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Abstract 

Climate change and fast urbanization are increasing the likelihood of compound 

hazards - events where multiple drivers and/or hazards interact with multiplicatively 

destructive environmental and socio-economic consequences. This includes increases 

in the frequency of not only concurrent natural extremes (heatwaves and droughts, 

storm surges and extreme rainfalls, etc.), but also collisions between natural and 

manmade disasters (air pollution, infectious disease transmission, trade wars, etc.) 

particularly in the post-pandemic world. Entanglement of different hazardous factors 

increases the complexity of impact accounting and risk management and requires an 

integrated solution to tackle the vulnerabilities of human societies towards compound 

risks. However, most of the research in disaster analysis investigates one hazard at a 

time. Only a few emerging perspectives have noticed or warned the potential of 

compound hazards, but they are still far from capacity building for the compound 

resilience to future crises. 

 

This PhD thesis presents a full set of methodology to systematically assess the 

economic impacts from single to compound hazards. The concept of ‘disaster footprint’ 

is used here to capture the direct and indirect impacts rippling through the economic 

supply chain during a single or compound disaster event. A four-stage research 

framework is proposed. It starts from the direct disaster footprint assessment, which 

links physical characteristics of hazards with property damage or health impairment 

by simulating hazard-specific exposure-damage functions. The direct footprint is then 

fed into an input-output-based (IO-based) hybrid economic model to calculate the 

indirect disaster footprint that propagates through intersectoral and interregional 

connections to wider economic systems. The improved IO-based disaster footprint 

model is built here for single hazard analysis, with innovations regarding inventory 

adjustment and cross-regional substitutability. Third, within the same disaster footprint 
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framework, the economic interplays between diverse types of hazards are synthesized 

into the impact assessment, and thereby a Compound Hazard Economic Footprint 

Assessment (CHEFA) model is developed for compound events. Finally, favourable 

response and recovery plans, which are aimed to mitigate the total disaster footprint, 

are suggested by comparing the modelling results under wide ranging scenarios and 

identifying crucial influencing factors through sensitivity analysis. A major 

contribution of this thesis is that it takes the first step in the field of disaster analysis 

to integrate multiple hazardous factors within a macro-economic impact assessment 

framework that accounts for both direct and indirect disaster footprint into sectoral and 

regional details. 

 

The proposed modelling framework is first applied to three types of hazards (i.e., heat 

stress, air pollution and climate extremes) on the provincial and national scales in 

China to demonstrate its flexibility for a wide range of disaster risks. The total 

economic costs of heat stress, air pollution and climate extreme events in China have 

increased from US$207.9 billion (1.79% of GDP) in 2015 to US$317.1 billion (2.16% 

of GDP) in 2020. Despite the decreasing economic costs of air pollution and climate 

extreme events, the economic costs from heat-related health impacts have continued 

the concerning growing trend. Among the three types of hazards, the economic costs 

of heat stress were the biggest and accounted for over 70% of the total costs. Heat 

stress affects the economy mainly by reducing labour productivity. For each unit of 

direct costs, heat stress was also inclined to cause more indirect supply chain costs 

than air pollution and climate extremes. Most of the heat-induced direct costs occurred 

outdoors in the agriculture and construction sectors, while most of the heat-induced 

indirect costs happened indoors in the manufacture and service sectors. At the regional 

level, hotspot provinces with prominent economic risks from these hazards have been 

identified for China. Southern provinces were more economically vulnerable to heat 

stress than northern provinces, while northern provinces tended to suffer larger 
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economic costs from air pollution than southern provinces. By contrast, the economic 

impacts of climate extreme events were more spatially distributed in China than the 

other two types of hazards. Location-specific economic impacts of climate change 

require location-specific responses, including enhancing inter-departmental 

cooperation, strengthening climate emergency preparedness, supporting scientific 

research, raising public awareness, and promoting climate change mitigation and 

adaptation. 

 

Economic implications of climate change are also evaluated with a focus on future 

flood risks in six developing countries (i.e., Brazil, China, India, Egypt, Ethiopia and 

Ghana) around the end of 21st century (2086-2115). A physical model cascade of 

climate-hydrological-flood models is linked with the disaster footprint economic 

model through a set of country and sector specific depth-damage functions. The total 

(direct and indirect) economic losses of fluvial flooding are projected for each country, 

with or without socio-economic development, under a range of warming levels from 

<1.5°C to 4°C. As a share of national GDP, Egypt suffers the largest flood-induced 

losses under both climate change (CC) and climate change plus socio-economic 

development (CC+SE) experiments, reaching 2.3% and 3.0% of GDP under 4°C 

warming. Climate change acts as a driving factor that increases the flood losses in all 

countries, but the effect of socio-economic development differs among the countries 

and warming levels. For Ethiopia and China, future flood losses as a proportion of 

GDP under different warmings decline from the baseline levels when socio-economic 

development is modelled, suggesting a more resilient economic growth that helps 

reduce future flood risks. However, for Brazil, Ghana, and India, while losses as a 

proportion of GDP initially decline at lower warming levels, increases are seen from 

2.5°C or 3°C warming onwards, suggesting a tipping point where increasing flood risk 

outweighs any relative benefits of socio-economic development. These results 

highlight the importance of including socio-economic development when estimating 
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future flood losses, essential to provide a more comprehensive picture of potential 

losses that will be important for decision makers. 

 

With the development of the CHEFA model, the economic interaction between 

concurrent hazardous factors comes into analysis. A hypothetical perfect storm 

consisting of floods, pandemic control, and trade restrictions (as a proxy for 

deglobalization) is assumed to test the applicability and robustness of the model. The 

model also considers simultaneously cross-regional substitution and production 

specialization, which can influence the resilience of the economy to multiple shocks. 

Scenarios are first designed to investigate economic impacts when a flood and a 

pandemic lockdown collide and how these are affected by the timing, duration, 

intensity/strictness of each event. The results reveal that a global pandemic control 

aggravates the flood impacts by hampering the post-flood capital reconstruction, but a 

flood exacerbates the pandemic impacts only when the flood damage is large enough 

to exceed the stimulus effect of the flood-related reconstruction. Generally, an 

immediate, stricter but shorter pandemic control policy would help to reduce the 

economic costs inflicted by a perfect storm. The study then examines how export 

restrictions and retaliatory countermeasures during the pandemic and floods influence 

the economic consequences and recovery, especially when there is specialization of 

production of key sectors. It finds that the trade restriction of a region to ‘protect’ its 

product that can be substituted by the same product made elsewhere, while hampering 

the global recovery, may alleviate the region’s own loss during the compound disasters 

if the increasing domestic demand exceeds the negative impacts of falling exports. By 

comparison, the trade restriction on a non-substitutable product has greater negative 

impacts on the global recovery, which ultimately propagates backward to the region 

through the supply chain and exacerbates its own loss. The results also indicate that 

the potential retaliation from another region and sector would further deteriorate the 

global recovery and make everyone lose, with the region which initiates the trade war 
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losing even more when the retaliatory restriction is also imposed on a non-substitutable 

product. Therefore, regional or global cooperation is needed to address the spillover 

effects of such compound events, especially in the context of the risks from 

deglobalization. 

 

The CHEFA model has been then successfully applied to a real compound event of the 

2021 extreme floods and a COVID-19 wave in Zhengzhou, the capital city of Henan 

province in China. The event was rare in history and has caused enormous economic 

consequences (direct damage worthy of 66,603 million yuan and indirect losses worthy 

of 44,340 million yuan) to the city, reaching a total of 10.28% of its GDP during the 

previous year. The negative impacts also spilled over to the whole nation through the 

production supply chain, making the total economic losses amount to 131,714 million 

yuan (0.13% of China’s GDP in the previous year). The local lockdown to control the 

spread of COVID-19 has increased the indirect losses by 77% and the indirect/direct 

loss ratio from 0.55 to 0.98. While a majority (29%) of direct losses happened in 

Zhengzhou’s real estate industry, the indirect losses were more distributed in 

Zhengzhou’s non-metallic mineral products (13%), food and tobacco (10%), and 

transportation services (10%). Zhengzhou’s non-metallic mineral sector is also a 

critical sector with strong propagation effects. The reduction in its production has 

triggered a supply chain loss of 10,537 million yuan in terms of trades with other 

sectors and regions, which nearly doubled its value-added loss. In regions outside 

Zhengzhou, the agriculture, mining, petroleum and coking, chemical products, 

accommodation and restaurants, and financial services were the sectors significantly 

affected by this compound event. Among them, the agriculture in Henan (outside 

Zhengzhou) suffered the greatest indirect (or value-added) loss at 2,760 million yuan. 

The study also finds that the post-disaster economic resilience is most sensitive to 

factors such as road recovery rate, reconstruction efficiency and consumption 

subsidies, and the COVID-19 control tends to reduce the marginal economic benefits 
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of flood emergency efforts. As low-likelihood compound extreme events become more 

frequent with global warming, concerted actions are in urgent need to address the 

intricate dilemma between disaster relief, disease control and economic growth at both 

individual and institutional levels.  

 

Overall, this PhD study develops an integrated assessment framework for the direct 

and indirect economic impacts from single to compound hazardous events. Within this 

framework, consistent and comparable loss metrics are elicited for different types of 

hazards, either single or compound ones, advancing the understanding of their 

economic risk transmission channels through the production supply chain. Knowing 

the economic complexity intrinsic to the disaster mixes will foster a sustainable risk 

management strategy that balances different emergency needs at the minimal 

economic costs, and guide investment to risk preparedness against the growing threats 

under climate change. In addition, collaborative efforts are required from the local to 

global levels to enhance the economic resilience towards future crises in complex 

situations. This is crucial to achieve the mitigation and adaptation targets in the Paris 

Agreement and Sendai Framework for Disaster Risk Reduction. 
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Chapter 1 Introduction 

1.1. Compound Hazards in the Post-pandemic World 

As the world enters the third year of the COVID-19 pandemic, human development 

faces unprecedented challenges from multiple environmental, social, economic, and 

political hazards. These hazards may interrelate and develop in confluence to generate 

disastrous compounding impacts. Yet current understanding of these hazards is often 

isolated and fragmented, leading to biased impact evaluation and inadequate 

emergency response. Therefore, a holistic approach that integrates multiple, or 

compound hazards is in urgent need to address the complex disaster impacts in the 

post-pandemic interconnected world. 

 

At the time of writing, the COVID-19 pandemic has affected 500 million people with 

6.2 million deaths in 226 countries and territories1. Waves of lockdowns, which usually 

last for several months, have been implemented to contain the spread of the virus 

around the world. As the COVID-19 pandemic and its response measures continue to 

affect public health and economic activities, the collisions with a number of other 

environmental and socioeconomic shocks and disruptions are inevitable, leading to 

increased risks of compound events (Phillips et al., 2020). For instance, from March 

2020 to August 2021, 433 extreme weather events coincided with the COVID-19 

pandemic, affecting an estimated 139.2 million people; additionally, 658.1 million 

people were exposed to extreme heat, and 0.8 million people were affected by wildfires 

(Walton et al., 2021). 

 

On a broader scale, the recent climate and COVID-19 pandemic crises were also 

 
1 Data source: https://covid19.who.int/ (accessed on 19 April 2022). 

https://covid19.who.int/
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overlapping with the deglobalization trend that had been rising prior to the COVID-19 

pandemic. The 2020 World Development Report reports that growth in global value 

chains has flattened (World Bank, 2019). The contraction in global trade that began in 

mid-2018 deepened in March 2020, with the global exports and imports declining by 

around 12% year-on-year respectively (Ferrantino et al., 2020). Additionally, country 

and regional reform agendas have either experienced a reversal or have stalled. China’s 

recent move towards promoting local industries and the falling share of exports as a 

share of GDP (from 32.6% in 2008 to just 18.5% in 2020) further brightens this signal 

(World Bank, 2021). Recent years also saw increasing trade tensions, especially in 

relations between the US and China, as well as the UK withdrawing from the EU, but 

also in some of the responses by governments to the COVID-19 pandemic (Eaton, 

2021; Espitia et al., 2020; Hatzigeorgiou and Lodefalk, 2021; Zhang, Lei, et al., 2019). 

Countries turning inward closes the window of opportunities to enhance regional or 

global cooperation, increasing the uncertainty of global recovery in the post-pandemic 

era (Shahid, 2020). 

 

Apart from the intersections between the pandemic (including COVID-19) and other 

hazards, compound events could also arise from the co-occurrence of non-pandemic 

hazards, such as multiple climatic hazards. In fact, the concept of ‘compound events’ 

is originated from climate research and developed by Zscheischler et al. (2018, p. 470) 

to describe ‘the combination of multiple drivers and/or hazards that contributes to 

societal or environmental risk’. The combination of two or more weather or climate 

events, whether of similar types or of different types, can occur 1) at the same time, 2) 

in close succession, or 3) concurrently in different regions (Zscheischler et al., 2020). 

Many major weather- and climate- related catastrophes are inherently of a compound 

nature. For example, the widespread wildfires can be related to the co-occurrence of 

the extremely dry and hot conditions (Witte et al., 2011). The compounding of storm 

surge and precipitation extremes can cause coastal floods (Wahl et al., 2015). 
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Precipitation and heat extremes can occur in close succession due to abnormal climate 

conditions (Liao et al., 2021). Recent years have seen a more frequent occurrence of 

such compound events and their frequency and magnitude are projected to increase in 

the future due to both global warming and human activities (Seneviratne et al., 2021). 

 

1.2. Interplay between Different Hazards and its Economic 

Implications 

The compound events attributable to multiple hazards can cause devastating impacts 

at a scale well beyond that resulting from any one of these hazards in isolation (Hao 

and Singh, 2020). This is because the overlapping hazards can exceed the coping 

capacity of a system more quickly (Zscheischler et al., 2020). More interdisciplinary, 

cross-sectoral risk assessments are needed to capture the interactions between 

individual and interrelated hazards and address the trade-offs between sectors at 

different scales under a range of scenarios (Phillips et al., 2020). 

 

An emerging body of research discovers that the collision between pandemic and 

natural hazards often puts governments into a dilemma where the goals for disaster 

relief and pandemic containment conflict with each other. On the one hand, standard 

mitigation strategies, such as mass sheltering and population evacuation, increase the 

risk of viral transmission by moving large groups of people and gathering them close 

together (Salas et al., 2020). On the other hand, strict measures to prevent viral 

transmission can result in inadequate response towards natural disasters (Ishiwatari et 

al., 2020) and constrain the economic flows required by post-disaster recovery, 

aggravating the disaster impacts. Swaisgood (2020) suggested that the economic 

consequences of such compound events are underestimated if the interplay between 

individual hazards is not considered. Similar perspectives are proven by Dunz et al. 

(2021), who found that non-linear dynamics that amplify the economic losses emerge 
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when COVID-19 and extreme weather events compound within an economy. 

 

The pandemic and natural hazards can also intertwine with other social or economic 

risk factors, leading to complex situations. Some have argued that the COVID-19 

pandemic and climate change have further fuelled the process of deglobalization by 

reinforcing concerns about unstable global supply chains (Abdal and Ferreira, 2021; 

Irwin, 2020; Shahid, 2020; Sneader and Lund, 2020). A number of countries have 

responded by introducing export restrictions on critical medical equipment and food 

and even on vaccines during the COVID-19 pandemic (Eaton, 2021; Espitia et al., 

2020). Extreme weather shocks also have profound impacts on production and trade, 

especially in agriculture and developing countries, by either damaging trade-related 

transport and logistics infrastructure or generating shortage of supply in critical goods 

and services, i.e., food, medicines, and emergency workers (Brenton and Chemutai, 

2021). These effects are compounded with amplifying adverse economic impacts if 

the restrictive trade policy measures undermine the efforts of countries simultaneously 

battling natural and pandemic crises (Hu et al., 2021; Mahul and Signer, 2020). 

 

Even for simple scenarios compounded by merely multiple natural or climatic hazards, 

the interrelation between the occurring extreme events may still overwhelm the 

systems and aggravate the negative impacts (Ridder et al., 2020). Taking the sequential 

flood-heat extremes in Japan in the summer of 2018 as an example, heavy rains left 

many people without electrical power during a record-breaking heatwave, which killed 

more than 1000 people (Imada et al., 2019). Zeng and Guan (2020) also investigated 

the economic impacts of a hypothetical two-flood event. They found that the 

subsequent flood may disrupt the recovery of capital damaged by the first flood if the 

two events hit the economy in close succession. The total economic impacts of such a 

compound flood exceed the sum of the economic impacts of each individual flood due 

to the interplay between each flood during the economic recovery. 
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Growing evidence indicates that compound events usually affect and interweave 

numerous dimensions of social life and can be perceived as mixtures of exogenous 

shocks to the economic dynamics. They require a different way of accounting for the 

cumulative hazard impacts to the affected systems. There is increasing literature 

calling for an integrated approach to analyse the interaction between individual and 

interrelated hazards, so as to ascertain the potential impacts cascading across sectors 

and regions, as well as to inform advanced preparedness for future risks in complex 

situations (Kruczkiewicz et al., 2021; Mahul and Signer, 2020; Phillips et al., 2020). 

 

1.3. Economic Impact Assessment for Disaster Events 

Mitigating disaster economic impacts has long been one of the major targets of global 

disaster risk prevention and reduction. The Sendai Framework for Disaster Risk 

Reduction 2015-2030, which was adopted at the Third UN World Conference, 

underscored the importance of systematically evaluating the disaster economic 

impacts in understanding disaster risks and guiding disaster-resilient investments 

(UNISDR, 2015).  

 

Consistent with the goal of the Sendai Framework, countries and international 

institutions have developed disaster loss assessment systems, such as the HAZUS 

model developed by the Federal Emergency Management Agency in the United States 

(FEMA, 2009), the EMA-DLA system developed by the Emergency Management 

Australia (EMA, 2002), the DaLA system developed by the World Bank (Jovel and 

Mudahar, 2010), etc., to facilitate disaster risk management. In addition, global disaster 

databases, such as EM-DAT, NatCatSERVICE, and SIGMA, developed by insurance 

companies or research institutes, have also become valuable tools for tracking disaster 

impacts (Mazhin et al., 2021).  
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Current assessment systems and tools usually measure or report two categories of 

economic impacts, that is, direct and indirect ones, resulting from disasters. The direct 

economic impacts refer to damages to humans, physical assets (e.g., buildings and 

infrastructure), and any other elements due to direct contact with disasters, relating 

directly in space and time to the disaster events (de Moel et al., 2015; Merz et al., 

2010); while the indirect economic impacts are the subsequent changes in economic 

activities induced by direct ones, including the business interruption of affected 

economic sectors and regions, the spread of these impacts towards other initially non-

affected sectors and regions, and the costs of recovery processes. They often occur, in 

space or time, after or outside the disaster events. Positive spillover effects may occur 

due to the substitution of production and the demand for reconstruction (Koks and 

Thissen, 2016). The indirect impacts of a disruptive event are more likely to be ignored 

in many cases. Most global disaster databases, for instance, only present the direct 

damage to human lives and physical properties induced by disasters. The disaster loss 

accounting system in China has not considered the indirect impacts of disasters to the 

economic system yet (Wang and Zhou, 2018). This may be related to the fact that the 

indirect impacts are intangible and hard to be traced. Nonetheless, the indirect impacts 

could account for a large proportion of the total impacts of a disaster event due to the 

close inter-sectoral linkages within the economic network (Oosterhaven and Többen, 

2017). In particular, more industrialized countries tend to suffer severer indirect 

impacts than less industrialized ones, in spite of being less vulnerable to direct shocks 

(Mendoza-Tinoco et al., 2020). The uneven distribution of disaster impacts among 

nations or economies makes it important to enhance the understanding of the full 

economic consequences of disaster events, which requires a reliable and systematic 

assessment tool to capture both the direct and indirect impacts. 

 

To reduce the uncertainty and increase the quality of disaster economic impact metrics, 
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it is necessary to develop common protocols or methods for impact assessment 

applicable to various scenarios across countries (Wirtz et al., 2014). Fortunately, the 

assessment of direct impacts has been developed to a comparatively mature degree, 

which combines primary data collection with computational models. It usually follows 

a standard procedure of field investigation to collect primary loss data on people 

affected, property loss, infrastructure damage, economic sector damage, etc. 

Catastrophe models, which interprets hazard characteristics into damage to exposed 

people and property according to a set of hazard-specific vulnerability curves or 

functions, are also adopted to supplement direct loss information (Botzen et al., 2019). 

By contrast, however, the assessment of indirect impacts is more challenging due to 

the complexity inherent in the macro-economic system and a unified methodological 

framework has not been well established yet. The most commonly used methods for 

indirect impact quantification include the Input-Output (IO) models (Jonkman et al., 

2008; van der Veen and Logtmeijer, 2005), the Computable General Equilibrium (CGE) 

models (Carrera et al., 2015; Rose and Liao, 2005), and their hybrids, such as the ARIO 

model (Hallegatte, 2008, 2014) and the MRIA model (Koks and Thissen, 2016; Koks 

et al., 2019). These models use direct disaster impacts as input variables and simulate 

the cascading impacts of the initial disaster shock through interdependencies between 

sectors and regions within an economy. Yet, they vary in the assumptions about market 

flexibility and product substitutability, and thus fit for different temporal scales and 

yield different estimates on the indirect economic impacts of a disaster (Koks et al., 

2016). 

 

Many studies have focused on assessing the economic impacts of climate extremes 

(Hallegatte, 2008, 2014; Koks et al., 2015; Koks and Thissen, 2016; Lenzen et al., 

2019; Mendoza-Tinoco et al., 2020; Oosterhaven and Többen, 2017; Willner et al., 

2018; Xia, Li, et al., 2018; Zeng et al., 2019), and unsurprisingly research on biological 

hazards such as the COVID-19 pandemic is still new (Guan et al., 2020; McKibbin 
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and Fernando, 2020; Porsse et al., 2020), and even fewer studies have looked into the 

economic consequences of compound events (Dunz et al., 2021; Zeng and Guan, 2020). 

A consistent metric that bridges the economic impact assessment from single-hazard 

to compound-hazard events is still lacking. Mendoza-Tinoco et al. (2017) developed 

the concept of ‘flood footprint’ to summarize the total economic impacts that is directly 

and indirectly caused by a flood event in the region and the wider economic system. 

Later Zeng and Guan (2020) applied this concept for the assessment of a hypothetical 

two-flood event. This thesis extends the concept of ‘flood footprint’ to ‘disaster 

footprint’ to describe the compound economic impacts of a multi-disaster mix 

comprising of different hazard types. This concept emphasizes the economic footprint 

of an exogenous shock that propagates through the supply chain from one sector to 

another and one region to another within the economic network, as well as the recovery 

dynamics of the affected economic system in the disaster aftermath. The adoption of 

this concept could provide a consistent and comparable impact indicator between 

single-hazard and compound-hazard events and lay the foundation for further 

economic impact assessment in complex situations. 

 

1.4. Research Questions and Objectives 

1.4.1. Research Gaps and Questions 

As compound hazards become more frequent and intense due to climate change and 

human influences, integrated solutions are in urgent need to mitigate their potential 

economic impacts. However, current impact assessment is usually performed for a 

single hazard at a time and not able to reflect on the interaction between hazards of 

different types. An emerging body of literature has started to rethink about risk 

governance or resilience building in the context of compound hazards. However, much 

of this literature is limited to qualitative analysis (Kruczkiewicz et al., 2021; Mahul 

and Signer, 2020; Phillips et al., 2020). Increasing the resilience of an economy also 
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means reducing the economic impacts of various types of hazards (Hammond et al., 

2015; Oosterhaven and Többen, 2017). However, a systematic quantitative assessment 

of the economic impacts for compound hazards is still lacking. 

 

Given the current research gaps, this PhD thesis analyses the methodological evolution 

from single-hazard to compound-hazard economic impact assessment with an attempt 

to address the following primary research aim: 

“How to measure the economic impacts of a compound hazard cascading through 

the production supply chains?” 

 

In relation to this primary research aim are four research questions (RQs): 

RQ1) What are the unique characteristics of a compound hazard in terms of disrupting 

the production supply chains?  

RQ2) What is the most suitable framework applied to assess the economic impacts of 

a traditionally single hazard considering supply chain effects? 

RQ3) How to incorporate the characteristics of a compound hazard into this 

framework, which is previously intended for a single hazard, in order to properly 

assess the compound impacts? 

RQ4) How to evaluate the relevant factors that may influence the economic resilience 

towards such a compound hazard? 

 

1.4.2. Research Objectives and Contributions 

To address these research questions, this thesis aims to develop a robust model for the 

economic impact assessment of compound hazards, which are combinations of 

multiple individual hazards categorised into biological, environmental, geological, 

hydrometeorological, technological and other types (UNISDR, 2017). The model will 

adopt the concept of ‘disaster footprint’ to provide a consistent metric with traditional 

single-hazard assessment, allowing for further comparative analysis. It will also be 
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modularized with flexibility to adapt to the needs of various compound hazard 

scenarios. The specific research objectives (ROs) are: 

RO1) To unlock the interplay between concurrent hazards, either of similar or different 

types, in terms of their economic impacts and risk transmission channels within the 

economic system. This contributes to RQ1 and is discussed in Chapter 1. 

RO2) To present a systematic review of the existing literature on the assessment of 

both direct and indirect economic impacts resulting from natural and manmade 

disasters, as well as the potential risks arising from compound hazards. This 

contributes to RQ2 and is discussed in Chapter 2. 

RO3) To improve the traditional methods of accounting for the hazard-induced indirect 

economic impacts from the perspectives of supply chain cascading effects. This 

contributes to RQ2 and is discussed in Chapter 3. 

RO4) To construct a methodological framework to assess the economic footprint of 

compound hazards, which is evolved from an improved single-hazard assessment 

framework. This contributes to RQ3 and is discussed in Chapter 3. 

RO5) To apply the models developed in this thesis to both individual and compound 

hazards of various types and test their robustness under a range of past or projected 

and hypothetical or real hazard scenarios. This contributes to RQs2, 3 and is discussed 

in Chapter 4 to Chapter 7. 

RO6) To explore factors that may influence the compound resilience of the economic 

system and offer suggestions on the response and recovery strategies for policy makers 

to mitigate the disaster impacts. This contributes to RQ4 and is discussed in Chapter 

6 to Chapter 8. 

 

By fulfilling the above objectives, this thesis could be a meaningful first step to embed 

multiple hazards within an economic risk assessment framework that accounts for both 

direct and indirect disaster footprint with sectoral and regional details. The modelling 

process can be generalized to the impact assessment of a wide variety of individual or 
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compound hazards, pushing the boundaries of applications and knowledge in relevant 

fields. The results will convey useful information on the total economic costs that can 

be saved from active risk reduction and adaptation strategies, as well as where 

bottlenecks can occur in the economy after a compound event and where to prioritize 

recovery funds. All these information will inform policies and investment in 

compound risk mitigation and compound resilience enhancement and eventually 

contribute to the formation of an integrated risk governance in advanced preparedness 

for future risks. This is important to achieving the targets of the Sendai Framework for 

Disaster Risk Reduction, which explicitly calls for a multi-hazard and multi-sectoral 

approach to increase the efficiency and effectiveness of disaster risk reduction 

practices (UNISDR, 2015). 

 

1.5. Research Framework and Outline 

A disaster event, emanating from either a single hazardous factor or compound 

hazardous factors, can cause direct and indirect impacts to the economic system. To 

assess its full economic footprint, a four-stage research framework is proposed in this 

thesis, as shown in Figure 1-1. 

 

 Step 1. Direct economic footprint assessment for individual hazards 

The first step aims to assess the direct economic footprint of individual hazards, with 

a special focus on that of flooding, heat stress, and air pollution. Hazard-specific 

catastrophe models are used, together with high-resolution land cover maps and 

demographic information, to interpret physical characteristics of these hazards into 

property damage or health impairment. Detailed methods can be referred to Section 

3.1.1. This step eventually calculates the hazard-induced changes in the supply of two 

important primary production factors, i.e., labours and capital, by economic sectors. 
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 Step 2. Indirect economic footprint assessment for individual hazards 

The second step explores how the direct shocks of individual hazards disrupt economic 

relations and propagate across sectors through the supply chain, hence the indirect 

economic footprint. Changes in labour and capital supplies, which are directly caused 

by the hazards, are fed into an IO-based hybrid economic model (i.e., the disaster 

footprint model) to simulate the risk transmission and economic recovery dynamics 

during and after the disruptive event. The disaster footprint model is extended from 

previous models by incorporating inventory adjustment and cross-regional 

substitutability. A detailed description of the methods can be found in Section 3.1.2. 

Changes in the production of economic sectors, relative to the pre-disaster levels, are 

accumulated over time in the disaster aftermath, indicating the ultimate size of indirect 

economic footprint resulting from the occurring hazards. 

 

 Step 3. Compound hazard economic footprint assessment 

The third step combines the methods of the previous two steps and extends the 

economic footprint assessment to compound hazards in the triple context of climate 

change, pandemic, and deglobalisation. The interaction between natural hazards, 

disease control, and trade frictions regarding their economic impacts and risk 

transmission channels within the economic system are carefully investigated and 

integrated into the Compound-Hazard Economic Footprint Assessment (CHEFA) 

model. The model is developed in Section 3.2 to assess the full economic footprint of 

compound events. 

 

 Step 4. Response and recovery planning formulation 

The final step intends to offer suggestions on favourable response and recovery plans 

to reduce the disaster-induced economic impacts, i.e., increase the economic resilience. 

Scenarios are built for disaster footprint analysis when hazardous events with different 

durations and magnitudes collide on different spatial and temporal scales. Sensitivity 
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analyses on modelling parameters, such as the duration and strictness of lockdowns, 

the labour and transportation recovery rates, the degrees of export restrictions, the 

inventory sizes, overproduction characteristics, external funds and subsidies, etc., are 

also conducted to recognize the crucial factors that influencing the disaster footprint 

or economic resilience. By unveiling how disaster footprint, at sectoral and regional 

levels, are related to some of the response and recovery characteristics under wide 

ranging scenarios, stakeholders or policy makers can draw useful information to act 

better in future risk mitigation and adaptation. 

 

 
Figure 1-1: Research framework of economic footprint assessment for both individual and 
compound hazards. 

 

The outline of this thesis is organized in accordance with the proposed framework and 

divided into 8 chapters. 
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Chapter 1 gives a brief introduction of this thesis’ research background with a special 

focus on the potential interplay between multiple hazards and their compound 

economic implications (RQ1 and RO1). This chapter highlights the necessity to study 

the economic impacts of compound hazards, identifies the research gaps, questions, 

and objectives, and sets out the research framework and outline.  

 

Chapter 2 presents an overview of current literature on modelling economic impacts 

of natural or manmade disasters, as well as an emerging concern for the increasing 

likelihood of compound hazards (RQ2 and RO2). The basic concepts of compound 

hazards and disaster footprint are clarified in this chapter to underpin the research 

scope of this thesis. This is followed by an appraisal of the mainstream economic 

models commonly used for traditional hazard analysis, alongside their applications and 

validations. In the end, this chapter specifically summarizes the progress in compound 

hazard analysis and thereafter identifies the research gaps to be filled. 

 

Chapter 3 describes the methodology developed in this thesis to assess the 

comprehensive economic impacts resulting from individual or compound hazards 

(RQs2, 3 and ROs3, 4). It starts with a methodological review for both direct and 

indirect economic impact assessment. The former is notably focused on three types of 

natural or manmade hazards, that is, flooding, heat stress and air pollution, and the 

latter introduces the fundamentals of the IO analysis and its development in disaster 

impact assessment. Built on the contributions of previous models, the Disaster 

Footprint model and the CHEFA model are constructed respectively for single- and 

compound-hazard impact analysis. The interactions between diverse hazards are 

integrated into the analysis from an economic perspective, linking the theoretical basis 

between the two models. 

 

Chapter 4 and Chapter 5 demonstrate the proposed Disaster Footprint model in single-
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hazard analysis for past and projected cases (RQ2 and RO5). In particular, Chapter 4 

focuses on the economic footprint of heat stress, air pollution, and extreme weather 

events in China over the past decades. The analysis is performed both on the national 

and provincial scales. Chapter 5 projected the economic consequences of future fluvial 

flood hazards in six vulnerable countries (i.e., Brazil, China, India, Egypt, Ethiopia, 

and Ghana) around the end of the 21st century. Scenarios are designed by combining 

climate change and socio-economic development to capture the long-term trend of 

river flood risks in the six countries. 

 

Chapter 6 and Chapter 7 illustrate the proposed CHEFA model in compound-hazard 

analysis for hypothetical and real cases (RQs3, 4 and ROs5, 6). Chapter 6 simulates 

the economic footprint of a hypothetical perfect storm comprising of flooding, 

pandemic control, and trade restrictions in a hypothetical global economy. Scenarios 

involve hazardous events with various duration and magnitudes co-occurring at 

different timings and places, demonstrating the modelling process of the CHEFA 

model. In addition, extensive sensitivity analyses for key model parameters are 

conducted to test the robustness and flexibility of the model. Then in Chapter 7, the 

CHEFA model is applied to a real compound event of extreme floods and COVID-19 

control striking the Zhengzhou city in central China in 2021. The study is performed 

at multiregional levels to track down the economic footprint rippling across the nation. 

Economic and policy factors that significantly influence the post-event recovery and 

resilience are identified through the sensitivity analysis approach. 

 

Chapter 8 summarises the main findings of this thesis and draws policy implications 

(RO6). Contributions and limitations of this work are also discussed, and ideas 

concerning future work are then put forward accordingly. 

 

The disaster footprint model in Chapter 3 and its applications in Chapter 4 were 
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integrated to parts of the 2020-2022 China reports of the Lancet Countdown on health 

and climate change. The reports have been published online by the journal of The 

Lancet Public Health at https://doi.org/10.1016/s2468-2667(22)00224-9, 

https://doi.org/10.1016/S2468-2667(20)30256-5, and https://doi.org/10.1016/S2468-

2667(21)00209-7. The author of this PhD thesis contributed 3 (out of 27) indicators 

on the economic impacts of heat stress, air pollution, and climate-related extreme 

events to each report. Another application of the disaster footprint model in Chapter 5 

has been published by the journal of Climatic Change and available at 

https://doi.org/10.1007/s10584-021-03059-3. The thesis author is one of the two co-

first authors of this journal paper by contributing to the indirect impact modelling, 

result interpretation and drafting. 

 

The CHEFA model developed in Chapter 3 and its illustration for a hypothetical 

compound event in Chapter 6 were parts of the work program of the World Bank on 

trade and climate change, which were later integrated into a journal paper submitted 

to Risk Analysis and under the 2nd round of review. Its application to a real case in 

China in Chapter 7 has been published in the China Journal of Econometrics and 

available at https://www.cjoe.ac.cn/CN/10.12012/CJoE2021-0090. This thesis author 

claims the lead authorship for both papers with over 90% of the contribution by study 

design, data collection, impact modelling, result interpretation and drafting. 

 

The thesis author acknowledges all the contribution made by the co-authors and 

supervisors of the publications covered in this PhD thesis. 

 

https://doi.org/10.1016/s2468-2667(22)00224-9
https://doi.org/10.1016/S2468-2667(20)30256-5
https://doi.org/10.1016/S2468-2667(21)00209-7
https://doi.org/10.1016/S2468-2667(21)00209-7
https://doi.org/10.1007/s10584-021-03059-3
https://www.cjoe.ac.cn/CN/10.12012/CJoE2021-0090
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Chapter 2 Literature Review 

Chapter 2 offers a critical review of the existing literature related to the research topic 

of this PhD thesis. It is divided into four sections. Section 2.1 introduces the basic 

concepts of compound hazards and disaster footprint, clarifying the research scope of 

this thesis. This is followed by an appraisal of the mainstream economic models 

commonly used for traditional hazard analysis, alongside their applications and 

validations, in Section 2.2. Advances and limitations are evaluated for each of the 

modelling techniques and then the appropriate methodological framework for this 

thesis’ research objectives is determined. Section 2.3 discusses the emerging concerns 

for compound hazards and their mixed impacts to human society, especially to the 

economic system. After summarizing the research progress in relevant fields, this 

chapter ends with an analysis of the research gaps to be filled by the following parts 

of this thesis in Section 2.4. 

 

2.1. Key Definitions 

2.1.1. Compound Hazards 

2.1.1.1. What is a hazard? 

The United Nations Offices for Disaster Risk Reduction (UNISDR) defines a hazard as 

“a process, phenomenon or human activity that may cause loss of life, injury or other 

health impacts, property damage, social and economic disruption or environmental 

degradation” (UNISDR, 2017, https://www.undrr.org/terminology/hazard). It may arise 

from a natural or anthropogenic factor or be associated with a combination of natural 

and anthropogenic origins (ibid.). According to the type of factor that triggers a hazard, 

UNISDR classifies hazards into five categories. That is, biological, environmental, 

geological, hydrometeorological, and technological hazards. Table 2-1 presents some 

https://www.undrr.org/terminology/hazard
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examples of these hazard types. 

 

Table 2-1: Examples of hazards according to their categories. 
Hazard types Examples 

Biological 
Bacteria, viruses, parasites, venomous wildlife and insects, 
poisonous plants, mosquitoes carrying disease-causing agents, etc. 

Environmental 
Soil degradation, deforestation, loss of biodiversity, salinization, 
sea-level rise, air pollution, etc. 

Geological 
Earthquakes, volcanic activity and emissions, mass movements, 
landslides, etc. 

Hydrometeorological 
Tropical cyclones, floods, drought, heatwaves, cold spells, coastal 
storm surges, etc. 

Technological 
Industrial pollution, nuclear radiation, toxic wastes, transport 
accidents, factory explosions, fires, etc. 

Political Pandemic lockdowns, trade wars, military confrontations, etc. 
Notes: Examples of the upper five hazard types are summarized from the UNISDR website 
(https://www.undrr.org/terminology/hazard). The political hazard is added here to include 
pandemic lockdowns, trade restrictions, etc., which is an additional hazard type compared to 
the UNISDR classification. 

 

On a broader scale, there is another type of hazards - political hazards - in addition to 

the above five hazard types. Political hazards usually stem from factors related to 

policy instability or geopolitical tensions. For instance, the lockdown measures to 

contain virus transmission could severely disrupt productive activities and lead to 

extensive economic impacts (Guan et al., 2020). Other examples are trade wars and 

even military confrontations (including terrorist attacks) between nations or regions, 

which may ultimately cause terrible humanitarian crises and paralyze the economies 

at risk (Itakura, 2020; Pant, 2022). 

 

Several hazardous events can lead to a disaster, which is “a serious disruption of the 

functioning of a community or a society at any scale due to hazardous events 

interacting with conditions of exposure, vulnerability and capacity, leading to one or 

more of the following: human, material, economic and environmental losses and 

impacts” (UNISDR, 2017, https://www.undrr.org/terminology/hazard). It can be inferred, 

https://www.undrr.org/terminology/hazard
https://www.undrr.org/terminology/hazard
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by definitions, that the consequences of a disaster are more severe than a hazard. 

Despite the differences in severity, hazards and disasters are essentially disruptive 

events that have manifold negative impacts to the human society. As this thesis 

evaluates these events from an economic perspective, the hazards hereinafter cover all 

kinds of disruptive events causing negative shocks to the economic system. 

 

2.1.1.2. What are compound hazards? 

Hazards may be single, sequential, or combined in their origin and effects. For example, 

during the 2017 Atlantic Hurricane Season, Hurricane Harvey, Irma, and Maria hit 

successively the southeast coastal line of the United States within a month. 

Simultaneously, devastating wildfires in California have been burning for months2. 

UNISDR (2017) uses the term ‘multi-hazard’ to define “(1) the selection of multiple 

major hazards that the country faces, and (2) the specific contexts where hazardous 

events may occur simultaneously, cascadingly, or cumulatively over time, and taking 

into account the potential interrelated effects” (UNISDR, 2017, 

https://www.undrr.org/terminology/hazard). 

 

Although ‘multi-hazard’ describes the co-occurrence of multiple hazardous events, 

another term ‘compound event’ has become more popular in climate research for 

underscoring the compound or combined effects of multiple hazards. The concept of 

compound events was first introduced in the Intergovernmental Panel on Climate 

Change (IPCC) special report on climate extremes to briefly describe “(1) two or more 

extreme events occurring simultaneously or successively, (2) combinations of extreme 

events with underlying conditions that amplify the impact of the events, or (3) 

combinations of events that are not themselves extremes but lead to an extreme event 

or impact when combined” (Seneviratne et al., 2012, p. 118)(IPCC, 2012). The 

 
2  Source: https://www.ncei.noaa.gov/access/monitoring/monthly-report/national/201713 (accessed on 30 May 

2022). 

https://www.undrr.org/terminology/hazard
https://www.ncei.noaa.gov/access/monitoring/monthly-report/national/201713
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contributing events can be of similar (clustered multiple events) or different type(s). 

Leonard et al. (2014, p. 115) further developed a more general notion of compound 

events as “an extreme impact that depends on multiple statistically dependent variables 

or events”. This concept refers only to extreme-impact events with dependent drivers. 

Zscheischler et al. (2018, p. 470) ultimately formalized the definition of compound 

events as “the combination of multiple drivers and/or hazards that contribute to societal 

or environmental risk”. This definition highlights that compound events may not 

necessarily result from dependent drivers and has been embedded within the latest risk 

framework by the 6th Assessment Report (AR6) of IPCC (Seneviratne et al., 2021).  

 

Zscheischler et al. (2020) classified compound events into four types: (1) 

preconditioned, where a weather-driven or climate-driven precondition aggravates the 

impacts of a hazard; (2) multivariate, where multiple drivers and/or hazards lead to an 

impact; (3) temporally compounding, where a succession of hazards leads to an impact; 

and (4) spatially compounding, where hazards in multiple connected locations cause 

an aggregated impact. Table 2-2 lists some examples of compound events according 

to these four categories. 

 

Table 2-2: Examples of compound events according to their categories. 
Types of compound events Examples 

Preconditioned 
Heavy precipitation on saturated soil, rain on snow, False 
spring, etc. 

Multivariate 
Compound flooding, compound drought and heat, humid 
heatwave, compound precipitation and wind extremes, etc. 

Temporally compounding 
Temporal clustering of precipitation events, temporal 
clustering of storms, sequences of heatwaves, etc. 

Spatially compounding 
Spatially concurrent precipitation extremes/floods at regional 
scale, spatially co-occurring climate extremes at global scale, 
etc. 

Notes: summarised from Zscheischler et al. (2020). 

 

Current definitions of compound events are mainly focused on climatic hazards. It was 
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not until the unprecedent COVID-19 pandemic prevails the world that researchers 

started to consider incorporating biological hazards into the compound event 

framework (Collins et al., 2021; Phillips et al., 2020; Shen et al., 2021). In addition, 

political hazards, such as trade wars and deglobalisation, can also be compounded in 

a hazard mix to generate convoluted economic consequences (Brenton and Chemutai, 

2021; Hu et al., 2021). Yet there has not been a standard term for the combination of 

hazards beyond the climatic context. This thesis extends the concept of ‘compound 

event’ to ‘compound hazard’ to describe “the compounding of multiple hazards, in a 

wide range beyond climatic hazards, that causes interconnected shocks to the 

economic system”. 

 

2.1.2. Disaster Footprint 

Hazardous events can cause massive socio-economic costs directly to the affected 

regions. For instance, in 2021, twenty weather/climate extreme events with direct costs 

exceeding $1 billion each were sustained in the United States. The total direct costs of 

these events were estimated at $148 billion with 724 deaths3 . Examples of direct 

impacts include (tangible) physical damage to residential, commercial, and municipal 

buildings; productive capital; transport and electrical infrastructure; agricultural assets 

including crops and livestock; as well as intangible damage to human health and work 

productivity or capacity4.  

 

These tangible and intangible direct impacts resulting from hazards can lead to indirect 

economic impacts that propagate through the production supply chain to other initially 

non-affected sectors and regions (Botzen et al., 2019; Koks and Thissen, 2016). These 

 
3 Source of data: NOAA National Centres for Environmental Information (NCEI). (2022). U.S. Billion-Dollar 

Weather and Climate Disaster. https://www.ncei.noaa.gov/access/billions/, DOI: 10.25921/stkw-7w73. 
4  This thesis classifies hazard-related health impairment (e.g., casualties, mortality, or morbidity) and work 

productivity loss as intangible direct impacts because they are due to direct exposure to hazardous factors (e.g., 

extreme heat and air pollution) by population at risk or workers in the workplace. 

https://www.ncei.noaa.gov/access/billions/
https://www.doi.org/10.25921/stkw-7w73
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indirect impacts include interruption losses of economic activities, costs of recovery 

processes, and any positive spillover effects due to the substitution of production and 

the demand for reconstruction. The indirect impacts may sometimes account for a large 

proportion of the total impacts during a hazard and its aftermath. For example, the 

indirect losses caused by the 2009 Central European flood event were estimated to 

reach 65% of the total economic impacts (Mendoza-Tinoco et al., 2020). Similarly, the 

cascading effects amplified the flood losses by up to 1.97 times during the 2013 heavy 

flooding in Germany (Oosterhaven and Többen, 2017). 

 

Mendoza-Tinoco et al. (2017) proposed the concept of ‘flood footprint’ to integrate the 

direct and indirect economic impacts of a flood event in the affected region and wider 

economic systems. The direct ‘flood footprint’ is the economic impacts caused by 

direct contacts or exposure to flood events and refers to the short-term impacts on 

natural resources, human health, and tangible assets. It interprets the flood-induced 

direct damage into productive factor loss from the economic perspective. The indirect 

‘flood footprint’ is the economic impacts resulting from supply shortage of productive 

factors (i.e., labour or capital loss), disruptions of economic activities along the 

production supply chain, and costs for physical capital reconstruction. It captures both 

short- and long-term changes in economic activities at sectoral and regional levels 

during the hazard and its aftermath. The concept of ‘flood footprint’ results especially 

relevant for the objective to provide differentiated information between direct and 

indirect impacts, considering the source of impacts in productive factors. It is not 

purely a measurement of the total economic impacts of a flood, but also describes the 

flow of impacts across economic sectors and regions, as well as the recovery dynamics 

over time (Mendoza-Tinoco et al., 2020). The concept was further developed by Zeng 

et al. (2019) to incorporate the roles of post-flood recovery management and process 

monitoring, and eventually extended to accommodate the compound event of 

sequencing floods (Zeng and Guan, 2020). Similar to the ‘flood footprint’, this thesis 
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adopts ‘disaster footprint’ to characterize the flow of economic impacts that are 

directly and indirectly caused by diverse hazards beyond flooding, as well as the 

recovery dynamics in the disaster aftermath. 

 

‘Footprint’ is a concept commonly used in studies on human-nature relationships 

(Hoekstra and Hung, 2002; Rees, 1992; Wiedmann and Minx, 2008). It is first used in 

the concept of ecological footprint (Rees, 1992), which is most widely known in the 

field of ecological economics. It measures the total impacts of human activities, like 

the production of a car, on the Earth’s ecosystem. It involves the whole lifecycle of the 

product, not just the product itself, but also materials that it needs during the production. 

This concept is followed by carbon footprint (Wright et al., 2011), and water footprint 

(Hoekstra et al., 2011). They refer to the total amount of carbon/water that are emitted 

or consumed along the entire processes of production activities. Like car production, 

it considers processes from the production of each part of the car, to the transportation, 

and to the assembly processes. All these concepts evaluate the impacts of human 

activities on the natural environment and eco-systems. By contrast, ‘disaster footprint’ 

looks in the reverse direction from nature to humans. As mentioned above, this concept 

demonstrates a dynamic process, and thus is suitable for describing the dynamics of 

economic disruption and recovery during a certain affected period. ‘Disaster footprint’ 

is an ideal concept to describe how the impact of a single or compound hazard spreads 

across economic sectors, how it evolves over the time of economic recovery, and how 

it spills over to other economically interrelated regions. It is aimed to reveal the total 

economic costs that could be saved if governments take active disaster risk reduction 

and adaptation strategies, which is vital for decision planning. 

 

2.2. Conventional Methods for Hazard Impact Analysis 

Efforts have been made, in the engineering and economic communities, to analyse the 



Chapter 2 

54 

direct and indirect impacts resulting from hazardous events, but each of them is often 

focused on a single hazard at a time. One of the common approaches for hazard impact 

analysis relies on primary data collection (Zeng, 2018). Although this method is good 

at providing direct or immediate damage information on human lives and physical 

assets, it can hardly present a full picture of the indirect or intangible impacts to the 

economic system. Moreover, the hazard impacts are not always well-recorded due to 

the lack of effective observations on historically low-probability hazards (Botzen et 

al., 2019). Therefore, computational models are developed to account for the potential 

hazard impacts. Direct impacts are usually estimated using the so-called catastrophe 

models, which are specific to hazard types; while indirect impact assessment is often 

based on a macroeconomic modelling framework, such as IO and CGE models. On 

top of that, econometric models are also used to provide empirical findings on the 

economic impacts of hazardous events, which can sometimes complement the 

simulating results from computational models. 

 

2.2.1. Catastrophe Models for Direct Impact Assessment 

2.2.1.1. Methods and Applications 

Catastrophe models refer to a class of models that relate the physical characteristics of 

a hazard to the expected damage to the exposed population or property according to 

specific vulnerability curves or functions (ibid.). The development of a catastrophe 

model is highly dependent on the type of the targeted hazard, as each hazard type has 

quite distinct physical characteristics and impacting mechanisms. According to the 

time scale of a hazard influencing the human society, hazards can be divided into two 

categories, that is, rapid and slow onset hazards (Nelson, 2018). The former hazards 

develop with little warning and strike rapidly, such as flash floods, hurricanes, 

earthquakes, etc; while the latter hazards take longer times to develop, such as droughts, 

heatwaves, air pollution, disease epidemics, etc. Rapid onset hazards usually generate 

substantial damage to physical assets, such as buildings, roads, and bridges, and hence 
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the main target of their impact assessment (Charvet et al., 2017; de Ruiter et al., 2017; 

Merz et al., 2010). By contrast, slow onset hazards tend to cause relatively persistent 

impacts on human health and little damage to physical capital, and thus their impact 

assessment is generally focused on health impairment and related labour productivity 

loss5 (Burnett et al., 2014; Walker Patrick et al., 2020; Zhao, Lee, et al., 2021). In an 

economic system, physical and human assets usually constitute the main sources of 

two important production factors, namely capital and labour, respectively. Therefore, 

rapid and slow onset hazards can also be referred to as capital- and labour-shocked 

hazards, respectively, according to the type of production factors initially affected by 

hazards. The difference in the initial hazard shocks would inevitably require distinct 

methodology for direct impact assessment.  

 

Table 2-3 presents an overview of specific methods or models for estimating the direct 

impacts of hazards, as well as existing applications or examples. 

 

For flood hazards, direct damage is commonly calculated by depth-damage functions, 

which relates flood depth to the resulting monetary damage of the submerged/exposed 

building- or land-use type (de Moel et al., 2015; Jongman, Kreibich, et al., 2012). 

Sometimes other flood characteristics, such as flow velocity and duration, are added 

(FEMA, 2009; Kreibich et al., 2010; Zhai et al., 2005). The damage can be expressed 

as either a percentage of a pre-defined maximum damage value (relative damage), or 

absolute monetary value (absolute damage). Applications are mostly from the local to 

national scale, including the FLEMO model for Germany (Kreibich et al., 2010), the 

Damage Scanner model for the Netherlands (Klijn et al., 2007), the HAZUS-MH 

Flood model for the US (FEMA, 2009), and the Multi-Coloured Manual (MCM) for 

the UK (Penning-Rowsell et al., 2013). Recently, a globally consistent database of 

 
5 Labour or work productivity loss and capacity loss are considered as interchangeable in this thesis, which both 

refer to the reduction in effective working hours under adverse working conditions. 
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depth-damage functions has been developed by Huizinga et al. (2017). This database 

adopted a consistent approach to develop a set of relative depth-damage curves for 

each continent and maximum damage values for each country. It also incorporated a 

wider range of building- or land-use types, including residential, commercial, and 

industrial buildings, and transport, infrastructure (roads), and agriculture use of land. 

Such country- and sector-specific functions can greatly advance the development of 

an integrated modelling framework (Alfieri et al., 2017; Dottori et al., 2018; Yin et al., 

2021). 

 

For seismic hazards (e.g., earthquakes), direct damage assessment, which is quite 

similar with that of flood hazards, traditionally uses fragility or vulnerability curves to 

translate hazard characteristics such as ground motion intensity into probable damage 

to a physical or capital asset at risk (Douglas, 2007; Hosseinpour et al., 2021). Fragility 

and vulnerability curves represent the likelihood of exceeding a certain damage state 

and the mean damage ratio (also known as loss ratio), respectively, conditioned on a 

set of seismic motion intensities. The development of fragility or vulnerability 

functions is generally through empirical, expert judgement, analytical, or hybrid 

approaches (de Ruiter et al., 2017; Hosseinpour et al., 2021; Kalakonas et al., 2020; 

Rossetto et al., 2014). Method selection often depends on the quality of available data, 

expert’s knowledge, and the research scope (Hosseinpour et al., 2021). Like flood 

hazards, most of seismic loss estimation is conducted for a specific region considering 

their own seismotectonic settings and construction practices (ibid.). These include the 

HAZUS Earthquake model for the US (Kircher et al., 2006), SELENA for Norway 

(Molina and Lindholm, 2005), EQRM for Australia (Robinson et al., 2007), and 

InaSAFE for Indonesia (AIFDR, 2022). Beyond the regional scale, a global modelling 

tool named OpenQuake has been collaboratively developed as a part of the Global 

Earthquake Model (GEM) project aiming to establish uniform and open standards for 

calculating and communicating earthquake risk worldwide (Silva et al., 2014). 
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For heat-related hazards (e.g., heat stress), direct impacts intangibly occur to human 

assets rather than capital assets, which is different from the above two hazard types, 

mainly by causing health impairment and labour productivity loss (Orlov et al., 2020). 

Epidemiological studies confirmed that excessive heat exposure increases the 

mortality and morbidity rates of certain diseases, such as cardiovascular and 

respiratory diseases (Basu and Samet, 2002; Turner et al., 2012). Nonlinear or linear 

exposure-response functions (ERFs) have been constructed to account for the heat-

induced mortality (Curriero, 2002; Honda et al., 2014; Yang et al., 2019) and morbidity 

(Bayentin et al., 2010; Liang et al., 2008). These ERFs typically estimate the relative 

risk (RR), which is represented by excess deaths or hospital admissions in mortality or 

morbidity assessment respectively, during days with extreme temperature compared to 

days with normal temperature. Such heat-induced health impairment is often translated 

into a type of direct economic costs by calculating the monetised value of Years of Life 

Lost (YLL) based on the estimated Value of Statistical Life (VSL) (OECD, 2012). 

 

Beyond those, studies also found apparent declines in work productivity (also known 

as workability) among employees under heat stress (Kjellstrom et al., 2009). Yet, little 

attention has been given to this type of heat-related direct impacts until recently. A 

novel ERF was derived by Kjellstrom et al. (2018) and further used in studies of heat 

stress affecting labour productivity (Bröde et al., 2018; Liu et al., 2021; Orlov et al., 

2020). This ERF is also named as the Hothaps function because it is developed for the 

‘High Occupational Temperature Health and Productivity Suppression’ (Hothaps) 

programme. The Hothaps function is a two-parameter logistic function, which 

describes the relationship between the heat stress index Wet Bulb Globe Temperature 

(WBGT) and the Work Loss Factor (WLF, namely the fraction of work hours lost) for 

three different levels of work intensity (quantified by the metabolic rate). Such heat-

induced workability loss would directly reduce the work output and possibly affect 
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income if workers are paid by the unit produced (Cai et al., 2018). The relevant income 

loss is then often calculated by the product of total working hours lost and local average 

hourly wage (Romanello et al., 2021). 

 

For air pollution hazards, which are similar with heat stress as labour-shocked hazards, 

their direct impacts are typically evaluated by calculating the short-term or long-term 

excess morbidity and premature mortality induced by air pollution (Atkinson et al., 

2014). Fine Particulate Matter (PM2.5) is most commonly used as the proxy indicator 

of exposure to air pollution among other air pollutants including NOx, ozone, carbon 

monoxide and sulphur dioxide (WHO, 2016). Epidemiological studies on PM2.5-

induced health outcomes have linked PM2.5 concentration levels with various disease 

endpoints (such as ischemic heart disease, stroke, chronic obstructive pulmonary 

disease, and lung cancer) using ERFs, and RRs for PM2.5-induced mortality, hospital 

admissions and outpatient visits are derived from them (Burnett et al., 2014; Xia, Guan, 

et al., 2018; Xu et al., 1995). The collaboration of Global Burden of Disease (GBD) 

studies, which have been updated to 2019, have developed a standardised framework 

to estimate the particulate matter risk curves for over 200 countries and territories and 

selected subnational locations (Murray et al., 2020). These risk curves have been 

widely used for studies on PM2.5-induced adverse health impacts from local to global 

scales (Hekmatpour and Leslie, 2022; Pandey et al., 2021; Romanello et al., 2021; 

Zhou et al., 2016). 

 

For epidemic/pandemic hazards, the transmission of a certain virus, such as COVID-

19, is commonly simulated by the Susceptible-Exposed-Infected-Recovered (SEIR) 

model, which divides the disease life cycle into four stages: susceptibility, exposure, 

infectivity, and recovery (Efimov and Ushirobira, 2021; He et al., 2020; Huang et al., 

2021; Keeling et al., 2020; Linka et al., 2020; Walker et al., 2020). The effective 

reproductive number (R) at each stage and the size of exposed population at the starting 
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point are key parameters of the model. From these parameters, the daily rates of new 

infections, hospitalizations, and fatalities are calculated as a time series during the 

epidemic dynamics. Infection with an epidemic virus can cause a range of health 

problems, from acute illness to lasting symptoms and even premature deaths. Burden 

of disease studies usually estimate a disease impact on human health by measuring 

how many years of life are lost to death and illness from a disease in a single metric 

called disability-adjusted life years (DALYs) (Cuschieri et al., 2021; Wyper et al., 

2021). This metric combines the health outcomes of mortality (translated into 

estimates of years of life lost (YLL)) and morbidity (translated into estimates of years 

lived with disability (YLD)) due to a disease to track its direct impacts on the 

population. Except for health impairment, the non-pharmaceutical interventions 

(NPIs), such as lockdown restrictions, to contain the spread of the virus can also 

negatively affect labour mobility, personal income, and household consumption, 

expanding the direct impacts of the epidemic/pandemic (Bonaccorsi et al., 2020; 

Martin et al., 2020; Sweeney et al., 2021). 
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Table 2-3: Direct impact analysis - methods and applications. 

Types Hazards 
Specific 
methods 

Model inputs Model outputs Examples 

Rapid onset 
(capital-
shocked) 

Flood 
Depth-damage 
functions 

Flood depth, 
flow velocity, 
duration 

Relative or absolute 
damage to capital 
assets 

Regional models of FLEMO (Kreibich et al., 2010), 
Damage Scanner (Klijn et al., 2007), HAZUS-MH Flood 
(FEMA, 2009), MCM (Penning-Rowsell et al., 2013); a 
global database by Huizinga et al. (2017) 

Seismic 
Fragility or 
vulnerability 
curves 

Ground motion 
intensity 

Probability of 
damage or mean 
damage ratio to 
capital assets 

Regional models of HAZUS Earthquake (Kircher et al., 
2006), SELENA (Molina and Lindholm, 2005), EQRM 
(Robinson et al., 2007), InaSAFE (AIFDR, 2022); a 
global model of OpenQuake (Silva et al., 2014) 

Slow onset 
(labour-
shocked) 

Heat stress ERFs 
Ambient 
temperature; 
WBGT 

Relative or excess 
risks of mortality and 
morbidity; fraction of 
work hours lost 

Assessment of heat-induced mortality (Curriero, 2002; 
Yang et al., 2019), morbidity (Bayentin et al., 2010; Liang 
et al., 2008), and labour productivity loss (Bröde et al., 
2018; Kjellstrom et al., 2018) 

Air pollution ERFs 
Ambient air 
pollutant 
concentration 

Relative risks of 
mortality and 
morbidity 

A global dataset of particulate matter risk curves (Global 
Burden of Disease Collaborative Network, 2021) and its 
applications from the local scale (Pandey et al., 2021; 
Zhou et al., 2016) to global scale (Hekmatpour and 
Leslie, 2022; Romanello et al., 2021) 

Epidemic/pandemic SEIR models 
Effective 
reproductive 
number 

Daily rates of new 
infections, 
hospitalizations, and 
fatalities 

On the subnational scale (He et al., 2020; Huang et al., 
2021); on the national scale (Efimov and Ushirobira, 
2021; Keeling et al., 2020); on the regional scale (Linka 
et al., 2020); on the global scale (Walker et al., 2020) 
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Catastrophe models for various hazards have been developed in different ways 

pertaining to hazard characteristics. Still, there are some similarities in these models, 

particularly for hazards within the same group (i.e., capital- or labour-shocked). For 

capital-shocked hazards, the direct impacts are usually assessed using the fragility or 

vulnerability curves which relate hazard intensity to physical damage according to land 

use or building types. For labour-shocked hazards, the direct impacts are typically 

evaluated by ERFs which link hazard exposure to excess risk of health impairment 

specific to related diseases or all causes. Numerous studies have applied these 

catastrophe models to assess the direct impacts of hazards on geographical scales 

ranging from local to global. 

 

2.2.1.2. Uncertainty and Validation 

Uncertainty in hazard (direct) damage assessment is generally associated to three 

modelling processes: (1) hazard characteristic simulation; (2) exposure assessment; 

and (3) vulnerability assessment (de Moel and Aerts, 2011; Jongman, Kreibich, et al., 

2012; Kalakonas et al., 2020; Merz and Thieken, 2009). 

 

First, the quality of hazard models and data used to simulate hazard characteristics can 

influence the formation of hazard risk, which is defined as hazard damage exceeded 

by a given probability (Merz and Thieken, 2009). For instance, studies have shown 

that the simulation results for flood volumes and/or inundation depths at different 

locations are sensitive to the type of hydraulic/flood models and/or climate data used, 

as well as different modelling parameterization and assumptions (Apel et al., 2009; 

Ward et al., 2013; Yamazaki et al., 2011). Similar results are also found for seismic 

hazards (Crowley et al., 2005; Kalakonas et al., 2020), heat stress (Zhao, Lee, et al., 

2021), air pollution (WHO, 2016), among others. When predicting hazard damage 

under future scenarios, increased uncertainty occurs in relation to the choice of Global 

Climate Models (GCMs) used to drive the hazard models (Alfieri et al., 2017; 
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Kjellstrom et al., 2018; Orlov et al., 2020; Winsemius et al., 2016). 

 

Second, there is also notable uncertainty in hazard exposure for direct damage 

assessment. For flood hazards, this is mainly related to land-use data and asset values 

(Jongman, Kreibich, et al., 2012; Wagenaar et al., 2016), whereby the latter has a larger 

effect than the former (de Moel and Aerts, 2011). The spatial resolution of the available 

exposure datasets is also an essential source of uncertainty, particularly for the seismic 

hazards (Kalakonas et al., 2020). A coarse resolution may result in misrepresentation 

of the distance between the assets and the seismic sources, and thus implicit correlation 

in the ground motion for all assets at a given location (ibid.). For hazards mainly 

affecting human assets, such as heat stress and air pollution, simulated or projected 

demographics of the researched population and values of statistical life may also 

contribute to the heterogeneity of modelling results (Romanello et al., 2021; Turner et 

al., 2012; Zhao, Lee, et al., 2021). 

 

Third, hazard vulnerability sometimes accounts for the largest part of variation in 

direct damage estimates (Apel et al., 2009; Crowley et al., 2005; Jongman, Kreibich, 

et al., 2012), highlighting the importance of customizing vulnerability parameters 

according to regional or sectoral features. For flood hazards, the vulnerability is 

embodied in the construction of depth-damage functions, which are country- and 

sector-specific in Huizinga et al. (2017); while for hazards like heat stress and air 

pollution, the precision of vulnerability assessment is dependent on how to properly 

quantify the exposure-response relationships, which could differ among regions and 

age or gender groups (Martiello and Giacchi, 2010; Orlov et al., 2020; WHO, 2016). 

Rossetto et al. (2014) proposed an evaluation framework to choose the suitable 

fragility curves for seismic hazards based on relevance and overall quality, which can 

be generalized to other types of hazards. A few studies also considered the effects of 

adaptative factors, such as flood protection (Ward et al., 2013) and air conditioning 
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(Liu et al., 2021), on the robustness or reliability of vulnerability assessment. 

 

Validation of catastrophe models is relatively rare due to the limited number of 

observations of hazardous events in history. Sparse validations would harm the 

credibility of catastrophe models. However, it is necessary as uncertainties in hazard 

damage estimates are generally found to be quite large (Molinari et al., 2019; Xie et 

al., 2016; Zhao, Lee, et al., 2021). Global disaster databases, such as NatCatSERVICE 

from Munich Re (www.munichre.com) and EM-DAT database (http://www.emdat.be/), 

that compile historic extreme hazards across countries and hazard observations and/or 

damage investigations led by local governments can provide valuable information for 

assessing the external validity of catastrophe models. 

 

Modelled damage can differ substantially from observed damage, notably for 

assessments at larger scales (de Moel et al., 2015). Apel et al. (2009) compared the 

modelling results with the reported flood damage for the August 2002 flood in East 

Germany, Eilenburg, under combinations of hydraulic and flood loss models. They 

found that all hydraulic models were able to simulate the maximum water levels of the 

flood within certain accuracy levels. However, the flood loss models (i.e., exposure 

and vulnerability assessments) generate larger variability and biases in modelling 

results than hydraulic models (i.e., hazard simulation). On top of that, direct estimates 

at larger scales tend to show higher discrepancies from the observed damage of hazards, 

mainly due to a lack of high-resolution data that provides an appropriate level of details. 

Bouwer et al. (2009) showed that flood damage estimated based on coarse inundation 

maps can lead to 22% overestimation and 100% underestimation for the categories of 

high-density urban areas and infrastructure, respectively. Consistent findings are found 

for seismic hazards, where the loss estimates become accurate and stable with a certain 

(fine) spatial resolution (Bal et al., 2010; Kalakonas et al., 2020). Studies on heat stress 

and air pollution sometimes calibrate the applied ERFs based on limited field research 

http://www.munichre.com/
http://www.emdat.be/
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only, which may impair the model validities when regional characteristics are averaged 

out on the global scale (Orlov et al., 2020). 

 

2.2.1.3. Refinements and Limitations 

Due to an increased computing power, globally consistent datasets with a high spatial 

resolution on exposure, such as land use and population, are becoming more available 

in recent years (Chambers, 2020; ESA, 2017). Alternative approaches with the use of 

night-time lights or satellite imagery are also developed to improve the detail of 

exposure information (Dabbeek and Silva, 2020; van Donkelaar et al., 2015). 

Vulnerability curves, which depict the relations between hazard exposure and direct 

damage or health response, have also been refined based on an increasing number of 

empirical studies. A typical example here was the development of a global database of 

depth-damage functions by Huizinga et al. (2017), which makes it possible to use country- 

and sector-specific vulnerability curves to estimate flood damage. The ERFs for heat- or 

air pollution-related impact assessment have also been improved by incorporating the 

lag effect, socio-economic conditions and adaptive factors (Yang et al., 2019; Zhao, 

Lee, et al., 2021), or by providing more detailed location- or age-specific estimates 

(Murray et al., 2020). Nevertheless, catastrophe models continue to be featured by 

large uncertainties and deviations from reported results, notably in the assessment of 

vulnerability as mentioned above. 

 

Moreover, despite of increasing spatial resolution, few improvements have been made 

for catastrophe models to understand impacts at the sector level. Flood depth-damage 

functions, for instance, are generally constructed for up to six sectors, that is, 

residential, commercial, industrial, transport, infrastructure, and agriculture sectors 

(Huizinga et al., 2017). Methods for seismic vulnerability assessment are also focused 

on specific buildings and infrastructure classes, thereby limiting their wider 

applicability (Hosseinpour et al., 2021). The heat-related labour productivity loss is 
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only assessed for three types of working groups with different work intensity 

(Kjellstrom et al., 2018). The health outcomes of air pollution are usually sourced from 

specific emission sectors (e.g., agriculture, transport, households, power plants, etc.) 

for specific air pollutants (Cai et al., 2021; Romanello et al., 2021). The mapping of 

land-use sectors, building classes, working groups and emission sectors to specific 

economic sectors in the economic system is inevitably required for a comprehensive 

hazard impact analysis (Mendoza-Tinoco et al., 2020); yet, this has been beyond the 

scope of catastrophe models. 

 

Thirdly, it is still difficult for catastrophe models to anticipate the evolution of hazard 

vulnerability, particularly for long-term assessment of direct impacts under future 

climate change and socio-economic development scenarios (Botzen et al., 2019; de 

Ruiter et al., 2017; Yin et al., 2021). Most of these studies simply assume that 

vulnerability and socio-economic condition are constant over time. However, 

vulnerability is a dynamic process. Adaptation measures, such as flood dikes and air 

conditioning devices, may be enhanced by stakeholders at risk, to reduce vulnerability 

and thus increase resilience (Hallegatte et al., 2011; Zhao, Lee, et al., 2021). Some 

socio-economic changes like urbanization and ageing, which are rarely considered in 

direct impact modelling, may also affect the vulnerability of diverse hazards 

(Garschagen and Romero-Lankao, 2015; Park et al., 2020). 

 

Finally, catastrophe models for diverse hazards are almost always developed in 

isolation. Direct impact assessment is mostly conducted for a single event at a time, 

and studies on the direct impacts of compound hazards are rare or at an early stage. A 

few studies have found a short-term synergistic effect of heat and air pollution on 

premature mortality in specific regions, despite high uncertainty in the results (Pascal 

et al., 2021; Scortichini et al., 2018). There has also been emerging attention to the 

health impacts of changes in ambient and indoor air pollution due to COVID-19 
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lockdowns (Giani et al., 2020; Zhang et al., 2022). However, these studies do not reveal 

whether there are long-term combined health impacts. The drivers and mechanisms 

behind the reported interactions are still poorly understood (Sillmann et al., 2021). 

More importantly, such communications are most likely to happen within modelling 

communities for hazards that share a certain level of similarity in their direct impact 

characteristics (e.g., the flood and seismic hazards in the group of capital-shocked 

hazards, or the heat-related and air pollution hazards in the group of labour-shocked 

hazards); while exchanges between the capital-shocked and labour-shocked hazard 

groups are relatively fewer or even non-existent, and methods used in these two hazard 

groups substantially differ (ibid.). 

 

2.2.2. Macroeconomic Models for Indirect Impact Assessment 

Direct impacts of hazards on either capital or labour can further disrupt economic 

activities, break the market equilibrium along the production supply chain, and thus 

lead to changes in economic output or value added in sectors and regions which are 

not initially affected by the hazards. The trail of these propagation effects across the 

economic network has been termed as indirect disaster footprint in Section 2.1.2, and 

is typically estimated by macroeconomic models, including IO models, CGE models 

and hybrid models (Eckhardt et al., 2019). It should be noted that researchers have not 

reached a consensus on which model is better yet, and the choice of model is dependent 

on the specific research aims, data availability, etc. (Greenberg et al., 2007; Koks et 

al., 2016; Okuyama, 2007).  

 

2.2.2.1. IO Models 

The IO approach is perhaps the most widely used methodological framework for 

indirect disaster impact analysis (Okuyama, 2008). The IO models, which are based 

on IO matrices/tables that capture the trade flows of production inputs and outputs 

across sectors in an economic equilibrium, consider the economy as a sectoral-
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interdependent system and track down the cascading effects of an external shock 

through inter-industrial and inter-regional linkages (Miller and Blair, 2009). Studies 

using IO models have investigated various types of disruptive events, ranging from 

natural hazards (e.g., earthquakes (Cho et al., 2001), heatwaves (Xia, Li, et al., 2018), 

and pandemics (Orsi and Santos, 2010)) to man-made ones (e.g., air pollution (Xia et 

al., 2016), power outages (Crowther and Haimes, 2005), and terrorist attacks (Santos 

and Haimes, 2004)). An early version of the standard IO model was the so-called 

supply-driven Ghosh model (Ghosh, 1958; Miller and Blair, 2009), which expresses 

production output as a function of primary inputs like labour and capital and can 

measure the impacts of constrained supply due to a disruption. However, this model 

has been criticized for the restrictive assumption that supply generates demand and 

ignoring the possible perturbations in the demand side of the economy (Oosterhaven, 

1988). 

 

Around demand-related risks and how they propagate through interdependencies 

between sectors within the economic system, Santos and Haimes (2004) proposed an 

extension of the IO framework, namely the inoperability input-output model (IIM), 

and applied it to assess the impacts of a terrorism-induced perturbation in demand for 

air transportation. It adopts the inoperability index - a dimension number ranging from 

0 (ideal system state) to 1 (total failure state) to indicate the extent of degradation in 

final demand in the directly affected sector. Later, Crowther and Haimes (2005) 

combined the supply-side and demand-side calculations in IIM and found that the 

national power outage would cause economic losses in both sectors providing power 

and sectors requiring power for essential operations.  

