the remainder of the pairs in {a, a′, b} we take their bilinear product to be 0.

Define f : 〈Ca〉 → V to be the identity on C and f(a) = a′, and extend linearly. Then f is a bilinear 
monomorphism. So we can amalgamate V ⊇ 〈Ca〉 f−→ V using Proposition 3.9 to find V

g−→ W
h←− V such 

that g|〈Ca〉 = hf . So g and h agree on C and g(a) = h(a′), and thus gtp(a/C; V ) = gtp(a′/C; V ).
Suppose for a contradiction that gtp(a/Cb; V ) = gtp(a′/Cb; V ), then there are V

g−→ W
h←− V that agree 

on Cb and g(a) = h(a′). But then 0 = [a, b] = [g(a), g(b)] = [h(a′), h(b)] = [a′, b] = 1. �
The independence relation on Bil∗K is still reasonably nice. We just have to replace Stationarity

with some weaker property, namely 3-amalgamation. Once again, we give a simplified definition for our 
situation.

Definition 3.5. An independence relation |� has 3-amalgamation if the following holds. Suppose that 
we have a commuting diagram as below, but without the dashed arrows and without W . We view all the 
arrows as inclusions. Suppose furthermore that A |�

V1
D

B, B |�
V3
D

C and C |�
V2
D

A. Then we can find the 

dashed arrows and W , such that A |�
W

D
V3 and the resulting diagram commutes.

V2 W

A V1

C V3

D B

Definition 3.6. An independence relation |� that satisfies the properties in Fact 3.2, except possibly Sta-

tionarity, and also satisfies 3-amalgamation is called a simple independence relation.

The possible failure of Stationarity is precisely what distinguishes a simple independence relation 
from a stable one. This is because we get 3-amalgamation from Stationarity, modulo the rest of the 
properties.

Fact 3.7 ([13, Proposition 6.16]). Any stable independence relation also satisfies 3-amalgamation. So 
every stable independence relation is also simple.

Simple independence relations are always canonical, in the sense that there can only be one on a given 
AECat, see the fact below. So | , being stable and thus in particular simple, is the canonical independence 
�
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relation on VecK . Even though the formulation of the properties is slightly different from the formulation 
in [13], it is an easy exercise to see that they are equivalent.

Fact 3.8 ([13, Theorem 1.1]). Let C be an AECat with the amalgamation property. If |� and |�
′ are simple 

independence relations on C then |� = |�
′.

The remainder of this section is now devoted to proving that |� is a simple independence relation on 
Bil∗K , and is thus also the canonical independence relation.

Proposition 3.9 (Independent amalgamation). Let V, W1, W2 be bilinear spaces. Let W1
f1←− V

f2−→ W2 be 
bilinear monomorphisms. Then there is a bilinear space U and bilinear monomorphisms W1

g1−→ U
g2←− W2, 

such that g1f1 = g2f2 and g1(W1) |�
U

g1f1(V ) g2(W2). Furthermore, if V, W1, W2 are symmetric/alternating 

then we can choose U to be symmetric/alternating.

Proof. After renaming elements we may assume V ⊆ W1, W2 and W1∩W2 = V . So we can take U = 〈W1W2〉
and take g1 and g2 to be the relevant embeddings. So we have W1 |�

U

V
W2 and we are left to extend the 

bilinear form to all of U . Let V ′ ⊆ V be a basis for V and for i ∈ {1, 2} let W ′
i ⊆ Wi be such that V ′W ′

i

is a basis for Wi. Since W1 |�
U

V
W2 we have that V ′W ′

1W
′
2 is a linearly independent set, and hence a basis 

for U . So we can set [w1, w2] = [w2, w1] = 0 for all w1 ∈ W ′
1 and w2 ∈ W ′

2, and extend linearly in each 
argument. The final claim about the symmetric/alternating property then immediately follows. �
Proposition 3.10. The independence relation |� on Bil∗K satisfies Extension.

Proof. Let ā |�
V

C
B. We will prove that there is some extension V ⊆ W and a tuple ā′ in W such that 

ā′ |�
W

C
V and gtp(ā/BC; V ) = gtp(ā′/BC; W ). Consider the span of inclusions 〈BCā〉 ⊇ 〈BC〉 ⊆ V and 

use Proposition 3.9 to find 〈BCā〉 f−→ W
g←− V completing this span to a commuting square, where we 

may assume g to be an inclusion, such that f(〈BCā〉) |�
W

〈BC〉 V . We thus have the required extension 

V ⊆ W , and we set ā′ = f(ā). Then gtp(ā′/BC; W ) = gtp(ā/BC; 〈BCā〉) = gtp(ā/BC; V ). It follows that 
ā′ |�

W

C
〈BC〉 and applying Monotonicity to f(〈BCā〉) |�

W

〈BC〉 V yields ā′ |�
W

〈BC〉 V . So by Transitivity

we get ā′ |�
W

C
V , as required. �

We prove a stronger version of 3-amalgamation, where the resulting cube satisfies two extra instances 
of independence.

Theorem 3.11 (3-amalgamation). Suppose that we have a commuting diagram as below of bilinear 
monomorphisms (which we view as inclusions), but without the dashed arrows and without W . Suppose 
furthermore that A |�

V1
D

B, B |�
V3
D

C and C |�
V2
D

A. Then there is a bilinear space W , together with the 

dashed bilinear monomorphisms, such that A |�
W

D
V3, B |�

W

D
V2 and C |�

W

D
V1 and the resulting diagram 

commutes.

