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Abstract

Very high resolution satellites and unmanned aerial vehicles (UAVs) are revolutionis-
ing our ability to monitor wildlife, especially species in remote and inaccessible regions.
However, given the rapid increase in data acquisition, computer-automated approaches
are urgently needed to count wildlife in the resultant imagery. In this thesis, we inves-
tigate the application of convolutional neural networks (CNNs) to the task of detecting
vulnerable seabird populations in satellite and UAV imagery. In our first application we
train a U-Net CNN to detect wandering albatrosses in 31-cm resolution WorldView-3
satellite imagery. We compare results across four different island colonies using a leave-
one-island-out cross validation, achieving a mean average precision (mAP) score of 0.669.
By collecting new data on inter-observer variation in albatross counts, we show that our
U-Net results fall within the range of human accuracy for two islands, with misclassifica-
tions at other sites being simple to filter manually. In our second application we detect
Abbott’s boobies nesting in forest canopy, using UAV Structure from Motion (SfM) im-
agery. We focus on overcoming occlusion from branches by implementing a multi-view
detection method. We first train a Faster R-CNN model to detect Abbott’s booby nest
sites (mAP=0.518) and guano (mAP=0.472) in the 2D UAV images. We then project
Faster R-CNN detections onto the 3D SfM model, cluster multi-view detections of the
same objects using DBSCAN, and use cluster features to classify proposals into true
and false positives (comparing logistic regression, support vector machine, and multi-
layer perceptron models). Our best-performing multi-view model successfully detects
nest sites (mAP=0.604) and guano (mAP=0.574), and can be incorporated with expert
review to greatly expedite analysis time. Both methods have immediate real-world ap-
plication for future surveys of the target species, allowing for more frequent, expansive,
and lower-cost monitoring, vital for safeguarding populations in the long-term.
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Chapter 1

Introduction

1.1 Overview

Over recent decades advances in technology and sensors such as drones, satellites, cam-
era traps, GPS tags and audio devices have revolutionised our ability to study wildlife
populations [144]. This wealth of new data is improving our understanding of species
health, behaviour, abundance and distribution; critical to implementing informed con-
servation actions and safeguarding species into the future. However, as access to these
sensors has become more widespread and their cost has decreased, manually reviewing
the large amounts of collected data is no longer feasible. As wildlife monitoring moves
into the big data realm machine learning methods are needed to automatically extract
meaningful information [143]. This will reduce the time and cost required at the data
review stage, allowing for important research questions to be answered more efficiently,
and for near real-time monitoring and response to wildlife threats. This research will
focus specifically on developing ML methods to detect wildlife in image data collected
from very high resolution (VHR) satellites and unmanned aerial vehicles (UAV’s). We
will develop methods to survey two species of seabirds: wandering albatross in VHR
satellite imagery and Abbott’s boobies in UAV imagery. We will compare and contrast
the methods and platforms used to census the two populations, and investigate sources
of uncertainty as well as approaches for dealing with this uncertainty. This chapter will
provide an introduction to the study by first discussing the background and context,
followed by the research problem, aims, objectives and questions, the significance and
limitations, and concluding with an outline of the thesis structure.

1
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1.2 Research Problem

Conducting regular species abundance surveys is essential for developing informed and
optimised conservation plans, yet traditional ground based surveys have many limita-
tions. They can be inaccurate, expensive, time consuming, and logistically challenging,
particularly in remote areas. Recently modern RS technologies have been used to address
some of these challenges. RS offers an unobtrusive means of conducting surveys, often
allowing for wider area coverage, and the ability to conduct counts in otherwise inacces-
sible regions [80]. For example, researchers at the British Antarctic Survey (BAS) have
shown that wandering albatrosses (Diomedea Exulans) nesting on remote sub-Antarctic
island chains can be surveyed using 31-cm resolution satellite imagery [42]. With an
adult wandering albatross having a body length between 107-135cm [2], albatrosses ap-
pear as approximately 4 to 5 pixels of white against their green nesting habitats. This
enables populations to be monitored more frequently than is currently possible with
boat, plane or ground counts [42], so that population declines can be identified and
understood.

While VHR satellites are a powerful tool for wildlife monitoring in extreme environments,
species must meet key suitability criteria to be amenable to detection. They should be
large enough to be observed given the spatial resolution of the sensor, their body colour
should contrast against their surroundings, and they should be in open habitat so they
can be seen from an aerial perspective [85]. For species which do not meet these criteria,
UAVs can provide a more suitable alternative to VHR satellites. For instance Abbott’s
boobies (Papasula abotti), a seabird which nests in the forest canopies of Christmas
Island, are too small and their colouration to indistinct to be monitored using current
VHR satellites. In addition their habitat is not fully open, and they can be obscured
by branches and leaves from an overhead aerial perspective. While this also poses a
challenge for aerial UAV surveys, researchers at LaTrobe University are investigating
whether UAV imagery used in combination with 3D structure from motion processing
can be used to identify birds within the canopy. This method involves collecting multiple
images of the canopy from different angles, to compensate for when the birds are obscured
in any given single viewpoint. While this has shown to improve detection compared to
a single view survey (Lipka et al., unpublished), it increases the number of images to
review by 10 fold. This significantly adds to the burden of manual analysis, making it
impossible to scale up the approach over large areas and to more frequent time intervals.

In both cases, a limiting factor in the studies is the need for experts to manually analyse
the resulting imagery, which is a tedious, time consuming and expensive process. This
strongly motivates the development of automated image analysis techniques which can
perform this task. Traditional image analysis methods, which often rely on designing
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hand crafted features for object detection and recognition, have so far been unable to
provide sufficiently reliable and robust results. However, in recent years a branch of ma-
chine learning methods called Deep Learning (DL) have shown impressive performance
in a range of tasks, including image analysis. Rather than searching for hand crafted fea-
tures, DL algorithms use Convolutional Neural Network (CNN) structures to automate
hierarchical feature learning in image recognition. This has been reported to provide
a step-increase in performance. However, these methods have largely been trained and
benchmarked using standard RGB camera image datasets such as ImageNet and COCO.
When transferring methods to satellite and UAV imagery specific challenges must be
addressed. For example satellite imagery generally consists of multiple spectral bands,
visibility be affected by atmospheric conditions, and target objects such as wildlife can
be small, rare and indistinct. Due to the relatively coarse resolution of wildlife in the
imagery ground truth annotations can also be very uncertain, even for domain experts.
Considering the implications on network training and assessment, ground truth uncer-
tainty must be factored in when employing supervised classification methods. Similarly
annotations of wildlife in UAV imagery can be uncertain, particularly in complex non-
open habitats such as forest canopy. Considering novel approaches to account for this
in network design can help broaden the application of UAV monitoring to new species.

Our research will investigate how we can apply these modern DL architectures to the
task of wildlife detection in satellite and UAV imagery, using the wandering albatross
and Abbott’s booby datasets as test cases for development.

1.3 Research Aims and Objectives

The aim of this research is to develop automated methods for detecting and counting
wildlife in satellite and UAV imagery, to facilitate fast, scalable and reproducible meth-
ods which can be used for population censuses. We specifically aim to investigate key
sources of uncertainty in our datasets: uncertainty in ground truth labels due to coarse
resolution in satellite imagery, and uncertainty in different viewing angles from UAV
surveys of canopy nesting species.

Our research objectives are:

RO1: Develop an automated method for counting wandering albatrosses in 31-cm res-
olution WorldView-3 satellite imagery.

RO2: Assess uncertainty in human annotations of wandering albatrosses in 31-cm reso-
lution satellite imagery, and assess how this impacts the training and assessment of the
network developed in R01.
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RO3: Develop an automated method for counting Abbott’s boobies nesting in forest
canopy from imagery collected by a UAV.

RO4: Develop a novel multi-view approach for dealing with viewing angle uncertainty
in the Abbott’s booby dataset, by merging detections from R03 using 3D structure from
motion information.

1.4 Novel contributions

This research contributes to the survey approaches for the specific target species, neither
of which have been attempted to be counted automatically before. To summarize, our
novel contributions are:

• We conduct experiments to assess inter-observer agreement in counts of wandering
albatrosses in 31-cm resolution WorldView-3 imagery. The new dataset, consisting
of point annotations for four satellite images from six independent observers, can
be used to benchmark manual and automated detection methods for the species
and is publicly available to download [16].

• We develop a novel automated method for detecting and enumerating wandering
albatrosses in 31-cm WorldView-3 imagery using a VHR U-Net architecture in
combination with the focal loss. This is the first automated method for detecting
wandering albatrosses in satellite imagery, and has been published in a conference
[15] and journal [16] paper.

• We empirically show that the choice of observer ground truth label can impact the
accuracy of the VHR U-Net method, highlighting that ground truth uncertainty
has a significant impact on the network results. Our experiments prove that the
VHR U-Net method falls within the range of human accuracy when benchmarked
using the inter-observer annotation dataset.

• We develop an automated method for detecting Abbott’s boobies in single-view
UAV imagery using a Faster R-CNN architecture. This is the first automated
method for detecting Abbott’s boobies in UAV imagery, and provides a benchmark
for applying this CNN to the detection of the species.

• We propose a novel multi-view approach for combining single-view UAV detec-
tions, using 3D structure from motion information. This method can account
for uncertainty when objects are obscured from particular viewpoints, helping to
monitor wildlife in complex habitats such as forest canopy. This method is being
deployed to conduct the first island-wide census of Abbott’s boobies using UAV.
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The methods developed for both species have direct real-world applications for species
management and monitoring for stakeholder organisations. More broadly, specific chal-
lenges addressing uncertainty in ground truth annotations and viewing angle have wider
applications for other species. Consequently, our findings help to advance the current
shortage of research tailoring to these specific challenges in satellite and UAV monitoring
of wildlife.

1.5 Limitations

Scope: The datasets examined in this thesis are specifically wandering albatrosses in
31-cm resolution WorldView-3 satellite imagery and Abbotts boobies in UAV imagery
(collected with specific flight parameters detailed in Section 5.3.1). Automated methods
will therefore be tailored to these species and platforms. For instance, it might be that
equivalent imagery collected by a different satellite would have different specifications
for spectral bands. However, techniques such as transfer learning and domain adapta-
tion can help to bridge the gap between our system and a new dataset. In addition,
both datasets were collected prior to the proposed project, and so collection design,
for example flight height, amount of overlap between images and post processing into
orthomosaics could not be tailored to improve detection performance. This remains an
interesting avenue for further research.

Methodology: Supervised training schemes, particularly deep learning methods, tend
to benefit from large annotated datasets, which are rarely available for ecological stud-
ies. In this research we leverage transfer learning and data augmentation to artificially
increase training size, but we note that adding more data will invariably improve per-
formance and generalisability. In addition, while the CNN architectures selected in this
study represent current benchmark approaches, DL is a rapidly evolving field and new
network architectures are likely to improve performance in the future.

Resources: Our network training and development was conducted on an NVidia Titan
XP graphics card and was restricted by GPU processing speed and memory requirements.
Reported timings will increase or decrease depending on the users own processing set up.
Time and computational resources meant that certain avenues could not be explored,
for instance, it would have been beneficial to manually re-annotate the Abbott’s booby
dataset with bounding boxes rather than point annotations. Given the need for expert
domain knowledge and limited time resources this was not possible within the scope of
this PhD, and so approximate bounding boxes were generated. Given the fixed flight
height of the UAV and the approximately fixed size of the target species we do not
expect results to be significantly affected, however a small improvement would be likely.



Chapter 1 Introduction 6

1.6 Thesis Structure

In this chapter, the context of the study has been introduced and we have identified the
research aims and objectives. We have outlined the value and novelty of our research,
and discussed the limitations and scope.

The thesis continues with a literature review chapter (Chapter 2). We present the back-
ground of remote sensing for wildlife surveys, focusing particularly on the use of satellite
and UAV platforms. We discuss aspects including image acquisition, specifications such
as spatial and spectral resolution, and examples of how these emerging technologies have
been applied to survey a range of species. Following this we outline the foundations of
automated image analysis using CNNs. We establish the core ideas and terminology used
throughout the thesis, provide an overview of the specific CNN architectures employed,
and summarise key performance metrics used to assess and compare results.

Our four main research chapters present automated methods for detecting wildlife, in
particular two species of seabirds, in satellite and UAV imagery. In Chapter 3 we
present our output for research objective 1 (RO1); developing an automated method for
detecting wandering albatrosses in 31-cm satellite imagery. We use a U-Net architecture,
in combination with the focal loss, to detect albatrosses using a satellite image dataset
capturing four different colonies. We present the results of this method as a four-fold
cross validation across colonies, achieving a mean Average Precision (mAP) score of
0.669. Within the context of these findings, we discuss limitations imposed by the high
degree of ground-truth uncertainty in the manually generated annotations.