 

The simplicity of the IO framework has made it easy to understand and integrate with 

engineering models and/or data, taking advantage of the inclusion of sectoral details, 

in order to account for higher-order effects that are more sensitive to capacity 
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destruction (Botzen et al., 2019; Greenberg et al., 2007; Okuyama, 2008). However, 

this simplicity of the IO approach has been subjected to a set of limitations. First, the 

technology and productivity are assumed to follow a constant linear structure that 

relates production outputs proportionally to production inputs during the disruption 

and its aftermath. This excludes the possibility of input and import substitutions which 

may affect the economic resilience against disasters. Second, the market price 

mechanism that adjusts the supply and demand for final and intermediate products 

towards a new equilibrium after the disruption is ignored in most IO models. Third, 

there are also no individual-, firm- or sectoral-level adaptive behaviours (such as 

recapturing lost production by working overtime, maintaining inventories, or rerouting 

trade shipments) to mitigate the negative impacts during the post-disaster recovery.  

 

Refinements and extensions of the IO framework have sought to overcome these 

limitations. For instance, Lian and Haimes (2006) proposed a dynamic IIM to simulate 

the short-term recovery process of economic sectors in discrete-time form following 

disruptive events such as natural or man-made hazards. Two types of dynamics are 

incorporated in their model: 1) the demand-reduction dynamic which describes the 

dynamic behaviours of sectors adjusting themselves in face of final demand reduction; 

and 2) the dynamic recovery associated with the production outputs of interdependent 

sectors. In contrast to most traditional dynamic IO models, the dynamic IIM introduced 

sectoral resilience coefficients, which are affected by adaptive or response policies, to 

measure the efficacy of risk management options in disaster impact mitigation. On top 

of that, several studies have combined the dynamic IIM with other models to 

incorporate adaptive factors such as sector-level inventory adjustment (Barker and 

Santos, 2010) and substitution of different inputs (MacKenzie and Barker, 2011). Still, 

these extensions have inherent deficiencies as the resilience coefficients on which the 

modelling results depend are difficult to estimate (MacKenzie et al., 2012). 

Dietzenbacher and Miller (2015) noted that the IIM and its extensions are at best a 
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mild variation of the supply-side Ghosh model, and in a similar vein, Oosterhaven 

(2017) pointed out other shortcomings including the inability of these models to handle 

supply constraints. 

 

Advances have been made in incorporating uncertainty into the IO framework to 

estimate the indirect economic impacts of natural or manmade hazards (Rose and Wei, 

2013), and most of these uncertainties are associated with diverse settings of resilient 

measures and recovery paths (Botzen et al., 2019). The effects of several resilience 

measures, including ship rerouting, export diversion, use of inventories, conservation 

of inputs, putting unused capacity to work, input and import substitution and 

production recapturing (rescheduling), have been examined in a port shutdown case 

study by Rose and Wei (2013). Over two-thirds of the total indirect economic losses 

can be reduced by all the resilience tactics, among which shipping rerouting and 

production rescheduling have the greatest effects in mitigating the regional output 

losses. Jonkeren and Giannopoulos (2014) argued that recovery paths vary according 

to the kinds of disasters and sectors. Directly impacted sectors, which suffer from 

enormous physical damage, may initially recover slowly and then faster afterward 

when repair activities and logistics are coordinated, while indirectly impacted sectors 

may follow the opposite recovery path. They have shown that the size of the economic 

losses differs considerably with the assumed shape of the recovery path (a difference 

of a factor 4.5) by a numerical example. In addition, inventories which can be used to 

make up for sector inoperability have also been found to reduce economic losses by 

31% in a Dutch winter storm case study (ibid.).  

 

2.2.2.2. CGE Models 

The CGE approach, although developed from the IO approach, provides a more 

flexible model framework than the IO approach as it allows for changes in prices, non-

linear production functions, and possibilities of input and import substitutions (Botzen 
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et al., 2019; Greenberg et al., 2007; Okuyama, 2007). It is essentially a multi-market 

simulation model based on the simultaneous optimizing behaviour of individual 

consumers and firms in response to price signals, subject to economic account balances 

and resource constraints (Shoven and Whalley, 1992; Tsuchiya et al., 2007). In addition 

to maintaining the main advantage of the IO models, which is the inclusion of sectoral 

and regional interconnections at various levels of detail, the CGE models have another 

major advantage of being able to explicitly reflect resilience by the adoption of some 

elasticities (e.g., price and substitution elasticities) in the equation structure 

(Greenberg et al., 2007; Okuyama and Santos, 2014). Unlike the IO models that use 

extreme price elasticity values of either 0 or ∞, the CGE models can respond to price 

changes with finite price elasticities (Oosterhaven, 2017; Rose and Liao, 2005). 

Moreover, they also use substitution elasticities to account for the possibilities of 

substitution between different inputs or regions.  

 

The CGE models have been widely applied to estimate the indirect economic impact 

of various types of hazards on spatial scales ranging from local to global. Some of 

these studies have established a model cascade that combines a CGE model with a 

catastrophe model to estimate the overall disaster impacts (including both direct and 

indirect ones) (Carrera et al., 2015; Pauw et al., 2011) and/or with climate models to 

project future economic losses under global warming (Bosello et al., 2012; Darwin and 

Tol, 2001; Orlov et al., 2020). On the subnational or national scale, Tatano and 

Tsuchiya (2008) formulated a spatial CGE model to assess the multi-regional 

economic losses incurred due to transportation network disruption after the 2004 

Niigata-Chuetsu earthquake in Japan. The results showed that 20% of the indirect 

losses occurred in the Niigata region directly affected by the earthquake, whereas 40% 

of the total losses were experienced in the Kanto region and non-negligible losses 

reached rather remote zones of the country such as Okinawa. A similar approach was 

later used by Kajitani and Tatano (2018) with different elasticity values that had been 
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validated by the observed estimates for the case of the 2011 Great East Japan 

Earthquake. In a previous work of Pauw et al. (2011), the higher-order economic 

impacts of crop yield losses due to droughts and floods in Malawi were estimated 

under an integrated analytical framework that combines a hydrometeorological crop-

loss model with a regionalized CGE model. They found that an average of 1.7% of 

national GDP was lost annually due to the combined effects of droughts and floods on 

agricultural production. They also validated the model by comparing the model results 

with observed ones, which demonstrated a broad consistency as least in the direction 

of changes and a likely underestimation of the actual hazard impacts. Another example 

is provided by Carrera et al. (2015) who integrated a spatially explicit catastrophe 

model into a regionally calibrated CGE model to assess the direct and indirect 

economic impacts caused by the 2000 Po river flood in three Italian regions. The total 

direct impacts ranged between 3.3 and 8.8 billion Euro depending on water depth 

assumptions, while the total indirect impacts fell between 0.64 and 1.95 billion Euro 

depending on the controlled flexibility of substitution and mobility and the length of 

productivity disruption. The approximated indirect losses, though could be partly 

offset by the economic gains from substitution effects in areas not directly affected by 

the floods, still amounted to a significant share (19%-22%) of the direct losses. 

 

On the broader continental or global scale, CGE models have been used to examine 

large-scale problems such as heat stress, sea level rise and related flood risks. For 

example, Orlov et al. (2020) assessed the global economic costs of heat-induced 

reductions in labour productivity under two Representative Concentration Pathways 

(i.e., RCP2.6 and RCP8.5) for climate change scenarios by employing a recursive-

dynamic multi-region, multi-sector CGE model from 2011 to 2100. The dynamic CGE 

model was calibrated and run under the projected pathways of GDP and population 

growth associated with a range of Shared Socioeconomic Pathways (i.e., SSP1, SSP4 

and SSP5). They found that heat-induced worker productivity losses would result in 
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an average decline of 1.4% in GDP relative to the reference scenario with no climate 

change under RCP8.5 by 2100. Adaptation measures, such as an autonomous 

penetration of air conditioners and mechanisation of outdoor work, could significantly 

diminish the economic costs from heat stress. Countries in Africa, South-East Asia, 

and South Asia would be the worst affected by heat stress. However, the average 

reduction in global GDP was estimated to be only 0.5% under RCP2.6, implying that 

economic costs could be substantially alleviated if a 2°C climate change target is 

achieved. 

 

As for the impacts of sea level rise, Darwin and Tol (2001) applied a static global CGE 

model to assess the economic costs of land and capital submergence due to sea-level 

rise without coastal protection and with optimal coastal protection. The annuitized total 

costs of a 0.5-m sea level rise in 2100 were projected to reach $66 billion for the world, 

which could be reduced to $4.4 billion if optimal coastal protection is implemented. A 

more recent study was conducted by Bosello et al. (2012), who used the combination 

of the Dynamic Interactive Vulnerability Assessment (DIVA) model (a catastrophe 

model for sea level rise driven by GCMs) and the GTAP-EF mode (a CGE model for 

European countries based on Global Trade Analysis Project (GTAP)) to examine the 

direct and indirect costs of sea level rise and related flood risks for Europe under a 

range of sea level rise scenarios in the 2020s and 2080s. They found that the loss of 

land as a production factor due to the sea level rise would ultimately result in 

reductions in GDP by a percent ranging from 0.0003% in the Netherlands to 0.08% in 

Malta. The indirect impacts were not confined to the coastal zone but also landlocked 

countries (Austria would lose 0.003% of its GDP for instance) due to inter-regional 

dependencies. Some positive effects, which could offset parts of the negative impacts, 

were detected notably in developed countries with relatively higher input substitution 

possibilities. Moreover, coastal protection could be very effective in reducing the 

negative economic impacts of sea level rise. 
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CGE models have also been used to investigate the effects of resilience measures in 

disaster impact mitigation, which is one of their major advantages. For example, Rose 

and Liao (2005) developed a CGE model with recalibrated production function 

parameters to reflect resilience for a case study of a water supply disruption during the 

1994 Northridge earthquake in the Portland Metropolitan Area. The production 

function parameters, which represent the elasticity of substitution and productivity, 

were linked to various types of producer adaptations in emergencies (e.g., conservation 

of water and other inputs, increased substitutability of production inputs, the use of 

backup water supplies, and long-run changes in production technologies) to account 

for both inherent and adaptive resilience. Their results showed that water conservation 

and substitution could substantially reduce the economic losses from the disruption of 

water supply and a mitigation strategy that replaces vulnerable pipes could diminish 

the total losses by nearly half. A similar approach was used in two other studies to 

assess the effects of resilience during an electricity blackout caused by a terrorist attack 

in Los Angeles (Rose et al., 2005) and during a port disruption caused by a tsunami in 

Southern California (Rose et al., 2016). Both studies concluded with similar findings 

that resilience measures, such as input conservation and substitution and rescheduling 

(recapture) of production, could greatly reduce the potential disruption impacts.  

 

Still, CGE models have been questioned when applied to hazard impact analysis. A 

major shortcoming of CGE models lies in the assumption of the agents’ optimizing 

behaviour in an economic equilibrium, which may not be perfectly grounded for a 

post-disaster situation where imbalances and behavioural changes occur (Kajitani and 

Tatano, 2018; Okuyama, 2007; Rose and Liao, 2005; Tsuchiya et al., 2007). Rose and 

Liao (2005) argued that CGE models tend to be overly optimistic about market 

flexibility (or adjustment capability) and thus underestimate the potential disaster 

impacts, particularly during a short time of response. Therefore, most CGE models are 
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intended for a long-run disaster impact analysis due to this market flexibility, except a 

recent work by Kajitani and Tatano (2018) who validated the CGE simulations with 

different elasticities of substitution of interregional trade for the short-term impacts of 

the 2011 Great East Japan Earthquake on monthly industrial production. They found 

that smaller elasticities of substitution, which indicate relatively rigid settings with low 

substitutability as in the IO models, were deemed ‘best’ for the short-run analysis. CGE 

models, in their description, are perceived as ‘black boxes’ that require further 

calibration and validation for parameters used on various time scales after disasters 

(ibid.). This also relates to another weakness of CGE models, that is, the use of many 

parameters which rely on external sources for calibration (Greenberg et al., 2007). The 

empirical values of price and substitution elasticities and specific forms of sectoral 

production functions are difficult to derive, especially for regional models (ibid.). 

More extensive data are needed for CGE modelling than IO modelling, creating 

obstacles for its application in hazard impact analysis (Okuyama, 2007). Oosterhaven 

(2017) also suggested that CGE models are complex, time consuming and rather costly 

to estimate, even if the essential data, such as interregional social accounting matrices 

and various elasticities, are available. 

 

2.2.2.3. Hybrid Models 

Hybrid models usually refer to combinations of IO and CGE models that address a 

number of IO disadvantages and, similar to CGE, allow more flexibility (Koks et al., 

2015; Koks et al., 2016). Oosterhaven (2017) has described these models as 

‘combining the simplicity of the IO model with the greater plausibility of the CGE 

approach’. Two different types of hybrid models have been developed regarding the 

decision rationale of economic agents (i.e., producers and consumers). Otto et al. (2017) 

noted that economic agents have to make two kinds of decisions during the post-

disaster economic cycles: 1) rationing decisions of producers on their output if the 

demand they receive outnumbers their production capacity; and 2) distributing 
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decisions of consumers on their demand among available suppliers in the disaster 

aftermath. Correspondingly, the first type of hybrid models assumes that producers and 

consumers make these decisions by ad-hoc behavioural rules, while the second type of 

hybrid models assumes that these decisions are governed by local or global 

optimization principles using linear or non-linear programming techniques. A detailed 

review of these two types of hybrid models is presented below. 

 

One of the most well-known hybrid IO models with CGE characteristics is the adaptive 

regional input-output (ARIO) model developed by Hallegatte (2008), which belongs 

to the first type of hybrid models mentioned above. The ARIO model is built on the 

linear Leontief production technique as in traditional IO models but with an 

overproduction capacity when production is insufficient to satisfy the demand. It can 

accommodate supply constraints as well as demand changes within a macroeconomic 

framework and trace the propagations of a hazardous shock through both backward 

and forward linkages along the production supply chain. That is, in addition to 

reducing consumption in the ‘upstream’ sectors that supply inputs, constraints in a 

sector’s production could also affect those ‘downstream’ sectors, to whom it sells its 

outputs.  

 

The model introduces a prioritized-proportional rationing scheme to determine the 

deliveries of products to different types of demand when the available production 

cannot satisfy the total demand. This process is interpreted as a form of substitution by 

Hallegatte (2008), which, however, is different from the type of substitution considered 

in CGE models. In this process, the ARIO model only substitutes between outputs, 

whereas CGE models specifically substitute between inputs (Koks et al., 2016).  

 

On the demand side, new demand occurs in relevant sectors due to the reconstruction 

needs of damaged capital. Consumers (including final customers and local businesses) 
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in the disaster area can adjust their final and intermediate demand between local and 

external suppliers with a certain characteristic time according to the production 

capacity of local suppliers. Such adaptation behaviours are only allowed for 

transportable products and, to some extent, reflect the possibility of import substitution.  

 

Moreover, it specifically incorporates price responses to increase the flexibility of 

economic agents tackling disaster consequences. The model is dynamic and 

reproduces the whole reconstruction pathway, assuming that the economy will 

eventually return to the pre-disaster equilibrium state without considering structural 

changes in the economy that may occur due to a disaster.  

 

Later, an extension to the ARIO-inventory model was proposed by Hallegatte (2014) 

to account for the effects of inventory dynamics and input heterogeneity in the 

production system. This improvement has led to a more realistic simulation of the 

production process and a lower estimate of the indirect economic losses than the 

previous version when applied to the landfall of the 2005 Hurricane Katrina in 

Louisiana, the US. Using the ARIO model, the estimated indirect losses (from the 

economic rippling effects) were found to increase nonlinearly with the direct losses 

(mainly from capital damage during the hurricane) and even surpass them under 

extreme scenarios. The model outcomes were highly sensitive to some production and 

behavioural parameters, with overproduction capacity, characteristic times of 

adaptation and inventory restoration, and scale of heterogeneity being the most 

important. However, like CGE models, the parameters of the ARIO model are highly 

uncertain due to limited available data and approximations have to be made based on 

observations during other similar disasters or ad-hoc assumptions of values (Botzen et 

al., 2019).  

 

Still, the ARIO model has provided enlightening experience in overcoming the rigidity 
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of IO modelling, as well as avoiding falling into the intricacy of CGE modelling. It has 

been widely used, sometimes with slight modifications (e.g., to include labour 

constraints), to assess the single- or multi-regional indirect economic impacts of 

various (types of) hazardous events such as coastal floods in the city of Copenhagen, 

Denmark (Hallegatte et al., 2011), the 2008 Wenchuan Earthquake in the Sichuan 

province, China (Wu et al., 2012), and climate change-induced direct shocks 

(including crop yield loss, energy demand increase, and labour productivity loss) in 

the US (Zhang, Li, Xu, et al., 2018).  

 

Drawing on the ARIO model, Bierkandt et al. (2014) developed a dynamic damage 

propagation model using a multi-regional IO table on the global scale, called 

Acclimate. The first version of Acclimate is focused on the downstream or forward 

propagation of supply failures in a global supply network considering inventory 

buffers and transport-related time delay. The model was then extended by Wenz et al. 

(2014) to examine the backward dynamics of disaster-induced production breakdowns 

by incorporating the possibility of production extension (i.e., raising the maximum 

production capacity to satisfy an increased demand) and demand redistribution (i.e., 

readdressing the demand to nonaffected suppliers). During a stylised disaster which 

was designed and used as a numerical example in their studies, the production capacity 

of directly affected sectors is destroyed for days; whereas after the disaster duration, 

the full production capacity of these sectors is restored immediately, and then the actual 

output of all sectors (including those indirectly affected due to economic connections) 

is gradually recovered through the inventory and demand dynamics. This is a quite 

restrictive assumption as it disregards the rebuilding process of damaged capital and 

the resulting capital constraint on production capacity before the full reconstruction, 

as well as the potential increase in final demand due to capital reconstruction and repair 

efforts. The negative impact of capital constraint and the stimulus effect of capital 

reconstruction tend to influence the economic output in opposite directions (Hallegatte, 
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2014). Hence, the neglect of capital dynamics implies a potential over- or 

underestimation of the disaster impacts and has been identified as one of the major 

limitations of the Acclimate model (Wenz et al., 2014).  

 

Another recent example of the first type of hybrid models is the so-called Flood 

Footprint model, which was initially proposed by Mendoza-Tinoco et al. (2017) as an 

extension of the ARIO model and later improved by Zeng et al. (2019) to include the 

assurance of basic demand (i.e., necessities of life such as food, clothes, medicines, 

etc.) and an endogenized capital reconstruction process. The first version of the Flood 

Footprint model extends the ARIO model by incorporating labour availability and a 

series of dynamic inequalities, such as the imbalance between capital production 

capacity and labour production capacity, on the basis of the Basic Dynamic 

Inequalities (BDI) model developed by Li et al. (2013). However, a major limitation 

of the model is that it treats import capacity as an exogenous variable by simply adding 

available imports to the actual production to satisfy both intermediate and final 

demands. This drawback has been addressed in the second version of the Flood 

Footprint model. Noting that capital reconstruction is usually constrained by external 

investment or imports in the previous ARIO, BDI and Flood Footprint models, Zeng 

et al. (2019) endogenized capital recovery dynamics into post-disaster economic 

simulations by calculating the amount of capital restored from the satisfied 

reconstruction demand at each time step. The reconstruction demand is satisfied 

following a prioritized-proportional rationing rule, which is similar with that of the 

ARIO model except that the basic and reconstruction demands are prioritized 

following the intermediate demand. Although the capital recovery process is 

endogenized, the labour recovery pathway is still an exogenous factor in the model. 

The sensitivity analysis on alternative labour recovery paths indicates that the indirect 

flood impacts under different labour recovery scenarios roughly show the same pattern 

among sectors over recovery periods, but absolute values may widely differ. Other 
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limitations of the Flood Footprint model include not considering sector substitutability, 

technology changes and market mechanisms (ibid.). 

 

Among these hybrid models belonging to the first type, which use ad-hoc behavioural 

rules, the Flood Footprint model appears to outperform the ARIO and Acclimate 

models in endogenizing the capital recovery process, but it does not consider the 

presence of inventories and the possibility of substitution between available suppliers 

as in the two latter models. Further improvement is then required to integrate the 

advantages of these models, as capital stock, inventory levels, and demand changes 

are all important factors that could impose binding constraints on the actual production 

in the disaster aftermath (Hallegatte, 2014). 

 

The second type of hybrid models combines the IO approach with linear or non-linear 

programming techniques which are commonly used in CGE models. A typical example 

of this type is the multi-regional impact assessment (MRIA) model developed by Koks 

and Thissen (2016). The MRIA model shares certain features of the ARIO, such as the 

modelling of both backward and forward rippling effects of a hazard and the 

accounting for supply-side constraints, but demand adaptation, inventory dynamics 

and price changes in ARIO are not included in MRIA. Instead of the well-designed 

rationing scheme in ARIO, MRIA models the flow of products following the objective 

function to minimize the total costs of production over all regions given demand, 

available technologies, and the maximum production capacity. It also includes 

interregional trade-offs via trade links between regions. Although the possibility of 

intraregional input substitution in CGE models is ignored, the MRIA model allows for 

the substitution of production between regions, which is viewed as a resilience 

measure. This will cause positive interregional spillover effects to firms outside the 

disaster area taking over production from firms with damaged capacity, which partly 

offsets the negative disaster impacts to the economic system. Moreover, the recovery 
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process in the MRIA model is driven by reconstruction demand and determined by 

exogenous parameters such as the recovery duration and specific paths. By examining 

the results for floods in Rotterdam, the Netherlands, the authors found that the indirect 

losses as estimated by the MRIA model were significantly smaller than the direct 

losses and more comparable to a CGE approach than the ARIO model. They have 

attributed this to the inter-regional substitution effects which are ignored in the ARIO 

model. Sensitivity analyses showed that the recovery duration has a large influence on 

the model results, with substantially larger indirect losses for longer recovery periods. 

The MRIA model was also well equipped to applications on broader scales such as 

towards future flood risks on the pan-European scale (Koks et al., 2019). 

 

Similar to the MRIA model, Oosterhaven and Bouwmeester (2016) proposed to 

combine the IO framework with a non-linear programming model to estimate the 

interregional and intersectoral rippling impacts of disruptive events. Assuming that 

economic agents attempt to stick to their usual activities, as closely as possible, the 

objective function in the model is designed to minimize the information gain between 

the pre- and post-disaster pattern of economic transactions of the economy at hand. 

The resulting nonlinear program should therefore be able to reproduce the recovery 

towards the pre-disaster economic equilibrium. Spatial substitution effects are also 

accounted by allowing firms to find different suppliers when faced with a supply 

shortage. However, this is a partial substitution as domestic supply supplements the 

foreign supply and the drop in supply is not fully compensated. The model was later 

applied to simulate the inter-regional impacts of natural gas flow disruptions between 

Russia and the EU (Bouwmeester and Oosterhaven, 2017) and the 2013 heavy 

flooding in Germany (Oosterhaven and Többen, 2017). In the latter study, the 

empirical outcomes indicated that the assumption about partial substitution between 

regions can substantially reduce the estimates of indirect disaster losses by a factor of 

about six, compared to the assumption about fixed trade and market shares in 
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traditional multiregional IO models. 

 

Faturay et al. (2019) pointed out that hybrid IO models with linear or non-linear 

programming approaches can adopt many alternative objective functions depending 

on the behaviours of economic actors or the goals of policy makers under various 

disaster-induced or economically inherent constraints. The selected objective function 

may also be normative and based on political viewpoints. Some examples of possible 

objective functions, in addition to the ones already mentioned above, include: 1) to 

keep the post-disaster outputs closest to the pre-disaster outputs by minimizing the 

sum of squares of deviations between post- and pre-disaster sectoral outputs; 2) to 

maintain the post-disaster welfare as much as possible by maximizing the sum of 

(weighted) consumption for basic and luxury goods; and 3) to avoid the disaster losses 

as much as possible by maximizing the sum of sectoral outputs or value-added after 

the disaster. Note that these objective functions are all global ones aiming at the total 

costs, outputs, value added, or consumption of all sectors and regions within the 

economy, leading to the lack of microeconomic foundations to ensure the realisation 

of a targeted aggregate economic outcome (Oosterhaven, 2017). To address this 

problem, Otto et al. (2017) adapted the Acclimate model with local optimization 

principles. In the model setting, a producer determines its actual production level by 

maximizing its profit and a consumer distributes its demand requests among its 

suppliers by minimizing the expected purchase costs under production, delivery, and 

demand constraints at each time step. Price mechanisms are introduced to address the 

disequilibrium between supply and demand that arises after a disaster strikes. Still, like 

the previous two versions of the Acclimate model, this version of the Acclimate model 

does not consider the dynamic process of capital reconstruction. It was later applied 

by Willner et al. (2018) to project the indirect losses of river floods within the global 

economic network under the context of climate change. Their results showed that 

uncertainties quickly accumulate not only with the ensemble of climate projections, 
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but also with the assumptions made for the socio-economic factors, particularly for the 

recovery and response dynamics in modelling the loss propagation. 

 

Comparing the two types of hybrid models, although the second type with optimization 

principles usually allows for more market flexibilities and resembles more of the CGE 

approach by using linear or nonlinear programming techniques than the first type with 

ad-hoc behavioural rules, it has an inherent weakness in reproducing the pre-disaster 

economic state. The assumptions made for simulating the optimal behavioural 

decisions of economic agents in the post-disaster disequilibrium may not hold in the 

pre-disaster economy, and therefore the disrupted economy may eventually recover to 

a new equilibrium that deviates from the pre-disaster state. Note that this new 

equilibrium does not arise from technology replacements or structural changes which 

may take place after a disaster, but simply from problematic assumptions about real-

world economic agents. Faturay et al. (2019) also noted that the objective functions in 

the second type of hybrid models could be manipulative depending on the question(s) 

one would like to answer and should be chosen with caution. In addition, the 

mathematical solving process of an optimization problem appears like a ‘black box’ 

masking the details on how different parts of the economic system interact to reach a 

specific target, especially for targets at the global or aggregate level, under complex 

constraints during the post-disaster disequilibrium. Finally, the optimization principles 

adopted in the second type of hybrid models may even become invalid when 

considering the existence of irrational agents with limited or asymmetric information 

that is likely to happen during the short time after a disaster. By contrast, the first type 

of hybrid models usually uses ad-hoc behavioural rules (regarding production, 

rationing, and demand) based on real-world observations, and therefore is more 

intuitive and better able to reproduce the post-disaster recovery path towards the initial 

economic state, which is the most common recovery target without considering 

structural changes in existing case studies.  
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2.2.2.4. Summary 

Overall, all these three categories of methods can reflect the ripple effects of an 

external hazardous shock through economic interdependencies along the supply chain 

at various levels of sectoral and regional details. A summary of them is presented in 

Table 2-4. The main differences between them lie in the assumptions of production 

techniques and flexibility of market responses (including input and import substitution 

and price adjustment). The IO approach typically adopts a linear production structure 

without input substitutability and a rather rigid setting without market responses, while 

the CGE approach uses a non-linear production structure which allows for a certain 

degree of input substitutability and a quite flexible setting with market responses which 

are usually over-optimal for the time scale of the hazardous shock. Because of these 

features, researchers have reached a consensus that the IO approach is suitable for 

short-term analysis and provides an upper-bound estimate of disaster impacts while 

the CGE approach fits for long-term analysis and offers a lower-bound estimate of 

disaster impacts (Botzen et al., 2019; Hallegatte, 2014; Koks et al., 2016; Okuyama, 

2007, 2008; Okuyama and Santos, 2014; Pauw et al., 2011; Rose and Liao, 2005; Rose 

and Wei, 2013). Hallegatte (2014, p. 154) argued that ‘IO models are pessimistic in 

their assessment of disaster output losses because there is flexibility even over the short 

term (for instance, maintenance can be postponed; workers can do more hours to cope 

with the shock; production can be rescheduled); while CGE models are optimistic, 

even in the long run, because prices cannot adjust perfectly and instantaneously, and 

because technical limits to substitution are not adequately represented in production 

functions’.  

 

By comparison, the hybrid approach often tries to find a common ground between the 

IO and CGE approaches. It combines the simplicity of the IO approach with some 

characteristics of the CGE approach in terms of flexibility by considering production 
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bottlenecks, overproduction capacity, inventory adjustment, input and import 

substitution, demand adaptation, recovery dynamics, etc. It is thus suitable for 

medium-term analysis and offers a middle estimate of disaster impacts between the IO 

and CGE approach (Hallegatte, 2014; Koks et al., 2016; Otto et al., 2017). This has 

given the hybrid approach an edge in disaster impact analysis as most disasters and 

their recovery phases are medium-term events, spanning from the first hours of the 

shock to years of reconstruction after large-scale events (Hallegatte, 2014). 

 

Correspondingly, the IO studies usually derive higher ratios of indirect to direct 

disaster losses than the CGE studies. For example, the indirect economic losses from 

a 10% reduction in demand for air transport due to terrorist attacks in New York were 

approximated to be 1.5-2.6 times of the direct losses by Santos and Haimes (2004) 

using the IIM model. The assessment of economic costs resulting from air pollution-

induced labour time loss in China provided an indirect cost of 200 billion Yuan in 2007, 

which was 1.4 times of the direct cost, by Xia et al. (2016) using the Ghosh model. By 

comparison, the ratio between indirect and direct losses from the 2000 Po River flood 

in Italy was estimated to range between 0.19-0.22 by Carrera et al. (2015) using a 

regionalized CGE model. As for the hybrid approach, results from empirical studies 

show that the ratio usually falls between the IO and CGE simulations. For instance, 

the ARIO model elicited a ratio of 0.39 for the case study of Hurricane Katrina in 

Louisiana by Hallegatte (2008) and the MRIA model derived ratios between 0.64-0.87 

for three flood events with different return periods (probabilities of occurrence) in 

Rotterdam, the Netherlands, in a previous study of Koks and Thissen (2016). Though 

providing a rough comparison between the outcomes of different models, the above 

differences in the estimated ratios of indirect to direct loses may be ascribed to the 

varying economic resilience in areas affected by diverging hazardous shocks other than 

the different modelling approaches. Instead, Koks et al. (2016) compared the results 

of two hybrid models (i.e., ARIO and MRIA) and a regional CGE model in a 
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systematic way for two specific flood scenarios in the same geographical area - the Po 

River area in the Northern Italy with similar input data. They found that the 

calculations with the ARIO model resulted in the highest indirect losses for the whole 

of Italy for both floods and for each recovery paths, while the CGE model had the 

lowest indirect losses in almost every model set-up. This is consistent with 

expectations, as the ARIO model fails to capture the potential substitution effects in 

production and trade and thus all other initially non-affected regions will suffer 

economic losses, while the CGE model is featured by perfect substitution across 

sectors of labour and capital and therefore some initially non-affected regions can yield 

economic gains by taking over from regions with damaged production capacity. The 

outcomes of the MRIA model were close to but still higher than those of the CGE 

model in most flood and recovery scenarios, as the MRIA model was built to allow for 

a certain degree of substitution effects in their study. 
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Table 2-4: Indirect impact analysis - methods and applications. 
Methods Features Strengths Weaknesses Applications 

IO 
approach 

Linear production structure via 
fixed technical coefficients; 
ripple effects through sectoral 
interdependencies 

Simple and easily compatible 
with other models; suitable 
for short-term analysis 

Rigidity on market responses 
(without inputs or import 
substitution and price 
adjustment); overestimation of 
disaster impacts 

Ghosh model for heatwaves (Xia, Li, 
et al., 2018) and air pollution (Xia et 
al., 2016); IIM for terrorist attacks 
(Santos and Haimes, 2004), pandemics 
(Orsi and Santos, 2010) and power 
outages (Crowther and Haimes, 2005) 

CGE 
approach 

General equilibrium analysis; 
non-linear inter-sectoral 
deliveries; ripple effects through 
sectoral interdependencies 

Flexible market responses 
with input and import 
substitution and price 
changes; fit for long-term 
analysis 

Incapability to reflect post-
disaster imbalance between 
supply and demand; complex 
and overmuch parameters 
involved; overly optimistic 
about market responses and 
underestimation of disaster 
impacts 

Regional models for earthquakes 
(Kajitani and Tatano, 2018; Tatano and 
Tsuchiya, 2008), droughts and floods 
(Carrera et al., 2015; Pauw et al., 
2011); global models for heat stress 
(Orlov et al., 2020) and sea level rise 
(Darwin and Tol, 2001) 

Hybrid 
approach 

Hybrid IO analysis with CGE 
characteristics by considering 
supply constraints, 
overproduction capacity, 
production bottlenecks, 
inventory dynamics, input 
heterogeneity, input and import 
substitution, and flexibility in 
recovery, etc.  

Realistic post-disaster 
recovery and response 
mechanisms emphasizing 
economic imbalances; 
increased flexibility on market 
responses than IO models; 
suitable for mid-term analysis 

Uncertainty in assumptions 
about the decision rationale of 
economic agents (ad-hoc 
behavioural rules or 
optimization principles) 

ARIO model for hurricanes 
(Hallegatte, 2008, 2014), coastal 
floods (Hallegatte et al., 2011) and 
earthquakes (Wu et al., 2012); MRIA 
model for floods (Koks and Thissen, 
2016; Koks et al., 2019); Flood 
Footprint model for floods (Mendoza-
Tinoco et al., 2017); Acclimate model 
for river floods (Willner et al., 2018) 
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The methodology of this thesis is based on the hybrid approach because it not only 

emphasizes a series of important imbalances or inequalities that may occur in the 

disaster aftermath and are neglected in traditional IO modelling, but also captures the 

step-by-step process of an economy recovering from the disaster-induced 

disequilibrium back to the initial equilibrium, rather than implying an immediate 

market clearing equilibrium at each time step as in CGE modelling (Li et al., 2013; 

Otto et al., 2017; Zeng et al., 2019). Using hybrid models can easily bridge the gap 

between IO and CGE literature by creating a setting less rigid than IO models and at 

the same time less flexible than CGE models. The hybrid approach is therefore suited 

best for the timescale of months following a disaster - too short for the economy to 

restructure and substitute perfectly, but long enough to make a few production and 

consumption adaptations. More specifically, this thesis acknowledges that the type of 

hybrid models using ad-hoc behavioural rules, which is represented by the ARIO 

model and subsequent extensions, has more advantages over the other type using 

optimization principles (e.g., the MRIA model and the third version of the Acclimate 

model) in disaster-induced economic impact analysis due to the incorporation of more 

realistic recovery and response mechanisms on the basis of microeconomic 

foundations. However, an integrative hybrid model that accommodates all important 

dynamic constraints and adaptive factors (such as capital recovery, inventory 

adjustment, and demand redistribution) is still lacking. 

 

Moreover, similar with most studies on direct impact analysis, studies on indirect 

impact analysis usually focus one (type of) disaster at a time. Although Pauw et al. 

(2011) used a CGE model to examine the economic losses for the full distribution of 

possible weather events including floods and droughts in Malawi, calculations of 

flood- and drought-induced economic losses were carried out separately and 

interactions between the impacts of different events within the economic system were 

ignored. Only recently, Zeng and Guan (2020) proposed an adaptation of the Flood 
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Footprint model to explore the compound economic effects of two successive floods. 

They found that the combined losses resulting from sequencing floods can be higher 

than the sum of losses resulting from separate floods. This is because the economy 

tends to spend longer time to recover from the new flood when it has not been fully 

taken back after the previous flood, and the recovery resources are more limited for 

each flood when multiple floods happen closely. However, their analysis is based on 

hypothetical flooding and economic scenarios and limited to sequencing events of the 

same hazard type. Further extensions and applications to compound events comprising 

of different hazard types are therefore still in need to enhance current understanding 

of the complex economic consequences we are facing ahead as global warming 

continues. 

 

2.2.3. Empirical Evidence from Econometric Models 

In addition to computational models for the evaluation of direct and indirect disaster 

footprint, there are a large number of empirical studies based on econometric methods 

which provide parallel evidence for the results about disaster-induced economic 

impacts and influencing factors. These studies usually use time-series, cross-sectional, 

or panel regressions to correlate economic outcomes (such as GDP, GDP growth rates, 

consumption, trade flows, death counts, employment, and per capita income) to 

disaster measures (such as disaster occurrence, frequency, intensity, damage, and 

fatalities), while controlling for other potential determinants of the economic outcomes 

(such as population, land area, income inequality, average education, political regimes, 

financial development, trade openness, and foreign direct investment) (Botzen et al., 

2019; Kousky, 2014). In general, these studies can be mainly categorized into three 

strands, that is, the estimation of 1) direct effects, 2) short-run indirect effects, and 3) 

long-run effects of hazardous events on the macroeconomy, which will be reviewed in 

turn in the following sections. 
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2.2.3.1. Direct Effects of Hazardous Events 

Direct effects of hazardous events are usually measured by fatalities and physical 

damage. For instance, Kahn (2005) used cross-national data for 73 countries to 

examine the determinants of annual deaths from disasters over 1980-2002. Death 

counts of five types of disasters (i.e., earthquakes, extreme temperature, floods, 

landslides, and windstorms) were obtained from the EM-DAT database 

(https://www.emdat.be/). The study found that, though richer countries (with higher 

GDP per capita) do not experience fewer or weaker disaster shocks than poorer 

countries, the former indeed suffers less deaths from disasters than the latter. Other 

factors such as geography and institutions also play a role in determining the annual 

disaster-induced fatalities. Lower income inequality (Gini index), more democratic 

regime, and stronger institutions could all help reduce the death toll in the sampling 

countries. In addition to direct losses of human lives, disasters can also cause direct 

damage to physical assets. Regressing on a similar dataset for 151 countries over 1960-

2003, Toya and Skidmore (2007) found that countries with higher income, higher 

educational attainment, greater openness, more complete financial systems, and 

smaller government would experience less damage (in relative terms of GDP) from 

disasters.  

 

Yet, follow-up studies tend to discover non-linear relationships, either U-shaped 

(Raschky, 2008) or invertedly U-shaped (Kellenberg and Mobarak, 2008), between 

disaster-induced direct impacts and per capita income. Schumacher and Strobl (2011) 

showed that the non-linear relationship between disasters and wealth depends on the 

exposure to disaster hazard. According to their regression results using the panel data 

for 181 countries over 1980-2004, low hazard countries are likely to experience first 

increasing disaster damage and then decreasing one with the increasing wealth (i.e., 

invertedly U-shaped relationship), while high hazard countries tend to see first 

decreasing damage and then increasing one as the per capita income increases (i.e., U-

https://www.emdat.be/
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shaped relationship). Their findings were supported by a recent study of Patri et al. 

(2022) who examined the potential determinants of a broad range of direct impacts 

caused by floods, including people affected, crop losses, house damage, damage to 

public properties, and the total economic damage, in 21 major Indian states from 1981 

to 2019. All these flood-induced direct impacts were found to be significantly 

correlated with the real per capita state GDP following a U-shaped pattern, as India is 

a high-risk country of climate change and natural disasters. The study also suggested 

that increasing the urbanization rate and expenditure under the Disaster Risk 

Reduction program can reduce the flood damage, while a rise in population density, 

more flooded areas, and heavy rainfall enhance the damage risk of floods.  

 

2.2.3.2. Short-run Indirect Impacts of Hazardous Events 

Much more attention has been given to the indirect impacts than direct ones in the 

empirical literature on hazardous events. The short-run indirect impacts are often 

referred to as the impacts on the macroeconomy (mostly measured by GDP or GDP 

growth rates) in the struck region within one to five years after the events. In a widely 

cited study of Noy (2009), the GDP growth rate is regressed on standardized measures 

of a disaster and a set of controls using the EM-DAT data on rapid-onset disasters for 

a panel of 109 countries over 1970-2003. The disaster measures included casualties 

divided by population and direct costs divided by the previous year’s GDP, weighted 

by the month of occurrence. The study found that natural disasters have a significant 

adverse impact on economic development in the short run when they are measured by 

the amount of property damage incurred. Developing countries and smaller economies 

face larger output declines after a disaster of similar relative magnitude than developed 

countries or bigger economies. Moreover, countries with a higher literacy rate, better 

institution, higher per capita income, higher level of government spending, and higher 

degree of trade openness are better able to withstand the initial disaster shock and 

prevent further spillover effects into the macroeconomy. Financial conditions also 
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seem to matter. Countries with less open capital accounts, more foreign exchange 

reserves, and higher levels of domestic credit appear more robust and better able to 

endure natural disasters with less adverse spillover to domestic production. 

 

However, some scholars noted that using monetary direct damage recorded by EM-

DAT or other similar databases such as NatCatSERVICE and Sigma as a measure of 

disaster magnitude may cause endogeneity bias when examining the relationship 

between disasters and economic development (Felbermayr and Gröschl, 2014). Such 

a disaster measure is likely to be correlated with GDP per capita, which is the main 

dependent variable in the literature, as the disaster damage is greater and better 

recorded for developed countries in these databases. To overcome this data issue, 

Felbermayr and Gröschl (2014) built a new database called GeoMet based on physical 

measures for the magnitude of natural disasters including earthquakes, volcanic 

eruptions, storms, floods, droughts, and temperature extremes from 1979 to 2010 for 

more than hundred countries in the world. Using this database, the authors constructed 

an aggregate disaster intensity index for each country in each year and investigated the 

immediate disaster impacts on national GDP per capita. They discovered that natural 

disasters do indeed lower GDP per capita in the short run and the marginal reduction 

increases with the disaster magnitude (i.e., non-linear relationship). Specifically, a 

disaster in the top 1-percentile of the disaster index distribution reduces GDP per capita 

by at least 6.83%, while the top 5-percentile disasters cause per capita income to drop 

by at least 0.33%. Low- and middle-income countries tend to experience the highest 

losses, and better institutional quality, higher openness to trade, and higher financial 

openness can significantly reduce the adverse effect of a disaster on per capita income. 

 

Similarly, Anttila-Hughes and Hsiang (2013) looked at a specific type of disaster - 

tropical cyclones in the Philippines linking physical storm data with household survey 

data into a difference-in-difference approach. They demonstrated that the physical 
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measure of typhoon exposure, i.e., wind speed, is a good predictor of damage and 

deaths at both the national and household levels. They estimated that the annual 

household income (net of public and private transfers) is reduced by 6.6% in the short 

run given the average annual exposure of typhoons in the country. Such income loss 

could persist for several years following the typhoon, particularly for poorer 

households, and cause a nearly one-for-one reduction in household expenditures, 

mostly in the categories of human capital investment. 

 

While most of the literature focuses on rapid-onset disasters like earthquakes and 

cyclones, there have been some studies on the economic impacts of slow-onset 

disasters like extreme heat and epidemics/pandemics. Dell et al. (2012) examined the 

historical relationship between temperature fluctuations and economic growth using a 

panel dataset for 125 countries over the period from 1950 to 2003. Their estimates 

showed that a 1℃ rise in temperature in a certain year is likely to reduce the economic 

growth in that year by about 1.3 percentage points in poor countries, while having no 

significant effect on the economic growth in rich countries. Higher temperatures also 

have broader impacts outside of agriculture, leading to reductions in industrial output 

and political stability. Similar impacts on the aggregate and industrial output were also 

documented in an earlier study of Hsiang (2010) on temperature shocks in 28 

Caribbean countries, in which the response of economic output to increased 

temperatures was found to be structurally similar to the response of labour productivity 

to thermal stress. 

 

Wang et al. (2022) used a panel vector autoregressive model to examine the impact of 

COVID-19 on the daily economic resilience in 286 cities in China during a very short 

time (roughly the first month after the onset of the pandemic). A comprehensive 

indicator system was constructed to measure economic resilience, consisting of five 

socio-economic aspects of economic performance, public opinion, public health, 
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management policies, and population inflows, based on macro and big data. They 

found that the surge in confirmed cases shows a significant negative effect on 

economic resilience, which usually persists for the following five days and then 

converges in later days. Additionally, a longer pandemic tends to have a greater 

negative impact on economic resilience. The macroeconomy may also be affected by 

lockdown restrictions implemented to control the spread of an epidemic/pandemic. 

Bonaccorsi et al. (2020) used a massive near-real-time dataset of human mobility 

provided by Facebook to analyse how mobility restrictions affect economic conditions 

of individuals and local governments in Italy. Their results showed that low-income 

individuals tend to be more affected by the economic consequences of the lockdown, 

making poor municipalities, as well as rich ones but with high income inequality (i.e., 

a greater number of low-income individuals), suffer more pronounced mobility 

contractions and sharper reductions of the fiscal revenues generated by their tax bases. 

This would pose a greater fiscal challenge at the municipal level in sustainably 

supporting the recovery of the weaker fraction of the population and probably induce 

a further increase in poverty and inequality. 

 

Besides, there are some studies focusing on the effects of hazardous events on finer 

scales, i.e., on the sectoral or even firm levels. For example, Guimaraes et al. (1993) 

used a multi-sector regional econometric model to examine the impacts of Hurricane 

Hugo, which hit South Carolina in 1989, and found that, though the overall economic 

impacts were neutral, these impacts were distributional among sectors. The 

construction sector witnessed a short-term boom due to the rebuilding efforts in the 

post-disaster recovery, while forestry and agriculture sustained large losses. Retail 

trade, transportation, and public utility income declined immediately after the 

hurricane and then rose above baseline for more than a year. Focusing instead on firm-

level variables, Leiter et al. (2009) examined the impacts of floods on capital 

accumulation, employment growth, and productivity of European firms using a 
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difference-in-difference approach. They found that floods result in significant 

increases in asset and employment growth, while productivity is not significantly 

affected. This indicates that damaged production capabilities can be offset by increased 

investment in assets and increased labour following a flood. Two recent studies 

leveraged the same panel dataset of Chinese manufacturing firms from 1998 to 2007 

to investigate the effects of temperature on industrial output (Chen and Yang, 2019; 

Zhang, Deschenes, et al., 2018). Both discovered a non-linear relationship between 

temperature and industrial output, though identifying diverging mechanisms through 

which temperature affects output. While Zhang, Deschenes, et al. (2018) found that 

output losses mainly arise from the negative response of total factor productivity (TFP) 

to high temperatures, Chen and Yang (2019) illustrated that declines in firms’ 

investment and expansion in inventories in response to high temperatures are two other 

drivers of output reductions. In both studies, timber and rubber are the two sectors 

more affected by higher temperatures. 

 

Although most of these empirical studies focus on one type of hazard at a time, Hsiang 

(2010) presents one of the few studies of the impacts of two different hazards, i.e., 

increased temperatures and tropical cyclones, in various sectors of 28 Caribbean 

countries during 1970-2006. Because sea surface temperatures in the tropical Atlantic 

have been correlated with basin cyclone activities since 1950, the economic impacts 

of tropical cyclones should be estimated and separated from the impacts of temperature, 

the main purpose of the paper. Differences were found in the sectoral distribution of 

the impacts of these two hazards. Increased surface temperatures exert much larger 

negative impacts on the output of non-agriculture sectors than the agriculture sector, 

while tropical cyclones cause output losses most strongly distributed in the agriculture, 

tourism, and mining sectors and output booms in the construction sectors probably due 

to its role in reconstruction. The author also found that the impacts of a cyclone could 

persist for several years after the initial event, especially in the tourism sector due to 
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reductions in tourist visits. 

 

In general, empirical studies suggest that hazardous events tend to significantly lower 

economic growth in the short run, notably in low-income countries. On the sectoral 

scale, extreme temperatures not only reduce crop yield in the agriculture sector but 

also cause wider and even larger effects to other economic sectors, while capital-struck 

disasters (such as cyclones and hurricanes) may also trigger temporary increases in the 

construction income due to the reconstruction efforts in the disaster aftermath.  

 

2.2.3.3. Long-run Effects of Hazardous Events 

The current literature remains inconclusive about the long-run effects of hazardous 

events on the macroeconomy. Theoretically, the standard Solow model, a 

representative model of exogenous growth, would suggest that even though a 

hazardous event can cause short-run reductions in production and income due to 

capital or labour destruction, the economy will eventually return to its initial steady-

state or balanced growth path, leading to no significant long-run effects (Solow, 1957). 

However, Aghion and Howitt (1990) proposed a model of endogenous growth through 

creative destruction and argued that the disaster-induced destruction of both physical 

and human capital might have a positive effect on the long-term growth through 

increased marginal returns and reconstruction investment. The theoretical debates 

regarding whether a catastrophic event pushes the economy away from its initial path 

temporarily or permanently have motivated empirical studies to investigate the long-

term effects of such an event. 

 

However, fewer empirical studies, compared to the number of studies on the short-run 

impacts, have been carried out for examining the long-run effects of disasters on 

economic growth, due to the large data requirements and complex causality 

considerations associated to the long-run temporal scale (Botzen et al., 2019; Loayza 
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et al., 2012; Okuyama and Santos, 2014). In an influential study, Skidmore and Toya 

(2002) investigated the long-run relationships between natural disasters, capital 

accumulation, TFP, and economic growth using the cross-sectional regression with 

EM-DAT data for 89 countries. Their analysis related the average annual growth rate 

of per capita GDP over the 1960-1990 period to the total number of natural disasters 

occurring in a country over the same period. They found that climatic disasters (mainly 

floods, cyclones, and storms) are positively correlated with economic growth, human 

capital investment, and TFP growth, while geological disasters (mainly volcanic 

eruptions, landslides, and earthquakes) are negatively correlated with growth. The 

response of TFP towards natural disasters appears to be the primary driver behind 

changes in economic growth. However, this study has a major limitation for the 

possibility of omitted variable bias which is inherent in the cross-sectional method.  

 

Dell et al. (2012), discussed above, also conducted a first-differenced regression on 

the long-run relationship between temperature changes and growth changes from the 

early period (1970-1985) to the late period (1986-2000) across countries. Their results 

showed that the warming temperature tends to exhibit substantial and significant 

negative effects on the economic growth of poor countries, while having no significant 

effects on that of rich countries. Their analysis on the long-run scale provides evidence 

that the negative temperature effects seen in the annual growth may persist over a 15-

year time horizon. 

 

A more comprehensive study of the long-term effects of tropical cyclones was carried 

out by Hsiang and Jina (2014). They related the economic growth rate (measured by 

the first difference of the logarithm of GDP) to both contemporaneous and historical 

area-averaged tropical cyclone exposure (measured by wind speed and energy 

dissipation), using a difference-in-difference approach, for almost all countries over 

the 1950-2008 period. They found that tropical cyclones can cause persistent and 
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negative effects on GDP growth rates for over a decade after the initial strike, leading 

to even longer and severer cumulative impacts on national income. Their conclusion 

is robust in rich and poor countries or in response to large and small cyclones. 

Interestingly, countries where cyclones are more frequent tend to experience less 

economic losses, indicating a higher level of investment in adaptation to shield their 

economy from cyclones. 

 

2.2.3.4. Summary 

Overall, the empirical literature on disaster impacts generally suggest negative direct 

and short-run indirect economic effects of hazardous events, while the long-run 

economic effects are ambiguous and sometimes contradictory when examined using 

different methods or focusing on different hazard types. 

 

Factors such as the income level, quality of institution, democratic regime, geographic 

features, education attainment, degree of trade openness, urbanization, infrastructure, 

financial conditions, early warning system, and protection levels can also influence the 

severity of disaster impacts (Felbermayr and Gröschl, 2014; Hsiang and Jina, 2014; 

Kahn, 2005; Loayza et al., 2012; Noy, 2009; Patri et al., 2022; Toya and Skidmore, 

2007). Moreover, some studies demonstrate that regions highly exposed to a certain 

hazard in the past, such as countries repeatedly hit by cyclones (Hsiang and Jina, 2014) 

and historically high-temperature regions in China (Chen and Yang, 2019), tend to 

suffer less economic losses from the hazard than other regions in the study sample, 

suggesting an active role of human adaptation in mitigating the hazard impacts. In 

summary, ‘a developed, diversified, and open economy with sound institutions’ tend 

to display a stronger resilience towards various hazards. This is to some extent 

consistent with the results from computational models (i.e., IO and CGE models), 

which emphasize the mitigating effects of substitutability (mainly through trade) in 

offsetting the lost production of sectors caused by a hazardous event (Botzen et al., 
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2019). 

 

More importantly, empirical studies on the sectoral level have found the presence of 

linkages transmitting shocks across sectors (Loayza et al., 2012), which, however, has 

to rely on IO or CGE models to more closely trace and isolate these propagations 

among the cumulative economic impacts. Meanwhile, these studies have also found 

statistically significant positive effects of hazardous events (mainly hurricanes and 

cyclones) on the output of the construction sector due to its role in capital 

reconstruction (Guimaraes et al., 1993; Hsiang, 2010). This is also in support of results 

of some hybrid computational models, particularly the Flood Footprint model, that 

considers the post-disaster reconstruction need as an endogenous driving factor behind 

the economic recovery. 

 

2.3. Emerging Concerns for Compound Hazards and Their 

Economic Implications 

As discussed in Section 2.1.1.2, a compound hazard in this thesis refers to “the 

compounding of multiple hazards, in a wide range beyond climatic hazards, that causes 

interconnected shocks to the economic system”. This concept stems from the notion 

of ‘compound events’ in the field of climate science, which mainly focuses on the co-

occurrence of multiple climatic hazards, and is then extended to include collisions with 

biological, political, and other hazards against the diversified and complex background 

of intensifying climate change, continuing COVID-19 pandemic, and escalating 

geopolitical tensions. Research on compound hazards is still at an early stage, giving 

most attention to the physical characteristics (e.g., drivers, intensity, frequency, 

distributions, and impacts) while with inadequate understanding on the associated 

socio-economic implications. 

 



Chapter 2 

99 

2.3.1. Increasing Risk of Compound Hazards 

In the 6th (also latest) IPCC annual report, climate scientists have reached a consensus 

that compound hazards will become more common as global temperatures continue to 

rise (IPCC, 2021). This report provides the first evaluation on changes in compound 

hazards by summarizing the research progress since the concept was initially 

introduced in the IPCC 2012 special report on climate extremes (IPCC, 2012). Many 

major climate catastrophes are inherently of a compound nature, including but not 

limited to coastal extremes, floods, heatwaves, droughts, and wildfires  

(AghaKouchak et al., 2020; Ridder et al., 2020; Zscheischler et al., 2018). The IPCC 

report takes a special look at two types of mostly studied compound events in literature, 

i.e., compound floods and concurrent droughts and heatwaves. Recognizing that flood 

occurrence may be caused by the interaction between storm surge, heavy precipitation, 

and high river flow, as well as by sea level rise and astronomical tides and waves, 

floods with multiple drivers are often defined as compound floods (Bevacqua et al., 

2020; Moftakhari et al., 2017; Wahl et al., 2015). For another, due to land-atmosphere 

feedbacks, temperature and precipitation are strongly negatively correlated during 

summer over most land regions, leading to a compound hot and dry condition, which 

is also a climate feature of many other weather-related disasters like wildfires and tree 

mortality (Brando et al., 2014; Zscheischler and Seneviratne, 2017). The IPCC report 

has concluded that the probability of compound flooding has increased in some regions 

(including the US coasts) over the past century (medium confidence) and will continue 

to increase in the future due to both sea level rise and increases in heavy precipitation 

(medium confidence) (Seneviratne et al., 2021). The frequency of concurrent 

heatwaves and droughts has also showed or will show an upward trend at the global 

scale in the history due to human influence or in the future as global temperature 

increases (high confidence), which may further cause more frequent wildfires (fire 

weathers) in some regions (ibid.).  
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Temperature and precipitation anomalies can also create another type of compound 

event, i.e., the so called compound flood-hot hazards (Gu et al., 2022), where a flood 

event and an extreme heat event hit the same region in close succession. By examining 

the historical data over the period from 1979 to 2017 across the central United States, 

Zhang and Villarini (2020) showed that heat stress can set the stage for subsequent 

flooding by preparing an extremely hot and humid condition. As global warming 

continues, heat stress will become more frequent in the future, so will be this type of 

compound event in the central US. Alternatively, a heatwave may also closely follow 

a flood, exacerbating the hazard damage. A typical example is the consecutive flood-

hot extreme event that struck Japan in July 2018, during which the flood-induced 

electricity outages left many people without air conditioning in the subsequent record-

breaking heatwave (Wang et al., 2019). Although a compound flood-hot event like this 

has not happened in the history of China, it is projected to be more possible in the 

future as temperature rises, particularly in the Southern China (Liao et al., 2021). Very 

recently, Gu et al. (2022) presented the first global assessment of projected changes in 

compound river flood-hot extremes. They found that an increasing fraction of floods 

will be accompanied by hot extremes under global warming, with tropical regions 

being the new global hotspot of such compound flood-hot extreme events. Moreover, 

the exacerbation of this global compound hazard is mainly dominated by changes in 

hot extremes, especially in tropical regions. 

 

Except for the concurrence of different climatic hazards, hazardous climatic events can 

also intersect with high air pollution episodes, as a results of their shared underlying 

meteorological drivers, such as low wind speeds, high temperatures, and low 

precipitations (Schnell and Prather, 2017; Sillmann et al., 2021). For example, the 2017 

December wildfires in Southern California have significantly raised the ambient PM2.5 

concentration to the level above the national standard (i.e., 35 μg/m3) for 5 to 13 days 

in the nearby and downwind regions, leading to adverse health impacts (Shi et al., 
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2019). Besides, the co-occurring O3 pollution during the 2003 European heatwave has 

caused high levels of excess deaths in European countries (e.g., France and the 

Netherlands) and the United Kingdom (Dear et al., 2005; Vautard et al., 2005), 

representing another type of air pollution-related compound hazards. Heatwaves are 

often accompanied by increased levels of air pollutants released during wildfires or 

produced by photochemical reactions. Other unfavourable weather conditions like 

stagnant air can further aggravate the severity of air pollution by negatively affecting 

the transportation or diffusion of harmful aerosols (Jacob and Winner, 2009; Schnell 

and Prather, 2017). Such effects of climate change in deteriorating air quality has been 

termed a ‘climate change penalty’ in literature (Fu and Tian, 2019, p. 160). On the 

other hand, air pollution, especially associated with elevated emissions of sulphates 

and black carbon, can also affect climate conditions such as regional temperature and 

precipitation patterns (Falloon and Betts, 2010; Ramanathan et al., 2005; Sillmann et 

al., 2017). These interactions between climate conditions and air quality will enhance 

the risks of compound hazards comprising of extreme weathers and air pollution 

episodes, which may become more frequent, longer lasting, and more intense as the 

climate keeps warming (Fiore et al., 2015; Horton et al., 2014).  

 

Since the onset of the COVID-19 pandemic, there has been a concerning body of 

evidence indicating that the pandemic outbreaks and associated public health 

responses may collide with climatic hazards, which are increasing in frequency and 

intensity under climate change (Phillips et al., 2020). According to the report released 

by the International Federation of Red Cross and Red Crescent Societies (IFRC), 

hundreds of extreme weather events (mostly storms, floods, heatwaves, and droughts) 

have intersected with the COVID-19 pandemic globally (not only in low-income 

countries but also in medium- and high-income countries), leaving millions of people 

simultaneously exposed to multiple hazards (Walton et al., 2021). For instance, a 

severe hurricane made landfall in the state of Louisiana in June 2020 during a surge of 
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COVID-19 cases due to the ease of physical distancing restrictions there (Salas et al., 

2020). In Zimbabwe, drought has left millions of people without access to clean water 

and at risk of acute food insecurity during June to September 2020, which affected the 

country’s response to the virus (FEWS NET, 2020). Sometimes the double threats of 

climate and COVID-19 may even overlap with other shocks, such as trade frictions 

between China and US and military conflicts in Afghanistan, generating increasingly 

complex and challenging circumstances (Shahid, 2020; Walton et al., 2021). 

 

In summary, individual or interrelated hazards are compounding with each other due 

to the combined effects of the warming climate, ongoing COVID-19 pandemic, and 

intensifying geopolitical tensions, etc. Multiple climate hazards will occur 

simultaneously, and multiple climatic and non-climatic hazards will interact, posing 

severe challenges to sustaining human society (IPCC, 2022). The occurrence of these 

compound hazards will increase in the future as the mixed situation continues.  

 

2.3.2. Economic Implications of Compound Hazards 

The enhanced socio-economic impacts of compound hazards are increasingly 

recognized, but only rarely estimated. The combination of multiple hazards, each of 

which is not necessarily extreme, can result in higher economic losses and death tolls 

than the sum of the impacts of isolated hazards, for overwhelming the coping capacity 

of natural and human systems more quickly (Hao and Singh, 2020; Ridder et al., 2020; 

Seneviratne et al., 2021; Zscheischler et al., 2018). AghaKouchak et al. (2020) 

highlighted in their review of literature that temporal clustering of extreme events can 

markedly amplify the disaster damage and slow down the recovery process. This 

viewpoint has also been quantitively confirmed by one of the few studies modelling 

the cumulative impacts of two successive floods to a hypothetical economy (Zeng and 

Guan, 2020). An empirical study of the interaction between heat and air pollution 

found that higher PM10 concentration levels can non-linearly increase the risk of heat-
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related mortality, leaving the single-living elderly people (above 85 years old) at the 

highest risk (Willers et al., 2016). Zscheischler et al. (2020) has ascribed the 

augmented impacts to: 1) interactions between multiple hazards occurring at the same 

time (e.g., heatwaves and air pollution); 2) previously adverse conditions increasing 

the system’s vulnerability to a subsequent event (e.g., successive floods); or 3) 

spatially concurrent events resulting in regionally or globally overlapping effects (e.g., 

globally synchronized heatwaves influencing global food production).  

 

Notably, there has been a growing concern that pandemic outbreaks (including 

COVID-19) and associated public health responses may have a potential for 

aggravating the socio-economic impacts of climatic hazards (IPCC, 2021). 

Communities appear to be more vulnerable to extreme events during a pandemic, as 

physical distancing regulations reduce the capacity of temporary shelters (Salas et al., 

2020). The use of personal protective equipment (PPE) against the pandemic also 

makes health care personnel suffer more intense heat strain during hot extremes (Bose-

O’Reilly et al., 2021). Countermeasures against one crisis may jeopardize the efforts 

to confront another crisis, which then exacerbates the negative impacts of both and 

slow down the recovery (Ishiwatari et al., 2020; Salas et al., 2020; Selby and Kagawa, 

2020). However, few studies have actually estimated the extent to which these 

compounding effects of pandemic and climate shocks may influence an economy. 

Dunz et al. (2021) carried out the first evaluation on the quantitative impacts of 

overlapping COVID-19 and hurricanes on Mexican real GDP using a macro-economic 

model considering the roles of bank credit and public finance. Their results showed 

that the combination of COVID-19 and extreme weather events generates non-linear 

effects that can amplify the magnitude and persistence of economic losses (e.g., 

measured in terms of GDP) over time. In some extreme cases where strong hurricanes 

coincide with the COVID-19 shock, the compound impacts can be 50% larger than the 

sum of the individual shocks, preventing GDP from returning to its initial path in the 
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short- to mid-term. Yet, this study does not consider the cascading effects of compound 

shocks across sectors and regions. The integration of these supply chain effects in the 

model would rely on more detailed input-output based information and techniques. 

 

International trade also plays an important role in affecting price volatility, food 

security, and supply chain stability disrupted by climate and pandemic shocks (Bezner 

Kerr et al., 2022; Verschuur et al., 2021). The border restrictions on imported goods 

and foreign workers to prevent virus transmission may impede the production 

restoration following a destructive climate disaster (Mahul and Signer, 2020). Export 

restrictions imposed on critical supplies (such as food, vaccines, and other essential 

goods) can prolong the global supply chain disruptions caused by pandemic lockdowns, 

generating myriad consequences including shortages of production inputs, raw 

material and shipping cost rises, abnormal demand changes, and logistic and capacity 

bottlenecks (Dickinson and Zemaityte, 2021; Eaton, 2021; Espitia et al., 2020). 

 

In summary, compound hazards may aggravate the socio-economic consequences of 

isolated hazards, highlighting the importance of holistic risk assessment and integrated 

solutions for enhancing compound resilience of an economy (IPCC, 2022). There is 

an emerging literature calling for analysis on interactions between individual and 

interrelated hazards (AghaKouchak et al., 2020; Phillips et al., 2020; Zscheischler et 

al., 2018) and their risk transmission channels within the economic network (Dunz et 

al., 2021). Existing knowledge and frameworks should be extended to address the 

complex impacts of compound hazards and inform financial investment and public 

policies in future risk preparedness (Kruczkiewicz et al., 2021; Mahul and Signer, 

2020). 
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2.4. Research Gaps 

This chapter has reviewed the growing literature on the direct and indirect economic 

impacts of individual and compound hazards and synthesized the key definitions, 

computational methods, and empirical evidence to extract the main findings. The 

review has shown that a hazardous event causes not only significantly negative direct 

economic consequences (e.g., casualties and property damage), but also generally 

negative indirect economic impacts through interdependencies between sectors and 

regions (e.g., production and trade losses). Sectors involved in capital construction 

may sometimes experience a temporary boom in the disaster aftermath due to the 

surges in demand for reconstruction. More developed and diversified economies tend 

to suffer less disaster impacts due to their higher building codes and stronger capacity 

to compensate for lost production with increased production elsewhere. Compound 

hazards, particularly in combination with pandemic shocks such as COVID-19, may 

amplify the negative economic impacts of isolated hazards due to their interactions in 

risk transmission within the economic system. However, there still exist three major 

research gaps that should be bridged:  

 

1) There is a lack of universally applicable methodology to assess the hazard-

induced indirect economic impacts. 

Despite the growing awareness of the potentially large scale of indirect hazard impacts 

(sometimes even exceeding the direct ones), there has not been a universally applicable 

accounting method in the literature. Most of the models developed for indirect hazard 

impact assessment (including IO, CGE, and hybrid models) are intended for specific 

hazard scenarios with distinctive features (see Section 2.2.2.4).  

 

Standard IO models adopt a relatively rigid setting without input substitution or other 

market responses, thus suitable for the short-run impact assessment. By contrast, CGE 
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models establish equations on long-run economic equilibrium and tend to be overly 

optimistic about market flexibility, leading to underestimation of the disaster impacts.  

 

Though hybrid models are built on the middle ground of IO and CGE models and fit 

best for a medium-term timescale on which most disasters and their recovery phases 

last, these models are usually developed from limited economic angles, such as the 

incorporation of adaptive demand and price responses (Hallegatte, 2008), post-disaster 

inequalities and/or imbalances (Li et al., 2013), inventory dynamics and constraints 

(Hallegatte, 2014), demand redistribution through substitution of suppliers (Wenz et 

al., 2014), and endogenous capital recovery process and reconstruction demand (Zeng 

et al., 2019). Though important for determining disaster impacts and economic 

resilience, none of the existing studies has fully considered all these factors in their 

modelling framework. Previous models also tend to ignore the crowding-out effect of 

reconstruction costs on household consumption by assuming that these costs are 

largely funded by insurance companies (Hallegatte, 2008). However, as mentioned by 

Cochrane (2004), household demand decreases temporarily when the recovery is 

financed by local savings and borrowing, which thus should be considered in disaster 

impact analysis. Moreover, previous studies in this regard are either at the theoretical 

stage or case specific, with unverified applicability to a wider range of hazardous 

events. An integrated hybrid model that can reflect all possible constraints (such as 

capital restoration, inventory dynamics, and demand redistribution) and accommodate 

a multitude of hazard types in a broad context (including climate, pandemic, and 

political hazards) is still lacking. 

 

This research gap, specifically the establishment of an improved hybrid model for 

indirect hazard impact assessment, is addressed in Chapter 3 of this thesis. 

 

2) Studies on economic impacts of compound hazards are accumulating but still 
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limited. 

Previous analysis on disaster impacts is often carried out for a single hazard at a time. 

Considering the increasing likelihood of compound hazards under climate change and 

ongoing COVID-19 pandemic, an emerging literature has advocated for analysis on 

the combined effects of multiple or interrelated hazards on socio-economic systems. 

However, many of these studies are in conceptual stages and qualitative manners. 

Quantitative analysis of the overall economic impacts resulting from compound 

hazards is still scarce.  

 

Though some empirical studies have discovered the short-term synergistic health 

effects of heat and air pollution (Pascal et al., 2021; Scortichini et al., 2018) and of air 

pollution and COVID-19 lockdowns (Giani et al., 2020; Zhang et al., 2022), the drivers 

and mechanisms behind the reported interactions are still poorly understood (Sillmann 

et al., 2021). 

 

Beyond that, even less attention has been paid to the indirect economic losses caused 

by compound hazards. An early study of Pauw et al. (2011) used a CGE model to 

estimate the annual production (or GDP) losses due to historical floods and droughts 

in Malawi. The study has emphasized the importance of considering all possible 

extreme weather events when evaluating the climate impacts, but it calculates the 

production loss for each individual event independently and ignores the chance of 

possible interactions between compound shocks to the economic system.  

 

A more holistic assessment that considers the interactions between two successive 

floods was carried out by Zeng and Guan (2020). Their results confirmed that the 

economy would suffer larger losses than the sum of each induvial flood and take longer 

to return to its initial state, if the subsequent flood disrupts the recovery of capital 

damaged by the first flood. However, their analysis is limited to sequential flood 
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shocks for a hypothetical economy in a single region, and the applicability of their 

model to a wider range of compound hazards has yet to be verified.  

 

In a post-pandemic world where climate and pandemic hazards are more likely to 

collide, most climate hazards such as floods are rapid-onset events which require 

immediate responses, while pandemic hazards such as COVID-19 last for longer 

periods and the corresponding control measures could be of various durations and 

intersect with different developing periods of climate hazards. Therefore, compound 

climate and pandemic hazards require a different way of accounting for the cumulative 

hazard impacts on the economic system. The very recent study of Dunz et al. (2021) 

takes a meaningful first step to embed these compound shocks within a macro-

financial risk assessment framework, but their model only indirectly includes global 

supply chain shocks and thus cannot fully capture the cascading effects of individual 

or compound shocks across sectors and regions. The integration of IO based 

information, which can reveal how compound shocks are transmitted interactively 

through the economic network, is still required in future research to enhance 

understanding of the potential indirect economic impacts of compound hazards in 

complex scenarios. 

 

This research gap, specifically the establishment of a compound hazard economic 

impact assessment model and its applications to case studies of various compound 

hazard crises, is addressed in Chapter 3, Chapter 6, and Chapter 7 of this thesis. 

 

3) There is an absence of integrated assessment on both direct and indirect 

economic impacts of future hazards in combination with climate change and 

socio-economic projections. 

Despite the rapid development of indirect hazard impact modelling, most of these 

models have only been applied to historical extreme events. Projections on future 
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changes have largely focused on population exposed and direct damage (usually to 

urban areas) (Alfieri et al., 2017; Ward et al., 2017; Winsemius et al., 2016). Integrated 

assessment on joint direct and indirect economic impacts of future hazards is relatively 

rare (Sieg et al., 2019). This is usually because the inclusion of indirect impact 

accounting would increase the model complexity and introduce more uncertainties. 

 

Dottori et al. (2018) carried out a global fluvial flood risk assessment by estimating 

human losses, and direct and indirect economic impacts under a range of temperature 

and socio-economic scenarios. Nevertheless, they only considered welfare or 

consumption losses as a proxy of indirect impacts, ignoring changes in sectoral outputs. 

 

Some other studies have evaluated the indirect economic consequences of future flood 

risks at the sectoral level for countries/regions including China, the US, and the EU, 

but with fixed socio-economic conditions (Koks et al., 2019; Willner et al., 2018). 

Given the long time-window (usually 30 years) adopted in most standard climate 

change studies, the time scale in hazard impact analysis should also be adjusted from 

the short term to the long term. However, most of previous studies only calculated the 

economic impacts shortly after the event with constant socio-economic conditions, 

which is not suitable for a long-term study. The evolution of demographic and 

economic indicators over the study periods should be incorporated into the impact 

analysis against the backdrop of climate change. 

 

This research gap, specifically the comprehensive projection of direct and indirect 

economic impacts of future hazards considering changing climate and socio-economic 

conditions, is addressed in Chapter 5 of this thesis. 
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Chapter 3 Methodology: From Single-Hazard 
to Compound-Hazard Economic Impact 
Modelling 

The purpose of this chapter is to fulfil Research Objectives 3 and 4, which are the 

improvement of single-hazard economic impact accounting and the development of 

the Compound-Hazard Economic Footprint Assessment (CHEFA) model. This 

contributes to Research Questions 2 and 3 raised in Section 1.4.1. As the CHEFA 

model draws on previous modelling experience for single-hazard analysis and uses the 

estimated direct impacts as inputs to assess the indirect impacts, this chapter starts with 

a detailed description of the accounting methods for both direct and indirect economic 

impacts under the single-hazard analytical framework (Section 3.1). More specifically, 

methods of direct impact assessment are introduced in Section 3.1.1 with a separate 

focus on three types of hazards (i.e., flooding, heat stress, and air pollution), which 

could represent a full range of possible shocks on production factors (i.e., capital and 

labour) and correspond to the applications in following chapters. Then for indirect 

impact assessment, the Disaster Footprint model, which is compatible with various 

single-hazard event settings, is established at the end of Section 3.1.2 following a 

methodological review on its theoretical origins and modelling grounds. This chapter 

culminates in a full picture of the CHEFA model for compound-hazard impact analysis, 

which integrates hazard interactions with other important factors such as recovery 

dynamics, inventory adjustment and cross-regional substitution (Section 3.2). 