V2 W

A V1

C V3

D B

Furthermore, if V1, V2, V3 are all symmetric/alternating then we can choose W to be symmetric/alternating.
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Proof. First pick a basis D′ of D and let A′, B′, C ′ be such that A′D′, B′D′ and C ′D′ are bases of AD, BD

and CD respectively. Because A |�
V1
D

B we have that A′B′D′ is a linearly independent set, so we extend it 
to a basis for V1. So let V ′

1 such that A′B′D′V ′
1 is a basis for V1. Similarly we find V ′

2 and V ′
3 . We may assume 

that V ′
1 , V

′
2 , V

′
3 are such that D′A′B′C ′V ′

1V
′
2V

′
3 is a basis for W = 〈D′A′B′C ′V ′

1V
′
2V

′
3〉. This induces canonical 

inclusions Vi ⊆ W . So in particular V1∩V2 = A, V1∩V3 = B and V2∩V3 = C, as subspaces of W . From this 
the independence relations in the conclusions easily follow. For example: A ∩V3 = A ∩V1 ∩V3 = A ∩B = D

hence A |�
W

D
V3, where we used A |�

V1
D

B in the final equality.
We are left to define a bilinear form on W . For any e, e′ ∈ D′A′B′C ′V ′

1V
′
2V

′
3 with e, e′ ∈ Vi for some 

1 ≤ i ≤ 3 the choice for [e, e′] is forced, and these choices are compatible by commutativity of the original 
diagram. For the remainder of the pairs e, e′ we set [e, e′] = 0 and extend linearly in each argument. The 
final claim about the symmetric/alternating property then follows by Fact 2.4. �
Theorem 1.1, repeated. The category Bil∗K is an AECat with the amalgamation property that has a canonical 
simple unstable independence relation |� given by linear independence.

Proof. From Fact 2.13 we know that Bil∗K is an AECat. We get the amalgamation property from Propo-
sition 3.9. That |� then forms a simple independence relation comes down to checking all the required 
properties. We only need to verify Invariance, Extension and 3-amalgamation, as the remaining 
properties do not depend on the category we are working in, so we get them directly from Fact 3.2. As any 
bilinear monomorphism is an injective linear map, Invariance is immediate. The two remaining properties 
are exactly Proposition 3.10 and Theorem 3.11. In Proposition 3.4 we saw that Stationarity fails for |�
on Bil∗K , and so |� is not stable. Finally, canonicity follows from Fact 3.8. �
4. Bilinear spaces in positive logic

We define and study the positive theory of K-bilinear spaces.

Definition 4.1. Let K be some field. We define the signature LK as follows: LK includes the standard 
signature for K-vector spaces, with a function symbol for scalar multiplication for each λ ∈ K and a symbol 
�= for inequality. Furthermore, for every λ ∈ K we have a binary relation symbol [x, y] = λ, which will 
express that the bilinear product of x and y is λ.

We naturally view every K-bilinear space as an LK-structure.

Definition 4.2. Let K be some field. We define the following LK-theories:

• TK is the common h-inductive theory of all K-bilinear spaces,
• T s

K is the common h-inductive theory of all symmetric K-bilinear spaces,
• T a

K is the common h-inductive theory of all alternating K-bilinear spaces.

We write T ∗
K if a statement applies to all of TK , T s

K and T a
K .

Note that having a symbol for inequality forces the homomorphisms between models of T ∗
K to be injective.

Any positive existential formula ϕ(x̄) is equivalent to one of the form

n∨
∃ȳiψi(x̄, ȳi),
i=1
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where each ψi(x̄, ȳi) is a conjunction of atomic formulas. We will implicitly use this fact in what follows by 
assuming all formulas are of this form, and we recall some relevant terminology.

Definition 4.3. A regular formula (sometimes also called pp-formula) is one of the form ∃ȳψ(x̄, ȳ) where 
ψ(x̄, ȳ) is a conjunction of atomic formulas.

Lemma 4.4. Let λ ∈ K and let ψ(x, y) be a regular formula that contains no linear equations such that 
T ∗
K |= ¬∃xy(ψ(x, y) ∧ [x, y] = λ). Then there is some λ′ ∈ K such that T ∗

K |= ∀xy(ψ(x, y) → [x, y] = λ′). 
Similarly, for a regular formula ψ(x) that contains no linear equations such that T ∗

K |= ¬∃xy(ψ(x) ∧ [x, x] =
λ) there is some λ′ ∈ K such that T ∗

K |= ∀x(ψ(x) → [x, x] = λ′).

Proof. The proof below is for the case of TK and a formula ψ(x, y) in two variables, at the end we discuss 
how to make the same proof work for a single variable and in T s

K and T a
K . We can write ψ(x, y) as

∃z̄(χ(x, y, z̄) ∧
∧
i∈I

[vi, wi] = μi),

where χ(x, y, ̄z) is a conjunction of linear inequalities (as ψ(x, y) contains no linear equations) and each vi
and wi is a linear combination of x, y and z̄.

We now claim that there is some λ′ such that for any bilinear space V and any c, d ∈ V such that 
V |= ψ(c, d) we have V |= [c, d] = λ′. This is enough, because then ∀xy(ψ(x, y) → [x, y] = λ′) is in TK , as 
required.

To prove the claim we argue by contradiction. Suppose there are distinct λ1 and λ2 and bilinear spaces V1

and V2 with c1, d1 ∈ V1 and c2, d2 ∈ V2 such that V1 |= ψ(c1, d1) ∧ [c1, d1] = λ1 and V2 |= ψ(c2, d2) ∧ [c2, d2] =
λ2. We rename the variables appearing in the quantifier-free part of ψ as follows: x becomes z1, y becomes 
z2 and then we can enumerate z̄ as z3, . . . , zn for some n. We introduce a variable uij for all 1 ≤ i, j ≤ n, 
so letting uij represent [zi, zj ] we can view 

∧
i∈I [vi, wi] = μi as a system S of linear equations in variables 

(uij)1≤i,j≤n. This determines an affine space

A = {(αij)1≤i,j≤n ∈ Kn2
: (αij)1≤i,j≤n is a solution to S}.

By our assumption about the existence of V1 and V2 we know that there must be solutions (αij)1≤i,j≤n

and (βij)1≤i,j≤n in A with α1,2 = λ1 and β1,2 = λ2. The projection of an affine space onto one coordinate 
must be either a point or all of K. So since λ1 and λ2 are distinct, the projection of A on the coordinate 
indexed by (1, 2) must be all of K. We thus find a solution (γij)1≤i,j≤n with γ1,2 = λ. Let V be a vector 
space with basis e1, . . . , en and make it into a bilinear space by setting [ei, ej ] = γij for all 1 ≤ i, j ≤ n. We 
now have V |= ψ(e1, e2), where the existential quantifier over z̄ is satisfied by e3, . . . , en. The χ part is then 
satisfied because it only contains linear inequalities and e1, . . . , en are linearly independent, while the part ∧

i∈I [vi, wi] = μi is satisfied by our choice of [ei, ej ]. At the same time we have V |= [e1, e2] = λ, but this 
contradicts TK |= ¬∃xy(ψ(x, y) ∧ [x, y] = λ).