To extend on this in Chapter 4 we deliver RO2, by investigating the scale of inter-observer
variation in human annotations of albatrosses in 31-cm satellite imagery. We present
the results of an empirical study where satellite images of albatrosses were annotated
under experimental conditions by five volunteers. We analyse observer agreement, and
assess whether image quality can influence inter-observer variation in the four different
images. Further to this we show how this ground-truth uncertainty can impact the
results of the CNN network, both at the training and assessment stage. We find that
when accounting for ground truth uncertainty our VHR U-Net results fall within the
range of human accuracy for two of the islands, and that misclassifications for the other
two islands are simple to filter manually.

For our second application we present methods for surveying birds nesting in forest
canopy using UAV imagery. Our study species is the Abbott’s booby, a tree nesting
seabird endemic to Christmas Island. In Chapter 5 we present our contribution for
RO3, and train a Faster R-CNN network to automatically detect Abbott’s booby nest
sites and guano in images collected by a UAV. We assess the performance of Faster
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R-CNN, achieving mAP scores of 0.518 for Abbott’s boobies and 0.472 for guano. We
end by showing that a multi-view approach (where detections of the same object from
different viewpoints are merged) has the potential to significantly improve recall for hard
to classify examples.

For our final research objective (RO4), in Chapter 6 we present methods for merging
and classifying Faster R-CNN detections using a multi-view detection approach. We
describe the process for projecting detections from the 2D UAV images onto the 3D
model of the forest canopy using parameters derived from SfM. We use DBSCAN to
cluster multi-view results of the same Abbott’s boobies into groups, and calculate a
range of features for each cluster including the average confidence score and the cluster
density. We compare clusters to ground truth labels to assign true positive and false
positive classes, and in the final stage train a classifer model to predict and filter out false
positives. For our classifier we compare a logistic regression, support vector machine,
and multi-layer perceptron model, with the best performing model achieving a mAP of
0.604 for Abbott’s boobies and 0.574 for guano. We show that using human-in-the-loop
analysis to assess outputs can result in 70% recall of objects with 40% precision, and
greatly reduce the manual analysis time. In our discussion we highlight areas for future
improvement of the method.

To conclude, in Chapter 7 we summarise thesis contributions and recommendations, and
outline suggestions for future work.



Chapter 2

Literature Review

2.1 Overview

In this Chapter we present a literature review of both remote sensing for wildlife de-
tection and deep learning with Convolutional Neural Networks (CNNs). We begin by
reviewing the background of wildlife monitoring with satellites and UAVs, and outline
key challenges relating to automated detection of wildlife. In Section 2.3, we review how
satellites and Unmanned Aerial Vehicles (UAVs) can be used to monitor wildlife, and
outline the practicalities and benefits of using them for different survey efforts. In the
subsequent sections we discuss methods for analysing the resultant imagery in order to
count wildlife. Section 2.4 focuses on manual detection, while in Section 2.5 we review
the existing literature on automated detection methods. To conclude, we discuss limi-
tations with current approaches and outline areas for future research, in particular the
application of deep learning and Convolutional Neural Networks (CNNs). In Section 2.9
we describe the building blocks of CNN architectures, including pre-processing and data
augmentation, feature extraction, classification and training. In Sections 2.10-2.12 we
outline the specific CNN and ML architectures that we utilise in the study, and conclude
by defining key performance metrics in Section 2.13.

2.2 Remote Sensing for Wildlife Monitoring

2.2.1 Overview

Collecting regular and reliable estimates of wildlife population sizes is essential for suc-
cessfully monitoring population health and developing conservation plans [69, 115]. Tra-
ditionally such surveys have been conducted via ground based counts, where animals are

8
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physically counted by observers in the field. This can be an inexact science, prone to
errors due to animals moving or being obscured from view, and additionally hindered by
site accessibility, logistical costs and weather constraints, particularly in remote areas
[42, 43, 84, 110, 155]. Recently the increased availability of remote sensing technolo-
gies, such as satellites and UAVs, has provided a platform for conducting these surveys
remotely. This allows data to be collected comparatively cheaply, over wider areas,
more frequently and without disturbance to the wildlife or environment. Researchers
can also benefit from having a permanent visual record of wildlife distribution, making
results verifiable and available for later studies and alternative interpretations [115]. For
instance spatial information such as the locations of individuals, preferred habitat type
and vegetation quality at the survey time can all be analysed in subsequent studies
[118]. As such several papers have suggested the use of remote sensing technology will
revolutionise the field of wildlife monitoring [6, 55, 66, 85].

2.3 Vision Data and Platforms

Remote sensing involves detecting physical characteristics of an area remotely, by mea-
suring reflected electromagnetic waves at a distance from the target [69]. Sensors
can sample different ranges of the spectrum, with the width of electromagnetic bands
recorded being referred to as the spectral resolution. This includes single band panchro-
matic imagery, multispectral imagery which consists of multiple bands (e.g visible light,
infrared and thermal), and hyperspectral imagery which can contain hundreds of bands.
Sensors also have different spatial resolution, referring to the area represented by a sin-
gle pixel in the image. Higher spatial resolution means more detailed imagery can be
collected, helping to distinguish smaller animals and improving classification accuracy.
Both the spectral and spatial resolution of sensors have an important impact on the
ability to detect wildlife in the resultant images. The properties of images will also
depend on the platform used to collect it. While platforms such as camera traps can
be used to collect vision data for wildlife monitoring, in this thesis we will be focusing
specifically on aerial surveys using VHR satellite and UAV platforms. Satellites and
UAVs are more amenable to large area population surveys than in-field camera traps,
which tend to be used for presence/absence monitoring of species within a fixed field of
view. In the following sections we will outline the background, benefits and limitations
of conducting wildlife population surveys using satellites and UAVs.
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2.3.1 Satellite Surveys

Satellites were first proposed as a means of surveying wildlife as early as the 1980s, with
studies remotely detecting wombat warrens [96] and Adelie penguin rookeries [128, 129]
using 15m resolution imagery. Recently the advent of Very High Resolution (VHR, <1m
spatial resolution) satellite sensors has lead to an increased interest in their application
to directly survey wildlife from space. Multiple satellites now collect VHR imagery,
with many including up to eight spectral bands (the specifications of some of the most
commonly used VHR satellites are presented in Table 2.1). These satellites benefit from
being able to cover very large spatial extents and revisit locations frequently (often
every one or two days), which allows for repeat observations to be made. They are also
completely passive and cause no disruption to wildlife, which has been reported to be an
issue in some aerial surveys [48, 146]. Crucially satellites also facilitate surveys of wildlife
in regions which are challenging or impossible for humans to access. This includes species
in the open ocean (e.g whales [4, 28, 43]), the Arctic (e.g walruses [10] and polar bears
[86, 137]), Antarctica (e.g penguins [8, 40, 44, 82, 100, 130] and seals [5, 81, 84, 104]),
and open savannah (e.g elephants [126], and wildebeest and zebra [157, 158]).

There are some constraints to consider when designing VHR satellites surveys. While
conducting surveys by this means requires no logistical layout, purchasing imagery can be
expensive, especially for large spatial extents [69, 115]. There is also no option to specify
the exact time and place that an image should be collected, which can be limiting for
some studies. Cloud cover and spatial distortions can also hinder analysis of the imagery
[158]. Additionally there are restrictions on the type of species which are amenable
to survey by satellite. A feasibility study by LaRue et al. [85] outlines three primary
criteria, namely that the animal should live in open habitat, have a colour contrast to the
surrounding landscape, and be of detectable size. For this reason many studies to date
have focused on wildlife in polar regions, where snow and lack of vegetation provides
a good contrast for detection [82]. One of the main challenges in directly counting
individuals is the spatial resolution of the imagery [79]. A number of studies have
compensated for relatively low spatial resolution by performing indirect counts. In these
methods proxies such as colony size and nest area are used to estimate abundance using
lower resolution satellites. This has been effectively employed to conduct global estimates
of penguin population sizes, by first quantifying colony area or guano staining extent, and
then using ground counts and regression to predict population numbers [8, 40, 41, 82].
These studies proved very effective in detecting large, previously undiscovered penguin
colonies, which drastically altered the total species population estimates (e.g [40] and
[14]). This shows the potential for satellite surveys to complement ground based methods
and dramatically improve our understanding of species distribution and trends.
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Satellite Launch
Year

MS Band
Number

PAN
Resolution

MS
Resolution

Average
Revisit

IKONOS 1999 4 0.82m 3.2m 3 days
Quickbird 2001 4 0.55m 2.16m 2.5 days
WorldView-1 2007 - 0.5m - 1.7 days
GeoEye 2008 4 0.41m 1.65m 2.6 days
WorldView-2 2009 8 0.46m 1.85m 1.1 days
WorldView-3 2014 8 0.31m 1.24m 1 day
WorldView-4 2016 4 0.31m 1.23m 1 day

Table 2.1: Very High Resolution satellite specifications.

2.3.2 Aerial Surveys

Aerial surveys are generally conducted through sensors mounted on UAVs and manned
aircraft. A key advantage over satellite acquisition is higher spatial resolution imagery
(e.g up to 2.5cm [69]), allowing for greater detection capabilities for a wider range of
species. To date UAVs have been used to study three groups of animals [94]; large terres-
trial species (e.g elephants [147]), marine mammals (e.g dugongs [101] and whales [65]),
and birds (e.g penguins [105, 142], flamingos [30, 58] and geese [19]). Unlike satellite
surveys, aerial methods can be designed according to researchers’ specifications, and
therefore can be adapted to compensate for cloud cover and to fly additional transects
when required. UAVs are also increasingly used in situations where real time monitoring
of wildlife is a priority, for instance patrolling beaches for sharks [153] and detecting and
deterring poachers in African game parks [11]. While aerial imagery is similarly limited
by the need for open habitat, a promising avenue of research is the use of thermal sensors
to detect species which may be obscured from view, or which need to be detected at night
[11, 55, 94]. This thermal information can be used in conjunction with colour imagery
to help discriminate wildlife from visually similar background objects such as rocks and
shadows. These new developments in technology and improved sensor capabilities can
be tested with a faster uptake than satellite platforms [69].

UAVs have some limitations, in particular they require human operation so are not
amenable to remote area surveys as satellite platforms are. They also suffer from low
flight endurance, meaning that they can often only survey limited areas in a single
flight [24, 94]. UAVs are also heavily restricted by weather conditions, particularly wind
[118], and require specialist operators and training which can add expense [94]. The
cost and quality of imagery depends on the specifications of the platforms and sensors,
and purchasing these can be a considerable investment given the techniques are in their
relative infancy, which can limit uptake. Further to this the legislation surrounding the
use of UAVs can hinder their use [24, 94]. This being said it is expected that with
rapid developments and further interest in the technology many of these obstacles will
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be overcome [6]. Aerial methods have still been able to prove their effectiveness given
these limitations, with studies showing that UAV surveys can be an order of magnitude
more precise than traditional ground based counts [66, 67].

2.3.3 Limitations of Current Approaches

To summarise, satellite and UAV surveys each have their limitations and draw backs,
and the selection of the technology should depend on the target species and study area.
For very remote and hard to access regions, VHR satellite surveys can be a cost effective
and safe way of collecting survey data. However the resolution of VHR satellite imagery
(currently a maximum of 31-cm ground sample distance) means that it is only suitable for
direct detection of large species. Even if an animal is visible it will generally only appear
as a few pixels, which can make them challenging to identify and differentiate from other
objects in the surrounding landscape. The cost and availability of imagery can also be a
limiting factor, particularly in regions with high levels of cloud cover. However as new
VHR satellite constellations are launched prices will decrease and the frequency of image
acquisition will improve. UAVs provide an alternative for species which are not suitable
for survey with VHR satellite. UAVs can generally collect higher resolution imagery,
but are limited by flight endurance, weather conditions, and restrictions of being flown
within line of sight. Therefore they are not suitable for surveys of very remote and
inaccessible areas. Similar to VHR satellites they are also more suited to species in
open habitats, where aerial detection is possible without the wildlife being obscured. In
more complex terrains post-processing of UAV imagery can introduce distortion from
image stitching, which can make detection of wildlife challenging. Accounting for these
limitations would allow UAV surveys to be applied to a wider range of species.

2.4 Manual Data Analysis

The recent proliferation of satellite and UAV data presents new challenges, with a key
one being the need to identify and count animals in the acquired imagery. Traditionally
these counts have been conducted manually by expert observers. Indeed, even if the
final goal is to automate detection with machine learning methods, generating labelled
training data is often a necessary first step [33, 39]. Here we outline methods for manual
detection using both expert analysis and crowd-sourced counts.



Chapter 2 Literature Review 13

2.4.1 Expert Analysis

The most established method for analysing remote sensing imagery is through manual
counts [69], where images are hand labelled using image software such as Esri ArcGIS
(Redlands, C. E. S. R. I. 2022. ArcGIS Desktop: Release 10.3), GIMP [50] and Agisoft
(V 1.5.2, Agisoft LLC, St. Petersburg, Russia). This process is often time-consuming and
can require expert interpretation, which is costly and tedious to conduct. This limits the
amount of data which can feasibly be annotated, meaning that to date manual analysis
has largely been limited to small, proof of concept studies [42, 104]. In addition, manual
counts are non-repeatable, and prone to the same subjective analysis and human error as
ground based counts [137]. Often the appearance of wildlife can be uncertain, resulting
in different experts deriving different counts for the same image - termed inter-observer
variation. This is particularly prevalent in satellite surveys, where the resolution of
animals is generally in the region of only a few pixels [42].