 

It should be noted that two versions of the Disaster Footprint model (i.e., DF-growth 

and DF-substitution) have been developed for single-hazard indirect impact analysis 

in Section 3.1.2.3. These two versions mainly differ in the assumptions about the 

decision rationale of economic sectors and the economic recovery target. The first 
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version, namely the DF-growth model, assumes that economic sectors make their 

production decisions based on optimization principles (i.e., output maximization) and 

thus belongs to the second type of hybrid models reviewed in Section 2.2.2.3. It also 

allows for economic growth and a recovery target above the initial economic state, 

which is suitable for the long-term analysis. By comparison, the second version, 

namely the DF-substitution model, assumes that the production, delivery, and 

consumption decisions are governed by ad-hoc behavioural rules (i.e., production 

extension, rationing scheme, and demand adaptation) and thus belongs to the first type 

of hybrid models reviewed in Section 2.2.2.3. It also assumes constant economic 

conditions and a recovery target at the pre-disaster level, which is suitable for the short-

term analysis. The CHEFA model is then built on the DF-substitution model, as this 

version reflects more realistic recovery and response mechanisms in the short run and 

could be easily extended to accommodate hazard interactions. 

 

The DF-growth model was constructed for an early work on projecting the economic 

impacts of fluvial floods in six vulnerable countries in the context of climate change 

and socio-economic development. In this study, estimations of indirect impacts were 

carried out at the single-national level over the 30-year baseline and future periods. 

Analysis on such broad spatial and temporal scales implies higher flexibility and more 

optimization behaviours, as well as the necessity of including economic growth, hence 

the application of the DF-growth model. Its detailed description is extracted from the 

paper: 

Yin, Z.#, Hu, Y.#, Jenkins, K., …, Guan, D*. (2021). Assessing the economic impacts 

of future fluvial flooding in six countries under climate change and socio-economic 

development. Climatic Change, 166(3), 38. https://doi.org/10.1007/s10584-021-

03059-3 

 

The DF-substitution model was developed with increasing micro-foundations after full 

https://doi.org/10.1007/s10584-021-03059-3
https://doi.org/10.1007/s10584-021-03059-3
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consideration of important factors which may affect the economic recovery pathway 

in the disaster aftermath. These factors include dynamic production constraints, 

endogenized capital recovery, substitution between regions, overproduction capacity, 

inventory adjustment, etc. This version could be applied for analysis on finer spatial 

and temporal scales, such as a multi-regional analysis allowing for cross-regional 

substitution. It was applied for the assessment of economic impacts resulting from heat 

stress, air pollution, and extreme weather events in Chinese provinces, which has been 

or is to be published as parts of the China reports of the Lancet Countdown on health 

and climate change. The detailed model settings are presented in this chapter by 

integrating relevant contents from the supplemental materials of the reports listed 

below:  

1) Cai, W.#, Zhang, C.#, Zhang, S.#, …, Hu, Y., …, Gong, P*. (2022). The 2022 China 

report of the Lancet Countdown on health and climate change: leveraging climate 

actions for healthy ageing. The Lancet Public Health. 

https://doi.org/10.1016/s2468-2667(22)00224-9  

2) Cai, W.#, Zhang, C.#, Zhang, S.#, …, Hu, Y., …, Gong, P*. (2021). The 2021 China 

report of the Lancet Countdown on health and climate change: seizing the window 

of opportunity. The Lancet Public Health, 6(12), e932-e947. 

https://doi.org/10.1016/S2468-2667(21)00209-7 

 

Finally, the CHEFA model was developed for a work program of the World Bank on 

trade and climate change, in which a hypothetical perfect storm of flooding, pandemic 

control and export restrictions was used to illustrate the model applicability. The 

CHEFA model was then applied for the impact analysis of a real compound event of 

extreme floods and COVID-19 control in China, which has been published in the 

China Journal of Econometrics. This chapter describes the construct of the CHEFA 

model based on relevant contents from the following papers: 

1) Hu, Y., Wang, D., Huo, J., …, Chemutai, V. (2021). Assessing the economic 

https://doi.org/10.1016/s2468-2667(22)00224-9
https://doi.org/10.1016/S2468-2667(21)00209-7
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impacts of a ‘perfect storm’ of extreme weather, pandemic control and 

deglobalization: a methodological construct [Working Paper No. 160571]. World 

Bank. https://documents.worldbank.org/en/publication/744851623848784106 

2) Hu, Y., Yang, L., & Guan, D*. (2022). Assessing the economic impact of ‘natural 

disaster-public health’ major compound extreme events: a case study of the 

compound event of floods and COVID epidemic in Zhengzhou China (in Chinese). 

China Journal of Econometrics, 2(2), 257-290. 

https://doi.org/10.12012/CJoE2021-0090 

 

Regarding the mathematical symbols and formulae, matrices are represented by bold 

uppercase letters (e.g., X ), vectors are represented by bold lowercase letters (e.g., x ), 

and scalars are represented by italic letters (e.g., x   or X  ). Vectors are column 

vectors by default and the transposition is denoted by an apostrophe (e.g., ′x ). The 

conversion from a vector to a diagonal matrix is expressed as a bold lowercase letter 

with a ‘hat’ (e.g., x̂ ). The operators ‘.*’ and ‘./’ are used to express the element-by-

element multiplication and element-by-element division of two vectors, respectively. 

 

3.1. Methodology for Single-Hazard Economic Impact 

Assessment 

3.1.1. Assessing the Direct Impacts 

As defined in Section 2.1.2, this thesis uses ‘direct disaster footprint’ to denote the 

economic impacts caused by direct contact or exposure to hazards. These impacts 

include tangible or intangible damages to 1) physical assets, such as buildings, 

factories, machinery and equipment, infrastructure, land, and crops; and 2) human 

assets, such as human health and workability. Different types of hazards cause 

damages to different elements, either capital or labour, in the economic system. For 

https://documents.worldbank.org/en/publication/documents-reports/documentdetail/744851623848784106/assessing-the-economic-impacts-of-a-perfect-storm-of-extreme-weather-pandemic-control-and-deglobalization-a-methodological-construct
https://doi.org/10.12012/CJoE2021-0090
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example, floods mainly result in capital inundation and destruction, while heat stress 

and air pollution only impair human health or labour productivity. These direct impacts 

are usually estimated using hazard-specific catastrophe models, which will be 

presented in the following sections. 

 

3.1.1.1. Flood Events 

For flood events, this thesis mainly illustrates the method of assessing the direct 

damage to capital assets. Although the labour supply, another key productive factor, 

may also be disrupted by flood events, data on flood-induced labour constraints is 

scarce or coarsely recorded. Therefore, the labour loss and recovery curves are usually 

developed exogenously using proxy variables (e.g., transport damage) and assumed 

influence and resilience parameters (Mendoza-Tinoco et al., 2020; Yin et al., 2021; 

Zeng et al., 2019). In addition, empirical evidence also shows that compared to the 

percentage reduction in capital stock, the relative losses of labour are often much lower, 

so that they have little effect on the final estimates of economic impacts resulting from 

a flood hazard (ibid.). On the other hand, capital damage is calculated for agricultural, 

residential, commercial and industrial land-use classes/sectors by linking the gridded 

flood data (mainly inundation depths and extent) with country- and sector-specific 

depth-damage functions and maximum damage values from Huizinga et al. (2017) 

based on the land cover map of the flooded region. The depth-damage functions 

provide estimates of the fractional damage (damage as a percentage of the associated 

maximum damage value) for a given flood depth per land-use class. 

 

Key assumptions made in calculation of flood-related direct damage are listed below: 

 Flood vulnerability (expressed by depth-damage functions and maximum damage 

values) of each country and sector is constant over the study period. 

 Sub-national regions/grids within the same country share the same set of depth-

damage functions and maximum damage values. 
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In particular, the direct damage to capital assets for each land-use sector or class in a 

grid cell can be calculated as below: 

 ( ) maxc c c
k k k kD f d D A= × × . (1) 

 

Here m
kD  is the direct damage to land-use sector k  in the grid cell c  in monetary 

terms. ( )c
kf d   is the depth-damage function that expresses the fractional damage 

given the gridded flood depth cd   for land-use class k  . max
kD   is the maximum 

damage value for land-use class k  per square metre. c
kA  is the inundated area of 

land-use sector k  within the grid cell c .  

 

Then, the gridded direct damage is aggregated at the region level to obtain the total 

direct damage per land-use sector within the entire flooded region, as below: 

 c
k k

c
D D=∑ . (2) 

 

Here kD  is total direct damage to capital assets for land-use sector k  in monetary 

terms. 

 

Note that this thesis does not include the transport and infrastructure (roads) sectors, 

which were considered in two studies (Alfieri et al., 2017; Dottori et al., 2018). This 

is mainly because the database does not provide depth-damage functions of these 

sectors for most of the regions (mainly developing countries) involved in the case 

studies in this thesis (Huizinga et al., 2017). Besides, the direct damage to the transport 

and infrastructure sectors in developing countries could be very low compared to other 

sectors (ibid.). 
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3.1.1.2. Heat Stress 

Extensive literature has identified that heat stress can directly affect an economy 

through two channels: (1) by causing health impairment, and (2) by generating labour 

productivity loss (see Section 2.2.1.1). The former generally refers to the impacts of 

heat on mortality and morbidity from all-cause or a specific disease. Most research 

concentrates on heat-related mortality rather than morbidity mainly due to data 

limitations (Martiello and Giacchi, 2010; Turner et al., 2012), so does this thesis. Apart 

from health impairment, heat stress can also reduce labour productivity among workers 

and lead to wage or income loss. However, this type of heat impact has been given 

relatively little attention in hazard analysis to date. Drawing on the methodology from 

Yang et al. (2019) and Kjellstrom et al. (2018), this thesis incorporates both types of 

heat-induced direct impacts into analysis for a case study in China. 

 

1) Heat-related mortality 

This thesis estimates non-accidental heatwave-related deaths with special 

consideration of the impacts on the elderly by using age-specific exposure-response 

relationships. Here a heatwave event is defined as a period of three or more days where 

the daily maximum temperature is higher than the reference (92.5th percentile of daily 

maximum temperature between 1986 and 2005) in China. This definition is chosen 

among various heatwave definitions to best capture the health effects of heat events in 

China (Ma et al., 2014; Yang et al., 2019). The days of a heatwave are defined as the 

number of days within the heatwave event.  

 

Several key assumptions are used as below: 

 The exposure-response relationship between heatwave and mortality for each age 

group and region is constant during the study period. 

 Sub-provincial regions/grids within the same province in China share the same set 

of exposure-response relationships, which are represented by the capital city of 
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that province. 

 Different regions/grids in China have the same baseline annual non-accidental 

mortality rate. 

 

The deaths attributable to the heatwave ( AN ) are first calculated at the grid level as 

below: 

 c c c cAN Pop Mort HW AF= × × × . (3) 

 

Here cPop  refers to the grid-level population size in the grid cell c . Mort  is the 

baseline daily non-accidental mortality rate. For the case of China, the mortality rate 

is obtained from China Statistical Yearbook, which is an annual statistic and adopts the 

same value for different grids in mainland China. Considering the fact that mortality 

has seasonal patterns with a marked excess of deaths in winter (Huang and Barnett, 

2014), the mortality rate is multiplied by monthly mortality proportion and then 

divided by days per month as a pre-process in this thesis. cHW   is the grid-level 

heatwave days in the grid cell c  within a year. cAF  denotes the attributable fraction, 

which is calculated as: 

 ( )1c
c

c

RR
AF

RR
−

= . (4) 

 

Here RR  is short for ‘relative risk’ indicating the increase in the risk of mortality 

during heatwave days compared to non-heatwave days. cRR  refers to the gridded 

RR  by matching climate division-specific RR  to the grid. The original RR  values 

are derived from the exposure-response relationship between heatwave and mortality 

according to a previous work of Yang et al. (2019). Based on the general trend that 

risks are homogeneous in the same climate regions and higher in the north of China 

than those in the south (Chen et al., 2018), this thesis combines risks through meta-

analysis according to the climate zones based on the basic risk distribution pattern.  
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By multiplying the baseline daily non-accidental mortality rate Mort   by the 

heatwave days within a year cHW  and an attribution fraction cAF  for each grid, 

the combination of the last three items on the right-hand side of Equation (3) derives 

the gridded annual mortality rate attributable to heatwaves. This is then multiplied by 

the grid-level population size cPop  to finally obtain the gridded annual deaths due to 

heatwaves. 

 

Then the gridded annual deaths due to heatwaves are aggregated at provincial and 

national levels to calculate the total heat-related deaths ( AN ) in the study regions. It 

should be noted that the above calculation is limited to the warm season, which is 

between May and September, in each year within the study period, as a previous study 

has shown that approximately 90% of deaths attributable to heatwaves occurred during 

these months of the year (Vaidyanathan et al., 2020). 

 

In addition, this thesis also investigates the heat-related mortality by age group using 

the same method as mentioned above, except that the age-specific RR   and 

population of a specific age group are used to replace the whole-age RR  and whole 

population for calculation. The formula for subgroup analysis is as below: 

 c c c c c
k k k k kAN Pop Mort AgeP HW AF= × × × × . (5) 

 

Here k  is a categorical variable denoting one of the age groups. The case study in 

China is particularly focused on the vulnerability of the elderly in a changing climate, 

and thus divides the population into two groups, that is, people under and above 65 

years. c
kAgeP   is the proportion of people in the age group k   among the total 

population. 
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2) Heat-related labour productivity loss 

Firstly, several assumptions are used in the calculation of heat-related labour 

productivity loss as below: 

 The exposure-response relationship between heat stress and work performance for 

each sector is constant over the study period. 

 The agriculture and construction sectors involve outdoor high intensity work (at a 

metabolic rate of 400W), the manufacturing sector involves indoor medium 

intensity work (300W), and the service sector involves indoor low intensity work 

(200W). 

 Different regions/grids within China share the same set of exposure-response 

relationships between heat stress and work performance, which are equivalent to 

the global levels. 

 The sectoral employment rates in each grid are equivalent to the levels of the 

province where the grid is located. 

 A labourer works 8 hours a day in China. 

 

Then, the Wet Bulb Globe Temperature (WBGT), which is a commonly used heat 

stress index to measure the exposure-response relationship between climate variables 

and work performance, is estimated based on gridded (0.5°×0.5°) climate data. For 

indoor (or outdoor in the shadow) activities, the hourly WBGT in the shade 

(WBGT_shade) is calculated using air temperature and dew point temperature; and for 

outdoor activities, the hourly WBGT in the sun (WBGT_sun) is calculated using air 

temperature, dew point temperature, solar radiation, and wind speed. More details on 

the iteration calculation method can be obtained from Kjellstrom et al. (2018). 

 

Thirdly, the fraction of work hours lost (WHL) in each sector is derived from the 

hourly WBGT level according to the cumulative normal distribution loss function 

(ERF) as below: 
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 1 1 ERF
2 2

hourly mean

sd

WBGT Prod
loss fraction

Prod

  −
= × +    ×  

. (6) 

 

Here hourlyWBGT  is the hourly WBGT_shade or WBGT_sun estimated in the first step. 

Then meanProd   and sdProd   indicate the fixed parameters for labourers working 

with different intensities, which are quantified by the thermal metabolic rates (see 

Table 3-1). For each cell grid, labours (also referred to as the working age population 

between 15-64 years old) are divided into four sectors: agriculture, construction, 

manufacturing, and service sectors. This study assumes that labours in the agriculture 

and construction sectors work at a metabolic rate of 400W, those in the manufacturing 

sector work at 300W and those in the service sector work at 200W. For the agriculture 

and construction sectors, which mainly involve outdoor work, the WBGT_sun is used 

to calculate the hourly work time loss caused by heat stress; while for the 

manufacturing and service sectors, which mainly involve indoor work, the 

WBGT_shade is used. It should be noted that the above loss function is originally 

developed on the global scale and whether it is appropriate for estimating WHL at the 

provincial level in China is still unknown. However, region-specific loss functions for 

China are not available so far. 

 

Table 3-1: Input values for labour loss fraction calculation. 
Metabolic rate meanProd  sdProd  

200W 35.53 3.94 
300W 33.49 3.94 
400W 32.47 4.16 

Notes: W represents the unit of watts. 

 

Fourthly, the grid-level population is multiplied by sectoral employment rates to 

calculate the working population in the four sectors in each grid cell during the study 

period. The sectoral employment rates in each grid cell are assumed to be equivalent 
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to the levels of the province where this grid cell is located.  

 

Finally, it is assumed that a labourer works 8 hours a day (typically from 8 am to 5pm 

with an hour break from 12pm to 1pm), which is the legal working time stipulated by 

the Labour Law of China. For each sector in each cell grid, the hourly work time loss 

per worker in the third step is first multiplied by the number of labourers in the fourth 

step and then aggregated over all working hours within a year to calculate the total 

annual WHL caused by heat stress. The grid-level results can be summed up over all 

grid locations in each province (or in the country) to obtain the results at provincial or 

national levels. 

 

3.1.1.3. Air Pollution 

Numerous studies have shown that air pollution can directly affect an economy by 

causing increased mortality and morbidity (see Section 2.2.1.1). However, like heat 

stress, most research have focused on air pollution-related mortality rather than 

morbidity due to data limitations, and so does this thesis. In particular, this thesis 

quantifies the number of premature deaths attributable to long-term ambient fine 

particulate matter (PM2.5) exposure by sectoral sources for each province in China as 

a case study. PM2.5 is selected here as it is an air pollutant that has been most closely 

studied and is most commonly used as a proxy indicator of exposure to air pollution 

(WHO, 2005, 2016). 

 

Several assumptions are used in the calculation of pre-mature deaths caused by PM2.5 

exposure as below: 

 The concentration-response relationship between air pollution and premature 

mortality for each disease endpoint is constant over the study period. 

 Different regions/provinces in China adopt the same set of concentration-response 

relationships between air pollution and premature mortality. 
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Premature deaths from total ambient PM2.5 by province and sector in China are 

estimated following the methodology of the Global Burden of Disease (GBD) 2019 

study (Murray et al., 2020), which relies on cause-specific concentration-response 

functions (ERFs) to calculate the relative risks (RRs) of mortality for six causes of 

deaths. 

 

The meta-regressed Bayesian regularized trimmed (MR-BRT) curves are obtained 

from the public release site (IHME, 2021) and RRs for six diseases: ischaemic heart 

disease; chronic obstructive pulmonary disease; stroke; lung cancer; acute lower 

respiratory infection; and type Ⅱ diabetes are calculated from them. 1000 draws of the 

MR-BRT curve for each disease and age group (where age specific) are used and 

scaled to have RR=1 at the theoretical minimum-risk exposure level (TMREL, taken 

from 1000 corresponding draws, average 4.15µgm-3). Exposure levels below the 

TMREL level are assigned RR=1. 

 

The concentration-response functions and RRs are based on the MR-BRT functions 

from the GBD 2019 study across the full range of PM2.5 concentrations, as below: 

 ( ) ( ){ }
0

0 0

1, if

1 1 exp , ifIER

C C
RR C

C C C Cδα γ

<=   + × − − × − ≥  

. (7) 

 

Here ( )IERRR C  represents the RRs in the PM2.5 exposure concentration of C  (in 

micrograms per meter cubed); 0C  indicates the counterfactual concentration below 

which it is assumed there is no additional risk. For very large C  , ( )IERRR Z  

approximates 1 α+ . A power of PM2.5 (δ ) is included to predict risk over a very large 

range of concentrations. 
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Then the PM2.5-related premature mortality for each disease in each province of China 

can be calculated based on the above estimated RRs at different PM2.5 concentration 

levels, as below: 

 ( )( ), 1 , where j
j ji j i j i

j

I
M P I RR C I

RR
= × × − =  . (8) 

 

Here ,i jM  is the premature mortality of disease endpoint j  attributable to ambient 

PM2.5 in province i  . jI   represents the hypothetical ‘underlying incidence’ (i.e., 

cause-specific mortality) rate of endpoint j   that would remain if the PM2.5 

concentration levels are reduced to the TMREL level. iP  refers to the population size 

of province i  . jI   is the reported regional average annual disease incidence 

(mortality) rate for endpoint j  . iC   represents the annual average PM2.5 

concentration in province i . ( )j iRR C  is the relative risk for endpoint j  at PM2.5 

concentration iC   and jRR   denotes the average population-weighted relative risk 

for endpoint j . 

 

It should be noted that the same ERF is used for all provinces in China due to a lack 

of evidence to identify more location-specific ERFs between air pollution and 

premature mortality. Besides, the above calculation is performed at the provincial level 

rather than the grid level as for floods and heat stress. 

 

3.1.2. Assessing the Indirect Impacts 

As defined in Section 2.1.2, this thesis uses ‘indirect disaster footprint’ to imply the 

subsequent economic impacts induced by direct consequences of hazards. These 

impacts include the business interruption of directly affected sectors and regions, the 
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propagation of initial disruptions along the production supply chain towards wider 

economic systems, and the costs of recovery processes. As the assessment of indirect 

disaster footprint is carried out at various levels of sectoral and regional details, the 

above estimated results of direct disaster footprint are aggregated or disaggregated into 

the corresponding sectors and regions before being fed into indirect disaster footprint 

accounting models. The main methodology used in this thesis to assess the indirect 

disaster footprint of a single-hazard event is the Disaster Footprint model, which is 

originated from the IO analytical framework and improved on the ARIO model 

following a hybrid approach. A full description of the development of the Disaster 

Footprint model, together with a methodological review on its theoretical origins and 

modelling grounds, is presented below. 

 

3.1.2.1. IO Analysis for Disaster Events 

IO analysis is a macroeconomic analytical framework developed by Wassily Leontief 

in the 1930s, considering the economic system as a circular flow of income and output 

among economic sectors through the production, distribution, and consumption 

processes (Miller and Blair, 2009). The fundamental purpose of the IO framework is 

to analyse the interdependence of economic sectors/industries in an economy using an 

IO table which contains basic information on interindustry transactions (ibid.). Due to 

its simplicity and capability to interpret sectoral interrelationships and economic 

structures, IO analysis has been widely used as a powerful tool for socio-economic 

analysis and extended to accommodate energy and environmental accounts or 

integrated with catastrophe models for interdisciplinary analysis on various 

geographical scales from local to global (ibid.).  

 

The basic framework of IO analysis is built on the IO table/matrix, which records the 

flows of products from each industrial sector, considered as a producer, to each of the 

sectors, itself and others, considered as consumers, in monetary values, within an 
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economy during a given period, usually a year. Formulation of a basic IO table often 

uses socio-economic data assembled in the form of a system of national (or regional) 

economic accounts which is often routinely collected by means of a periodic census or 

some other surveys (Miller and Blair, 2009) (Chapter 4). These data include 

interindustry transactions, household income and expenditures, governmental taxes 

and purchases, savings and investment, imports and exports, etc. Details of 

interindustry transactions are usually obtained through a census or survey of all 

economic activities of firms involved in the economy. 

 

Fundamental assumptions used in IO analysis are listed as below: 

 Each sector makes only one unique product that cannot be substituted by the 

products of other sectors. 

 Each sector uses inputs in fixed proportions to make its product, which is 

characterized as the Leontief production function. 

 The units of inputs required from all other sectors to make one unit of product in 

each sector is constant over time. 

 Primary inputs (e.g., labour and capital) are fully employed by sectors to carry out 

production in the pre-disaster equilibrium. 

 The total output of each sector is equal to the total input used to make that amount 

of output during each period for an economy in the equilibrium. 

 

As shown in Figure 3-1 below, the general structure of a basic Leontief IO table 

consists of four blocks of 1) intermediate transactions; 2) final demand; 3) primary 

input; and 4) gross domestic product. First, the intermediate transaction block (shaded 

in grey) describes the sales and purchases of products (denoted as ,i jz ) from each 

industrial sector (e.g., sector i  ) to another industrial sector (e.g., sector j  ) for 

production. For the former sector i , ,i jz  is the units of outputs allocated to sector j  
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to satisfy the intermediate demand from sector j ; while for the latter sector j , ,i jz  

is the units of inputs received from sector i   as intermediate inputs necessary for 

production. Second, the final demand block (shaded in green) records the units of 

outputs of each industrial sector directly purchased and consumed by various types of 

final users. In general, there are four types of final demand in an open economy, that 

is, household consumption expenditures, governmental purchase expenditures, capital 

formation or investment, and net exports (i.e., exports minus imports). Third, the 

primary input block (shaded in blue) represents the added values of each industrial 

sector from the primary (or non-industrial) inputs necessary for production. Labour 

and capital are two most important primary inputs for production, while sometimes 

other inputs such as land and entrepreneurship are also included. This block also 

implies the income received by owners of primary inputs from payments of industrial 

sectors, i.e., payments for employee compensation (labour services), governmental 

services (paid for in taxes), capital (interest payments), land (rental payments), 

entrepreneurship (profit), etc. Fourth, the gross domestic product block (shaded in 

yellow) indicates the total GDP in the economy by summing up all sources of income 

or expenditure of economic agents. Finally, the last row and column of the IO table 

refer to the total input and output of each industrial sector, respectively. The total input 

jx  of sector j  equals to the total intermediate input ,i j
i

z∑  plus the total primary 

input ,
{ , }

q j
q l k

v
∈
∑ ; the total output ix  of sector i  is the sum of products allocated to 

satisfy the intermediate demand ,i j
j

z∑   and final demand ,
{ , , , }

i p
p hc gc inv ex

f
∈
∑  . For an 

economy in its equilibrium, the total input of each industrial sector should be equal to 

its total output. 
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Figure 3-1: General structure of an IO table (in monetary values). 

 

It should be noted that, in this basic form of the IO table, products used or consumed 

by industrial production (e.g., ,i jz  ) and final users (e.g., ,i hcf  ) contain not only 

domestic but also imported ones. The imports are subtracted from GDP by turning the 

export column into a net export column (i.e., exports minus imports). Another 

approach to record these imports is to add an import row above the total input row 

while keeping the original export column in the final demand block. In this way, 

intermediate use and final consumption of domestic products are distinguished from 

those of imported products, leading to an expanded IO table as illustrated in the book 

of Miller and Blair (2009) (p. 14). The choice of different forms of IO tables depends 

on specific research questions.  

 

1) Technical coefficients and demand-driven Leontief IO model 

In a balanced economy with n  industrial sectors and a structure as shown in Figure 

3-1, each row vector illustrates the allocation of output from a certain sector to the 

corresponding intermediate demand and final demand. The output of sector i  can be 

expressed as: 
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...

...
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n
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n
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j p

n
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x z z f f f f z f

x z z f f f f z f

x z z f f f f z f

= =

= =

= =

= + + + + + + = +

= + + + + + + = +

= + + + + + + = +

∑ ∑

∑ ∑

∑ ∑

. (9) 

 

Here, ,i pf  refers to the final demand for sector i ’s product by the p -th type of final 

consumers: 1p =   is for household consumption, 2p =   is for governmental 

expenditures, 3p =   is for investment in capital formation, and 4p =   is for net 

exports (i.e., exports minus imports). 

 

The ratio of input of sector i ’s product to output of sector j ’s product can be derived 

by dividing ,i jz  by jx . This ratio is called the technical coefficient or direct input 

coefficient, denoted by ,i ja  , representing the units of product i   required as the 

intermediate input to make one unit of product j . Mathematically, it is expressed as: 

 ,
,

i j
i j

j

z
a

x
= . (10) 

 

Similarly, the ratio representing the units of primary input q   (labour or capital) 

required to make one unit of product j  is denoted by ,q jd  and expressed as: 

 ,
,

q j
q j

j

v
d

x
= . (11) 

 

A basic assumption for IO analysis is that a sector uses inputs in fixed proportions. In 

other words, a proportional change in the output of a sector will result in the same 

proportional change in the use of all necessary inputs. Since technical coefficients are 
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fixed using an IO table for a given period, then the input proportions are fixed for all 

industrial sectors. 

 

Corresponding to this basic assumption, the production function embodied in IO 

analysis for each sector is: 

 { } { }, ,

, ,

min for all 1,..., , ; for all , ,i j q j
j

i j q j

z v
x j n q l k

a d
  = ∈ ∈ 
  

. (12) 

 

This is the so-called Leontief production function, which requires inputs in fixed 

proportions where a fixed amount of each input is required to produce one unit of 

output. 

 

With the introduction of a set of fixed technical coefficients, Equation (9) can be 

rewritten by replacing each ,i jz  on the right by ,i j ja x× : 

 

4

1 1,1 1 1, 1, 1, 1, 1, 1, 1,
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4

,1 1 , , , , , , ,
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,1 1 , , , , , ,

...
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...
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...

n

n n hc gc inv ex j j p
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n

i i i n n i hc i gc i inv i ex i j j i p
j p

n n n n n n hc n gc n inv n ex n j

x a x a x f f f f a x f

x a x a x f f f f a x f

x a x a x f f f f a x
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= × + + × + + + + = ×

∑ ∑

∑ ∑

4

,
1 1

n

j n p
j p

f
= =

+∑ ∑

. (13) 

 

Further, these relationships can be represented compactly in matrix form: 

 = × +x A x f . (14) 

 

Here x  is the output vector of dimension 1n×  denoting the output of each sector in 

the economy. A  is the technical coefficient matrix of dimension n n×  using ,i ja  

as the i  -th row and j  -th column element. f   is the final demand vector of 

dimension 1n×   denoting the total final demand for each sector’s product, i.e., 
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4

,
1

i p
p

f
=
∑ .  

 

Let I  be the n n×  identity matrix - ones on the main diagonal and zeros elsewhere, 

then Equation (14) can be further rewritten as: 

 ( ) 1−= − × = ×x I A f L f . (15) 

 

Here ( ) 1
,i jl−  − = =  I A L  is the famous Leontief inverse or the total requirements 

matrix. The Leontief inverse is an economic multiplier measuring the spillover effects 

that arise between economic sectors. It shows explicitly the dependence of each of the 

gross outputs on the values of each of the final demands, or in other words, the gross 

outputs that are required to meet a certain set of final demands. 

 

In the demand-driven Leontief IO model, the overall changes in sectoral output ∆x  

due to an external shock to final demand ∆f  (e.g., an increase in final demand) can 

be easily derived from Equation (15) with the Leontief inverse: 

 ∆ = ×∆x L f . (16) 

 

Noting that the Taylor expansion of the Leontief inverse is 

( ) ( )1 2 3 ...−= − = + + + +L I A I A A A , Equation (16) can be found as: 

 ( )2 3 2 3... ...∆ = + + + + ×∆ = ∆ + ×∆ + ×∆ + ×∆ +x I A A A f f A f A f A f . (17) 

 

Initially, an increase in final demand for the product of a sector will directly cause that 

sector to increase its output by the same amount. This is the ‘first round’ of effects or 

the direct impacts of a final demand shock, as found in the first item of the rightmost 

side of Equation (17), namely ∆f   itself. Then, these increased outputs would 

generate a need for additional inputs from ‘upstream’ sectors, causing a ‘second round’ 
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of increase in sectoral output, as found in the second item ×∆A f ; and so forth. As a 

result, these ‘round-by-round’ effects accumulate through backward linkages between 

sectors and the cumulative effects after the first round are called the indirect impacts 

of the shock. The indirect impacts are caused by higher-order industrial inter-

dependencies and measured by ( )2 3 ...×∆ + ×∆ + ×∆ +A f A f A f .  

 

This standard Leontief IO model is called a demand-driven model as it mainly 

considers disruptions in final demand and examines the backward rippling effects 

through the production supply chain. However, it has been criticized for its inability to 

handle supply constraints or shortages which are more likely to happen during a 

disaster (Hallegatte, 2008; Okuyama, 2007; Okuyama and Santos, 2014). 

 

2) Allocation coefficients and supply-driven Ghosh model 

By contrast, Ghosh (1958) presented an alternative IO model with a focus on the 

supply-side of the economy. This model is used to calculate sectoral gross production 

changes caused by disruptions in primary inputs. Recalling the economic structure as 

shown in Figure 3-1, each column vector represents the intermediate input and primary 

input used to support the production of a certain sector. The total input, which in a 

balanced economy is equal to the total output, of sector j  can be expressed as: 
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. (18) 

 

Here ,q jv  refers to the q -th type of primary inputs consumed by the production of 

sector j : 1q =  is for labour input and 2q =  is for capital input. 
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By diving ,i jz   by ix  , a set of allocation coefficients or direct output coefficients, 

denoted by ,i jb , are derived: 

 ,
,

i j
i j

i

z
b

x
= . (19) 

 

These ,i jb  coefficients stand for the distribution of sector i ’s outputs across sectors 

j  that purchase intermediate inputs from sector i . Comparing the demand-driven 

Leontief IO model which uses technical coefficients by dividing each column of the 

intermediate transaction matrix by the gross output of the sector associated with that 

column, the supply-driven Ghosh model takes a rotated or transposed view from 

vertical to horizontal and uses allocation coefficients by dividing each row of the 

intermediate transaction matrix by the gross output of the sector associated with that 

row. 

 

On the notion of allocation coefficients, Equation (18) can be rewritten by replacing 

each ,i jz  on the right by ,i j ib x× : 
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Further, these relationships can be represented compactly in matrix form: 

 ′ ′ ′= × +x x B v . (21) 
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Here B  is the allocation coefficient matrix of dimension n n×  using ,i jb  as the i

-th row and j -th column element. ′v  is the transposed value added or primary input 

vector of dimension 1 n×  denoting the total value added of each sector, i.e., 
2

,
1

q j
q

v
=
∑ . 

 

Following simple transformations, Equation (21) can be found as: 

 ( ) 1−′ ′= × −x v I B . (22) 

 

Defining ( ) 1−= −G I B  with elements ,i jg , which has been called the output inverse, 

in contrast to the usual Leontief inverse or input inverse ( ) 1
,i jl−  = − =  L I A  , 

Equation (22) can be rewritten with the resulting vector of gross output in a row as: 

 ′ ′= ×x v G , (23) 

or in a column as: 

 ′= ×x G v . (24) 

 

The element ,i jg  indicates the total value of production that comes about in sector 

j  from each unit of primary input in sector i . 

 

Then, an external shock to primary input, i.e., changes in v , would cause associated 

changes in sectoral gross output as: 

 ′∆ = ×∆x G v . (25) 

 

Similar with the Leontief inverse, the Taylor expansion of the output inverse is: 

 ( ) 1 2 3 ...−= − = + + + +G I B I B B B . (26) 

 

And the overall changes of sectoral gross output resulting from a primary input 
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disruption can be expressed as: 

 ( )2 3 2 3... ...′ ′ ′ ′∆ = + + + + ×∆ = ∆ + ×∆ + ×∆ + ×∆ +x I B B B v v B v B v B v . (27) 

 

In the supply-driven Ghosh model, the direct impact of a primary input disruption, say 

a decrease in primary input of sector j , refers to the ‘first-round’ or initial reduction 

in sector j ’s output by the same amount, as found in the first item of the rightmost 

side of Equation (27), i.e., ∆v  itself. However, the reduced output of sector j  will 

cause a shortage of supply to ‘downstream’ sectors that purchase sector j ’s product 

as an intermediate input for production, leading to a ‘second round’ of decrease in 

sectoral output, as found in the second item ′×∆B v ; and so forth. The cumulative 

reductions in sectoral output after the first round (i.e., 2 3 ...′ ′ ′×∆ + ×∆ + ×∆ +B v B v B v ) 

are called the indirect or higher-order impacts of this primary input disruption.  

 

The Ghosh model is derived following similar mathematical procedures with the 

Leontief IO model, except that it takes a rotated view of the IO table and introduces 

the concept of allocation coefficients. It is a supply-driven model as it is focused on 

disruptions in the primary input or supply-side of the economy and traces the forward 

rippling effects along the production supply chain. However, it ignores the possibility 

of final demand changes during a disaster and the backward rippling effects as 

described in the Leontief model.  

 

The basic assumption of the Ghosh model is that the allocation coefficients ,i jb , rather 

than the technical coefficients ,i ja  as in the Leontief IO model, are fixed during the 

disruption and its aftermath. In other words, the output distribution among downstream 

customers is stable and proportional to the total output for each sector in the economic 

system. To explain this assumption, Ghosh (1958) proposed a planned economy 

experiencing severe supply shortages or excess demand, with government-imposed 
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restrictions on supply patterns. This assumption may be not a very general situation in 

much of the modern economy, but supply shortages can still happen during special 

times after a disaster. Giarratani (1981) suggested a possibly broader context where 

voluntary supply decisions occur given supply shortages or the disruption of some 

basic commodity. Firms may try to maintain their existing markets by allocating 

available products based on deliveries in normal times.  

 

However, the assumption of constant allocation coefficients has caused another 

problem which makes the Ghosh model subjected to criticisms for its plausibility in 

the impact analysis. Oosterhaven (1988) pointed out that “the essential notion of 

production requirements, i.e., the production function, is actually abandoned”, and that 

“input ratios vary arbitrarily and may, in principle, assume any value depending upon 

(again) the availability of supply”. Considering an external shock that reduces the 

primary input only in sector j , Equation (25) in the Ghosh model implies that such a 

primary input reduction in sector j   will be transmitted forward along the supply 

chain and cause output reductions in all sectors that purchase intermediate input from 

sector j  , without any corresponding decreases in their use of primary input. This 

violates the notion of sectoral production functions where intermediate and primary 

inputs are used in fixed proportions. 

 

In fact, this raises the issue of ‘joint stability’ as discussed by Rose and Allison (1989) 

and Miller and Blair (2009). Given the proven similarity between the technical 

coefficient matrix A   and the allocation coefficient matrix B  , which is found as 

1ˆ ˆ −= × ×A x B x , inconsistency arises between the requirements of the supply-driven 

Ghosh model and the demand-driven Leontief model. More specifically, when the 

supply-driven Ghosh model is used for impact analysis, the allocation coefficient 

matrix B  and the corresponding output inverse G  are assumed to be constant, and 

then in general the technical coefficient matrix A  and the corresponding Leontief 
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inverse L   cannot remain constant due to their connections (unless each sector’s 

output changes at the same rate); on the other hand, when the demand-driven Leontief 

model is used, the requirements of constant A  and L  generally imply non-constant 

B   and G   in the related supply-driven Ghosh model. However, several studies 

concluded that such instability in actual empirical applications was not a major issue, 

as changes in the corresponding technical coefficients were well within conventional 

tolerance levels when applying the supply-driven Ghosh model to a representative 

region (Rose and Allison, 1989), particularly for small supply-side shocks (Gruver, 

1989). 

 

3.1.2.2. The Adaptive Regional Input-Output (ARIO) Model 

Traditional IO models, such as the Leontief IO model and the Ghosh model presented 

in the previous section, are typically focused on disruptions to one side (either the 

demand side or the supply side) of the economy and their rippling effects in one 

direction (either backward or forward) along the supply chain, whereas losing the 

perspective from the other side or direction. Another limitation of traditional IO 

models is their rigid assumptions about economic responses towards disasters. For 

instance, economic agents cannot respond to supply shortages by switching to 

alternative suppliers that are not affected by the disaster. To overcome these limitations, 

Hallegatte (2008) developed an Adaptive Regional Input-Output (ARIO) model to 

investigate the economic costs of natural disasters by taking into account sectoral 

production capacities and both backward and forward propagations within the 

economic system, as well as adaptive behaviours in the disaster aftermath. This 

original ARIO model was later improved by Hallegatte (2014) to incorporate inventory 

effects in the production system. Overall, the ARIO model adopts a hybrid modelling 

approach and has been widely used in disaster impact analysis as it can well represent 

production processes and supply-demand interactions at the inter-industrial level 

(Guan et al., 2020; Hallegatte et al., 2013; Hallegatte et al., 2011; Liu et al., 2021; Wu 



Chapter 3 

137 

et al., 2012; Zhang, Li, Xu, et al., 2018). 

 

Key assumptions made for the original ARIO model (first version) and the ARIO-

inventory model (second version) are listed in Table 3-2. 

 

Below is the basic framework of the ARIO model, integrated from the two versions 

developed by Hallegatte (2008, 2014). The ARIO model is based on local IO tables 

where productions and demands are linked through the relationships as: 

 ( ) ( ) ( ) ( ),
j

Y i A i j Y j TFD i= × +∑ . (28) 

 

This is similar with Equation (13) for the conventional Leontief IO model, describing 

flows of the output of each sector (e.g., sector i  ) to its downstream customers. 

1,...,j N=  for all industrial sectors in the economy. The local IO table used here is 

different from traditional IO tables as imports are removed to distinguish between 

inputs produced locally – and therefore potentially impacted by a disaster – and inputs 

produced outside the region and imported. Correspondingly, ( ),A i j  is the technical 

coefficient implying the intermediate consumption of local product i  by sector j  to 

make one unit of its product before the disaster. Besides, sector j   also needs to 

import ( )I j  units of an aggregate product to make one unit of its product before the 

disaster. ( )Y i   and ( )TFD i   are the output and total final demand of sector i  , 

respectively, in the pre-disaster economic equilibrium where supply matches demand. 

The overbars are used to indicate values at the pre-disaster levels.  
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Table 3-2: Key assumptions used in the original ARIO model and the ARIO-inventory model respectively. 
Assumptions Original ARIO model ARIO-inventory model 

Common assumptions 

 The economy consists of many households that have a fixed bundle of consumption and N  industrial sectors which exchange 
intermediate consumption products, import products from outside the region, make final consumption products for local 
demand, and export products outside the region. 

 Each industrial sector makes a unique product with inputs from all other sectors necessary for its production. 
 The Leontief production function is adopted, that is, each sector uses inputs in fixed proportions to make its product. 
 Imports are not constrained by the disaster. 
 Approximately four units of capital are needed to produce one unit of annual value-added in each sector. 
 Reconstruction expenditures are largely funded by insurance claims, which do not have a crowding-out effect on other 

consumption. 
 If the production of a sector is insufficient to satisfy all its demand, it can increase the production capacity towards the 

maximum in a certain time. 

Special assumptions 

 If a sector cannot produce enough to satisfy the demand, its 
production goes first to intermediate consumption from other 
sectors and is then proportionally rationed among various final 
demands including local final demand, exports, and 
reconstruction demand (prioritized-proportional rationing 
scheme). 

 Local final demand/exports depend on price dynamics, which 
respond linearly to the level of underproduction, and the adapted 
local final demand/exports in the disaster aftermath. 

 If a sector cannot produce enough to satisfy the demand, and if 
the product made by this sector is substitutable, then its customers 
shift away regularly to other producers in a certain time. 

 The production of a sector is distributed to 
intermediate demand and various final demands 
proportionally (proportional rationing scheme). 

 There are stockable and non-stockable products; and 
the inventory of a non-stockable product is not larger 
than the amound required to sustain three days of 
production. 

 The characteristic time of inventory restoration is 
identical in all sectors (except for non-stockable 
products). 

 Disaster impacts are heterogeneous among 
production units (firms) within each sector. 
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Normally, the total final demand is equal to the sum of final demand from both local 

and foreign consumers (i.e., local final demand ( )LFD i   and exports ( )E i  ); 

however, following a disaster, the reconstruction demand for repairing damaged 

capital is added to the total final demand, and thus the supply-demand relationships 

become: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )( )Total Final Demand 

, ,

TFD i

j j
Y i A i j Y j LFD i E i HD i RD j i= × + + + +∑ ∑



. (29) 

 

Considering a disaster that hits the economy at 0t =  and destroys both household 

physical assets and industry productive capital, then the need for repairing these 

damages requires additional inputs from industrial sectors, especially those involved 

in the reconstruction process. The reconstruction demand of sector j  for inputs from 

sector i  is represented by ( ),RD j i , and the reconstruction demand of households 

for inputs from sector i   is represented by ( )HD i  . Labour constraint is not 

considered here.  

 

1) The original ARIO model (first version) 

On the production side, the first-guess production of each sector ( )1Y i  is based on 

the minimum of the production capacity ( )maxY i   and the first-guess total demand 

( )0TD i  at each time step t 6 (Equation (30)). The first-guess total demand ( )0TD i  

can be derived by solving Equation (29), which is = × +Y A Y TFD  in the matrix 

form, to obtain the required production to satisfy the total demand (Equation (31)). 

The production capacity ( )maxY i   is determined by the pre-disaster output level, 

disaster damages ( )TRD i , and an overproduction capacity ( )iα , as in Equation (32). 

 
6 For equations in this section, variables depend on the time step 𝑡𝑡, which is omitted for simplicity. 
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Before the disaster, the amount of capital in each sector is approximately 

( ) ( )4K i VA i≈ × , where ( )VA i  is the pre-disaster annual value-added of that sector. 

( )TRD i  is the total amount of capital damaged by the disaster in sector i , which is 

equal to ( ),
j

RD i j∑ . Therefore, the second item of the right-hand side of Equation 

(32) measures the percentage of remaining capital stock and thus remaining production 

capacity in sector i   following the disaster. This is due to the assumption of the 

Leontief production function, where the production capacity is proportional to the 

available capital input. ( )iα  is the capacity to overproduce, if necessary, which will 

be described in the adaptation part (Equations (54) and (55)). 

 ( ) ( ) ( ){ }1 max 0min ;Y i Y i TD i= , (30) 

 ( ){ } ( ) 10TD i −= = = − ×0 0TD Y I A TFD , (31) 

 ( ) ( ) ( )
( )

( )max 1
4
TRD i

Y i Y i i
VA i

α
 

= × − × 
×  

. (32) 

 

However, production bottlenecks may occur in the disaster aftermath when the first-

guess output, affected by capital input constraints and final demand changes, cannot 

provide sufficient intermediate inputs to support the whole economic system to 

produce that output. Given that sectors need to purchase the necessary intermediate 

inputs to carry out their production, the first-guess orders for product i  from all the 

upstream clients ( )1O i   are therefore calculated as Equation (33). Two possible 

scenarios are then considered to cope with the issue of production bottlenecks. First, 

if ( ) ( )1 1Y i O i≥ , this means that sector i  can provide enough products to satisfy the 

intermediate demand from all its buying sectors and the production of these upstream 

sectors is not affected. Second, if ( ) ( )1 1Y i O i<  , then sector i   cannot provide 

enough products to satisfy the intermediate demand from its buying sectors and the 
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production of these upstream sectors will be limited by the availability of product i . 

In the second case, the first-guess output of sector i  will be rationed among its buyers 

in proportions to the orders they have placed and the production of each buying sector 

j   is bounded by ( )
( ) ( )

1
1

1

Y i
Y j

O i
×  . Therefore, the second-guess production of each 

sector ( )2Y i  is given by Equation (34). 

 ( ) ( ) ( )1 1,
j

O i A i j Y j= ×∑ , (33) 

 ( ) ( ) ( )
( ) ( )

1
2 1 1

1min ; for all ,
Y j

Y i Y i j Y i
O j

  = × 
  

. (34) 

 

Here imports are assumed to be never constrained. If the second-guess output vector 

of all sectors ( ( ){ }2 2Y i=Y ) is equal to the first-guess output vector ( ( ){ }1 1Y i=Y ), 

then there is no production bottleneck and 2Y  is the actual production. Otherwise, 

the production bottleneck occurs, and a new total demand is generated as: 

 ( ) ( ) ( ) ( )1 2,
j

TD i TFD i A i j Y j= + ×∑ . (35) 

 

This bottleneck calculation is iterated by repeating Equations (30)-(35) with ( ){ }1TD i  

instead of ( ){ }0TD i  until convergence of the output vector kY . This convergence 

will eventually occur, as productions of all sectors decline at each iteration and are 

bounded by zero. 

 

The final values for total demand and output will be denoted as ( )TD i∞  and ( )Y i∞ , 

respectively. ( )Y i∞  is then the actual output of each sector after solving the issue of 

production bottleneck, which means all intermediate demand could be satisfied with 

( ) ( )Y i O i∞ ∞≥  . Yet, according to Equation (30), ( )Y i∞   may be still less than or 
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equal to ( )TD i∞ . If ( ) ( )Y i TD i∞ ∞= , then sector i  can satisfy both the intermediate 

and final demands it faces. However, if ( ) ( )Y i TD i∞ ∞<  , then a mixed rationing 

scheme is adopted by sector i   regarding the distribution of its outputs among 

different types of demands. Hallegatte (2008) has described this rationing scheme as 

“a mix of priority system and proportional rationing”, in which intermediate demands 

from other sectors are satisfied with priority and then the remaining outputs are 

rationed proportionally among various final demands including local final demand, 

exports, and reconstruction demand (Equations (36)-(40)). This rationing scheme is 

designed based on the observed fact that “business-to business relationships are most 

of the time deeper than business-to-household relationships and a business would often 

favour business clients over household clients”. 

 ( ) ( ) ( ),
i

O i A i j Y j∞ ∞= ×∑ , (36) 

 ( ) ( ) ( ) ( )
( ) ( )0 0

Y i O i
LFD i LFD i

Y i O i

∞ ∞
∞ −

= ×
−

, (37) 

 ( ) ( ) ( ) ( )
( ) ( )0 0

Y i O i
E i E i

Y i O i

∞ ∞
∞ −

= ×
−

, (38) 

 ( ) ( ) ( ) ( )
( ) ( )0 0

Y i O i
HD i HD i

Y i O i

∞ ∞−
∆ = ×

−
, (39) 

 ( ) ( ) ( ) ( )
( ) ( )0 0, ,

Y i O i
RD j i RD j i

Y i O i

∞ ∞−
∆ = ×

−
. (40) 

 

Then the damaged household physical assets and industry productive capital can be 

restored at each time step through the satisfaction of reconstruction demand, as below: 

 ( ) ( ) ( )tHD i HD i t HD i∆− ∆ ×∆ → , (41) 

 ( ) ( ) ( ), , ,tRD j i RD j i t RD j i∆− ∆ ×∆ → . (42) 

 

Here t∆  is the time step of the model. 



Chapter 3 

143 

 

On the final demand side, local final demand ( )LFD i  is assumed to depend on price 

dynamics ( )p i  and the adapted local final demand  ( )LFD i , as in Equation (43). 

The adapted local final demand  ( )LFD i  is the adapted final consumption by local 

consumers if prices remain at the pre-disaster levels, which will be described in the 

adaptation part (Equations (46) and (50)). Price dynamics ( )p i   is given by the 

simple relationship where the price of product i , which is normalized at one before 

the disaster ( ( )0 1p i = ), is positively and linearly correlated to the excess demand over 

the production capacity, with a price elasticity pγ   (Equation (44)). The 

macroeconomic indicator M  is measured by the ratio of total earnings (profit plus 

wages) in the disaster aftermath to total earnings in the pre-disaster situation. ξ  is the 

elasticity of local final demand with respect to the product price for all sectors. 

 ( )  ( ) ( )( )1 1LFD i M LFD i p iξ = × × − × −  , (43) 

 ( ) ( ) ( ) ( )
( )0 1 p

TD i Y i
p i p i

Y i
γ

∞ ∞

∞

 −
= × + ×  

 
. (44) 

 

Exportations are calculated in the similar way, except that there is no influence of the 

local macroeconomic indicator M : 

 ( )  ( ) ( )( )1 1E i E i p iξ = × − × −  . (45) 

 

Here  ( )E i  is the adapted exportations as defined in the adaptation part (Equations 

(47) and (51)). 

 

Reconstruction demands are raised by industrial sectors and households as they need 

inputs from the reconstruction sectors (e.g., the construction sector and the 
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manufacturing sector) to restore their productive capital or other physical assets 

destroyed by the disaster. As such, these demands will decrease gradually with the 

accumulation of recovered capital, as described in Equations (41) and (42) above. The 

model assumes that reconstruction expenditures do not have a crowding-out effect on 

other types of consumption as they are largely funded by insurance claims, government 

spending, borrowing, or the use of savings. Reconstruction demand is also insensitive 

to price changes and the microeconomic situation. 

 

Finally, the ARIO model considers three kinds of adaptation behaviours of economic 

agents in the disaster aftermath: final demand adaptation, intermediate-consumption 

adaptation, and production adaptation. These adaptations are assumed to be 

independent of price changes and only driven by quantities.  

 

The first two types of adaptations are based on the ability of consumers to delay their 

orders or turn to external suppliers outside the disaster region when local suppliers 

cannot provide sufficient products in need. The model distinguishes between 

transportable products and non-transportable products, with only the former ones 

being able to be substituted by external sources. For a sector making a substitutable 

product i , if it cannot satisfy all the demand it faces, i.e., ( ) ( )Y i TD i∞ ∞< , then the 

adapted local final demand  ( )LFD i   and the adapted exports  ( )E i   will decrease 

gradually to zero with characteristic times LFDτ ↓  and Eτ
↓ , respectively (Equations (46) 

and (47)). Similarly, the intermediate consumption by sector j   of product i   will 

decrease, and imports by sector j  will increase by the corresponding amount, with a 

characteristic time Aτ
↓ , for each unit of production in sector j  (Equations (48) and 

(49)). 

  ( ) ( ) ( )
( )

 ( )  ( )t

LFD

TD i Y i tLFD i LFD i LFD i
TD i τ

∞ ∞
∆

∞ ↓

− ∆
− × × → , (46) 
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  ( ) ( ) ( )
( )

 ( )  ( )t

E

TD i Y i tE i E i E i
TD i τ

∞ ∞
∆

∞ ↓

− ∆
− × × → , (47) 

 ( ) ( ) ( )
( ) ( ) ( ), , ,t

A

TD i Y i tA j i A j i A j i
TD i τ

∞ ∞
∆

∞ ↓

− ∆
− × × → , (48) 

 ( ) ( ) ( )
( ) ( ) ( ), t

A

TD i Y i tI j A j i I j
TD i τ

∞ ∞
∆

∞ ↓

− ∆
+ × × → . (49) 

 

However, when the sector i  is recovered from the disaster and can supply enough 

products in need, i.e., ( ) ( )Y i TD i∞ ∞= , the shifted final and intermediate customers 

or demands will return to sector i  with a different set of characteristic times (i.e., 

LFDτ ↑ , Eτ
↑ , and Aτ

↑ ), and the imports of its upstream (buying) sectors will fall back to 

the pre-disaster level correspondingly, as below: 

  ( )
 ( )

( )
( )  ( )( )  ( )t

LFD

LFD i tLFD i LFD i LFD i LFD i
LFD i

ε
τ

∆
↑

  ∆
+ + × − × →  
 

, (50) 

  ( )
 ( )
( )

( )  ( )( )  ( )t

E

E i tE i E i E i E i
E i

ε
τ

∆
↑

  ∆
+ + × − × →  
 

, (51) 

 ( ) ( )
( )

( ) ( )( ) ( ),
, , , ,

,
t

A

A j i tA j i A j i A j i A j i
A j i

ε
τ

∆
↑

  ∆
+ + × − × →  
 

, (52) 

 ( ) ( )
( )

( ) ( )( ) ( ),
, ,

,
t

A

A j i tI j A j i A j i I j
A j i

ε
τ

∆
↑

  ∆
− + × − × →  
 

. (53) 

 

Here, ε   is a small positive value (e.g., 0.01) ensuring that  ( )LFD i   and  ( )E i  

could return to their pre-disaster levels, i.e., ( )LFD i  and ( )E i , respectively, even if 

they have decreased to zero. The exact value of ε  has no significant impact on the 

results. The two different sets of characteristic times (τ ↓  and τ ↑ ) specify how fast 

consumers shift away from and back to the initial suppliers according to the dynamic 

relationship between supply and demand. 
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The third type of adaptation is associated with sectors’ capacity to overproduce in 

response to demand surges or production shortages. The fact that sectors are rarely at 

full employment of their production capacities makes instantaneous overproduction 

possible during crisis. This process is modelled with the introduction of an 

overproduction capacity variable ( )iα  . When the production of a sector cannot 

satisfy its total demand, i.e., ( ) ( )Y i TD i∞ ∞< , ( )iα  will increase up to a maximum 

value maxα  in a time delay ατ  (Equation (54)). When the situation is back to normal, 

i.e., ( ) ( )Y i TD i∞ ∞=  , this overproduction capacity will go back to its pre-disaster 

level α , which is usually set at 100% (i.e., no extra capacity), also in the time delay 

ατ  (Equation (55)). 

 ( ) ( )( ) ( ) ( )
( ) ( )max tTD i Y i ti i i

TD i α

α α α α
τ

∞ ∞
∆

∞

− ∆
+ − × × → , (54) 

 ( ) ( )( ) ( )tti i i
α

α α α α
τ

∆∆
+ − × → . (55) 

 

2) The ARIO-inventory model (second version) 

Hallegatte (2014) proposed a modified version of the ARIO model to take into account 

the inventory effects in the production system. Inventories matter as they can buffer 

the production disturbance caused by input shortages and thus increase the flexibility 

or robustness of the system during crisis. The introduction of inventory dynamics has 

made this version “more satisfying than the previous version in the way it models 

production bottlenecks and the impact of input scarcity on the production system”. 

Besides, price responses, which were previously included, have been removed from 

this version, as little change in prices has been observed in the disaster aftermath due 

to socioeconomic inertia, transaction costs and antigouging legislation (ibid.). Below 
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is a description of the ARIO-inventory model with a focus on changes from the 

previous version. 

 

To model inventory dynamics, a new variable ( ),S i j  is introduced to indicate the 

inventory level of product j  held by sector i  at time step t  (where t  is omitted 

for simplicity). Inventories are consumed during the production of each sector, and 

then refilled by supplies from upstream supplying sectors. Each sector i  has a target 

inventory level for each of its production inputs (e.g., product j ), which is equal to a 

given number of days i
jn  of intermediate consumption at the production level needed 

to satisfy total demand (or the maximum production, considering existing production 

capacity). This target inventory level is expressed as: 

 ( ) ( ) ( ){ } ( )max, min , ,t i
jS i j n Y i TD i A j i= × × . (56) 

 

The model has distinguished between stockable products (e.g., manufacturing 

products) and non-stockable products (e.g., electricity). The inventory of a non-

stockable product is assumed to be not larger than the amount required to sustain three 

days of production. ( )maxY i   is the maximum production determined by the 

production capacity constrained by capital availability and the capacity to overproduce, 

which is calculated in the same way as the previous version (see Equation (32)). Again, 

labour is not considered as a possible constraint here. ( )TD i  is the total demand for 

the product of sector i , including intermediate demand, local final demand, exports, 

and reconstruction demand following a disaster. However, the calculation, particularly 

for intermediate demand, changes with respect to the previous version as the 

production bottleneck is addressed by inventory dynamics, which is not previously 

considered, and the intermediate demand now arises from the business-to-business 

orders to restore the exhausted inventories (see Equations (57) and (58) below). 
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The orders ( ),O i j  from sector i  to sector j  in the next time step 1t +  are given 

by: 

 ( ) ( ) ( ) ( ) ( )( ), , , ,a t
i
s

tO i j A j i Y i S i j S i j
τ
∆

= × + × − . (57) 

 

Here ( )aY i  is the actual production of sector i  (see Equation (62)). So, the first 

item on the right-hand side of Equation (57) is the units of product j  that have been 

used during the production of sector i  at the current time step t . This indicates the 

orders needed to make up for the current consumption of inventory input j  by sector 

i . The second item on the right-hand side of Equation (57) represents the orders that 

make the inventory converge towards its target value ( ),tS i j , with a characteristic 

time of inventory restoration i
sτ . i

sτ  is assumed to be identical for all sectors, except 

for those making non-stockable products.  

 

Then the total demand for product j  in the next time step 1t +  can be derived by 

summing up all intermediate demands from industrial sectors, local final demand, 

exports, and reconstruction demand: 

 ( ) ( ) ( ) ( ) ( ) ( ), ,
i i

TD j O i j LFD j E j HD j RD i j= + + + +∑ ∑ . (58) 

 

Here ( )LFD j , ( )E j , ( )HD j  and ( ),
i

RD i j∑  are modelled in the same ways as 

the previous version. This modelling of demands can well reflect backward ripple 

effects as Equation (57) shows that less production would lead to less demand for 

intermediate inputs and thus less production in the upstream supplying sectors.  

 

The production process is also considered differently compared to the previous version. 

With the presence of inventories, production in each sector is not only dependent on 
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the minimum between observed demand ( )TD i   and the maximum production 

capacity constrained by productive capital ( )maxY i , but also on input availability (i.e., 

inventory levels). 

 

First, in the absence of inventory constraints, the production in sector i  would be: 

 ( ) ( ) ( ){ }maxmin ,optY i Y i TD i= . (59) 

 

Second, production can also be limited by insufficient inventories. The model 

introduces a required inventory level ( ),rS i j   to represent the amount of input 

necessary for production, which is given by: 

 ( ) ( ) ( ), ,r i a
jS i j n Y i A j i= × × . (60) 

 

Here ( ) ( ),aY i A j i×   is the required intermediate consumption of product j   to 

produce the output level at the previous time step. The required inventory level 

( ),rS i j  is different from the target inventory level ( ),tS i j , as the former represents 

the amount of input necessary for production and incorporates the constraints on other 

supplies, while the latter simply represents the orders to replenish inventories.  

 

The model assumes that if the inventory of input j  held by sector i  is lower than a 

share ϕ   of the required level ( ),rS i j  , i.e., ( ) ( ), ,rS i j S i jϕ< ×  , then the 

production of sector i  will be reduced to: 

 ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

, if , ,

,
min 1, , if , ,

,

opt r

j
opt r

r

Y i S i j S i j
Y i S i j

Y i S i j S i j
S i j

ϕ

ϕ
ϕ

 ≥ ×


=    × < ×  ×  

. (61) 

 

Then the actual production ( )aY i   is eventually determined by the minimum of 
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inventory constraints from all supplying sectors: 

 ( ) ( ){ }min ,  for all 1,...,a jY i Y i j N= = . (62) 

 

In this modelling of production, the parameter ϕ   represents the degree of 

heterogeneity in the economic system and in disaster direct impacts. When the 

inventory of a sector is lower than its required level, it is likely that some firms in that 

sector have their inventories at extremely low levels and have to largely reduce or even 

stop production, while other firms still have enough inventories and can keep 

producing normally. The model uses ϕ  to describe how production is reduced when 

inventories are insufficient and sets 0 1ϕ≤ ≤  . 0ϕ =   implies the scenario that 

disaster impacts are completely homogeneous and all firms in a sector make 

substitutable products. In this situation, a reduction by %x  in a sector’s inventory 

relative to the required inventory level represents that all firms in that sector have an 

inventory reduced by %x  and can keep producing until the sector inventory ( ),S i j  

is empty. In other words, an inventory shortage by %x   leads to no production 

reduction unless 100%x = ; in the latter case, production has to stop. On the other 

hand, 1ϕ =  refers to the scenario that disaster impacts are completely heterogenous 

(i.e., a few firms suffer most of the disaster damage) and firms make products that 

cannot be mutually substituted even within the sector. In this situation, a reduction by 

%x  in a sector’s inventory relative to the required inventory level represents that %x  

of the firms in that sector have an empty inventory and stop producing, while other 

firms have an inventory at or above the required level and can keep producing normally. 

In other words, an inventory shortage by %x  leads to a reduction in production by 

%x . The actual value of ϕ  may be relevant to the economic size and structure. It 

would be low for a small economy which is entirely affected by the disaster or for a 

highly interconnected economy in which all firms are mutually connected, but high for 

a large economy in which only one of its regions is affected by the disaster or for a less 

interconnected economy in which firms only have one supplier in each other sector. 
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Both capacity and inventory constraints on production will then cascade into the 

production supply chain. If a sector cannot produce enough to fulfil the total demand 

it faces, it will ration its outputs among the downstream clients (forward rippling effect) 

and meanwhile demand less to its upstream suppliers (backward rippling effect). These 

are the two major effects that cause indirect disaster impacts to the entire economy. 

 

The overproduction capacity is modelled in the same way as the previous version, 

except that the scarcity index ( ) ( )
( )

TD i Y i
TD i

∞ ∞

∞

−
  in Equation (54) is replaced by 

( ) ( )
( )

aTD i Y i
TD i
−

. 

 

The second version of the ARIO model also considers a different rationing scheme 

with respect to the previous version, when the actual production is insufficient to 

satisfy the total demand. This version no longer prioritizes business-to-business orders 

but instead simply introduces a proportional rationing scheme that distributes the 

sectoral output to all intermediate and final demands proportionally: 

 ( ) ( ) ( )
( )

* , ,
aY i

O j i O j i
TD i

= × , (63) 

 ( ) ( ) ( )
( )

*
aY i

LFD i LFD i
TD i

= × , (64) 

 ( ) ( ) ( )
( )

*
aY i

E i E i
TD i

= × , (65) 

 ( ) ( ) ( )
( )

*
aY i

HD i HD i
TD i

= × , (66) 

 ( ) ( ) ( )
( )

* , ,
aY i

RD j i RD j i
TD i

= × . (67) 
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Here ( )* ,O j i   is the actual purchases of product i   by sector j   to refill its 

inventory. ( )*LFD i  and ( )*E i  are the actual purchases of product i  by local and 

foreign final consumers, respectively, to satisfy their consumption needs. ( )*HD i  

and ( )* ,RD j i  are the actual purchases of product i  by local households and sector 

j , respectively, to restore their damaged physical assets and productive capital.  

 

Thus, with the satisfaction of intermediate orders ( )* ,O i j , the dynamics of inventory 

in sector i  can be expressed as: 

 ( )( ) ( )( ) ( )( ) ( ) ( )( )*, 1 , , , aS i j t S i j t O i j t A j i Y i t+ = + − × . (68) 

 

Here the second item on the right-hand side of the equation indicates the increase in 

inventory through purchases from supplier j , while the last item shows the decrease 

in inventory due to the consumption of input j  during the production process.  

 

The rest of the model is the same with the previous version, except that the adaptations 

of technical and import coefficients and of final demand, together with price responses, 

are no longer included. This is because the flexibility of the economic system is 

modelled by inventory dynamics in the current ARIO-inventory model. Other 

flexibilities brought about by import substitution, delay maintenance, production 

rescheduling, etc., essentially affect a sector’s ability to keep production during a crisis, 

which has already been represented by inventory indicators, such as the inventory size 

and restoration characteristic time.  

 

Although widely used in disaster impact analysis, both versions of the ARIO models 

have drawbacks, particularly in their modelling of production bottlenecks and/or 
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constraints. To address the issue of production bottlenecks, the first version of the 

ARIO model proposes an iterative process to reduce productions of all sectors until 

the associated intermediate orders are small enough to be satisfied by the productions 

(see Equations (30)-(35)). However, as the production bottleneck is resolved entirely 

on production cuts, ignoring other possible flexibilities in production rearrangement, 

this approach may result in very low production levels and thus increase the economic 

impacts. On the other hand, the second version of the ARIO model has allowed more 

flexibility with the introduction of inventory dynamics, which appears to be “more 

satisfying than the previous version in the way it models production bottlenecks and 

the impact of input scarcity on the production system” (Hallegatte, 2014). Still, the 

way it models inventory constraints needs to be improved. The assumption of the 

Leontief production function, which is embodied in the use of IO tables, treats 

inventories from other sectors and productive capital as equally important inputs for 

production. Inventory availability and capital availability should affect production 

capacity simultaneously, but they are considered separately and inconsistently in the 

ARIO-inventory model. Inventory constraints take effect only after the optimal 

production has been determined by capital constraints and total demand (see Equation 

(59)). A parameter ϕ  is introduced to specify how production is further affected by 

insufficient inventories, which, however, is not present in the modelling of capital 

constraints. Besides, the setting of this parameter in Equation (61) is to some extent 

far-fetched to reflect the heterogeneity in disaster impacts as intended. For instance, 

setting 0ϕ =  simply amounts to assuming that inventory shortages have completely 

no influence on production, which is very unlikely and not a homogenous situation as 

described above. In that homogeneous situation, if the inventory level of a sector is 

reduced below what is needed to maintain the current period of production, not 

necessarily a 100% reduction, the sectoral production will be reduced proportionally. 

Meanwhile, for a large economy suffering quite heterogenous disaster impacts, a 

multi-regional approach would be more effective to model such heterogeneity than 
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relying on an exogenously given value of this parameter. In fact, both versions of the 

ARIO models were intended for single-regional analysis using a local IO table and 

thus did not consider the possibility of substitution between regions. Substitution of 

suppliers of the same product from different regions may largely mitigate the shock 

waves in an economic network and should be incorporated when extending the ARIO 

model for multi-regional analysis (Guan et al., 2020; Wenz et al., 2014).  

 

3.1.2.3. The Disaster Footprint Model 

In this thesis, the Disaster Footprint model is developed drawing on the ARIO model 

and to overcome some of its drawbacks, mainly by improving the modelling of 

production bottlenecks (the first version) and extending to a multi-regional approach 

with the inclusion of the substitution effects between regions (the second version). The 

concept of ‘disaster footprint’ is an extension of ‘flood footprint’ proposed and 

improved by Mendoza-Tinoco et al. (2017) and Zeng et al. (2019), respectively, to 

describe the cascading economic impacts of a disaster event through the production 

supply chain (see Section 2.1.2). Starting from the direct damage to productive factors 

(e.g., labours and capital), the model seeks to measure the indirect effects that ripple 

through all interdependent sectors and accumulate over time until the full recovery of 

the affected economy. 

 

There are two versions of the Disaster Footprint model developed for different research 

purposes and contexts. The first version is called the DF-growth model, which is 

intended to account for the effects of economic growth on the long-term disaster 

impacts under the context of climate change. Growth elements like capital accruement, 

population growth and technical progress are added into the model to realise an 

economic recovery to higher levels than the pre-disaster state, which marks a major 

improvement for disaster impact analysis, given that most studies usually assume that 

the economy can only recover to the pre-disaster level shortly after a disaster. Besides, 
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the model adopts a linear programming technique to optimize the supply (i.e., output 

plus imports) decisions under the disaster-induced capacity constraints, which 

represents a better-case scenario in addressing the potential supply bottlenecks 

compared to the iterative process described in Hallegatte (2008). The inclusion of 

economic growth and supply optimization has introduced more flexibility based on the 

first version of the ARIO model, making the model more suitable for the long-term 

disaster impact analysis, notably in the context of climate change. On the other hand, 

the second version is called the DF-substitution model, which is developed for a multi-

regional analysis considering the effects of cross-regional substitution in buffering the 

propagations of disaster shocks along the production supply chain. This version also 

incorporates the role of inventories based on the ARIO-inventory model (Hallegatte, 

2014), but improves on the modelling of inventory dynamics with the combination of 

supply constraints and demand redistribution. In addition, both versions have extended 

the ARIO model by incorporating disaster-induced labour constraints, which, together 

with the existing capital constraints, presents a complete picture of disaster impacts on 

the production system. Below is a full description of these two versions of the Disaster 

Footprint model.  

 

Key assumptions used in the DF-growth model and DF-substitution model are listed 

in Table 3-3. 
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Table 3-3: Key assumptions used in the DF-growth model and DF-substitution model respectively. 
Assumptions DF-growth model DF-substitution model 

Common 
assumptions 

 The economy consists of N  production sectors, each of which makes only one unique product that cannot be substituted by a different 
sector. 

 Primary inputs (e.g., labour and capital), which are not mutually substitutable, are fully employed by sectors to carry out production in 
the pre-disaster economic equilibrium. 

 The input-output relationship (i.e., economic structure) is constant over the study period. 
 Post-disaster labour dynamics follow an exogenous process, reflecting labour losses from casualties, labour recovery at certain rates, 

and lost working hours due to transport disruptions. 
 Labour force flows freely across sectors. 
 The prioritized-proportional rationing scheme is adopted, in which the output of each sector goes first to intermediate use and/or basic 

consumption before proportionally allocated to other categories of final demands and reconstruction demand. 
 Inputs from other sectors required by each unit of capital formation are identical across sectors in the region. 

Special 
assumptions 

 A modified Leontief production function is adopted, which 
considers labour-side technical change in the long run. 

 The rate of labour-side technical progress is identical across 
sectors. 

 The growth rates of final demands and capital stock are equal to 
that of GDP. 

 The economy can recover to a higher level than the pre-disaster 
state based on its growth potential. 

 Imports are constrained by the surviving capacity of the transport 
sector during and after the disaster. 

 Sectors simultaneously decide their optimal production and 
imports to maximize the total supply of the economy under 
disaster-induced capacity constraints at each time step.  

 Damaged capital needs a certain time to be fully recovered 

 There are R   regions in the economy, each of which has N  
production sectors. 

 A modified Leontief production function is adopted, which 
allows for substitution of inputs from the same sector in different 
regions. 

 Sectors can gradually increase their production capacity up to 
the maximum in response to demand surges or supply shortages. 

 Imports from outside the economy are never constrained by the 
disaster. 

 Sectors are always expecting to receive as many orders as in the 
previous period. 

 Customers can redistribute their orders among suppliers from 
different regions according to the production capacity of 
suppliers. 
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before which it is under construction and cannot be employed in 
production. 

 Sectors aim to keep a certain level of inventory to sustain a given 
number of weeks of production at the pre-disaster level. 

 Final demands do not shift significantly in the short run after the 
disaster. 

 Reconstruction expenditures are largely funded by insurance 
claims, which do not have a crowding-out effect on other 
consumption. 

 The economy is targeted to recover to the pre-disaster level in 
the short run after the disaster. 
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1) DF-growth model (first version) 

The DF-growth model starts from an economy in equilibrium before the disaster events. 