The case where ψ(x) has only one variable is a simpler version of the argument above. We replace any 
occurrence of the y variable by the x variable, and we will just have that c1 = d1, c2 = d2 and e1 = e2.

To make the above argument work for T s
K we restrict ourselves to symmetric bilinear spaces in the entire 

argument. To make sure the V we construct is also symmetric, we can just add equations uij = uji to our 
system S of linear equations. Since the V1 and V2 we find are then assumed to be symmetric bilinear spaces, 
they still yield solutions to S. A similar trick works for T a

K . �
Lemma 4.5. Every e.c. model of T ∗

K is a K-bilinear space.
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Proof. Let M be an e.c. model of T ∗
K . Clearly T ∗

K will already specify that M is a K-vector space. We need 
to prove that the binary relations [x, y] = λ encode a bilinear form on M . For that we only need to check 
that for every a, b ∈ M there is some λ ∈ K such that M |= [a, b] = λ. Then T ∗

K will guarantee that this λ
is unique and that the binary function M ×M → K encoded by the relation symbols in LK is actually a 
bilinear form. In fact, it is enough to check this for linearly independent a and b, and when a = b. Then we 
can take any basis B of M and since [·, ·] will then be defined on any a, b ∈ B it extends to all of M , which 
is forced by T ∗

K .
If M |= [a, b] = 0 then we are done. So suppose that M �|= [a, b] = 0. Then as M is e.c. there must 

be some ϕ(x, y) such that T ∗
K |= ¬∃xy(ϕ(x, y) ∧ [x, y] = 0) and M |= ϕ(a, b). We can write ϕ(x, y) as 

a disjunction of regular formulas. Let ψ(x, y) be a disjunct so that M |= ψ(a, b), then we have T ∗
K |=

¬∃xy(ψ(x, y) ∧ [x, y] = 0). We can write ψ(x, y) as ∃z̄χ(x, y, ̄z), where χ(z̄) is a conjunction of atomic 
formulas. We may assume that χ(x, y, ̄z) does not contain any linear equations. This is because we assumed 
a and b to be linearly independent, or a = b and then we just drop the y variable, and any z ∈ z̄ that 
is linearly dependent on the remainder of the variables can be eliminated from the quantifier by replacing 
it by the appropriate linear combination of variables. By Lemma 4.4 there is then some λ ∈ K such that 
T ∗
K |= ∀xy(ψ(x, y) → [x, y] = λ). We thus have M |= [a, b] = λ, as required. �
The following is the analogue of being complete for first-order theories, and in fact together with Propo-

sition 4.14 this implies that T ∗
K is complete for finite K.

Corollary 4.6. The theory T ∗
K has JEP.

Proof. Use that e.c. models are K-bilinear spaces (Lemma 4.5) to amalgamate (Proposition 3.9) over the 
trivial bilinear space. �
Proposition 4.7. For every n ≥ 1 there is a formula θn(x1, . . . , xn) such that for every a1, . . . , an in any 
e.c. model M of T ∗

K we have that M |= θn(a1, . . . , an) iff a1, . . . , an are linearly independent.

Proof. We will build the formula θn(x1, . . . , xn) by induction on n. For θ1(x1) we take x1 �= 0. Having built 
θn(x1, . . . , xn) we define θn+1(x1, . . . , xn, xn+1) as

θn(x1, . . . , xn) ∧ ∃yz
(

n∧
i=1

([y, xi] = 1 ∧ [z, xi] = 1) ∧ [y, xn+1] = 1 ∧ [z, xn+1] = 0
)
.

Let M be an e.c. model of T ∗
K and let a1, . . . , an+1 ∈ M . Suppose that M |= θn+1(a1, . . . , an+1). Then by 

the inductive hypothesis a1, . . . , an are linearly independent. So it remains to be shown that an+1 is not a 
linear combination of a1, . . . , an. Suppose for a contradiction that an+1 = λ1a1 + . . .+λnan. Let b and c be 
realisations for the y and z variables respectively. Then as [b, ai] = 1 for all 1 ≤ i ≤ n we must have that 
1 = [b, an+1] = λ1 + . . .+λn. By similar reasoning we also get 0 = [c, an+1] = λ1 + . . .+λn, and thus 1 = 0. 
So we arrive at a contradiction and conclude that a1, . . . , an+1 must indeed be linearly independent.

Conversely, suppose that a1, . . . , an+1 are linearly independent. Then by the induction hypothesis M |=
θn(a1, . . . , an). Extend a1, . . . , an+1 to a basis B of M and add two new independent vectors b and c. Let 
V = 〈Bbc〉, so it extends M . We extend the bilinear form on M to V as follows. We set [b, ai] = [c, ai] = 1
for all 1 ≤ i ≤ n, and we set [b, an+1] = 1 and [c, an+1] = 0. We set the values for [ai, b] and [ai, c] for 
1 ≤ i ≤ n + 1 according to whether we work in T s

K or T a
K (in the case of just TK it does not matter). 

Then V |= θn+1(a1, . . . , an+1) because b and c are realisations for the y and z variables. So by existential 
closedness M |= θn+1(a1, . . . , an+1). �
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We can now give a full characterisation of the e.c. models of T ∗
K , which will use the following definition 

(borrowing some category-theoretic terminology).

Definition 4.8. We call a K-bilinear space V finitely injective if for any finite dimensional K-bilinear 
spaces A ⊆ B and any bilinear monomorphism f : A → V we can find a bilinear monomorphism g :
B → V such that g extends f . In the symmetric/alternating case we require all the spaces involved to be 
symmetric/alternating.

Theorem 1.2, repeated. The following are equivalent for an LK-structure V :

(i) V is an e.c. model of T ∗
K ,

(ii) V is a finitely injective K-bilinear space,
(iii) V is an infinite dimensional non-degenerate finitely injective K-bilinear space.