To account for inter-observer variation studies generally recruit multiple observers to
annotate the same dataset. The number of observers and their level of experience can
differ markedly between different studies, and is dependent on resources (e.g funding
and time), the analysts experience with annotation methods and software, and the
detectability of the target species [42, 104]. Most studies have selected between between
one and five expert analysts [33, 36, 39, 83, 104, 158]. Studies often recruit observers with
either general expertise in the review of satellite or UAV imagery [84] or with specific
knowledge of the target species (e.g who have conducted field-based ground, boat or
aerial counts) [22, 137]. However even within a group of experts observer agreement
and accuracy tends to vary depending on the complexity of the environment (e.g it’s
heterogeneity [33]) and with the quality of the image [22, 42]. Variation in manual counts
of colonial animals may also increase with colony size [9].

2.4.2 Crowd-sourced Counts

Recently an increasing number of projects have used crowd-sourcing (also referred to as
citizen science) to analyse data. Platforms such as Zooniverse [134] and GeoHIVE (pre-
viously Tomnod) have been developed, encouraging members of the public to manually
analyse imagery to speed up the annotation process. For many wildlife species, this has
the added benefit of raising awareness and public interest, and can generate donations for
conservation projects. Crowd-sourcing platforms enable vast quantities of images to be
analysed, which would not be feasible with expert analysis alone. For example, recently
the ”Satellites over Seals” project engaged over 300,000 citizen scientists to count seals
over the entire Antarctic Peninsula using VHR satellite imagery [81]. For VHR satellite
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imagery in particular this has be additional benefit of being substantially cheaper than
purchasing imagery. Maxar’s VHR satellite data can be hosted and reviewed remotely
by the crowd on the GeoHIVE platform, without the need for researchers to purchase,
download and store the imagery. While currently Maxar is the only VHR satellite image
provider offering this service, other providers may develop their own platforms in the
future. While using citizen science incurs the same limitations and uncertainty as out-
lined for manual analysis, it can be a useful tool for generating large labelled datasets
for use in supervised classification training schemes. In addition, images can be counted
multiple times by different observers, which means that uncertainty and inter-observer
variation in labels can be assessed and accounted for.

2.4.3 Limitations of Manual Data Analysis

Manually detecting wildlife in satellite and UAV imagery presents a number of chal-
lenges. A primary concern is the amount of time and labour it takes to hand-annotate
datasets. This creates a bottleneck in analysis when looking to conduct surveys over
larger areas, or at more frequent intervals, which motivates the development of auto-
mated methods [13]. However, challenges with manual analysis are also exacerbated by
the fact that wildlife is small and hard to distinguish. Even large animals appear as only
a few pixels [148], and are generally only discernible due to a strong spectral contrast
with their habitat, opposed to other recognisable characteristics such as their shape
and patterning [85]. If spectral reflectance values of the target animal overlap with non-
target objects in the surrounding landscape, the two can be very difficult to differentiate
[86]. This makes manual detection not only time-consuming, but also highly subjective,
with counts varying between annotators due to uncertainty [42]. This inter-observer
variation means that errors associated with counts can be difficult to interpret.

In summary, the primary challenges associated with manual detection of wildlife are:
i) the time required to systematically scan the imagery [22, 28, 83], ii) the presence of
landscape features or challenging terrain that makes detection more complex [137], and
iii) inter-observer variation in counts between observers [33]. Some of these limitations
can be overcome with crowd-sourcing a large pool of annotators, however their accu-
racy level needs to be rigorously assessed. In addition promoting and recruiting for new
crowd-sourcing campaigns, developing comprehensive training materials, and validating
crowd-sourced counts can be a time consuming process. In addition as the collection fre-
quency, affordability, and availability of data continues to increase, automated methods
will be required to enable data analysis to keep pace with data collection.
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2.5 Automated Data Analysis

2.5.1 Overview

When looking to extend wildlife surveys over larger areas, or to more frequent intervals,
then manual analysis is a limiting factor. There is a growing need to address this barrier
through automation if the methodology is to advance further [115]. One of the main
challenges in automated image analysis is reducing misclassification errors, which can
occur as either false negatives, (when an animal is present but it is not detected) or false
positives (when other objects are incorrectly identified as animals). Automated image
analysis techniques can be judged by how well they minimise these misclassification
errors. To date several alternative methods for detecting and counting wildlife in remote
sensing imagery have been proposed, although all are proof of concept studies conducted
over relatively small spatial scales. We will summarise some of the key methods and
applications below.

2.5.2 Current Approaches

2.5.2.1 Pixel Based Classification

Many studies so far have used pixel based methods to automate counts of wildlife. In
these methods spectral reflectance values are established for the target animal, and are
then used to segment wildlife from the background at a pixel level. Segmentation has
been conducted via three main methods; manual thresholding, supervised classification,
and unsupervised classification.

Thresholding is one of the simplest approaches, and involves categorising pixels into fea-
tures based on their intensity value relative to a manually determined threshold value.
These methods were tested on aerial imagery of geese as early as the 1980s [49]. Later
Bajzak and Piatt [7] also automated counts of snow geese, which were separated from
mud flat backgrounds by using their contrasting white colouration. The output of the
automated method was only 2.3% different from the counts from human analysts. More
recently Fretwell et al. successfully detected southern right whales by thresholding
the water penetrating coastal band in VHR multispectral satellite imagery [43] (with
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recall=84.6%, precision=76.2%). In the study, this simple technique outperformed un-
supervised IsoData (recall=67.0%, precision=38.6%) and k-means (recall=58.2%, pre-
cision=52.0%) clustering (implemented in ENVI5 image processing software (Exelis Vi-
sual Information Solutions, Boulder, Colorado)). Despite this, these methods are non-
standardised, depend on careful manual analysis of spectral histograms, and rely on a
sharp contrast between wildlife and background [157].

Supervised classification also involves manually assessing spectral characteristics of ob-
jects in the image. Once a proportion of known objects are labelled, the mean and vari-
ance of the spectral signatures are used to classify the remaining pixels in the image, by
training an image-processing algorithm (e.g maximum likelihood classifier). These meth-
ods have proven very effective for indirect counts, in particular for estimating emperor
penguin colony sizes [8, 40]. However supervised classification methods have produced
mixed results when applied to direct counts of individual animals. For example LaRue
et al. [86] found the technique generated large numbers of false positives (in the order
of thousands) when detecting polar bears in VHR satellite imagery. This was due to
reflectance values of polar bears overlapping with non-target objects in the surrounding
landscape. In general these methods are limited by the user’s experience and ability to
accurately label training data, by the strength of the target animals spectral signature,
and by the amount of spectral overlap between different objects in the imagery [69].

Unsupervised classification schemes use statistical methods to automatically group pix-
els into clusters based on their spectral properties. Examples of methods used in the
literature include IsoData [43, 141] and k-means [24, 141] clustering. An advantage of
these methods is that they require minimal user input, aside from specifying the num-
ber of output classes, and are therefore a more standardised approach in comparison
to supervised methods. Unsupervised techniques have produced reasonable results for
satellite surveys of whales [43] (k-means clustering: recall=58.2%, precision=52.0%), as
well as aerial counts of cattle and horses [141] (IsoData clustering: recall=82%, pre-
cision=69%), however in both cases were outperformed by other methods. In general
pixel based methods have produced mixed results. In particular they do not incorporate
geometric information into analysis, which could reduce misclassification errors. This
has lead to more techniques employing an object based approach.

2.5.2.2 Object Based Image Analysis

Several studies have used object based image analysis (OBIA) to automate detection.
OBIA methods build in geometric, contextual and textural details of objects (i.e clusters
of neighbouring pixels), rather than solely focusing on spectral information encoded in
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single pixels. In some cases this has improved on classification rates obtained in su-
pervised and unsupervised pixel based methods [24]. OBIA has mostly been applied
to aerial imagery, which contains more spatial detail in comparison to satellite data.
For instance Groom et al. [58] employed an OBIA approach to count flamingos in aerial
imagery, by using quadtree image segmentation and sequential object brightness thresh-
olding (achieving >99% accuracy compared to human visual interpretation). Descamps
et al. [30] also developed a method for detecting flamingos, by fitting ellipses around
targets with specified brightness levels. The method produced counts with precision
comparable to manual counts (<5% difference). As with pixel based approaches studies
have shown the most promising results when the surrounding landscape is relatively
homogeneous, for example Groom et al. achieved better detection rates for flamingos in
water rather than on land [58].

Many OBIA methods depend on segmenting the image into classes (representing ob-
jects), which can hinder their application to satellite imagery. This is because target
animals are small point like objects, which can be challenging to separate using methods
such as quadtree segmentation [158]. As such some studies have developed hybrid meth-
ods which first use pixel based approaches to highlight potential wildlife, and then filter
candidate objects based on factors such as shape and size. This method was employed
by Yang et al. [158] to detect wildebeest and zebra in a 41-cm resolution GeoEye-1
satellite image. In the study an artificial neural network was used to classify the image
at a pixel level, and then a specific rule set based on expert knowledge was developed to
filter misclassifications (with an average count error of 8.2%). These methods performed
well but relied on expert input and interpretation as part of the classification procedure.

2.5.2.3 Image Differencing

As discussed, one of the biggest challenges in analysing imagery is correctly distinguish-
ing wildlife from visually similar objects in the landscape, which can cause large numbers
of false positives [85, 140]. Some researchers have attempted to address this issue by
using image differencing (also referred to as change detection). In these methods two
images of an identical study area are taken a short time interval apart. Calculating the
difference between the images highlights objects which have moved (i.e animals) and
makes evident static objects which have not (i.e rocks and shadows). These methods
have been investigated using both satellite [86] and aerial [110, 140] platforms. In the
former two VHR satellite images (taken in different years but in the same season) were
used to detect polar bears (with recall=87%), with the methods significantly reducing
false positive detections in comparison to a single image supervised classification ap-
proach [86]. Aerial studies focused on horses [140] and cattle and deer [110], using same
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day image differencing. For example Terletzky et al. [140] identified potential livestock
by using the difference in the first principal component of two images, and then set
manual thresholds to filter highlighted regions based on size. While the methods proved
successful in detecting wildlife, large numbers of false positives (e.g 53% of all detec-
tions) were reported in the subsequent supervised classification scheme. This was due
to mismatches in the alignment of the two images, misidentification of shadows, and the
animals congregating in groups [140].

A key challenge with these methods is obtaining a precise registration between the two
spatially congruent images, which can be especially difficult when using images collected
at different angles, times of day and which are very high resolution [86]. Other changes
in the landscape, such as melting snow [86] and moving shadows [140], can also cause
errors in analysis. Ideally images should be collected by the same sensor, at the same
time of day, and less than a week apart, to ensure that the changes in shadows and
vegetation are kept to a minimum. However these requirements can add cost to surveys
targeting this approach [86].

2.5.2.4 Thermal Imaging

An increasing number of studies have used the thermal infrared band to aid in detection,
although this is currently limited to aerial surveys since VHR satellites do not sample the
appropriate range of the EM spectrum. The main benefit of capturing thermal informa-
tion is that it can be used to distinguish wildlife from other objects with similar spectral
signatures (e.g rocks and shadows). A study of white tailed deer in aerial imagery found
that applying OBIA approaches to the thermal band could successfully detect deer [24],
with an average recall of 50%. The procedure worked equally well on the thermal band
alone as when used in combination with the visible (RGB) bands. However the authors
note that in practice using only thermal information could be problematic. Challenges
are that the thermal signatures of animals change throughout the day, and at times
the radiative temperatures of other objects (such as rocks and bare ground) can match
those of the target animal, potentially leading to false positive detections. Additionally
at some times of day low thermal contrast can decrease the likelihood of detecting ani-
mals [24]. To avoid this problem some studies have specifically collected imagery in the
early morning when the temperature difference between the landscape and target animal
is greatest [55]. The number of studies investigating automated detection from thermal
imagery is growing, although until recently sensors have been prohibitively expensive
for small scale experiments [99]. This being said promising results have been reported
by researchers using machine learning and astronomical source detection software to
automate detection [99].
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2.5.2.5 Deep Learning

In recent years Deep Learning (DL) methods have shown impressive performance gains in
computer vision tasks, in comparison to more traditional machine learning approaches
[88]. In particular Convolutional Neural Networks (CNNs), architectures which are
specifically designed to process image data, can be trained to learn feature extraction
and classification end-to-end. They can therefore provide a more general framework than
rule-based pixel and OBIA methods [150]. Different network designs have been applied to
the task of wildlife detection in VHR satellite and UAV imagery. Classification networks
have been used to conduct presence-absence counts of whales in VHR satellite imagery
[13] (rec=0.937, prec=1.0) and turtles in UAV imagery [56] (rec=0.765, prec=0.163). In
these approaches larger images are split into small tiles, and the CNN is trained to assign
a binary wildlife presence/absence classification. In the applications this was successful
in filtering out large areas of empty ocean, however a manual review stage was required
to remove excess false positives [56]. This approach is also not suitable for dense animal
aggregations, as it only determines presence-absence of wildlife not a count. Object
detection CNNs, on the other hand, localise and classify animals simultaneously. The
standard form for object detection labels is a bounding box, where an axes orientated
box is drawn around each animal in the dataset. A popular architecture is Faster R-CNN
[120], which has been used to detect koalas in thermal UAV imagery [25] (probability of
detection between 68-100%) and elephants in VHR satellite imagery [33] (F2-score=0.78
in heterogeneous areas and 0.73 in homogenous areas). Segmentation methods act in a
similar way to object detection, except that every pixel belonging to the target species
is labelled to produce a segmentation mask. A popular choice for segmentation of VHR
satellite imagery is the U-Net architecture [124], which has been applied to detect seals
[54] (rec=0.253, prec=0.420), as well as other objects such as buildings [111] and trees
[77]. Finally, regression networks can be trained using the total count of animals in
the image, and have been applied to detect seals in aerial imagery [68] (RMSE=19.03
seals). Regression networks indirectly infer the features of interest needed to obtain the
full count and are useful if point or bounding-box annotations are non-existent for each
individual animal, or are too time consuming to produce.