The total supply and demand of the economy are initially kept in balance: 

 ,
1

N

i i ji j i
j

x im a x fd
=

+ = × +∑ , (69) 

 i i ii ifd hc gc inv ex= + + + . (70) 

 

Here ix , iim , ifd  are the output, imports and final demand of products in sector i  

in the pre-disaster equilibrium ( 0t = ). The overbars are used to indicate values at the 

pre-disaster levels. ,i ja  is the i -th row and j -th column element of the technical 

coefficient matrix, which refers to the units of product i  that are required to produce 

one unit of product j  . N   represents the number of industrial sectors and it is 

assumed that each industrial sector makes only one unique product7. The supply of 

each sector is equal to its domestic production plus imports from outside the region. 

The demand of each sector is categorized into two major groups: intermediate demand 

and final demand. Intermediate demand is the use of products by other industrial 

sectors in the middle of their production, i.e., ,
1

N

ji j
j

a x
=

×∑ . Final demand refers to the 

consumption of products by end users, i.e., ifd . According to the types of final users, 

final demand is further classified into four sub-groups: 1) household consumption ihc , 

divided into basic demand ( ibd ) and other consumption ( iohc ): i i ihc bd ohc= + ; 2) 

governmental expenditures ( igc ); 3) fixed capital formation or investment ( iinv ); and 

4) exports ( iex ) (Equation (70)). Thus, the left-hand side of Equation (69) represents 

the total supply of product i , while the right-hand side denotes its total demand. 

 
7 Apart from industrial sectors, the residential sector may be also damaged by disaster events. Unless specifically 

mentioned, ‘sectors’ in this section only refer to industrial sectors. 
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Inherent in the IO framework, the productive factors are invested in fixed proportions 

during the production process. That means the output of each sector is determined by 

the minimum of capital and labour inputs. In addition, for the long run analysis, a 

labour-augmenting technical progress is assumed to simulate endogenous economic 

growth. This is a standard approach in macroeconomics with an observation that most 

economies tend to have a labour-biased growth (Acemoglu, 2003). This modified 

Leontief production function with technical change is expressed as: 

 , ,

, ,

min ,l i k i
i

l i k i

c v vx
d d

 × =  
  

. (71) 

 

Here ‘min’ means the minimum of the two values in the bracket. ,l iv  and ,k iv  denote 

the primary inputs of labour and capital in sector i  before the disaster, respectively; 

while ,l id   and ,k id   are the technical labour and capital coefficients showing the 

amount of labour and capital required to produce one unit of product in sector i . As 

the economic structure is assumed to be stable during the study period, the values of 

,i ja  (in Equation (69)), ,l id  and ,k id  are kept constant before and after the disaster, 

and can be derived from the IO tables used. The model only considers technical shift 

through the effect of ( )c t , which represents the labour-augmenting technical change, 

varying with time. The value of ( )c t  is assumed to be the same across all industrial 

sectors and is measured by the percentage increase in GDP per capita relative to the 

pre-disaster level; so for 0t = , it has 1c = . 

 

Following a disaster, the above equilibrium (in Equation (69)) would break up with 

imbalanced supply and demand. On the supply side, physical assets, such as buildings 

and equipment, are damaged and out of operation. Casualties occur during the disaster 
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events, and people spend more time commuting to and from work due to traffic 

disruptions. Capital and labours are directly damaged by the disaster events, with a 

further shrink in production capacity. Importation would also be limited due to traffic 

constraints. On the demand side, the households and governments may cut off some 

unnecessary expenditures to live with the shortage of supply, while damaged assets 

create greater demand for investment to support reconstruction. Inequalities arise 

between the capacity to supply and the actual demand after the disruptions. 

 

On the supply side, the direct disaster damage to industry productive capital and labour 

reduces the production capacity of affected sectors. The industry productive capital 

available for production at the beginning of each time step ( )iK t  depends on two 

factors: the disaster-induced capital damage at that time and the recovered capital 

during the last period: 

 ( ) ( )( ) ( ) ( )( )1 11K
i i i

rec
iK t K tt t Kδ −= − × + − . (72) 

 

Here ( )K
i tδ   is the proportion of damaged capital in sector i   at time step t  

(estimated with methods in Section 3.1.1.1). ( )1rec
iK t −  is the recovered capital in 

sector i  during the last period (see Equation (90)). 

 

Due to the linear relationship between input factors and industrial output, capital 

production capacity ( )K
ix t  is proportional to available capital ( )iK t , at each time 

step, relative to the pre-disaster level: 

 ( ) ( )iK
ii

i

K t
x t x

K
= × . (73) 

 

Damaged physical capital includes industry productive and residential capital. The 
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amount of residential capital at the beginning of each time step ( )resK t  is calculated 

in the same manner as for industry productive capital (Equation (74)). However, 

damages to residential capital have no effects on production capacity, as it is not 

involved in the production processes8.  

 ( ) ( )( ) ( ) ( )( )1 1 1K rec
res res res resK t t K t K tδ= − × − + − . (74) 

 

Here the subscript ‘res’ refers to the residential sector. 

 

Similarly, labour availability also changes after a disaster. This model is mainly 

intended for capital-shocked disasters like floods. There is usually little reported 

information on flood-induced labour damage and recovery, therefore labour dynamics 

are assumed to follow an exogenous process, reflecting labour losses from casualties 

and labour recovery from the previous period, as well as transport disruptions which 

may delay or impede travel to work: 

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1rec dam
n q q

q q

wh t
L t r L t L t L t

wh
 

= + × − + − − × 
 

∑ ∑ . (75) 

 

Here ( )L t  represents the total supply of labour in the economy at time step t , and 

nr  denotes the natural growth rate of population. ( )dam
qL t  denotes the three types of 

labour unable to attend work due to casualties, namely the dead, the heavily injured 

and the slightly injured, 1, 2,3q = . ( )1rec
qL t −  corresponds to the recovery of each 

affected labour type during the previous period. Apart from casualties, other labour 

may be delayed for work due to transport disruptions. ( )wh t  and wh  denote total 

working hours during time t   and normal times before the disaster, respectively, 

 
8 However, damages to residential capital have indirect effects on the production process, as its recovery results in 

a non-negligible part of the total reconstruction demand, competing with industry productive capital for 

reconstruction resources. 
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which are related to traffic conditions. As labour recovery is considered exogenously, 

a few assumptions are made here: 1) labour affected by transport disruptions are 

delayed for work for one hour per day during the first period after the disaster; 2) the 

disaster shocks begin to subside within 6 months, which means that the working hours 

increase linearly to the pre-disaster level in 6 months; 3) slightly injured labour comes 

back to work after half a month; 4) 23% of the heavily injured labour recovers health 

at each time step after the disaster. These assumptions are made due to data limitations. 

 

It is assumed that the labour force flows freely across different industrial sectors, so 

that during each period the labour production capacity in each sector experiences the 

same percentage change as the total labour supply. Therefore, the labour production 

capacity ( )L
ix t   is given by the equation below considering a labour-augmenting 

technical change ( )c t : 

 ( ) ( ) ( )
i

L
ix

c t t
t

L
x

L
×

= × . (76) 

 

Considering both constraints, the maximum production capacity ( )max
ix t   is 

determined by the minimum capacity of labour and capital at that time, as shown below: 

 ( ) ( ) ( ){ }max min ,K L
i i ix t x t x t= . (77) 

 

Therefore, the output of each sector at time step t , ( )ix t , should be non-negative and 

no larger than the maximum production capacity: 

 ( ) ( )max0 i ix t x t≤ ≤ . (78) 

 

On the other hand, the imports are related to the capacity of sectors that are involved 

in transporting and delivering goods. Therefore, the maximum import capacity 
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( )max
iim t  is constrained by the surviving capacity of the transport sector ( )max

tranx t , that 

is, if the remaining capacity of the transport sector ‘tran’ is declined by %x  at time 

t , then the imports will contract by the same percentage relative to the pre-disaster 

level iim : 

 ( ) ( )max
max tran

ii
tran

x t
im t im

x
= × . (79) 

 

Similar with the output constraint, the imports at time t  , ( )iim t  , should be non-

negative and no larger than the maximum import capacity: 

 ( ) ( )max0 i iim t im t≤ ≤ . (80) 

 

On the demand side, a new kind of final demand to support the reconstruction and 

replacement of damaged physical capital arises after the disaster. The final use of 

products in sectors that are involved in the reconstruction process increases. The 

formation of demand from the reconstruction of industry productive capital is: 

 ( ) ( ) ( ) ( ) ( ){ }, max 1 1 1 ,0cons
i j s j j j ird t r K t K t K t η = + × − − − − ×  . (81) 

 

Here ( ),i jrd t   is the element of an N N×   reconstruction demand matrix ( )tRD  , 

which denotes the investment that is needed for sector i   to support the capital 

reconstruction of industrial sector j . ‘Max’ means the maximum. sr  is the targeted 

growth rate of capital stock. ( )1cons
jK t −  is the cumulative capital under construction 

before time t  (see Equation (92)). Capital under construction does not contribute to 

productivity increase until it is fully recovered. Therefore, the demand for capital 

reconstruction in sector j   comes from the gap between the capital target 

( ) ( )1 1s jr K t+ × −  and the actual amount of capital at time t , ( )jK t , subtracting the 



Chapter 3 

164 

capital already under construction ( )1cons
jK t − . Then a proportion of this demand is 

allocated to sector i  , according to the contribution of sector i   to capital 

reconstruction, namely iη  . If sector i   is involved in capital reconstruction (e.g., 

machinery, equipment, vehicle, and construction), 0 1iη< ≤ ; otherwise, 0iη = . The 

sum of iη  is equal to one (
1

1
N

i
i
η

=

=∑ ). 

 

Similarly, the reconstruction demand of the residential sector for products in sector i  

at time t  is: 

 ( ) ( ) ( ) ( ) ( ){ }, max 1 1 1 ,0cons
i res s res res res ird t r K t K t K t η = + × − − − − ×  . (82) 

 

Finally, the total reconstruction demand for sector i  , ( )ifrec t  , is the sum of 

investment required by all other industrial and residential sectors to support their 

reconstruction activities. 

 ( ) ( ) ( ), ,
1

N

i i res i j
j

frec t rd t rd t
=

= +∑ . (83) 

 

On the other hand, it has been noted that strategic adaptive behaviour in the aftermath 

of the disaster would drive people to ensure their continued consumption of basic 

commodities, such as food, clothes and medical services (Mendoza-Tinoco et al., 

2017). The coexistence of reconstruction and basic demand delimits the boundary of 

final demand. That is, the final use of products in sector i  at time t , ( )ifd t , after 

satisfying its intermediate demand, should be at least larger than the basic demand 

( )ibd t , but do not exceed the aggregate demand of all other final users (including the 

reconstruction use). 

 ( ) ( ) ( ) ( )1
t

i i g iibd t fd t r fd frec t≤ ≤ + × + . (84) 
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Here ( ) ( ) ( ) ( ),
1

N

i i i i j j
j

fd t x t im t a x t
=

= + − ×∑   according to Equation (69). gr   is the 

targeted growth rate of national GDP. It is simply assumed that the growth rate of final 

demand equals that of GDP. Basic demand ( )ibd t  is usually a fraction (5% in this 

analysis) of the domestic final demand at time t , i.e., ( ) ( )1
t

ig ir fd ex+ × − . 

 

Given the above production, import, and consumption constraints (see Equations (78), 

(80), and (84)), industrial sectors choose their optimal production ( )ix t  and imports 

( )iim t   to maximize the total economic supply at each time step. This is a linear 

objective that entails the most efficient economic recovery in the disaster aftermath. 

The optimization problem is given by: 

 

( ) ( )( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
max

max

,
1

max

. . 0
0

1

N

i i
i

i i

i i
N t

i i i i j j g ii
j

x t im t

s t x t x t
im t im t

bd t x t im t a x t r fd frec t

=

=

+

≤ ≤
≤ ≤

≤ + − × ≤ + × +

∑

∑

. (85) 

 

Using the linprog function in MATLAB solves this optimization problem and derives 

the optimal production ( )a
ix t  and imports ( )a

iim t  for each time step t , which in 

turn determines the remaining final products ( )rem
ix t  after satisfying the intermediate 

demand ( ),
1

N
a

i j j
j

a x t
=

×∑  and the basic demand ( )ibd t : 

 ( ) ( ) ( ) ( ) ( ),
1

N
rem a a a
i i i i j j i

j
x t x t im t a x t bd t

=

= + − × −∑ . (86) 

 

The remaining final products are then proportionally allocated to the reconstruction 
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demand and other categories of final demand, as below: 

 ( ) ( ) ( )

( ) ( ) ( )
,

,

, ,
1

1 ( )

i jrem
i j i Nt

ig i res i ji
j

rd t
rc t x t

r fd bd rd t rd t
=

= ×
+ × − + +∑

, (87) 

 ( ) ( ) ( )

( ) ( ) ( ),
1

,
,

,1 ( )
N

i

i resrem
i res i

i res i ji
j

t

g

rd t
r

t
c t x t

r fd bd rd t rd
=

− + +
= ×

+ × ∑
, (88) 

 ( ) ( ) ( )

( ) ( ) ( ), ,
1

,
,

( )1

i

i s

pre

i

m

g

N

i re i
j

i t

j

i p

d

fd t
f

t
c t

f bd rd t r
x t

r d
=

− + +
= ×

+ × ∑
. (89) 

 

Here ( ),i jrc t , ( ),i resrc t , and ( ),i pfc t  are the units of products in sector i  allocated 

to satisfy the reconstruction demand of the industrial sector j  , the reconstruction 

demand of the residential sector and the p -th type of final demand (i.e., household 

consumption, governmental expenditures, fixed capital formation and exports), 

respectively, at time t . 

 

On satisfaction of reconstruction demand, damaged capital becomes under 

construction. This stage usually last 1-7 months for various types of capital according 

to their physical characteristics and empirical evidence. Damaged capital is fully 

recovered and put into production after its construction is completed. Therefore, at 

time t , the recovered capital in the industrial sector i  and in the residential sector by 

investment from all other industrial sectors, ( )rec
iK t  and ( )rec

resK t , are calculated as: 

 ( ) ( ) ( )
7

,
1 1

1
N

rec
i j i

m j
K t m rc t mω

= =

 
= × − + 

 
∑ ∑ , (90) 

 ( ) ( ) ( )
7

,
1 1

1
N

rec
res j res

m j
K t m rc t mω

= =

 
= × − + 

 
∑ ∑ . (91) 
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Here ( )mω  is the proportion of capital that completes its construction in m  time 

steps, where 1,2,...,7m =  and ( )
7

1
1

m
mω

=

=∑ . 

 

Correspondingly, the cumulative amount of industry productive and residential capital 

under construction before the next period ( 1t + ) are given by: 

 ( ) ( ) ( )
7

,
1 1 1

1 1
m N

cons
i j i

m s j
K t s rc t mω

= = =

  = − × − +  
  

∑ ∑ ∑ , (92) 

 ( ) ( ) ( )
7

,
11 1

11
N

j

m
cons
res

js
res

m
cK mt s r tω

= ==

×


−= +
  −  
  

∑ ∑∑ . (93) 

 

The recovered capital ( )rec
iK t  will increase the capital availability for the next time 

period ( )1iK t +   and boost capital production capacity ( )1K
ix t +  , as in Equations 

(72) and (73). On the other hand, labour recovery ( )rec
q

q
L t∑   is exogenously 

determined as mentioned above, as well as labour availability ( )1L t +  and labour 

production capacity ( )1L
ix t + , as in Equations (75) and (76). This iterative process 

continues until the supply and demand of the economy reach an equilibrium. During 

this process, the economic output can recover to a higher level than the initial level, 

converging towards a targeted growth trajectory which is exogenously determined by 

the values of capital growth rate sr , population growth rate nr , GDP growth rate gr , 

and technical change factor ( )c t   (i.e., labour productivity growth rate). Still, the 

model can be applied to a no-growth scenario with additional constraints on these 

growth parameters, i.e., 0s n gr r r= = =  and ( ) 1c t ≡ . 

 

Finally, the indirect disaster footprint is calculated as the cumulative losses of regional 
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GDP compared to its potential during the whole study period. 

 ( ) ( )
1 1

1
N Nt a

ig i
t i i

IndirectFootprint r va va t
= =

 = + × −  
∑ ∑ ∑ . (94) 

 

Here ( )a
iva t  refers to the value added of sector i  at time t , which is the extra value 

of final products created above intermediate inputs, i.e., 

( ) ( ) ( ),
1

N
a a a
i i j i i

j
va t x t a x t

=

= − ×∑  . iva   is the value added at the pre-disaster level. 

Summation of value added in all sectors ( )
1

N
a
i

i
va t

=
∑   constitutes the regional GDP 

during the time t . 

 

2) DF-substitution model (second version) 

The DF-substitution model extends the previous version to a multi-regional analysis 

by considering inventory dynamics and substitution of suppliers from different regions. 

The model starts from a similar pre-disaster economic equilibrium as in the previous 

version (see Equations (69) and (70)), except that there are R  regions in the economy 

and each of them has N   industrial sectors. Each industrial sector in each region 

makes only one product which cannot be substituted by the product of a different sector 

but can be substituted by the product of the same sector from a different region. 

 

On the production side of the economy, each sector rent capital and employ labour to 

process natural resources and intermediate inputs produced by other sectors into a 

specific product. Traditionally, the Leontief production function is adopted where 

different inputs are used in fixed proportions during production and not mutually 

substitutable (Miller and Blair, 2009). This may overestimate the economic losses from 

negative shocks (Okuyama and Santos, 2014). However, in this multi-regional 

modelling, the product of a sector in a region can be substituted by that of the same 
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sector from a different region, and the production function for each sector in each 

region is given by: 

 , ,

, ,

min for all ,  ; for all ,  j ir q ir
ir

j ir q ir

z v
x j q

a b
  =  
  

. (95) 

 

Here irx  demotes the output of sector i  in region r  in monetary values. ,j irz  are 

the intermediate input made by sector j  from all regions and used in the production 

of sector i  in region r . ,q irv  are the value-added/primary input q  (i.e., capital and 

labour) used by this sector. ,j ira   and ,q irb   are the technical coefficients which 

indicate the amount of intermediate input j   and primary input q   required to 

produce one unit of product i  in region r , respectively: 

 ,
,

j ir
j ir

ir

za
x

= , (96) 

 ,
,

q ir
q ir

ir

vb
x

= . (97) 

 

Here the overbars indicate the values of variables in the pre-disaster equilibrium state, 

which can be obtained from the IO tables. Equation (95) is still a Leontief-type 

production function but slightly different from the traditional Leontief production 

function. It does not allow substitution between different types of inputs, as economic 

agents do not have enough time to adjust other inputs to replace temporary shortages. 

However, it allows for the substitution between products of the same sector from 

different regions. As in Equations (95)-(97), the model does not distinguish between 

intermediate input j  from different regions, considering products of the same sector 

from different regions are completely mutual substitutable, and therefore 

, ,
1

R

j ir js ir
s

z z
=

=∑ . 
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In an equilibrium state, industrial sectors use intermediate products and primary inputs 

to produce goods and services to satisfy demand from their clients. However, after a 

disaster event, output will decrease due to the capital, labour, and inventory constraints. 

 

First, the productive capital in sector i  and residential capital in region r  at time t  

are expressed as: 

 ( ) ( ) ( ) ( )1 1dam rec
ir ir ir irK t K t K t K t= − − + − , (98) 

 ( ) ( ) ( ) ( ), , , ,1 1dam rec
res r res r res r res rK t K t K t K t= − − + − . (99) 

 

Here ( )irK t  and ( ),res rK t  are the surviving capital stock held by industrial sector 

i   and the residential sector in region r   at time t  , respectively. ( )dam
irK t   and 

( ),
dam
res rK t  refer to the amount of capital damaged/destroyed by the disaster (estimated 

with methods in Section 3.1.1.1). ( )1rec
irK t −   and ( ), 1rec

res rK t −   represent the 

recovered capital during the last period 1t −  (see Equations (115) and (116)). The 

modelling of capital dynamics here is more explicit than the previous version (see 

Equations (72) and (74)), as it uses absolute (rather than relative) values of capital 

damage estimated from the catastrophe models.  

 

Then at each time step following the disaster, the percentage reduction in productive 

capital of sector i  in region r , relative to the pre-disaster level, is: 

 ( ) ( )ir irK
ir

ir

K K t
t

K
γ

−
= . (100) 

 

Here irK  is the capital stock of sector i  in region r  in the pre-disaster equilibrium. 
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The capital production capacity of sector i  in region r , ( )K
irx t , is assumed to be 

constrained by the proportion of the available capital relative to the pre-disaster level. 

This assumption is hard-coded through the Leontief-type production function and its 

restricted substitution. That is, as capital and labour are considered perfectly 

complementary as well as the main factors of production, and the full employment of 

those factors in the economy is also assumed, then damage in capital assets is linearly 

related with production level and therefore, value added level. Besides, in this version, 

an overproduction capacity ( )q
ir tα   of the primary input q   (i.e., capital or labour, 

{ },q K L= ) is incorporated to reflect the production adaptation in response to demand 

surges or production shortages (detailed modelling processes are described in 

Equations (126) and (127)). Then, the remaining production capacity of the industry 

productive capital at each time step is: 

 ( ) ( ) ( )( )1K K
irir

K
ir irx t tt xγα ×= − × . (101) 

 

Second and similarly, the remaining production capacity of labour in each sector at 

time t , ( )L
irx t , is given by: 

 ( ) ( ) ( )( )1L L L
irir ir irx t t t xα γ= × − × , (102) 

 ( ) ( )ir irL
ir

ir

L L t
t

L
γ

−
= . (103) 

 

Here ( )irL t   and irL   are the employment of labours by sector i   in region r   at 

time t   and before the disaster, respectively. ( )L
ir tγ   is the percentage reduction in 

labour supply of sector i  in region r  at time t . For capital-shocked disasters like 

floods and earthquakes, the modelling of labour dynamics ( )L t  is similar with the 

previous version, except that there is no population growth shortly after the disaster 
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(i.e., 0nr = ) (see Equation (75)); while for labour-shocked disasters like heatwaves 

and air pollution, labour damage ( )L
ir tγ  is usually well estimated with methods in 

Sections 3.1.1.2 and 3.1.1.3, and can be directly fed into Equation (102). 

 

Third, insufficient inventory of intermediate products will create a bottleneck for 

production activities. The potential production level, ( )j
irx t , that the inventory of the 

intermediate product j  can support is: 

 ( ) ( )
,

j
irj

ir
j ir

S t
x t

a
= . (104) 

 

Here ( )j
irS t  refers to the units of intermediate product j  held by sector i  in region 

r  at the beginning of time t . 

 

Considering all these constraints, the maximum production capacity, ( )max
irx t  , of 

sector i  in region r  can be expressed as: 

 ( ) ( ) ( ) ( ){ }max min ;  ;  for all ,  K L j
ir ir ir irx t x t x t j x t= . (105) 

 

Here imports of a sector from outside the studied regions are assumed to be never 

constrained, as this model mainly focuses on substitution between regions within the 

economy instead of substitution between local and external regions. 

 

It is worth noting that some disasters only cause damage to one of labour or capital. 

For instance, only labour availability is reduced during heatwaves due to the associated 

health impairment and labour productivity loss. Under such circumstances, capital no 

longer poses a further constraint on production and the maximum production capacity 

( )max
irx t  is equivalent to the minimum level of production that can be sustained by the 
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available labour and inventories of intermediate inputs respectively. This is also true 

for the DF-growth model (the first version) and the CHEFA model (the compound 

hazard version in Section 3.2). 

 

The actual production of sector i   in region r   depends on both its maximum 

production capacity and the total orders it expects to receive from the clients: 

 ( ) ( ) ( ){ }maxmin ;  1a
ir ir irx t x t TD t= − . (106) 

 

Here it is assumed that the sector always expects to receive the same quantities of 

orders as the previous period, that is, ( )1irTD t −  (see Equation (125)). 

 

Then, the inventory of product j  held by sector i  in region r  will be consumed 

during the production process. The model uses ( ),j used
irS t   to denote the units of 

intermediate product j  used in the production of sector i  in region r  at time t , 

which is: 

 ( ) ( ),
,

j used a
ir j ir irS t a x t= × . (107) 

 

After production, suppliers then deliver their products to the clients according to the 

orders they have received. Considering that probably not all demands can be met by 

outputs under constraints, a prioritized-proportional rationing scheme is adopted to 

simulate the resource allocation process during the disequilibrium period. Under this 

scheme, a sector first allocates its products to address the intermediate demand and 

then proportionally allocates the remaining products to other categories of demands. 

This assumption is based on the observation that business-to-business relationships are 

stronger than business-to-client relationships and therefore should be prioritized 

(Hallegatte, 2008).  
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First, products of sector i   in region r   is allocated to sector j   in region s   in 

quantities ( )ir
jsic t : 

 ( )

( )

( )
( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

1 1

1
, if 1

1

1 , if 1

ir N R
js a a ir

ir ir jsN R
ir j s
jsir

j sjs
N R

ir a ir
js ir js

j s

id t
x t x t id t

id t
ic t

id t x t id t

= =

= =

= =

 −
× < −

 −= 

 − ≥ −


∑∑
∑∑

∑∑

. (108) 

 

Here ( )1ir
jsid t −  refers to the orders issued by sector j  in region s  to the supplying 

sector i  in region r  at time 1t − . If the actual output of sector i  in region r  is 

smaller than its expected total orders from other sectors ( )
1 1

1
N R

ir
js

j s
id t

= =

−∑∑ , it will ration 

all its products to the business clients in proportion to the orders. Otherwise, it will 

allocate just enough products to satisfy the expected intermediate demand.  

 

Recalling the previous version, the production bottleneck is addressed by a linear 

programming technique, in which the sectoral production and importation are 

optimized to ensure that the associated intermediate demands can be fully satisfied 

(see Equation (85)). By contrast, in this version, the complete satisfaction of 

intermediate demand is no longer a requirement to proceed production (see Equation 

(108)). This is because a sector now employs the remaining inventories to make its 

products, rather than relying on the instant inputs from other sectors. The supply of 

inputs from other sectors mainly contributes to a replenishment of inventories that are 

consumed in production.  

 

The remaining products of sector i  in region r , after (partly or fully) satisfying the 

intermediate demand, at time step t  , is equal to: 

 ( ) ( ) ( )
1 1

N R
rem a ir
ir ir js

j s
x t x t ic t

= =

= −∑∑ . (109) 
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Then, the remaining products will be proportionally allocated to the final demand and 

reconstruction demand. The final demand mainly consists of four types, that is, 

household consumption, government expenditures, fixed capital formation and exports. 

The reconstruction demand refers to the demand for capital goods to restore both the 

industry productive and residential capital damaged by the disaster. The quantities of 

products of sector i  in region r  allocated to satisfy the p -th type of final demand 

in region h , ( )ir
phfc t , are expressed as: 

 ( ) ( ) ( )

( ) ( ) ( )
4

,
1 1 1 1 1

1

1 1 1

ir
phir rem

ph ir R N R R
ir ir ir
ph js res h

p h j s h

fd t
fc t x t

fd t rd t rd t
= = = = =

−
= ×

− + − + −∑∑ ∑∑ ∑
. (110) 

 

Here ( )1ir
phfd t −  refers to the orders issued by the p -th type of final consumers in 

region h   to the supplying sector i   in region r   during the previous period. 

( )1ir
jsrd t −   and ( ), 1ir

res hrd t −   are the orders issued to support the reconstruction of 

damaged capital of sector j  in region s  and of the residential sector in region h , 

respectively. 

 

Similarly, the quantities of products of sector i  in region r  allocated to satisfy the 

reconstruction demand of productive capital of sector j  in region s , ( )ir
jsrc t , and 

residential capital of the residential sector in region h , ( ),
ir
res hrc t , are: 

 ( ) ( ) ( )

( ) ( ) ( )
4

,
1 1 1 1 1

1

1 1 1

ir
jsir rem

js ir R N R R
ir ir ir
ph js res h

p h j s h

rd t
rc t x t

fd t rd t rd t
= = = = =

−
= ×

− + − + −∑∑ ∑∑ ∑
, (111) 

 ( ) ( ) ( )

( ) ( ) ( )
,

, 4

,
1 1 1 1 1

1

1 1 1

ir
res hir rem

res h ir R N R R
ir ir ir
ph js res h

p h j s h

rd t
rc t x t

fd t rd t rd t
= = = = =

−
= ×

− + − + −∑∑ ∑∑ ∑
. (112) 
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Then, sector j   in region s   receives intermediates from all regions to restore its 

inventories of product i  at time step t , as below: 

 ( ) ( ),

1

R
i restored ir
js js

r
S t ic t

=

=∑ . (113) 

 

Therefore, the available inventory level of intermediate product i  held by sector j  

in region s  at the beginning of the next period 1t +  is: 

 ( ) ( ) ( ) ( ), ,1i i i used i restored
js js js jsS t S t S t S t+ = − + . (114) 

 

This equation describes the inventory dynamics of sector j   in region s   after a 

disaster. The second item on the right-hand side denotes the inventory used at each 

time step, which is directly determined by the production level of that sector at that 

time (Equation (107)). The third item on the right-hand side refers to the inventory 

restored at each time step, which is associated with both the intermediate orders placed 

by that sector at last time and the supplying capacity of other sectors at that time 

(Equation (108)). If the use of an inventory is faster than its restoration, the remaining 

level of this inventory will continue to decrease and eventually generate a binding 

constraint on the production capacity, which in turn limits or reduces the subsequent 

production and the inventory usage until the remaining inventory level increases again. 

This self-limiting mechanism of inventory dynamics may be observed during a rapid 

production expansion, which leads to a temporary slowdown of post-disaster economic 

recovery (see the illustrative results of Chapter 6).  

 

Similarly, the recovered capital of sector j  in region s  and the residential sector in 

region h  during the period t  are equal to: 

 ( ) ( )
1 1

N R
rec ir
js js

i r
K t rc t

= =

=∑∑ , (115) 
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 ( ) ( ), ,
1 1

N R
rec ir
res h res h

i r
K t rc t

= =

=∑∑ . (116) 

 

Then on the demand side of the economy, downstream sectors and households issue 

orders to their suppliers at the end of each period according to their production, 

consumption, and reconstruction plans for the next period. When a product comes from 

multiple suppliers, the orders are redistributed among suppliers from different regions 

according to their production capacities. 

 

First, a sector issues orders to its suppliers because of the need to restore its 

intermediate product inventory. The model assumes that sector j  in region s  has a 

specific targeted inventory level of product i , ,i G
jsS , which is equal to a given number 

of weeks i
jsn   of intermediate consumption of product i   based on its production 

capacity at the pre-disaster level: 

 ,
,

i G i
jsjs js i jsS n a x= × × . (117) 

 

To fill the gap between the targeted and the actual inventory levels of intermediate 

product i  at the end of time t  (i.e., at the beginning of time 1t + ), sector j  in 

region s   will allocate its orders among the suppliers of product i   from different 

regions based on their production capacities. Then the order issued by sector j  in 

region s  to the supplying sector i  in region r  is equal to: 

 ( )
( )( ) ( )

( )
( )

( )

, ,

1
,

1 , if 1

0, if 1

ir a
js iri G i i G i

js js js jsR irir a
jsjs ir

r
i G i
js js

id x t
S S t S S t

id t id x t

S S t
=

 ×
 − + × > +
= ×

 ≤ +

∑ . (118) 

 

Here 
ir
jsid   is the intermediate demand of sector j   in region s   for products of 

sector i  in region r  at the pre-disaster level. Instead of a complete substitution, this 
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model assumes a partial substitution of suppliers in the same sector from different 

regions by setting the possibility of substitution on the basis of suppliers’ production 

capacity. This is due to the fact that not all products can be easily substituted between 

regions. For instance, a car manufacturing sector in Japan may use screws from 

Chinese auto parts manufacturing sector and engines from German auto parts 

manufacturing sector, then the products of the supplying sectors in these two regions 

cannot be substituted. In an economic system with diverse products, an overly 

optimistic assumption about cross-regional substitutability may lead to an 

underestimation of production losses. Therefore, this model takes a middle way 

between zero substitutability and full substitutability to alleviate the evaluation 

deviations. 

 

Furthermore, this modelling of intermediate demand is also different from the previous 

version of the Disaster Footprint model, as the intermediate demand of a sector no 

longer depends on its production level (Equation (86)), but on the gap between the 

remaining inventory level and a targeted level (Equation (118)). 

 

Second and similarly, final users (i.e., domestic households, governments, investors, 

and foreign consumers) allocate orders among their suppliers from different regions 

based on their demand and the production capacities of their suppliers. The p -th type 

of final demand in region h   for product i   at time t  ,  ( )i

phfd t  , is obtained by 

adding up the demand from different regions, as below: 

  ( )
1

Ri ir

ph ph
r

fd t fd
=

=∑ . (119) 

 

Here 
ir

phfd  is the p -th type of final demand in region h  for product i  in region 

r  at the pre-disaster level. This model simply assumes that final demands do not shift 

significantly in the short run after the extreme event.  
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Then, the orders issued by the p -th type of final users in region h  to the supplying 

sector of product i  in region r  is: 

 ( )  ( ) ( )

( )
1

ir a
i irphir

ph ph R ir a
irph

r

fd x t
fd t fd t

fd x t
=

×
= ×

×∑
. (120) 

 

Third, an industrial sector or the residential sector (the households) in a region also 

issues orders to its suppliers because of the reconstruction demand to recover its capital 

damaged by the disaster. Here the model adopts the assumption in Hallegatte (2008) 

that capital damage will all be repaired and that insurance companies will pay the 

whole repair costs, so that the reconstruction expenditures do not have a crowding-out 

effect on other types of consumption. Sector j  in region s  and the households in 

region h  set their targeted level of capital stock at the pre-disaster level, jsK  and 

,res hK , respectively. The model uses the capital matrix coefficients ir
sη  to express the 

units of product i  in region r  that are invested to form one unit of capital in region 

s . Different sectors in the same region are assumed to share the same capital matrix 

coefficients. Therefore, the total demand for product i  to support reconstruction of 

sector j   in region s   and the residential sector in region h   at time step t  , 

 ( )i
jsrd t  and  ( ),

i
res hrd t , are calculated as: 

  ( ) ( )( )
1

max ;0
Ri ir

jsjs js s
r

rd t K K t η
=

 = − × 
 
∑ , (121) 

  ( ) ( )( ),, ,
1

max ;0
Ri ir

res hres h res h h
r

rd t K K t η
=

 = − × 
 
∑ . (122) 

 

Here ( )jsK t  and ( ),res hK t  are the capital stock held by sector j  in region s  and 

the residential sector in region h   at time t  , respectively, which are derived from 
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Equations (98) and (99). 

 

Then the orders issued by the reconstruction agents of j   in region s   and the 

residential sector in region h  to the supplying sector of product i  in region r  are: 

 ( )  ( ) ( )

( )
1

ir a
i s irir
jsjs R

ir a
s ir

r

x t
rd t rd t

x t

η

η
=

×
= ×

×∑
, (123) 

 ( )  ( ) ( )

( )
,,

1

ir a
ir h irir
res hres h R

ir a
h ir

r

x t
rd t rd t

x t

η

η
=

×
= ×

×∑
. (124) 

 

Therefore, the total order received by sector i  in region r  is: 

 ( ) ( ) ( ) ( ) ( )
4

,
1 1 1 1 1 1 1

N R R N R R
ir ir ir ir

ir js ph js res h
j s p h j s h

TD t id t fd t rd t rd t
= = = = = = =

= + + +∑∑ ∑∑ ∑∑ ∑ . (125) 

 

Finally, the model assumes that sectors can overproduce with primary inputs (i.e., 

capital and labour) in response to demand surges or production shortages 9 . The 

modelling of overproduction capacity is similar with Hallegatte (2008), except of a 

different trigger condition considering the presence of inventory constraints and a 

distinction between the two primary inputs. The overproduction capacity of primary 

input q   in each sector and region at time t   is denoted by ( )q
ir tα  , where 

{ } ,q K L=   representing capital or labour input. ( )q
ir tα   can increase up to a 

maximum value max
irα  in a time delay ατ  when capital or labour production capacity 

is smaller than both the total demand and inventory capacities, i.e., 

( ) ( ) ( ){ }min ;  for all ,  q j
ir ir irx t TD t j x t< ; it can also drop back to the pre-disaster level 

 
9 The overproduction capacity is imposed on primary inputs, such as labour and capital, but not on intermediate 

inputs (i.e., inventories), considering that idle equipment can be employed and workers can increase their 

productivity during crisis. 
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irα   (normalized at 100%) in the same time delay ατ   when capital or labour 

production capacity is larger than any one of the total demand and inventory capacities, 

i.e., ( ) ( ) ( ){ }min ;  for all ,  q j
ir ir irx t TD t j x t>  ; otherwise, that is, if 

( ) ( ) ( ){ }min ;  for all ,  q j
ir ir irx t TD t j x t=  , it will remain unchanged. Here an indicator 

function ( ),q tΩ  is used to summarize the direction of changes in the overproduction 

capacity, as below: 

 ( )
( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }

1, if min ;  for all ,  

, 1, if min ;  for all ,  

0, if min ;  for all ,  

q j
ir ir ir

q j
ir ir ir

q j
ir ir ir

x t TD t j x t

q t x t TD t j x t

x t TD t j x t

 <
Ω = − >


=

. (126) 

 

Then the dynamics of this overproduction capacity, which is bounded by max,  ir irα α   , 

can be expressed as: 

( ) ( )
( ) ( )

( )
max

max1 min max , ;  ;  
q

ir irirq q ir
irir ir ir

ir

TD t x t
t t q t

xα

α αα α α α
τ

  −−   + = + × ×Ω   
     

 .

 (127) 

 

Here 
( ) ( )q

ir ir

ir

TD t x t

x

−
 represents the absolute gap between production capacity and 

total demand, relative to the pre-disaster level of sectoral output. This term determines 

the size of movement in ( )q
ir tα  at each time step, which decreases to zero as the gap 

is narrowed to zero during the post-disaster recovery. This mechanism ensures the 

convergence of the overproduction capacity towards the pre-disaster level over time. 

 

Following a disaster, the economic agents on the supply and demand sides go through 

the above production, allocation, recovery, and demand adjustment procedures 

recursively, until a full economic recovery to the pre-disaster level after all constraints 
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are lifted (i.e., damaged productive capital is fully recovered, all labour constraints are 

lifted, and all business linkages are repaired). Socio-economic development is not 

considered in this version. This discrete-time dynamic procedure can reproduce the 

economic equilibrium and simulate the propagation of exogenous shocks in the 

economic network. During a disaster, if the supply of a sector is constrained by capital 

or labour damage, this will have two effects. On the one hand, the decrease in output 

of this sector means that the orders of its clients cannot be fulfilled. This will result in 

a decrease in inventory of these clients, which will constrain their production. This is 

the so-called forward or downstream effect. Reversely, less output in this sector also 

means less use of intermediate products from its suppliers. This will reduce the 

production level of its suppliers. This is the so-called backward or upstream effect. 

 

These impacts continuously propagate through the production supply chain, from one 

sector to another and one region to another, leaving footprint in the economic network. 

The model defines the value-added decrease of all sectors during these process as the 

indirect disaster footprint, which is calculated as: 

 ( )( )
1 1

N R

ir ir
t i r

IndirectFootprint va va t
= =

= −∑∑∑ . (128) 

 

Here irva   and ( )irva t   are the value added of sector i   in region r   at the pre-

disaster level and at time t , respectively. The value added of a sector is equal to the 

value of output minus the value of intermediate input used to produce that output, i.e., 

( ) ( ) ( ),
1 1

N R
a a

ir ir js ir ir
j s

va t x t a x t
= =

= − ×∑∑  . ,js ira   is the technical coefficient derived from 

the IO table used indicating the input of product j  in region s  required to produce 

one unit of product i  in region r . 
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3.2. A Compound-Hazard Economic Footprint Assessment 

(CHEFA) Model for Disaster Analysis 

The Compound-Hazard Economic Footprint Assessment (CHEFA) model is built on 

the second version of the Disaster Footprint model (i.e., the DF-substitution model) to 

evaluate the overall economic impacts of a compound hazard along the production 

supply chain. The DF-substitution model is characterised by the incorporation of 

inventory dynamics and cross-regional substitutability of suppliers at a multi-regional 

level, which can better reproduce the post-disaster recovery process, particularly for 

large-scale disruptive events, than other models. A comparison between the two 

versions of the Disaster Footprint model, as well as other models in similar veins, is 

presented in Appendix Table A1 and Appendix Table A2. The CHEFA model further 

extends the DF-substitution model to the case of compound hazards (say a perfect 

storm comprising of flooding, pandemic control, and export restrictions in the complex 

context of climate change, pandemic outbreaks, and deglobalisation), with three 

improvements: 1) it analyses the interaction between climate and pandemic responses, 

that is, the negative externality of pandemic control on the recovery of capital 

destructed by natural disasters and the stimulus effects of capital reconstruction to 

offset the negative impacts of pandemic control; 2) it considers the roles of export 

restriction and production specialization in exacerbating the economic consequences 

of compound events. Export restriction is a common trade policy signalling 

deglobalization, while production specialization reduces the substitutability of 

regional products and may increase the economic vulnerability for negative shocks 

(Boehm et al., 2019); and 3) it incorporates the effects of external subsidies, 

reconstruction expenditures, and intertemporal consumption preferences on post-

disaster production and consumption adaptations. Previous models usually ignores the 

crowding-out effect of reconstruction costs on household consumption by assuming 

that these costs are largely funded by insurance companies (Hallegatte, 2008). 
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However, as mentioned by Cochrane (2004), household demand decreases temporarily 

when the recovery is financed by local savings and borrowing, which should therefore 

be considered in disaster impact analysis. 

 

It should be noted that the pandemic impact mentioned here does not mean the impact 

of pandemic itself, but the shock of its control measures, mainly referred to as the 

lockdowns, to the economy. The total impacts (including the health impacts) of a 

pandemic such as COVID-19 might be huge (Cutler and Summers, 2020), but this 

thesis only focuses on the economic impacts of pandemic control, which is 

characterised into different combinations of duration and strictness of regional 

lockdowns10 . The monetarized values of premature deaths and health impairment 

caused by virus infections are not within the research scope. It is also recognized that 

differences exist in many aspects between the pandemic control, flooding, and export 

restrictions, and it is unrealistic to cover all these differences in the CHEFA model. As 

the model is mainly aimed for the economic impact assessment, it only extracts 

features that are of economic relevance and parameterizes them with different values 

(such as different durations, intensities, and spatial spreads) for different events. To 

keep it simple, the model does not distinguish the specific warning, impact, and 

response phases of different events, instead it considers them as a whole in the scenario 

settings. 

 

In the CHEFA model, the three types of events enter the economic system in different 

ways given their different characteristics, but they all cause indirect impacts, which 

sometimes intertwines, through both backward and forward propagations along the 

supply chain. First, the flood impacts start with the direct damage to labours and capital 

stock and the increasing reconstruction needs. The labour/capital damage limits the 

 
10 Strictness represents the percentage by which transportation capacity is reduced relative to the pre-pandemic 

level. 
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production and supply of the flooded sectors, which propagates forward to the 

production of downstream sectors because of an input shortage. There are also large 

backward propagations to upstream sectors through reduced demands (when the 

flooded sectors have lower production capacities) or increased demands (due to 

reconstruction needs). Second, the pandemic control affects the economy by restricting 

the transportation capacity and labour availability, which is different from flood impact. 

This is also accompanied with forward and backward propagations due to delivery 

failures of intermediate inputs and reduced demand at a low production capacity. 

Meanwhile, the transport restriction impedes the process of flood-related 

reconstruction, which exacerbates the indirect impacts. Third, as for deglobalization, 

trade restrictions are used as a proxy to measure its economic impacts. A trade 

restriction limits the maximum export of specific products from a region to another 

region below a certain percentage of the previous level. It causes both forward 

propagations (when the importing sectors in the latter region produce less due to a 

shortage of imported input) and backward propagations (as the exporting sectors in the 

former region also produce less due to a reduced export demand), which is similar and 

entangled with flood and pandemic impacts. This is how the model packages the three 

types of hazards into a macro-economic risk assessment. Although these events are 

different in many aspects, they have similar and intertwined risk transmission channels 

within the economic system. 

 

Figure 3-2 presents the framework of the CHEFA model, which is driven by four 

modules, that is, a compound shock module, a production module, an allocation 

module, and a demand module. The compound shock module refers to the negative 

compound shocks of flooding, pandemic control, and export restriction on various 

aspects of the economy. The production module describes the sectors’ production 

activities under production, transport and import capacity constraints. The allocation 

module explains how sectors allocate output to their clients, including downstream 
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sectors and households, to satisfy the intermediate demand for inventory refilling and 

final demand for consumption and reconstruction. Finally, the demand module 

portrays how clients issue orders to their suppliers, which iterates into the next round 

of production until the economy recovers to the pre-disaster state. 

 

 
Figure 3-2: Framework of the CHEFA model. 

 

The CHEFA model starts with a multi-regional economy in equilibrium. It defines two 

types of economic agents, namely industrial/production sectors and households, 

distributed in R  regions. Sectors make products which can be consumed by either 

downstream sectors or households. There is a total of N  types of products, one-to-

one corresponding to N  production sectors, therefore there are up to R N×  sectors 

in the economy. For simplification purposes, the model uses a representative 

household which consumes multiple types of products to represent all the households 

in a region. The total number of representative households in the economy is equal to 

R . A brief description of key variables used in the model is listed in Appendix Table 

A3. 
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Key assumptions used in the CHEFA model are listed below: 

 There are R  regions in the economy, each of which has N  production sectors. 

 Each sector makes only one product with inputs from other sectors necessary for 

its production.  

 There are specialized and non-specialized products in the economy. The 

specialized products cannot be substituted by the products from different sectors 

or regions, while the non-specialized products can be substituted by the products 

from the same sector in different regions. 

 A modified Leontief production function is adopted, which distinguishes between 

specialized and non-specialized intermediate inputs. 

 Primary inputs (e.g., labour and capital), which are not mutually substitutable, are 

fully employed by sectors to carry out production in the pre-disaster economic 

equilibrium. 

 The input-output relationship (i.e., economic structure) is constant over the study 

period. 

 Post-disaster labour dynamics follow an exogenous process, reflecting labour 

losses from casualties, labour recovery at certain rates, and lost working hours due 

to transport disruptions. 

 The impacts of a specific transport disruption on the operation of sectors are 

different according to sectoral characteristics. 

 The transportation capacity between two regions is mainly constrained by the 

transport condition of the place of origin. 

 The transportation capacity is recovered exogenously at a given rate according to 

the duration of disease control and the repairing progress of inundated transport 

infrastructure. 

 The maximum export volume of a product in a region is reduced by the export 

restriction imposed on that product. 
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 Local consumption, import and export of the accommodation, food and recreation 

services decline in the epidemic and flooded regions, while the local consumption 

and import of medical services and emergency products increase in these regions. 

 A prioritized-proportional rationing scheme under export restriction is adopted, in 

which each sector first allocates its output to address intermediate demand and 

then proportionally allocates the remaining output to other categories of demands 

without violating the export restriction imposed on that sector’s product. 

 The reconstruction costs are paid by household savings, which has a crowding-

out effect on other consumption. 

 A change in household income affects not only current but also future 

consumption, which is related to the specific intertemporal consumption/saving 

preference of the households in that region. 

 Inputs from other sectors required by each unit of capital formation are identical 

across sectors in the region. 

 Sectors can gradually increase their production capacity up to the maximum in 

response to demand surges or supply shortages. 

 Imports from outside the economy are never constrained by the disaster. 

 Sectors are always expecting to receive as many orders as in the previous period. 

 Customers can redistribute their orders among suppliers from different regions 

according to the production, transportation, and exportation capacities of suppliers. 

 Sectors aim to keep a certain level of inventory to sustain a given number of weeks 

of production at the pre-disaster level, but with a control of adjustment rate to 

prevent dynamic instabilities. 

 The economy is targeted to recover to the pre-disaster level in the short run after 

the disaster. 

 

3.2.1. Compound Exogenous Shocks 

Considering a compound hazard comprising of flooding, pandemic control, and trade 
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frictions, there are mainly four categories of direct shocks introduced to the affected 

multi-regional economy, that is, damages to production factors (e.g., capital and 

labour), transport disruptions, export restrictions, and final consumption disruption. 

 

3.2.1.1. Capital Damage 

Both industry productive and residential capital can be inundated or destroyed by 

flooding. Industry productive capital is the capital invested in production by industrial 

sectors, including factories, machines, equipment, etc. Residential capital mainly 

refers to houses or residential buildings that are owned by households in the region. 

The damaged capital can also be recovered by the post-disaster reconstruction 

activities. Residential capital is not involved in production processes, but its restoration 

after the disaster could compete resources with that of productive capital, and therefore 

affect the recovery of production. The model assumes that all capital damage is caused 

by flooding, while pandemic control and trade frictions have no direct impact on these 

physical assets. Then, the capital dynamics (including capital damage and recovery) 

are modelled in the same way as the DF-substitution model (see Equations (98)-(100)). 

 

3.2.1.2. Labour Damage 

Labour supply is damaged by both flooding and pandemic crises. First, fewer 

employees can work because of injury, illness or death from flooding and virus 

infection. Second, healthy employees spend more time commuting to and from work 

due to transport disruptions, which results in working time losses. The shortage or 

malfunction of production factors will reduce the sectors’ production capacity. In this 

model, labour damage, ( )L
ir tγ , is expressed as the fraction of working hour loss in 

each sector and region during each time step: 

( )
( ) ( )( ) ( ) ( )( ) ( ), , , ,dam C dam F dam C dam F

iririr ir ir ir irL
ir

ir ir

L t L t wh L L t L t wh t
t

L wh
γ

+ × + − − ×∆
=

×
 .

 (129) 
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Here irL   and irwh   represents the number of employees and working hours per 

worker in sector i  and region r  at the pre-disaster levels. ( ),dam C
irL t  and ( ),dam F

irL t  

are the numbers of workers unable to work due to virus infection and flooding at time 

t , respectively. ( )irwh t∆  is the loss of working hours per worker in sector i  and 

region r  at time t . It is determined by the degree of transport disruption ( )Z
r tγ  in 

region r  (see Equation (133)) and a sector-specific impact multiplier iρ : 

 ( ) ( )Z
irir i rwh t t whρ γ∆ = × × . (130) 

 

Here iρ  captures the impact of transport disruption on the operation of sector i . It 

is based on three factors: the degree of exposure of the sector (e.g., the extent of in-

person interactions), whether it is the lifeline sector (e.g., electricity) and the possibility 

for work at home (Guan et al., 2020). For example, the multiplier for the education 

sector could be low (e.g., 0.1) because of the development of online learning. 

 

Due to data limitations, the model assumes that the affected labours are recovered 

following an exogenous rate Lβ  , defined as the proportion by which the affected 

labours are reduced per next period ( 0 1Lβ< < ). Then the affected labour at each time 

step can be expressed as: 

 ( ) ( ) ( ), ,1 1dam F dam F
ir L irL t L tβ= − × − , (131) 

 ( ) ( ) ( ), ,1 1dam C dam C
ir L irL t L tβ= − × − . (132) 

 

3.2.1.3. Transport Disruption 

Transport disruptions come from two aspects during the compound hazard. First, 

public transport restrictions are placed in the pandemic-hit regions to contain virus 
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transmission. Those restrictions may include reducing the number of passengers to 

keep social distance and suspending international flights from pandemic-hit areas. The 

model uses ( ),Z C
r tγ  to denote the percentage by which transportation capacity are 

reduced by lockdown measures relative to the initial equilibrium levels in region r  

at time t  . This is also a metric measuring the strictness of pandemic control (see 

Footnote 10). Second, the transport infrastructure (e.g., roads, railways, and airports) 

could also be inundated and out of operation in the flooded regions. The model uses 

( ),Z F
r tγ   to represent the percentage of submerged transport infrastructure during 

flooding. It is assumed that the transportation capacity from region r  to other regions 

is simply constrained by the transport conditions in region r  , which is further 

determined by the severer one between pandemic and flooding constraints in that 

region. Therefore, the relative reduction of transport capacity from region r  to other 

regions at time t , ( )Z
r tγ , is calculated as: 

 ( ) ( ) ( ){ }, ,max ;Z Z C Z F
r r rt t tγ γ γ= . (133) 

 

Transport disruptions not only affect labour supply (as mentioned above), but also 

increase the difficulty in delivering the intermediate and final products to downstream 

sectors and households. Similar with the labour constraint, the model calculates the 

connectivity loss of the supplying sector i  in region r  to its business and household 

clients in other regions as below: 

 ( ) ( )Z Z
ir i rt tγ ρ γ= × . (134) 

 

Here the connectivity loss ( )Z
ir tγ   is defined as the reduction in the capacity of 

transporting the product of sector i   in region r   to the demanding sectors and 

households in other regions, relative to the pre-disaster level, at each time step. 
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As for transport recovery, the pandemic-induced transport constraint ( ),Z C
r tγ  is lifted 

after the duration of lockdowns in that region, while the flood-induced transport 

constraint ( ),Z F
r tγ  is alleviated at an exogenous rate Zβ  as below: 

 ( ) ( ) ( ), ,1 1Z F Z F
r Z rt tγ β γ= − × − . (135) 

 

This is similar with the assumed process of labour recovery due to data limitations. 

Zβ  is defined as the proportion by which the flood-related transport disruptions are 

alleviated per next period ( 0 1Zβ< <  ), which usually depends on the repairing 

progress of transport infrastructure (e.g., roads and bridges) damaged by the flood. 

 

3.2.1.4. Export Restrictions 

With the ongoing process of deglobalization, particularly in the complex of pandemic 

and natural crises, countries/regions may impose export restrictions on critical goods 

(e.g., food and medical products) to secure domestic supply (Eaton, 2021; Espitia et 

al., 2020). Although the export restrictions applied by large exporters may in the short 

run increase domestic availability, the measures reduce the world’s supply of the 

products concerned and the importing countries incapable of self-sufficiency will 

suffer when they cannot import as much as they need (World Trade Organization, 

2020). The model uses ( )E
ir tγ  to denote the degree of export restrictions introduced 

by region r  on product i  at time t . It is measured by the percentage reduction of 

the maximum export volume of that product in region r  relative to the initial level. 

The export restrictions would generate additional constraints on the delivery or 

allocation of produced commodities to downstream consumers, as modelled in Section 

3.2.3.1. 
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3.2.1.5. Final Demand Disruption 

Households might also adjust their consumption in response to the compound hazard. 

For example, they may spend less on restaurants, travelling and other outdoor 

recreational activities, while more on medical services and emergency products. The 

model assumes that the local consumption, import and export of the accommodation, 

food and recreation services decline by θ % in the pandemic- and flood-hit regions, 

while the local consumption and import of medical services and emergency products 

increase by ϑ  % in these regions. These adjustments of final consumption can be 

summarised as: 

 


 ( ) ( ) ( ) ( ) ( ) ( ) ( ),1 % 1 %C F C F
ir irI i N I r h R R I i N I h R R
h hfd t fdθ ϑθ ϑ∈ × ∈ ∪ ∈ × ∈ ∪= − × + × . (136) 

 

Here  ( )
ir

hfd t  refers to the adjusted final consumption of product i  in region r  by 

the households in region h   at time t   after the disaster. 
ir

hfd   is the final 

consumption at the pre-disaster level. ( )I i Nθ∈  is an indicator function which takes 

value 1 when product i   belongs to the sector set of accommodation, food, and 

recreation services ( Nθ ), otherwise it takes value 0. ( ), C FI r h R R∈ ∪  is an indicator 

function which takes value 1 when region r  or h  is one of the pandemic-hit regions 

( CR ) or flooded regions ( FR ), otherwise it takes value 0. Similarly, ( )I i Nϑ∈  is the 

indicator function which takes value 1 when product i  belongs to the sector set of 

medical services and emergency products ( Nϑ  ), otherwise it takes value 0. 

( )C FI h R R∈ ∪  is the indicator function which takes value 1 when region h  is one 

of the pandemic-hit or flooded regions, otherwise it takes value 0. 

 

Besides, the model also accounts for the stimulus effects of external consumption 

subsidies and the crowding-out effects of reconstruction costs paid by household 

savings. Assuming that, at each time step t′  , households in region h   receive an 
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external subsidy from public finance or social donations, which is denoted by 

( )hsub t′  , and meanwhile pay an amount of ( ),
rec
res hK t′   for house repairs and 

reconstruction from their savings, then the change in their disposable income during 

that time is: 

 ( ) ( ) ( ),
rec

h h res hincome t sub t K t′ ′ ′∆ = − . (137) 

 

Here ( ),
rec
res hK t′  is the monetary value of residential capital recovered in region h  

during the period t′  , which is assumed to be paid by the households from their 

savings11. Its calculation depends on the recovery process of residential capital at each 

time step (see Equation (158) in Section 3.2.3.2). The income change is assumed to 

affect both current and future consumption with an intertemporal consumption or 

saving preference coefficient Cβ , where 0 1Cβ< < . This means that the impacts of 

current income change on future consumption will decrease by a fixed fraction 1 Cβ−  

over time. The smaller the value of Cβ  , the more households tend to consume at 

present and the lower the savings rate. Then the actual adaptive final demand for 

product i  in region r  by the households in region h  at time t ,  ( )ir

hfd t , is: 

  ( ) 

 ( )


 ( )


 ( )
( ) ( ) ( )

1

1 1

1
ir

tirir t th
C C hh h N R ir

t
h

i r

fd t
fd t fd t income t

fd t
β β′−

′=

= =

′= + × × − ×∆∑
∑∑

. (138) 

 

Here ( ) ( ) ( )
1

1
t

t t
C C h

t
income tβ β′−

′=

′× − ×∆∑  calculates the current change in the overall 

willingness to consume due to the cumulative impacts of previous income changes in 

 
11 The price effects are not considered in the CHEFA model. 
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region h   before time t  , which is then multiplied by 


 ( )


 ( )
1 1

ir

h
N R ir

h
i r

fd t

fd t
= =
∑∑

  to indicate a 

proportional impact to the final demand for product i  in region r . 

 

Finally, different categories of direct impacts are not isolated. As have mentioned 

above, the unavailability of transportation may lead to labour constraints. The 

restoration of damaged capital, as well as export restrictions, will affect the structure 

of final demands in the disaster aftermath. The interactions between direct shocks lead 

to complex indirect impacts on the economic system. Therefore, a systematic 

assessment method is needed to address these issues. 

 

3.2.2. Production System 

3.2.2.1. Production with Cross-regional Substitution and Specialization 

Previously, the DF-substitution model has adopted a Leontief-type production function 

which allows for substitution between suppliers of the same sector from different 

regions (Equation (95)). However, some products are less substitutable between 

regions, particularly when production specialization occurs. For example, Boehm et al. 

(2019) discovered that during the Japanese earthquake the economic losses in the US 

are highly concentrated among affiliates of Japanese multinationals, relative to non-

Japanese firms, due to declines in imported intermediate inputs from Japan. This 

suggests that affiliates of Japanese firms in the US were unable to quickly substitute 

alternative inputs in the short run. Besides, the recent shortage of microchips, which is 

driven by the perfect storm of multiple factors, such as COVID-19 outbreaks, a fire in 

an automotive chip plant in Japan, the trade frictions between the US and China, etc., 

has greatly hampered automotive production in the US (McCarthy, 2021). Most of 

microchip production is dominated by two foundries in Asia, namely TSMC and 

Samsung, and their customers lack alternative suppliers who can quickly build a new 
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microchip fab or catch up with the leading-edge process technologies (Kuo, 2021). 

 

The CHEFA model Improves on the DF-substitution model by incorporating non-

substitutable specialized products. Although the possibility of cross-regional 

substitution is allowed, specialized products cannot be substituted elsewhere. There 

are two types of non-substitutability. The first one is non-substitutability between the 

N  production sectors, that is, products of a sector cannot be substituted by products 

of a different sector, though can be substituted by products of the same sector from a 

different region. The second one is non-substitutability of specialized products which 

is different from and cannot be substituted by any products in any sectors or regions. 

It is assumed that there are M  types of specialized products, each one belonging to 

one of the N   production sectors in one of the R   regions. Then sectors can use 

N M+   different types of mutually non-substitutable intermediate inputs to make 

their products. The production process is defined as: 

 , ,

, ,

min for all ,  ; for all , , 1,...,j ir q ir
ir

j ir q ir

z v
x j q j N M

a b
  = = + 
  

. (139) 

 

Here irx  demotes the output of sector i  in region r  in monetary values. ,j irz  and 

,q irv   are the intermediate input j   and primary input q   (i.e., capital and labour), 

respectively, used to produce irx  units of output by sector i  in region r . ,j ira  and 

,q irb  are the technical coefficients indicating the amount of intermediate input j  and 

primary input q  required to produce one unit of product i  in region r , respectively, 

which are usually derived from the IO table used. 

 

This production function is very similar with the one in the DF-substitution model 

(Equation (95)), except that it adds the M  specialized products as non-substitutable 

intermediate inputs for production. The intermediate input j , if not specialized, can 
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be supplied by sector j  from any regions in the economy; but if it is one of the M  

specialized inputs, it can only be supplied by sector j   in the specific region that 

makes that specialized input. In other words, these specialized products are completely 

different from and irreplaceable with the product made by any other sector and region. 

 

3.2.2.2. Production under Capital, Labour, and Inventory Constraints 

After a compound-hazard event, sectoral production may be constrained by reduced 

productive capital, labour, and inventory availabilities. As described in Sections 

3.2.1.1 and 3.2.1.2, both capital and labour are damaged by the co-existence of floods 

and pandemic lockdowns, which then reduces the available productive capital and 

labour that could be used for production. The remaining production capacity of 

productive capital and labour, ( )K
irx t  and ( )L

irx t , are modelled in the same way as 

the DF-substitution model with the inclusion of an overproduction capacity ( )q
ir tα  

(see Equations (101)-(103)). Besides, insufficient inventories will generate additional 

constraints on the production capacity. With the presence of production specialization, 

there are N M+   different types of inventories consumed in production. The 

potential production level, ( )j
irx t , that the inventory of the intermediate product j  

can support is: 

 ( ) ( )
,

, 1,...,
j

irj
ir

j ir

S t
x t j N M

a
= = + . (140) 

 

Here ( )j
irS t  refers to the units of intermediate product j  held by sector i  in region 

r  at the beginning of time t . 

 

Then the maximum production capacity, ( )max
irx t  , is calculated under all these 

constraints: 
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 ( ) ( ) ( ) ( ){ }max min ;  ;  for all ,  , 1,...,K L j
ir ir ir irx t x t x t j x t j N M= = + . (141) 

 

Therefore, the actual production of sector i   in region r  , ( )a
irx t  , should be the 

minimum of its maximum production capacity ( )max
irx t  and the total orders it receives 

from the clients during the last period ( )1irTD t − : 

 ( ) ( ) ( ){ }maxmin ;  1a
ir ir irx t x t TD t= − . (142) 

 

And the units of inventory input j  used to produce ( )a
irx t  units of product by sector 

i  in region r  at time t  is:  

 ( ) ( ),
,

j used a
ir j ir irS t a x t= × . (143) 

 

3.2.3. Allocation and Recovery 

3.2.3.1. Prioritized-Proportional Rationing Scheme under Export Restrictions 

The CHEFA model adopts the same prioritized-proportional rationing scheme as the 

DF-substitution model, in which a sector first allocates its output to address the 

intermediate demand and then proportionally allocates the remaining output to other 

categories of demand, except that this rationing process is constrained by export 

restrictions, that is, the total export of a sector at each time step should be no more than 

its maximum quota restricted by the trade policy: 

 ( ) ( ) ( ) ( ) ( )( ),
1 1

1
N N

ir ir ir ir E
irjs h js res h ir

s r j h r s r j h r
ic t fc t rc t rc t t exγ

≠ = ≠ ≠ = ≠

+ + + ≤ − ×∑∑ ∑ ∑∑ ∑ . (144) 

 

Here ( )ir
jsic t , ( )ir

hfc t , ( )ir
jsrc t , and ( ),

ir
res hrc t  are the output that sector i  in region 

r   initially hopes to allocate to sector j   in region s   as intermediate use, to the 

households in region h   as final consumption use, to sector j   in region s   as 
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productive capital reconstruction use, and to the households in region h  as residential 

capital reconstruction use, respectively at time t  , following the same prioritised-

proportional rationing scheme as in the DF-substitution model (see Equations (108)-

(112)). ( )E
ir tγ  is the degree of export restriction imposed on product i  by region r  

at time t . It is measured by the percentage reduction of the maximum export volume 

of this product in region r  relative to the pre-disaster level (see Section 3.2.1.4). irex  

represents the export of this product from region r  to other regions under the pre-

disaster equilibrium state. 

 

The model then adjusts the initially attempted exports of sector i   in region r   to 

downstream sectors, ( )ir
jsic t , to households, ( )ir

hfc t , and to reconstruction activities, 

( )ir
jsrc t  and ( ),

ir
res hrc t , where ,s h r≠ , to satisfy the constraint (144) according to a 

similar prioritized-proportional rationing scheme. Specifically, the output actually 

allocated to the downstream sector j  in region s  ( s r≠ ) after being adjusted to the 

export restriction, ( ),ir
jsic t∗ , is equal to: 

 ( ) ( )
( )( )

( )
,

1

1
min ;1

E
iririr ir

js js N
ir
js

s r j

t ex
ic t ic t

ic t

γ
∗

≠ =

 
 − × = ×  
 
  
∑∑

. (145) 

 

Here the intermediate demands from business clients are still given the priority to be 

satisfied under export restrictions. The asterisk stands for the adjusted value according 

to the export restriction. If the restricted export quota of sector i   in region r   is 

larger than or equal to its initial delivery attempts to all business clients in other regions, 

i.e., ( )( ) ( )
1

1
N

E ir
irir js

s r j
t ex ic tγ

≠ =

− × ≥∑∑  , then the export restriction is not a binding 

constraint on intermediate deliveries and ( ) ( ),ir ir
js jsic t ic t∗ =  ; otherwise, the initially 
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attempted intermediate deliveries are reduced proportionally by a factor of 

( )( )
( )

1

1 E
irir

N
ir
js

s r j

t ex

ic t

γ

≠ =

− ×

∑∑
 to not exceed the restricted export quota. 

 

Afterwards, the remaining export quota, ( )rem
irexq t , is: 

 ( ) ( )( ) ( ),

1
1

N
rem E ir

irir ir js
s r j

exq t t ex ic tγ ∗

≠ =

= − × −∑∑ . (146) 

 

Then similarly, the remaining export quota is allocated to the final and reconstruction 

demands in other regions ( ,s h r≠ ), as below: 

 ( ) ( ) ( )

( ) ( ) ( )
,

,
1

min ;1
rem
irir ir

h h N
ir ir ir
h js res h

h r s r j h r

exq t
fc t fc t

fc t rc t rc t

∗

≠ ≠ = ≠

 
  = ×  
 + +
  
∑ ∑∑ ∑

, (147) 

 ( ) ( ) ( )

( ) ( ) ( )
,

,
1

min ;1
rem
irir ir

js js N
ir ir ir
h js res h

h r s r j h r

exq t
rc t rc t

fc t rc t rc t

∗

≠ ≠ = ≠

 
  = ×  
 + +
  
∑ ∑∑ ∑

, (148) 

 ( ) ( ) ( )

( ) ( ) ( )
,
, ,

,
1

min ;1
rem
irir ir

res h res h N
ir ir ir
h js res h

h r s r j h r

exq t
rc t rc t

fc t rc t rc t

∗

≠ ≠ = ≠

 
  = ×  
 + +
  
∑ ∑∑ ∑

. (149) 

 

After the export adjustment, the remaining output of sector i  in region r  available 

for local clients, ( )loc
irx t , is calculated as: 

 ( ) ( ) ( ) ( ) ( ) ( ), , , ,
,

1 1

N N
loc a ir ir ir ir
ir ir js h js res h

s r j h r s r j h r
x t x t ic t fc t rc t rc t∗ ∗ ∗ ∗

≠ = ≠ ≠ = ≠

= − − − −∑∑ ∑ ∑∑ ∑ . (150) 

 

Finally, the products of sector i  in region r  allocated to the local production sectors, 
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households and reconstruction agents are adjusted proportionally as below: 

 ( ) ( )
( ) ( ) ( ) ( ) ( ),

,

ir
jrir loc

jr irir ir ir ir
jr r jr res r

ic t
ic t x t

ic t fc t rc t rc t
∗ = ×

+ + +
, (151) 

 ( ) ( )
( ) ( ) ( ) ( ) ( ),

,

ir
jrir loc

jr irir ir ir ir
jr r jr res r

fc t
fc t x t

ic t fc t rc t rc t
∗ = ×

+ + +
, (152) 

 ( ) ( )
( ) ( ) ( ) ( ) ( ),

,

ir
jrir loc

jr irir ir ir ir
jr r jr res r

rc t
rc t x t

ic t fc t rc t rc t
∗ = ×

+ + +
, (153) 

 ( ) ( )
( ) ( ) ( ) ( ) ( ),,

,
,

ir
res rir loc

res r irir ir ir ir
jr r jr res r

rc t
rc t x t

ic t fc t rc t rc t
∗ = ×

+ + +
. (154) 

 

3.2.3.2. Recovery of Inventory and Capital Stock 

Sector j  in region s  receives intermediates from all relevant regions to restore its 

inventories of product i  at time step t : 

 ( ) ( ), , , 1,...,
i

i restored ir
js js

r R

S t ic t i N M∗

∈

= = +∑ . (155) 

 

Here iR   refers to the set of regions which supply product i  . If product i   is a 

specialized product of sector i   in region r  , then r   is the only region making 

product i  and { }iR r= . 

 

Therefore, the units of intermediates i   held by sector j   in region s   at the 

beginning of the next period 1t +  are: 

 ( ) ( ) ( ) ( ), ,1i i i used i restored
js js js jsS t S t S t S t+ = − + . (156) 

 

Similarly, the recovered productive capital of sector j   in region s   and the 

recovered residential capital in region h  during the period t  are equal to: 

 ( ) ( ),

1 1

N R
rec ir
js js

i r
K t rc t∗

= =

=∑∑ , (157) 
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 ( ) ( ),
, ,

1 1

N R
rec ir
res h res h

i r
K t rc t∗

= =

=∑∑ . (158) 

 

Here the reconstruction costs of residential capital are paid by the households from 

their savings, which will have a crowding-out effect on their other consumption, as 

described in Section 3.2.1.5. 

 

Moreover, the recovery of labour availability and transport capacity is exogenously 

assumed to be associated with the duration of pandemic lockdowns and the repairing 

progress of flooded transport infrastructure, which has been described in Sections 

3.2.1.2 and 3.2.1.3. 

 

3.2.4. Demand Adjustment 

At the end of each period downstream sectors and households issue orders to their 

suppliers according to their production, consumption, and reconstruction plans for the 

next period. When a product comes from multiple suppliers, the orders are 

redistributed among suppliers from different regions according to their production, 

transportation, and exportation capacities. 

 

3.2.4.1. Intermediate Demand 

Similar with the DF-substitution model, a sector issues orders to its suppliers because 

of the need to restore its intermediate product inventory. Each sector j  in region s  

has a specific targeted inventory level of product i   (including non-substitutable 

specialized ones), ,i G
jsS  , which is equal to a given number of weeks i

jsn   of 

intermediate consumption of product i  based on its production capacity at the pre-

disaster level: 

 ,
, , 1,...,i G i

jsjs js i jsS n a x i N M= × × = + . (159) 
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However, dynamic instabilities, or the so-called bullwhip effect, may sometimes set in 

when sectors try to restore their inventories too quickly. To address these instabilities, 

the CHEFA model introduces a new parameter sτ  to control the speed of inventory 

restoration. It describes the proportion of inventory losses that production sectors try 

to restore in the next time step. For instance, if they lose x  unit of their inventory, 

compared to the pre-disaster level, then they will increase their intermediate orders by 

s xτ ×  unit right in the next time step, and 0 1sτ≤ ≤ . Therefore, the order placed by 

sector j  in region s  for intermediate input of product i  at the end of time t  is 

calculated as: 

  ( ) ( )( ){ },
, ,max 1 ;0

i i G i
js js jss js js i js i jsid t S S t a x a xτ= × − + − × + × . (160) 

 

Here ( ), 1i G i
js jsS S t− +  is the gap between the targeted and actual inventory levels at 

the end of time t  (i.e., the beginning of time 1t + ), and , jsi jsa x×  is that gap at the 

pre-disaster level. The latter is also the intermediate order placed each time before the 

disaster. If 1sτ =  , then  ( ) ( ){ },max 1 ;0
i i G i
js js jsid t S S t= − +  , which is the case in the 

DF-substitution model. 