If the theory T ∗
K in (i) is T s

K or T a
K then the conditions in (ii) and (iii) should be further restricted to 

symmetric or alternating K-bilinear spaces respectively.

Proof. (ii) ⇔ (iii). The direction (iii) ⇒ (ii) is trivial, so we prove the other direction. Let V be a finitely 
injective K-bilinear space. Then V is infinite dimensional, as we can embed spaces of arbitrarily large 
(finite) dimension in it. For any a ∈ V let A = 〈a〉 and define B = 〈ab〉 where b is some new vector linearly 
independent from a. Make B into a K-bilinear space by setting [a, b] = 1 and also [b, a] = ±1 (the exact 
value depends on whether we are in the symmetric or alternating case). We can then extend the embedding 
A ⊆ V to some bilinear monomorphism g : B → V , and so we have [a, g(b)] �= 0 and [g(b), a] �= 0. Since a
was arbitrary we conclude that V is non-degenerate.

(i) =⇒ (ii). By Lemma 4.5 we already know that every e.c. model is in fact a K-bilinear space. Let 
A ⊆ B be finite dimensional K-bilinear spaces and let f : A → V be a bilinear monomorphism. Let ā be 
a basis for A and extend it to a basis āb̄ for B. Let x̄ and ȳ be variables matching ā and b̄ respectively. 
Let χ(x̄, ȳ) be a conjunction of binary relation symbols [·, ·] = λ capturing all the bilinear products in āb̄. 
Amalgamate V

f←− A ⊆ B to V h−→ W ⊇ B, using Proposition 3.9. We may assume that W is an e.c. model 
(otherwise complete it to one). Consider the formula ϕ(x̄, ȳ) given by θn(x̄, ȳ) ∧ χ(x̄, ȳ), where θn is the 
formula from Proposition 4.7 capturing linear independence. Then W |= ϕ(ā, ̄b) and thus W |= ∃ȳϕ(ā, ȳ). 
As ā = hf(ā) and h : V → W is an immersion we have V |= ∃ȳϕ(f(ā), ȳ). We thus find c̄ ∈ V with 
V |= ϕ(f(ā), ̄c). We can now extend f to g : B → V by setting g(b̄) = c̄ and extend linearly.

(ii) =⇒ (i). Let V ⊆ W be an extension and W |= ϕ(ā) for some ā ∈ V . We may assume that W is an 
e.c. model (otherwise complete it to one), so in particular it is a K-bilinear space. Write ϕ(x̄) as ∃ȳψ(x̄, ȳ), 
where ψ(x̄, ȳ) is quantifier-free. Let b̄ ∈ W be such that W |= ψ(ā, ̄b). Define A = 〈ā〉 and B = 〈āb̄〉. So 
A ⊆ V and A ⊆ B are finite dimensional K-bilinear spaces. As V is finitely injective we find g : B → V

extending the inclusion A ⊆ V . As ψ is quantifier-free we have B |= ψ(ā, ̄b) and thus V |= ψ(ā, g(b̄)). So 
V |= ϕ(ā), as required. �
Theorem 4.9. In T ∗

K all types are determined by their quantifier-free part.

Proof. Let ā be some tuple in some e.c. model M and let b̄ be a tuple in some e.c. model N , such that 
qftp(ā) = qftp(b̄). Define a function f : 〈ā〉 → N by f(ā) = b̄ and extend linearly. Then f is a bilinear 
monomorphism because qftp(ā) = qftp(b̄). So we can amalgamate, using Proposition 3.9, to find bilinear 
monomorphisms M g−→ V

h←− N such that g(ā) = h(b̄). As M and N are e.c. models, g and h are immersions, 
so tp(ā) = tp(b̄) follows. �
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Corollary 4.10. Modulo (T ∗
K)ec every type in finitely many variables without parameters is equivalent to a 

formula. If K is finite, this formula can be taken to be quantifier-free.

Proof. Let ā be a finite tuple in an e.c. model M . By Theorem 4.9 it is enough to construct a formula ϕ(x̄)
that is equivalent to qftp(ā) (modulo (T ∗

K)ec). Let ā′ be a maximal linearly independent subtuple of ā. Let 
ψ(x̄) be a conjunction of linear equations capturing how the remainder of ā depends on ā′. Let χ(x̄) be 
a conjunction of binary relation symbols [·, ·] = λ capturing the bilinear products in ā′. Then the formula 
θn(x̄′) ∧ψ(x̄) ∧χ(x̄′) is the ϕ(x̄) we are looking for, where θn is the formula from Proposition 4.7 capturing 
linear independence. The final claim follows from the fact that linear independence over a finite field can 
be expressed by a quantifier-free formula, so we can replace θn by this quantifier-free formula. �
Remark 4.11. In full first-order logic we have that if all types are determined by their quantifier-free part, 
then the theory has quantifier elimination, see for example [12, Theorem 8.4.1]. In positive logic this is no 
longer true. As we will see below, T ∗

K for infinite K is an example. By Theorem 4.9 we do have that in 
T ∗
K every type is determined by its quantifier-free part. However, Theorem 4.13 shows that we do not have 

quantifier elimination.

Definition 4.12. We say that a theory T has positive quantifier elimination if for every formula ϕ(x̄) there 
is some quantifier-free formula ψ(x̄) that is equivalent to ϕ(x̄) modulo T ec.

Theorem 4.13. The theory T ∗
K has positive quantifier elimination iff K is finite.

Proof. We first prove the right to left direction. The quantifier-free type of any n-tuple is fully determined 
by any linear dependencies and the bilinear products in that tuple. As K is finite, there are only finitely 
many possibilities for this for a fixed n. So there are only finitely many quantifier-free n-types, and hence 
finitely many n-types by Theorem 4.9.