2.5.3 Limitations of current approaches

Our literature review has shown that automated detection of wildlife in remote sensing
imagery has largely been limited to small scale proof-of-concept studies. Pixel and
OBIA based methods have limited success, particularly due to the small size of wildlife
in satellite and UAV imagery. Background features can lead to false positives if their
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spectral signature closely overlaps with the target species [86]. This has been proven
to be a challenge with automated detection of species in VHR satellite imagery, for
example whales [27], when using spectral and object based image analysis methods.
Particularly in heterogeneous environments supervised classification methods such as
maximum likelihood are unable to achieve high accuracy without a distinct spectral
signature from the wildlife of interest [8, 86]. In addition, traditional machine learning
methods often rely on setting specific threshold values, which can vary between satellite
images even of the same species [69]. At this stage, this lack of robust, standardised and
reliable automated detection methods is creating a bottleneck in remote sensing based
wildlife surveys. Several reviews have highlighted the need to transfer state of the art
computer vision methods to address these obstacles [69, 94, 115, 150].

As discussed in Section 2.5.2.5, the number of applications using CNNs to detect wildlife
in remotely sensed imagery has expanded in recent years. In fact, a recent review showed
that CNN methods have now become the predominant approach for detecting wildlife
in UAV imagery [26]. As yet, these state-of-the-art methods have not been applied
to surveys of wandering albatross in VHR satellite imagery, or to Abbott’s boobies in
UAV imagery. Given the success of CNNs in similar applications, they could provide an
alternative to time consuming and costly manual review. Creating the first benchmark
for automated detection using CNNs will be an important first step in catalysing research
for the species. In the remaining literature review, we will outline the fundamentals of
DL and CNNs, and detail the specific object detection architectures we adopt in our
research application chapters.

2.6 Deep Learning for Computer Vision

2.6.1 Overview

In traditional machine learning, building a model generally requires expert domain
knowledge. The data must be examined, and representative features (i.e which suc-
cessfully encode patterns in the dataset) must be hand-designed and engineered. In
recent years Deep Learning methods, which use Artifical Neural Networks (ANNs) as
their main building blocks, have become increasingly popular. In contrast to tradi-
tional methods which require hand-crafted features, DL methods are designed to learn
appropriate feature representations directly from the input data. This makes them a
powerful and multi-purpose tool, requiring less human interpretation and expert knowl-
edge, which can be quickly adapted and transferred across different datasets. In the
following sections we will introduce the fundamentals of ANNs as well as Multi-Layer
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Perceptrons (MLPs), describe model training and optimisation and lay out the founda-
tions of CNNs for image data problems. In Section 2.10 we describe the specific CNN
architectures used in this research, and detail other ML methods which we employ (Sec-
tion 2.11 and Section 2.12). We conclude by describing performance metrics used to
evaluate results in Section 2.13.

2.7 Introduction to Deep Learning

2.7.1 Biological Inspiration

ANNs are inspired by the network of biological neurons in the brain. While relatively
little is understood about how the brain works, the core concept is to produce a simpli-
fied computational model of the neuron processes, to replicate their ability to develop
knowledge through learning. The building block for ANNs was the neuron, a simple lin-
ear model which produced a positive or negative output given a set of inputs (x1, ..., xn)
and weights (w1, ..., wn).

f(x,w) = x1w1 + ...+ xnwn (2.1)

The neuron received inputs similarly to how neurons in the brain receive electrical sig-
nals. When signals were strong enough, they could be passed on to other neurons. The
first application of computational neurons were logic gates, where a boolean function
is activated as on or off given one or two binary inputs (for example AND and OR),
however these were not able to learn weights from the data. That concept was developed
later with the introduction of the perceptron.

2.7.2 Perceptrons

Perceptrons develop on neuron models by combining inputs into a weighted sum. If
the weighted sum exceeds a threshold T then the neuron is triggered and produces an
output y (Equation 2.2). The threshold T is referred to as the activation function.

y =

1, if
∑

iwixi − T > 0.

0, otherwise.
(2.2)
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In this form perceptrons can be used for binary classification, finding a linear decision
boundary.

2.7.2.1 Activation Functions

The activation function (sometimes referred to as a transfer function) is the function
that determines the output of a node. It maps the resulting values into a range, for
example between 0 and 1 or -1 to 1, depending on which activation function is chosen.

Initial perceptron models used non linear functions, such as the sigmoid function. Sig-
moid outputs a value between zero and one with an s shaped distribution, according to
the equation:

f(x) =
1

1 + e−x
(2.3)

Since sigmoid outputs values between 0 and 1, it is useful for predicting probabilities.

Tanh outputs a similar s-shaped distribution to sigmoid, but over the range -1 to +1,
according to the equation:

tanh(x) =
ex − e−x

ex + e−x
(2.4)

The advantage of using Tanh activation is that negative values will be mapped strongly
negative, and zero inputs will be mapped near to zero. It is therefore a good choice for
classifying between two classes.

Most deep learning papers found that a Rectified Linear Unit (ReLU) is effective, and
converges better with Stochastic Gradient Descent [53]:

f(x) = max(0, x) (2.5)

An issue with ReLU is that any negative value will be mapped immediately to zero,
which can affect mapping negative values appropriately. To combat this Leaky ReLU
function can be used:

f(x) =

ax, if x<0.

x,
(2.6)
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Figure 2.1: a) A threshold logic unit, an artificial neuron which computes a weighted
sum of inputs and then applies an activation function to get an output. b) An example
MLP architecture with two inputs, one hidden layer made up of four neurons, and three

output neurons.

2.7.3 Multilayer Perceptrons

In simple perceptron models, the neuron receives inputs and picks and initial set of
weights at random. These are combined in a weighted sum, and then ReLU determines
the value of the output. Perceptrons use SGD to find the set of weights that minimise
the distance between the misclassified points and the decision boundary. However, while
perceptrons have the ability to learn weights, having only a single neuron restricts them
to only linear data. To deal with cases where the mapping between inputs and output
is non-linear, Multilayer Perceptrons (MLPs) were introduced. MLPs essentially work
by stacking neurons into multiple layers, including an input layer, an output layer, and
any number of intermediate hidden layers (an example MLP architecture is presented in
Figure 2.1b). These networks are described as feed forward, as each linear combination
of weighted sums is fed forward onto the subsequent layer of the MLP.

There are several hyperparameters that can be adjusted when designing an MLP archi-
tecture, including the number of hidden layers, the number of neurons per layer, and
the choice of activation function. Training MLPs, in other words allowing the network
to learn the weights which minimise the loss function, is done through backpropagation.
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2.7.3.1 Backpropagation

The backpropagation algorithm is used to train artificial neural networks, by iteratively
updating the weights and biases in order to minimise the error between the predicted
output and the ground truth. The backpropagation algorithm consists of two main
steps: forward propagation and backward propagation.

In the forward propagation step, the inputs are passed through the network and the
outputs are predicted. This is done by computing the dot product of the inputs and the
weights, followed by the application of an activation function, which is used to introduce
non-linearity into the network. This process is repeated for each layer in the network,
until the final output is produced.

The backward propagation step is used to adjust the weights and biases of the network
in order to reduce the error between the predicted output and the true output. This
is done by computing the derivative of the error with respect to each weight and bias
in the network, using the chain rule. The weights and biases are then adjusted in the
opposite direction of the gradient, which is the direction of steepest descent.

An outline of the backpropagation algorithm goes as follows:

1. Initialize the weights w and biases b of the neural network randomly.

2. For each sample in the training set:

• Feed the input data x through the network to produce the predicted output
ypred.

• Calculate the error E between the predicted output ypred and the true output
y using a loss function.

• Propagate the error back through the network using the chain rule to compute
the derivative of the error with respect to each weight w and bias b:

dE

dw
=

dE

dypred
∗
dypred
dw

dE

db
=

dE

dypred
∗
dypred
db

(2.7)

• Update the weights and biases in the opposite direction of the gradient, using
the learning rate alpha to control the size of the update:

w = w − α ∗ dE

dw

b = b− α ∗ dE

db

(2.8)
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3. Repeat step 2 for multiple epochs until the error is minimized.

2.8 Neural Network Training

2.8.1 Loss Functions

Training ANNs with the backpropagation algorithm is an optimization process driven
by a loss function, which quantifies the difference between the network prediction and
the known ground truth. The aim of the optimization is to minimise the error as
determined by the loss function. There are different types of loss functions that can
be used depending on the task, for example whether the network is being used for
classification or regression.

2.8.1.1 Cross Entropy Loss

For classification tasks, where the output is a class label, a common loss function is the
cross-entropy loss (also known as the log loss). If N is the number of classes, yi is the
true class label, and ŷi is the predicted probability of the ith class, then the cross-entropy
loss is given by the equation:

CE = −
N∑
i=1

yilog(ŷi) (2.9)

The cross-entropy loss can be computed for multi-class classification tasks, where the
predicted output is a probability distribution over all classes. In this case, the loss is the
negative log likelihood of the true class, given the predicted probability distribution.

In the case of binary classification tasks, where there are only two classes, the cross-
entropy loss is often referred to as the binary cross-entropy loss. It is given by the
equation:

BCE = −y log(ŷ)− (1− y) log(1− ŷ) (2.10)

2.8.1.2 Focal Loss

The focal loss is a loss function that was introduced as an alternative to the cross-entropy
loss for classification tasks, with the goal of addressing the issue of class imbalance in
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the training data [92]. It was originally developed for object detection tasks, where it is
common to have a large number of negative examples (background pixels) compared to
positive examples (pixels belonging to objects). This can lead to the model learning to
classify most examples as negative, leading to poor performance on the positive class.
To address this issue the focal loss down-weights the loss contribution for easy examples
and up-weights the contribution for rare and hard to classify examples.

The focal loss is given by the equation:

FL = −αt(1− pt)
γ log(pt) (2.11)

where pt is the predicted probability of the true class, αt is a weighting factor for the
loss of each example, and γ is a tunable hyperparameter that controls the rate at which
the loss is down-weighted for easy examples.

The weighting factor αt is defined as follows:

αt =
1

N

(
1− pt
pt

)β

(2.12)

where N is the number of examples and β is a hyperparameter that controls the rate at
which the loss is up-weighted for hard examples.

2.8.1.3 Mean Squared Error

For regression tasks, where the output is a continuous value, common loss functions
include the mean squared error (MSE), given by the equation:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (2.13)

The MSE is sensitive to outliers and tends to be affected by large errors. As an alter-
native the mean absolute error (MAE) can be used, which is affected more equally by
all errors. The MAE is given by the equation:

MAE =
1

N

N∑
i=1

|yi − ŷi| (2.14)
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2.8.2 Optimisers

Optimisers are algorithms that find the value of model parameters that minimise an
objective function, by performing iterative updates. One round of iterative updates
over the entire training dataset is called an epoch. Optimisation involves searching for
the optimal (generally the minimum value) within the surface created by the objective
function. In convex problems the solution space is strictly convex and so there is only
one solution which is the global minimum. However in many cases the solution space is
non-convex - made up of many local mimima. The challenge of then is to avoid becoming
trapped in non-optimal local minimum solutions.

2.8.2.1 Gradient Descent

Gradient descent is one of the most popular choices of optimisation algorithm to train
neural networks. Gradient descent is a method for minimising an objective function
J(θ), where θ are the model’s parameters. Optimisation is performed by updating the
parameters in the opposite direction to the gradient of the objective function ∇θJ(θ),
with respect to the model parameters. The learning rate η is a hyperparameter which
determines the step size taken to reach a (local) minimum.

There are three variants of gradient descent, with the main difference being the number
of training data samples used to compute the gradient of the objective function. The
main trade off is between accuracy and the time taken to perform an update. The three
variants are summarised below.