 

Next, sector j  in region s  will redistribute its intermediate orders among suppliers 

of product i  from different regions based on their transportation, exportation, and 

production capacities. Therefore, the intermediate order issued by sector j  in region 

s  to the supplying sector i  in region r  is: 

 ( )  ( )
( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

1 1

1 1
i

ir Z E a
jsi ir ir irir

jsjs ir Z E a
js ir ir ir

r R

id t t x t
id t id t

id t t x t

γ γ

γ γ
∈

× − × − ×
= ×

× − × − ×∑
. (161) 
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Here 
ir
jsid  refers to the intermediate demand of sector j  in region s  for products 

of sector i  in region r  at the pre-disaster level. This modelling of the redistribution 

of intermediate demand is different from Equation (118) in the DF-substitution model, 

as it considers not only the production capacity ( )a
irx t   of suppliers in different 

regions, but also their transportation and exportation capacities, i.e., ( )1 Z
ir tγ−  and 

( )1 E
ir tγ−  , respectively (see Sections 3.2.1.3 and 3.2.1.4). And if s r=  , ( )E

ir tγ   is 

temporarily equal to zero. 

 

3.2.4.2. Final Demand 

Similarly, the households redistribute orders among their suppliers from different 

regions based on their adaptive demand and the transportation, exportation, and 

production capacities of their suppliers. The total adaptive demand of the households 

in region h  to final product i  (including non-substitutable specialized ones) at time 

t  can be calculated by adding up the adaptive demand from different regions: 

  ( )  ( ), 1,...,
i

i ir

h h
r R

fd t fd t i N M
∈

= = +∑ . (162) 

 

Here  ( )ir

hfd t  is the post-disaster adaptive demand for product i  in region r  by the 

households in region h , after considering the effects of emergency responses, external 

subsidies and extra expenditures for house repair (see Equation (138) in Section 

3.2.1.5). 

 

Then the order issued by the households in region h   to the supplying sector of 

product i  in region r  is: 

 ( )  ( )
( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

1 1

1 1
i

ir Z E a
i ir ir irhir

h h ir Z E a
ir ir irh

r R

fd t t x t
fd t fd t

fd t t x t

γ γ

γ γ
∈

× − × − ×
= ×

× − × − ×∑
. (163) 
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Here 
ir

hfd  refers to the final demand of the households in region h  for product i  

in region r  at the pre-disaster level. And if h r= , ( )E
ir tγ  is temporarily equal to 

zero. 

 

3.2.4.3. Reconstruction Demand 

A sector or a household also issues orders to its suppliers because of the reconstruction 

demand to recover its damaged productive or residential capital. The modelling of 

reconstruction demand and its redistribution is similar with the DF-substitution model, 

except that it considers the presence of non-substitutable specialized inputs for capital 

formation and that the demand redistribution is based on the suppliers’ production, 

transportation, and exportation capacities simultaneously. Then the total demand for 

product i   (including non-substitutable specialized ones) to support the 

reconstruction of sector j   in region s   and the residential sector in region h   at 

time t ,  ( )i
jsrd t  and  ( ),

i
res hrd t , are calculated as: 

  ( ) ( )( )max ;0 , 1,...,
i

i ir
jsjs js s

r R

rd t K K t i N Mη
∈

 
= − × = + 

 
∑ , (164) 

  ( ) ( )( ),, ,max ;0 , 1,...,
i

i ir
res hres h res h h

r R

rd t K K t i N Mη
∈

 
= − × = + 

 
∑ . (165) 

 

Here ( )jsK t  and ( ),res hK t  are the capital stock held by sector j  in region s  and 

the residential sector in region h  at time t , respectively. jsK  and ,res hK  are the 

capital stock at the pre-disaster level. Capital dynamics are modelled in the same way 

as the DF-substitution model (see Equations (98) and (99)) and the economy is 

assumed to recover to the pre-disaster level. ir
sη   is the capital matrix coefficient 

indicating the units of product i  in region r  that are required to form one unit of 

capital in region s . 
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And the orders issued by sector j  in region s  and the households in region h  to 

the supplying sector of product i   in region r  , to support the reconstruction of 

damaged productive and residential capital, are: 

 ( )  ( )
( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

1 1

1 1
i

ir Z E a
i s ir ir irir
jsjs ir Z E a

s ir ir ir
r R

t t x t
rd t rd t

t t x t

η γ γ

η γ γ
∈

× − × − ×
= ×

× − × − ×∑ , (166) 

 ( )  ( )
( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

,,

1 1

1 1
i

ir Z E a
i h ir ir irir
res hres h ir Z E a

h ir ir ir
r R

t t x t
rd t rd t

t t x t

η γ γ

η γ γ
∈

× − × − ×
= ×

× − × − ×∑ . (167) 

 

Finally, the total orders received by sector i  in region r , ( )irTD t , can be calculated 

by adding up all categories of demands from all sectors and regions as Equation (125) 

in the DF-substitution model.  

 

3.2.4.4. Overproduction Capacity 

This module is modelled in the same way as the DF-substitution model, that is, the 

overproduction capacity of a primary input q  (i.e., capital or labour) in sector i  of 

region r , ( )q
ir tα , can increase up to a maximum value max

irα  in a time delay ατ  in 

response to production shortages or demand surges, and also fall back to the pre-

disaster level irα  (normalized at 100%) in the same time delay when the situation 

becomes normal. A detailed modelling process has been presented in Equations (126) 

and (127). 

 

3.2.5. Direct and Indirect Disaster Footprint 

Following a compound-hazard event, sectors and households in all regions go through 

the above production, allocation, recovery, and demand adjustment processes 
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recursively, until a full economic recovery to the pre-disaster level after all constraints 

are lifted (i.e., damaged productive capital is fully recovered, all labour constraints are 

lifted, and all business linkages are repaired). Here the CHEFA model defines the 

physical damage resulting from the natural disasters (e.g., floods) in the compound 

hazard as the direct disaster footprint, while the value-added changes12 of all sectors 

and regions in the economy triggered by the supply chain (backward and forward) 

propagation effects of all external shocks in the compound hazard as the indirect 

disaster footprint, which are calculated as: 

 ( ) ( )( ),
1 1

N R
dam dam
ir res r

t i r
DirectFootprint K t K t

= =

= +∑∑∑ , (168) 

 ( )( )
1 1

N R

ir ir
t i r

IndirectFootprint va va t
= =

= −∑∑∑ . (169) 

 

Here ( )dam
irK t  and ( ),

dam
res rK t  are the amount of industry productive and residential 

capital damaged by the flood disaster in region r   at each time step, which are 

estimated with methods in Section 3.1.1.1 and fed into the CHEFA model during the 

calculation of capital constraints. irva  and ( )irva t  are the value added of sector i  

in region r  at the pre-disaster level and at time t , respectively. The value added of 

a sector is the extra value of final products created above intermediate inputs, i.e., 

( ) ( ) ( ),
1 1

N R
a a

ir ir js ir ir
j s

va t x t a x t
= =

= − ×∑∑  . ,js ira   is the technical coefficient derived from 

the IO table used indicating the input of product j  in region s  required to produce 

one unit of product i  in region r . 

 

 
12 The value-added changes include both increases and decreases in the sectoral value added. Suppliers in the less 

affected regions can replace the suppliers of the same product in the more severely affected regions through the 

mechanism of demand redistribution, and the increasing demand, as well as the demand for reconstruction, may 

drive these sectors to extend their production with an overproduction capacity above the initial level. These 

combined effects can thus result in value added increases in some sectors during the post-disaster recovery. 



Chapter 4 

208 

Chapter 4 Economic Costs of Heat Stress, Air 
Pollution and Extreme Weather Events in China 
over the Past Decades 

The outcomes of this chapter have been integrated into the 2020-2022 China reports 

of the Lancet Countdown on health and climate change. The series of reports were 

aimed at tracking the health profile of climate change in China through 27 indicators 

across five sections: climate change impacts, exposures, and vulnerability; adaptation, 

planning, and resilience for health; mitigation actions and health co-benefits; 

economics and finance; and public and political engagement. Yixin Hu contributed 3 

indicators on the economic costs of heat stress, air pollution and climate-related 

extreme events. The sections in this chapter have been reproduced under the 

permission of co-authors. 

 

Cai, W.#, Zhang, C.#, Zhang, S.#, …, Hu, Y., …, Gong, P*. (2022). The 2022 China 

report of the Lancet Countdown on health and climate change: leveraging climate 

actions for healthy ageing. The Lancet Public Health. https://doi.org/10.1016/s2468-

2667(22)00224-9  

 

Cai, W.#, Zhang, C.#, Zhang, S.#, …, Hu, Y., …, Gong, P*. (2021). The 2021 China 

report of the Lancet Countdown on health and climate change: seizing the window of 

opportunity. The Lancet Public Health, 6(12), e932-e947. 

https://doi.org/10.1016/S2468-2667(21)00209-7 

 

Cai, W.#, Zhang, C.#, Suen, H. P.#, …, Hu, Y., …, Gong, P*. (2021). The 2020 China 

report of the Lancet Countdown on health and climate change. The Lancet Public 

Health, 6(1), e64-e81. https:/doi.org/10.1016/S2468-2667(20)30256-5 
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https://doi.org/10.1016/S2468-2667(20)30256-5


Chapter 4 

209 

 

The purpose of this chapter is to fulfil Research Objective 5, which is the empirical 

application of the proposed Disaster Footprint model for the single-hazard impact 

analysis (see Section 3.1). This contributes to Research Question 2 raised in Section 

1.4.1. The analysis is focused on historical patterns of hazards; heat stress, air pollution 

and climate-related extreme events in China are chosen as case studies. The selection 

of hazards ensures that both rapid and slow onset types with associated hazard shocks 

to capital and labour, respectively, are covered. Furthermore, this demonstrates a wide-

ranging applicability of the proposed Disaster Footprint model (DF-substitution model 

in particular), which is possible whenever the direct impacts of a hazard can be 

translated into relative disruptions to either of the production factors, capital and labour, 

through vulnerability functions (such as depth-damage functions for floods and 

exposure-response functions for heat stress).  

 

It is worth noting that all hazards studied in this chapter are considered to directly 

affect either labour or capital. Heat stress and air pollution only reduce labour 

availability, while climate-related extreme events (e.g., floods and storms) only cause 

capital damage. For the latter, direct labour impacts may also occur during climate-

related extreme events, but they are rarely recorded in official documents and therefore 

neglected in this analysis due to data limitations. 

 

A major innovation of this work is that the hazard-induced economic impacts are for 

the first time evaluated on a finer spatial scale in China (provincial scale). Besides, the 

method used for indirect impact assessment (i.e., the DF-substitution model) improves 

on the existing models by integrating inventory dynamics and cross-regional 

substitution of suppliers. 

 

All economic values in this chapter are presented in 2020 US$ values. 



Chapter 4 

210 

 

4.1. Heat Stress 

This section tracks the annual direct and indirect economic costs of heat stress in China 

since 2000. Heat stress can negatively affect the economy by bringing about productive 

working time loss resulting from ‘absenteeism’ (when an increasing number of 

employees are absent from work due to heat-related mortality and morbidity) and 

‘presenteeism’ (when employees work more slowly due to reduced labour productivity 

under heat stress) (Schultz et al., 2009; Xia, Li, et al., 2018). To calculate the 

absenteeism- and presenteeism-related economic costs, heat-induced mortality and 

labour productivity loss are first estimated at the national and provincial levels, 

respectively, using the methods described in Section 3.1.1.2 and then fed into the DF-

substitution model as in Section 3.1.2.3 for a systematic economic impact analysis. 

Again, heat-related morbidity is not included here due to data limitations, which has 

been explained in Section 3.1.1.2. Without capital damaged by heat stress, this thesis 

mainly considers the reduction in labour input (i.e., working time loss) and its rippling 

effect through the production supply chain. Therefore, the direct costs of each sector 

refer to the first-order losses of sectoral value added due to the reduced labour supply 

and the indirect costs are the higher-order losses of sectoral value added resulting from 

inter-dependencies between sectors and regions. 

 

4.1.1. Absenteeism Costs 

4.1.1.1. Heat-related Mortality 

1) Methods and Data 

As a type of direct impacts, the number of heat-induced non-accidental deaths is 

estimated for China and its provinces using the methods described in the first part of 

Section 3.1.1.2. The period during 1986-2005 is selected as the temperature reference 
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period for heatwave threshold, which is consistent with the global report of the Lancet 

Countdown (Romanello et al., 2021). The baseline non-accidental mortality rates and 

demographic data at national and provincial levels are derived from China Statistical 

Yearbooks (http://www.stats.gov.cn/tjsj./ndsj/). Gridded climate data is collected from 

the European Centre for Medium-Range Weather Forecasts (ECMWF) of the ERA5 

project (Service(C3S) CCC, 2022). Gridded population data is obtained from a hybrid 

gridded demographic dataset for the world, which is provided by Chambers (2020). It 

should be noted that the ERFs, which describe the effects of heatwaves on mortality, 

are assumed to be constant without considering population adaptation in this analysis. 

This might create an estimation bias. In fact, along with the aging process, the 

increasing human adaptation ability, the popularity of air conditioning and other 

potential factors, the ERFs might also have changed over the past decades. However, 

due to limited investigation and data in this field, the ERFs are assumed to remain 

constant. 

 

2) Results 

Exposure to consecutive days of heat beyond threshold can lead to a notable increase 

in death risk (Xu et al., 2016). In 2021, heatwave exposure was 117% (or 7.85 days) 

higher than in the baseline (1986-2005) average, and the related deaths increased by 

13,185, leading to an estimated 24,966 deaths. With China’s population rapidly ageing, 

the proportion of deaths in people older than 65 years continues to increase from 61.1% 

in 1986-2005 to 78.4% in 2017-2021. Among all 31 mainland China provinces, 

heatwave-related deaths in the elderly were highest in Guangdong, followed by Henan, 

and Shandong, which accounted for 14.9%, 13.9%, and 10.7% of total deaths in 2021 

respectively. 

 

http://www.stats.gov.cn/tjsj./ndsj/
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Figure 4-1: Heatwave-related mortality in China. 
(A) Trend of heatwave-related mortality in 2000–2021; (B) Heatwave-related mortality by 
province in 2021. The red dashed line shows the linear trend with the equation: heatwave-
related deaths = 397*year – 785,447, P<0.05. The blue dashed line shows the share of people 
older than 65 years in the total population. 

 

4.1.1.2. Economic Costs of Heat-related Mortality 

1) Methods and Data 

First, the above results on heatwave-related working-age mortalities are divided by the 

sizes of industrial labour force in provinces (or the national labour force for the 

analysis on the national scale) to derive the percentage reduction in labour supply (or 

working time) caused by heat stress. The sizes of industrial labour force on the national 

and provincial scales are collected from China Statistical Yearbooks, which provide 

workforce data only for three major industry categories – primary, secondary, and 

tertiary. The primary industry refers to agricultural, forestry and fishing activities, the 

secondary industry includes mining, manufacturing, utilities, and construction, and the 

tertiary industry includes transport, trade, catering services, finance, real estate, and 

other services (see Table 4-1). For each province, the relative loss of labour supply in 

each industry category is further disaggregated into 20 subsectors, assuming sectors 

within the same industries share the same levels of labour loss. 

 

Second, the relative reductions in labour supply by sector and province are delivered 

into the DF-substitution model as in the second part of Section 3.1.2.3 to estimate the 
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consequent economic costs nationwide. The model is run at a monthly time step. For 

direct costs, the calculated percentage reduction in industrial labour supply is expected 

to cause the same percentage reduction in industrial value added, as labour is a major 

component of the industrial value added. This assumption is drawn from the principle 

of the IO framework, which defines that proportional increase in industrial output can 

only be achieved by simultaneous increases in both capital and labour (Miller and Blair, 

2009). In other words, the shortage of any input can directly constrain the industrial 

output capacity, with full employment of input factors. For indirect costs, the initial 

loss of industrial value added (i.e., direct costs) will have a knock-on effect disrupting 

the economic activities of other industries through the production and supply network 

characterised by the IO matrix, and the aggregate of value-added changes in all 

industries is counted as the total economic costs caused by heat stress. The increase 

from the direct to total costs indicates the indirect costs resulting from backward and 

forward interdependencies between industries and regions. At the time of writing, the 

Chinese national IO matrices were available for eight years (2002, 2005, 2007, 2010, 

2012, 2015, 2017, 2018) from the website of the National Bureau of Statistics of China 

(https://data.stats.gov.cn/ifnormal.htm?u=/files/html/quickSearch/trcc/trcc01.html&h

=740) and the Chinese multi-provincial IO matrices were updated to 2017 from the 

CEADs dataset (https://www.ceads.net/data/input_output_tables/). For other years 

without well-established IO matrices within the study period, the IO coefficients are 

derived from the existing IO matrices closest to those years, assuming a constant 

economic structure. Besides, the IO matrix used for each year are scaled to China’s 

GDP of that year according to the annual updates from China Statistical Yearbooks and 

Bulletins (http://www.gov.cn/xinwen/2022-02/28/content_5676015.htm). These IO 

matrices, which are originally compiled for 42 economic sectors, are then aggregated 

to the 20 sectors as in Table 4-1, and divided by the number of months per year as the 

model is run on the monthly basis. 

 

https://data.stats.gov.cn/ifnormal.htm?u=/files/html/quickSearch/trcc/trcc01.html&h=740
https://data.stats.gov.cn/ifnormal.htm?u=/files/html/quickSearch/trcc/trcc01.html&h=740
https://www.ceads.net/data/input_output_tables/
http://www.gov.cn/xinwen/2022-02/28/content_5676015.htm
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Third, all monetary values involved in the analysis are transformed into US$ at 2020 

prices based on the US-China currency exchange rates of the relevant years, which are 

also obtained from China Statistical Yearbooks and Bulletins.  

 

Table 4-1: Sector concordance. 
Industries Subsectors 
Primary Agriculture (including agricultural, forestry, and fishing activities) 

Secondary 

Mining 
Foods and tobacco 
Textiles 
Timbers and furniture 
Paper and printing 
Petroleum, coking, nuclear fuel  
Chemicals 
Non-metallic mineral products 
Metal products 
Ordinary machinery 
Transport equipment 
Electrical equipment 
Electronic equipment 
Other manufacturing industry 
Electricity, gas, water 
Construction 

Tertiary 
Transport 
Wholesale, retail, catering 
Other services (including finance, real estate, etc.) 

 

2) Results 

The overall economic costs of heatwave-related mortality of working-age people in 

2021 were $109.4 million, about 5 times higher than the costs in 2002, and 14.4% up 

from those in 2020. About 74% of the overall costs were due to indirect impacts; the 

largest indirect costs were found in the secondary industry (52%), followed by the 

tertiary industry (38%). With provincial level data up to 2017, the three provinces with 

the greatest costs were Gansu (US$8.0 million) followed by Henan (US$7.6 million) 

and Inner Mongolia (US$6.7 million). 
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Figure 4-2: Economic costs of heatwave-related mortality (million US$, $2020). 
(A) National direct and indirect economic costs by industry and year; (B) Provincial economic 
costs in 2017. Negative values indicate economic gains from inter-provincial trade. 

 

4.1.2. Presenteeism Costs 

4.1.2.1. Heat-related Labour Productivity Loss 

1) Methods and Data 

Another type of direct impact, the amount of heat-related labour productivity loss (i.e., 

work hours lost) is estimated for China and its provinces using the methods described 

in the second part of Section 3.1.1.2. Gridded climate and population data is collected 

from the same sources as those for heat-related mortality (see Section 4.1.1.1). Data 

on the percentage of people working in each sector is sorted from national and 

provincial statistical yearbooks of China. Here the economy is divided into four sectors 

- agriculture, manufacturing, construction, and service, which is consistent with the 

global report of Lancet Countdown (Romanello et al., 2021). Note that the loss 

function (ERF) used to estimate heat-related labour productivity loss in China is 

originally developed on the global scale, as more detailed loss functions specific to 

Chinese regions are not available so far. 

 

2) Results 

Heat stress can reduce labour capacity of working-age population and lead to losses in 

wage and economic outputs (Parsons et al., 2021). Compared with the average in 
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baseline years (1986-2005), potential work hours lost (PWHL) due to heat exposure 

increased by 2.2 billion hours (or 7.1%) in 2021, reaching 33 billion hours and 

representing 1.4% of the total national work hours. The PWHL in construction and 

manufacturing sectors continued to increase in 2021, which were 4.1 and 2.2 times 

higher than in baseline period. PWHL in the top 10 provinces accounted for 80% of 

total national losses in 2021, as a result of both rising temperature and concentration 

of labour-intensive sectors. 

 

 
Figure 4-3: Heat-related work hours lost in China. 
(A) Annual potential work hours lost due to heat in each industry from 2000 to 2021; (B) Total 
work hours lost in different provinces in 2021. 

 

4.1.2.2. Economic Costs of Heat-related Labour Productivity Loss 

1) Methods and Data 

With inputs of the relative work hours lost for each sector and year between 2012-

2021, the resulting direct and indirect economic costs due to heat stress can be 

estimated using the DF-substitution model described in the second part of Section 

3.1.2.3. The model is run at a monthly time step. Detailed data sources and processing 

procedures are similar with those for the calculation of the economic costs of heat-

related mortality (see Section 4.1.1.2). 

 

2) Results 
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In China, the economic costs of heat-related labour productivity loss have increased 

by 2.3 times from US$122.9 billion (1.27% of GDP) to US$282.3 billion (1.97% of 

GDP) between 2012 and 2018. Afterwards, the national costs declined continuously to 

US$241.3 billion (1.64% of GDP) in 2020 before rebounding slightly to US$285.8 

billion (1.68% of GDP) in 2021. The direct costs resulting from the reduced labour 

productivity mainly took place in the agriculture (32%) and construction (39%) sectors, 

while the indirect costs resulting from the cross-sector rippling effect concentrated in 

the service (49%) and manufacturing (48%) sectors in 2021. The three provinces that 

suffered the greatest economic costs in 2021, relative to their GDPs, were Hainan 

(4.75%), Guangxi (3.86%) and Jiangxi (3.33%). 

 

 
Figure 4-4: Economic costs of heat-related labour productivity loss. 
(A) National-level results, by year, in billions of 2020 US$; (B) Provincial-level results in 2021, 
relative to provincial GDPs. Negative values indicate economic gains from inter-provincial 
trade. 

 

4.2. Air Pollution 

This section estimates the direct and indirect economic impacts caused by ambient air 

pollution (using PM2.5 as a proxy indicator) in Chinese provinces between 2015 and 

2020. First, the PM2.5-related premature mortality by sector, which comprises the main 

source of direct economic impacts, is estimated for each province and year using the 

methods described in Section 3.1.1.3. Second, these mortality estimates are inputted 
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into the disaster footprint model as in Section 3.1.2.3 to systematically assess the 

resulting economic footprint impacts along the production supply chain, following 

similar procedures as for heat stress. 

 

4.2.1. Premature Mortality from Ambient Air Pollution by Sector 

1) Methods and Data 

First, the ambient PM2.5 concentration can be sourced from eight (emission) sectors: 

power plants, transport, industry, waste, natural, agriculture, other, and households. 

The sectoral contribution to ambient PM2.5 is quantified using the greenhouse gas – air 

pollution interactions and synergies (GAINS) model (Amann et al., 2020). Data from 

the International Energy Agency (IEA) World Energy Outlook 2021 (IEA, 2021) and 

data from China Statistical Yearbook 2021 and China Energy Statistical Yearbook 

2020 are integrated into GAINS to develop the provincial air pollution emission 

inventory by fuels and sectors. Ambient PM2.5 concentrations are calculated from the 

region and sector specific emissions by applying atmospheric transfer coefficients, 

which are a linear approximation of full chemistry-transport models. Atmospheric 

transfer coefficients in GAINS are based on full year perturbation simulations with the 

European Monitoring and Evaluation Programme (EMEP) Chemistry Transport 

Model (Simpson et al., 2012) at 0.1°×0.1° resolution (for low-level sources) or 

0.5°×0.5° resolution (for all other sources) using meteorology of 2015. 

 

Second, the numbers of premature deaths resulting from ambient air pollution (PM2.5) 

by sectoral sources for each province in China between 2015 and 2020 are estimated 

using the methods described in Section 3.1.1.3. Baseline mortality data and RR values 

are obtained from the results of the GBD 2019 study (Murray et al., 2020). Provincial 

demographic and mortality data is collected from Chinese Statistical Yearbooks for the 

relevant years.  
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It should be noted that the annual mean PM2.5 concentration for each province is 

estimated from the GAINS model, rather than the observed data officially released, 

and the same concentration-response function and RR values are used for PM2.5 from 

various sources, which may result in biased estimates deviating from the actual 

situation to some extent. 

 

2) Results 

As the most important global environmental risk factor for premature mortality (Watts 

et al., 2019), China has adopted an ambitious response to deliver cleaner air. The 

Three-Year Action Plan for Winning the Blue Sky Defence Battle (2018-2020) (State 

Council of China, 2018) has led to 14,600 fewer premature deaths from 2019 to 2020, 

continuing the downward trend (with 243,700 fewer deaths) between 2015 and 2019. 

30% of the reduction in premature deaths occurred in South Central China, 28% in 

East China, and 16% in North China. Premature deaths attributable to air pollution 

from the household, industry and agriculture sectors had the most significant reduction, 

mainly because of the implementation of ultra-low air pollution emission standards 

and the Zero Growth of Chemical Fertilizer and Pesticide Use policy (MOA, 2017). 

However, the emissions from the waste sector caused more premature deaths in 2020 

than in 2019, compared to the results of the 2021 China report (Cai et al., 2021). 

Despite the notable health benefits of cleaner air, progress towards improving air 

quality in China has been so far insufficient, with over 41% of the population being 

exposed to the annual average of PM2.5 concentration above the WHO interim target-

1 of 35 µg/m3 in 2021. 
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Figure 4-5: Annual premature deaths attributable to PM2.5 by regions and sectors between 
2015 and 2020. 

 

4.2.2. Economic Costs of Air Pollution-related Premature Deaths 

1) Methods and Data 

First, the total numbers of PM2.5-related deaths are multiplied by the ‘labour force 

mortality rates’ to calculate the absolute losses of labourers. Labour force mortality 

rates refer to the proportions of deaths at the working age (i.e., 15-64) among deaths 
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of all age groups. As PM2.5-related labour force mortality rates are not available at 

present, the all-cause labour force mortality rates are used as reference, which are 

collected from the sixth national population census of China (National Bureau of 

Statistics of China, 2010). Different provinces have different labour force mortality 

rates.  

 

Second, the absolute losses of labourers are disaggregated into the primary, secondary 

and tertiary industries according to the sectoral results of PM2.5-related deaths, and 

then divided by the sizes of industrial labour force in provinces (or the national labour 

force for the analysis on the national scale) to obtain the relative losses of labourers. 

The numbers of national and provincial labourers by industry for the relevant years are 

sourced from China Statistical Yearbooks. It should be noted that the industrial labour 

losses are not derived directly from the sectoral results of PM2.5-related deaths, as 

deaths attributable to a certain emission sector (e.g., the transport sector), do not 

necessarily mean deaths taking place within that sector. The breakdown of labour 

deaths into the three industries is weighted-proportional to the regional employment 

of the three industries. In other words, the three industries are first given specific 

weights against each of the eight emission sectors based on expert judgement 

(Appendix Table A4), and then the labour deaths attributable to each emission sector 

are disaggregated into the three industries in weighted proportion to the regional 

employment of the three industries. For example, it is assumed that most PM2.5-related 

labour deaths attributable to the agriculture sector fall into the primary industry, while 

those attributable to the transport sector belong mainly to the secondary and tertiary 

industries. Therefore, the primary industry is given a larger weight than the secondary 

and tertiary industries when proportionally disaggregating the labour deaths with an 

agricultural cause into the three industries, while the secondary and tertiary industries 

are given larger weights for deaths attributable to the transport sector than the primary 

industry. 
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Finally, like heat stress, there is no capital loss resulting from PM2.5 pollution. The 

relative losses of labourers by industry can be interpreted as the percentage reductions 

in industrial labour supply (i.e., working time), which are then fed into the DF-

substitution model as in the second part of Section 3.1.2.3 to estimate the overall 

economic costs on both the national and provincial scales following similar procedures 

as for heat-related mortality in Section 4.1.1.2. The model is run at a monthly time step. 

The IO tables and economic data (e.g., GDPs) used in this analysis are also collected 

from the same sources and processed in similar ways as for heat-related mortality (see 

Section 4.1.1.2). 

 

2) Results 

Although the number of air pollution-related premature deaths decreased in 2020, with 

the increasing GDP of China, the absolute national economic costs increased slightly 

by 3% from $9.00 to $9.24 billion during 2015-2020. As a result, the relative costs as 

a percentage of China’s GDP declined from 0.07% to 0.06%. Progress towards air 

pollution control seen in the previous year continued during 2020 (Cai et al., 2021). 

The secondary and tertiary industries still accounted for the majority (increased from 

90% in 2015 to 92% in 2020) of total costs. Between 2015 and 2020, the share of the 

secondary industry in total costs increased from 47% to 53%, while the shares of the 

primary and tertiary industries decreased from 10% to 8% and from 44% to 39% 

respectively. The three provinces that suffered the greatest economic costs in 2020, 

relative to their GDPs, were Xinjiang (0.27%), Heilongjiang (0.26%) and Hebei 

(0.12%). 
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Figure 4-6: Economic costs of PM2.5-related premature deaths. 
(A) National-level results, by year and industry, in billions of 2020 US$; (B) Provincial-level 
results in 2020, relative to provincial GDPs. Negative values indicate economic gains from 
inter-provincial dependencies. 

 

4.3. Extreme Weather Events 

This section measures both the direct and indirect economic losses of climate-related 

extreme events that have occurred and been recorded in China during 2009-2021. 

Unlike heat stress and air pollution, most of these events mainly cause direct damage 

to capital assets rather than labour assets. Although casualties occur during climate-

related extreme events, the direct labour impacts are rarely recorded and hard to 

calibrate. Therefore, the direct losses resulting from these events refer to the tangible 

damage to physical assets at risk, while indirect losses are the subsequent losses, 

including business interruption losses of affected economic sectors, and the spread of 

losses towards other initially non-affected economic sectors, and the costs of recovery 

processes. 

 

1) Methods and Data 

First, data on physical or direct damage of the climate-related extreme events during 

the study period is sourced from statistical yearbooks and reports released by Chinese 

authorities, including China Statistical Yearbooks on Environment, Yearbooks of 

Meteorological Disasters in China, and annual reports of Ministry of Emergency 
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Management of China. These statistics typically record the annual direct damage of 

five categories of climate-related extreme events (i.e., droughts, floods, hailstorms and 

thunderstorms, cyclones, blizzards and extreme low temperatures) in China on both 

the national and provincial scales.  

 

Second, the annual direct damage due to climate-related extreme events is broken 

down into three industrial categories (i.e., primary, secondary, and tertiary) and a 

residential sector, according to the proportions based on empirical evidence of China’s 

historical floods between 1961-1990 from a previous study (Yin et al., 2021), and 

damages in the three industrial categories are further disaggregated into 20 subsectors 

(see Table 4-1 in Section 4.1.1.2) in proportion to their value added. The annual direct 

damage of each sector is then divided into five months (from May to September), as 

the summer seasons are considered as highly risky with climate-related extreme events. 

 

Third, assuming the capital stock held by each sector is around 4 times the sectoral 

value added, which is similar to previous studies (Hallegatte, 2008; Koks and Thissen, 

2016), the percentage reductions in sectoral capital supply due to climate-related 

extreme events can be derived by dividing the annual direct damage by the capital 

stock for each year. These are then delivered into the DF-substitution model described 

in the second part of Section 3.1.2.3 to estimate the indirect economic impacts on both 

the national and provincial scales. The model is run at a monthly time step. The IO 

tables and economic data (e.g., GDPs) used in this section are collected from the same 

sources and processed in similar ways as for heat-related mortality (see Section 

4.1.1.2). 

 

2) Results 

The absolute annual economic losses due to climate-related extreme events in China 

have been fluctuating around US$55 billion during 2009-2021, with significant 
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increases to US$109.5 billion in 2010, US$91.2 billion in 2013 and US$98.8 billion 

in 2016. However, the relative losses, as a percentage of China’s GDP, generally 

demonstrated a downward trend from 0.88% in 2009 to 0.35% in 2021, again with 

notable rises to 1.52% in 2010, 0.99% in 2013 and 0.88% in 2016. The total losses, 

either in absolute or relative terms, have been kept at low levels since 2017. This 

indicates that China has been more economically resilient towards climate extremes, 

though the frequency and intensity of these events have been growing (IPCC, 2021). 

For each unit of direct damage caused by climate-related extreme events, 0.23-0.32 

units of indirect losses occurred due to the rippling effects along the production supply 

chain. Most of the direct damage (~94%) took place in the secondary and tertiary 

industries and the residential sector, while the indirect losses (~60%) tended to 

accumulate in the primary industry. The primary industry was thus the most 

economically vulnerable towards climate extremes with higher indirect/direct loss 

ratios (1.95-2.79) than other industries. With provincial level data up to 2019, the three 

provinces that suffered the greatest economic losses, relative to their GDPs, were 

Jiangxi (2.61%), Heilongjiang (2.04%) and Zhejiang (1.19%). 

 

 
Figure 4-7: Economic losses due to climate-related extreme events. 
(A) National-level results, by year, in billions of 2020 US$; (B) Provincial-level results in 2019, 
relative to provincial GDPs. Negative values indicate economic gains from the stimulus effects 
of post-disaster reconstruction and inter-provincial substitution. 
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4.4. Discussion and Conclusions 

The total economic costs of heat stress, air pollution and climate extreme events in 

China have increased from US$207.9 billion (1.79% of GDP) in 2015 to US$317.1 

billion (2.16% of GDP) in 2020. Despite the downward trend in the economic costs 

(particularly in relative terms as a percentage of China’s GDP) of air pollution and 

climate extreme events, the economic costs resulting from heat-related health impacts 

have continued the concerning growing trend. Among the three types of hazards, the 

economic costs of heat stress were the biggest and accounted for an increasing 

proportion (from 71% in 2015 to 76% in 2020) of the total costs. This was followed 

by climate extreme events, which explained a declining share (from 24% to 21%) of 

the total costs. The economic costs of air pollution were the smallest and accounted 

for the rest of the total costs, which decreased from 4% to 3% during 2015-2020. Heat 

stress mainly negatively affected the economy by reducing labour productivity, as 

heat-related mortality only resulted in 0.03% of the total costs. 

 

It should be noted that this chapter evaluates the economic impacts of heat stress, air 

pollution, and climate-related extreme events only separately over different years with 

accessible data. Still, comparisons of these single events can be made between 2015 

and 2020, as data of these two years is available for all case studies. 

 

For each unit of direct costs, heat stress was also inclined to cause more indirect supply 

chain costs than air pollution and climate extremes. The ratios between indirect and 

direct costs for heat-related labour productivity loss ranged between 0.81-1.28 during 

the study period, while those for air pollution and climate extremes were 0.14-0.17 and 

0.23-0.32 respectively. For heat impacts, most of the direct costs occurred outdoors in 

the agriculture and construction sectors, while most of the indirect costs happened 

indoors in the manufacture and service sectors. This indicates that, in the next stage of 
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China’s climate adaptation actions, more efforts should be made to enhance the 

adaptability of outdoor sectors to heat extreme, as well as to improve the supply chain 

resilience to mitigate the spillover effects of heat-related health impacts. 

 

At the regional level, hotspot provinces with prominent economic risks from these 

hazards have been identified for China. Generally, southern provinces were more 

economically vulnerable to heat stress than northern provinces, while northern 

provinces tended to suffer larger economic costs from air pollution than southern 

provinces. By contrast, the economic impacts of climate extreme events were more 

spatially distributed in China than the other two types of hazards. Special attention 

should be paid to two provinces, namely Jiangxi in southern China and Heilongjiang 

in northern China. The former province suffered the third greatest economic costs from 

heat stress and the greatest losses from climate extreme events, in relative terms, while 

the latter province suffered the second greatest economic impacts from air pollution 

and climate extreme events, among all provinces in China. These location-specific 

economic impacts of climate change require location-specific response measures, 

including enhancing inter-departmental cooperation, strengthening climate emergency 

preparedness, supporting scientific research, raising public awareness, and promoting 

climate change mitigation and adaptation. 
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Chapter 5 Economic Impacts of Future Fluvial 
Flooding in Six Vulnerable Countries under 
Climate Change and Socio-economic 
Development 

The outcomes of this chapter have been published in a paper co-authored by Zhiqiang 

Yin, Katie Jenkins, Yi He, Nicole Forstenhäusler, Rachel Warren, Lili Yang, Rhosanna 

Jenkins, and Dabo Guan. Yixin Hu is responsible for indirect impact modelling, result 

interpretation, and drafting. The sections in this chapter have been reproduced under 

the permission of co-authors. 

 

Yin, Z.#, Hu, Y.#, Jenkins, K., …, Guan, D*. (2021). Assessing the economic impacts 

of future fluvial flooding in six countries under climate change and socio-economic 

development. Climatic Change, 166(3), 38. https://doi.org/10.1007/s10584-021-

03059-3 

 

The purpose of this chapter is to fulfil Research Objective 5, which is the empirical 

application of the proposed Disaster Footprint model for the single-hazard impact 

analysis (see Section 3.1). This contributes to Research Question 2 raised in Section 

1.4.1. While Chapter 4 shows the economic impacts of several types of extreme events 

during the past years in China, this chapter extends the application to the projection of 

future economic risks due to climate change, taking fluvial flooding as an example, in 

six vulnerable countries. More specifically, this chapter presents an integrated flood 

risk analysis framework to calculate total (direct and indirect) economic damages, with 

and without socio-economic development, under a range of warming levels from 

<1.5°C to 4°C in Brazil, China, India, Egypt, Ethiopia, and Ghana. Direct damages are 

estimated by linking spatially explicit daily flood hazard data from the Catchment-

https://doi.org/10.1007/s10584-021-03059-3
https://doi.org/10.1007/s10584-021-03059-3
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based Macro-scale Floodplain (CaMa-Flood) model with country and sector specific 

depth-damage functions. These values are fed into the Disaster Footprint model for the 

estimation of indirect losses. The results show that total fluvial flood losses are largest 

in China and India when expressed in absolute terms. When expressed as a share of 

national GDP, Egypt faces the largest total losses under both the climate change and 

climate change plus socio-economic development experiments. The magnitude of 

indirect losses also increased significantly when socio-economic development was 

modelled. The analysis highlights the importance of including socio-economic 

development when estimating direct and indirect flood losses, as well as the role of 

recovery dynamics, essential to provide a more comprehensive picture of potential 

losses that will be important for decision makers. All economic values in this chapter 

are expressed in 2010 US$ values. 

 

5.1. Introduction 

Floods are among the most frequent and costliest natural hazards. Globally, floods 

have affected more than 3.8 billion people and caused direct economic damages of 

~826 billion US$ between 1960-2019, among which fluvial flooding accounts for two 

thirds, according to data from the EM-DAT database13. Economic damage from flood 

disasters has increased strongly over the past decades, reflecting increasing exposure 

of people and assets (IPCC, 2022; Jiménez Cisneros et al., 2014; Merz et al., 2021). 

The latest IPCC report has projected a 4-5 times increase in global flood impacts at 

4°C compared to 1.5°C warming (Caretta et al., 2022). The impacts of fluvial floods 

are expected to increase in the future, predominantly driven by population and 

economic growth in flood-prone areas (Jongman, Ward, et al., 2012; Kinoshita et al., 

2018; Tanoue et al., 2016). The intensification of the global hydrological cycle due to 

 
13 This is sourced from EM-DAT: the Emergency Events Database - Université catholique de Louvain (UCL) - 

CRED, D. Guha-Sapir - www.emdat.be, Brussels, Belgium (accessed 7 Feb 2020). 
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climate change will further increase future flood risks (Alfieri et al., 2017), 

exacerbating flood damages and posing a threat to future generations. Therefore, it is 

imperative to assess fluvial flood risks under scenarios of climate change and socio-

economic development, to support decision-making regarding flood risk management 

and adaptation strategies. 

 

Past efforts have largely focused on estimating future populations exposed to fluvial 

flooding (Arnell and Lloyd-Hughes, 2014; Hirabayashi and Kanae, 2009; Hirabayashi 

et al., 2013; Hirabayashi et al., 2021; Tellman et al., 2021) and the estimation of direct 

damages (usually to urban areas) (Alfieri et al., 2017; Kinoshita et al., 2018; Tanoue 

et al., 2021; Ward et al., 2017; Ward et al., 2013; Winsemius et al., 2016; Winsemius 

et al., 2013), under different scenarios of climate change and/or socio-economic 

development. Direct flood damages are typically assessed by linking physical 

properties of the hazard such as flood depth and area; exposure, in terms of the location 

of assets or land-use type; and vulnerability, derived from depth-damage functions that 

denote the damage that would occur at a given flood depth for a given asset or land-

use type. Floods can also cause indirect damages, including reduced business 

production of affected economic sectors; the spread of these losses towards other 

initially non-affected sectors through inter-sectoral linkages; and the costs of recovery 

processes (Koks and Thissen, 2016; Taguchi et al., 2022; Tanoue et al., 2020). Indirect 

damages may continue to be felt after the flood event has ended, reflecting the full-

time dimension of the event, as well as negatively and positively affecting regions 

outside of the original event (Carrera et al., 2015; Shughrue et al., 2020). Due to these 

factors, indirect losses can be high, or even exceed direct damages (Koks et al., 2015; 

Tanoue et al., 2020). The scale and duration of indirect losses will be dependent on the 

severity of the event, the pre-existing state of the economy, and the ability of 

individuals, businesses, and markets to adapt and recover. Yet, in terms of flood risks, 

indirect impacts and their wider macro-economic effects are still poorly understood 
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(Carrera et al., 2015; Tanoue et al., 2020), and detailed estimations of joint direct and 

indirect flood-induced economic impacts are relatively rare (Merz et al., 2021; Sieg et 

al., 2019). 

 

Given the potential scale of indirect losses, it is important to consider them alongside 

direct damages to provide a more complete picture of the economic consequences of 

flood events (Koks et al., 2019). However, only a limited number of studies assess the 

total economic impacts of future fluvial flooding in combination with climate change 

and socio-economic projections. Dottori et al. (2018) carried out a global fluvial flood 

risk assessment by estimating human losses, and direct and indirect economic impacts 

under a range of temperature and socio-economic scenarios. However, they only 

considered welfare or consumption losses as a proxy of indirect impacts, ignoring 

changes in sectoral outputs. Willner et al. (2018) assessed the economic losses from 

climate change-related fluvial floods in the near future (2035), mainly in China, the 

US, and the European Union, but with fixed socio-economic conditions. Koks et al. 

(2019) evaluated the total economic consequences of future fluvial flooding at a sub-

national scale for Europe, including indirect impacts and regional economic 

interdependencies for five aggregated sector groups. However, the authors noted the 

relatively simple approach to estimate the initial reduction in production capacity 

following a flood, from which indirect damages were calculated. This was based on 

the value of exposed assets per sector divided by the total asset value for each sector, 

assuming each sector needed a certain stock of assets to produce outputs. Furthermore, 

the study excluded damages to residential buildings, which are a significant part of 

direct flood impacts. 

 

More recently, Taguchi et al. (2022) projected the flood-related indirect losses due to 

business interruption (BI loss) on the global scale by the end of the 21st century under 

Representative Concentration Pathway 8.5 (RCP8.5) and Shared Socioeconomic 
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Pathway 3 (SSP3) scenarios. However, they only calculated indirect losses for regions 

directly affected by floods and higher-order propagation effects to other regions were 

neglected, which resulted in smaller estimates than those from previous studies.  

 

In addition, flood risk analysis is usually performed at a global, continental, or 

aggregated multi-country level. Single-country analysis is less common, particularly 

studies that consider both direct and indirect losses under future scenarios of climate 

change alongside scenarios of socio-economic development. This is particularly true 

for developing countries in Africa, Asia, and Latin America, where rapid growth in 

population and economic activities is forecast to take place, driving large increases in 

flood exposure and economic losses (Dottori et al., 2018; Jongman, Ward, et al., 2012). 

Developing countries are also found to suffer greater fluvial flood-induced growth 

losses in the long run (Krichene et al., 2021), implying the importance of in-depth 

investigation on fluvial flood risks for these countries. Where country level studies do 

exist, they often focus on specific cities or river basins only and are disparate, using 

different climate models, levels of global warming, economic and population data etc., 

hindering comparison (see Appendix C.1. Literature on Risks of Fluvial Flooding in 

the Study Countries of Chapter 5). 

 

Lastly, existing flood risk projections do not always cover the plausible range of global 

warming, especially higher warming levels such as 3°C or above. Since the global 

mean temperature increase implied by countries’ Nationally Determined Contributions 

(NDCs) under the Paris Agreement is estimated to be in the range of 2.7°C to 3.5°C 

by 2100 (Gütschow et al., 2018), it is important to examine a wide range of climate 

change impacts on flood risk. Likewise, an accurate understanding of the drivers of 

future fluvial flood risk is critical to help adopt effective risk reduction measures, but 

few studies have integrated both climate and socio-economic drivers (Kinoshita et al., 

2018; Muis et al., 2015; Winsemius et al., 2016). Winsemius et al. (2016) performed 
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the first global fluvial flood risk assessment that separated the effects of climate change 

and socio-economic growth. This is followed by Kinoshita et al. (2018), who further 

included the effects of autonomous adaptation. However, both studies only estimated 

direct (urban) damages. 

 

The study in this chapter is novel in that it presents an integrated flood risk analysis 

focused on direct and indirect economic damages caused by floods, both with and 

without the inclusion of socio-economic development. A broad range of warming 

levels from <1.5°C to 4°C are considered. The framework is applied to six developing 

countries: Brazil, China, India, Egypt, Ethiopia, and Ghana. This demonstrates the 

flexibility of the method to be applied to multiple countries, to facilitate regional 

comparison, and reflects a range of different climate impacts, geographies, and levels 

of development. 

 

5.2. Experiment Design and Data 

5.2.1. Model Experiment Design 

Projected changes in average annual economic damage for the future period (2086-

2115) are compared to the baseline period (1961-1990). Two sets of model 

experiments are conducted: a ‘climate change only’ experiment (CC), in which socio-

economic conditions are kept constant at the baseline level for the six warming 

scenarios; and a ‘climate change and socio-economic development’ experiment 

(CC+SE), which considers both climate change and socio-economic growth in parallel. 

The differences between the estimates can reflect the effect of socio-economic 

development alone on future flood risks. Here, socio-economic development refers to 

each country’s population, labour force, gross domestic product (GDP), capital stock, 

and land use changes. The flood hazard and socio-economic data used to calculate the 

direct and indirect losses for both the baseline and future scenarios are described below. 
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5.2.2. Climate Forcing and Flood Hazard Data 

The daily streamflow and flood inundation depth are simulated at 0.25° spatial 

resolution by using a physical model cascade, the Hydrologiska Byråns 

Vattenbalansavdelning (HBV) model (Bergström, 1992) and the Catchment-based 

Macro-scale Floodplain (CaMa-Flood) model (Yamazaki et al., 2011). The WATCH 

daily bias-adjusted reanalysis dataset (Weedon et al., 2014) for 1961-1990 was used as 

the climate forcing data for the baseline period (1961-1990). The climate forcing data 

for the future period (2086-2115) were generated by combining monthly observations, 

daily reanalysis data, and projected changes in climate from GCMs. The projected 

changes in climate for the specific warming levels considered here are <1.5°C, <2°C 

(which denote aiming to stay below 1.5°C and 2°C in 2100, respectively, with 66% 

probability), exactly 2.5°C, 3°C, 3.5°C and 4°C relative to pre-industrial levels. The 

selection of warming levels is consistent with Warren et al. (2021), another work for 

the same project. To sample the uncertainty in regional climate change projections, this 

thesis uses patterns of change simulated by five GCMs obtained from the fifth phase 

of the Climate Model Intercomparison Project (CMIP5) (Taylor et al., 2012). A river 

discharge corresponding to a 1 in 100-year flood in the baseline period was selected 

as the hazard indicator, in line with several previous studies (Arnell and Gosling, 2016; 

Arnell and Lloyd-Hughes, 2014; Hirabayashi and Kanae, 2009; Hirabayashi et al., 

2013). Whilst adaptation is not modelled, the 1 in 100-year event is often used as a 

hazard indicator given flood protection works are often designed for this return period 

(with some exceptions like the Netherlands). The time series of the simulated annual 

maximum daily river discharge in the baseline period for each grid, GCM and scenario 

were fitted respectively to a Gumbel distribution function using the maximum 

likelihood method. The magnitude of river discharge having a 100-year return period 

in the baseline was then calculated. The economic risks associated with the projected 

changes in flood hazard were calculated in the modelled inundation areas in which 
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annual maximum discharge in the future period exceeds the baseline 1 in 100-year 

threshold. Details of climate forcing and flood hazard data used in this study are 

described in He et al. (2022), also another work for the same project. 

 

5.2.3. Socio-economic Data 

Socio-economic data used for direct and indirect impact estimation includes 

information on national land use status, IO tables, GDP, capital stock and labour force 

(see Table 5-1 for an overview of data used to calculate the flood-induced economic 

impacts in the baseline and future periods for the CC and CC+SE experiments). 

 

Table 5-1: Overview of data used for ‘CC+SE’ and ‘CC’ experiments. 

Data used 
With socio-economic change 
(CC+SE) 

Without socio-economic 
change (CC) 

Population exposure 
Scale down/up to the relevant 
years 

Scale down to the average level 
between 1961-1990 

Capital damage 
Scale down/up to the relevant 
years 

Scale down to the average level 
between 1961-1990 

IO Tables 

Baseline: earliest available 
version (e.g., 2005 for Ghana) 
Future: latest available version 
(e.g., 2015 for Ghana) 
(See Appendix Table A5 for 
full details) 

Same IO table as the baseline 
period 

Land Cover 
Baseline: 1992 
Future: 2015 

1992 

GDP, labour, capital 
stock & other socio-
economic indicators 

Baseline: growing from 1961 
using reported data 
Future: growing from 2086, 
according to SSP2 projections 

Average between 1961-1990 

 

The gridded land use data for each country is extracted from the European Space 

Agency Climate Change Initiative (ESA CCI) land cover product at 10-arcsec 

resolution (ESA, 2017). The land cover map of 1992, the earliest year available in the 

ESA CCI’s product, is used for the baseline period. For the CC experiment, the same 
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land cover map is used for both the baseline and future periods. Under the CC+SE 

experiment, the map of 2015 is used for the future period, assuming a constant land 

cover after 2015. Employing two sets of land cover maps from the same data source 

means they are produced with the same approach and ensures consistency between 

estimates. Using different years can also account for the effect of land cover change, 

especially urban expansion, in the real world. This is beneficial as many studies do not 

allow for urban expansion (Rojas et al., 2013; Ward et al., 2017; Winsemius et al., 

2016; Winsemius et al., 2013), which will be a key driver of increased future flood 

risks (Muis et al., 2015). 

 

For each of the countries, IO tables are obtained from its national statistical website, 

providing information on intermediate demand, final demand, value-added, output, 

imports, and exports at the country level. For each country, the earliest version of the 

IO table available is used to approximate the economy during the baseline period. For 

the CC experiment, the same IO table is used for both the baseline and future periods. 

Under the CC+SE experiment the economic structure is assumed to vary in the future. 

This variance is represented by using the same IO table as used in the CC experiment 

in the baseline but the most recent version of the IO table available for each country in 

the future period (see Appendix Table A5 for country specific details on the IO tables 

used). This, to some extent, reflects the structural change from the baseline economy 

to the future one, given difficulties in projecting IO tables for 2100. The IO tables also 

provide data on the sectors involved in capital reconstruction from the investment 

column contained in the final demand block. The share of each sector investing in fixed 

capital formation indicates its contribution to the reconstruction process. The annual 

data in the IO table used is lastly divided by twelve to represent a monthly value. 

 

Industry data from IO tables are aggregated to ten economic sector groups per country: 

Agriculture (AGR), Mining (MIN), Food Manufacturing (FDM), Other Manufacturing 
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(OTM), Utilities (UTL), Construction (CON), Trade (TRD), Transport (TRA), Public 

services (PUB) and Other Services (OTS) (see also Appendix Table A5). Where 

sectoral-level data is not available, such as for capital stock, it is disaggregated to the 

ten sector groups based on their proportional contribution to national GDP. 

 

Data on GDP, population and labour force are derived from the World Bank World 

Development Indicators (World Bank, 2021). Data on capital stock is from the 

Investment and Capital Stock (ICSD) dataset from the IMF (IMF, 2015). Capital stock 

is divided into industry productive and residential capital based on land use from the 

land cover maps. Under the CC experiment data on GDP, population, labour force, and 

capital stock are set as constant to restrict any socio-economic change. In the CC+SE 

experiment these data are dynamic. For the baseline scenarios this reflects reported 

trends in data from 1961-1990. For the warming scenarios, trends in data are based on 

the SSP2 projections whereby social, economic, and technological trends do not shift 

markedly from historical patterns (Riahi et al., 2017). 

 

The shock of the flood event Is represented by physical damage to capital assets and 

labour loss. 

 

For the former, capital damage is calculated using the method described in Section 

3.1.1.1. Three points are worthy of being noted here: 

1) For the agricultural land-use sector, the cropland area is obtained directly from the 

ESA CCI land cover maps, then aggregated at the resolution of the flood hazard 

maps (0.25°). However, the global land cover data represents urban land as a 

single class and does not differentiate between residential, commercial, and 

industrial sectors. Therefore, the urban land class is disaggregated into these three 

sub-classes. In terms of the occupation of residential, commercial and industrial 

urban land-use sectors in cities, several previous studies assume uniform 
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percentages across the globe (Dottori et al., 2018), ignoring differences between 

individual countries. Huizinga et al. (2017) suggest that the percentages that 

commerce and industry contribute to national GDP could be used to downscale 

the single urban land class. However, the contribution of a sector to national GDP 

does not necessarily relate to the land surface it occupies. In this case, the 

population in a sector would be more relevant to the occupied land area. Therefore, 

in this study the residential population and employment in commercial and 

industrial sectors are used as proxies to downscale the single urban land class. It 

is assumed that the percentages of occupation of each sector within cities are 

equivalent to those of the population in each sector. Population data from the 

World Bank World Development Indicators are used (World Bank, 2021). To be 

consistent with the land cover maps, population data from 1992 and 2015 per 

country are used to calculate the country-specific percentages for the baseline and 

future scenarios respectively. 

2) Since it is difficult to establish depth-damage functions for the future, this study 

uses the same set of functions for both the baseline and future periods as in other 

studies (Alfieri et al., 2017; Dottori et al., 2018), assuming that vulnerability is 

constant over time. 

3) Capital damage is scaled based on the baseline and projected GDP per capita, 

according to the power law functions provided by Huizinga et al. (2017). 

Exponents in the power law functions are smaller than one, indicating that capital 

damage is not proportional to GDP per capita and grows slower than GDP per 

capita. The scaled capital damage in the four land-use sectors (i.e., agricultural, 

residential, commercial, and industrial sectors) is then disaggregated into the 

above-mentioned ten economic sectors in proportion to the capital stock held by 

these economic sectors. 

 

For the latter, labour loss is calculated using data on population exposure to fluvial 

https://www.zotero.org/google-docs/?PFaFza
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flooding for each country provided by He et al. (2022) of this project. Affected labour 

is derived by multiplying the exposed population by the labour participation rate, from 

the World Bank (World Bank, 2021). The number of affected employees during each 

flood are divided into four categories: the dead, the heavily injured, the slightly injured, 

and others affected by flood-induced traffic disruptions. The ratios between these 

categories are determined based on the historical average of recorded floods for each 

country from the EM-DAT database (CRED, 1988).  

 

Finally, the estimated capital damage and labour loss are fed into the DF-growth model 

(see the first part of Section 3.1.2.3) to track down the flood-induced indirect economic 

impacts for each country during the relevant periods. For the CC+SE experiment, the 

economy is allowed to recover to a target level above the initial level, converging to 

an exogenous growth trajectory; while for the CC experiment, the economy can only 

recover back to the initial state and additional constraints on growth parameters are set 

to exclude any growth potentials. The model is run at a monthly time step. All 

economic impacts are expressed in 2010 US$ values. 

 

5.3. Results 

5.3.1. Direct and Indirect Fluvial Flood Damages 

Figure 5-1 presents estimates of direct and indirect economic damage for each country 

and climate scenario, under the CC and CC+SE experiments (results are plotted on the 

same axis to compare risk, see Appendix Figure B1 and Appendix Figure B2 for results 

plotted on separate axis per country for more details). The results reflect the underlying 

data provided from the flood hazard model, highlighting increasing economic damages, 

above the baseline, in line with the increasing warming scenarios. For Egypt, the 

largest increases in average damage occur up to Scenario 3: 2.5°C, after which 

damages continue to increase albeit at a smaller rate. This reflects the findings of He 
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et al. (2022), who noted that the proportional area of the Nile River Basin that 

experiences a decrease in the return period of a 1 in 100-year event (increase in flood 

frequency) changes little from Scenario 1: <1.5°C to 6: 4°C. 

 

 
Figure 5-1: Average annual direct and indirect fluvial flood damages calculated across the 
30-year time period for the baseline and six warming scenarios in each country. 
Damages in panel A are expressed in million US$/year for the CC experiment and in panel B 
in billion US$/year for the CC+SE experiment. Bars represent the ensemble average of the 
five GCMs, with whiskers indicating the ensemble maximum and minimum. 

 

Under the CC experiment, direct damages under Scenario 1: <1.5°C are 399 (+95%, 

relative to baseline, Brazil), 1,713 (+80%, China), 427 (+13,783%, Egypt), 54 (+341%, 

Ethiopia), 11 (+255%, Ghana) and 719 (+435%, India) million US$ per year. Direct 

damages increase to 4,267 (+1,979%, relative to baseline, Brazil), 5,759 (+506%, 

China), 1,495 (+48,508%, Egypt), 147 (+1,108%, Ethiopia), 79 (+2,401%, Ghana), 
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and 7,888 (+5,767%, India) million US$ per year under Scenario 6: 4°C. The indirect 

damages, though much lower than direct damages, display similar trends (Figure 5-1). 

The Economic Amplification Ratio (EAR), defined as the ratio of total costs to direct 

costs (Hallegatte et al., 2007), is relatively constant across the warming scenarios for 

each country. As an average across the warming scenarios, the EAR is 1.23 (Brazil), 

1.15 (China), 1.61 (Egypt), 1.36 (Ethiopia), 1.22 (Ghana), and 1.26 (India). 

 

Under the CC+SE experiment the magnitude of direct damage increases significantly 

for all countries, reflecting the increasing population and economic assets at risk. 

Under Scenario 1: <1.5°C direct damages range from 0.13 billion US$ per year (Ghana) 

to 42 billion US$ per year (China). Losses increase to 1.12 billion US$ per year (Ghana) 

and 129 billion US$ per year (China) under Scenario 6: 4°C. The magnitude of indirect 

damages not only increase but also surpass the direct damages (Figure 5-1). Indirect 

losses range from 1.7 billion US$ per year (Ghana) to 51 billion US$ per year (China) 

under Scenario 1: <1.5°C, increasing to 12 billion US$ per year (Ghana) and 256 

billion US$ per year (China) under Scenario 6: 4°C. As an average across the warming 

scenarios, the EAR increases to 10.97 (Brazil), 2.36 (China), 16.21 (Egypt), 12.05 

(Ethiopia), 12.94 (Ghana), and 6.62 (India). 

 

The increase in direct damage under the CC+SE experiment reflects the steady growth 

in capital stock, population, and GDP under the SSP2 trajectories, resulting in larger 

flood exposure in the future period compared to the baseline. Indirect losses are 

significantly larger than direct losses as indirect losses in the CC+SE experiment 

accumulate over time and reflect the potential for a continuous slowdown in economic 

growth from the projected growth trajectory if no floods occurred. In other words, the 

indirect flood damages presented here not only result in a short-term impact on 

economic output, but also have the potential to restrict longer-term economic growth 

(discussed further in Section 5.3.4, Figure 5-5 and Figure 5-6). Thus, the inclusion of 
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socio-economic development results in large increases in total losses when compared 

to the equivalent CC experiment run; for example, under Scenario 6: 4°C, the total 

losses will increase by 3,613% (Brazil), 5,670% (China), 5,265% (Egypt), 6,095% 

(Ethiopia), 13,447% (Ghana), and 5,503% (India). 

 

Figure 5-1 also illustrates that there is a large range in uncertainty, shown as the 

ensemble maximum and minimum values, which also increases under higher warming 

levels. This reflects the variance seen in the flood model outputs, representing 

differences in climate change patterns projected by the five GCMs. 

 

5.3.2. Percentage Change to National GDP 

Figure 5-2 presents the average annual indirect economic damage as a share of national 

GDP. Under both the CC and CC+SE experiments, Egypt suffers the largest reductions 

to national GDP, reaching 2.3% and 3.0% under Scenario 6: 4°C, respectively. This 

highlights the high population density and the fact that most economic activities, 

including agriculture, take place in the Nile Valley (Aliboni, 2012). While flood risk 

was low in the baseline period in Egypt, this increases in the future, driven by increased 

precipitation upstream in Sudan and Ethiopia which increases river flows and flood 

risk along the Nile (He et al., 2022). 
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Figure 5-2: The average annual indirect economic damage as a share of national GDP (%) 
caused by fluvial flooding under the baseline and future scenarios with (CC+SE) and 
without (CC) socioeconomic change for the six countries. 
The results are given by the ensemble average of the five GCMs. 

 

Under the CC experiment, Ethiopia and India face the next largest impacts to GDP, 

after Egypt, equating to 0.73% and 0.76% of GDP respectively, under Scenario 6: 

4.0°C. However, for Ethiopia losses decline from the baseline (1.09% of GDP) when 

socio-economic development is included, ranging from 0.09% to 0.28% of GDP under 

Scenarios 1 to 6. This reflects the different baseline and future projections of socio-

economic growth in Ethiopia, which makes the country appear more resilient when 

viewed in relative terms, to the costs of fluvial floods under future projections of 

climate change (see also Appendix Figure B3 and Appendix Figure B4). A similar 

trend is seen in China when considering socio-economic development. Winsemius et 

al. (2016) also highlighted how socio-economic change can be a driver for reduced 

future flood risk, in relative terms, particularly in higher income countries. 

 

Brazil faces the lowest indirect damages of all countries as a proportion of GDP under 

the CC experiment (0.16% under Scenario 6: 4°C), but the second largest losses under 

the CC+SE experiment (1.80% under Scenario 6: 4°C). Whilst losses as a proportion 

of GDP initially decline at lower warming levels, increases are seen from Scenario 3: 
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2.5°C onwards. A similar trend is seen for India and Ghana. For India, indirect losses 

as a proportion of GDP initially decline from the baseline at lower levels of warming, 

before increases are seen from Scenario 4: 3°C onwards, suggesting a tipping point 

where increasing flood risk outweighs any relative benefits of socio-economic 

development. Similar trends in direct flood damage were reported by Dottori et al. 

(2018) for several regions in the world, with damage as a share of GDP declining with 

warming, particularly for fast growing economies, although the trend was reversed 

when damages were reported in absolute terms (as in Figure 5-1 above). Hence, it is 

important to consider changing socio-economic characteristics such as population 

change, land-use change and economic growth trajectories, alongside climate change. 

 

5.3.3. Sectoral Distribution of Fluvial Flood Damages 

A further benefit of the methodology is that it allows sectoral disaggregation of flood 

damages. Figure 5-3 and Figure 5-4 show a subset of the results for the six countries, 

split by direct and indirect losses (see Appendix Figure B5 for full results). Direct and 

indirect losses to sectors increase in line with increasing warming scenarios. As above, 

they are significantly higher, with a greater share of indirect losses, under the CC+SE 

experiment. 
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Figure 5-3: Sectoral losses in million US$/year, under the 1.5°C and 4°C climate scenarios 
with (CC+SE) and without (CC) socio-economic change for Brazil, China, and Egypt. 
The bars represent total losses, with the share of direct and indirect losses indicated by the 
shading. Results are presented for ten sectors: agriculture (AGR); mining (MIN); food 
manufacturing (FDM); other manufacturing (OTM); utilities (UTL); construction (CON); 
trade (TRD); transport (TRA); public services (PUB); other services (OTS). 
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Figure 5-4: Sectoral losses in million US$/year, under the 1.5°C and 4°C climate scenarios 
with (CC+SE) and without (CC) socio-economic change for Ethiopia, Ghana, and India. 
The bars represent total losses, with the share of direct and indirect losses indicated by the 
shading. Results are presented for ten sectors: agriculture (AGR); mining (MIN); food 
manufacturing (FDM); other manufacturing (OTM); utilities (UTL); construction (CON); 
trade (TRD); transport (TRA); public services (PUB); other services (OTS). 

 

Under the CC experiment, the agricultural sector (AGR) faces some of the largest 

losses in China, Ethiopia, Egypt, Ghana, and India, as well as other manufacturing 

(OTM) and public (PUB) and other services (OTS). This is similar to findings of 

Dottori et al. (2018) who found pronounced agricultural losses in low-income regions 

with a higher share of agricultural GDP. In Brazil, the largest impacts are felt by other 
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manufacturing (OTM), public (PUB) and other services (OTS), whilst Ethiopia also 

sees large losses to its food manufacturing (FDM) sector. Whilst the losses increase 

from Scenario 1: <1.5°C to 6: 4°C, the sectoral distribution of losses in each country 

remains similar. However, under the CC+SE experiment, the results also reflect 

underlying changes in the economic structure of the countries, including the expansion 

of service sectors of the economy. For example, there are increasing losses to public 

services (PUB) and other services (OTS) under Scenario 6: 4°C for countries such as 

India and Ghana, who predominantly saw losses to the agricultural sector (AGR) under 

the CC experiment. Particularly for Ghana, the reduction in the share of agricultural 

losses from the CC to CC+SE experiment can be explained by the movement away 

from a primarily agricultural-based economy since the baseline period, which is 

embodied in a falling share of agriculture land use area (due to urban expansion) and 

a decreasing contribution of the agricultural sector (AGR) to Ghana’s GDP.  

 

5.3.4. Recovery Dynamics 

When calculating indirect damages under the CC experiment, it is assumed that the 

economy recovers to the pre-flood level (Section 5.2.3). Figure 5-5 illustrates the 

dynamic percentage change of monthly GDP for each country, under the baseline and 

six warming scenarios, relative to the pre-flood level. The fluctuations highlight each 

occurrence of flooding and the post-flood recovery period. Fluvial flood losses to 

monthly GDP range from up to 2.9% in Ethiopia (baseline) and up to 15.2% in Egypt 

(Scenario 6: 4°C). For all countries, it usually takes several months for GDP to recover 

to pre-flood levels. The frequency of events, scale of losses, and recovery time increase 

in severity in line with the increasing warming levels. 
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Figure 5-5: Percentage change in monthly GDP (%) due to fluvial flooding for the baseline 
and climate scenarios under the CC experiment. 
Lines represent the ensemble average of the five GCMs. Calculations for the baseline scenario 
are based on actual exogenous growth data between 1960 and 1993, while those for the 
climate scenarios are based on projected exogenous growth data (SSP2) between 2085 and 
2118. 
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In terms of flood frequency, it can be seen that during the 30-year baseline, in large 

countries which have some of the world’s largest rivers (e.g., China, Brazil, and India), 

there will be more than 25 years with 1 in 100-year floods. Although flood-induced 

damages are aggregated to the national scale, these floods may occur in different areas 

of the country, particularly for countries with more than one major river. During the 

future period, a flood exceeding the baseline 1 in 100-year threshold will no longer be 

a 1 in 100-year flood, thus extreme flood events from the baseline perspective become 

more frequent in the future under the warming scenarios. 

 

Focusing on the dynamics of individual flood events over time, and their indirect losses, 

is beneficial as it highlights the different magnitude of impacts between flood events. 

It also highlights the potential impact, in terms of the magnitude of losses and duration 

for recovery, of successive flood events that may occur while the country is still in a 

recovery period, as shown in China and Egypt around month 50. 

 

Under the CC+SE experiment, the economy can recover to a level above the pre-flood 

economy based on the exogenous growth data used within the DF-growth model 

(2086-2115 for the climate scenarios and 1961-1990 for the baseline scenario). In this 

case, the level of recovery required to re-establish the pre-flood trajectory is larger 

(Figure 5-6). Consequently, indirect impacts can continue to accumulate over time as 

they also account for the overall slowdown in the growth rate of the economy from its 

potential trajectory, highlighted by the downward sloping trends in Figure 5-6. Fluvial 

flood losses to monthly GDP range from up to 1.5% in Egypt for Scenario 1: <1.5°C 

and up to 4.7% in Egypt for Scenario 6: 4°C. Indirect damage as a share of monthly 

GDP is generally lower than under the CC experiment given the future economic 

growth trajectories (see Appendix Figure B3). Yet, although the impact of individual 

flood events, in terms of the potential loss to monthly GDP, is more severe under the 
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CC experiment, when totalled over time the accumulated impacts are higher under the 

CC+SE experiment. 

 

 
Figure 5-6: Percentage change in monthly GDP (%) due to fluvial flooding from the pre-
flood economy for the baseline and climate scenarios under the CC+SE experiment. 
Lines represent the ensemble average of the five GCMs. Calculations for the baseline scenario 
are based on actual exogenous growth data between 1960 and 1993, while those for the 
climate scenarios are based on projected exogenous growth data (SSP2) between 2085 and 
2118. 
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Figure 5-6 also shows how the trajectory of trends under the baseline period (i.e., navy 

blue lines) differ to those of the climate scenarios, ranging from 0.6% in Egypt up to 

4.8% in China. The differences reflect the different frequency and intensity of flood 

events, with the economy able to recover fully between events in many instances. 

Typically, when absolute economic growth continues over time, full economic 

recovery is impossible, as the growth continues at a slower rate than under the pre-

flood economy. Full recovery usually occurs in periods of economic recessions 

(Appendix Figure B4) when other constraints (e.g., droughts and famine) become more 

severe than flood constraints and dominate economic trajectories. These deviations 

result in spikes, or downward trends, in Figure 5-6 when displayed as a percentage 

change in monthly GDP from the pre-flood economy. These periods of economic 

recession reflect that the baseline is based on historical growth data and these time 

series do not always follow a smooth trajectory. In contrast, the future scenarios are 

based on deviations from projected growth data between 2086-2115 from the SSP2 

scenario. These trajectories do follow a smooth pathway, hence another reason for the 

difference in the baseline trajectories when compared to the climate scenarios in Figure 

5-6. Thirdly, while absolute losses increase under the warming scenarios, in relative 

terms losses to GDP may appear smaller in the future given the level of projected 

economic growth, as seen in China when comparing the baseline to future scenarios 

(Figure 5-2). This is consistent with the results of Dottori et al. (2018), which implies 

that some economies grow faster than flood-induced direct damage with warming. 

 

5.4. Discussion and Conclusions 

The above analysis provides an assessment of the direct and indirect economic impacts 

of fluvial flooding in six countries under future scenarios of climate change and socio-

economic development. It covers a range of climate scenarios reflecting ambitious 
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targets as well as higher levels of warming. The study demonstrates the importance of 

including socio-economic development when projecting direct and indirect flood 

losses, and the implications of this for damage estimates. Population change, land-use 

change, and economic growth can be just as, or more, important than climate change 

in terms of understanding the future dynamics of fluvial flood risk (Dottori et al., 2018). 

The methodology considers direct and indirect economic impacts, providing a more 

comprehensive assessment of total damages at the national level, while facilitating 

comparison across countries. 

 

Results highlight the potential for large increases in flood related losses under future 

warming scenarios. Absolute fluvial flood losses are largest in China and India. 

However, as a share of national GDP, Egypt faces the most serious consequences, 

under both the CC and CC+SE experiments. The magnitude of indirect losses also 

varies largely when comparing between the CC and CC+SE experiments, becoming 

particularly severe in Egypt, Ghana, and Ethiopia under the CC+SE experiments. 

 

The method enables the consideration of dynamic recovery. This provides valuable 

insights into the role of recovery dynamics in influencing losses and paves the way for 

further research in this area, particularly important given the past knowledge gap in 

considering such dynamics in traditional IO models (Meyer et al., 2013). The results 

highlight the potential opportunity costs, in terms of economic development, due to 

fluvial flooding in the future. The baseline CC+SE results also emphasise the 

importance of other exogenous constraints (such as droughts and famine) that may be 

felt in successive years or in combination with flooding constraints, causing different 

recovery dynamics and loss estimates. This provides a rationale for further research 

into compound hazards, with the development of the CHEFA model in this thesis, to 

present a more comprehensive picture of the economic impacts of all possibly co-

occurring extreme events driven by climate change, and on a broader scale, by 
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anthropogenic instabilities (see Chapter 6 and Chapter 7 for further analysis).  

 

In terms of validating results, the lack of empirical data on the dynamics of business 

recovery (Koks et al., 2019) and documented economic data on the indirect costs of 

flooding makes comparison difficult. Direct damage estimates for the baseline period 

under the CC+SE experiment can be compared with data from the EM-DAT database. 

Total direct damages for the baseline period modelled here are US$6,640 million in 

Brazil, US$25,123 million in China, US$87 million in Egypt, US$215 million in 

Ethiopia, US$86 million in Ghana, and US$4,050 million in India. Damages reported 

by EM-DAT during the same period are US$4,185 million in Brazil, US$10,219 

million in China, US$14 million in Egypt, US$0.92 million in Ethiopia, US$75 million 

in Ghana, and US$5,744 million in India. For Brazil, Ghana, and India, the estimates 

are comparable to those reported by EM-DAT (around 15-60% difference). For the 

other three countries, the estimates are much larger than reported data. This likely 

reflects the underreporting of economic damages in the EM-DAT database, 

particularly for developing countries in past decades (Kundzewicz et al., 2014). 