Let now ϕ(x̄) be some formula and write [ϕ(x̄)] for the set of all types that contain ϕ(x̄). By the above 
discussion [ϕ(x̄)] is finite and, by Corollary 4.10, for each p ∈ [ϕ(x̄)] there is some quantifier-free χp(x̄) that 
is equivalent to p. It then immediately follows that ϕ(x̄) is equivalent to 

∨
p∈[ϕ(x̄)] χp(x̄), modulo (T ∗

K)ec.
We now prove the contrapositive of the converse. So let K be infinite, we prove that for any n ≥ 2 the 

formula θn from Proposition 4.7 is not equivalent to a quantifier-free formula, modulo (T ∗
K)ec. We give a 

proof for TK and at the end of the proof we describe how to make the proof work for T s
K and T a

K . Let n ≥ 2
and suppose that θn(x1, . . . , xn) is equivalent (modulo T ec

K ) to some quantifier free formula ψ(x1, . . . , xn). 
We can write ψ as a disjunction 

∨k
�=1 ψ�(x1, . . . , xn), where each ψ� is a conjunction of atomic formulas.

Let 1 ≤  ≤ k. For each 1 ≤ i, j ≤ n introduce a variable uij that will represent [xi, xj ]. The atomic 
formulas in ψ� of the form [t, s] = λ, where λ ∈ K and t and s are linear combinations of x1, . . . , xn, will 
then determine a linear system of equations S� in variables (uij)1≤i,j≤n. We define the affine space

A� = {(αij)1≤i,j≤n ∈ Kn2
: (αij)1≤i,j≤n is a solution to S�}.

We distinguish two cases.

(1) There is some  such that A� is the entire space Kn2 . This means that ψ� is (equivalent to) some formula 
purely in the language of vector spaces. Then as linear independence is not definable in vector spaces over 
an infinite field, there is some vector space V with v1, . . . , vn ∈ V such that V |= ψ�(v1, . . . , vn) while 
v1, . . . , vn are not linearly independent. We make V into a bilinear space (the choice of the bilinear 
form does not matter) and then extend it to an e.c. model M . This process does not invalidate the 
truth of ψ�(v1, . . . , vn). So M |= ψ�(v1, . . . , vn) and hence M |= ψ(v1, . . . , vn). However, we do not have 
M |= θn(v1, . . . , vn), so θn cannot be equivalent to ψ in all e.c. models.
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(2) Every A� is a proper subspace of Kn2 . As K is infinite, A =
⋃

1≤�≤k A� is still a proper subset of Kn2 . 
Pick some (αij)1≤i,j≤n ∈ Kn2 − A. Let V = 〈a1, . . . , an〉 be an n-dimensional vector space with basis 
a1, . . . , an. Make V into a bilinear space by setting [ai, aj ] = αij for all 1 ≤ i, j ≤ n. Extend V to 
some e.c. model M ⊇ V . We now have M |= θn(a1, . . . , an), as a1, . . . , an are linearly independent. 
However, for every 1 ≤  ≤ k we have that ([ai, aj ]ij)1≤i,j≤n = (αij)1≤i,j≤n is not a solution to S�, so 
M �|= ψ�(a1, . . . , an). Hence M �|= ψ(x1, . . . , xn), which contradicts that θn(x1, . . . , xn) and ψ(x1, . . . , xn)
are equivalent in all e.c. models.

A similar proof works for T s
K , we just restrict the variables (uij)1≤i,j≤n and the corresponding systems S�

and affine subspaces A� to those i and j with i ≤ j. This suffices as they will encode all the necessary 
information for a symmetric bilinear form. Similarly, for T a

K we restrict things to those i and j where 
i < j. �
Proposition 4.14. If K is finite then T ∗

K is Boolean. If K is infinite then T ∗
K is semi-Hausdorff, but not 

Hausdorff.

Proof. Suppose that K is finite. Then [x, y] �= λ is equivalent to 
∨

λ′ �=λ[x, y] = λ′. As we also have a symbol 
for inequality, we have that for every atomic formula χ(x̄) there is a positive (quantifier-free) formula that 
is equivalent to ¬χ(x̄). The same is then true for quantifier-free formulas. We conclude that T ∗

K is Boolean 
by positive quantifier elimination (Theorem 4.13).

We now move on to the case where K is infinite. We first prove that T ∗
K is semi-Hausdorff. By Theorem 4.9

we only need to prove that having the same quantifier-free type is type-definable. This is clearly true when 
we restrict to just the language of K-vector spaces. So it suffices to show that [x, y] = [x′, y′] is definable. 
Consider the formula ϕ(x, y, x′, y′) given by:

∃zz′([x, y − z] = 0 ∧ [x− z′, z] = 0 ∧ [z′, z − y′] = 0 ∧ [z′ − x′, y′] = 0).

Let M be an e.c. model and let a, b, a′, b′ ∈ M with M |= ϕ(a, b, a′, b′). Let c, c′ ∈ M be such that 
[a, b −c] = [a −c′, c] = [c′, c − b′] = [c′−a′, b′] = 0. We thus get [a, b] − [a, c] = [a, c] − [c′, c] = [c′, c] − [c′, b′] =
[c′, b′] − [a′, b′] = 0, and so [a, b] = [a, c] = [c′, c] = [c′, b′] = [a′, b′]. So ϕ(x, y, x′, y′) does indeed imply 
[x, y] = [x′, y′].

Conversely, let a, b, a′, b′ ∈ M such that [a, b] = [a′, b′] = λ. Define A = 〈aba′b′〉 and introduce two new 
linearly independent vectors c, c′ and form B = 〈aba′b′cc′〉. Make B into a K-bilinear space by setting 
[a, c] = [c′, c] = [c′, b′] = λ. Pick anything for the remainder of the bilinear products (respecting the form 
having to be symmetric/alternating). As M is e.c. it is finitely injective (Theorem 1.2), so the inclusion 
A ⊆ M extends to a bilinear monomorphism g : B → M . Then g(c) and g(c′) are realisations for z and z′

respectively in ϕ, so M |= ϕ(a, b, a′, b′).
Now we prove that T ∗

K is not Hausdorff. Let M be an e.c. model of T ∗
K . Using the assumption that K

is infinite, we can use compactness for full first-order logic to find an elementary extension N of M with 
linearly independent a, b ∈ N such that N �|= [a, b] = λ for all λ ∈ K. We claim that there are extensions 
N1 and N2 of N , both models of T ∗

K , such that N1 |= [a, b] = 0 and N2 |= [a, b] = 1. This shows that T ∗
K is 

not Hausdorff by Fact 2.25, as N1 ⊇ N ⊆ N2 cannot be amalgamated.
Suppose for a contradiction that one of these extensions, say N1, does not exist. Then by compact-

ness there is a finite conjunction ϕ(a, b, ̄c) of atomic formulas that are true in N such that T ∗
K |=