Batch Gradient Descent: Computes the gradient of the objective function w.r.t θ for
the entire training dataset. The update rule is:

θ = θ − η · ∇θJ(θ) (2.15)

Since gradients for the entire dataset must be computed before a single update can be
performed, batch gradient descent is slow and costly on memory. It is guaranteed to
converge on the global minimum for convex error surfaces, and to a local minimum for
non-convex surfaces.

Stochastic Gradient Descent (SGD): Computes gradient and performs an update
for each training sample x(i) and ground truth label y(i) in the dataset. The update rule
is:

θ = θ − η · ∇θJ(θ;x
(i); y(i)) (2.16)



Chapter 2 Literature Review 28

Since parameters are updated for each new data sample it is much faster than batch
gradient descent. The frequent, high variance updates lead to large fluctuations in the
objective function, which means that SGD has the ability to jump to new local minima,
however this has the cost of complicating convergence to an exact minimum. Gradually
decreasing the learning rate η can reduce this issue.

Mini-batch Gradient Descent: Computes the gradient and performs an update for
every mini-batch of n training samples:

θ = θ − η · ∇θJ(θ;x
(i:i+n); y(i+n)) (2.17)

This has the effect of reducing the variance in parameter updates, while also making
training more efficient. For these reasons mini-batch gradient descent is the typical
choice for neural network training, and tends to be referred to simply as SGD even if
mini-batches are used.

Although a popular choice there are there are some challenges in determining the learn-
ing rate when training with mini-batch SGD. If the learning rate is too small then
convergence is slow, too large and the objective function can fluctuate and not converge
to a minimum. Learning rate schedules (where the learning rate is decreased at desig-
nated epochs) can alleviate this issue, but must be manually specified in advance and do
not adapt based on the characteristics of the training data. Therefore various gradient
descent optimisation algorithms have been developed to overcome these challenges. One
of the most popular and best performing methods is the Adaptive Moment Estimation
(Adam) optimiser [76].

2.8.2.2 Adaptive Moment Estimation (Adam)

While optimisers like SGD maintain a single learning rate throughout the training ses-
sion, Adaptive moment estimation (Adam) [76] updates the learning rate for each pa-
rameter θ. Adam stores an exponentially decaying average of past gradients mt, as well
as past squared gradients vt, calculated respectively as follows:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

(2.18)

where gt is the gradient at time t and β1 and β2 are hyperparameters which control the
decay rate for the moving averages.

Since mt and vt are initialised as vectors of zeros, they bias towards zero, particularly
in initial time steps and when decay rates (set by β1 and β2) are small. To counteract
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this bias-corrected first and second order moment estimates are calculated:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(2.19)

These are used to update the parameters using the Adam update rule:

θt+1 = θt −
η√

v̂t + ϵ
m̂t (2.20)

where η is the learning rate and ϵ is a small constant that is added to the denominator to
prevent division by zero. The authors propose default values of 0.9 for β1, 0.999 for β2,
and 10−8 for ϵ, and show empirically that Adam compares favourably to other adaptive
learning-method algorithms [76].

2.8.3 Regularisation

Regularisation is a method for preventing overfitting a model on the training data sam-
ples, generally by lowering the complexity of a neural network during training. Regu-
larisation techniques used in this thesis are outlined below.

2.8.3.1 L1 and L2 Regularisation

In L1 and L2 regularisation the loss function is extended by a regularisation term, which
reduces the magnitude of network weights. Smaller weights reduce the impact of the
hidden neurons, hence the overall complexity of the neural network is reduced. Choosing
the regularisation term is important, as too high will lead to underfitting, and too low
will risk overfitting.

In L1 regularisation, also known as Lasso regularisation, the regularisation term is pro-
portional to the absolute value of the weights. The objective function with L1 regulari-
sation is given by the equation:

L1 =
N∑
i=1

Li + λ
M∑
j=1

|wj | (2.21)

where N is the number of examples, M is the number of weights, Li is the loss function
for the ith example, wj is the jth weight, and λ is a hyperparameter that controls the
strength of the regularisation.
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In L2 regularisation, also known as Ridge regularisation, the regularisation term is pro-
portional to the squared value of the weights, and is given by the equation:

L2 =
N∑
i=1

Li +
λ

2

M∑
j=1

w2
j (2.22)

2.8.3.2 Dropout

In addition to L2 and L1 regularisation dropout can be employed to minimise the risk of
overfitting within the network design [64]. Dropout schemes work by randomly excluding
a percentage of neurons from the network for each training sample. Individual neurons
will be dropped with probability p, or kept with probability 1−p. This leaves a different
reduced sub-network for each weight update step. The aim is to prevent co-dependence
between neurons, where sets of feature detectors might only work well in combination,
reducing their power to perform individually. Empirically this has shown to be a simple
and effective method in comparison to other regularisation techniques [136].

2.8.4 Transfer Learning

CNN architectures generally perform best when provided with large amounts of training
data. However in many real world applications, including remote sensing of wildlife, it
is not possible to collect sufficiently large datasets to train CNNs from scratch. In this
case transfer learning can be applied. In this process networks are pre-trained on large
image datasets containing millions of annotated samples, commonly ImageNet [29] for
classification tasks, and COCO [93] for object detection. Initialising networks weights
in this way means that they have already learnt to extract general, low-level features
which are common across all images. Using this as a starting point, the network can
then be fine tuned to the specific task with the users own dataset.

Benefits of transfer learning are that pre-trained networks can be fine-tuned with smaller
amounts of data, which is essential when labelled training data is scarce. Networks can
also be trained more quickly, and with a higher learning and accuracy rates. On the
other hand, caution should be used to avoid negative transfer, when learning from the
previous task instead hinders the new model. This can occur when source and target
datasets are too dissimilar, meaning the weights transferred from the source task are
not able to adapt to the new dataset.
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Figure 2.2: An example CNN architecture, using the MNIST hand-drawn digit
dataset as an example.

In practice transfer learning is performed by adapting the final classification layers of
a network suitable for the new task. Model performance can often be improved by
fine-tuning, where all or parts of the base model are unfrozen and retrained with a low
learning rate.

2.9 Convolutional Neural Networks

CNNs are a branch of ordinary Neural Networks which are specifically adapted to deal
with array inputs, such as images. CNN architectures are designed to take advantage
of the 2D structure of images, through use of shared weights, local connections, pooling
and multiple layers [88]. This has the benefit of producing translation invariant features,
as well as a reduced number of parameters and quicker training times in comparison to
their equivalent fully-connected counterparts.

CNNs are generally structured as a series of layers, with initial layers performing feature
learning and final layers performing classification. The feature learning stage typically
consists of alternate convolution and pooling operations, while the final classification
stage is carried out by one or more fully connected layers and a classifier such as softmax,
as shown in Figure 2.2. The most common approach to training CNNs is through
supervised training schemes, using backpropagation with an optimiser (such as Stochastic
Gradient Descent (SGD)). In this method weights and biases are updated in order to
minimise a loss function, which quantifies the difference between the output predicted
by the network and the desired target output. In the following sections we detail each
of these stages individually.
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2.9.1 Inputs and Augmentation

As discussed CNNs are primarily used to process image inputs in the form of arrays.
For panchromatic images this could be a simple 2D array, where each element (or pixel)
records the intensity value at that location. Conventional colour images are stored as
3D arrays, one 2D array for each of the three colour channels (red, blue and green).
In some cases images may be made up of more than three channels, for instance many
multispectral satellite sensors record numerous multispectral bands. To implement a su-
pervised training scheme, each of these arrays should also have a ground truth label. For
instance in the MNIST dataset [87] each hand-drawn digit is labelled with the true value
drawn in the image patch. As we will see these labels are needed for backpropagation
and training.

In some cases, data availability can be a problem. In order to train a robust model it is
important to build a training set containing objects in multiple orientations, scales and
light conditions. This allows the model to generalise as best as possible to unseen images.
In practice, obtaining all of these combinations from real life data can be difficult, so
frequently training schemes include an augmentation step to artificially simulate these
variations. For instance images may be flipped on their axes, warped, or have their
brightness and saturation adjusted [78]. This helps to build a balanced dataset and
reduces the chance of overfitting; when the network is tailored to work well on the
training set but not able to generalise well when processing new data.

2.9.2 Automatic Feature Extraction

2.9.2.1 Convolution

CNNs are built around the process of convolution. Convolutional layers consist of a
set of learnable filters of small height and width, and a depth corresponding to that
of the input array. The dimension of the filter is referred to as its receptive field. In
a convolution step the filter passes over the input array in a sliding window fashion,
and performs a matrix dot product, producing an output feature map. An example is
presented in Figure 2.3 for demonstration. Intuitively, filters act as feature detectors for
the output of the previous layer. All the weights in the filter are learnt, and depending
on the values chosen can perform different operations such as edge detection, blurring or
sharpening. Since the same filter is used to generate a single feature map, convolution
has the important property of being translation invariant. This means that it does not
matter where an object is located in an image, only that it exists.



Chapter 2 Literature Review 33

Figure 2.3: The convolution operation, using a 3 × 3 filter with stride 1. The lower
images show an example input and output of a convolution operation using an edge

detecting filter.

While the weights in the filters are learnt in the training phase, there are four additional
hyperparameters which should be specified in the initial design of the network. These
are:

• Filter size: The height, width and depth of the convolution filters. Often height
and width are set to three or five. The depth should match the number of bands
in the input array.

• Filter Number: The number of different filters in a single layer. This determines
how many unique filters should be learnt, and can differ between layers. For
example in Figure 2.2 the first convolutional layer uses three filters, the second
uses six.

• Stride: The number of pixels by which we slide the filter over the input array (for
example stride of one means moving the filter one pixel at a time, as in Figure 2.3).
The larger the stride the smaller the output feature map.

• Padding: Since the convolution operation is unable to generate values at the
edges of an input array, output feature maps are of reduced dimension. To combat
this the input array can be padded at the edges prior to convolution, in order
to control the image size. A common choice is zero-padding, where zeros are are
added around all borders of the array. Other options include reflection, mean and
constant padding.
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2.9.2.2 Pooling

While convolutional layers detect local features in the output of the previous layer, the
role of pooling layers is to aggregate these features into lower resolution representations.
This is done through pooling operations, where small and typically disjoint neighbour-
hoods of the image are aggregated into a single value, in a sliding window fashion. The
most common choice for CNNs is max-pooling, shown in Figure 2.4, which has shown su-
perior performance compared to other approaches such as average or sum pooling. Two
hyperparameters for pooling layers should also be specified in the architecture design;
filter size and stride. Most CNNs use a 2 × 2 filter with stride of 2 (as in Figure 2.4),
although in some cases an overlapping pooling operation (e.g filter size 3 × 3, stride 2)
can be employed [78].

Figure 2.4: The max-pooling operation, with a 2× 2 filter and stride of 2.

The role of pooling is to reduce the number of parameters and computation required in
the network, and also make feature representations invariant to small shifts, distortions
and transformations [88]. Together the convolution, ReLU and pooling layers extract
features which are robust to changes in scale and translation, and can be modelled
non-linearly.

2.9.3 Classification

2.9.3.1 Fully Connected Layers

The classification stage of a CNN generally consists of one or more fully connected
layers. These act as traditional multi-layer perceptrons (MLPs), where every neuron in
the layer is connected to every neuron in the preceding layer. They take the high level
feature representations extracted in the convolution and pooling stages, and use them
to classify input images into classes based on the training dataset. For example in the
MNIST dataset (Figure 2.2) there are ten possible classes, the integers zero to nine.
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In classification problems the outputs of fully connected layers are generally fed into
an activation function, usually softmax, to convert them into a vector of probabilities
for each class. Softmax takes a vector of scores (x1, ..., xK) and converts them into
probabilities which sum to one, by the following equation:

Softmax(xj) =
exj∑K
k=1 e

xk

for j = 1, ...,K (2.23)

Since the dimension of the input feature maps is smaller than the dimension of the
original image (i.e there are less neurons to connect), this architecture is more com-
putationally efficient than implementing a MLP directly. Fully connected layers also
have the co-benefit of being able to learn the best non-linear combinations of the input
feature maps. For example a combination of features may produce better classification
results than a single feature alone.

2.9.4 Object Detection

CNNs can be used for a number of tasks in computer vision, not simply for classifying
input images into a given class (a summary of four main tasks is presented in Figure 2.5).
Object detection involves both classifying and localising multiple objects of different
classes in an input image. Generally this involves locating objects using a bounding
box, which specifies the four corner coordinates which precisely outline the object of
interest. Each bounding box will have a predicted class label and confidence score for
the detection. Until recently this could be simply achieved by passing a CNN trained for
classification over an image in a sliding window, however more recently specific object
detection architectures have been designed.