 

Regarding the percentage change in direct damages relative to the baseline, results can 

be compared with Alfieri et al. (2017). Their estimates were made under three warming 

scenarios (1.5°C, 2°C, and 4°C), assuming constant socio-economic conditions and 

using the same set of depth-damage functions as this study (Huizinga et al., 2017). 

Estimates presented here under the CC experiment for Brazil, China, and India are in 

good agreement with those reported by Alfieri et al. (2017). However, the estimates 

for the three African countries in this study are much larger. This discrepancy is also 

noted by He et al. (2022) when comparing population exposure to flooding with that 

of Alfieri et al. (2017). Consequently, the higher estimates for the three African 

countries in this study likely reflect higher increasing flood occurrences projected by 

the flood hazard model. 
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However, as with any economic impact study of climate change it is extremely 

challenging to capture all aspects of the subject within a single framework. Several 

studies highlight that flood risk assessments are sensitive to the choice of GCMs or 

climate driving datasets (Alfieri et al., 2015; Sperna Weiland et al., 2012; Ward et al., 

2013). However, in this study, the overall patterns seen with increasing warming levels 

are consistent among the five GCMs, which sample a reasonable proportion of the 

overall uncertainty in modelled precipitation in the wider CMIP5 (He et al., 2022). 

 

The study focuses on economic losses relating to floods whose magnitude exceeds a 

baseline 1 in 100-year return period. Smaller events, which may still have an economic 

effect, are not considered, leading to a potential underestimation of losses. Conversely, 

as the flood data from CaMa-Flood does not consider flood protection (He et al., 2022), 

focusing on a 1 in 100-year flood event can reduce the potential of overestimating risks 

given that many flood protection defences are designed at protection levels lower than 

the 100-year return period. While beyond the scope of this study, more recently 

available global flood defence data could be used to investigate the role of adaptation 

in the future (Scussolini et al., 2016). Winsemius et al. (2016) found that including 

improvement in flood protection levels over time would significantly reduce economic 

damages, although this extension to the modelling has its own limitations in terms of 

the availability and accuracy of data for this parameter (Tanoue et al., 2016). 

 

There is also uncertainty associated with the depth-damage functions used. Dottori et 

al. (2018) employed the same set of functions in their study and claimed that the 

associated uncertainty would exceed ±50%, as also noted by Huizinga et al. (2017). 

Given there are no alternative, globally consistent databases available, it is not feasible 

to account for the effect of the depth-damage functions used in this study. Nevertheless, 

the database of depth-damage curves used in this study is beneficial as it accounts for 
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heterogeneity across the six countries as well as facilitating a country comparison. 

 

This study also assumes a constant land cover after 2015 in the CC+SE experiment. 

When socio-economic growth is modelled with constant land cover, the exposure 

value per unit area increases more in the model than in reality where the area 

constructed on will grow. Though predicted future land cover maps exist (van Vuuren 

et al., 2017), they are often at a coarser resolution and subject to several assumptions 

(ibid), which can introduce further uncertainty into the economic calculations. 

 

Lastly, there are uncertainties arising from the underlying data, parameterisation of the 

DF-growth model and assumptions on recovery dynamics used for the estimation of 

indirect losses, which would benefit from future research. For example, the IO tables 

used for the baseline and future analysis were dependent on the latest years of data 

available for each country, which differed, with the classification of certain sectors 

varying for some countries (see Appendix Table A5). However, modelling the future 

structure of an economy, particularly when applied to multiple countries, is always 

difficult (Koks et al., 2019). 

 

Nonetheless, the analysis presented here is beneficial in many aspects as discussed at 

the start of this section. Going forwards, the provision of more comprehensive 

estimates of fluvial flood risk, that account for both the effects of climate change and 

uncertainty under a range of warming scenarios, and the role of socio-economic 

development, will provide important insights to support decision-making regarding 

flood risk management, and in terms of investment needs for adaptation (Mokrech et 

al., 2015). Being able to apply the analysis at a country level is important for future 

research as economic losses will be related to the level of development of the specific 

society, and could also capture any flood prevention measures in place which may 

differ regionally and overtime as income levels rise (Jongman et al., 2015). And, as 



Chapter 5 

256 

noted by other authors (Koks et al., 2019), the study also contributes to the objectives 

of the Sendai Framework for Disaster Risk Reduction to better understand disaster risk 

(UNISDR, 2015), essential to help inform and support the development of post-

disaster recovery and adaptation strategies. 
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Chapter 6 CHEFA Model Illustration: A 
Perfect Storm of Flooding, Pandemic Control, 
and Deglobalization 

The outcomes of this chapter are parts of the work program of the World Bank on trade 

and climate change, which were initially published online in a working paper of the 

World Bank and later revised into a journal paper under review. Yixin Hu is responsible 

for impact modelling, result interpretation, and drafting. The sections in this chapter 

have been reproduced under the permission of co-authors.  

 

Hu, Y., Wang, D., Huo, J., …, Chemutai, V. (2021). Assessing the economic impacts 

of a ‘perfect storm’ of extreme weather, pandemic control and deglobalization: a 

methodological construct [Working Paper No. 160571]. World Bank. 

https://documents.worldbank.org/en/publication/744851623848784106 

 

The purpose of this chapter is to fulfil Research Objectives 5 and 6, which are the 

empirical application of the proposed CHEFA model for the compound-hazard impact 

analysis (see Section 3.2) and providing policy enlightenment on the improvement of 

economic preparedness in complex scenarios. This contributes to Research Questions 

3 and 4 raised in Section 1.4.1. As noted in the discussion of Chapter 5 (see Section 

5.4), the co-occurrence of multiple extreme events, which is ignored in the single-

hazard analytical framework, may cause different economic recovery dynamics and 

loss estimates and requires an integrated method for disaster footprint accounting. This 

is of particular importance in today’s world with intensifying climate change, ongoing 

COVID-19 pandemic, and escalating deglobalization. With the development of the 

CHEFA model in previous sections, this chapter uses a hypothetical compound-hazard 

event in a global economy to illustrate the model’s applicability and robustness. 

https://documents.worldbank.org/en/publication/documents-reports/documentdetail/744851623848784106/assessing-the-economic-impacts-of-a-perfect-storm-of-extreme-weather-pandemic-control-and-deglobalization-a-methodological-construct
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Specifically, this chapter investigates the economic impacts of a multi-disaster mix 

comprising of extreme weathers, such as flooding, pandemic control and 

deglobalization, dubbed a ‘perfect storm’. Scenarios are built to first examine the 

economic consequences when a flood and a pandemic lockdown collide and how these 

are affected by the timing, duration, and intensity/strictness of each shock. 

Subsequently, the outcomes of export restrictions during the compound of the 

pandemic and the flood are assessed, especially when there is specialization of 

production of key sectors. The results suggest that an immediate, stricter but shorter 

pandemic control policy would help to reduce the economic costs inflicted by a perfect 

storm, and regional or global cooperation is needed to address the spillover effects of 

such a compound event, especially in the context of the risks from deglobalization. 

 

6.1. Introduction 

During the past years, the ongoing COVID-19 pandemic appeared to have diverted 

attention away from the climate crisis (Selby and Kagawa, 2020; The Lancet Planetary 

Health, 2020), despite the fact that just a few years prior, the WHO had identified 

climate change as ‘the greatest threat to global health in the 21st century’ (WHO, 2015). 

The year 2020 saw a number of climate disasters. It was the hottest year on record 

(Gohd, 2021). The dry and hot conditions fuelled massive record-breaking wildfires 

across Australia, Siberia, and the United States. The 2020 Atlantic hurricane season 

was also the most active in recorded history (White, 2020). Devastating typhoons 

swamped the Indian subcontinent and south-east Asia while the Sahel and Greater 

Horn regions of Africa experienced severe droughts (Boyle, 2020) and devastation 

from locust swarms linked to climate change (UNEP, 2020). Early 2021 also saw the 

Swiss Alps develop an orange layer caused by heavy sandstorms from the Sahara 

Desert, the widest reach recorded in recent years (BBC News, 2021). 
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Several aspects signalling deglobalization have been at play in recent years. The 2020 

World Development Report reports that growth in global value chains has flattened 

(World Bank, 2019). 2020 saw increasing trade tensions, especially in relations 

between the US and China, as well as the UK withdrawing from the EU, but also in 

some of the responses by governments to the COVID-19 pandemic. Indeed, some have 

argued that COVID-19 has further fuelled the process of deglobalization (Oxford 

Analytica, 2020; Shahid, 2020). A number of countries have responded by introducing 

export restrictions on critical medical equipment and food and even on vaccines (Eaton, 

2021; Espitia et al., 2020). This raises the issue of whether restrictive trade policy 

measures can undermine effective responses when climate and pandemic crises collide 

to create a perfect storm (Mahul and Signer, 2020). 

 

The collision of climate extremes, pandemic control and deglobalization creates a 

triple or compound event. The concept of ‘compound event’ was originally used in 

climatic research (AghaKouchak et al., 2020; Field et al., 2012; Hao et al., 2013; 

Leonard et al., 2014; Zscheischler et al., 2018) and defined as the ‘combination of 

multiple drivers and/or hazards that contributes to societal or environmental risk’ by 

Zscheischler et al. (2018, p. 470). Unable to foresee such a globally explosive outbreak 

of COVID-19, these studies were mainly focused on the co-occurrence of multiple 

dependent climatic hazards. Only very recently have researchers begun to incorporate 

the coexistence of biological hazards. As the COVID-19 pandemic and global 

warming continues, civil society will see a growing probability of collisions between 

COVID-19 surges and climate crises (Phillips et al., 2020), in tandem with other global 

issues, such as deglobalization, following recent trends. Countermeasures against one 

crisis may jeopardize the efforts to confront another crisis, which ultimately 

exacerbates the negative impacts of both (Ishiwatari et al., 2020; Salas et al., 2020; 

Selby and Kagawa, 2020). As a result, scholars have advocated for a comprehensive 

and holistic multi-hazard approach of disaster management that considers all possible 
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hazards together with compound ones in the post-pandemic world (Chondol et al., 

2020). Hariri-Ardebili (2020) proposed a multi-risk assessment tool to qualitatively 

study the hybrid impacts of compound-hazard situations on healthcare systems, while 

Shen et al. (2021) provided a tool to assess the compound risk from flooding and 

COVID-19 at the county level across the United States. Beyond these, researchers also 

developed optimization models to study the effectiveness of evacuation strategies in 

risk control when floods intersect with the COVID-19 pandemic (Pei et al., 2020; 

Tripathy et al., 2021). 

 

An important aspect of risk management is to assess the economic consequences of 

hazardous events (Laframboise and Loko, 2012), however, this has been rarely 

addressed in compound-hazard research. Typically, in single-hazard research, 

economic models, such as IO and CGE models, provide quantitative tools to evaluate 

the economic footprint of disruptive events (Botzen et al., 2019). Metrics related to 

disaster-induced economic damages, both direct and indirect ones, are developed to 

inform cost-benefit decisions in disaster preparedness investment (ESCAP, 2019). 

There are many studies that have focused on climate extremes (Hallegatte, 2008, 2014; 

Koks et al., 2015; Koks and Thissen, 2016; Lenzen et al., 2019; Mendoza-Tinoco et 

al., 2020; Oosterhaven and Többen, 2017; Willner et al., 2018; Xia, Li, et al., 2018; 

Zeng et al., 2019), but only a few have studied biological hazards like the COVID-19 

pandemic (Guan et al., 2020; McKibbin and Fernando, 2020). Even fewer studies have 

looked into the economic aspects of compound events. Zeng and Guan (2020) 

employed the Flood Footprint model to quantify the combined indirect economic 

impacts of successive flood events. However, the interaction between pandemic 

control and flood responses is different from that between two flood events. Flood 

events are usually sudden or rapid onset events which require immediate emergency 

measures (Bubeck et al., 2017; Johnstone and Lence, 2009), while a pandemic such as 

COVID-19 lasts for longer periods and the corresponding control measures could be 
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of various durations and coincide with different flood periods. A focus on measures to 

prevent virus transmission can result in inadequate response towards flood disasters 

(Ishiwatari et al., 2020) and constrain the economic flows required by post-flood 

recovery, aggravating the impact of the flood. Similar perspectives are suggested by 

Swaisgood (2020) that the economic consequences of such compound events are 

underestimated if the interplay between individual hazards is not considered. The 

compound effects of natural and pandemic hazards increase the complexity of 

economic consequences, which cannot be addressed by traditional single-hazard 

assessment techniques. 

 

Given these research gaps, this chapter uses the CHEFA model which is developed in 

Chapter 3 for compound-hazard impact analysis to assess the economic impacts 

resulting from triple shocks of pandemic control, flooding and deglobalization. The 

model, which is constructed under the ARIO-Inventory framework (Hallegatte, 2014), 

considers not only the economic-wise interplay between different types of negative 

shocks, but also the possibility of cross-regional substitution and production 

specialization. Scenarios are built on a hypothetical global economy consisting of four 

regions and five sectors where hazardous events with different durations and 

intensities collide at different spatial and temporal scales. Afterwards, specific 

scenarios are explored to understand the role of trade in disaster recovery during 

compound climate and health crises, with a special focus on how export restrictions 

and the extent of production specialization influence the magnitude of economic losses. 

 

This study provides consistent and comparable loss metrics with single-hazard 

analysis and can be generalized to various types of compound events. This would 

support the formation of an integrated risk management strategy including compound 

hazards and the fulfilment of the mitigation and adaptation targets in the Paris 

Agreement and Sendai Framework for Disaster Risk Reduction (UNFCCC, 2015; 
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UNISDR, 2015). 

 

6.2. Scenarios and Discussion 

6.2.1. A Hypothetical Global Economy 

Here a hypothetical global economy consisting of four regions and five sectors is 

assumed based on the multi-regional input-output (MRIO) table developed by Zheng 

et al. (2020) (see Appendix Table A6)14. The annual GDP of this hypothetical global 

economy is 9,613 units. The four regions are denoted by A, B, C and D, which account 

for 21%, 39%, 28% and 12% of the global economy, respectively. C is the only region 

hit by flooding, amid global pandemic control and deglobalization. B is the largest 

trade partner of C. More than half (52%) of C’s total trade volume comes from region 

B, which is equivalent to 11% of C’s output. This is followed by A and D, which 

accounts for 31% and 17% of C’s total trade volume, respectively. There are five 

economic sectors, consisting of Agriculture (AGR), General Manufacturing (MANG), 

Capital Manufacturing (MANK), Construction (CON) and Other Services (OTH). 

‘MANK’ and ‘CON’ are the two sectors that are involved in the reconstruction of 

capital damaged by flooding.  

 

In this analysis, it is assumed that capital reconstruction largely relies on local inputs 

 
14 This MRIO table is adopted because of its open accessibility from the CEADs database (www.ceads.net). It is 

originally a Chinese MRIO table for 2015, covering 31 provinces and 42 socioeconomic sectors, and then 

aggregated into 4 major regions and 5 sectors to construct a virtual global economy with almost real and 

differentiated inter-regional or inter-sectoral linkages. Sector aggregation and disaggregation are common methods 

in IO analysis to deal with the mismatch in sector resolution of different databases used (Lenzen, 2011, 2019; Steen-

Olsen et al., 2014; Weinzettel, 2022), and the current sector resolution of the five sectors are deliberately designed 

for the purpose of this study. Such a pre-process helps to simplify the analysis which is focused on the interaction 

mechanisms of compound shocks within the economic system instead of the sectoral details of disaster impact 

distribution. This chapter also examines the robustness of the analysis using a different GTAP-based MRIO matrix 

and finds consistent results on the economic interplay between flooding, pandemic control, and trade restrictions 

(see Appendix Table A7 and Section 6.3.5). 

http://www.ceads.net/
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of capital goods and construction services and different sectors in the same region have 

the same capital matrix coefficients. For example, the ‘CON’ and ‘MANK’ sectors of 

C contribute to 68% and 20% of the reconstruction efforts in C, respectively, while the 

remaining 12% comes from the ‘MANK’ and ‘CON’ sectors of B and the ‘MANK’ 

sector of A. A full capital matrix indicating the sources of capital formation of each 

region is provided in Appendix Table A8. 

 

Values of other parameters in the CHEFA model are presented in Table 6-1. While the 

values of max
irα   and ατ   are the same as in Hallegatte (2014), the value of j

irn   is 

smaller than that in Hallegatte (2014). This is due to the assumption of a Just-In-Time 

(JIT) inventory management which is gaining popularity for its advantages in lowering 

inventory and related costs (Yang et al., 2021). In fact, some multinational corporates, 

such as Hyundai Motor in South Korea, threatened to suspend production in response 

to the inventory supply disruption around one month after the onset of COVID-19 in 

China (Reuters, 2020). The uncertainties in these values must be acknowledged and a 

sensitivity analysis on these parameters is provided in Section 6.3. The model is run 

on a weekly basis in this analysis. 

 

Table 6-1: Parameter values of the CHEFA model applied in the case of a hypothetical 
perfect storm. 
Parameters Definitions Values 

j
irn  

Weeks of intermediate use of inventory product j  that 
sector i  in region r  wants to hold 

4 

sτ  Proportion of inventory loss that a production sector 
tries to restore in the next time step 

100% 

max
irα  

Maximum overproduction capacity of sector i  in 
region r  relative to the pre-disaster level 

125% 

ατ  Weeks needed by a sector to achieve its maximum 
overproduction capacity 

52 
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6.2.2. Interaction Between Pandemic Control and Flooding in the Free 

Trade Scenarios 

This section first simulates the economic impacts of multi-scale floods and/or a global 

pandemic in a free trade world which consists of four regions: A, B, C and D. Three 

scales of floods are defined according to the severity of damages they cause directly 

to population and economic sectors (Table 6-2). All floods occur in week 5 and last for 

2 weeks in region C. At the same time, a global pandemic is declared in all regions and 

measures are taken to bring its spread under control. The strictness of the control policy, 

which is measured by the percentage reduction of the transportation capacity due to 

lockdown measures relative to the pre-disaster level, is benchmarked at 30% for 24 

weeks. 

 

Table 6-2: Event settings of flooding and pandemic control. 

Flooding 

Scales 
Direct damage (% losses) Duration 

(weeks) 
Spreads 

Labour AGR MANG MANK CON OTH 

Small 20% 20% 10% 10% 15% 15% 

2 
Region 

C 
Medium 40% 40% 20% 20% 30% 30% 

Large 60% 60% 30% 30% 45% 45% 

Pandemic 

Control 

Strictness scenarios (%) 
[8, 24] 

All 

regions [30%, 60% of transportation capacity reduction] 

Notes: Direct damage of flooding refers to the percentage reduction in labour availability and 
capital stock in the five production sectors: AGR – Agriculture; MANG – Manufacture, 
general; MANK – Manufacture, capital; CON – Construction; OTH – Other services. 

 

6.2.2.1. Economic Impacts of Flooding, Pandemic Control, and Their Collisions 

There is a two-way interaction between the flooding and pandemic hazards in terms of 

economic losses, by comparing the ‘flood-only’, ‘pandemic-only’ and 

‘flood+pandemic’ scenarios. First, the pandemic control aggravates the flood impacts 

by hampering the post-flood capital reconstruction, under all flood scales. As in Table 

6-3, the recovery of capital stock damaged by multi-scales of flooding in region C is 

delayed by 8-10 weeks by the coincidence of a benchmarked global pandemic control. 
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The recovery of global GDP is consequently deferred by 3-7 weeks at different flood 

scales. Compared to the ‘flood-only’ scenario, the intervention of pandemic control 

increases the global economic losses by 1,040.6-1,144.1 units (10.82%-11.90% of 

global annual GDP) at different flood scales. 

 

Consistent results are observed on the regional scale by comparing the first and third 

rows of Figure 6-1, as all regions suffer additional losses from the concurring 

pandemic control when they are already affected by flooding in C. For region C, which 

is the only flooded region, the post-flood recovery curves of its GDP (yellow lines) are 

significantly flattened and delayed by the intervention of pandemic control15 . This 

makes the cumulative losses in region C increase by 176.0-268.3 units, which is 

equivalent to 6.51%-9.92% of its annual GDP at the pre-disaster level, at different 

flood scales. However, the greatest loss increases are found in region B, which 

accounts for nearly half (41-45%) of the increase in global losses, followed by region 

A (22-24%), under all flood scales. These two regions first experience slight GDP 

gains (by 0.21%-0.96% for B and 0.07%-0.34% for A) under the ‘flood-only’ scenarios 

(Figure 6-1a-c), but then suffer significant GDP losses (by 11.56%-12.49% for B and 

12.00%-12.41% for A) under the ‘flood+pandemic’ scenarios (Figure 6-1g-i). Early 

economic gains come from the stimulus effect of the reconstruction demand to recover 

the capital damaged by flooding in C. This happens with the possibility of substitution 

between suppliers, which is also observed by Koks and Thissen (2016). When region 

C is flooded and unable to meet the increasing demand for reconstruction, clients will 

 
15 Taking the small flood as an example, delays in the recovery of region C could be seen from both Table 6-3 and 

Figure 6-1. In Table 6-3, capital recovery only takes place in region C which is hit by the flood. It takes 49 weeks 

during the compound crises of a small flood and pandemic control, which is 8 weeks more than in the ‘flood-only’ 

scenario. In Figure 6-1, the yellow lines depict the dynamics of GDP recovery in region C by weeks. Comparing 

with the yellow line in Figure 6-1a (flood-only), the yellow line in Figure 6-1g (pandemic+flood) is flattened by 

the intervention of the pandemic control. It takes about 38 weeks for region C to recover its GDP to the pre-disaster 

level in Figure 6-1g, which is around 12 weeks more than in Figure 6-1a. In addition, the yellow line in Figure 6-1g 

is similar with that in Figure 6-1d (pandemic-only), which is because that the flood impact is so small that the 

pandemic control has dominated the GDP recovery of region C. 
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choose suppliers in other regions to restore their damaged capital, which stimulates the 

economic performance there. Among all regions, B benefits most from flooding in C, 

as it accounts for the biggest part (52%) of C’s trade volumes. Such stimulus effect 

expands with the flood scales. The gains in B’s GDP from a small flood in C is 0.21%, 

which rises to 0.71% from medium flooding and further to 0.96% in large flooding 

(Figure 6-1a-c).  

 

Second, flood response may sometimes alleviate some of the negative impacts of 

pandemic control due to the stimulus effect of post-flood reconstruction. It only 

exacerbates the negative pandemic impacts when the flood damage is large enough to 

exceed such stimulus effect. On the global scale (Table 6-3), the concurrence of a small 

or medium flood in region C reduces the supply-chain/indirect losses by 48.6 or 21.0 

units, respectively, when the global economy is already burdened by the pandemic. 

The reduction of losses comes from the stimulus effect of post-flood reconstruction as 

mentioned above. However, a large flood leads to large direct damage and widespread 

supply chain losses which surpass the stimulus effect of reconstruction activities, and 

therefore increases the global pandemic impacts by 86.9 units. 

 

On the regional scale, the flood-related alleviation effects of negative pandemic 

impacts are mainly found in the three non-flooded regions (i.e., A, B, and D), 

comparing the second and third rows of Figure 6-1. Taking region B, which benefits 

most from the stimulus effect of post-flood reconstruction, as an example, its relative 

GDP losses fall from 12.87% (pandemic-only) to 12.49% (small flood+pandemic), 

then to 12.12% (medium flood+pandemic), and finally to 11.56% (large 

flood+pandemic). The alleviation effect becomes more significant as the pandemic 

control intersects with a larger flood. The bottom row of Figure 6-1 zooms in on the 

GDP dynamics of regions A, B, and D in subplots f and i to take a close look at the 

regional differences between the ‘pandemic-only’ and ‘large flood+pandemic’ 
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scenarios. On the one hand, the post-flood reconstruction demand has buffered the 

negative impact of the pandemic control in the first place for all the three regions and 

accelerated the GDP recovery of at least region B afterwards, which is because that 

region B is the most involved in region C’s capital reconstruction. On the other hand, 

however, the intervention of flooding also makes the three regions go through earlier 

and longer shortages of intermediate inputs, which is signalled by further drops of 

GDPs between weeks 24-30, as the pandemic-related transport constraint continues. 

 

By contrast, flood damage aggravates the pandemic impacts in the flooded region C 

when the flood is above and equal to the medium scale. The region suffers GDP losses 

of 13.20% from the pandemic control alone, while 13.80% from the combination with 

a medium flood and 18.75% with a large flood. These regional results are in 

consistency with the global results in revealing the role of the stimulus effect 

associated with post-flood reconstruction. 

 

A further discussion on the direct and indirect economic consequences caused by 

flooding, pandemic control, and their collisions, respectively, without trade restrictions, 

is provided in Appendix C.2. Direct and Indirect Impacts of a Perfect Storm under Free 

Trade Scenarios. 

 

In addition, it is worth noting that the continued pandemic control may have a 

secondary negative impact on regional GDPs by restricting the transport and delivery 

of intermediate inputs needed to recover production. For example, the second falls in 

regional GDPs around week 28-29 in Figure 6-1d-f are due to the shortage of 

intermediate inputs arising from delivery failures under persistent transport constraints 

during the pandemic control. As mentioned above, the inventory shortage may appear 

earlier due to the intervention of flooding and last longer as the flood scale increases 

(Figure 6-1g-i). On the contrary, it could be avoided by a shorter but stricter pandemic 
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control (Figure 6-2g-h). Its occurrence is also linked with the size of inventories held 

by economic sectors. A large inventory size could improve the inventory resilience and 

reduce the risk of inventory shortage. As in Section 6.3.1 and Figure 6-5, the second 

GDP decline resulting from an inventory shortage in each region is delayed by weeks 

as the inventory size increases and finally disappears as the inventory size is large 

enough. 

 

Table 6-3: Global economic footprint under the ‘flood-only’, ‘pandemic-only’ and 
‘flood+pandemic’ scenarios without trade restrictions. 

Scenarios 
Direct 

Damagea 

Indirect 
Lossesb 

Total 
Impacts 

% of 
Global 
Annual 

GDP 

Capital 
Recovery 
Weeksc 

GDP 
Recovery 
Weeksc 

Pandemic-Only 0.0 1,242.6 1,242.6 12.9% - 42 

Small 
Flood-Only 317.2 50.0 367.2 3.8% 41 40 

Flood+Pandemic 317.2 1,194.1 1,511.2 15.7% 49 44 

Medium 
Flood-Only 634.3 142.1 776.5 8.1% 51 44 

Flood+Pandemic 634.3 1,221.6 1,856.0 19.3% 61 47 

Large 
Flood-Only 951.5 288.9 1,240.4 12.9% 60 46 

Flood+Pandemic 951.5 1,329.5 2,281.0 23.7% 70 53 

Notes: 
a The direct damage refers to the capital damage due to inundation of physical assets and occurs 
only in the flooded region C. 
b The indirect losses are the GDP losses along the global supply chain caused by the compound 
event. They start from the directly affected regions and spill over to other regions through 
inter-sectoral and inter-regional dependencies. 
c Full recovery is achieved when the amount of capital or global GDP in the disaster aftermath 
is within ±0.1% of the pre-disaster level. 
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Figure 6-1: Weekly changes of regional GDPs, relative to the pre-disaster levels, in the four 
regions, under ‘flood-only’, ‘pandemic-only’, and ‘flood+pandemic’ scenarios without trade 
restrictions. 
The numbers in each plot indicate the cumulative losses or gains of regional GDPs over time, 
relative to the pre-disaster levels of the annual regional GDPs. From left to right, each column 
represents the small-, medium-, and large-scale flooding in region C. From top to bottom, each 
row stands for one of the three disaster scenarios: a) flood-only; b) pandemic-only; c) 
flood+pandemic. The attached row below zooms in on the GDP dynamics of regions A, B, and 
D in subplots f and i. 

 

6.2.2.2. Pandemic Control in Different Flood Periods with Different Strictness and 

Duration 

In this section, to investigate how the timing, duration, or strictness of pandemic 

control impacts the economic footprint of the perfect storm, three scenario sets are 

built: 1) a 30%-24 global pandemic control occurs 7 weeks before flooding; 2) a 30%-

24 global pandemic control occurs 7 weeks after flooding; 3) a 60%-8 global pandemic 

control occurs 7 weeks after flooding. Here the flood hits region C in week 10 and 
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lasts for 2 weeks on the small, medium, or large scale (Table 6-2). The pandemic 

control is implemented in all regions. 

 

Table 6-4 and Figure 6-2 summarize the global and regional indirect impacts under 

these perfect storm scenarios, respectively. Note that this analysis focuses on the 

indirect or GDP losses rather than the direct damage brought by the perfect storm, as 

the latter is simply correlated with the scale of flooding. First, it is evident from Table 

6-4 that slightly more economic losses are expected when the pandemic control occurs 

after than before flooding, regardless of the flood scales. The relative losses of global 

GDP increase by 0.53% (small flood), 0.51% (medium flood) and 0.31% (large flood) 

when a 30%-24 global pandemic control occurs after than before flooding. On the 

regional scale, region C suffers the greatest increase in relative GDP losses from the 

postponement of the pandemic control. For example, the cumulative indirect losses of 

region C are 19.60% of its annual GDP at the pre-disaster level when a 30%-24 

pandemic control takes place 7 weeks before a large flood striking region C (Figure 

6-2c). This number rises to 20.22% when the control occurs after flooding (Figure 

6-2f). The loss increase of region C is therefore calculated at 0.62%, which is 

significantly larger than that of region A (0.25%), region B (0.16%), and region D 

(0.16%). As in Figure 6-2f, the post-flood economic recovery in region C (the yellow 

line) is curbed by the pandemic control from week 17, suggesting that a subsequent 

pandemic control has long-lasting impacts on flood-related reconstruction and 

recovery activities. 

 

Second, it is found that a combination of shorter duration and higher strictness of 

pandemic control would result in lower economic losses for all regions, regardless of 

the flood scales. As shown in Table 6-4, the relative losses of global GDP are 14.37% 

when a 30%-24 pandemic control interfaces with the recovery from a large flood. This 

number falls to 12.55% when the strictness-duration combination of the control 
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becomes 60%-8. Similar results are found for the small and medium flood scenarios. 

The reduction in indirect losses happens across all regions (Figure 6-2g-i). This is 

consistent with the results of Guan et al. (2020) who studied the global economic costs 

of COVID-19 control measures in a single-hazard setting. Therefore, an important 

insight here is that a stricter pandemic control policy for a shorter duration could 

reduce economic costs when battling both flooding and a pandemic. 

 

Table 6-4: Global indirect impacts, relative to the global annual GDP at the pre-disaster 
level, of the pandemic control intersecting in different flood periods with different strictness 
and duration. 

Scenarios 
Flood scales in region C 

Small Medium Large 

Global 
pandemic 

control 

30%-24 control 7 
weeks before flooding 

12.43% 12.79% 14.06% 

30%-24 control 7 
weeks after flooding 

12.96% 13.30% 14.37% 

60%-8 control 7 weeks 
after flooding 

10.50% 11.26% 12.55% 

 

 
Figure 6-2: Weekly changes of regional GDPs, relative to the pre-disaster levels, in the four 
regions, when the pandemic control coincides with different flood periods with different 
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strictness and duration.  
The numbers in each plot indicate the cumulative losses or gains of regional GDPs over time, 
relative to the pre-disaster levels of the annual regional GDPs. From left to right, each column 
represents the small-, medium-, and large-scale flooding in region C. From top to bottom, each 
row stands for one of the three perfect storm scenarios: a) a 30%-24 global pandemic control 
takes effect 7 weeks before flooding; b) a 30%-24 global pandemic control takes effect 7 weeks 
after flooding; c) a 60%-8 global pandemic control takes effect 7 weeks after flooding. 

 

6.2.3. Influence of Deglobalization on the Magnitude of Economic 

Losses from the Perfect Storm 

This section explores scenarios of triple shocks from flooding, pandemic control, and 

deglobalization. Global shocks such as the pandemic increase pressures towards 

deglobalization including the imposition of export restrictions on critical goods, such 

as medical products and food (Eaton, 2021; Espitia et al., 2020). Export restrictions in 

one region may push other regions to introduce retaliatory restrictions and trigger a 

domino effect (World Trade Organization, 2020). The importing regions will suffer if 

they cannot quickly find alternative trading partners, which relates to the 

substitutability of the restricted products. 

 

Two groups of scenarios with different cross-regional substitutability of economic 

production are compared here. First in Section 6.2.3.1, an ideal situation without 

production specialization is assumed, that is, all products can be replaced by products 

of the same sector from other regions. It is also assumed that region C, which suffers 

from the flood, restricts the export of capital manufacturing products (MANK-C) to 

‘protect’ its domestic recovery. The export restriction is applied in parallel with the 

30%-24 global pandemic control, which coincides with multi-scales of flooding 

defined in Table 6-2. The degree of the export restriction, which limits the maximum 

export volume of the products concerned, is set at 50%. This section also explores the 

economic effects of different degrees of export restrictions, with results presented in 

Appendix C.3. Economic Effects of Different Degrees of Export Restrictions in a 
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Perfect Storm. Next, it is assumed that two weeks later other regions, such as region 

B, take retaliatory restrictions of the same degree on capital manufacturing products 

(MANK-B). The indirect economic impacts under the restrictive trade scenarios are 

compared with the free trade scenario to analyse the role of trade restrictions in disaster 

recovery under this ideal situation without production specialization. It is worth 

mentioning that special attention is given to these two ‘MANK’ sectors as they produce 

tradable capital products and face increasing demand during the post-flood 

reconstruction. 

 

Then in Section 6.2.3.2, the study investigates how production specialization, which 

creates non-substitutable products, influences the economic footprint of the perfect 

storm together with trade restrictions. It is assumed that the ‘MANK-C’ and ‘MANK-

B’ sectors make specialized capital products which cannot be substituted elsewhere. 

The economic consequences under the same restrictive trade scenarios as in Section 

6.2.3.1 are compared with the free trade scenario to study how production 

specialization interacts with trade restrictions during the compound crises. The settings 

of trade scenarios with or without production specialization are summarized in Table 

6-5. 

 

Table 6-5: Settings of trade scenarios. 
Trade 
Scenarios 

Definitions Duration 
Production 
Specialization 

Free trade No export restrictions - 

MANK-C and 
MANK-B if 
production 
specialization 
exists 

Restrictive 
trade 
without 
retaliation 

50% reduction of the maximum 
export volume on MANK-C 

24 weeks 

Restrictive 
trade with 
retaliation 

Same degree of retaliatory 
restrictions from MANK-B two 
weeks after the MANK-C 
restriction 

24 weeks for 
MANK-C; 22 weeks 
for MANK-B 

Notes: Degree of export restriction refers to the percentage reduction of the maximum export 
volume relative to the pre-disaster level. 
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6.2.3.1. Export Restrictions without Production Specialization 

As shown in Table 6-6 and the first two rows of Figure 6-3, a 50% export restriction 

on ‘MANK-C’ raises the global indirect losses by 0.16%-0.23% during different flood 

and pandemic intersections. The indirect losses in regions A and D increase by an 

average of 0.43% and 0.45% respectively, faster than other regions from C’s restrictive 

trade policy. By comparison, region B experiences less loss increase by around 0.17%. 

It appears that the export restriction on a specific product has moderate impacts on the 

importing regions when they can easily find a replacement from other exporters.  

 

As for region C itself, it benefits from the export restriction on ‘MANK-C’ only when 

the flood is at least the medium scale. On the plus side, the export restriction on 

‘MANK-C’ could prevent outflows of capital products and accelerate domestic 

reconstruction during the flood aftermath. On the minus side, it may reduce foreign 

demand for C’s products as other regions import and produce less than before. During 

the small flood, the demand for capital reconstruction is not enough to compensate the 

reduction in foreign demand and hence higher indirect loss in region C from the export 

restriction (Figure 6-3a and d). By contrast, a larger flood evokes higher demand for 

capital reconstruction, which makes the positive impact of the export restriction 

outweighs the negative one, that is, the backfire effect of restricting the production of 

other regions. For example, the indirect loss in region C decreases from 18.75% to 

18.62% when region C adopts the export restriction during the confluence of the large 

flood and pandemic control (Figure 6-3c and f). 

 

The study then considers the impacts of a 50% retaliatory export restriction from 

region B on its ‘MANK’ sector. As shown in Table 6-6 and the bottom two rows of 

Figure 6-3, such retaliation adds another 1.30%-1.69% to the global indirect losses 

comparing to the single ‘MANK-C’ restriction. At the regional level, regions A and D 
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are still the most vulnerable to the escalating trade friction, whose cumulative GDP 

losses increase by an average of 3.22% and 2.57%, respectively, during different flood 

and pandemic intersections. They also encounter inventory shortages earlier than other 

regions and themselves as compared to the previous two trade scenarios. By 

comparison, region B is the least affected by its trade policy, but still goes through an 

increase by around 0.32% in its indirect losses. This may be partly related to the 

different levels of trade dependence of the regional economies. Specifically, for 

regions A and D, their trades with other regions account for around 30% and 31% of 

their total output, respectively, which are higher than the other two regions. Higher 

dependence on inter-regional trade increases economic vulnerability when countries 

impose trade restrictions.  

 

It is worth noting that region C also suffers increasing indirect losses (by around 1.37%) 

under all flood scales with retaliation from ‘MANK-B’. This suggests that it is unwise 

for region C to initiate trade restrictions in response to the perfect storm if retaliation 

is expected. 

 

Whether at the global or regional level, the indirect losses increase faster with the 

‘MANK-B’ restriction than the ‘MANK-C’ restriction, as the former sector is a key 

node sector in terms of having large trade volumes with other sectors in the economic 

network. The trade volume with the ‘MANK-B’ sector reaches 8.2% of the global GDP, 

ranking the third among all sectors, while that with the ‘MANK-C’ sector is only 2.7%. 

The study also investigates how the economic impacts change with the degree of 

export restriction on ‘MANK-C’ in Appendix C.3. Economic Effects of Different 

Degrees of Export Restrictions in a Perfect Storm. The results show that both global 

and regional indirect losses, except for losses of region C, increase with the degree of 

export restriction. The indirect losses in region C increase with the degree of export 

restriction when the flood is at the small scale and decrease with the degree of export 
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restriction when the flood is at the medium or large scale. The results found in this 

section is robust with the changing degrees of the export restriction. 

 

Table 6-6: Global indirect impacts, relative to the pre-disaster level of the annual global 
GDP, of the perfect storm under different trade scenarios without production specialization. 

Scenarios 
30%-24 pandemic control 
Small 
flood 

Medium 
flood 

Large 
flood 

Free trade 12.42% 12.71% 13.83% 

50% export 
restriction 

on MANK-C 12.65% 12.91% 13.99% 
on MANK-C with retaliation 
from MANK-B 

14.34% 14.21% 15.50% 

 

 
Figure 6-3: Weekly changes of regional GDPs, relative to the pre-disaster levels, in the four 
regions, when multi-scale floods collide with pandemic control and export restriction 
without production specialization.  
The numbers in each plot indicate the cumulative losses or gains of regional GDPs over time, 
relative to the pre-disaster levels of the annual regional GDPs. From left to right, each column 
represents the small-, medium-, and large-scale flooding in region C. From top to bottom, each 
row stands for one of the three export restriction scenarios: a) free trade scenario without any 
export restrictions; b) 50% export restriction on product MANK-C; c) 50% export restriction 
on product MANK-C and 2 weeks later 50% retaliatory export restriction on product MANK-
B. 
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6.2.3.2. Export Restrictions with Production Specialization 

Assuming the ‘MANK-C’ and ‘MANK-B’ sectors make specialized capital products 

which cannot be substituted elsewhere, Table 6-7 shows that the 50% restriction on the 

export of ‘MANK-C’ increases global indirect losses by 12.10%-12.73% during the 

confluence of different scales of floods and the 30%-24 pandemic control, and the 

accompanying retaliatory restriction on the export of ‘MANK-B’ increases global 

indirect losses by another 3.44%-4.09%.  

 

When looking into the regional details, Figure 6-4 shows that the indirect losses in 

regions A, B, and D more than double under the compound scenarios with the export 

restriction on the non-substitutable ‘MANK-C’ as these regions cannot find an 

alternative to refill the inventory shortage. Specifically, their losses are significantly 

increased by an average of 16.72%, 16.65%, and 15.97%, respectively, of their annual 

GDPs. This also in turn damages the post-disaster economic performance of region C, 

by additional ~1.72% of its annual GDP, through the propagation effect of the global 

supply chain. Secondly, the subsequent retaliation from ‘MANK-B’ has little extra 

impact on regions A, B, and D, as their production has been already greatly constrained 

by the inadequate input of ‘MANK-C’. Instead, region C, which encounters ~13.12% 

increase in the indirect losses, is severely afflicted by the ‘MANK-B’ retaliation. 

 

Comparing the results in Sections 6.2.3.1 and 6.2.3.2, it is found that production 

specialization severely aggravates the economic impacts of export restriction when 

they collide with each other. In general, the export restriction of a region in response 

to the compound shock always comes at the cost of global economic resilience, while 

not necessarily promoting its own recovery, notably with insufficient domestic demand, 

retaliatory actions, and production specialization. Only when the increase in domestic 

demand suffices to offset the negative impact of the deterioration of the external 
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economic environment could the region benefit from its restrictive trade policy. 

 

In addition, comparing the two free trade scenarios with or without production 

specialization in Table 6-6 and Table 6-7, the study finds that the production 

specialization of ‘MANK-C’ and ‘MANK-B’ slightly increases the global losses by 

0.01% and 0.46%, respectively, during the medium and large floods colliding with the 

pandemic control. This indicates that the production specialization, which reduces the 

cross-regional substitutability of the products concerned, may lead to higher 

vulnerability of the global economy towards the perfect storm. 

 

Similar with Section 6.2.3.1, the study also examines the sensitivity of economic 

impacts to the degree of the export restriction on ‘MANK-C’ with production 

specialization, and finds robust results that both global and regional indirect losses 

(including losses in region C) increase with the degree of the export restriction at faster 

rates than without production specialization (see Appendix C.3. Economic Effects of 

Different Degrees of Export Restrictions in a Perfect Storm). 

 

Table 6-7: Global indirect impacts, relative to the pre-disaster level of the annual global 
GDP, of the perfect storm under different trade scenarios with production specialization. 

Scenarios 
30%-24 pandemic control 
Small 
flood 

Medium 
flood 

Large 
flood 

Free trade 12.42% 12.72% 14.29% 

50% export 
restriction 

on MANK-C 24.52% 25.06% 27.02% 
on MANK-C with retaliation 
from MANK-B 

28.61% 29.03% 30.46% 
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Figure 6-4: Weekly changes of regional GDPs, relative to the pre-disaster levels, in the four 
regions, when multi-scale floods collide with pandemic control and export restriction with 
production specialization. 
The numbers in each plot indicate the cumulative losses or gains of regional GDPs over time, 
relative to the pre-disaster levels of the annual regional GDPs. From left to right, each column 
represents the small-, medium-, and large-scale flooding in region C. From top to bottom, each 
row stands for one of the three export restriction scenarios: a) free trade scenario without any 
export restrictions; b) 50% export restriction on product MANK-C; c) 50% export restriction 
on product MANK-C and 2 weeks later 50% retaliatory export restriction on product MANK-
B. 

 

6.3. Sensitivity Analysis 

In this section, a sensitivity analysis on key parameters, mainly on inventory and 

overproduction adjustment, is carried out to check the robustness of modelling results. 

The study examines how the regional and global indirect impacts (i.e., losses of GDP 

relative to the pre-disaster levels), caused by a perfect storm, change with these 

parameters. For simplicity, it only demonstrates a typical compound scenario covering 

triple shocks, that is, region C, which is hit by a large flood, restricts the export of its 

‘MANK’ sector by 50% and region B imposes retaliatory restriction on the same sector 
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by the same degree during a 30%-24 pandemic control. The reference results are 

illustrated in Table 6-6 and Figure 6-3i in Section 6.2.3.1. Here the possibility of 

production specialization is not considered to avoid extreme simulations which may 

obscure the variability of results. 

 

Finally, the study examines how economic losses, as well as some main findings, 

change if a different MRIO table is used to construct the hypothetical global economy. 

The new MRIO table is obtained from an aggregated 2014 version of GTAP 10 Data 

Base (Aguiar et al., 2019), still consisting of four regions and the same five sectors. 

The new table is scaled to keep the global annual GDP the same as in the old table 

(9613 units), but the proportion that each region accounts for is changed, that is, 24% 

for region A, 29% for region B, 25% for region C, and 22% for region D (see Appendix 

Table A7). 

 

6.3.1. Inventory Size 

As explained in the methodology part of the CHEFA model (see Section 3.2.4.1), the 

targeted inventory size of each sector before and after the compound shock is defined 

by the parameter i
jsn . Figure 6-5 shows that model results are quite sensitive to this 

parameter, notably with regions A and D. Increasing inventory size can help improve 

economic resilience by lowering the risk of inventory shortage amid negative shocks. 

For instance, the production constraint resulting from an inventory shortage in region 

A is delayed from week 10 to 31 as the inventory size increases from 2 to 8 weeks, and 

there is no more such reduction in production when the inventory size is larger than or 

equal to 10 weeks. Globally, the cumulative GDP losses resulting from the perfect 

storm decrease from 18.1% to 12.5% as the inventory size increases from 2 to 12 weeks. 

 

Although high inventory levels are beneficial to improving supply chain resilience 
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towards complex shocks, they have different impacts on inventory costs. Increasing 

inventory may increase the costs associated with storing inventory but decrease the 

costs related to ordering and delivering inventory (Mack, 2019). A more thorough cost-

benefit analysis of inventory management is needed to find the perfect balance 

between maximizing resilience and minimizing expenses. Technical progress 

sometimes can help to address this issue, such as the use of smart information sharing 

systems based on artificial intelligence, machine learning, and blockchain techniques 

(Lotfi et al., 2022). The equipment and training of new techniques and systems may 

be costly in the short term but will eventually increase the resilience and robustness of 

supply chains at low inventory levels and management costs in the long term.  
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Figure 6-5: Weekly changes in regional and global GDPs, relative to their pre-disaster levels, 
for the six values of inventory size, during the perfect storm of flooding, pandemic control, 
and deglobalization.  
The first four plots illustrate the robustness of results in regions A, B, C, and D, respectively, 
and the last plot stands for the global economy. The table at the bottom right presents the 
cumulative losses of regional and global GDPs, relative to the pre-disaster annual levels, for 
the six values of inventory size. 

 

6.3.2. Inventory Restoration Rate 

In the CHEFA model, a new parameter sτ   is introduced to address the issue of 

dynamic instability that may occur when sectors attempt to restore their inventory too 

fast (see Section 3.2.4.1). This parameter describes the proportion of inventory losses 

that economic sectors try to restore in the next time step, which is a metric indicating 

the inventory restoration rate. Figure 6-6 illustrates how the regional and global 

economic losses change with five different values of inventory restoration rate. In 

general, these losses are less sensitive to the inventory restoration rate than the 

inventory size. Although lowering the inventory restoration rate may spare more goods 

for reconstruction and other final demands, it accelerates the occurrence of inventory 

shortages and finally slows down the whole recovery process. The economic losses in 

regions A, B, and D grow by roughly 1% when the inventory restoration rate is cut 

from 1 to 0.2. By contrast, the loss in region C, which is hit by the flood, Is the least 

sensitive to this parameter, reaching its lowest when the inventory restoration rate is 

between 0.4 and 0.6. 
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Figure 6-6: Weekly changes in regional and global GDPs, relative to their pre-disaster levels, 
for the five values of inventory restoration rate, during the perfect storm of flooding, 
pandemic control, and deglobalization. 
The first four plots illustrate the robustness of results in regions A, B, C, and D, respectively, 
and the last plot stands for the global economy. The table at the bottom right presents the 
cumulative losses of regional and global GDPs, relative to the pre-disaster annual levels, for 
the five values of inventory restoration rate. 

 

6.3.3. Maximum Overproduction Capacity 

As explained in Section 3.2.4.4, the overproduction module describes how economic 

sectors, particularly those involved in reconstruction, adapt their production capacity 

to an increasing demand for post-disaster recovery. It introduces two important 
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parameters: the maximum overproduction capacity max
irα   and the overproduction 

adjustment time ατ . 

 

This section first examines the result robustness to the first parameter max
irα , which 

defines the upper limit of overproduction capacity. As shown in Figure 6-7, the 

economic recovery of region C is much more sensitive to this parameter than that of 

other regions. This is not surprising as region C is the only region hit by the flood. 

When the maximum overproduction capacity is large, the production in sectors 

involved in reconstruction (i.e., the ‘MANK’ and ‘CON’ sectors) soars to address the 

increasing need for reconstruction, which offsets some of the output loss in other 

sectors. The economic losses in regions A and B also decrease slightly with the 

increase in maximum overproduction capacity, as some of their products are needed 

by region C for reconstruction. Globally, the cumulative GDP loss declines from 17.0% 

to 15.3% when the maximum overproduction capacity increases from 100% (no 

overproduction) to 150%. 
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Figure 6-7: Weekly changes in regional and global GDPs, relative to their pre-disaster levels, 
for the five values of maximum overproduction capacity, during the perfect storm of 
flooding, pandemic control, and deglobalization. 
The first four plots illustrate the robustness of results in regions A, B, C, and D, respectively, 
and the last plot stands for the global economy. The table at the bottom right presents the 
cumulative losses of regional and global GDPs, relative to the pre-disaster annual levels, for 
the five values of maximum overproduction capacity. 

 

6.3.4. Overproduction Adjustment Time 

Here the influence of the second parameter, overproduction adjustment time ατ , in 

the overproduction module on disaster-induced economic losses is assessed. This 

parameter describes the time (in weeks) needed for economic sectors to achieve their 
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maximum overproduction capacity. The results are presented in Figure 6-8. Compared 

with the previous section, the economic losses are less sensitive to overproduction 

adjustment time than maximum overproduction capacity. This is consistent with the 

results of the sensitivity analysis in Hallegatte (2008), which concludes that the 

overproduction adjustment time does not matter much in post-disaster economic 

recovery. Nevertheless, the economic loss in region C is still more sensitive than other 

regions and shows an upward trend as the adjustment time increases. This is because 

the adjustment time is essentially an inverse of the adjustment speed. When sectors 

need more time to reach their maximum overproduction capacity, their production 

climbs at smaller steps each time after the shock, leading to a slower recovery and 

more economic losses. 
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Figure 6-8: Weekly changes in regional and global GDPs, relative to their pre-disaster levels, 
for the six values of overproduction adjustment time, during the perfect storm of flooding, 
pandemic control, and deglobalization.  
The first four plots illustrate the robustness of results in regions A, B, C, and D, respectively, 
and the last plot stands for the global economy. The table at the bottom right presents the 
cumulative losses of regional and global GDPs, relative to the pre-disaster annual levels, for 
the six values of overproduction adjustment time. 

 

6.3.5. A Different MRIO Table 

This section uses a different MRIO table (Appendix Table A7), which is an aggregation 

of the 2014 version of GTAP 10 Data Base (Aguiar et al., 2019), to construct the 

hypothetical global economy of four regions and five sectors and explore how the main 

findings of this study will change. 
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First, Table 6-8 summarizes the global economic losses resulting from flooding, 

pandemic control, and their compounds, respectively, without trade restrictions for the 

GTAP MRIO table. Comparing with the reference MRIO table used in Section 6.2, the 

GTAP MRIO table results in lower economic losses under the ‘pandemic-only’ 

scenario, but more than doubles the direct damage of floods at various scales (see Table 

6-8 and Table 6-3). This is because the GTAP MRIO table implies a higher capital 

intensity in the same amount of GDP than the reference table used in Section 6.2. This 

also incurs higher indirect losses and correspondingly longer recovery time. However, 

the ratios of indirect to direct impacts of flooding, ranging from 0.12 to 0.38 in Table 

6-8, stay close to the results in Table 6-3. 

 

Table 6-8: Global economic footprint under the ‘flood-only’, ‘pandemic-only’, and 
‘flood+pandemic’ scenarios without trade restrictions for GTAP MRIO table. 

Scenarios 
Direct 
damage 

Indirect 
losses 

Total 
impacts 

% of 
global 
annual 
GDP 

Capital 
recovery 
weeks 

GDP 
recovery 
weeks 

Pandemic-only 0.0 1,150.2 1,150.2 12.0% - 40 

Small 
flood-only 748.0 91.7 839.8 8.7% 81 60 
flood+pandemic 748.0 1,138.5 1,886.5 19.6% 90 68 

Medium 
flood-only 1,496.0 386.1 1,882.1 19.6% 122 92 
flood+pandemic 1,496.0 1,385.9 2,881.9 30.0% 132 100 

Large 
flood-only 2,244.0 852.6 3,096.6 32.2% 160 125 
flood+pandemic 2,244.0 1,843.5 4,087.5 42.5% 168 131 

 

Besides, it is obvious from Table 6-8 that similar findings on the interaction between 

flooding and pandemic control (see Section 6.2.2.1) can be elicited with the GTAP 

MRIO table. On the one hand, a global pandemic control will extend the recovery time 

of capital damaged by flooding, and therefore exacerbate its economic consequences. 

On the other hand, flood responses can sometimes alleviate the negative impacts of 

pandemic control due to the stimulus effect of post-flood reconstruction, but this only 
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happens when the flood damage is small. If the flood damage is large enough to exceed 

the reconstruction stimulus, then the pandemic impacts will be aggravated. 

 

Second, the study then examines the results related to pandemic control in different 

flood periods with different strictness and duration. As shown in Table 6-9, a pandemic 

control occurring after flooding leads to slightly more economic losses than it before 

flooding, and a stricter but shorter pandemic control is conducive to mitigate the 

negative impacts of the compound crises. These findings are consistent with those 

using the reference MRIO table in Section 6.2.2.2. 

 

Table 6-9: Global indirect impacts, relative to the global annual GDP at the pre-disaster 
level, of the pandemic control intersecting in different flood periods with different strictness 
and duration for GTAP MRIO table. 

Scenarios 
Flood scales in region C 
Small Medium Large 

Global 
pandemic 
control 

30%-24 control 7 
weeks before flooding 

11.97% 14.47% 19.22% 

30%-24 control 7 
weeks after flooding 

12.14% 14.62% 19.36% 

60%-8 control 7 weeks 
after flooding 

10.09% 12.73% 17.61% 

 

Third, the study explores the role of export restriction in the economic footprint of a 

perfect storm for the GTAP MRIO table. Table 6-10 presents the changes in cumulative 

GDP losses, both on the regional and global scales, by different export restriction 

scenarios without production specialization. The first row sets the free trade scenario 

when there are no export restrictions and thus no changes in the losses resulting from 

the compound crises. The second row assumes that region C imposes a 50% restriction 

on the exports of its MANK sector to ‘protect’ its post-flood reconstruction. The results 

show that all regions except C suffer loss increases to various extents due to the 

restriction. Region C, in particular, is the only region that benefits from the restriction 

under all flood scales. This is because that the flood-induced capital damage is large 
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with the GTAP MRIO table at all flood scales, making the economic stimulus from the 

reconstruction demand outpace the negative impact of export declines. The third row 

presents the loss changes from the ‘MANK-C’ restriction scenario to an escalating 

scenario including B’s retaliation. This time, region C also suffers increased losses of 

an average of 1.37%, which exceeds the economic gains of its own restriction and 

leads to a net increase in its GDP losses by 1.29%. In addition, the loss of region B 

falls by 0.7%, back to the loss level of the free trade scenario. This may in turn enhance 

the motivation of region B to take retaliatory measures, which supplements the results 

using the reference MRIO table in Section 6.2.3.1. 

 

Table 6-10: Changes in cumulative GDP losses, on regional and global scales, by escalating 
export restrictions without production specialization for GTAP MRIO table. 

Scenarios 
Region 
A 

Region 
B 

Region 
C 

Region 
D 

Global 
change 

Free trade 0.00% 0.00% 0.00% 0.00% 0.00% 
Export 
restriction 

MANK-C 0.33% 0.70% -0.08% 1.18% 0.53% 
MANK-C, MANK-B 0.24% -0.70% 1.37% 0.57% 0.32% 

Notes: The cumulative GDP losses are in relative terms of the annual GDPs at the pre-disaster 
levels. Results in each row are the loss changes compared to the scenario of the previous row. 
The results are given as the ensemble mean of scenarios where different scales of floods collide 
with a 30%-24 pandemic control. 

 

Finally, the study considers the effect of production specialization in the context of 

deglobalization. Table 6-11 is similar with Table 6-10, except that all scenarios are 

simulated under the assumption that the ‘MANK-B’ and ‘MANK-C’ sectors make 

specialized goods which cannot be substituted elsewhere. The loss changes in the first 

row, which reflects the role of production specialization under the free trade scenario, 

are obtained by comparing with the free trade scenario without production 

specialization (i.e., the first row in Table 6-10). It is obvious that the specialization 

itself raises the vulnerabilities of both regional and global economies to the compound 

crises. From the second row, it is found that the export restriction of region C on a 

specialized product triggers much severer economic losses to other regions, which in 
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turn makes region C also suffer more losses through the propagation effect of the 

supply chains. The third row tells that the retaliation from another region and sector 

would trap region C, which initiates the trade war, into further losses, and ultimately 

slow down the global recovery. These results are consistent with those using the 

reference MRIO table in Section 6.2.3.2. 

 

Table 6-11: Changes in cumulative GDP losses, on regional and global scales, by escalating 
export restrictions with production specialization for GTAP MRIO table. 

Scenarios 
Region 
A 

Region 
B 

Region 
C 

Region 
D 

Global 
change 

Free trade 0.24% 0.37% 0.36% 0.26% 0.31% 
Export 
restriction 

MANK-C 14.46% 17.13% 2.27% 15.77% 12.52% 
MANK-C, MANK-B 0.17% 0.17% 6.76% 0.20% 1.80% 

Notes: The cumulative GDP losses are in relative terms of the annual GDPs at the pre-disaster 
levels. Results in each row are the loss changes compared to the scenario of the previous row, 
while those in the first row are compared to the free trade scenario without production 
specialization. The results are given as the ensemble mean of scenarios where different scales 
of floods collide with a 30%-24 pandemic control. 

 

Overall, despite higher flood-induced direct damages and stronger retaliatory 

motivation towards trade restrictions, switching to the GTAP MRIO table has not 

changed the main findings of this study about the economic interplay between flooding 

and pandemic control, or about the roles of trade restriction and production 

specialization in the economic footprint of a perfect storm. 

 

6.4. Discussion and Conclusions 

This chapter applies the CHEFA model to simulate the economic footprint of a 

pandemic-induced perfect storm, taking the collision of flooding, pandemic control, 

and export restrictions as an example. The CHEFA model improves the standard ARIO 

model, which is commonly used in single-hazard impact analysis, by considering the 

interplay between different types of hazardous events for the first time. It also 
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incorporates the possibilities of cross-regional substitution and production 

specialization, which have opposite impacts on the substitutability of suppliers of the 

same sector from different regions and thus the economic resilience towards a perfect 

storm and estimates of the economic consequences. In this chapter, various scenario 

sets are built to test the robustness of the CHEFA model on a hypothetical global 

economy of four regions and five sectors. These scenarios are designed to investigate 

how the economic impacts of the perfect storm react to 1) the timing, strictness, and 

duration of the pandemic control; 2) the export restrictions imposed on specific sectors 

and regions; and 3) the presence of specialized production. The latter two special 

scenarios sets are included here as a reflection on the ongoing deglobalization. 

 

Two major conclusions can be drawn from the simulation results. The first conclusion 

is about the economic interplay between pandemic control and flood responses in a 

free trade global economy. On the one hand, a global pandemic control aggravates the 

flood impacts by hampering the post-flood capital reconstruction. This confirms the 

idea from an economic perspective that restrictions targeted at virus containment result 

in inadequate flood responses, aggravating the flood impacts (Ishiwatari et al., 2020; 

Selby and Kagawa, 2020; Swaisgood, 2020). On the other hand, a flood disaster 

exacerbates the pandemic impacts only when the flood damage is large enough to 

exceed the stimulus effect from the flood-related reconstruction activities. The flood 

disaster would accelerate and extend the shortage of inventories brought by the 

pandemic control and increase the negative impact on GDP. Its related reconstruction 

demand, however, could stimulate regional recoveries, which is also confirmed by 

Koks and Thissen (2016), and alleviate to some extent the negative impact of the 

pandemic control. 

 

Here two suggestions are made regarding pandemic intervention with flood disasters 

under the free trade scenarios. First, an early pandemic intervention is advocated to 
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reduce the economic footprint when the pandemic outbreak is colliding with flood 

disasters. The results of this chapter show that the pandemic control taking place after 

flooding leads to severer economic impacts than the control implemented before 

flooding, mainly due to a longer-lasting disruption of the post-flood recovery. Second, 

a stricter but shorter pandemic control strategy is also suggested. By comparing the 

impacts of a 30%-24 pandemic control with a 60%-8 pandemic control applied 

intermittently in the recovery period of multiple scales of flooding, the study discovers 

that the latter one results in less economic losses in all regions. This is in line with one 

of the major insights provided by Guan et al. (2020). 

 

The second conclusion refers to the role of trade or deglobalization in the economic 

footprint of compound risks. When the increasing trade barriers intertwines with the 

collision between flooding and pandemic control, it creates a triple perfect storm. In 

general, a region implementing export restriction is always at the cost of global 

economic recovery, whether itself benefits from this policy or not. Although the export 

restriction prioritizes domestic needs for post-disaster recovery, it does not necessarily 

mitigate the economic losses of the region if the stimulus of the surge in domestic 

demand cannot overtake the negative impact of the decline in exports. For other 

regions, those with high trade dependence would be more vulnerable to the export 

restriction and suffer faster increases in indirect losses.  

 

For another, specialization, which leads to the concentration of key sectors in particular 

regions and limits the possibilities for substitution, may sometimes delay economic 

recovery and raise the vulnerability of the economic network to such compound risks. 

The export restriction imposed on the non-substitutable specialized sector in a region, 

would put other regions at higher risks with significant surges in economic losses. This 

may also backfire at the economic resilience of the region itself through the 

propagation effect of the global supply chain.  
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The introduction of trade restrictions may also push other regions to make retaliatory 

movements, which further deteriorate the global recovery and make everyone lose. 

Among all the regions, the region which initiates the trade war loses much more when 

the retaliatory restriction is also imposed on a non-substitutable product. The collision 

of export restriction and production specialization, particularly with the expectation of 

retaliation, can trigger devastating impacts on the global economy at a time when it is 

already heavily burdened by tackling the compound hazards of extreme weather events 

and pandemic control. 

 

Therefore, regional or global cooperation is advocated to ease the negative impacts of 

deglobalization, at least rigorous trade policies that avoid highly specialized sectors 

are required confronting a perfect storm. Policies that lead to higher trade barriers 

undermine the efforts of other countries battling extreme weather events and a 

pandemic. The use of trade restrictions has a particularly deleterious impact in a world 

with production specialization in key sectors, raising the need for effective discipline 

at the global level of the use of such measures. 

 

Beyond these policy implications, the CHEFA model has demonstrated its flexibility 

in this chapter addressing various compound-hazard scenarios and can help 

governments refine their emergency policies by identifying the potential positive or 

negative externalities on wider economic systems. This could be used to guide regional 

or global cooperation in mitigating such spillover effects of the compound shocks, 

particularly in the context of deglobalization. The research also highlights the 

importance of an integrated approach in managing the compound risks. By utilizing 

the CHEFA model, decision makers can grasp a better view of the economic 

interlinkages between multiple hazards which ultimately develop into a perfect storm. 

Knowing the constraints from one hazard while responding to another assists the 
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formation of a balanced strategy which can minimize the economic losses from the 

trade-offs between emergency response and pandemic control. 

 

Finally, the CHEFA model provides consistent and comparable loss metrics with that 

of single-hazard analysis, as it is based on the popular ARIO model in this field. One 

of the commonly used metrics should be the ratio of indirect to direct economic 

impacts resulting from a disaster, the so-called cascading effect indicating the 

resilience of the supply chain towards the disruption (Mendoza-Tinoco et al., 2020). 

In this analysis, the indirect/direct ratio is 0.16-0.30 for the flood of multiple scales. 

This is close to the estimate (0.17) of Hallegatte (2014) for the Hurricane Katrina, but 

lower than that (0.39) of Hallegatte (2008) for the same event. This is because this 

analysis and that of Hallegatte (2014) both consider a certain level of substitutability 

and inventory dynamics that improves the economic resilience. Under the compound 

scenarios, this ratio soars up to 1.27-3.93 with the intervention of pandemic control, 

further to 1.41-4.35 with export restrictions on substitutable products, and ultimately 

to 2.73-8.67 when the restrictions are imposed on specialized non-substitutable 

products. The CHEFA model will facilitate future comparisons between various 

compound or single hazards under a similar methodological framework. 

 

Nevertheless, the CHEFA model used here is limited by not considering technical 

progress and is relevant for a short-term time scale, where the production patterns of 

economic sectors do not shift significantly. This outlook explains why the study only 

considers the substitution between intermediate inputs of the same kind from different 

regions, rather than the substitution between different types of inputs. Moreover, the 

CHEFA model used in this chapter follows the assumption in Hallegatte (2008) that 

capital damage will all be repaired and that the insurance companies will pay the whole 

repair cost. The crowding-out effects of the reconstruction costs on household 

consumption will be researched in the following chapter (i.e., Chapter 7). In addition, 
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the event settings for flooding, pandemic control, and export restriction in each 

scenario are simple abstractions of reality, which only characterizes their economic 

features. The study does not distinguish their differences in other aspects in the 

warning, impact, and response phases, but focuses on their interconnections in 

economic risk transmission. Admittedly, there are other kinds of interactions between 

natural and biological hazards, but it is beyond the research scope of this chapter to 

model all these factors. For one thing, some response measures towards flooding, such 

as evacuation and displacement, could increase the number of people exposed to the 

pandemic and the burden on the healthcare system. For another, some pandemic 

mitigation measures like testing, therapeutics, and vaccines may benefit the economic 

recovery in complex situations. The health-related interactions and the accompanying 

economic consequences will be incorporated into future studies. 
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Chapter 7 Economic Impacts of the 2021 
Zhengzhou ‘Flood-COVID’ Compound Event in 
China 

The outcomes of this chapter have been published in a Chinese paper co-authored by 

Lili Yang and Dabo Guan. Yixin Hu is responsible for data collection, impact 

modelling, result interpretation, and drafting. The sections in this chapter have been 

reproduced under the permission of co-authors.  

 

Hu, Y., Yang, L., & Guan, D*. (2022). Assessing the economic impact of “natural 

disaster-public health” major compound extreme events: a case study of the compound 

event of floods and COVID epidemic in Zhengzhou China (in Chinese). China Journal 

of Econometrics, 2(2), 257-290. https://doi.org/10.12012/CJoE2021-0090 

 

The purpose of this chapter is to fulfil Research Objectives 5 and 6, which are the 

empirical application of the CHEFA model for the compound-hazard impact analysis 

(see Section 3.2) and the exploration of factors influencing the compound resilience of 

the economic system. This contributes to Research Questions 3 and 4 raised in Section 

1.4.1. In this chapter, the CHEFA model is applied to assess the overall economic 

impacts of a real case, namely the compound event of extreme floods and a COVID-

19 wave in the Zhengzhou city of China in the summer of 2021. From July 17 to 23, 

2021, Central China’s Henan Province was hit by unprecedented heavy rainfalls and 

massive floods, and its capital city Zhengzhou suffered heavy casualties and property 

damage. The event has been listed as the deadliest natural disaster in 2021 in China. 

The situation was worsened in Zhengzhou by a local COVID-19 wave a week later, 

which affected the progress of post-flood recovery and compounded climate risks. This 

chapter investigates how such compound shocks propagate through the cross-regional 

https://doi.org/10.12012/CJoE2021-0090
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supply chains, as well as the factors that influence economic resilience in the aftermath. 

The results indicate that: (1) most of the economic impacts are found within 

Zhengzhou with non-metallic mineral products and food and tobacco sectors suffering 

the largest indirect economic losses. These two sectors also have the strongest 

propagation effects through the supply chain; (2) the pandemic risks during the post-

flood recovery period in Zhengzhou have exacerbated the total indirect economic 

losses by 77% and reshaped the spatial and sectoral distribution of the economic 

footprint; (3) the post-disaster economic resilience is most sensitive to factors such as 

road recovery rate, reconstruction efficiency and consumption subsidies, and COVID-

19 control tends to reduce the marginal economic benefits of flood emergency efforts. 

In combination these results suggest that the government should consider the balance 

between disaster relief, COVID-19 control and economic recovery in response to 

compound hazards: for one thing, the emergency response and reconstruction activities 

should progress in accordance to the dynamic requirements of COVID-19 control; for 

another, taking into account the regional economic characteristics such as industrial 

structure and saving preference, the recovery of key-node sectors in basic industries 

should be given the priority in terms of reconstruction funds and technical support, 

subsidies for production and consumption should be allocated accordingly and flexibly, 

so as to boost the regional economy in the disaster aftermath.  

 

Note that the health impacts are not modelled in this study. The wave of COVID-19 is 

simply proxied by the corresponding control measures taken to stop virus transmission, 

and its severity is linked to the strictness and duration of the control required. All 

monetary values in this chapter are given in 2021 CNY values. 

 

7.1. Introduction 

The year 2021 was a year of frequent meteorological disasters for China. Events 
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included sandstorms in Beijing, tornadoes in Wuhan, torrential rains in Zhengzhou, 

high temperatures in the south, extreme precipitation in Shanxi. Climate change is 

driving the occurrence and magnitude of extreme weather events, globally and in 

China (Wang, 2021). In parallel, due to the ongoing mutations and global spread of 

COVID-19, China is constantly faced with the risk of case surges in many places. The 

confluence of pandemic risks and natural disasters poses great challenges to the 

emergency management system in China (Zhao, Hu, et al., 2021). For example, after 

the extreme rainstorm and flooding on July 20, 2021, in Zhengzhou, a wave of 

COVID-19 struck the city immediately, leading to the suspension of post-flood 

recovery16 (Figure 7-1). In such a complex situation of flooding and a COVID-19 

wave, lockdown measures to contain the spread of the virus have made the flood 

control and disaster relief more difficult, which delayed the processes of post-flood 

reconstruction and production restoration and might result in additional economic 

losses. With climate change and continued COVID-19 pandemic, the co-occurrence of 

natural disasters and public health emergencies will appear more frequently (Phillips 

et al., 2020).  

 

 
Figure 7-1: Timeline of the compound event of Zhengzhou’s extreme floods and a COVID-
19 wave in 2021. 

 

As noted in the literature review (Chapter 2), the economic impacts of disaster events 

include direct and indirect ones: the former refers to the monetary values of human 

 
16  For example, after the flood, the no-load operation of Zhengzhou Metro was suspended due to COVID-19 

control. Please see the webpage: http://sina.com.cn/news/2021-08-05/detail-ikqcfncc1154105.shtml. 

http://sina.com.cn/news/2021-08-05/detail-ikqcfncc1154105.shtml
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and physical assets directly damaged by the disaster17, while the latter refers to the 

changes of output or added value in wider regions and sectors due to the business 

interruptions caused by direct impacts and the imbalances between supply and demand 

in the supply chain (Koks and Thissen, 2016; Mendoza-Tinoco et al., 2017). Although 

direct impacts of disasters usually draw more attention because of their explicitness, 

indirect economic impacts can better depict the spread or footprint of disaster shocks 

along the production supply chain on both the temporal and spatial scales, and thus 

should not be ignored (Avelino and Dall'Erba, 2019; Carrera et al., 2015). Especially, 

when natural disasters (e.g., floods) and public health emergencies (e.g., pandemics) 

collide, the formation mechanism of indirect economic impacts becomes more 

complicated. In this situation, economic production is not only faced with capital 

constraints caused by natural disasters, but also limited by insufficient labour supply 

due to pandemic control (Brinca et al., 2021; Guan et al., 2020). The transportation 

bans due to pandemic control may further disrupt the production supply chain and 

cause shortages of industrial inventories (Ivanov, 2020; Nikolopoulos et al., 2021). 

Customers may also change their consumption behaviours in response to the 

compound-hazard events, which is another reason for the fluctuation of economic 

output (Cox et al., 2020; Hallegatte, 2008). In fact, in some countries, COVID-19 

control measures are aggravating the socio-economic consequences associated with 

natural disasters (Walton et al., 2021). 

 

In addition to the complexity of the impact mechanism, the combination of natural 

disasters and public health emergencies also poses great challenges to the rebuilding 

of post-disaster economic resilience. Economic resilience refers to the ability of the 

economic system to recover from disasters, which can be quantified by indirect 

economic losses accumulated during the post-disaster economic recovery (Zhang, Li, 

 
17 For instance, the life and health costs of casualties, the market values of impacted crops, the reconstruction costs 

of collapsed houses, and the maintenance or replacement costs of damaged equipment.  
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Feng, et al., 2018). Economic resilience is found to be closely related to the regional 

capacity of emergency management and investment of emergency funds (Shi, 2005). 