¬∃xy(∃z̄ϕ(x, y, ̄z) ∧ [x, y] = 0). We may assume ϕ contains no linear equations since a and b are lin-
early independent and we can replace any c ∈ c̄ that is linearly dependent on a, b and the remainder of 
c̄ by replacing it by the appropriate linear combination. We can thus apply Lemma 4.4 to obtain some 
λ ∈ K such that T ∗

K |= ∀xy(∃z̄ϕ(x, y, ̄z) → [x, y] = λ). However, this would imply that N |= [a, b] = λ, a 
contradiction. �
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We close out this section by recalling the definitions of simplicity (in the sense of [3]) and stability for 
positive theories, and prove that T ∗

K is simple unstable.1

Definition 4.15. Let M be some e.c. model and let ā, ̄b ∈ M , C ⊆ M . We say that a type p(x, ̄b) = tp(ā/Cb̄)
divides over C if there is an extension M ⊆ N with a C-indiscernible sequence (b̄i)i<ω in N such that ⋃

i<ω p(x, ̄bi) is inconsistent.

Definition 4.16. A theory T is called simple if dividing has local character. That is, there is some cardinal μ
such that for any finite ā in any e.c. model M and any B ⊆ M there is B0 ⊆ B with |B0| ≤ μ and tp(ā/B)
does not divide over B0.

Definition 4.17. A theory T is called stable if there is some cardinal μ such that for all A ⊆ M , where M is 
an e.c. model and |A| ≤ μ, there are at most μ different types over A (possibly realised in extensions of M).

The following fact is one half of a Kim-Pillay style theorem for positive logic, which allows us to charac-
terise simple positive theories based on the existence of a simple independence relation. We simplified the 
statement for our setting and only mentioned one half as that is what we need, the original theorem is much 
stronger.

Fact 4.18 ([3, Theorem 1.51]). Let T be a positive theory. If there is a simple independence relation |� on 
subsets of the e.c. models of T then T is simple and |� coincides with non-dividing.

Theorem 1.3, repeated. The theory T ∗
K is simple unstable, and non-dividing coincides with linear indepen-

dence. That is, for every ā, b̄ and C in some e.c. model M we have ā |�
M

C
b̄ iff tp(ā/Cb̄) does not divide 

over C.

Proof. We get simplicity and the claim about |� coinciding with non-dividing directly from applying 
Fact 4.18 to |�, as all the necessary properties have been verified in section 3. To translate between 
the framework of AECats and the framework of positive logic, we note that Galois types coincide with 
positive types. That is, if B is a common subset of e.c. models M1 and M2 and ā1 ∈ M1 and ā2 ∈ M2
then we have tp(ā1/B) = tp(ā2/B) if and only if gtp(ā1/B; M1) = gtp(ā2/B; M2) in Bil∗K . The left 
to right direction is a straightforward exercise using compactness and the method of diagrams. For the 

right to left direction we let M1
f1−→ N

f2←− M2 witness the equality of Galois types. Then indeed 
tp(ā1/B) = tp(f1(ā1)/B) = tp(f2(ā2)/B) = tp(ā2/B), because the bilinear monomorphisms f1 and f2
are LK-homomorphisms and thus immersions since M1 and M2 are e.c. models.

We could prove non-stability using the fact that Stationarity fails, as in Proposition 3.4, because in 
stable positive theories we must have Stationarity over certain sets [3, Theorem 2.8]. However, we will 
give a direct proof for Definition 4.17. Let μ be any infinite cardinal, and let M be an e.c. model with at 
least μ many linearly independent vectors (ai)i<μ. Then for any χ : μ → {0, 1} we define the partial type 
Σχ(x) = {[x, ai] = χ(i) : i < μ}. Then each Σχ(x) can be extended to a type pχ(x) over (ai)i<μ (i.e. it will 
have a realisation in some extension of M). This yields an injection from 2μ into the space of types over 
(ai)i<μ, so there are more than μ many types over (ai)i<μ. �

We named real Hilbert spaces as an example of bilinear spaces (Example 2.3(ii)). Complex Hilbert spaces 
are not bilinear spaces, because they are required to be conjugate symmetric, that is [x, y] = [y, x]. Together 
with linearity in the first argument this means that the form is conjugate linear in the second argument: 

1 Having JEP allows us to work in a monster model, but we have so far not used monster models and it seems unnecessary to 
introduce them just for the final result.
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[x, αy+βz] = ā[x, y] + β̄[x, z]. This is an example of a Hermitian space, which is a generalisation of bilinear 
spaces. Even more general are sesquilinear spaces. It seems likely that similar techniques can be used to 
study such spaces. We thank Jan Dobrowolski for asking the following question.

Question 4.19. Can we use positive logic to study sesquilinear or Hermitian spaces over a fixed base field 
(or even: division ring)? Is the arising theory still simple?

5. ω-Categoricity in positive logic

In this section we provide a positive version of what is commonly known as the Ryll-Nardzewski theorem 
in full first-order logic, extending [10, Theorem 6.5]. This will then be used to conclude that, for countable 
K, the theory T ∗

K of (symmetric/alternating) K-bilinear spaces is ω-categorical, see Corollary 5.9.

Definition 5.1. Let κ be a cardinal. A theory T is called κ-categorical if it has only one e.c. model of 
cardinality κ, up to isomorphism.

The following definition is taken from [10]. More precisely, [10, page 844] gives a topological definition 
of what it means for a set of formulas to be supported. We translate that to a logical property, where we 
restrict our attention to types (remember, for us these are maximal types, in contrast to [10]). This results 
in Definition 5.2(ii). We also provide an equivalent property, which is similar to the usual notion of isolated 
type. In fact, in full first-order logic supported is the same as isolated. In positive logic the latter would not 
be a good term, as it no longer corresponds to a type being an isolated point in the type space.