Object detection networks fall into two general categories: two-stage detectors and
single-stage detectors. Two-stage CNNs are designed to first generate region propos-
als and then classify the objects in the region proposals. They consist of two main
components: a region proposal network (RPN) that generates region proposals, and
a classification and regression network that classifies the region proposals and refines
the bounding box coordinates. Popular examples of two-stage detectors include Faster
R-CNN [120] (see Section 2.10.2) and R-FCN (Region-based Fully Convolutional Net-
work). On the other hand single-stage CNNs are designed to predict the locations and
class labels of objects in the input image or video directly, without generating region
proposals. Examples of single-stage CNNs for object detection include YOLO (You
Only Look Once) [119] and SSD (Single Shot Detector) [95]. Single-stage detectors are
typically faster and more efficient than two-stage CNNs, but may have lower accuracy.
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Therefore single-stage CNNs may be a good choice for tasks that require fast inference
speed, while two-stage CNNs can suit applications which require high accuracy.

Figure 2.5: A comparison of the outputs for image classification, localisation, ob-
ject detection and instance segmentation. Source: Fei-Fei Li, Andrej Karpathy &
Justin Johnson (2016) cs231n, Lecture 8 — Slide 8, Spatial Localization and Detection
(01/02/2016). Available: http://cs231n.stanford.edu/slides/2016/winter1516_

lecture8.pdf

2.9.5 Image Segmentation

While both single and two-stage detection CNNs predict bounding boxes around objects,
in segmentation tasks a class label is inferred for every pixel contained within an object.
This allows for precise delineation of object outlines (Figure 2.5). To train segmentation
methods ground truth outlines or masks should be provided, which show the target class
label for each pixel in the image. One of the primary challenges in segmentation tasks is
that when images are passed through CNNs they gradually lose their spatial resolution
(due to the repeated strides and pooling). To get a precise mask as an output, Long
et al. [97] proposed using a fully connected network, where the image is first passed
through a CNN and then processed through upsampling layers to regain it’s original
spatial resolution. Instead of using upsampling methods such as bilinear interpolation,
these upsampling layers can be learnt from the data using deconvolution. These can be
thought of as regular convolution layers with a fractional stride (e.g of 1/2), and are
commonly employed in image segmentation methods.

Segmentation tasks can be divided into semantic and instance segmentation. In semantic
segmentation every instance of the same class is treated as the same entity. This means
if there are two examples of the same object in an image which overlap, they will not
be identified as separate objects. Popular semantic segmentation methods included
fully-connected CNNs such as U-Net [124], which was originally designed for biomedical

http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf
http://cs231n.stanford.edu/slides/2016/winter1516_lecture8.pdf
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image segmentation. In instance segmentation multiple objects of the same class are each
treated as their own distinct instances. One of the most popular instance segmentation
methods is Mask R-CNN [62], which is an extension of the Faster R-CNN [120] detection
network.

2.10 Deep Learning Architectures Used

2.10.1 U-Net

U-Net is a CNN architecture used for semantic segmentation, which was originally de-
signed for biomedical image analysis [124]. Broadly speaking U-Nets consist of an en-
coder and a decoder path, connected by a series of skip connections (Figure 2.6). The
encoder follows the typical architecture of a CNN, applying repeated convolutions, acti-
vation, and max pooling to extract features from input images. The decoder consists of
a series of upsampling and convolutional layers that use the feature maps extracted by
the encoder to generate a segmentation mask for the input image. The skip connections
between the encoder and decoder layers allow the U-Net to incorporate both high-level
semantic information from the encoder and low-level spatial information from the de-
coder. The skip connections are implemented by concatenating the feature maps from
the corresponding layers in the encoder and decoder. This allows for precise localization
of classified pixels. U-Net has shown impressive performance in a number of tasks [35],
in particular segmentation of VHR satellite imagery.

U-Net is typically trained using a supervised learning approach, where the model is
provided with a set of labeled images and their corresponding segmentation masks. The
model is then optimized to minimize a loss function, such as the binary cross-entropy
loss, that measures the discrepancy between the predicted segmentation masks and the
true masks. There are a number of hyperparameters which can be adjusted in the U-Net
architecture. For example in the convolution blocks the number of filters, kernel size,
pooling size and stride length can be adjusted. Similarly the size of the kernel used
in the upsampling layers can be altered. Different activation functions, regularisation
parameters, loss functions, learning rates and optimisation algorithms can be tested.
In addition the size of the network (how many layers it has), can be compared for
performance.
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Figure 2.6: The original U-Net architecture, designed for biomedical image segmen-
tation. Image taken from original paper [124].

2.10.2 Faster R-CNN

Faster R-CNN is a two-stage object detection network which was developed by Ren et
al. in 2015 [120]. Two-stage detection networks have a separate module to generate
region proposals as a first stage, which they then classify and localise in the second
stage. It essentially solves the object detection task as a classification problem, by being
presented with proposals and classifying them into either object or background.

Faster R-CNN has four main components: i) a backbone CNN for classification and
feature map generation, ii) a region proposal network (RPN) for generating Regions of
Interest (RoI), iii) an RoI pooling layer to make feature vectors from RoIs, and iv) a
final classification and regression stage, which is used to find the location of each object
and it’s class label. The output is a bounding box with predicted class label, bounding
box corner coordinates, and a confidence score for the prediction. A general overview of
the architecture is presented in Figure 2.7.

The first step of Faster R-CNN is to pass input images through a CNN pretrained for
the task of classification (e.g. using ImageNet) to generate a feature map. The original
Faster R-CNN used ZF and VGG pretrained on ImageNet [121], however since then lots
of different networks have been developed which offer improved performance. Common
alternatives include ResNet [63] (a deep residual CNN which can have different numbers



Chapter 2 Literature Review 39

Figure 2.7: Overview of the Faster R-CNN architecture.

of layers, e.g 50, 101, 152) and MobileNet [71] (a lightweight CNN which is suitable for
mobile devices). The feature map generated in this stage is then passed through to the
RPN.

2.10.2.1 Region Proposal Network

The RPN works on the feature map output by the last convolutional layer of the back-
bone CNN. This developed on previous selective search methods used in the R-CNN
[52] and Fast R-CNN [51] networks (where RoI’s were input at the pixel level rather
than the feature level) making the network much faster. A sliding window is passed
over the feature map and for each window k candidate region proposals are generated
(Figure 2.8). Each proposal is parameterised by an anchor box which has a given scale
and aspect ratio. Generally 3 scales and 3 aspect ratios are used, leaving a total of k = 9

region proposals, however other values can be chosen.

Each of the generated region proposals are then converted into a feature vector (the
size of the feature vector depends on the backbone CNN, in the original paper it was of
length 256 for the ZF net and 512 for the VGG-16 net [121]). This vector is passed into
two separate fully connected layers:

• A classification (cls) layer: A binary classifier that generates an objectness score
for each region proposal. This layer outputs two predictions per anchor: the score
for it being background, and the score for it being foreground.

• A regression (reg) layer: Which outputs a 4D vector defining the bounding box of
the region (as [xcenter, ycenter, width, height]).

During training, each anchor is classified as either foreground or background based on
the objectness score. The objectness score depends on the Intersection over Union (IoU)
of the anchor with a ground truth box (IoU is defined in Section 2.13.1.1). Thresholds
are defined as i) foreground: when anchors overlap with the ground-truth object with
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Figure 2.8: Overview of the region proposal network (RPN). Figure reproduced from
the original paper [120].

an IoU greater than 0.5, and ii) background: when anchors do not overlap any ground
truth object or have less than 0.1 IoU with ground truth objects. The anchors are then
randomly sampled to form a mini batch size of 256, while trying to maintain a balanced
ratio of foreground and background anchors. The RPN uses all anchors in the mini batch
to calculate the classification loss (Lcls) using binary cross entropy (Equation 2.10), while
only the anchors marked as foreground are used to calculate the regression loss.

To calculate the targets for regression the ∆ needed to transform the foreground anchor
on to the object is computed. If there is no foreground anchor, then the anchor with
the biggest IoU with the ground truth box is selected. Since anchors will overlap Non-
Maximum Suppression (NMS, outlined in Section 2.10.2.4 below) is performed to delete
those with lower IoU. Those with IoU greater than 0.7 are classed as a positive detection
and those with IoU less than 0.3 are classed as background. The top N proposals (after
being sorted by confidence score) are selected after NMS, and the regression loss is
calculated with the smooth L1 loss. If ti is the bounding box coordinates of the ith

anchor and t∗i is the ground truth coordinates, then the regression loss is defined as:

Lreg(ti, t
∗
i ) =

∑
i∈{x,y,w,h}

smoothL1(ti − t∗i ) (2.24)

where

smoothL1 =

0.5x2 if |ti − t∗i | < 1

|x| − 0.5 otherwise
(2.25)
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2.10.2.2 Region of Interest Pooling

The RPN stage outputs a set of object proposals, but no assigned class labels. In the RoI
pooling stage these proposals are processed ready for classification into their predicted
class. In Faster R-CNN the existing convolutional feature map is cropped using each
proposal, and then resized to 14∗14∗convdepth using interpolation. Finally max pooling
with a 2x2 kernel is used to get a final 7 ∗ 7 ∗ 512 feature map for each proposal. These
dimensions match those used by the final R-CNN classification stage, however can be
adapted if a different architecture is employed at the final stage.

2.10.2.3 Region-based Convolutional Neural Network

The final R-CNN stage (which is the Fast R-CNN architecture described in [51]) flattens
the feature maps from RoI pooling into one-dimensional vectors, and connects them to
two fully connected layers with ReLU activation. The final fully connected layer is used
to classify the proposals into one of N classes (with +1 being the background class). In
parallel, a second fully connected layer with 4N units (∆centerx ,∆centery ,∆width,∆height)
is used for bounding box regression.

The Fast R-CNN is trained with backpropagation and Stochastic Gradient Descent. The
loss function is defined as:

L(p, u, tu, v) = Lcls(p, u) + λ.[u ≥ 1]Lreg(t
u, v) (2.26)

where p is the object possibility, u the classification class, t the ground truth label, v
the ground truth coordinates for class u, Lcls is the loss function for classification and
Lreg is the loss function for bounding box regression, and λ is a balancing parameter.
The Lcls is defined to be:

Lcls(p, u) = −log(
epu∑K
j=1 e

pj
) (2.27)

where p is the object possibility, u the classification class, Lcls the loss function for
classification, and K the number of classes. Lreg is given in Equation 2.24 using tu and
v as inputs.

Objects are first classified and then bounding boxes are adjusted by selecting the class
with the highest probability for a given proposal. Those assigned as background class
are ignored, and class-based NMS is applied to the final set of predicted objects. Finally
a probability threshold is set to reduce the final number of returned objects.
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In the complete Faster R-CNN model there are two losses for the RPN and two for the
R-CNN, these four losses are combined using a weighted sum. Weight adjustments can
be made to give classification losses more weight compared to regression, or to give R-
CNN losses more influence than the RPN losses. Hyperparameters which can be altered
in the Faster R-CNN architecture include the selection of the backbone CNN, the batch
size, learning rate, optimiser and weight initialisation. Different IoU thresholds can also
be set for the RPN and R-CNN stages and NMS thresholds (e.g the number of proposals
to keep after applying NMS).

2.10.2.4 Non-maximum suppression (NMS)

When multiple overlapping bounding boxes are predicted for the same object (which
could be treated as false positives when assessing results) then non-maximum suppres-
sion can be used. In non-max suppression all proposed bounding boxes are sorted by
confidence score, then the following selection process is applied:

1. Select the proposal with the highest confidence score and add it to the proposal
list.

2. Calculate the IoU between the selected proposal and every other proposal. If the
IoU is greater than the threshold N (e.g 0.5), remove the proposal as a candidate.

3. If there are still proposals left, go back to step one and repeat, else return the list
of filtered proposals.

2.11 Machine Learning Algorithms Used

2.11.1 Support Vector Machine

Support Vector Machines (SVMs) are supervised machine learning methods which can
be used for classification and regression, which we employ for binary classification in
Chapter 6 of this thesis. In the classification case SVMs find a hyperplane (or set of
hyperplanes for multi-class problems) which maximises the margin between the separat-
ing hyperplane and the training data points (Figure 2.9). The margin is the distance
between the hyperplane and the nearest data points, with a larger margin indicating a
more robust model.

In some cases, it may not be possible to find a hyperplane that perfectly separates the
classes. In these cases, the SVM can be modified to allow for some examples to be
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Figure 2.9: SVMs find a hyperplane which maximises the margin between classes.
Points which fall on the margin are called support vectors(circled in red).

misclassified, using a technique called soft margin. The soft margin SVM optimization
problem introduces a slack variable ξi for each example, which allows the model to
penalize misclassified examples. The optimization problem can be written as:

min
w,b,ξ

1

2
wTw + C

n∑
i=1

ξi (2.28)

subject to the constraints:

yi(w
Txi + b) ≥ 1− ξi

ξi ≥ 0
(2.29)

where C is a hyperparameter that controls the trade-off between the margin and the
number of misclassified examples.

When data is not linearly separable the kernel trick can be employed to allow the SVM to
learn nonlinear decision boundaries. It works by mapping the input data into a higher-
dimensional space (where a linear decision boundary can be learned) using a kernel
function. A kernel function K(x, y) measures the similarity between two data samples x
and y, and returns a scalar value indicating how similar they are. By replacing the dot
product xT y in the optimisation with K(x, y), the model can learn a nonlinear decision
boundary by implicitly mapping the input data into a higher dimensional space.