During the risk of compound disasters, large-scale natural disaster emergency and 

response activities, such as road repairing, house reconstruction, injury treatment, etc., 

may accelerate the spread of the virus; however, if the efficiency of emergency relief 

is reduced by pandemic control, the recovery time after the disaster may be prolonged, 

resulting in more economic losses (Ishiwatari et al., 2020; Salas et al., 2020). In 

addition, at the financial level, Mahul and Signer (2020) pointed out that 

simultaneously confronting two types of hazards may deplete the financial budgets or 

contingent financing arrangements. Therefore, it is necessary to formulate an efficient 

emergency fund allocation and utilization scheme to boost financial preparedness for 

compound hazards (ibid.). The mutual constraints between disaster emergency and 

pandemic control will reshape the post-disaster economic resilience in unexpected 

ways. A key concern in the risk management of compound disasters and in governance 

is how to balance disaster relief, pandemic control and economic goals. 

 

Current studies on compound hazards mostly focus on the management or governance 

level, while the quantitative evaluation of their economic impacts or resilience is still 

scarce (see Section 2.3 for a literature review on compound hazards). Faced with the 

increasing possibility of compound hazards and a series of complex problems thereby, 

it is necessary to develop an interdisciplinary and multi-sectoral model to 

systematically assess the overall economic impacts of compound events and provide 

quantitative basis for post-disaster reconstruction and recovery policies (Phillips et al., 

2020). 

 

Against this backdrop, this chapter uses the CHEFA model developed in this thesis to 

assess the economic impacts of the 2021 compound event of extreme flooding and a 

COVID-19 wave in Zhengzhou, China. Both the direct and indirect disaster footprints 
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are traced, through the backward and forward propagation effects along the production 

supply chain, from the affected city of Zhengzhou, to the province of Henan, in which 

the city is located, and finally to the national level. A series of sensitivity analyses is 

carried out to examine how factors such as COVID-19 control, flood recovery, and 

financial aid, would influence the post-disaster economic resilience. This study 

represents the first multi-city-level assessment of direct and indirect economic impacts 

of compound-hazard events in China, using field measurement flood data and the first 

Chinese city-level MRIO table. The objective is to enhance public understanding of 

compound hazard impacts and inform public policies to boost preparedness for future 

risks. 

 

7.2. Data and Model Parameters 

The flood-induced direct damages are estimated at the 300 metre spatial resolution for 

four land use types (i.e., residential, agricultural, industrial, and commercial land) in 

Zhengzhou, using the China-specific depth-damage functions developed by Huizinga 

et al. (2017) (see methods described in Section 3.1.1.1). Damage to agricultural, 

industrial, and commercial land sectors are then disaggregated into the corresponding 

sub-divided economic sectors in proportion to the sectoral capital stock. The CHEFA 

model developed in Section 3.2 can evaluate the indirect economic footprint of the 

Zhengzhou compound-hazard event using inputted damage data from the residential 

and industrial productive capital, as well as information on local COVID-19 controls 

or lockdowns.  

 

Note that this study does not consider the health impacts of COVID-19, which is 

similar with Chapter 6. The wave of COVID-19 in the 2021 Zhengzhou compound 

event affected the economy mainly through a reduction in labour supply due to strict 

traffic restrictions/lockdowns. The spread of COVID-19 was under control shortly in 
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a month with no deaths and few illnesses (i.e., 28 confirmed cases out of 12.7 million 

residents) in the city18 . Therefore, ignoring the health outcomes would have little 

influence on the economic impact modelling of such a compound event. 

 

7.2.1. Source of Data 

Two types of data, i.e., disaster data and socio-economic data, are used in the disaster 

footprint modelling of the 2021 compound event in the Zhengzhou city of China. 

Disaster data includes information on flood characteristics and COVID-19 control 

measures. The flood data, including inundation depths and area, is collected from the 

data project carried out by the ‘Water Hazard Action Group’ of Zhengzhou 

University19. In this project, the maximum inundation depths at 808 selected locations 

in the city were measured on site, together with other data from questionnaire surveys 

and the Internet. On the other hand, combined with the information online, news and 

other channels, the wave of COVID-19 in Zhengzhou was reported to have lasted 

about 4 weeks (July 30 to August 28) with 28 confirmed cases (all cured) in total. 

During this period, a series of control measures such as closed-loop management of 

residential areas in the city, suspension of passenger lines, and closure of dining places 

were adopted, resulting in a great impact on transportation and labour commuting20.  

 

For socio-economic data used in the calculation of direct impacts, the land use data of 

Zhengzhou is sourced from the ESA CCI land use database (ESA, 2017), and is 

calibrated based on the data of Zhengzhou in the China Urban Construction Statistical 

Yearbook in 2019 (Ministry of Housing and Urban-Rural Development of China, 

2019). In the assessment of indirect impacts, China’s economy is divided into 48 

 
18 The number of confirmed COVID-19 cases is obtained from https://www.sohu.com/a/496513872_121237775.  
19 For specific data information, please refer to the article “Sino-British Universities Cooperate to Complete the 

Simulation of July 20 Rainstorm” published by WeChat official account ‘Water Hazard Action Group of Zhengzhou 

University’ on August 31, 2021, https://mp. weixin.qq. com/s/5VY04fbD3VCynSantxtABg.  
20 Source of data: http://henan. people. com. cn/n2/2021/0806/c351638-34856245. html.  

https://www.sohu.com/a/496513872_121237775
https://mp.weixin.qq.com/s/5VY04fbD3VCynSantxtABg
https://mp.weixin.qq.com/s/5VY04fbD3VCynSantxtABg
https://mp.weixin.qq.com/s/5VY04fbD3VCynSantxtABg
http://henan.people.com.cn/n2/2021/0806/c351638-34856245.html
http://henan.people.com.cn/n2/2021/0806/c351638-34856245.html
http://henan.people.com.cn/n2/2021/0806/c351638-34856245.html
http://henan.people.com.cn/n2/2021/0806/c351638-34856245.html
http://henan.people.com.cn/n2/2021/0806/c351638-34856245.html
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regions, i.e., 18 prefecture-level cities (including Zhengzhou) in Henan Province and 

30 other provinces in China21, and 26 economic production sectors (Table 7-1), based 

on the 2015 Chinese city-level MRIO table released by the CEADs database of 

Tsinghua University (Zheng et al., 2021). In the economic equilibrium, the amount of 

productive capital in each economic sector is assumed to be 4 times of its annual value 

added, which is similar to other macroeconomic models (Hallegatte, 2008; Koks and 

Thissen, 2016; Wang et al., 2021). The amount of residential capital is then 

extrapolated according to the ratio of residential to non-residential land areas in 

Zhengzhou. Relevant GDP and population data is collected from the WDI database 

(World Bank, 2021) and the Bulletin of the Seventh National Census of Zhengzhou 

(Zhengzhou Municipal Bureau of Statistics, 2021), respectively. In this study, the post-

disaster economic dynamics are simulated in weeks and assumed to recover to the pre-

disaster state in 2020, while the Chinese MRIO table used reflects the annual economic 

flows between regions and sectors in 2015. To bridge these time gaps, the 2015 MRIO 

table is first scaled up to the year of 2020 according to the ratio of national GDPs 

between 2015 and 2020, and then divided by the number of weeks per year (i.e., 52 

weeks) to obtain the weekly flows of economic transactions between regions and 

sectors. 

 

  

 
21 Here the Hong Kong, Macao and Taiwan regions of China are excluded in the analysis.  
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Table 7-1: List of 26 economic production sectors. 
Land use classes Economic production sectors 
Agricultural land Agriculture 

Industrial land 

Mining 
Food and tobacco 
Textiles 
Timbers and furniture 
Paper and printing 
Petroleum, coking, and nuclear fuel 
Chemicals 
Non-metallic mineral products 
Metal products 
Ordinary machinery 
Transport equipment 
Electrical equipment 
Electronic equipment 
Other manufactured products 
Electricity, gas, and water 
Construction 

Commercial land 

Transport 
Wholesale and retail 
Accommodation and catering 
Information services 
Finance 
Real estate 
Rental and business services 
Scientific research and technical services 
Other services 

 

7.2.2. Parameter Setting 

The descriptions and values of model parameters are shown in Table 7-2. The 

maximum overproduction capacity max
irα   and the characteristic time of 

overproduction ατ  are set according to the study of Zhang, Li, et al. (2019). Based 

on information obtained from the news and investigations, the public has donated 3 

billion yuan and the government has allocated 3.3 billion yuan from the financial 

budget reserve funds, respectively, to the city of Zhengzhou for battling the flood. 
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About 52% of these funds were used for industrial capital reconstruction and 

production recovery, while the rest were used for residential housing repair and living 

allowance. Reconstruction funds are assumed to be distributed among the production 

sectors of Zhengzhou in proportion to their gross value added at the pre-disaster level. 

This would increase the maximum overproduction capacity of these sectors by a 

percentage subjected to the reconstruction efficiency (i.e., the adjustment time required 

to reach the maximum overproduction capacity 16ατ = ). More specifically, the study 

assumes that the maximum overproduction capacity of sectors outside Zhengzhou is 

benchmarked at 101%, while that of sectors within Zhengzhou rises to 102% as the 

invested reconstruction funds reach about 1% of Zhengzhou’s 16-week GDP. 

Subsidies to households in Zhengzhou can alleviate their income losses after paying 

for the reconstruction costs in the flood aftermath. This would cause further changes 

in their current and future consumption behaviours, considering a regionalized 

intertemporal consumption or saving preference (see Equations (137)-(138) in Section 

3.2.1.5). Moreover, the values of inventory size j
irn   and adjustment time sτ   are 

referred to the study of Hallegatte (2014). Other parameter values such as flood-related 

transport recovery rate, labour recovery rate, strictness and duration of COVID-19 

control, and intertemporal consumption preference come from news and investigations. 

 

  



Chapter 7 

307 

Table 7-2: Parameter values of the CHEFA model applied in the compound event of 
Zhengzhou. 
Parameters Definitions Values 

irα  
Production capacity of sector i  in region r  at the 
initial level 

100% 

max
irα  

Maximum overproduction capacity of sector i  in 
region r  relative to the pre-disaster level 

102% for 
Zhengzhou, 
101% for other 
regions 

ατ  Weeks needed by a sector to achieve its maximum 
overproduction capacity 

16 

j
irn  

Weeks of intermediate use of inventory product j  
that sector i  in region r  wants to hold 

4 

sτ  Proportion of inventory loss that a production sector 
tries to restore in the next time step 

100% 

Lβ  Labour recovery rate – proportion by which the 
affected labours are reduced per next period 

0.5 

Zβ  
Flood-related transport recovery rate – proportion by 
which the flood-related transport disruptions are 
alleviated per next period 

0.7 

,Z C
rγ  

Strictness of COVID-19 control – percentage by which 
the transport capacity from region r  to other regions 
is reduced due to the COVID-19 lockdown 

30% 

Cβ  
Intertemporal consumption preference – the impacts of 
an income change on consumption are reduced by 
1 Cβ−  per next period 

0.5 

 

It should be noted that there were other regions in China impacted by either extreme 

floods (e.g., other cities in Henan Province) or COVID-19 waves (e.g., cities of 

Nanjing and Zhangjiajie in other provinces) during the study period, but Zhengzhou 

was the only region affected by both hazards in close succession. Therefore, this 

chapter uses the 2021 Zhengzhou ‘flood-COVID’ compound event as a typical case to 

study the economic footprint of a compound hazard from the directly affected region 

to wider economic systems along the production supply chain. In the meantime, the 

direct damage resulting from floods or COVID-19 waves in other regions is ignored. 
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7.3. Direct and Indirect Economic Impacts of the 2021 

Zhengzhou ‘Flood-COVID’ Compound Event 

7.3. 

This section presents the results of the disaster footprint assessment of the 2021 

Zhengzhou ‘flood-COVID’ compound event using the CHEFA model developed in 

this thesis. In particular, the differences in the results of compound-hazard and single-

flood events (i.e., the increased losses resulting from COVID-19 control) are 

emphasized. 

 

7.3.1. Overall Economic Impacts and Spatial Spillover Effects 

The total economic losses of this compound event were estimated at 131,714 million 

yuan, equivalent to 0.13% of China’s GDP of the previous year 2020, excluding health 

costs (Table 7-3). Among them, the flood-induced direct damage reached 66,603 

million yuan, equivalent to 6.17% of Zhengzhou’s GDP in 2020. This was slightly 

higher than the official announcement (53,200 million yuan) 22  at the tenth press 

conference on August 2, 2021, with a reasonable error of about 25%. Although the 

flood-induced direct damage only occurred in Zhengzhou, it further caused widespread 

supply chain disruptions with a total indirect economic loss of 36,795 million yuan. 

65.63% of the indirect economic loss took place within Zhengzhou, while 19.40% and 

14.97% spilled over to other cities in Henan Province and other provinces in China, 

respectively. The wave of COVID-19, which hit the city around a week later when it 

had not fully recovered from the previous flood, continued to worsen the situation with 

additional recovery time and economic costs. The traffic lockdowns to control virus 

transmission have restricted the efficiency in flood emergency and responses, which 

extended the recovery period of the national economy from 18 weeks to 19 weeks (see 

Figure 7-2A). In addition to this time delay, the COVID-19 control also aggravated the 

 
22 Source of data: http://news.cnr.cn/native/city/20210802/t20210802_525550674.shtml (2021-08-02). 

http://news.cnr.cn/native/city/20210802/t20210802_525550674.shtml
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national indirect economic loss by 28,316 million yuan, which was close to the 

counterpart impact of the flood. Nearly 30% of the pandemic-related indirect loss 

overflowed to other regions outside Zhengzhou due to the economic interrelations 

between regions. It was assumed that the COVID-19 control mainly affected labour 

supply and transportation capacity and did not cause direct damage to physical assets. 

Finally, the ratio of indirect to direct loss increased from 0.55 to 0.98 due to the 

COVID-19 intervention, indicating a greater cascading effect of a direct shock in the 

economic network. In other words, the concomitant COVID-19 control during the 

flood recovery in Zhengzhou increased the indirect economic loss by 77%. In China’s 

current stage of regular COVID-19 prevention and control, the disaster footprint 

assessment of an extreme event should not only consider the indirect footprint of the 

event itself, but also the additional footprint brought by COVID-19 control.  

 

Table 7-3: Economic losses due to the 2021 Zhengzhou ‘flood-COVID’ compound event in 
the directly affected city of Zhengzhou, Henan Province (outside Zhengzhou), and the whole 
country (outside Henan). 

Regions 
Direct 
losses 

Indirect losses 
Total 
losses 

% of local 
GDP 

Flood-
related 

Pandemic-
related 

Zhengzhou 66,603 24,149 20,191 110,943 10.28% 
Henan (outside Zhengzhou) - 7,137 5,040 12,177 0.29% 

China (outside Henan) - 5,509 3,085 8,595 0.01% 
Sum 66,603 36,795 28,316 131,714 0.13% 

Notes: The absolute loss is given in millions of 2021 CNY and the relative loss is expressed 
as a percentage of the local GDP in the previous year 2020. 
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Figure 7-2: Recovery dynamics of weekly GDPs in the whole country and representative 
regions relative to the pre-disaster levels in the compound-hazard and single-flood scenarios. 

 

A more detailed spatial distribution of the indirect economic footprint caused by the 

2021 Zhengzhou ‘flood-COVID’ compound event is shown in Appendix Table A9. 

Overall, there were about 32% of the total indirect losses spreading to regions outside 

Zhengzhou, of which 59% were within Henan Province. Cities of Nanyang, 

Zhumadian, and Pingdingshan in Henan Province ranked high in both absolute and 

relative indirect losses, indicating strong influence of Zhengzhou’s business activities 

on the economic performance of these three cities. Outside Henan Province, provinces 

of Jiangsu and Shandong suffered the greatest absolute losses but small relative losses, 

implying that these two provinces, though closely economically connected with 

Zhengzhou, were well resistant to the business disruptions from Zhengzhou due to 

their high economic resilience or stability. In contrast, provinces of Hainan and Gansu 

suffered small absolute losses but large relative losses, suggesting that these two 

provinces, though having fewer economic ties with Zhengzhou, were heavily 
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subjected to the business disruptions from Zhengzhou due to the low resilience or high 

vulnerability of their economies. 

 

Figure 7-2B-D and Appendix Table A9 also present the marginal or additional impacts 

of Zhengzhou’s COVID-19 control on the economic outcomes of other regions. It was 

found that cities of Sanmenxia and Jiyuan in Henan Province and the whole Qinghai 

Province had the largest proportion (over 45%) of indirect economic losses accounted 

by Zhengzhou’s COVID-19 control. This means that these three regions are more 

vulnerable to the impact of COVID-19 control in Zhengzhou than other regions, and 

their indirect economic losses have greatly increased thereby. Comparatively, most 

regions outside Henan Province were less impacted by Zhengzhou’s COVID-19 

control, among which provinces of Hubei and Sichuan had the smallest proportion of 

pandemic-related losses, both of which were less than 25%. 

 

7.3.2. Sectoral Cascading Effect along Production Supply Chain 

7.3.2.1. Sectoral Distribution of Economic Losses in Zhengzhou City 

The direct economic losses resulting from the studied compound event in Zhengzhou 

were relatively concentrated among sectors (see Table 7-4). The real estate sector 

suffered the largest direct loss of 19,146 million yuan, accounting for 29% of the total 

direct losses in Zhengzhou, equivalent to 23% of the value added of this sector in the 

previous year 2020. This is followed by the transport sector (3,928 million yuan) and 

the other services sector (3,904 million yuan), accounting for about 6% of the total 

direct losses respectively. By comparison, the indirect economic losses were more 

distributed in the non-metallic mineral products sector (5,603 million yuan), the food 

and tobacco sector (4,496 million yuan) and the transport sector (4,476 million yuan), 

accounting for 13%, 10% and 10% of the total indirect losses in Zhengzhou 

respectively. This has proved that the direct impact of the compound event has strong 

cascading effect among economic sectors in Zhengzhou. Considering the sectoral 
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losses in both absolute and relative terms, the sectors most impacted by the compound 

event were concentrated in the tertiary industry of Zhengzhou, especially the real estate 

and the transport sectors, followed by the non-metallic mineral products sector in the 

secondary industry. Therefore, more attention should be paid to the recovery of these 

sectors in the disaster aftermath. 

 

It is worth noting that during the flood disaster in Zhengzhou, the communication 

interruption caused by the damage of communication infrastructure has drawn much 

attention. Many base stations, optical cables and other facilities were seriously 

damaged due to the flood inundation, road collapse and other reasons23. As presented 

in Table 7-4, the direct loss of the information services sector reached 3,197 million 

yuan, even exceeding that of the electricity, gas, and water sector. These two sectors 

are both capital-intensive sectors, which are vulnerable to floods caused by extreme 

rainfall. In the future, attention should be paid to strengthen the resilience of the 

infrastructure in these sectors to cope with extreme weather events.  

  

 
23 Source of data: http://henan.china.com.cn/finance/2021-07/24/content_41626309.htm. 

http://henan.china.com.cn/finance/2021-07/24/content_41626309.htm
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Table 7-4: Sectoral distribution of direct and indirect economic losses in Zhengzhou City 
due to the 2021 Zhengzhou ‘flood-COVID’ compound event. 

Sectors 
Direct 
losses 

Indirect losses 
Total 
losses 

% of 
sectoral 

value added 
Flood-
related 

Pandemi
c-related 

Agriculture 5 943 581 1,529 6.20% 
Mining 407 994 678 2,079 8.56% 

Food and tobacco 1,305 2,363 2,133 5,800 9.03% 
Textiles 163 221 177 560 7.32% 

Timbers and furniture 57 26 81 164 5.11% 
Paper and printing 504 301 400 1,206 9.75% 

Petroleum, coking, and 
nuclear fuel 

10 21 20 51 9.22% 

Chemicals 765 658 795 2,217 9.80% 
Non-metallic mineral 

products 
2,563 2,514 3,089 8,166 8.33% 

Metal products 1,309 822 1,197 3,328 9.20% 
Ordinary machinery 856 330 1,070 2,256 5.32% 
Transport equipment 813 254 800 1,867 5.89% 
Electrical equipment 72 51 149 271 4.59% 
Electronic equipment 1,234 618 1,144 2,996 6.45% 
Other manufactured 

products 
35 12 45 92 5.16% 

Electricity, gas, and water 2,553 879 524 3,956 17.66% 
Construction 941 480 82 1,503 2.23% 

Transport 3,928 2,605 1,871 8,404 13.00% 
Wholesale and retail 1,583 1,730 930 4,244 4.86% 
Accommodation and 

catering 
523 769 773 2,065 7.94% 

Information services 3,197 458 63 3,719 18.61% 
Finance 1,882 2,724 1,124 5,730 4.28% 

Real estate 19,146 932 670 20,748 25.04% 
Rental and business 

services 
998 381 249 1,628 8.29% 

Scientific research and 
technical services 

902 205 23 1,129 6.25% 

Other services 3,904 2,858 1,523 8,285 7.23% 
Residential houses 16,949 - - 16,949 - 

Notes: The absolute loss is given by millions of 2021 CNY and the relative loss is expressed 
as a percentage of the sectoral value added in the previous year 2020. Damage to residential 
capital is counted as the direct loss of the residential sector, which does not participate in 
production and thus has no indirect losses.   
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7.3.2.2. Sectoral Distribution of Economic Losses outside Zhengzhou City in Henan 

Province 

Impacted by the 2021 Zhengzhou ‘flood-COVID’ compound event, the agriculture, 

other services, and finance sectors in Henan Province (outside Zhengzhou) suffered 

the largest economic losses, which were 2,760 million yuan, 1,908 million yuan, and 

1,108 million yuan respectively (see Table 7-5). However, as a percentage of the 

sectoral added value in the previous year, the top three sectors with the greatest relative 

losses were the petroleum, coking, and nuclear fuel sector (1.03%), the 

accommodation and catering sector (0.82%), and the mining sector (0.60%). It is worth 

noting that, with the presence of reconstruction demand, overproduction capacity and 

cross-regional substitutability, some production in capital goods sectors (such as the 

construction, ordinary machinery, and transport equipment sectors) have been 

transferred from Zhengzhou City to other cities in Henan Province, resulting in the 

increased (rather than decreased) value added of these sectors in Henan Province 

(outside Zhengzhou), that is, positive economic benefits (or negative economic losses) 

have been made. 
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Table 7-5: Sectoral distribution of indirect economic losses in Henan Province (outside 
Zhengzhou) due to the 2021 Zhengzhou ‘flood-COVID’ compound event. 

Sectors 
Indirect losses 

Total 
losses 

% of 
sectoral 

value added 
Flood-
related 

Pandemic-
related 

Agriculture 1,814 946 2,760 0.44% 
Mining 501 544 1,045 0.60% 

Food and tobacco 612 193 805 0.34% 
Textiles 259 198 457 0.28% 

Timbers and furniture -3 0 -3 -0.01% 
Paper and printing 127 118 244 0.42% 

Petroleum, coking, and nuclear 
fuel 

206 184 390 1.03% 

Chemicals 437 322 759 0.40% 
Non-metallic mineral products 208 254 462 0.26% 

Metal products 119 188 307 0.15% 
Ordinary machinery -32 1 -31 -0.02% 
Transport equipment -23 1 -22 -0.03% 
Electrical equipment -8 1 -7 -0.01% 
Electronic equipment 17 3 21 0.08% 

Other manufactured products 18 20 38 0.21% 
Electricity, gas, and water 92 93 185 0.40% 

Construction -68 6 -62 -0.02% 
Transport 164 264 428 0.23% 

Wholesale and retail 11 38 50 0.02% 
Accommodation and catering 413 344 757 0.82% 

Information services -1 60 58 0.09% 
Finance 649 459 1,108 0.55% 

Real estate 162 111 273 0.12% 
Rental and business services 139 114 253 0.48% 

Scientific research and 
technical services 

-6 0 -6 -0.02% 

Other services 1,331 577 1,908 0.38% 
Notes: The absolute loss is given by millions of 2021 CNY and the relative loss is expressed 
as a percentage of the sectoral value added in the previous year 2020. The study did not 
consider floods or COVID-19 occurring outside Zhengzhou, so other regions only suffered 
indirect economic losses from the Zhengzhou compound event. Negative values indicate the 
positive economic gains or value-added increases due to the stimulus effects of cross-regional 
substitution and post-disaster reconstruction.  
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7.3.2.3. Sectoral Distribution of Economic Losses outside Henan Province in China 

There are 30 other provinces (including cities directly under central government 

jurisdiction) outside Henan Province in mainland China, consisting of a total of 780 

region-sector pairs in the economy. Among all these region-sectors outside Henan 

Province, the agriculture sectors in 13 regions ranked among the top 30 with the largest 

absolute economic losses due to the 2021 Zhengzhou ‘flood-COVID’ compound event. 

More specifically, the agricultural losses in provinces of Heilongjiang, Hebei, Hunan, 

and Guangxi exceeded 100 million yuan, which were equivalent to 0.04%, 0.03%, 

0.03%, and 0.03% of their agricultural value added in the previous year 2020 

respectively. Among the top 30 region-sectors with the greatest absolute losses, the 

relative losses of 7 region-sectors also ranked among the top 30, which were over 0.05% 

as a percentage of the sectoral value added in 2020. These 7 region-sectors were 

Fujian-other services, Shaanxi-mining, Inner Mongolia-mining, Shaanxi-petroleum, 

coking, and nuclear fuel, Zhejiang-accommodation and catering, Hainan-agriculture, 

and Tianjin-mining, which have been asterisked in Table 7-6. 

 

As for the compound impact of COVID-19 control, the agriculture sectors in most 

regions were found to be less affected by Zhengzhou’s COVID-19 control, and their 

rankings in economic losses decreased slightly in the compound-hazard scenario 

compared to the single-flood scenario. On the contrary, the mining sector, the chemical 

sector, the petroleum, coking, and nuclear fuel sector in the secondary industry and the 

accommodation and catering sector in the tertiary industry were more vulnerable to 

Zhengzhou’s COVID-19 control, and the loss rankings of these sectors increased 

greatly in the compound-hazard scenario compared to the single-flood scenario. 

Similar sectoral characteristics of the pandemic impacts were also found in Zhengzhou 

City and Henan Province (outside Zhengzhou City) (see Table 7-4 and Table 7-5). The 

agriculture, construction, and some services sectors (e.g., scientific research and 

technical services, other services) were less impacted by Zhengzhou’s COVID-19 
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intervention (i.e., the COVID-19 accountability was smaller than 40%), while the 

mining, most manufacturing, and some other services sectors (e.g., accommodation 

and catering, transport) were more impacted by Zhengzhou’s COVID-19 intervention 

(i.e., the COVID-19 accountability was greater than 40%). 
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Table 7-6: Top 30 region-sectors in China (outside Henan) with the largest indirect 
economic losses due to the 2021 Zhengzhou ‘flood-COVID’ compound event. 

Rankings Region-sectors 
Indirect 

losses 

% of sectoral 

value added 

Changes in 

ranking 

COVID-19 

accountability 

1 Jiangsu-chemicals 188 0.02% ↑2 37.82% 

2 Fujian-other services* 175 0.05% ↓1 30.58% 

3 Heilongjiang-agriculture 168 0.04% ↓1 29.04% 

4 Shaanxi-mining* 163 0.05% ↑4 49.94% 

5 Hebei-agriculture 157 0.03% ↓1 26.87% 

6 Hunan-agriculture 134 0.03% - 24.95% 

7 Jiangsu-other services 129 0.01% ↓2 19.79% 

8 Inner Mongolia-mining* 128 0.05% ↑7 52.36% 

9 Fujian-textiles 123 0.04% ↓2 32.87% 

10 Shandong-chemicals 121 0.02% ↑2 42.85% 

11 Guangxi-agriculture 108 0.03% ↓2 27.22% 

12 Liaoning-agriculture 99 0.03% ↓1 25.64% 

13 Shaanxi-agriculture 96 0.04% - 28.55% 

14 Jiangsu-agriculture 93 0.02% ↓4 20.71% 

15 Xinjiang-agriculture 85 0.04% ↑1 30.23% 

16 Zhejiang-other services 82 0.01% ↓2 22.83% 

17 
Shaanxi-petroleum, coking, and 

nuclear fuel* 
82 0.08% ↑17 47.49% 

18 Jiangsu-textiles 81 0.02% - 32.57% 

19 Inner Mongolia-agriculture 81 0.03% - 32.23% 

20 Jiangsu-finance 76 0.01% ↓3 25.65% 

21 Shandong-other services 74 0.01% - 29.92% 

22 Jilin-agriculture 74 0.03% ↓2 27.65% 

23 Shanghai-finance 71 0.01% ↑8 38.64% 

24 Guizhou-agriculture 71 0.03% - 27.95% 

25 Hunan-other services 67 0.01% ↓2 23.05% 

26 Liaoning-other services 64 0.01% - 24.28% 

27 
Zhejiang-accommodation and 

catering* 
64 0.06% ↑10 41.82% 

28 Hainan-agriculture* 63 0.05% ↑5 31.60% 

29 Anhui-agriculture 61 0.02% ↓4 19.46% 

30 Tianjin-mining* 61 0.05% ↑29 55.03% 

Notes: The absolute loss is given by millions of 2021 CNY and the relative loss is expressed 
as a percentage of the sectoral value added in the previous year 2020. The asterisk ‘*’ indicates 
that the relative loss of this region-sector is also in the top 30 among all region-sectors in China 
(outside Henan). Changes in ranking are compared to the single-flood scenario. COVID-19 
accountability refers to the additional indirect economic loss caused by the COVID-19 control 
as a percentage of the total sectoral indirect economic loss during the compound event.  
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7.3.2.4. Loss of Economic Transactional Flows Between Sectors and Regions 

In this section, a supply chain relationship is defined as the economic transactional 

relation directed from an upstream supplying region-sector to a downstream buying 

region-sector in the economic network. In the affected Chinese economy consisting of 

48 regions and 26 sectors, there are a total of 1.3 million pieces of valid supply chain 

relationships24 between the 1,248 pairs of region-sectors based on the MRIO table 

used in this study (see Section 7.2.1). The supply chain relationships largely affected 

by the 2021 Zhengzhou ‘flood-COVID’ compound event were mainly concentrated in 

Henan Province, especially in the secondary industry of Zhengzhou City. The 

upstream supplying sectors of these greatly affected supply chain relationships were 

mostly concentrated in Zhengzhou, while the downstream buying sectors were more 

distributed over regions in the country (see Appendix Table A10). More specifically, 

the business trade from Zhengzhou’s mining sector to Zhengzhou’s electricity, gas, and 

water sector experienced the largest reduction by 2,368 million yuan, reaching 7.02% 

of the pre-disaster level, due to the compound event. 

 

Two supply networks could be extracted from the top 30 supply chain relationships 

suffering the greatest losses: 1) the first network originated from Zhengzhou’s mining 

sector with a total economic transactional loss of 16,196 million yuan. 65.06% of these 

losses were linked to Zhengzhou’s non-metallic mineral products sector, which was 

therefore identified as the most important node sector in this network (Figure 7-3); 2) 

the second network started from Zhengzhou’s agriculture sector with a total economic 

transactional loss of 2,930 million yuan. 81.21% of these losses were connected to 

Zhengzhou’s food and tobacco sector, which was thus identified as the most important 

node sector in this network (Figure 7-4). It is worth noting that the loss of business 

transactions from Zhengzhou’s mining sector to Zhengzhou’s non-metallic mineral 

 
24  Valid supply chain relationships are those having real (i.e., non-zero) transactions between the two related 

region-sectors. 
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products sector has triggered an amplification of the loss by 16 times more than itself, 

indicating a strategic role of this supply chain pathway in resource transmission during 

the economic recovery. Besides, Zhengzhou’s non-metallic mineral sector is also a 

critical sector with strong propagation effects. The reduction in its production has 

caused a supply chain loss of 10,537 million yuan in terms of trades with other sectors 

and regions, which nearly doubled its value-added loss. Therefore, it is necessary to 

give priority to the restoration of the supply chain relationship from Zhengzhou’s 

mining sector to Zhengzhou’s non-metallic mineral products sector, as well as the 

production of the latter sector itself, so as to boost the economic recovery in Henan 

Province and the whole country back to the normal times after the compound event. 

 

 
Figure 7-3: The supply network starting from Zhengzhou’s mining sector largely affected 
by the 2021 Zhengzhou ‘flood-COVID’ compound event. 
Numbers in the figure represent the absolute losses (in millions of 2021 CNY) and relative 
losses (as a percentage of the economic transactions flowing through the supply chain 
relationships in the previous year 2020) of the economic transactions from the upstream 
supplying region-sectors to the downstream buying region-sectors, respectively, due to the 
2021 Zhengzhou ‘flood-COVID’ compound event.  
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Figure 7-4: The supply network starting from Zhengzhou’s agriculture sector largely 
affected by the 2021 Zhengzhou ‘flood-COVID’ compound event. 
Numbers in the figure represent the absolute losses (in millions of 2021 CNY) and relative 
losses (as a percentage of the economic transactions flowing through the supply chain 
relationships in the previous year 2020) of the economic transactions from the upstream 
supplying region-sectors to the downstream buying region-sectors, respectively, due to the 
2021 Zhengzhou ‘flood-COVID’ compound event.  

 

7.4. Factors Influencing the Compound Resilience of the 

Affected Economy 

According to Zhang, Li, Feng, et al. (2018), the economic resilience can be quantified 

by the indirect economic losses accumulated during the post-disaster recovery25, and 

the recovery period is the time required for the economic system to recover to its initial 

state. The greater the cumulative losses and the longer the recovery period, the lower 

the economic resilience. This section examines the main factors which may influence 

the compound resilience of the affected economy through a series of sensitivity 

analyses of parameters including COVID-19 control characteristics, road repair rate, 

 
25 The direct economic losses are fixed given a specific flood and do not change with the parameters examined in 

this section. 
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labour recovery rate, consumption subsidies and intertemporal preference, 

reconstruction funds and efficiency.  

 

7.4.1. COVID-19 Control Measures 

As the health impacts of COVID-19 are not considered in this analysis, the wave of 

COVID-19 mainly affected the economy through the corresponding control/lockdown 

measures, which can be characterized by different combinations of strictness and 

duration. Like the case study of Chapter 6, the strictness is measured by the percentage 

reduction of the transportation capacity due to lockdown measures relative to the pre-

disaster level. Different combinations of strictness and duration of COVID-19 control 

may cause different levels of disturbance to the post-flood recovery and reconstruction 

and further influence the overall recovery period and economic losses. From the 

perspective of time costs, the required recovery time of China’s economy extended 

with both increases in strictness and duration of Zhengzhou’s COVID-19 control. 

Comparatively, it increased faster with the duration than the strictness. For every 10% 

increase in the strictness of COVID-19 control, the recovery period will be extended 

by an average of 2.53%; while for every additional 2 weeks in the duration of COVID-

19 control (about one incubation period of COVID-19), the recovery period will be 

prolonged by 3.73% on average. Similar results are found from the perspective of 

economic costs. For every 10% increase in the strictness of COVID-19 control, the 

total indirect economic losses will increase by an average of 20.94%; while for every 

additional 2 weeks in the duration of COVID-19 control period, the total indirect 

economic losses will increase by 21.95% on average. These results indicate that the 

compound resilience of China’s economy is more sensitive to the duration than the 

strictness of Zhengzhou’s COVID-19 control (see Table 7-7). This is consistent with 

the findings when studying the COVID-19 pandemic impacts without floods (Guan et 

al., 2020). Therefore, whenever the pandemic occurs, a shorter but stricter containment 

that can quickly eradicate the disease imposes a smaller economic loss than a longer 
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but milder one that can also eliminate the disease gradually and eventually, and 

therefore is more conducive to enhancing the compound resilience of the affected 

economy. 

 

Table 7-7: Changes in compound resilience of China’s economy under different strictness 
or duration of Zhengzhou’s COVID-19 control. 

Strictness of 
COVID-19 

control 

% changes 
in indirect 

loss 

% changes 
in recovery 

period 

Weeks of 
COVID-19 

control 

% changes 
in indirect 

loss 

% changes 
in recovery 

period 
-10% -20.69% 0.00% -2 -21.16% 0.00% 
+10% 22.36% 5.26% +2 22.76% 5.26% 
+20% 45.98% 5.26% +4 47.98% 10.53% 
+30% 69.66% 10.53% +6 74.36% 15.79% 

Note: Strictness is expressed as the percentage by which the transportation capacity is reduced 
due to the implementation of COVID-19 control measures. The changes of indirect loss and 
recovery time are relative to the baseline results of indirect loss (65,111 million yuan) and 
recovery time (19 weeks) of the compound event under the current/benchmark COVID-19 
control level (i.e., 30% - 4 weeks).  

 

7.4.2. Road Repair Rate 

Post-disaster reconstruction and supply chain recovery depend on the capacity of urban 

transportation system. In the aftermath of the 2021 Zhengzhou ‘flood-COVID’ 

compound event, the transportation capacity between economic sectors not only relies 

on the repair rate of roads damaged by the flood, but also is limited by the COVID-19 

control measures. This section examines the influence of road repair rate Zβ   on 

economic resilience under various COVID-19 control levels (including the no control, 

i.e., single-flood scenario). In general, the total indirect economic loss of the 

compound event decreases as the road repair rate increases. In other words, the faster 

the roads are repaired, the more beneficial it is to enhance the compound resilience of 

the affected economy. However, the marginal reduction in the indirect loss shows a 

diminishing trend with the increase of the road repair rate (see Figure 7-5).  
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When there is no COVID-19 control (i.e., no pandemic risks), the indirect economic 

loss declines the fastest with the increase of the road repair rate; however, with the 

strengthening of COVID-19 control (when faced with severer pandemic risks), the 

effect of increasing road repair rate on mitigating economic loss (i.e., boosting 

economic resilience) gradually weakens (see Table 7-8). Specifically, without the 

implementation of COVID-19 control, the indirect economic loss is reduced by 12.82% 

and the recovery time is shortened by 4.68% on average for every 0.1 increase in the 

road repair rate; while under the current/benchmark COVID-19 control level (i.e., 30% 

- 4 weeks), the indirect economic loss is reduced by 4.64% and the recovery time is 

shortened by 3.13% on average for every 0.1 increase in the road repair rate. 

 

In addition, the minimum road repair rate required to achieve the optimal recovery is 

different under different COVID-19 control levels. Under the current COVID-19 

control level (i.e., 30% - 4 weeks), when the road repair rate exceeds 0.6, continuing 

to accelerate road repair nearly has no positive effect on improving economic 

resilience. When faced with a severer wave of COVID-19 and a stricter or longer 

containment is taken (e.g., 40% - 4 weeks or 30% - 6 weeks), the continuous increase 

of road repair rate above 0.5-0.6 could no longer significantly mitigate the indirect 

economic loss caused by the compound event. Instead, accelerating the road repair 

might increase the risk of virus transmission and impair public health with extra costs 

(Ishiwatari et al., 2020; Pei et al., 2020; Salas et al., 2020). In comparison, under a 

moderate COVID-19 control (30% - 2 weeks or 20% - 4 weeks), the indirect economic 

loss appears to be more sensitive to the road repair rate, and the minimum road repair 

rate required to achieve the optimal economic recovery is also higher (about 0.6-0.7). 

Therefore, the optimal road repair rate is related to the severity of the pandemic shock 

during the compound event: with the presence of a severe wave of COVID-19, 

moderately slowing down the progress of road repair due to flood damage not only is 

attuned to the requirement of disease control to ensure public health, but also can avoid 
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the waste of economic resources; while in a small-scale COVID-19 wave, more 

emergency resources should be directed to road repair and traffic recovery, so that 

connections between economic sectors can be restored faster, which eventually 

reduces the disaster-induced economic loss and improves the compound resilience. 

 

It should be noted that the health impacts of COVID-19 are not modelled in this 

analysis and the severity of a COVID-19 wave is simply linked to the strictness and 

duration of the control measures required to cut off virus transmission. In other words, 

a 30% - 6 weeks of control (longer) or 40% - 4 weeks of control (stricter) implies a 

severer wave of COVID-19 than the 30% - 4 weeks of the baseline control in the 2021 

Zhengzhou case, while a 20% - 4 weeks of control (weaker) or 30% - 2 weeks of 

control (shorter) indicates a milder wave. Besides, the no control scenario refers to an 

extreme situation in which there are no pandemic risks (i.e., the single-flood scenario) 

and thus always has lower indirect economic losses than other control scenarios, as in 

Figure 7-5 and figures in following sections. This may seem counterfactual in 

countries like the UK which lifted all COVID-19 restrictions when there are still 

pandemic risks and suffered high health costs and serious labour shortages (Reuschke 

and Houston, 2022). However, this could be possible in China at least before December 

202226, as the country always took active actions (i.e., the dynamic ‘zero-COVID’ 

policy) to fight COVID-19 and there is no control only when there are no detectable 

risks of virus transmission. 

 

 
26 China ended the ‘zero-COVID’ policies and lifted nearly all restrictions in December 2022 after three years’ 

hard efforts to keep COVID-19 in control: https://www.usnews.com/news/world/articles/2022-12-07/factbox-

china-covid-policy-major-changes-in-further-easing. 

https://www.usnews.com/news/world/articles/2022-12-07/factbox-china-covid-policy-major-changes-in-further-easing
https://www.usnews.com/news/world/articles/2022-12-07/factbox-china-covid-policy-major-changes-in-further-easing
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Figure 7-5: Influence of road repair rate on indirect economic losses under different 
COVID-19 control levels. 

 

Table 7-8: Average sensitivity of compound resilience to increases in the road repair rate 
under different COVID-19 control levels. 

Strictness and duration of 
COVID-19 control 

Average change of 
indirect economic loss 

(%) 

Average change of 
recovery period (%) 

30% - 6 weeks -3.05% -2.99% 
40% - 4 weeks -2.94% -2.99% 
30% - 4 weeks -4.64% -3.13% 
20% - 4 weeks -7.58% -3.82% 
30% - 2 weeks -7.62% -3.13% 

No control -12.82% -4.68% 
Notes: The second and third column presents the percentage of mean change in the indirect 
economic loss and recovery period, respectively, for every 0.1 increase in the road repair rate. 
The negative sign indicates a deterioration of compound resilience (i.e., reduced indirect loss 
and shortened recovery period). 

 

7.4.3. Labour Recovery Rate 

Floods not only cause damage to capital assets, but also cause casualties and impact 
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labour commuting. Unlike the endogenous recovery of capital in post-disaster 

reconstruction, the supply of labour is recovered at an exogenous rate in the CHEFA 

model. This section analyses the influence of labour recovery rate Lβ   on indirect 

economic loss or economic resilience under various COVID-19 control levels 

(including the no control or single-flood scenario). In general, increasing the labour 

recovery rate contributes to alleviating the total indirect economic loss of the 

compound event, though this mitigation impact is relatively small (0.07%-0.90%). In 

other words, increasing the labour recovery rate can only slightly increase the 

compound resilience of the affected economy (see Figure 7-6 and Table 7-9). This 

could be due to the facts that economic sectors often find it hard to replace labour 

shortages with other types of production inputs shortly after the disruption and the 

sectoral production is limited by the minimum of input productivity and final demand. 

Therefore, simply restoring labour supply has little effect on the full economic 

resumption when capital reconstruction is inadequate, transportation is still restricted, 

and final consumption is still sluggish after the compound event. It may even 

accelerate the spread of COVID-19 and increase public health risks.  

 

Although accelerating labour recovery can slightly boost the economic resilience, this 

positive effect diminishes as COVID-19 containment turns stricter or longer, which is 

similar to the road repair rate; when there is no COVID-19 control, the influence of 

labour recovery rate on economic resilience is the greatest, i.e., the indirect loss is 

reduced by an average of 0.90% for every 0.1 increase in the labour recovery rate (see 

Table 7-9). 
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Figure 7-6: Influence of labour recovery rate on indirect economic losses under different 
COVID-19 control levels. 

 

Table 7-9: Average sensitivity of compound resilience to increases in the labour recovery 
rate under different COVID-19 control levels. 

Strictness and duration of 
COVID-19 control 

Average change of 
indirect economic loss 

(%) 

Average change of 
recovery period (%) 

30% - 6 weeks -0.07% 0.00% 
40% - 4 weeks -0.07% 0.00% 
30% - 4 weeks -0.11% 0.00% 
20% - 4 weeks -0.18% 0.00% 
30% - 2 weeks -0.24% 0.00% 

No control -0.90% 0.00% 
Notes: The second and third column presents the percentage of mean change in the indirect 
economic loss and recovery period, respectively, for every 0.1 increase in the labour recovery 
rate. The negative sign indicates a deterioration of compound resilience (i.e., reduced indirect 
loss and shortened recovery period). 

 

7.4.4. Consumption Subsidies and Preference 

During the disaster response, the emergency funds from social donations and financial 
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allocations can be used as: 1) consumption subsidies for residents in the disaster area 

to repair their houses and maintain basic living; and 2) reconstruction funds for 

economic sectors to repair damaged capital assets and restore production. The 

following sections will investigate the influence of consumption subsidies and 

reconstruction funds, respectively, on economic resilience towards the 2021 

Zhengzhou ‘flood-COVID’ compound event. 

 

7.4.4.1. Consumption Subsidies for Residents in Zhengzhou 

In response to the 2021 Zhengzhou ‘flood-COVID’ compound event, the government 

allocated nearly 3 billion yuan from the emergency fund budget to Zhengzhou’s 

residents as consumption subsidies27 , which was close to 5% of the flood-induced 

direct damage. This section then examines how changes in this financial aid (at an 

interval of 5% relative to the direct damage) would influence the indirect economic 

losses and recovery time. As shown in Figure 7-7 and Table 7-10, a 5% increase in the 

consumption subsidies can reduce indirect economic losses by 0.48%-1.34% on 

average but cannot significantly shorten the recovery time in the compound-hazard 

scenarios. In comparison, expanding the consumption subsidies has a more significant 

effect in mitigating the negative disaster impacts in the single-flood scenario (i.e., 

without COVID-19 control), where the cumulative indirect economic losses are 

reduced by an average of 2.17%. 

 

 
27 The total amount of consumption subsidies is sorted from official information on use of funds related to flood 

control and disaster relief released by local governments, Red Cross Society, Charity Federation, and other public 

institutions.  
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Figure 7-7: Influence of consumption subsidies on indirect economic losses under different 
COVID-19 control levels. 

 

Table 7-10: Average sensitivity of compound resilience to increases in consumption 
subsidies under different COVID-19 control levels. 

Strictness and duration of 
COVID-19 control 

Average change of 
indirect economic loss 

(%) 

Average change of 
recovery period (%) 

30% - 6 weeks -0.48% 0.00% 
40% - 4 weeks -0.68% -0.85% 
30% - 4 weeks -0.80% 0.00% 
20% - 4 weeks -1.16% -0.90% 
30% - 2 weeks -1.34% -0.90% 

No control -2.17% 0.00% 
Notes: The second and third column presents the percentage of mean change in the indirect 
economic loss and recovery period, respectively, for every 5% increase in consumption 
subsidies. The negative sign indicates a deterioration of compound resilience (i.e., reduced 
indirect loss and shortened recovery period). 

 

7.4.4.2. Intertemporal Consumption Preference in Zhengzhou 

Intertemporal consumption preference Cβ   reflects the distribution of personal 
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income between current and future consumption. The lower the coefficient, the more 

households tend to consume at present, and the lower the savings rate, thus the greater 

the stimulating/inhibiting effect of income increase/decrease on current consumption. 

On the one hand, the extra expenditure for repairing damaged houses after the flood 

has taken up a portion of the household spending budget and crowded out other types 

of consumption; on the other hand, the consumption subsidies for residents affected 

by the disaster can make up for some of their income losses and stimulate their 

willingness to consume. The change of household income may have different impacts 

on current and future consumption according to the intertemporal consumption 

preference, and then influence the post-disaster recovery and economic resilience. This 

section compares the influences of household intertemporal consumption preference 

on the economic resilience under different COVID-19 control levels in Zhengzhou, 

and the results are shown in Figure 7-8 and Table 7-11. In the single-flood scenario 

without COVID-19 control, the impact of intertemporal consumption preference on 

economic resilience is uncertain. The indirect economic loss is reduced by an average 

of 0.03% with each 0.1 increase in intertemporal consumption preference coefficient, 

but the recovery time is extended by an average of 1.77%. In contrast, in the 

compound-hazard scenarios with different levels of COVID-19 control, the indirect 

economic loss and recovery time are more sensitive to the change of intertemporal 

consumption preference. Every 0.1 increase in this coefficient would lead to an 

increase by 0.13%-0.16% in the indirect economic loss and 1.68%-2.60% in the 

recovery period under different levels of COVID-19 control. This indicates that 

regions with the kind of households who are more inclined to current consumption or 

with lower savings rate tend to be more economically resilient to the compound event 

with consumption subsidies at the current level. 
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Figure 7-8: Influence of intertemporal consumption preference on indirect economic losses 
under different COVID-19 control levels. 

 

Table 7-11: Average sensitivity of compound resilience to changes in the intertemporal 
consumption preference under different COVID-19 control levels. 

Strictness and duration of 
COVID-19 control 

Average change of 
indirect economic loss 

(%) 

Average change of 
recovery period (%) 

30% - 6 weeks 0.16% 2.47% 
40% - 4 weeks 0.16% 2.47% 
30% - 4 weeks 0.13% 1.68% 
20% - 4 weeks 0.14% 2.60% 
30% - 2 weeks 0.15% 2.60% 

No control -0.03% 1.77% 
Notes: The second and third column presents the percentage of mean change in the indirect 
economic loss and recovery period, respectively, for every 0.1 increase in the intertemporal 
consumption preference coefficient. The negative sign indicates a deterioration of compound 
resilience (i.e., reduced indirect loss and shortened recovery period). 

 

7.4.4.3. Compound Effect of Consumption Subsidies and Intertemporal Consumption 

Preference 

This section further investigates the compound effect of consumption subsidies and 
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intertemporal consumption preference on the disaster-induced indirect economic 

losses under the current COVID-19 control level (i.e., 30% - 4 weeks). The results are 

illustrated in Figure 7-9 and Table 7-12. On the one hand, increasing the consumption 

subsidies for residents in Zhengzhou can mitigate the indirect economic loss more 

significantly when consumers there tend to save more for future consumption. In other 

words, the economic resilience is more sensitive to consumption subsidies in regions 

with higher values of the intertemporal consumption preference coefficient. On the 

other hand, the indirect economic loss changes in opposite directions with the increase 

of the preference coefficient at different scales of consumption subsidies. When the 

amount of consumption subsidies is small (i.e., less than 10%-15% of the direct 

damage), the indirect economic loss increases as the preference coefficient increases, 

indicating a higher economic resilience when residents in Zhengzhou are more 

inclined to consume at present. However, when the amount of consumption subsidies 

is large (i.e., greater than 10%-15% of the direct damage), the indirect economic loss 

decreases as the preference coefficient increases, displaying a higher economic 

resilience when residents in Zhengzhou are more inclined to save for future 

consumption. Therefore, it can be inferred that a small-scale consumption subsidy 

values the short-term economic benefits whereas a large-scale one stresses the long-

term economic benefits. 

 

While issuing consumption subsidies in regions hit by the disaster, other policy tools 

which can adjust the household intertemporal consumption preference or savings rate 

should be supplemented accordingly to stimulate the post-disaster economy as much 

as possible. Although more subsidies are better for mitigating the disaster-induced 

economic loss, the amount is usually bounded by the emergency fund budget and only 

a small proportion of the disaster damage. For instance, in the case of the 2021 

Zhengzhou ‘flood-COVID’ compound event, the amount of consumption subsidies is 

around 5% of the direct damage caused by the flood. The optimal combinations of 
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consumption subsidies and the preference coefficient with the least economic loss is 

25% - 0.8 as shown in Table 7-12. However, it is unrealistic to expand the consumption 

subsidies to 25% of the direct damage given the limited financial budget. Thus, at the 

current scale of consumption subsidies, supplementary measures, such as lowering 

deposit rates, increasing preferential consumption loans, issuing shopping vouchers, 

and other innovative financial instruments, could be introduced to encourage current 

consumption (i.e., to reduce the intertemporal consumption preference coefficient), so 

that a smaller economic loss resulting from the compound event could be achieved. 

 

 

Figure 7-9: Compound influence of consumption subsidies and intertemporal consumption 
preference on indirect economic losses under the current COVID-19 control level.  
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Table 7-12: Relative changes of indirect economic losses due to varying combinations of 
consumption subsidies and intertemporal consumption preference under the current 
COVID-19 control level.  

  Consumption subsidies 
Sensitivity (a) 

  5% 10% 15% 20% 25% 

Intertemporal 
consumption 
preference 
coefficient 

0.2 -0.20% -1.24% -1.83% -2.25% -2.55% -0.59% 
0.3 -0.16% -1.23% -1.83% -2.27% -2.59% -0.62% 
0.4 -0.08% -1.20% -1.86% -2.32% -2.67% -0.65% 
0.5 0.00% -1.18% -1.91% -2.43% -2.83% -0.72% 
0.6 0.08% -1.17% -2.02% -2.64% -3.15% -0.82% 
0.7 0.39% -0.96% -1.99% -2.79% -3.67% -1.03% 
0.8 0.55% -0.96% -2.46% -3.50% -4.50% -1.28% 

Sensitivity (b) 0.12% 0.05% -0.11% -0.21% -0.34%  

Notes: The matrix in the middle presents the percentage changes of indirect economic losses 
under different combinations of consumption subsidies and intertemporal consumption 
preference, relative to the baseline scenario (i.e., 5% - 0.5). The rightmost column of sensitivity 
(a) shows the percentage of mean change in the indirect economic loss per 5% increase in 
consumption subsidies under each specific intertemporal consumption preference. The bottom 
row of sensitivity (b) shows the percentage of mean change in the indirect economic loss for 
every 0.1 increase in the intertemporal consumption preference coefficient under each specific 
level of consumption subsidies. The negative sign indicates a reduction in indirect economic 
losses. 

 

7.4.5. Reconstruction Funds and Efficiency 

During the disaster response, a portion of the emergency funds can also be used as 

reconstruction funds to support economic sectors to repair damaged productive capital 

and restore production. The investment of reconstruction funds is conducive to 

expanding the overproduction capacity of economic sectors when faced with supply 

shortages or demand surges, and the reconstruction efficiency can affect the time 

required for economic sectors to reach their maximum production capacity (Zhang, Li, 

Feng, et al., 2018). 

 

7.4.5.1. Reconstruction Funds 

During the 2021 Zhengzhou ‘flood-COVID’ compound event, the reconstruction funds 

invested in post-disaster reconstruction and production recovery were worth 3.3 billion 
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yuan, which was also around 5% of the flood-induced direct damage. As shown in 

Figure 7-10 and Table 7-13, both indirect economic loss and recovery time are reduced 

as more reconstruction funds are devoted, and the greater the reduction with the ease 

of COVID-19 control. Particularly when there is no COVID-19 control, the marginal 

benefit of expanding the reconstruction funds is the largest. In this scenario, the 

indirect loss and recovery time decreased by an average of 1.17% and 2.82%, 

respectively, with every 5% increase in the reconstruction funds. This, again, indicates 

that the disease control in the ‘flood-COVID’ compound event would inhibit the 

marginal economic benefit of reconstruction funds invested to repair the flood damage 

and this inhibitory effect becomes more serious with the strengthening of the control 

measures (i.e., a stricter or longer containment). 

 

 
Figure 7-10: Influence of reconstruction funds on indirect economic losses under different 
COVID-19 control levels. 
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Table 7-13: Average sensitivity of compound resilience to increases in reconstruction funds 
under different COVID-19 control levels. 

Strictness and duration of 
COVID-19 control 

Average change of 
indirect economic loss 

(%) 

Average change of 
recovery period (%) 

30% - 6 weeks -0.17% -0.85% 
40% - 4 weeks -0.20% -0.85% 
30% - 4 weeks -0.29% -0.90% 
20% - 4 weeks -0.51% -1.84% 
30% - 2 weeks -0.47% -1.84% 

No control -1.17% -2.82% 
Notes: The second and third column presents the percentage of mean change in the indirect 
economic loss and recovery period, respectively, for every 5% increase in reconstruction funds. 
The negative sign indicates a deterioration of compound resilience (i.e., reduced indirect loss 
and shortened recovery period). 

 

7.4.5.2. Reconstruction Efficiency 

Reconstruction efficiency is defined as the reciprocal of the time required for an 

economic sector to achieve its maximum overproduction capacity. If it takes ατ  

weeks for the sector to reach the maximum overproduction capacity, then the 

reconstruction efficiency is 1 ατ . Figure 7-11 and Table 7-14 show how the indirect 

economic loss caused by or the economic resilience towards the compound event 

changes with the reconstruction efficiency. It is found that, for every 4-week increase 

in the time required to reach the maximum overproduction capacity (i.e., reduction in 

the reconstruction efficiency), the disaster-induced indirect economic loss and the 

economic recovery time would increase by an average between 0.62%-2.34% and 

2.75%-5.22%, respectively, at various COVID-19 control levels (including the no 

control scenario). With the ease of COVID-19 control until it is completely removed, 

the indirect economic loss becomes more sensitive to the change of reconstruction 

efficiency. This finding is consistent with that for other factors examined in previous 

sections. In addition, compared with investing more reconstruction funds, increasing 

the reconstruction efficiency is more effective in boosting the economic resilience 
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towards the compound event. 

 

 
Figure 7-11: Influence of reconstruction efficiency on indirect economic losses under 
different COVID-19 control levels. 

 

Table 7-14: Average sensitivity of compound resilience to decreases in the reconstruction 
efficiency under different COVID-19 control levels. 

Strictness and duration of 
COVID-19 control 

Average change of 
indirect economic loss 

(%) 

Average change of 
recovery period (%) 

30% - 6 weeks 0.62% 2.75% 
40% - 4 weeks 0.63% 2.75% 
30% - 4 weeks 1.02% 4.91% 
20% - 4 weeks 1.36% 4.02% 
30% - 2 weeks 1.37% 5.22% 

No control 2.34% 5.22% 
Notes: The second and third column presents the percentage of mean change in the indirect 
economic loss and recovery period, respectively, for every 4-week increase in the time required 
for an economic sector to reach its maximum overproduction capacity (i.e., reduction in the 
reconstruction efficiency). 
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7.4.5.3. Compound Effect of Reconstruction Funds and Efficiency 

This section further investigates the compound effect of reconstruction funds and 

efficiency on the indirect economic losses induced by the compound event under the 

current COVID-19 control level (i.e., 30% - 4 weeks in Zhengzhou). As shown in 

Figure 7-12 and Table 7-15, the indirect economic loss is more sensitive to the change 

of the amount of reconstruction funds at a higher reconstruction efficiency (i.e., less 

weeks needed to achieve the maximum overproduction capacity), and similarly, to the 

change of reconstruction efficiency with a greater amount of the reconstruction funds 

invested in production recovery. More generally, the indirect economic loss decreases 

most rapidly along the direction of increasing reconstruction funds and efficiency at 

the same time. When the amount of reconstruction funds reaches 25% of the flood-

induced direct damage and the maximum overproduction capacity can be achieved in 

only 4 weeks, the total indirect economic loss would fall by 10.12% compared to the 

baseline scenario (i.e., 5% - 16). On average, the increased economic loss due to a 4-

week increase in the overproduction adjustment time (i.e., reduction in the 

reconstruction efficiency) could be offset through raising the reconstruction funds by 

around 10% relative to the direct damage. Therefore, the investment of reconstruction 

funds should be in accordance with the overproduction adjustment time (i.e., 

reconstruction efficiency). Technical support for production expansion should be 

provided for sectors in difficulties, so that their reconstruction efficiency could be 

increased to make the best use of the reconstruction funds during the post-disaster 

recovery.  

 

Comparing Table 7-10 and Table 7-13, it can be found that, in the baseline scenario 

(i.e., the COVID-19 control is 30% - 4 weeks, the intertemporal consumption 

preference coefficient is 0.5, and the reconstruction efficiency is 1/16), increasing the 

reconstruction funds is not as good as increasing the consumption subsidies in reducing 

the indirect economic loss, but it can shorten the economic recovery time more rapidly. 
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In this situation, trade-offs should be made between reconstruction funds and 

consumption subsidies within the financial budget of emergency funds according to 

the governance objective adopted (i.e., to mitigate the disaster loss or to recover 

production fast). Nonetheless, if the reconstruction efficiency is raised to 1/8 and above, 

increasing the reconstruction funds will reduce the indirect economic loss by more 

than 0.81% on average (see Table 7-15), which is greater than the mitigation effect of 

expanding consumption subsidies, and therefore, more emergency funds within the 

financial budget should be directed to addressing the need for capital reconstruction 

and production restoration, so as to achieve the maximum possible economic resilience 

towards the compound event. 

 

 
Figure 7-12: Compound influence of reconstruction funds and efficiency on indirect 
economic losses under the current COVID-19 control level. 
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Table 7-15: Relative changes of indirect economic losses due to varying combinations of 
reconstruction funds and efficiency under the current COVID-19 control level. 

  Reconstruction funds 
Sensitivity (a) 

  5% 10% 15% 20% 25% 

1/reconstruction 
efficiency 

(weeks to reach 
the maximum 

overproduction 
capacity) 

4 -5.20% -6.89% -8.08% -9.21% -10.12% -1.32% 
8 -1.66% -2.72% -3.69% -4.39% -4.79% -0.81% 
12 -0.45% -1.11% -1.54% -2.14% -2.52% -0.52% 
16 0.00% -0.27% -0.76% -1.00% -1.24% -0.31% 
20 0.25% 0.07% -0.10% -0.27% -0.44% -0.17% 
24 0.64% 0.28% 0.16% 0.04% -0.08% -0.18% 
28 0.76% 0.66% 0.32% 0.23% 0.15% -0.15% 

Sensitivity (b) 1.02% 1.31% 1.47% 1.66% 1.82%  

Notes: The matrix in the middle presents the percentage changes of indirect economic losses 
under different combinations of reconstruction funds and efficiency, relative to the baseline 
scenario (i.e., 5% - 16). The rightmost column of sensitivity (a) shows the percentage of mean 
change in the indirect economic loss per 5% increase in reconstruction funds under each 
specific level of reconstruction efficiency. The bottom row of sensitivity (b) shows the 
percentage of mean change in the indirect economic loss for every 4-week increase in the time 
required to reach the maximum overproduction capacity under each specific level of 
reconstruction funds. The negative sign indicates a reduction in indirect economic losses. 

 

7.5. Discussion and Conclusions 

This chapter uses the CHEFA model developed in this thesis to simulation how the 

direct shocks resulting from the 2021 Zhengzhou ‘flood-COVID’ compound event are 

transmitted to wider economic systems along China’s production supply chain. Both 

the direct and indirect disaster footprint are quantified, at the sectoral level, first in the 

directly affected city of Zhengzhou, then in the province of Henan which is the city 

located in, and finally in the whole nation of China. A series of sensitivity analyses is 

also carried out to examine how the economic resilience towards the compound event 

changes with factors including the characteristics of COVID-19 control, road repair 

rate, labour recovery rate, financial aid, intertemporal consumption preference, and 

reconstruction efficiency. 
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As for the spatial distribution of the disaster footprint, the 2021 Zhengzhou ‘flood-

COVID’ compound event has caused not only direct damage worth 66,603 million 

yuan in the city of Zhengzhou (equivalent to 6.17% of Zhengzhou’s GDP in 2020), but 

also indirect economic loss worthy of 65,111 million yuan in China (equivalent to 0.06% 

of China’s GDP in 2020), which was approximate to the direct damage. Although most 

of the indirect economic losses occurred in Zhengzhou, more than 30% overflowed to 

other regions. Regions outside Zhengzhou in Henan Province suffered a total indirect 

economic loss worthy of 12,177 million yuan, mainly concentrated in cities of 

Nanyang, Luoyang, and Zhoukou. Then, regions outside Henan in China suffered a 

total indirect economic loss worthy of 8,595 million yuan, mainly concentrated in 

provinces of Jiangsu, Shandong, and Inner Mongolia.  

 

In terms of the sectoral distribution of the disaster footprint, the biggest part of the 

direct damage induced by the Zhengzhou flood was concentrated in the real estate 

sector in Zhengzhou. The flood-induced direct damage was then compounded by 

Zhengzhou’s COVID-19 control, which caused further disruptions in business 

between economic sectors, resulting in a trail of indirect economic footprint in the 

affected economy. The top three sectors with the largest indirect economic losses in 

Zhengzhou were the non-metallic mineral products, food and tobacco, and transport 

sectors. In regions outside Zhengzhou in Henan Province, the agriculture sector and 

petroleum, coking, and nuclear fuel sector suffered the greatest indirect losses in the 

absolute and relative terms respectively. Then in regions outside Henan in China, there 

were 7 sectors in 6 provinces ranking top 30 in terms of both absolute and relative 

indirect losses, i.e., the other services sector in Fujian, the mining sector and Petroleum, 

coking, and nuclear fuel sector in Shaanxi, the mining sector in Inner Mongolia, the 

accommodation and catering sector in Zhejiang, the agriculture sector in Hainan, and 

the mining sector in Tianjin. In the national economic network, the business 

transactions from the mining sector to the non-metallic mineral products sector in 
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Zhengzhou were reduced by 962 million yuan due to the compound event, and this 

absolute loss ranked 8th among all valid supply chain relationships in China. It 

triggered further losses in the business trade flows with other sectors and regions 

(especially the downstream construction sectors in multiple regions), which was worth 

16,196 million yuan and 16 times more than its own loss. It was therefore identified 

as the most vital supply chain relationship with a far-reaching impact on the economic 

recovery after this compound event. 

 

In terms of the compounded impact of Zhengzhou’s COVID-19 control, firstly and 

explicitly, it has caused extra economic costs and prolonged recovery time for battling 

the compound event, as well as changing the spatial and sectoral distribution of the 

disaster footprint. Specifically, the COVID-19 control in Zhengzhou has extended the 

economic recovery time by one week and increased the indirect economic loss by 

28,316 million yuan, which was close to that caused by the flood and raised the ratio 

of indirect to direct losses from 0.55 to 0.98 (equivalent to an increase by 77%). On 

the geographical scale, cities of Sanmenxia, Jiyuan, and Zhengzhou itself in Henan 

Province, as well as Qinghai province, were most negatively affected by Zhengzhou’s 

COVID-19 control. On the sectoral scale, the mining sector, most manufacturing 

sectors, and some services sectors (e.g., accommodation and catering, transport) 

experienced relatively more significant increases in the indirect loss due to the 

COVID-19 control. Secondly, the economic resilience tends to be more sensitive to 

the change of the duration of the containment than its strictness. The indirect economic 

loss and recovery time increased more on average for each 2-week increase in the 

containment’s duration than for each 10% increase in its strictness. This suggests a 

stricter but shorter containment that can quickly eradicate the disease to mitigate the 

overall economic impacts and improve the economic resilience towards the compound 

event. Thirdly, the COVID-19 control could inhibit the marginal resilience benefits of 

most flood emergency measures. In general, the economic resilience increases with 
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the increase of road repair rate, labour recovery rate, financial aid in consumption and 

production, and reconstruction efficiency. Among these factors, the economic 

resilience is most sensitive to the change of road repair rate, followed by reconstruction 

efficiency and consumption subsidies. However, the implementation of COVID-19 

control during the compound event would lower the sensitivity of economic resilience 

to these factors. In other words, the marginal effects of these emergency measures in 

boosting the economic recovery and resilience are reduced by the COVID-19 control, 

and such restriction becomes severer in a stricter or longer containment.  

 

The 2021 Zhengzhou ‘flood-COVID’ compound event studied in this chapter 

represents a type of extreme events compounded by natural disasters and public health 

crises. In response to such a compound event, trade-offs have to be made between the 

needs for disaster relief, pandemic control, and economic stability according to the 

recovery objective and actual situation. By simulating the post-disaster recovery 

dynamics and policy effects using the CHEFA model, several policy recommendations 

are made based on the results in this study.  

 

Although most of the economic impacts resulting from the compound event were 

concentrated in Zhengzhou’s services sectors (i.e., the tertiary industry), sectors in the 

primary and secondary industries, such as the agriculture, food and tobacco, mining, 

and non-metallic mineral products sectors, have demonstrated a more profound 

influence on the production supply chain in wider economic systems (from Henan 

Province to the whole country), therefore these sectors should be given the priority in 

the post-disaster reconstruction support and financial aid. This is conducive to 

achieving a faster restoration of the economic stability from business interruptions, 

while avoiding a hasty and reckless re-opening of the services sectors which may 

increase the risk of virus transmission.  
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Recovery activities in response to the natural disaster should be carried out prudently 

according to the requirements of COVID-19 control during the compound event. In 

the serious pandemic risk requiring a strict control, the large-scale responses to the 

natural disaster to accelerate the economic recovery may not significantly reduce the 

overall economic loss due to the strong inhibitory effect of COVID-19 control. Besides, 

although not modelled in this study, literature has shown that the flood-related 

responses can increase the risk of virus transmission and put further burden on disease 

control (Ishiwatari et al., 2020; Pei et al., 2020; Salas et al., 2020). Therefore, hasty 

flood emergency and responses inconsistent with the COVID-19 control requirements 

will result in a double waste of economic and public health resources. Only when the 

pandemic risk is alleviated and the containment is relaxed, accelerating the disaster 

response and recovery can yield better effects in economic loss mitigation and 

resilience building. 

 

The distribution of financial aid in the fields of production and consumption should 

take into account the reconstruction efficiency and intertemporal consumption 

preference in the disaster areas based on the specific recovery target (i.e., to minimize 

the economic loss or to recover fast) within the budget for emergency funds. Economic 

sectors can make better use of the reconstruction funds at a higher reconstruction 

efficiency during the production restoration, leading to less indirect losses. Special 

support is thus needed for sectors with difficulties in post-disaster reconstruction, 

including offering professional technical guidance, improving production-facilitated 

infrastructure services, accelerating the maintenance and renewal of production 

machinery and equipment, etc. Consumption subsidies can also significantly stimulate 

the post-disaster economy and abate the economic loss, notably with an appropriate 

intertemporal consumption preference of the households in the region. The allocation 

of consumption subsidies could be supplemented by other policy tools which adjust 

the household consumption propensity or savings rate to the most suitable level, such 
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as the adjustment of interest rates, issuance of consumer vouchers, and introduction of 

some innovative financial instruments. In this way, the minimal economic loss of the 

compound event can be approached given the specific amount of consumption 

subsidies, which enhances the compound resilience of the affected economy.  

 

The compound events of natural disasters and public health crises generate not only 

complex impacts on the economic system, but also serious burdens on the public health 

system. Due to the different scales of measurement, the health and medical costs 

resulting from the compound event are not considered in this chapter. In the 2021 

Zhengzhou ‘flood-COVID’ compound event, this might not be a big issue as the spread 

of COVID-19 is under control shortly in a month with little health influence. In this 

case, most of the economic impacts comes from a reduction in labour supply due to 

strict traffic restrictions/lockdowns. However, the health impacts can be increasingly 

significant as cases accumulate quickly during recurring waves of COVID-19 with 

inadequate responses and restrictions. Rampant infections may put an overwhelming 

strain on local medical resources and lead to substantial deaths, illnesses, and long-

COVID sufferers of working age. In this case, most of the labour shortage arises from 

no longer the COVID-19 restrictions but the direct health outcomes of the disease itself, 

which then cannot be ignored in the economic impact modelling. An increasing 

number of studies have discovered profound impacts of (long-term) COVID on 

workers in countries such as the US, the UK, and Germany (Do Prado et al., 2022; 

Goda and Soltas, 2022; Peters et al., 2022; Reuschke and Houston, 2022). With more 

and more countries (including China after December 2022) lifting all COVID-19 

restrictions, it raises the necessity of integrating the health and economic modelling 

for such compound hazards in future research. 

 

Overall, when battling compound events of natural disasters and public health crises, 

the specific strategy to be adopted requires a full consideration of not only economic 
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but also public health implications. The quantitative analysis in this chapter provides 

estimations on the potential economic costs of different response and recovery 

strategies, which can be used in combination with other epidemiological or health 

models by policy makers to find a balance between the economic and health needs 

during the compound risk governance. Estimation of labour productivity or working 

time loss due to COVID-19 infections (e.g., deaths, illnesses, and long-COVID 

sufferers of working age) may provide a possible way to integrate the health impacts 

into economic modelling, which is similar to that of heat stress (Section 3.1.1.2). 

However, information about COVID-19 in labours has only been investigated for very 

limited countries (mainly developed countries, e.g., the US, the UK, and Germany) so 

far (Goda and Soltas, 2022; Peters et al., 2022; Reuschke and Houston, 2022). A well-

established database covering numerous (developed and developing) countries on the 

empirical relationship between labour productivity loss and COVID-19 infection rate 

is still needed to benefit future studies in this regard. 