Definition 5.2. A type p(x̄) in finitely many variables is called supported if there is a formula ϕ(x̄) ∈ p(x̄)
such that the following equivalent conditions hold:

(i) for all χ(x̄) ∈ p(x̄) we have T ec |= ∀x̄(ϕ(x̄) → χ(x̄)),
(ii) for all ψ(x̄) /∈ p(x̄) we have T |= ¬∃x̄(ϕ(x̄) ∧ ψ(x̄)).

In this case we call ϕ(x̄) the support of p(x̄).

Lemma 5.3. The conditions in Definition 5.2 are indeed equivalent.

Proof. (i) ⇒ (ii) Let ψ(x̄) /∈ p(x̄) and assume for a contradiction that there is some model M of T with 
ā ∈ M such that M |= ϕ(ā) ∧ψ(ā). We may assume M to be e.c. Write q(x̄) = tp(ā), so we have ϕ(x̄) ∈ q(x̄)
and hence p(x̄) ⊆ q(x̄) by our assumption on ϕ. By maximality of types we then have p(x̄) = q(x̄), and 
hence ψ(x̄) ∈ q(x̄) = p(x̄), which is a contradiction.

(ii) ⇒ (i) Let χ(x̄) ∈ p(x̄). If T ec �|= ∀x̄(ϕ(x̄) → χ(x̄)) then by definition of T ec there must be an e.c. model 
M with a ∈ M such that M |= ϕ(ā) and M �|= χ(ā). So there is a negation ψ(x̄) of χ(x̄) such that M |= ψ(ā). 
As χ(x̄) ∈ p(x̄) we must have ψ(x̄) /∈ p(x̄), so by our assumption on ϕ(x̄) we have T |= ¬∃x̄(ϕ(x̄) ∧ ψ(x̄)). 
However, this contradicts M |= ϕ(ā) ∧ ψ(ā). �
Definition 5.4. Let M be an e.c. model. We call M atomic if it only realises supported types. We call M
prime if every e.c. model N is an extension of M .

Fact 5.5 ([10, Proposition 6.3]). Let M be an e.c. model of a countable theory T with JEP. Then M is 
prime if and only if it is countable and atomic.

Lemma 5.6. If every n-type is supported then every e.c. model is ω-saturated.
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Proof. Let M be an e.c. model and let Σ(x̄, ̄b) be finitely satisfiable in M , where x̄ and ̄b ∈ M are finite. Then 
there is a realisation ā in some e.c. model N that is an extension of M . Set p(x̄, ȳ) = tp(ā, ̄b) and let ϕ(x̄, ȳ)
be the support of p(x̄, ȳ). Then N |= ∃x̄ϕ(x̄, ̄b) so because M is e.c. we find ā′ ∈ M with M |= ϕ(ā′, ̄b). As 
ϕ supports p we have that M |= p(ā′, ̄b) and hence M |= Σ(ā′, ̄b). �
Remark 5.7. Theorem 5.8 below provides several equivalent characterisations of being ω-categorical for 
positive theories. However, compared to the analogous theorem for full first-order logic one important 
characterisation is missing: namely that the space of n-types is finite, for every n < ω. As pointed out in 
[10, Example 6.6] this is simply no longer equivalent to being ω-categorical in positive logic. In fact, one 
easily sees that having finite type spaces is equivalent to being ω-categorical and Boolean, where being 
Boolean follows because the complement of any positively definable set is positively definable using a finite 
disjunction.

The counterexample from [10] is quite simple, so we repeat it here. Consider the theory T with constants 
{ci}i<ω, asserting that ci �= cj for all i �= j. Then T has a unique e.c. model consisting of only interpretations 
for the constants. We see that T is ω-categorical, but each constant yields a different type, so we have 
infinitely many 1-types.

Theorem 5.8. Let T be a countable theory with JEP. Then the following are equivalent:

(i) T is ω-categorical,
(ii) every n-type is supported,
(iii) all e.c. models are atomic,
(iv) all countable e.c. models are atomic,
(v) every e.c. model is ω-saturated,
(vi) there is a saturated prime e.c. model.

Proof. The equivalence between (i), (ii), (iii) and (iv) is [10, Corollary 6.4 and Theorem 6.5]. Lemma 5.6
yields (ii) ⇒ (v), while (v) ⇒ (i) easily follows from back-and-forth. We are left to prove that (vi) is 
equivalent to properties (i) to (v).

(vi) ⇒ (iii) Let M be prime and saturated. By Fact 5.5 M is atomic. Let p be a type that is realised in 
some e.c. model N . By JEP and saturation p is also realised in M and is thus supported. As p and N were 
arbitrary we conclude that indeed all e.c. models are atomic.

(i)–(v) ⇒ (vi) Let M be the unique countable model. By (iii) M is atomic and by (v) M is ω-saturated, 
and hence saturated. Finally, by Fact 5.5 M is prime. �
Corollary 5.9. Let K be any field. Every e.c. model of T ∗

K is ω-saturated. If K is at most countable then 
T ∗
K is ω-categorical.

Proof. By Corollary 4.10 every type in finitely many variables is supported and Corollary 4.6 gives us JEP. 
So Lemma 5.6 and Theorem 5.8 apply. �
6. Comparison to different approaches

We consider two other model-theoretic approaches to certain bilinear spaces: Hilbert spaces and the two-
sorted approach in full first-order logic. The former is known to be stable, while the latter is known to be 
non-simple (but is NSOP1). This is in contrast to our main results Theorem 1.1 and Theorem 1.3, which 
claim simplicity and non-stability. In each of these two cases we point out precisely where the difference 
lies, in terms of the canonical independence relation.
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6.1. Hilbert spaces

From [5, section 15] we know that Hilbert spaces (over the real numbers), studied in the framework 
of continuous logic, are stable. The canonical independence relation is given by orthogonality. So linear 
independence cannot be a simple independence relation on the category of Hilbert spaces, as it would have 
to coincide with orthogonality by canonicity. It is then natural to ask: what property fails? The answer to 
this question turns out to be 3-amalgamation, as we will show in Example 6.1.