A number of different kernel functions can be used in SVMs, including:

• The Polynomial kernel:
K(x, y) = (xT y + c)d (2.30)

where c is a hyperparameter that controls the shift of the kernel, and d is a
hyperparameter that controls the degree of the polynomial.
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Figure 2.10: Logistic regression is used for binary classification, and finds the line
which best separates the two classes.

• The Radial basis function (RBF) kernel:

K(x, y) = exp
(
−|x− y|2

2σ2

)
(2.31)

where σ is a hyperparameter that controls the width of the kernel.

• The Sigmoid kernel:
K(x, y) = tanh

(
κxT y + c

)
(2.32)

where κ is a hyperparameter that controls the slope of the sigmoid function, and
c is a hyperparameter that controls the shift of the kernel.

2.11.2 Logistic Regression

Logistic regression is a special case of linear regression which is used for binary classi-
fication problems (used in this thesis in Chapter 6). It is based on the idea of using a
logistic function (also referred to as sigmoid function) to model the probability of an
example belonging to a particular class. The logistic function is defined as:

f(x) =
1

1 + e−x
(2.33)

The logistic regression model is defined by a set of weights w and a bias b, which
are learned from the training data. The model makes predictions using the following
equation:

ŷ = f(wTx+ b) (2.34)

where x is the input example, w is the weight vector, b is the bias, and ŷ is the predicted
probability of the example belonging to the positive class.
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To train the logistic regression model, a loss function is used to measure the discrepancy
between the predicted probabilities and the true labels. A common choice of loss function
is the binary cross entropy loss. There are several hyperparameters that can be adjusted
in logistic regression, including the regularisation parameter C and the solver used to
optimize the model. The regularisation parameter controls the trade-off between the
model complexity and the amount of regularisation, and can help to prevent overfitting.
The solver specifies the algorithm used to optimize the model, such as gradient descent
or Newton’s method.

2.12 Clustering Algorithms Used

2.12.1 DBSCAN

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm
[34] is an unsupervised method for identifying clusters in data. DBSCAN works on the
assumption that clusters form dense regions in space, and that these are separated by
areas of lower density. DBSCAN is a popular choice for clustering geographic data and
unlike other clustering methods (e.g K-means) does not require the number of clusters
to be specified in advance. The only required parameters are ε (the minimum distance
required for a point to be in a cluster) and N (the minimum number of points required
to form a cluster). Points that are not part of any cluster can be classified as noise.

More specifically, The DBSCAN algorithm goes as follows:

1. Initialize an empty list of clusters and a set of unvisited points.

2. Select a point at random from the unvisited points.

3. Find all points within a distance ε of the selected point.

• If there are at least N points within this distance, the point is considered a
core point and a cluster is formed around it

• If there are fewer than N points within this distance, the point is considered
a noise point and is ignored.

4. Add the point and all points within a distance ε of it to the cluster.

5. Mark the point and all points within a distance ε of it as visited.

6. Repeat steps 2-5 until all points have been processed.
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Figure 2.11: Diagram of the DBSCAN clustering parameters (adapted from
wikipedia). ε is the minimum distance required for a point to be in a cluster, and

N is the minimum number of points required to form a cluster.

An example cluster using N = 4 is presented in Figure 2.11. DBSCAN uses the Eu-
clidean distance to locate points in space, and so ε can be estimated based on real world
distances. It also extends trivially to higher dimensions, in the 3D case forming ε radius
spheres instead of 2D circles.

2.13 Performance Metrics

2.13.1 Core Definitions

To quantitatively evaluate detection network results, we must compare network predic-
tions to ground truth labels. There are several important definitions which form the
basis of object detection performance metrics.

2.13.1.1 Intersection Over Union

The Intersection over union (IoU) is used to calculate the overlap between a ground truth
bounding box and a predicted bounding box. To calculate the IoU the area of overlap
between the two bounding boxes is divided by the area of union. An IoU threshold can
be set to determine if a detection is valid or not (Figure 2.12).

Figure 2.12: Intersection over union for two bounding boxes.
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2.13.1.2 Confusion Matrix

Correct and incorrect detections can be assessed using a confusion matrix, where there
are four possible outcomes (Figure 2.13). A true positive (TP) is a correct detection,
which intersects with the ground truth bounding box with IoU greater than or equal to
the threshold value. A false positive (FP) is an incorrect detection, which has IOU value
less than the threshold value. A false negative (FN) is a ground truth bounding box
which is not detected by the network. Finally, a true negative (TN) refers to a ground
truth object which is correctly not detected. Since in object detection the number of
TN’s is not well quantified, it is generally excluded from detection performance metrics.

Figure 2.13: Confusion matrix for correct and incorrect detections.

2.13.2 Precision and Recall

Detection results are generally reported in terms of recall and precision. Precision is
defined as the number of true positives (TP ) over the number of true positives plus the
number of false positives (FP ). In other words, the fraction of detections which are
correct:

precision =
TP

TP + FP
(2.35)

Recall is defined as the number of true positives over the number of true positives plus
the number of false negatives. In other words, the fraction of labelled objects which
were detected:

recall =
TP

TP + FN
(2.36)
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2.13.3 Precision-recall Curve

CNNs generally output a confidence for each prediction (i.e a probability in the range
0 to 1), which means the trade off between precision and recall can vary depending
on where the prediction threshold is set. To assess the results of a CNN we therefore
calculate precision and recall for a range of threshold values and plot the results as a
precision-recall curve [37].

2.13.4 Average Precision (AP)

The average precision (AP) is the area under the precision-recall curve, and is used to
evaluate and compare network results. The AP is the precision averaged across all recall
values, and varies between 0 and 1 (with 1 being perfect detection).

2.13.4.1 IoU@.50 and @.75

Since the initial IoU threshold for correct detections alters the final precision-recall
results, AP can also be calculated for different IoU thresholds. For example AP@0.5 and
AP@0.75 are the average precision scores for IoU thresholds of 50% and 75% respectively.
Lower IoU thresholds measure the overall detection accuracy, while higher IoU thresholds
measure the network’s localisation accuracy. In the COCO object detection challenge
AP@[0.5:0.95] is calculated, this score is determined by finding the AP score for ten IoU
thresholds (ranging from 0.5 to 0.95 with a step of 5) and taking the average.

2.13.4.2 Mean Average Precision (mAP)

In cases where we are predicting multiple classes, or performing a k-fold cross validation,
we often report the mean average precision (mAP ). This is simply the mean of the AP
scores for each individual class.

2.13.5 F1-score

We can also calculate overall accuracy (or rather a figure of merit) at each threshold
point by using the F1-score, which is the harmonic mean of recall and precision [37]:

F1-score = 2 · precision · recall
precision+ recall

(2.37)
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Depending on the application, we may have different priorities when it comes to valuing
recall or precision. For example, in wildlife detection recall may have higher value than
precision, as false positives could be quickly filtered out manually whereas finding missed
animals would require scanning the entire dataset. The F-beta score (Fβ) uses a positive
real factor β, such that recall is considered β times more important than precision. This
is given by:

Fβ-score = (1 + β2) · precision · recall
(β2 · precision) + recall

(2.38)

2.13.6 Faster R-CNN metrics

Faster R-CNN training involves joint training of four different loss functions. The final
values of these can be reported to give an indication of the success of the different aspects
of the detection. The smaller the loss value, the more adept the network is at performing
that aspect of detection:

RPN classification loss: Measures the accuracy of the anchor detections generated
by the region proposal network stage.

RPN regression loss: Measures how accurately the anchors match the object proposal
bounding boxes.

Fast R-CNN classification loss: Measures the classification accuracy of the final
bounding box predictions, over all object classes.

Fast R-CNN regression Loss: Measures how accurately the proposed bounding box
detections match the ground truth bounding boxes.

2.14 Conclusion

In this Chapter we have reviewed the current literature on wildlife detection in VHR
satellite and UAV imagery. We have summarised existing work on manual and auto-
mated analysis, and discussed current limitations. Following this we introduced the
background of neural networks, outlined the foundations of CNN architectures, and
introduced key terms we will use throughout the thesis. We gave an overview of the
CNN architectures which are used in the research (U-Net and Faster R-CNN) as well as
the ML and clustering methods employed. Finally, we define the performance metrics
which will be used to assess model performance. This provides a framework for our
own wildlife detection applications discussed in Chapters 3-6. In the following Chapter
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we will present the first of these research outputs (RO1); detecting albatrosses in VHR
satellite imagery using a U-Net CNN architecture.



Chapter 3

Automated Detection of
Albatrosses in VHR Satellite
Imagery

3.1 Overview

In this Chapter we apply a CNN architecture to automatically count wandering alba-
trosses in VHR satellite imagery. We use a dataset of manually labelled imagery pro-
vided by the British Antarctic Survey to train and develop our methods. This consists of
four 31-cm resolution WorldView-3 (WV-3) satellite images of different island colonies,
containing approximately 2000 albatrosses in total. We employ a U-Net architecture,
designed for image segmentation, to simultaneously classify and localise potential alba-
trosses. We aid training with the use of the focal loss criterion, to deal with extreme class
imbalance in the dataset. We perform a four-fold cross validation across the islands, and
find that the results vary between images. In our misclassification analysis we find that
while some false detections are clearly incorrect, the majority appear visually identical
to annotated albatrosses. We conclude that an analysis of ground truth uncertainty is
needed to place the network results within the context of human performance.

3.2 Introduction

Albatrosses are the world’s most threatened seabird family [117], with all six species
of the genus Diomedea (great albatrosses) classed under some level of threat under
the IUCN Red List (IUCN 2021, iucnredlist.org). This is largely attributed to the

51
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impact of incidental mortality from long-line fisheries, disease, and the introduction of
pests to their nesting habitats [117]. However, since they nest on remote and often
uninhabited island chains, regularly monitoring species is challenging. Accessing islands
to conduct ground surveys can be dangerous, expensive and logistically difficult [43].
This means that there is no annual census data in many locations [149], limiting our
ability to understand fine-scale population dynamics, monitor population health, and
inform conservation actions [69, 115].

Recently, VHR satellites have offered an alternative: to survey albatrosses directly from
space. Wandering albatrosses (Diomedea Exulans) were first shown to be identifiable
in 31-cm resolution WV-3 imagery in 2017 by Fretwell et al. [42]. With an adult wan-
dering albatross having a body length between 107-135cm [2], the albatrosses appear as
approximately 4 to 5 pixels of white against their green nesting habitats. Fretwell et
al. [42] validated their methods by comparing satellite counts to ground based obser-
vations (we refer the reader to this publication for further details on detectability and
interpretation of satellite counts in relation to traditional sampling methods). This was
the first example of using the WV-3 sensor to count birds directly, adding to previous
works which surveyed birds using indirect VHR satellite observations (e.g extrapolating
numbers of emperor [40], Adélie [83] and chinstrap [108] penguins based on colony area,
and using Google Earth satellite images to detect the nests of masked boobies [72]). The
method was later used to survey certain colonies of wandering albatrosses on the French
overseas territories of Kerguelen and the Crozet Islands [149].

While the satellite survey method shows promise, manually analysing the resultant im-
agery is time consuming and subjective [42]. This limits our ability to scale surveys
across larger areas and to more frequent time intervals. These factors strongly motivate
the development of automated image processing algorithms, to improve speed, reduce
cost, and standardise the counting procedure [150]. As discussed in Chapter 2, CNNs
have shown state-of-the-art performance at the task of object detection, but as yet have
not been applied to the task of detecting albatrosses in VHR satellite imagery.

Despite their proven success, there are challenges when using supervised CNNs to detect
albatrosses. Similar to more classical machine learning approaches, the small size of the
target wildlife can present challenges for CNNs. While detection networks (such as
YOLO and Faster-RCNN) generally locate targets using a bounding box, they have
shown to have limited performance for very small objects [116]. However, segmentation
approaches, which classify each pixel in the image rather than assigning a bounding
box, could provide a suitable architecture for the task. While class imbalance can be
a significant barrier in this approach, as the number of background pixels will vastly
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outweigh pixels in the target class, new loss functions such as the focal loss [92] have
recently overcome these issues.

The second challenge with satellite detection of wildlife is that annotated datasets are
small and costly to obtain. At present purchasing VHR satellite imagery over large
extents can be expensive, and the added time and effort required for manual analysis has
restricted many studies to one or two images [69, 148]. However, deep learning algorithms
perform best when supplied with a large and diverse set of training images, and without
sufficient variation we cannot be confident in the algorithm’s ability to generalize to new
unseen data. While some researchers have found inventive ways of generating training
data from other sources, such as down-sampled aerial imagery [13], many studies consider
only a single large satellite image which is divided up into smaller patches to train
and test a classifier. Results from these methods are almost inevitably biased due to
non-independence of the train and test patches, and we may see a significant drop in
performance if an image with different characteristics is presented.