 

Finally, the modelling framework used in this chapter can be generalized to a wide 

range of compound events comprising of various natural disasters (e.g., floods, 

heatwaves, droughts, and wildfires), air pollution, public health emergencies, trade 

wars, or even military attacks, etc., facilitating the investment decisions on improving 

the preparedness for future crises. 
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Chapter 8 Conclusions 

This PhD thesis has explored an integrated and holistic way of accounting for the total 

economic impacts of compound hazards against the complex backdrop of climate 

change, COVID-19 pandemic, and deglobalisation. The notion of ‘disaster footprint’ 

is introduced to capture the cascading effects of adverse shocks through 

interdependencies between sectors and regions over the entire period of economic 

recovery. Interactions between compound shocks and their risk transmission channels 

are embedded within a macroeconomic risk assessment framework with the 

development of the CHEFA model in this thesis (Chapter 3). The model has provided 

a consistent metric and framework for impact estimation that bridges single-hazard 

and compound-hazard analysis, with wide applicability to various natural and 

manmade hazards with or without climate change and socio-economic development 

(Chapter 4 to Chapter 7). This research has filled in part of the research gaps in hazard 

analysis and offered policy implications on disaster risk mitigation and adaptation. Key 

findings, contributions, and limitations of this work are discussed in this chapter. 

 

8.1. Summary of Work and Key Findings 

This thesis has successfully addressed the six research objectives (ROs) raised in 

Section 1.4.2. Specifically, Chapter 1 contributes to RO1 by introducing the increasing 

likelihood of concurrent extreme events to create a compound hazard and how 

different hazards interact in the economic system to challenge disaster response and 

recovery. Chapter 2 contributes to RO2 by offering a systematic review of the existing 

literature on assessing the direct and indirect economic impacts of various types of 

natural and manmade hazards, as well as the emerging concerns for compound hazards. 

Chapter 3 first contributes to RO3 by developing the Disaster Footprint model (DF-
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growth and DF-substitution versions) which improves on traditional models for 

hazard-induced indirect economic impact assessment from the perspectives of supply 

chain cascading effects. It then contributes to RO4 by constructing the CHEFA model 

for compound hazard economic impact assessment based on the DF-substitution 

model proposed previously. Chapters 4-7 contribute to RO5 together by providing a 

series of applications of the models developed in this thesis from different angles. 

Chapter 4 applies the DF-substitution model to analyse the historical trends of hazard 

impacts (including heat stress, air pollution, and extreme weather events) in China 

under a single-hazard analytical framework. Chapter 5 uses the DF-growth model to 

project the economic impacts of future fluvial flooding in six vulnerable countries 

under climate change and socio-economic development. Chapter 6 offers a numerical 

illustration of the CHEFA model to test its robustness under a wide range of 

hypothetical compound hazard scenarios. Chapter 7 applies the CHEFA model to 

examine the multi-regional supply chain impacts of a real compound hazard case 

comprising of extreme floods and a COVID-19 wave in 2021 in the Zhengzhou city 

of China. Chapter 6 and Chapter 7 also contribute to RO6 through a series of sensitivity 

analyses to explore factors that may have significant influence on the compound 

resilience or recovery of the economy. This helps to draw useful suggestions for policy 

makers to improve disaster management in complex situations, which will be 

discussed in Section 8.3 of Chapter 8.  

 

Based on the work of this thesis, the four research questions (RQs) can be briefly 

answered as below: 

 

RQ1) What are the unique characteristics of a compound hazard in terms of 

disrupting the production supply chains? 

A compound hazard driven by multiple individual hazards can cause greater economic 

impacts than individual hazards in isolation, as the concurrent hazards can 
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interconnectedly propagate through the production supply chain and exceed the coping 

capacity of a system more quickly (Chapter 1). Therefore, it requires a different way 

of accounting for the compound hazard-induced economic impacts from the traditional 

single-hazard analytical framework.  

 

RQ2) What is the most suitable framework applied to assess the economic impacts 

of a traditionally single hazard considering supply chain effects? 

It has been confirmed that the hybrid approach has an advantage in assessing the 

hazard-induced economic impacts by combining the simplicity of IO modelling with 

the greater plausibility of the CGE approach (Chapter 2). Following this vein, the 

Disaster Footprint framework is proposed to capture the cascading effects of a 

hazardous shock along the production supply chain (Chapter 3) and proves applicable 

under a wide range of single-hazard scenarios (Chapters 4-5). It outperforms other 

methods by the greater flexibility to include important hazard-induced economic 

constraints and adaptive factors (e.g., capital recovery, inventory adjustment, and 

demand redistribution in the DF-substitution version for the short-term analysis and 

capital recovery and economic development in the DF-growth version for the long-

term analysis), leading to more reliable simulation of post-hazard economic dynamics. 

 

RQ3) How to incorporate the characteristics of a compound hazard into this 

framework, which is previously intended for a single hazard, in order to properly 

assess the compound impacts? 

The CHEFA model, which is built under the Disaster Footprint framework (DF-

substitution in particular), has proved an effective tool for assessing the economic 

impacts of a compound hazard along the production supply chain (Chapter 3). Using 

the confluence of flooding, pandemic waves, and/or export restrictions as examples 

(Chapters 6-7), the model first interprets each individual hazard as a direct labour or 

capital shock to production, an external constraint to output delivery and allocation, or 
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an abrupt disruption to final demand, and then integrates the impacts on these different 

parts of the economy into the backward and forward supply-chain risk transmission 

channels to simulate how the overlapping hazards are interweaved in the economic 

network. The effects of production specialization, external subsidies, and 

reconstruction expenditures are also considered in the modelling of relevant 

compound-hazard scenarios.  

 

RQ4) How to evaluate the relevant factors that may influence the economic 

resilience towards such a compound hazard? 

Economic resilience to a compound hazard (including hazard-induced economic losses 

and/or recovery time) is confirmed to be sensitive to model parameters (e.g., inventory 

size, inventory restoration rate, maximum overproduction capacity, overproduction 

adjustment time, duration and strictness of pandemic control, road repair rate, labour 

recovery rate, intertemporal consumption preference, and reconstruction efficiency) or 

external factors (e.g., consumption subsidies and reconstruction funds) through a series 

of sensitivity analyses (Chapters 6-7). Comparatively, changes in inventory size, road 

repair rate, and pandemic control characteristics have the most significant impacts on 

the compound resilience among all parameters and factors. Some useful policy 

implications can be drawn from the results of these sensitivity analyses (Chapter 8).  

 

Table 8-1 summarizes the results for the case studies in this thesis. Though using a 

rather consistent accounting framework, the cumulative economic impacts of different 

single-hazard or compound-hazard events vary substantially due to the distinctive 

hazard characteristics and socio-economic contexts presented in these case studies. 

Here all impacts are expressed in relative terms as a share of regional GDP to eliminate 

the influence caused by discrepancies in the size of the economy and currency unit 

used in these case studies. 
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Table 8-1: Summary of results of case studies in this thesis. 
Hazard scenarios Direct DF Indirect DF I/D ratio 
Historical patterns 
in China (2015-
2020) 

Heat extremes 0.54%-0.72% 0.69%-0.92% 1.28-1.27 
Air pollution 0.064%-0.055% 0.011%-0.008% 0.17-0.14 
Weather extremes 0.3632%-0.3633% 0.12%-0.09% 0.32-0.24 

Future river flood 
risks under 
climate change 
(CC+SE, global 
warming level 
increases from 
below 1.5°C to 
4°C in 2100) 

China 
Baseline period (1961-1990) 0.24% 2.43% 10.30 
Future period (2086-2115, <1.5°C-4°C) 0.12%-0.37% 0.14%-0.73% 1.20-1.98 

Ghana 
Baseline 0.03% 0.21% 6.77 
Future 0.01%-0.06% 0.09%-0.62% 12.68-10.85 

Egypt 
Baseline 0.01% 0.46% 66.85 
Future 0.08%-0.29% 1.13%-2.99% 13.54-10.25 

Brazil 
Baseline 0.04% 0.36% 9.16 
Future 0.02%-0.17% 0.17%-1.80% 9.23-10.81 

Ethiopia 
Baseline 0.09% 1.09% 12.26 
Future 0.01%-0.02% 0.09%-0.28% 10.79-11.77 

India 
Baseline 0.05% 0.53% 11.81 
Future 0.02%-0.22% 0.13%-1.31% 5.919-5.916 

Hypothetical 
perfect storm in a 
multiregional 
economy 

Single flood (from small to large scales) 3.30%-9.90% 0.52%-3.01% 0.16-0.30 
+ Pandemic (30% - 24 weeks) 3.30%-9.90% 12.42%-13.83% 3.76-1.40 
+ Trade restrictions (50% with retaliation) 3.30%-9.90% 14.34%-15.50% 4.35-1.57 
+ Production specialization 3.30%-9.90% 28.61%-30.46% 8.67-3.08 

The 2021 Zhengzhou ‘flood-COVID’ compound event in China 0.07% 0.06% 0.98 
Notes: Direct and indirect Disaster Footprint (DF) are the disaster-induced economic impacts expressed in relative terms as a percentage of the regional GDP. 
I/D ratio is the ratio of indirect DF to direct DF. For the case study of future river flood risks, the direct and indirect DF are given by the average annual estimates 
under CC+SE experiments, i.e., considering the combined effects of climate change and socio-economic development. 
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First, China has witnessed an alarming upward trend in heat-related economic costs 

between 2015 and 2020, while suffering slightly decreased losses resulting from air 

pollution and other extreme weather events like floods and storms. Changes in air 

pollution-related economic costs have reflected the progress towards air pollution 

control seen in previous years in China. The relative impacts of extreme weather events 

have fluctuated downward over a longer time frame (2009-2021), but with notable 

surges in specific years (i.e., 2010, 2013, and 2016) (see Figure 4-7). Still, the 

economic impacts of these three hazards have been increasing on the whole, in relative 

terms of the national GDP, as heat extremes have dominated the climate risk in these 

years. Regionally, southern provinces in China appeared to be more vulnerable to heat 

stress while northern provinces more susceptible to air pollution. Other weather-

related extreme events were more distributed in Chinese provinces, with Jiangxi (a 

province in southern China) and Heilongjiang (a province in northern China) suffering 

the greatest economic losses.  

 

Second, while considering the joint effects of climate change and socio-economic 

development, Egypt faces the greatest increase in flood-induced average annual 

economic losses as the global temperature climbs from below 1.5°C to 4°C at the end 

of the 21st century, compared to the baseline period (1961-1990). Whilst flood risk was 

low in the baseline period in Egypt, it increases in the future, driven by increased 

precipitation in upstream areas and increased exposure of population and economic 

activities in the Nile Valley within the country. By contrast, the economic losses in 

Ethiopia and China decrease from the baseline levels in future warming scenarios from 

<1.5°C to 4°C, mainly due to a rapid socio-economic development that makes the two 

countries more resilient towards the intensified river flood risks under climate change. 

Such positive effects of socio-economic development are also seen in Brazil, India, 

and Ghana, but only when the global warming is controlled well beneath a certain level 

(2.5°C for Brazil and Ghana and 3°C for India). In other words, for these three 
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countries, while the economic losses as a proportion of GDP initially decline from the 

baseline at lower levels of warming, increases are observed from 2.5°C or 3°C 

warming onwards, suggesting a tipping point where increasing flood risk outweighs 

any relative benefits of socio-economic development (see Figure 5-2). This is 

consistent with the finding of Dottori et al. (2018) where the relative flood damage 

decrease with warming particularly for fast growing economies. Therefore, it is 

important to consider changing socio-economic characteristics such as population 

change, land-use change and economic growth trajectories, alongside climate change. 

 

Third, as the world enters the third year of COVID-19 pandemic, there has been an 

increasing likelihood of perfect storms created by the confluence of climate extremes 

(exemplified by floods), pandemic lockdowns, and geoeconomic tensions (proxied by 

trade restrictions). By simulating the disaster footprint of such a perfect storm in a 

hypothetical global economy, this thesis distils the potential interplays between these 

three different types of hazards in the economic system (see Chapter 6). It has been 

found that a pandemic control can seriously aggravate the flood impacts mainly by 

disrupting the reconstruction process of damaged capital, supporting the prevalent 

claims on the negative effects of virus containment on flood responses in the literature 

(Ishiwatari et al., 2020; Selby and Kagawa, 2020; Swaisgood, 2020). Conversely, a 

flood can only exacerbate the pandemic impacts when the negative effects of capital 

damage exceed the stimulus effects of capital reconstruction (usually for large-scale 

floods). A flood can also accelerate and extend the shortage of inventories connected 

to the pandemic control, which is another way of aggravating the pandemic impacts. 

Moreover, the combination of trade restriction and production specialization can 

further greatly worsen the compound economic losses during the perfect storm. The 

trade restriction of a region on a substitutable product, which hampers the global 

recovery, may alleviate its own losses only if the increasing domestic demand exceeds 

the negative impacts of the falling exports. However, the trade restriction of a region 
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on a non-substitutable product would always exacerbate its own losses as the 

restriction impairs the recovery of the global supply chain so severely that it backfires 

at the economic resilience of the region itself. Finally, the subsequent retaliation from 

another region and sector would further deteriorate the global recovery and make 

everyone lose, with the region which initiates the trade war losing much more when 

the retaliatory restriction is also imposed on a non-substitutable product.  

 

Fourth, using the CHEFA model developed in this thesis, the case study of the disaster 

footprint of the 2021 Zhengzhou ‘flood-COVID’ compound event in China has 

provided further evidence on the interactions between flood hazards and pandemic 

control, as well as factors that may affect the compound resilience of China’s economy. 

This compound event has caused substantial economic consequences not only to the 

city directly hit, but also the whole nation due to the propagation effects along the 

production supply chain (see Chapter 7). The COVID-19 control in Zhengzhou has 

increased the indirect economic loss by 77% from 36.8 billion yuan to 65.1 billion 

yuan nationwide and delayed the full recovery of the economy by one week (from 18 

weeks to 19 weeks). It has also weakened the marginal effects of flood emergency 

efforts in mitigating the indirect economic losses or boosting the compound economic 

resilience. Resilience can be enhanced through the acceleration of post-disaster road 

repairs, followed by improvements to reconstruction efficiency, consumption subsidies, 

and reconstruction funds, and least by the speeding up of labour recovery. The impact 

of intertemporal consumption preference, which reflects the marginal propensity to 

consume for each unit of income change at present, on the compound resilience is 

uncertain and depends on the size of consumption subsidies. The compound resilience 

increases with increasing willingness to consume for a smaller-scale consumption 

subsidy (less than 10%-15% of the direct damage), while decreases for a larger-scale 

consumption subsidy.  
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Apart from the above-mentioned case-specific findings, some general insights on the 

features of disaster footprint can also be drawn from the results of these case studies. 

 

The indirect disaster footprint, which arises from the propagation effects along the 

production supply chain, can account for a considerable part of the total economic 

impacts and sometimes even exceed the scale of direct damage of extreme events. In 

estimating the short-term disaster footprint of single-hazard events, the ratio of indirect 

to direct economic costs (I/D ratio) ranges from 1.27 to 1.28 for heat stress, from 0.14 

to 0.17 for air pollution, and from 0.24 to 0.32 for extreme weather events in China 

over the period of 2015-2020. This indicates that heat stress tends to trigger higher 

cascading effects to wider economic systems and thus more attention should be paid 

to heat adaptation. The I/D ratios of extreme weather events (mainly floods and storms) 

calculated in this study is close to the estimates of Hallegatte (2008, 2014) for the 

Hurricane Katrina (0.17-0.39), demonstrating a certain degree of consistency between 

the Disaster Footprint model and the ARIO model. Surprisingly, for the long-run 

estimation in combination of climate change and socio-economic development, the I/D 

ratio of a fluvial flood hazard rises substantially to a wider range between 1.20-66.85 

in countries of China, Ghana, Egypt, Brazil, Ethiopia, and India under various global 

warming levels (<1.5°C-4°C). This has been explained by the lost opportunities for 

economic growth due to flood damage, which pushes the economy further and further 

away from its potential growth trajectory if the floods had not occurred (see Figure 

5-6). Consequently, the indirect economic losses can continuously accumulate over the 

long run when allowing for economic growth. Moreover, the compounding of multiple 

hazards may also greatly amplify the indirect economic losses and the corresponding 

I/D ratio due to the potential interactions between these hazards. In hypothetical 

scenarios of perfect storms, the I/D ratio soars up from 0.16-0.30 (in the single-flood 

scenarios) to 1.27-3.93 with the intervention of pandemic control, further to 1.41-4.35 

with export restrictions on substitutable products, and ultimately to 2.73-8.67 when the 
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restrictions are imposed on specialized non-substitutable products. In the real case of 

the 2021 Zhengzhou ‘flood-COVID’ compound event, the non-pharmaceutical 

interventions of COVID-19, such as lockdown restrictions, has increased the indirect 

economic losses from 55% to 98% of the direct damage caused by the flood. 

 

Second, despite the generally negative impacts on the total output of the directly and 

indirectly affected economies, some sectors and regions may experience a temporary 

boom in the disaster aftermath due to their roles in reconstruction or by taking over the 

lost production of other more severely damaged suppliers. In China, such economic 

gains have been seen in Qinghai Province in the aftermath of heatwaves in 2021 and 

air pollution in 2020 (Figure 4-4 and Figure 4-6), as well as in provinces or cities of 

Tianjin, Shanghai, Jiangsu, and Hainan following extreme weather events in 2019 

(Figure 4-7). Production in these regions has been less directly affected by the hazards, 

but instead more stimulated by the combined effects of post-disaster reconstruction, 

overproduction expansion, and inter-regional substitution. The stimulus effects of a 

natural hazard can also help alleviate the negative impacts of a pandemic control, as 

has been found in the perfect storm scenarios (Chapter 6). Likewise, after the 2021 

Zhengzhou ‘flood-COVID’ compound event, the construction, ordinary machinery, 

and transport equipment sectors in Henan Province (outside Zhengzhou) have 

witnessed an increase in their value added for similar reasons (Table 7-5).  

 

Third, regarding the effect of pandemic control in aggravating the compound disaster 

footprint, it has been found that a stricter but shorter containment that can quickly 

eradicate the virus would impose a smaller economic loss than a milder but longer one 

in collision with natural hazards like floods (Chapter 6 and Chapter 7). The compound 

disaster footprint appears to be more sensitive to the duration of a lockdown than its 

strictness. This is consistent with the results of Guan et al. (2020) who examined the 

global supply-chain effects of COVID-19 control measures in a single-hazard setting. 
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Moreover, if a pandemic intervention is implemented when the economy has not been 

fully recovered from the previous flood, it would result in more economic losses than 

an earlier pandemic control prior to the flood. This is because the subsequent 

containment tends to cause longer-lasting interference with the flood-related 

reconstruction and recovery than the preceding one (Figure 6-2). Therefore, a timely 

pandemic intervention is advocated to mitigate the disaster footprint or enhance the 

economic resilience in compound crises. 

 

8.2. Contributions and Innovations 

This PhD thesis has advanced the current understanding of the economic impacts of 

compound hazards from a holistic perspective. It improves the methodologies in 

integrated disaster footprint accounting, provides quantitative evidence on the 

economic interplay between individual and interrelated hazards, and explores the 

potential factors conducive to the building of compound resilience to future risks. 

 

Regarding the methodological innovations, this thesis has comprehensively addressed 

the primary research aim of ‘how to measure the economic impacts of a compound 

hazard cascading through the production supply chains?’ through the original 

development of the CHEFA model with the notion of disaster footprint along the 

production supply chain. As noted in Section 2.4, studies that have tried to model 

compound hazards are still very limited. The CHEFA model has managed to combine 

the risk transmission channels for climate, pandemic, and geoeconomic shocks and 

embed their interactions into economic impact assessment, filling some of the research 

gaps in compound hazard analysis. Particularly, it analyses the interactions between 

climate and pandemic responses, that is, the negative externality of pandemic control 

on the recovery of capital destructed by natural disasters and the stimulus effects of 

capital reconstruction to offset the negative impacts of pandemic control. It also 
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considers the roles of export restriction and production specialization in exacerbating 

the economic consequences of compound events. Export restriction is a common trade 

policy signalling deglobalization, while production specialization reduces the 

substitutability of regional products and may increase the economic vulnerability for 

negative shocks.  

 

By linking the CHEFA model with catastrophe models, this thesis presents the first 

integrated framework for capturing both the direct and indirect disaster footprint of 

compound hazards on the sectoral and regional scales. This provides consistent and 

comparable impact metrics between single-hazard and compound-hazard analysis and 

can be easily generalized to a broad variety of compound hazard scenarios, pushing 

the boundaries of applications and knowledge in relevant fields. 

 

Also, this thesis has improved the methods of indirect disaster footprint accounting, 

on which the CHEFA model is based. This includes: 1) the expansion to a multiregional 

approach allowing for substitution between or demand redistribution among suppliers 

from different regions, 2) the endogenization of capital recovery through the 

introduction of reconstruction demand, 3) the modelling of inventory dynamics to 

buffer an immediate input shortage with a specific adjustment time, and 4) the 

incorporation of the effects of external subsidies, reconstruction expenditures, and 

intertemporal consumption preferences on post-disaster production and consumption 

adaptations. Although some of these factors have been considered in the literature, this 

thesis establishes the first framework that brings all these factors together to provide a 

more complete assessment of the indirect disaster footprint of an extreme event. It also 

considers the crowding-out effect of reconstruction costs on household consumption, 

which has been previously ignored in existing models. 

 

In terms of contributions to applications, this thesis has applied the proposed methods 
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to several representative case scenarios, demonstrating the flexibility and feasibility of 

the approach and offering valuable insights on the risk management of various single- 

or compound-hazards. 

 

First, this thesis has conducted the first retrospective investigation on the economic 

costs of major hazards (i.e., heat stress, air pollution, and extreme weather events) at 

the provincial level in China. A further comparative analysis of these hazards has shed 

some light on where the past hazard control efforts have made encouraging progress 

and where to strengthen the risk governance in China. The results have been 

synthesized into a policy report to support the formation of the national climate change 

adaptation strategy for future risks. 

 

Second, this thesis has complemented the current knowledge of future fluvial flood 

risks for several developing and most vulnerable countries. While previous studies 

have projected future fluvial flood risks on spatial scales from national to global, most 

of them were only focused on direct flood damage or carried out with fixed socio-

economic conditions under a limited range of global warming. This study is novel in 

that it presents an integrated flood risk analysis on both direct and indirect economic 

impacts of future fluvial floods due to the combined effects of climate change and 

socio-economic development covering the full plausible range of warming levels from 

<1.5°C to 4°C. The socio-economic drivers have included land cover change, capital 

accruement, population growth, technical progress, and economic structural shift. The 

post-flood economy is also allowed to recover to a higher level than the initial state to 

reflect a long-term impact of flood shocks, of which previous studies have fallen short. 

The results of this study have demonstrated that socio-economic drivers can be just as 

or more important than climate drivers and therefore should be included when 

estimating the future dynamics of fluvial flood risks.  
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Finally, this thesis has provided timely information on the comprehensive economic 

consequences if a pandemic control collides with other types of hazards. Despite an 

extensive concern in academia about the rising likelihood of compound hazards, 

quantitative studies of their potential economic impacts are still rare. For the first time, 

the direct and indirect disaster footprint of a triple event comprising of natural, 

pandemic, and trade shocks has been tracked down along the global supply chain, 

though using hypothetical case scenarios. The analysis has revealed how these hazards 

are interrelated and transmitted within the economic system, which is important for 

advancing understanding and governance of compound risks. In a similar vein, this 

thesis has also offered the first piece of evidence on how the collision of pandemic 

control and extreme floods can affect the local economy and spilled over to wider 

regions focusing on a real compound event in the capital city Zhengzhou of Central 

China’s Henan Province in 2021. Sectors and regions that are crucial for pushing the 

economic recovery have been identified, as well as mitigating factors for compound 

hazard impacts through a series of sensitivity analyses on modelling parameters and 

other external factors. These factors include pandemic control policies, inventory 

adjustment and overproduction expansion strategies, financial aid for consumption and 

reconstruction, road and labour recovery rates, and intertemporal consumption 

preferences. Results in these studies have real-world significances in a more balanced 

response to the colliding hazards. They have shown how the confluence of different 

hazards can aggravate the socio-economic consequences and where to prioritize the 

recovery efforts and funds to boost the compound resilience. The potential for huge 

economic costs of compound hazards has demonstrated the value of ex ante risk 

assessment, planning and the implementation of early and adequate adaptation and 

mitigation actions towards climate change. 
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8.3. Policy Implications 

Knowledge of economic impacts after a compound event is required to responsibly 

invest in the building of economic resilience towards an increasing likelihood of 

compound hazards in a post-pandemic world under climate change. After all, the 

potential benefit of taking active risk reduction and adaptation measures is equal to the 

decline in economic loss due to these measures. Moreover, recognizing the constraints 

from one hazard while responding to another can facilitate the formation of a balanced 

strategy which minimizes the economic losses from the trade-offs between the 

conflicting emergency needs. The CHEFA model developed in this thesis can serve as 

a tool to assist in evaluating different strategies for battling compound hazards, with 

multi-sectoral and -regional results contributing to the formation of an integrated risk 

governance system. This is important to achieving the objectives of the Sendai 

Framework for Disaster Risk Reduction, which explicitly calls for a multi-hazard and 

multi-sectoral approach to increase the efficiency and effectiveness of disaster risk 

reduction practices (UNISDR, 2015). In light of this, the main findings of this thesis 

have elicited several policy implications, which are discussed below. 

 

First, after analysing the economic costs of multiple hazards (including heat stress, air 

pollution, and extreme weather events) in China over the past years, it has been 

concluded that heat stress has accounted for a dominant part of the total economic 

costs, mainly driven by the reduction in labour productivity, and thus should be given 

the priority in the integrated disaster risk management. Considering the sectoral 

distribution of direct and indirect costs of heat stress, efforts should be made to increase 

the heat adaptability of outdoor sectors (such as agriculture and construction), as well 

as to improve the supply chain resilience to mitigate the spillover effects of heat-related 

health impacts. Different provinces in China tend to suffer diverse impacts from 

different hazards. These location-specific economic impacts of climate change require 
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location-specific response measures, including enhancing inter-departmental 

cooperation, strengthening climate emergency preparedness, supporting scientific 

research, raising public awareness, and promoting climate change mitigation and 

adaptation. 

 

Second, national mitigation and adaptation strategies for future flood risks should 

consider the effects of not only climate change but also socio-economic development, 

as indirect economic losses could rise significantly if the lost potential for economic 

growth is also included. Another reason is that the increasing flood risks due to climate 

change can result in different economic consequences according to the level of 

development in different countries. Some fast-growing economies (e.g., China) may 

experience decreases of relative economic losses from the baseline in all, or some 

lower levels of, future warming scenarios, while other economies become increasingly 

exposed and vulnerable. The tipping point from a decreasing to increasing economic 

loss differs between countries, which may eventually affect their climate ambitions. 

Therefore, global cooperation in climate change mitigation and adaptation should not 

only consider the differentiated responsibilities of countries, but also take full 

advantage of their diversified incentives. 

 

Third, in response to the collision of pandemic and natural hazards, trade-offs have to 

be made between the needs for disaster relief, pandemic control, and economic stability. 

Fast and reckless recovery of labour supply or transportation capacity following an 

extreme weather event has proved to be uneconomical and increase the burden of 

disease control during a serious pandemic. Instead, post-disaster reconstruction should 

be carried out prudently according to the progress of pandemic control to help the 

economy through the compound crisis as smoothly as possible. 

 

Fourth, a timely, stricter but shorter pandemic control is generally suggested to reduce 



Chapter 8 

364 

the total economic losses resulting from the compound event comprising of pandemic 

and other hazards. Also, more policy and financial support should be directed to the 

recovery of sectors and regions that are more closely connected to other sectors and 

regions within the economic network. 

 

Fifth, financial policies on reconstruction funds and consumption subsidies need to 

take into account the roles of reconstruction efficiency and intertemporal consumption 

preference, respectively, of sectors or regions hit by the compound event. For one thing, 

an increased reconstruction efficiency can help sectors make better use of the 

reconstruction funds in accelerating the restoration of production. Support to boost the 

reconstruction efficiency for sectors in difficulties includes offering professional 

technical guidance, improving production-facilitated infrastructure services, 

accelerating the maintenance and renewal of production machinery and equipment, etc. 

For another, an appropriate intertemporal consumption preference of the households 

in the region can help promote the stimulating effects of consumption subsidies on the 

post-event economic performance. Therefore, financial tools which can adjust this 

household characteristic should be leveraged accordingly, such as interest rates, 

consumer vouchers, and other innovative instruments. In addition, the distribution of 

financial aid in these two fields within the emergency budget depends on the 

comparison of economic benefits from investment in each side, as well as the specific 

recovery target (i.e., to minimize the economic loss or to recover fast). 

 

Sixth, regional or global cooperation is also advocated to ease the negative impacts of 

deglobalization, at least rigorous trade policies that avoid highly specialized sectors 

are required confronting the perfect storm. After all, policies that lead to higher trade 

barriers undermine the efforts of other countries battling extreme weather events and 

a pandemic, particularly when these barriers are imposed on specialized products that 

cannot be substituted elsewhere. This raises the need for effective discipline at the 
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global level of the use of such measures. 

 

Finally, the results of case studies on compound hazards have confirmed that the 

intersection of interrelated hazards will amplify the economic consequences to various 

degrees compared to individual hazards. However, most insurance/reinsurance 

companies, institutions, and governments in the world are still recording and acting on 

individual hazards without fully considering their combined effects. The 

underestimation of economic impacts and ignoring the interplay between hazards may 

lead to insufficient and improper responses of communities during compound hazards. 

Therefore, a holistic strategy that can address multiple co-existing hazards within a 

system is advocated in preparing for future crises. Interdisciplinary, cross-sectoral, and 

multi-hazard risk assessments could provide relevant stakeholders (e.g., residents, 

insurers, industries, and governments) with a more complete picture of risks to their 

business or lives. A platform integrating multiple types of data and information should 

be established to encourage multi-stakeholder collaboration at different scales and 

inform the deployment of emergency resources across sectors and hazards. This should 

eventually facilitate the formation of integrated and robust solutions and the planning 

of anticipatory actions, considering the interactions between hazards and trade-offs or 

co-benefits across emergency needs under a range of complex scenarios.  

 

8.4. Limitations and Future Work 

Despite the efforts to fill the existing research gaps, this thesis is subject to some 

limitations and inherent uncertainties in terms of data and methodologies. Such 

shortcomings are critically reviewed in this section and suggestions for further 

research are provided. 

 

First, regarding the methodology of assessing the disaster-induced direct economic 
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impact, this thesis has adopted a very limited set of heat-related or air pollution-related 

ERFs and loss functions, as well as flood-related depth-damage functions, for 

subnational-level analysis. This is because region-specific information on these 

functions for a developing country like China is usually not available so far. It should 

be also noted that these functions are assumed to remain constant during the study 

period due to little investigation and limited data on how the population has adapted 

or will adapt to the related hazards. Uncertainties in these functions might create 

estimation biases, which necessitates further research on more localized provincial- or 

city-level ERFs and hazard-loss functions, as well as research that incorporates the 

factor of population adaptation into the direct impact modelling. 

 

Second, regarding the methodology of assessing the disaster-induced indirect 

economic impact, although this thesis has allowed for inventory adjustment, 

interregional substitution, and other factors to increase the flexibility of the economic 

system in response to external shocks, the market-based price mechanism has not been 

included. After an extreme event, prices of some products may increase due to supply 

shortages or demand surges, which may have higher-order impacts on the production 

of other connected sectors in the economy. However, in most short-term post-disaster 

situations, price fluctuations have been observed to be very limited due to 

socioeconomic inertia, transaction costs, and antigouging legislation (Hallegatte, 

2014). Moreover, another limitation is that the production expansion, rationing scheme, 

and demand adaptation (i.e., through redistribution) following an extreme event are 

modelled based on ad-hoc behavioural rules in this thesis. While these rules are usually 

assumed to approximate the average decision-making of a representative agent 

confronting the disaster hazard according to real-world observations, they may not 

equally well represent the decision of everyone in the affected group due to the 

heterogeneity of micro-agents. Therefore, the author suggests that more solid 

microeconomic foundations should be included in future modelling of indirect hazard 
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impact, for instance, by drawing on some agent-based methods, to enable a more 

reliable analysis at micro levels. 

 

Third, in terms of validating results, estimates for flood-induced direct damage have 

been compared with data from the global dataset or official reports for case studies in 

this thesis. However, it is difficult to verify the estimates for disaster-induced indirect 

impacts due to the lack of empirical data on dynamics of business recovery in the 

disaster aftermath. Even if there exists some aggregate data on post-disaster economic 

changes, it is still difficult to distinguish the disaster impact from other socio-economic 

factors that simultaneously influence the economy. Instead, this thesis has compared 

the results with other related studies in literature and explained the consistencies and 

discrepancies in findings about indirect disaster impact. 

 

Fourth, with respect to case studies, Chapter 4 has not considered morbidities caused 

by heat stress and air pollution due to data limitations. It is argued that morbidity rates 

of these hazards could entail larger economic costs than mortality rates (Xia et al., 

2016; Xia, Li, et al., 2018). To provide a more complete estimation on economic costs, 

it is urged that the effects of both mortality and morbidity rates of heat stress and air 

pollution should be taken into consideration in future studies. Besides, the impact 

assessment for historical extreme weather events in China has not considered the 

potential labour constraints caused by these events, also due to data limitations. 

However, evidence from other studies, in Chapter 5 for example, has shown that labour 

supply is often much less affected by an extreme weather event than capital assets and 

therefore tends to have little effect on the estimated economic impacts. In addition, it 

is recognized that the multi-provincial analysis is only carried out for the year with 

access to the latest data, which differs among the studied hazards. The provincial-level 

results could be much enriched if data on the same spatial scale becomes available for 

consecutive years over a longer time span.  
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Fifth, while Chapter 5 has included changes in land cover and economic structure to 

examine how socio-economic development will affect flood-induced economic 

impacts under climate change, this is done by updating the land cover map and national 

IO table to the latest available year for each of the studied countries. Projecting future 

land use and economic structure, particularly for multiple countries over a period as 

far as 2100, is always difficult. Even if such projections do exist, they are often at a 

coarser resolution and subject to complex assumptions, which may increase the 

uncertainty of economic calculations. Therefore, this chapter simply assumes that the 

land cover and economic structure of each country are constant within each of the 

baseline and future periods, though different sets of land cover maps and IO tables 

(earliest version vs. latest version) are used to reflect, to some extent, changes in land 

use and economic structure from the baseline to future period. In other words, all 

sectors are assumed to grow at the rate with the recorded or projected national GDP 

during the baseline or future periods. Yet, it would be interesting if the impacts of 

economic structural change and land use change could be further separated. This could 

be done in future work by adding a third group of experiments which only updates the 

land cover map to the latest available year and uses the same baseline IO table for 

future projections. 

 

Sixth, when applying the CHEFA model to the collision of pandemic and other hazards, 

Chapter 6 and Chapter 7 have mainly focused on the economic-wise hazard 

characteristics and their interconnections in economic risk transmission and do not 

distinguish the differences in hazard warning, physical impact, and response phases. 

Particularly for the pandemic hazard, these case studies are limited to the economic 

impacts of non-pharmaceutical interventions, such as transportation restrictions, rather 

than other mitigation measures like testing, therapeutics, and vaccines. Admittedly, 

these pandemic interventions could bring in new economic costs and/or benefits which 
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may interact with the effects of responses to other hazards, but it is beyond the research 

scope of this thesis to model all these factors. Also, the health costs (i.e., monetary 

values of health impairment) caused by the pandemic itself are not considered in this 

thesis. However, the health-related interactions and impacts could be incorporated in 

future research through the combination of macroeconomic and epidemiological 

models. This could provide more comprehensive perspectives guiding policy makers 

to find a balance between socioeconomic stability and public health needs during the 

compound risk governance, which could be of vital importance for boosting the 

preparedness for future crises. 
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Appendices 

Appendix A. Tables 

Appendix Table A1: Main characteristics of the Leontief IO, Ghosh, ARIO, ARIO-inventory, DF-growth, DF-substitution and CHEFA models. 
Models Spatial scales External shocks Propagation effects Production functions Production bottlenecks 
Leontief IO Single-regional Demand-side Backward Leontief type  
Ghosh Single-regional Supply-side Forward Leontief type  

ARIO Single-regional Supply-side 
Backward and 
forward 

Leontief type 
Addressed by iteratively 
reducing production to satisfy 
the intermediate orders 

ARIO-inventory Single-regional Supply-side 
Backward and 
forward 

Leontief type 
Addressed by inventory 
dynamics 

DF-growth Single-regional Supply-side 
Backward and 
forward 

Modified Leontief type with labour-
side technical progress 

Addressed by a linear 
programming technique to 
optimize the production and 
imports 

DF-substitution Multi-regional Supply-side 
Backward and 
forward 

Modified Leontief type allowing for 
substitution of inputs from the same 
sector in different regions 

Addressed by inventory 
dynamics 

CHEFA Multi-regional 
Supply- and 
demand-side (i.e., 
compound) 

Backward and 
forward 

Modified Leontief type distinguishing 
between specialized and non-
specialized intermediate inputs 

Addressed by inventory 
dynamics 

Notes:  means that the model does not take this into consideration.  
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Appendix Table A2: Main characteristics of the Leontief IO, Ghosh, ARIO, ARIO-inventory, DF-growth, DF-substitution and CHEFA models (continued). 

Models Rationing scheme 
Substitution 
effects 

Adaptive behaviours Recovery 
Relevant 
literature 

Leontief IO    
 (Depend on the disappearance 
of external shocks) 

Miller and Blair 
(2009) 

Ghosh    
 (Depend on the disappearance 
of external shocks) 

Ghosh (1958); 
Xia et al. (2016) 

ARIO 
Mixed scheme: prioritize 
intermediate orders, then ration 
final orders proportionally 

Substitution by 
imports from 
outside the region 

Price responses, intermediate 
and final demand adaptation, 
and overproduction capacity 

Recover to the pre-disaster level 
through capital reconstruction 

Hallegatte 
(2008) 

ARIO-
inventory 

Proportional rationing scheme 
among all orders 

 Overproduction capacity 
Recover to the pre-disaster level 
through capital reconstruction 

Hallegatte 
(2014) 

DF-growth 

Mixed scheme: prioritize 
intermediate orders and basic 
consumption orders, then ration 
other final orders proportionally 

 
Satisfaction of a basic 
demand 

Recover to a higher level 
considering economic growth 
(for the long-term analysis) 

Developed by 
this thesis 

DF-
substitution 

Mixed scheme: prioritize 
intermediate orders, then ration 
final orders 

Substitution 
between regions 
within the 
economy 

Overproduction capacity and 
demand redistribution 

Recover to the pre-disaster level 
through capital reconstruction 

Developed by 
this thesis 

CHEFA 
Mixed scheme: prioritize 
intermediate orders, then ration 
final orders 

Substitution 
between regions 
within the 
economy, but with 
export restrictions 

Overproduction capacity, 
demand redistribution, 
crowding-out effect of 
reconstruction costs on final 
consumption, and external 
subsidies 

Recover to the pre-disaster level 
through capital reconstruction 

Developed by 
this thesis 

Notes:  means that the model does not take this into consideration. 
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Appendix Table A3: List of key variables in the CHEFA model. 
Variables Definitions 
N  Number of production sectors making unique products in the economy 
M  Number of specialized products 
R  Number of regions in the economy 

iR  Set of regions supplying product i  

,j ira  
Intermediate input j  required to produce one unit of product i  in region 
r  

,q irb  Primary input q  required to produce one unit of product i  in region r  

j
irn  

Weeks of intermediate use of inventory product j  that sector i  in region 
r  wants to hold 

,j G
irS  

Targeted inventory level of intermediate input j   held by sector i   in 
region r  

js
rη  

Product j  in region s  invested in one unit of capital formation of sectors 
in region r  

max
irα  Maximum overproduction capacity of sector i  in region r  relative to the 

pre-disaster level 

ατ  Weeks needed by a sector to achieve its maximum overproduction capacity 

sτ  Proportion of inventory losses that a sector attempts to restore in the next 
time step 

iρ  Impact multiplier of transport disruption on the operation of sector i  

Lβ  Labour recovery rate - proportion by which the affected labours are reduced 
per next period 

Zβ  Flood-related transport recovery rate - proportion by which the flood-related 
transport disruptions are alleviated per next period 

Cβ  Intertemporal consumption preference - the impacts of an income change on 
consumption are reduced by 1 Cβ−  per next period 

( )q
ir tα  

Overproduction capacity of primary input q  in sector i  of region r  at 
time t  

( )a
irx t  Actual output of sector i  in region r  at time t  

( )L
irx t  The remaining production capacity of labour in sector i  of region r  at 

time t  

( )K
irx t  The remaining production capacity of productive capital in sector i   of 

region r  at time t  

( )j
irx t  The potential production level of sector i  in region r  that the inventory 

of intermediate product j  can support at time t  

( )max
irx t  Maximum production capacity of sector i  in region r  at time t  

( )loc
irx t  Remaining output of sector i  in region r  available for local clients after 

export adjustments at time t  
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( )rem
irexq t  Remaining export quota of product i   in region r   after distributed to 

business clients in other regions at time t  

( )irK t  
Amount of productive capital of sector i  in region r  at the beginning of 
time t  

( ),res rK t  Amount of residential capital in region r  at the beginning of time t  

( )dam
irK t  Productive capital damaged by flooding of sector i  in region r  at time t  

( ),
dam
res rK t  Residential capital damaged by flooding in region r  at time t  

( )rec
irK t  

Productive capital recovered in sector i  of region r  from reconstruction 
during time t  

( ),
rec
res rK t  Residential capital recovered in region r  from reconstruction during time 

t  

( )K
ir tγ  

Percentage reduction in available productive capital of sector i  in region 
r  at the beginning of time t  relative to the pre-disaster level 

( )L
ir tγ  

Percentage reduction in available working time in sector i  in region r  at 
the beginning of time t  relative to the pre-disaster level 

( )Z
r tγ  Percentage reduction in transport capacity from region r  to other regions 

at time t  relative to the pre-disaster level 

( )Z
ir tγ  Connectivity loss of the supplying sector i  in region r  to its business and 

household clients in other regions at time t  relative to the pre-disaster level 

( )E
ir tγ  Percentage reduction in the maximum export volume of product i  in region 

r  at time t  relative to the pre-disaster level 

( )j
irS t  

Inventory of intermediate input j   held by sector i   in region r   at the 
beginning of time t  

( ),j used
irS t  

Intermediate input j  used in the production of sector i  in region r  at 
time t  

( ),j restored
irS t  

Inventory of intermediate input j   restored by sector i   in region r  
during time t  

( ),ir
jsic t∗  

Output of sector i   in region r   allocated to sector j   in region s   as 
intermediate use at time t  under export restrictions 

( ),ir
hfc t∗  

Output of sector i   in region r   allocated to households in region h   as 
consumption use at time t  under export restrictions 

( ),ir
jsrc t∗  

Output of sector i   in region r   allocated to sector j   in region s   as 
reconstruction use at time t  under export restrictions 

( ),
,

ir
res hrc t∗  

Output of sector i  in region r  allocated to households in region h  as 
reconstruction use at time t  under export restrictions 

( )ir
jsid t  

Orders issued by sector j   in region s   to the supplying sector i   in 
region r  at time t  

( )ir
hfd t  

Orders issued by households in region h   to the supplying sector i   in 
region r  at time t  
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( )ir
jsrd t  

Orders issued to rebuild damaged productive capital of sector j  in region 
s  to the supplying sector i  in region r  at time t  

( ),
ir
res hrd t  

Orders issued to rebuild damaged residential capital in region h   to the 
supplying sector i  in region r  at time t  

( )irTD t  Total demand of product i  in region r  at time t  

( )rsub t  External subsidies from public finance or social donations to households in 
region r  at time t  

( )irva t  Value added of sector i  in region r  at time t  
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Appendix Table A4: Weights of the three major industries against each of the eight emission sectors in disaggregating air pollution-related labour deaths. 
Sectors 

Industries 
Power plants Industry Transport Households Waste Agriculture Other Natural 

Primary 0.2 0.2 0.2 0.5 0.2 1 1 1 
Secondary 1 1 1 1 1 0.2 1 0.2 
Tertiary 0.8 0.2 0.8 1 0.2 0.2 1 0.2 

Notes: The labour deaths attributable to air pollution sourced from each emission sector are disaggregated into the three major industries in weighted proportion 
to the regional employment of the three industries. These weights are given by expert judgement due to data limitations. 
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Appendix Table A5: Years of IO tables used for each country under the baseline and future runs and coverage of sectoral data in Chapter 5. 

Countries Periods 
Years of IO 
tables 

Economic Sectors 
AGR MIN FDM OTM UTL CON TRD TRA  PUB OTS 

Ghana 
Baseline 2005           
Future 2015           

Ethiopia 
Baseline 2005           
Future 2010           

Egypt 
Baseline 1996  (oils)   (electricity)      
Future 2010           

India 
Baseline 1993           
Future 2015           

China 
Baseline 1997           
Future 2017           

Brazil 
Baseline 2000           
Future 2015           

Notes: Economic sectors include agriculture (AGR), mining (MIN), food manufacturing (FDM), other manufacturing (OTM), utilities (UTL), construction 
(CON), trade (TRA), transport (TRA), public services (PUB) and other services (OTS). 
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Appendix Table A6: A sample IO table of a hypothetical global economy adopted in Chapter 6. 

 

Intermediate Use 
Final Use 

Output A B C D 

AGR MANG MANK CON OTH AGR MANG MANK CON OTH AGR MANG MANK CON OTH AGR MANG MANK CON OTH A B C D 

A 

AGR 42 135 0 3 17 3 14 0 1 4 5 20 0 0 1 1 2 0 0 0 60 15 6 2 331 

MANG 61 732 128 159 177 6 148 38 34 19 3 70 9 7 9 2 27 6 11 6 125 24 11 10 1,820 

MANK 4 63 189 33 57 0 2 22 2 3 0 3 17 2 4 0 1 4 2 2 170 14 40 11 645 

CON 0 2 1 8 10 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 443 7 12 10 495 

OTH 18 264 83 84 541 2 47 27 23 71 1 28 10 12 20 1 11 4 6 16 716 65 30 35 2,115 

B 

AGR 1 4 0 0 1 32 176 1 17 34 2 10 0 0 0 0 1 0 0 0 2 103 3 1 388 

MANG 6 50 9 18 35 65 1,839 461 340 294 5 64 11 13 19 3 37 8 14 17 49 505 39 35 3,936 

MANK 1 15 42 12 33 5 113 902 98 117 1 16 50 11 14 0 7 23 7 11 106 592 158 57 2,390 

CON 0 0 0 2 2 1 6 2 68 13 0 0 0 3 1 0 0 0 1 1 134 769 60 49 1,113 

OTH 0 17 7 6 38 20 496 293 203 1,118 1 32 11 11 29 1 13 4 8 23 41 1,274 44 34 3,726 

C 

AGR 1 5 0 0 1 2 10 0 1 3 75 281 0 6 14 1 1 0 0 0 2 11 128 1 544 

MANG 6 45 10 26 28 7 154 58 66 25 99 1,736 273 284 197 3 32 10 22 11 21 32 326 15 3,486 

MANK 0 5 10 4 7 1 5 27 5 5 2 109 416 46 58 0 3 6 3 3 25 16 449 14 1,216 

CON 0 0 0 0 1 0 0 0 0 0 0 8 2 28 10 0 0 0 0 0 36 9 651 13 761 

OTH 0 5 3 2 12 1 21 12 9 34 17 361 118 136 450 0 5 2 3 9 23 36 775 21 2,055 

D 

AGR 1 5 0 0 1 2 8 0 1 2 3 11 0 0 0 36 75 0 1 10 2 9 3 62 231 

MANG 2 21 3 6 7 2 76 20 15 9 2 38 4 5 5 32 390 61 125 81 6 10 5 119 1,047 

MANK 0 2 5 1 3 0 1 13 1 2 0 2 10 1 3 1 21 130 22 24 12 9 28 105 393 

CON 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 8 5 26 7 12 342 403 

OTH 0 3 1 1 8 1 12 7 5 22 0 7 3 3 6 12 130 49 56 204 12 20 10 354 926 

Value-
added 

Capital 13 151 43 15 250 7 252 115 16 476 10 228 65 21 299 7 104 20 7 108 
 Labour 174 294 111 113 888 232 556 391 207 1,476 316 459 217 172 918 130 184 65 107 397 

Input 331 1,820 645 495 2,115 388 3,936 2,390 1,113 3,726 544 3,486 1,216 761 2,055 231 1,047 393 403 926 

Notes: AGR, MANG, MANK, CON and OTH refer to the five sectors of agriculture, general manufacturing, capital manufacturing, construction, and other 
services, respectively. 
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Appendix Table A7: An aggregated GTAP IO table of a hypothetical global economy adopted for sensitivity analysis in Chapter 6. 

 

Intermediate Use 
Final Use 

Output A B C D 

AGR MANG MANK CON OTH AGR MANG MANK CON OTH AGR MANG MANK CON OTH AGR MANG MANK CON OTH A B C D 

A 

AGR 78 97 0 3 25 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 96 0 0 1 302 

MANG 43 878 233 173 211 0 10 4 2 6 0 24 3 1 7 2 30 9 6 10 245 19 13 24 1,955 

MANK 2 55 361 46 73 0 3 21 4 11 0 3 19 3 6 1 7 24 6 7 277 43 18 45 1,034 

CON 0 8 3 10 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 433 0 1 1 478 

OTH 23 230 132 75 525 0 1 0 0 5 0 3 2 1 12 0 2 1 1 6 1,126 4 4 5 2,158 

B 

AGR 1 5 0 0 1 33 26 0 0 10 0 1 0 0 0 1 3 0 0 0 2 38 1 2 125 

MANG 0 27 3 1 3 18 318 70 57 195 0 13 3 1 6 1 15 2 2 6 4 265 6 9 1,026 

MANK 0 1 8 0 2 1 22 118 32 51 0 1 6 1 2 0 2 5 1 2 9 211 7 15 496 

CON 0 0 0 0 0 2 20 4 14 59 0 0 0 0 0 0 0 0 0 0 1 280 0 0 379 

OTH 0 2 1 1 6 23 166 94 76 737 0 5 2 1 19 0 2 1 1 8 7 1,916 8 9 3,085 

C 

AGR 0 1 0 0 0 0 0 0 0 0 23 31 0 0 9 0 1 0 0 0 1 0 44 1 112 

MANG 1 12 4 1 6 1 9 3 1 9 20 305 77 44 195 2 20 6 5 9 8 12 230 19 998 

MANK 0 2 14 2 4 0 1 8 2 3 2 35 159 28 46 0 5 9 4 4 20 19 162 29 557 

CON 0 0 0 0 0 0 0 0 0 0 1 8 3 63 49 0 0 0 0 0 2 0 217 1 345 

OTH 0 5 3 1 12 0 3 1 1 16 17 178 96 63 815 1 5 2 2 19 11 12 1,602 15 2,881 

D 

AGR 2 5 0 0 1 0 1 0 0 0 1 3 0 0 1 73 77 0 3 17 2 1 3 191 381 

MANG 1 94 7 3 6 0 29 4 1 6 1 48 5 2 8 37 430 52 72 156 10 17 18 344 1,352 

MANK 0 1 13 1 2 0 1 4 1 2 0 1 7 1 2 2 25 57 24 24 8 8 8 123 316 

CON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 1 27 18 1 0 0 289 344 

OTH 0 3 2 1 8 0 2 1 0 9 0 6 3 1 23 33 158 49 42 331 8 7 9 1,014 1,709 

Value-
added 

Capital 36 311 117 56 677 19 204 45 32 663 20 202 83 77 953 78 396 56 70 564 
 Labour 114 221 133 105 573 26 210 120 154 1,303 26 129 91 58 729 147 168 44 78 526 

Input 302 1,955 1,034 478 2,158 125 1,026 496 379 3,085 112 998 557 345 2,881 381 1,352 316 344 1,709 

Notes: AGR, MANG, MANK, CON and OTH refer to the five sectors of agriculture, general manufacturing, capital manufacturing, construction, and other 
services, respectively. 
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Appendix Table A8: A sample of capital matrix adopted in Chapter 6. 
Region-Sector A B C D 

A 

AGR 0 0 0 0 
MANG 0 0 0 0 
MANK 0.15 0 0.02 0 
CON 0.61 0 0 0 
OTH 0 0 0 0 

B 

AGR 0 0 0 0 
MANG 0 0 0 0 
MANK 0.06 0.25 0.06 0 
CON 0.12 0.7 0.04 0 
OTH 0 0 0 0 

C 

AGR 0 0 0 0 
MANG 0 0 0 0 
MANK 0.02 0.05 0.2 0 
CON 0.04 0 0.68 0 
OTH 0 0 0 0 

D 

AGR 0 0 0 0 
MANG 0 0 0 0 
MANK 0 0 0 0.3 
CON 0 0 0 0.7 
OTH 0 0 0 0 

Notes: The matrix presents the quantities of products required to rebuild one unit of capital in 
each region. The study assumes that different sectors in the same region have the same capital 
matrix coefficients. 
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Appendix Table A9: Indirect economic losses due to the 2021 Zhengzhou ‘flood-COVID’ compound event in all regions of China. 

Regions 
Indirect 

losses 
% of local GDP 

COVID-19 
accountability 

Regions 
Indirect 

losses 
% of local GDP 

COVID-19 
accountability 

Zhengzhou 44340 4.11% 45.54% Liaoning 369 0.01% 35.21% 
Nanyang 1305 0.33% 41.74% Zhejiang 357 0.01% 37.50% 
Luoyang 1098 0.22% 44.57% Guangdong 311 0.00% 29.93% 
Zhoukou 928 0.30% 37.73% Jilin 292 0.01% 32.65% 
Xinxiang 855 0.30% 42.05% Anhui 280 0.01% 34.10% 
Xinyang 854 0.31% 37.04% Shanghai 258 0.01% 44.76% 

Zhumadian 848 0.35% 38.72% Sichuan 255 0.01% 24.39% 
Pingdingshan 835 0.44% 44.46% Jiangxi 245 0.01% 36.35% 

Xuchang 833 0.27% 44.65% Shanxi 243 0.01% 42.78% 
Jiangsu 745 0.01% 29.32% Guangxi 234 0.01% 34.83% 
Kaifeng 711 0.30% 37.18% Xinjiang 228 0.02% 39.03% 

Shangqiu 689 0.26% 38.15% Yunnan 212 0.01% 32.50% 
Puyang 660 0.33% 41.44% Hebi 207 0.21% 39.41% 
Jiaozuo 636 0.23% 42.73% Guizhou 207 0.01% 34.61% 
Anyang 632 0.27% 42.94% Beijing 203 0.01% 42.19% 

Shandong 604 0.01% 38.81% Tianjin 187 0.01% 44.18% 
Sanmenxia 529 0.30% 50.56% Jiyuan 180 0.27% 47.70% 

Inner Mongolia 498 0.02% 44.59% Gansu 165 0.02% 42.03% 
Shaanxi 497 0.02% 43.60% Hubei 148 0.00% 22.66% 
Hebei 475 0.01% 36.47% Hainan 115 0.02% 37.85% 
Fujian 473 0.01% 33.04% Chongqing 86 0.00% 39.11% 

Heilongjiang 418 0.02% 33.19% Ningxia 57 0.01% 41.85% 
Luohe 377 0.27% 34.30% Qinghai 48 0.01% 45.69% 
Hunan 377 0.01% 26.17% Tibet 10 0.01% 43.11% 
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Notes: The absolute loss is given in millions of 2021 CNY and the relative loss is expressed as a percentage of the local GDP in the previous year 2020. COVID-
19 accountability indicates the additional indirect economic loss caused by the COVID-19 control as a percentage of the total regional indirect economic loss 
during the compound event.  
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Appendix Table A10: Top 30 supply chain relationships in the national economic network most affected by the 2021 Zhengzhou ‘flood-COVID’ compound 
event. 

Rankings Supply chain relationships between region-sectors 

Absolute 
losses of 

economic 
flows 

Relative 
losses of 

economic 
flows 

Changes 
in 

ranking 

COVID-19 
accountability 

1 ‘Zhengzhou-mining’, ‘Zhengzhou-electricity, gas, and water’ 2368 7.02% - 34.22% 
2 ‘Zhengzhou-non-metallic mineral products’, ‘Zhejiang-construction’ 1690 5.91% - 62.37% 
3 ‘Zhengzhou-non-metallic mineral products’, ‘Zhengzhou-construction’ 1294 4.44% - 52.41% 
4 ‘Zhengzhou-non-metallic mineral products’, ‘Shangqiu-construction’ 1221 4.55% - 53.56% 

5 
‘Zhengzhou-non-metallic mineral products’, ‘Xinyang-non-metallic mineral 

products’ 
1108 5.06% ↑2 58.17% 

6 
‘Xinyang-non-metallic mineral products’, ‘Zhengzhou-non-metallic mineral 

products’ 
1014 4.95% ↑3 56.17% 

7 ‘Xinyang-information services’, ‘Zhengzhou-information services’ 989 4.23% ↑1 55.02% 
8 ‘Zhengzhou-mining’, ‘Zhengzhou-non-metallic mineral products’ 962 6.30% ↓2 48.53% 
9 ‘Zhengzhou-food and tobacco’, ‘Zhengzhou-accommodation and catering’ 947 6.95% ↑1 53.28% 

10 ‘Zhengzhou-food and tobacco’, ‘Xinyang-food and tobacco’ 944 6.75% ↑1 57.83% 
11 ‘Zhengzhou-finance’, ‘Zhengzhou-transport’ 888 7.31% ↓6 39.30% 
12 ‘Zhengzhou-metal products’, ‘Zhengzhou-ordinary machinery’ 720 4.40% ↑2 52.91% 
13 ‘Zhengzhou-electricity, gas, and water’, ‘Zhengzhou-non-metallic mineral products’ 670 6.34% - 49.35% 
14 ‘Zhengzhou-non-metallic mineral products’, ‘Jiangsu-construction’ 602 6.19% ↑8 62.48% 
15 ‘Zhengzhou-mining’, ‘Zhengzhou-metal products’ 599 7.05% ↑1 54.05% 
16 ‘Xinyang-non-metallic mineral products’, ‘Zhengzhou-construction’ 579 4.23% ↑3 55.02% 
17 ‘Zhengzhou-finance’, ‘Zhengzhou-electricity, gas, and water’ 568 6.66% ↓5 35.06% 
18 ‘Xinyang-food and tobacco’, ‘Zhengzhou-accommodation and catering’ 551 5.27% ↓3 47.80% 
19 ‘Zhengzhou-metal products’, ‘Zhengzhou-non-metallic mineral products’ 522 6.74% ↑2 55.71% 
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20 ‘Zhengzhou-metal products’, ‘Jiangsu-metal products’ 520 6.49% ↑5 60.26% 
21 ‘Pingdingshan-mining’, ‘Zhengzhou-electricity, gas, and water’ 520 4.66% ↓4 47.38% 
22 ‘Zhengzhou-non-metallic mineral products’, ‘Chongqing-construction’ 506 6.07% ↑6 62.55% 
23 ‘Zhengzhou-agriculture’, ‘Zhengzhou-food and tobacco’ 489 7.45% ↓5 45.29% 
24 ‘Zhengzhou-non-metallic mineral products’, ‘Beijing-construction’ 485 5.77% ↑8 61.86% 
25 ‘Zhengzhou-information services’, ‘Xinyang-information services’ 484 4.53% ↑1 57.99% 
26 ‘Sanmenxia-mining’, ‘Zhengzhou-metal products’ 479 4.91% ↑5 61.28% 
27 ‘Zhengzhou-non-metallic mineral products’, ‘Shanghai-construction’ 463 5.86% ↑7 62.18% 
28 ‘Zhengzhou-metal products’, ‘Zhejiang-construction’ 445 6.41% ↑8 61.15% 
29 ‘Zhengzhou-electricity, gas, and water’, ‘Xinyang-non-metallic mineral products’ 428 5.86% ↓9 39.74% 
30 ‘Zhengzhou-wholesale and retail’, ‘Zhengzhou-metal products’ 415 6.07% ↓3 52.90% 

Notes: The supply chain relationship is defined as the economic transactional relation directed from the former region-sector (supplier) to the latter region-
sector (buyer). The absolute loss is given by millions of 2021 current CNY and the relative loss is expressed as a percentage of the economic transactions 
flowing through the supply chain relationship in the previous year 2020. Changes in ranking are compared to the single-flood scenario. COVID-19 accountability 
refers to the additional transactional loss caused by the COVID-19 control as a percentage of the total transactional loss in the supply chain relationship during 
the compound event. 
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Appendix B. Figures 

 
Appendix Figure B1: Direct and indirect fluvial flood damages for the baseline and six 
warming scenarios in the six countries expressed in million US$/yr for the CC experiment. 
Bars represent the ensemble average of the five GCMs, with whiskers indicating the ensemble 
maximum and minimum. Note the different scale of the y-axis. 
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Appendix Figure B2: Direct and indirect fluvial flood damages for the baseline and six 
warming scenarios in the six countries expressed in billion US$/yr for the CC+SE 
experiment. 
Bars represent the ensemble average of the five GCMs, with whiskers indicating the ensemble 
maximum and minimum. Note the different scale of the y-axis. 
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Appendix Figure B3: Monthly GDP (million US$) growth projections for each of the six 
countries under the climate scenarios. 
Results are shown for the CC+SE model experiments (based on exogenous growth data 
between 2086-2115). Please note the different scale of y-axis for each panel. 
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Appendix Figure B4: Monthly GDP (million US$) growth projections for each of the six 
countries under the baseline scenario. 
Results are shown for the CC+SE model experiments (based on exogenous growth data 
between 1961-1990). Please note the different scale of y-axis for each panel. 
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Appendix Figure B5: Average annual indirect economic loss of gross value added (GVA) in each economic sector for the baseline (1961-1990) and future 
warming scenarios (using SSP2 from 2086-2115) in the six countries. 
Results are shown for both the CC and CC+SE experiments. 
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Appendix C. Supplementary Material 

C.1. Literature on Risks of Fluvial Flooding in the Study Countries of 

Chapter 5 

Since the beginning of 2010, the total damage of fluvial flooding has been 2.8 billion 

US$ for Brazil, 74.4 billion US$ for China, 2.2 million US$ for Ethiopia, and 22.5 

billion US$ for India, corresponding to 23, 58, 4, and 36 flood events respectively, in 

the EM-DAT database28. The total damage from fluvial flooding is not available for 

Egypt and Ghana, but there were 2 and 5 flooding events in Egypt and Ghana 

respectively during this period. 

 

A global analysis showed that large direct economic losses of fluvial floods will be 

observed in China and India, among other countries (Willner et al., 2018). In China 

production losses were estimated to be 214 billion US$ in 1996-2015 increasing to 389 

billion US$ in 2016-2035 (ibid.). You and Ringler (2010) modelled the impacts of 

climate change on three major factors which affect the Ethiopian economy, including 

flooding, under the SRES emissions scenarios. Results showed the occurrence of 

flooding events will increase and cause substantial economic losses in both the 

agricultural and non-agricultural sectors. 

 

Although few country-level studies exist, there are some city or river basin level 

studies that project future impacts within the six countries. Ranger et al. (2011) 

estimated the direct total economic losses for floods of different return periods in 

Mumbai. A 1 in 50-year flood in the future is estimated to cause 210-550 million 

US$ of damage, excluding infrastructure. A 1 in 100-year flood is projected to cause 

 
28 This is sourced from EM-DAT: the Emergency Events Database - Université catholique de Louvain (UCL) - 

CRED, D. Guha-Sapir - www.emdat.be, Brussels, Belgium (accessed 7 Feb 2020). 
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damage of 490-1,350 million US$ and a 1 in 200-year flood damage of 510-1,420 

million US$. When the damage to infrastructure is included, these costs increase. 

Sarkodie et al. (2015) modelled the damage of flooding for each river basin within the 

Greater Accra City, Ghana, under the SRES emissions scenarios using the Aqueduct 

model. This research only considered 2011-2020 and did not project flood economic 

damages further into the future. A 1 in 10-year flood is projected to cause 98.5 million 

US$ in urban damage without flood protection. A 1 in 100-year flood is projected to 

cause 162.9 million US$ in urban damage without flood protection. 

 

Hu et al. (2019) used an IO model to estimate the potential macroeconomic impact of 

fluvial flooding on the manufacturing sector in China, based on historical floods 

exceeding 1 in 100-year return periods between 2003 and 2010. The study reported a 

12.3% direct loss in annual total output, with further indirect losses of 2.3% of the 

annual total output at the macro-level. 
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modeling-climate-change-impacts-ethiopia  

 

C.2. Direct and Indirect Impacts of a Perfect Storm under Free Trade 

Scenarios 

This section discusses the direct and indirect economic impacts of flooding, pandemic 

control, and their collisions under the free trade scenarios. The direct damage refers to 

the monetary value of damage due to inundation of physical assets and occurs only in 

the flooded region C. The indirect losses are the GDP losses along the global supply 

chain caused by the compound event. They start from the directly affected regions and 

spill over to other regions through inter-sectoral and inter-regional dependencies. 

 

C.2.1. On the Global Scale 

As shown in Table 6-3, when there is only flooding in region C, the direct damage 

increases from 317.2 to 951.5 units as the flood scale grows from small to large. Apart 

from direct damage, the flood disaster brings about additional supply chain losses of 

50.0-288.9 units according to flood scales. The ratios between indirect and direct 

losses range from 0.16 to 0.30 as flood scale increases and are lower than the ratio 0.39 

estimated by Hallegatte (2008). This is because the incorporation of cross-regional 

substitutability increases the resilience of the economy against disaster events and 

reduces estimates of indirect losses. 

 

In the scenario where there is only pandemic control, there is no direct damage as the 

pandemic has no impacts on physical assets. The indirect losses due to a 30%-24 global 

pandemic control is assessed at 1,242.6 units, equivalent to 12.9% of the annual global 

GDP. 

 

Then the study examines the economic footprint of the compound event of flooding 

and pandemic control. The direct damage under such circumstances is always equal to 

https://www.ifpri.org/publication/hydro-economic-modeling-climate-change-impacts-ethiopia
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that caused by flooding alone, as the pandemic does not create any direct damage. The 

indirect losses resulting from the compound events show diverging patterns according 

to flood scales. First, when the flood in region C is on the small or medium scale, the 

indirect losses of the compound event are between the separate losses brought by 

flooding and pandemic control. For example, the concurrence of a small flood in 

region C and a 30%-24 global pandemic control incurs 1194.1 units of indirect losses 

to the global economy, which is larger than the indirect losses caused by the flood (50.0 

units) and slightly smaller than the indirect losses of the pandemic control (1,242.6 

units). Second, when the flood in region C is on the large scale, the indirect losses of 

the compound event, which is measured at 1,329.5 units, exceed the separate losses of 

both flooding and pandemic control. 

 

C.2.2. On the Regional Scale 

As shown in Figure 6-1, under the ‘flood-only’ scenarios (Figure 6-1a-c), the 

cumulative indirect or GDP losses in region C (yellow lines), relative to its pre-disaster 

level of its annual GDP, increase from 2.18% (small flood), to 6.41% (medium flood) 

and finally to 12.25% (large flood). Region D also experiences increasing losses in its 

GDP, although very tiny (0.01%-0.05%), attributable to the spill-over effects along the 

supply chain. By contrast, the other two non-flooded regions A and B, witness slight 

growth in their GDPs (0.07%-0.34% for A and 0.21%-0.98% for B). This comes from 

the stimulus effect of reconstruction activities to recover capital damaged by flooding, 

which has been discussed in the main text of Chapter 6. 

 

Figure 6-1d-f show the regional economic footprint of the pandemic control, which is 

irrelevant to the flood scales. The four regions experience similar weekly relative 

changes in their GDPs during a 30%-24 global pandemic control. Their GDPs drop 

gradually by around 22% during the first three weeks (week 5-8) of the pandemic 

control, then remain almost constant for the remaining weeks of the pandemic control, 
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and finally recover back to the pre-disaster levels when the control measures are lifted. 

The recovery takes another around 10 weeks in all regions. Before that, there are 

sudden slumps of regional GDPs around week 30, due to the shortage of intermediate 

inputs arising from delivery failures under persistent transport constraints during the 

pandemic control. The cumulative GDP losses in region A, B, C, and D caused by a 

30%-24 pandemic control account for 12.61%, 12.87%, 13.20%, and 13.04% of their 

annual GDP at the pre-pandemic levels. 

 

Figure 6-1g-i illustrate the regional losses resulting from the perfect storm of flooding 

and pandemic control. It takes longer weeks in region C to recover its economy 

compared to the above two groups of scenarios, particularly with the large flood scale. 

The cumulative GDP losses in region C increase significantly with the flood scale from 

12.11% to 18.75%. By comparison, other regions experience different levels of 

declines in their GDP losses as the flood scale increases (12.41%-12.00% for A, 

12.49%-11.56% for B, and 12.96%-12.86% for D), owing to an expanding stimulus 

effect of post-flood reconstruction. 

 

C.3. Economic Effects of Different Degrees of Export Restrictions in a 

Perfect Storm 

This section investigates how the economic impacts of the perfect storm change with 

the degree of the trade restriction limiting the export of sector ‘MANK’ in region C. It 

is assumed that the degree of the export restriction increases from 0% to 75% with an 

interval of 25%. 

 

First, Table C1 illustrates the changes in cumulative GDP losses, both on the regional 

and global scales, by the export restriction without production specialization, that is, 

products in one region can be freely replaced by products of the same sector from other 

regions. It is found that not only the global loss but also its increment expands with the 
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degree of the export restriction. In other words, a stronger export restriction results in 

a larger increase in the GDP loss than a weaker one. For every 25% increase in the 

degree of the export restriction, the global loss rises by an average of 0.02%, 0.18% 

and 0.22%, respectively, during different flood and pandemic intersections. The GDP 

loss in each region, except region C, follows the same pattern as the global one with 

increases in the degree of the export restriction. In comparison, region A and D appear 

to be more vulnerable to the escalating trade restriction than other regions. In region 

C, its loss increases by 0.01% with each 25% increase in the degree of the export 

restriction under the small flood colliding with pandemic control, but decreases by 

0.03% and 0.07%, respectively, under the medium and large floods (Figure C1). 

 

Second, the study examines the role of production specialization in compound 

scenarios with varying degrees of the export restriction on ‘MANK-C’. As shown in 

Table C2 and Figure C2, the regional and global GDP losses both grow rapidly with 

the degree of the export restriction when the restricted sector ‘MANK-C’ happens to 

make specialized products which cannot be substituted elsewhere. Such restrictive 

policy of region C puts other regional economies, as well as the global economy, at 

considerably higher risks than the former one, which in turn damages its own recovery 

through the propagation effect of the global supply chain. 

 

These results are consistent with those of Section 6.2.3 in the main text of Chapter 6. 

 

Table C1: Changes in cumulative GDP losses, on regional and global scales, by each 25% 
increase in the degree of the export restriction on ‘MANK-C’ without production 
specialization. 
Export Restriction Region A Region B Region C Region D Global Change 

0%-25% 0.08% 0.00% -0.03% 0.06% 0.02% 
25%-50% 0.35% 0.17% -0.03% 0.39% 0.18% 
50%-75% 0.38% 0.21% -0.03% 0.52% 0.22% 

Notes: The cumulative GDP losses are in relative terms of the annual GDPs at the pre-disaster 
levels. The results are given as the ensemble mean of scenarios where different scales of floods 
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collide with a 30%-24 pandemic control. 

 

 
Figure C1: Weekly changes of regional GDPs, relative to the pre-disaster level, in the four 
regions, when the export restriction is imposed on ‘MANK-C’ at different degrees without 
production specialization during the compound flood and pandemic crises.  
The numbers in each plot indicate the cumulative losses or gains of regional GDPs over time, 
relative to the pre-disaster levels of the annual regional GDPs. From left to right, each column 
represents the small-, medium-, and large-scale flooding in region C. From top to bottom, each 
row stands for the 0%, 25%, 50% or 75% export restriction on the ‘MANK’ sector in region 
C. 

 

Table C2: Changes in cumulative GDP losses, on regional and global scales, by each 25% 
increase in the degree of the export restriction on ‘MANK-C’ with production specialization. 
Export Restriction Region A Region B Region C Region D Global Change 

0%-25% 7.26% 7.27% 0.56% 6.56% 5.30% 
25%-50% 9.46% 9.38% 1.17% 9.41% 7.09% 
50%-75% 9.87% 9.85% 1.05% 9.86% 7.38% 

Notes: The cumulative GDP losses are in relative terms of the annual GDPs at the pre-disaster 
levels. The results are given as the ensemble mean of scenarios where different scales of floods 
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collide with a 30%-24 pandemic control. 

 

 
Figure C2: Weekly changes of regional GDPs, relative to the pre-disaster level, in the four 
regions, when the export restriction is imposed on ‘MANK-C’ at different degrees with 
production specialization during the compound flood and pandemic crises.  
The numbers in each plot indicate the cumulative losses or gains of regional GDPs over time, 
relative to the pre-disaster levels of the annual regional GDPs. From left to right, each column 
represents the small-, medium-, and large-scale flooding in region C. From top to bottom, each 
row stands for the 0%, 25%, 50% or 75% export restriction on the ‘MANK’ sector in region 
C. 
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