Example 6.1. We write |� for linear independence (as in Definition 3.1), and we will show that 3-

amalgamation fails for |� in the category of Hilbert spaces. We work in the Hilbert space R3 with 
the usual inner product as bilinear form. Let a = (1, 0, 0), a′ = (0, 1, 0), b = (1, 0, 1), c = (0, 1, 1) and 
d = (1

2 , 
1
2 , 2). Set A = 〈ad〉, A′ = 〈a′d〉, B = 〈bd〉, C = 〈cd〉 and D = 〈d〉. So we have a commuting diagram 

as below (ignoring the dashed arrows), where every arrow is an inclusion, except for f , which is defined by 
f(d) = d and f(a) = a′, and then extend linearly.

R3 V

A R3

C R3

D B

h

f g

i

Furthermore, we have A |�
R3

D
B, B |�

R3

D
C and A′ |�

R3

D
C. Noting that A′ = f(A) 3-amalgamation would 

give us the dashed arrows such that everything commutes. We will view i as a genuine inclusion and write 
a∗ = g(a) = h(a′).

Set v = 2(b + c − d), so in R3 this is just (1, 1, 0). We calculate:

[a∗ − v, a∗ − v] = [a∗, a∗ − v] − [v, a∗ − v]

= ([a∗, a∗] − [a∗, v]) − ([v, a∗] − [v, v])

= (1 − ([a∗, 2b] + [a∗, 2c] − [a∗, 2d])) − ([v, a∗] − [v, v])

= (1 − (2 + 2 − 1)) − ([2b, a∗] + [2c, a∗] − [2d, a∗] − 2)

= −2 − (2 + 2 − 1 − 2)

= −3,

here we have used the definition of a∗ and commutativity of the above diagram multiple times for simplifi-
cations like [a∗, 2b] = [g(a), i(2b)] = [g(a), g(2b)] = [a, 2b] = 2.

So we have found an element of V , namely a∗ − v, such that [a∗ − v, a∗ − v] = −3. This means that the 
form on V is not positive definite. So V cannot be a Hilbert space and we conclude that 3-amalgamation

fails for linear independence |� in the category of Hilbert spaces.

Of course, we could apply Theorem 3.11 to the diagram in Example 6.1 to find V together with the dashed 
arrows. We will just get a bilinear form that is not positive definite. In fact, we can give an explicit description 
of V and a∗ (which completely determines the diagram). We take V = R4, and let the bilinear form be 
defined by [(x, y, z, w), (x′, y′, z′, w′)] = xx′ + yy′ + zz′ − ww′. Now we can take a∗ = (11

2 , 1
1
2 , −

1
2 , 

√
15
2 ). It 

is then straightforward to verify that this does indeed form a solution to the 3-amalgamation problem.
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6.2. Failure of simplicity when the field varies

Bilinear spaces over some infinite field K have been studied in the framework of full first-order logic by 
considering a two-sorted theory TK

∞ : one sort for the vector space and one for the field, which has to be 
elementarily equivalent to K in the language of rings. This comes with two disadvantages: the theory is 
going to be at least as complicated as the theory of the field and the field varies between different models 
of the theory.

Even when we restrict ourselves to algebraically closed fields, for which we write TACF
∞ , the resulting 

theory will be non-simple, as was established in [9, Proposition 7.4.1]. Later, in [7, Corollary 6.4], it was 
shown that TACF

∞ is NSOP1. In terms of independence relations this means that the canonical independence 
relation has all properties that a simple independence relation has, except for Base-Monotonicity. We 
give an example of how precisely Base Monotonicity fails.

Definition 6.2. Let TACF
∞ be the full first-order theory of an infinite dimensional non-degenerate bilinear 

space, either symmetric or alternating, over an algebraically closed field of characteristic other than 2. We 
have two sorts, V and K, for the vector space and the field respectively. The sort V has the language 
of abelian groups on it, and K has the language of rings on it. Furthermore, we have a function symbol 
K × V → V for scalar multiplication and a function symbol [·, ·] : V × V → K for the bilinear form.

We use TACF
∞ to refer both to the symmetric and alternating version, as it makes no difference in what 

follows. We introduce some notation. For any set A in some model M we write K(A) for the restriction of 
A to the field sort, so K(A) = A ∩ K(M). Similarly V (A) = A ∩ V (M). As the field can now vary with 
the models we need to include it in the notation of the linear span as well: for a field K0 ⊆ K(M) we write 
〈A〉K0

for the K0-linear span of V (A).
The canonical independence relation in TACF

∞ was first described in [16, Proposition 9.37], where the base 
was restricted to models. In [8, Corollary 8.13] some corrections were made and the independence relation 
was extended to arbitrary sets, resulting in the following fact. We write dcl(X) for the model-theoretic 
definable closure of X and |�

ACF is algebraic independence.

Fact 6.3. The canonical independence relation |�
K (the K here stands for Kim-independence) for TACF

∞
is as follows: for A, B, C ⊆ M we have A |�

K,M

C
B if and only if 〈AC〉K(M) ∩ 〈BC〉K(M) = 〈C〉K(M) and 

K(dcl(AC)) |�
ACF,M

K(dcl(C)) K(dcl(BC)).

Example 6.4. We show that Base Monotonicity fails for |�
K in TACF

∞ . The relation |�
K consists of two 

parts: linear independence in the vector space sort and algebraic independence in the field sort. The failure 
will take place in the algebraic independence, and comes from taking the definable closure of AC.

Fix some model M = (V0, K0). Let M � N with v, w ∈ V (N) be such that:

(i) v and w are K(N)-linearly independent over V0,
(ii) [v, w] = b is transcendental over K0,
(iii) [v, v] = [w, w] = [v, x] = [x, v] = [w, x] = [x, w] = 0 for all x ∈ V0.

Let Kb be the smallest algebraically closed field containing K0b. Set A = (〈V0v〉K0
, K0), B = (〈V0w〉Kb

, Kb)
and C = (〈V0w〉K0

, K0). Each of A, B, C is algebraically closed. We quickly see that A |�
K,N

M
B and M ⊆

C ⊆ B. We also have that b = [v, w] ∈ dcl(AC) and so K(dcl(AC)) � |�
ACF,N

K(dcl(C)) K(dcl(BC)), because 

b is transcendental over K0 = K(dcl(C)) and by construction b ∈ K(dcl(BC)). We thus conclude that 
A � | K,N

B, so Base Monotonicity fails.
�C
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