In this Chapter, we will test the application of U-Net in combination with the focal loss
to the task of detecting wandering albatrosses in WV-3 imagery. We will use a dataset of
four images of different colonies, taken at different locations, times of year, and times of
day. We will perform a cross fold validation across the islands, to compare how robustly
the model generalises to new imagery and locations. Our main questions are i) whether
the U-Net and focal loss can successfully detect albatrosses in WV-3 imagery and ii)
whether the model transfers well across the different islands in the dataset.

3.3 Methodology

3.3.1 Data Collection

All satellite imagery was collected by the highest resolution commercially available sensor
– Maxar’s WorldView-3 satellite. This samples at a spatial resolution of 31cm per pixel
in the panchromatic band, and 124cm per pixel in the multispectral bands (in this study
we use four multispectral bands; red, green, blue and near-infrared). We collated images
of four separate colonies of wandering albatrosses, originally collected as part of previous
studies (see [42] and [149]). The colonies are located on Bird Island (BI) and Annenkov
Island (AN) in South Georgia, Apotres (AP) in the Crozet islands, and Grande Coulee
(GC) on the west coast of Kerguelen Island (Figure 3.1). Images were collected over
different months and times of day, and present variation in terms of cloud cover, lighting
and vegetation. They also differ in size, with the smallest (BI) covering 16km2 and the
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largest (AN) covering 105km2. A summary of the satellite image acquisition details is
presented in Table 3.1.

Figure 3.1: Locations of the islands imaged in the dataset.

Table 3.1: Location and acquisition information for the four images used in the study.
Acquired from Maxar’s WorldView-3 satellite

Image Latitude Longitude Date/ Time Area (km2)
Bird Island (BI) -54.005408 -38.048144 10 Jan. 2016 / 12:06 16.1

Annenkov Island (AN) -54.490852 -37.068006 03 Feb. 2017 / 12:44 104.9
Apotres Island (AP) -45.9666628 50.4499982 03 Mar. 2017 / 07:05 69.2
Grande Coulee (GC) -49.672945 68.755487 16 Mar. 2017 / 05:39 102.2

3.3.2 Data Pre-processing

3.3.2.1 Expert Annotation

For visual analysis the panchromatic and multispectral bands were pan-sharpened using
the ArcMap 10.1 implementation of the Gram-Schmidt algorithm (ArcMap 10.1, Envi-
ronmental Systems Resource Institute, Redlands, CA, USA), resulting in a high resolu-
tion RGB image. Since wandering albatrosses are largely white, with a body length of
107-135cm [2], individuals appear as several pixels of white against their green nesting
habitat (Figure 3.2). All four images were annotated by the same expert observer by
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Figure 3.2: Examples of albatrosses in the four islands, as viewed in ArcMap 10.5.
(a) Bird Island. (b) Annenkov Island. (c) Apotres Island. (d) Grande Coulee. Imagery
from DigitalGlobe Products. WorldView3 © 2020 DigitalGlobe, Inc., a Maxar company.

drawing a 200×200m grid and scanning through each cell one at a time. When poten-
tial albatrosses were identified they were labelled with a single point marker, placed as
central to the object as possible [42]. In total the observer identified 1966 albatrosses:
985 on BI, 161 on AN, 171 on AP, and 649 on GC. The locations of the placed markers
are shown as red points in Figure 3.3.

3.3.2.2 Tiling and Mask Generation

To prepare our dataset for training we tiled all four satellite images into 500× 500 pixel
square patches. The four multispectral bands (red, green, blue and near-infrared) were
upsampled using bilinear interpolation to match the dimensions of the panchromatic
image. ArcMap shapefiles generated by our expert observer were converted into binary



Chapter 3 Automated Detection of Albatrosses in VHR Satellite Imagery 56

Figure 3.3: Examples of the four WV-3 satellite images with albatross annotations
(red dots). Shown for BI: Bird island, AP: Apotres, AN: Annenkov and GC: Grande

Coulee.
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segmentation maps (with background = 0, albatross = 1), which were also tiled into 500×
500 patches exactly overlaying the input images. Since the exact placement of observer
labels can differ slightly, we use template matching [37] to shift observer annotations to
the centre of each albatross. We segmented albatrosses using a 3×3 pixel square, which
was based on visual inspection of the imagery and matched the size of the majority of
objects identified in the ground truth.

3.3.2.3 Train, Validation and Test Splits

To keep the dataset proportional we chose an equal number of patches from each island
(500 patches from the land and 250 patches from the sea). These numbers approxi-
mately represent the maximum number of patches present in the smallest image (BI).
For our leave-one-island-out cross validation we trained the network on patches from
three islands: resulting in 2250 patches in total, with 20% of these reserved for vali-
dation. Input patches of size 412 × 412, as well as their corresponding target patches
of size 340× 340, were cropped randomly from the larger tiles to augment the dataset.
Tiles were also randomly flipped and reflected to add further variation. At test stage
the fourth unseen image was tiled, and the trained network was run over all patches to
generate a final prediction.

3.3.3 Network Architecture

For our CNN we use a U-Net architecture (described in detail in Chapter 2 Section 2.10.1),
which was originally designed for biomedical image segmentation [124], but has recently
shown state-of-the-art performance in a range of tasks [35]. U-Net works by classifying
every pixel in the image into a class (in our case albatross and non-albatross). The
output probability map can be directly overlaid with the input image, allowing us to
classify and localise albatrosses in a single stage.

We present the exact architecture in Figure 3.4. The contracting path (left) follows the
typical architecture of a CNN, applying repeated 3 × 3 convolutions, ReLU activation,
and 2 × 2 max pooling to extract features from input images. The expanding path
(right) upsamples feature maps and concatenates them with higher resolution informa-
tion cropped and copied from the corresponding layer in the contracting path. This
allows for precise localization of classified pixels.

Given our small dataset we use transfer learning, a method where convolution filters
learned from a larger dataset are copied across to the new network. In principle these
represent a generic set of filters, which can be used to extract low-level features common
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to all images (e.g edges, patterns and gradients). We initialise our network using filters
from a vgg-16 network [133], pre-trained on the ImageNet database [29]. To minimise
information loss at the edge of images, we choose not to use padding in convolution
operations (aside from those transferred from vgg-16), thus the output predictions are
of reduced size (340× 340 compared to 412× 412 inputs). Experiments also showed no
performance gain when using learnt upsampling (through upconvolution), so we favour
bilinear upsampling for simplicity.

Figure 3.4: Diagram of the U-Net architecture and training procedure.

3.3.4 Hyperparameters

Since in our dataset the number of albatross pixels is vastly outweighed by background
instances, there is a danger the network would favour ignoring all albatrosses to achieve
a high accuracy on the more prevalent class. To account for this we calculate the error
between output and ground truth using the Focal Loss, proposed by [92] as a method
for addressing extreme class imbalance. It works by adding a modulating factor to
the standard cross entropy criterion, which places more focus on hard, misclassified
examples. If y ∈ {±1} denotes the ground truth class and p ∈ [0, 1] is the model’s
estimated probability for the class with label y = 1, then the focal loss can be expressed
as:

FL(pt) = −α(1− pt)
γlog(pt) , where pt =

p, if y = 1.

1− p, otherwise.
(3.1)

Increasing the focusing parameter γ ≥ 0 reduces the loss contribution from easy to
classify background examples. We ran experiments to assess the best choice for γ, and
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found that γ = 0.5 and α = 0.5 gave the best results. We trained the model using the
Adam optimiser [76], a learning rate of 0.0001 (degrading to 0.00001 after 5 epochs),
and a mini-batch size of 4. For each fold, we trained three U-Net models using identical
settings, to assess random variation in the output results.

3.3.5 Hardware and Frameworks

Model training is performed on a PC workstation equipped with Intel i7-8700 CPU
@ 3.20GHz, 32GB of RAM and NVIDIA Titan Xp graphics card with 12GB of GPU
memory. PyTorch 1.12.0, Torchvision 0.13.0 and CUDA 11.6 were used in the training
and inference pipeline.

3.3.6 Evaluation Metrics

To evaluate the output of our U-Net method we use the Average Precision (AP) score
for per-island results, as well as the mean Average Precision (mAP) to average results
across the four test folds. We also report recall, precision and the F1-score for specific
confidence thresholds. All metrics are described in detail in Chapter 2 Section 2.13.

3.4 Results

3.4.1 Cross validation results

The results of our four-fold cross validation are presented as precision-recall curves in
Figure 3.5, with lines showing the mean results and shaded areas representing the stan-
dard deviation of the three U-Net runs. When averaged across the four islands we
achieve a mAP score of 0.67, however we can see that the results vary between the four
test folds. The AP image scores the highest average precision of 0.78, while AN scores
the lowest at 0.51. In terms of F1 accuracy scores, both BI and AP reach 80% accuracy
at peak, while GC and AN only reach approximately 70% and 60% respectively. We
can see that the precision score for BI and AP remains very high even for recall values
up to 80%, suggesting a low number of false positives for the islands. However, recall
values fall at higher thresholds, with none of the four islands passing the 90% recall
mark, indicating approximately 10% of annotated albatrosses were missed by the U-Net
detection method.

For final results, confidence threshold values must be selected to determine the precision-
recall trade off. In Figure 3.6 we plot the F1-score accuracy of each model against
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Figure 3.5: Average precision-recall curves for each of the four islands. Lines show
the mean and shaded area shows standard deviation from three U-Nets.

varying confidence thresholds to investigate this relationship. We find that the optimal
thresholds vary between the four images, with BI and GC achieving peak F1 with a
threshold of 0.35, while AP and AN benefit from higher thresholds of 0.75 and 0.8
respectively. However, we note that AP and AN both contain much smaller numbers of
albatrosses (171 and 161) compared to BI and GC (985 and 649), which makes the results
more sensitive to errors. The F1 scores for the more populated islands of BI and GC both
remain quite level until confidence threshold 0.5, and selecting the average best threshold
of 0.56 would provide reasonable results for all islands. In practical applications this
optimal threshold could also be selected manually by an expert observer, based on
visual assessment of a small portion of the imagery. Finally, the addition of more data
into the training set would inevitably improve and standardise the results, making this
selection less variable across different images.

3.4.2 Whole Image Results

In this section we perform a visual assessment of errors (false positives and false neg-
atives) from the U-Net method, to investigate areas for improvement. In Figure 3.7
we plot the U-Net predictions over the whole island images, to check for any regions
where obvious misclassifications occur. For these examples we use the optimal F1-score
thresholds for each island to generate our true positive, false positive and false negative
results. We can see that the U-Net method is successful in filtering out large areas of
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Figure 3.6: Average F1 scores for each of the four islands, across a range of confidence
threshold values.

background, with very few false positives far from labelled colony areas. Exceptions to
this include a small number of detections in the ocean in AP, a cluster of false positives
between colonies in GC, and points very close to the coastline in all images.

3.5 Discussion

3.5.1 Misclassification Analysis

We inspect these misclassifications in more detail in Figure 3.8. For GC, we see the
cluster of false positives between colonies fall along a steep ridgeline, with the U-Net
method picking out white rocks as albatrosses (Figure 3.8a). While the rocks appear
similar in size and colour to labelled albatrosses, this terrain is not suitable nesting
habitat [42]. For AP, spectral distortion over the ocean also leads to false positive
results (Fig 3.8b). It is likely that the combination of bright white waves crests and
strong spectral extremes lead to these false detections, as this type of noise is not present
in the three training images. AP is the only image where we have false detections over
the ocean, with the U-Net method effectively avoiding ocean detections in the three
other images. AP is also the only image where there is some hazy cloud cover over the
colony, which as can be seen in Figure 3.8c leads to a number of false negative errors. As
the network has not been presented with examples of cloud cover in the three training
images, it is again not surprising the network is unable to generalise in this case.
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Figure 3.7: Examples results for the four islands, showing locations of true positive
(TP: green cross), false positive (FP: red dot) and false negative (FN: yellow triangle)
U-Net predictions. Shown for BI: Bird island, AP: Apotres, AN: Annenkov and GC:

Grande Coulee.
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Figure 3.8: Examples of clear U-Net errors. a)i) False positive detections along a
ridge line in the GC image, which is not a suitable albatross habitat; a)ii) shows that
these are rocks appear similar to albatrosses. b) False positives in the ocean in the AP
image, caused by spectral distortion and wave crests. c) False negatives under hazy

cloud cover in the AP image.

3.5.2 Future Work

In order to improve detection results under cloud we could pre-process images using
image dehazing [98]. This could improve clarity and aid both the manual and automated
analysis of the imagery. An alternative would be to simulate cloud cover, and add it
to a proportion of images at the training stage (for example by adding perlin noise
[89]). If the simulated cover is sufficiently accurate, this can be a means of artificially
generating the examples needed to train the network. This can be an effective technique
when genuine examples are difficult to obtain. This being said we recommend obtaining
cloud free imagery wherever possible, as the certainty of our detections in thicker areas
of cloud are limited both in manual and automated approaches. Similar augmentation
approaches could be employed to deal with the false positives over the ocean in AP.
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Making the network more robust to this form of noise is important, as it could present
itself differently in future imagery. Another alternative is to mask out areas of ocean
before generating network predictions, which could be performed fairly quickly manually,
or automatically using the normalised difference water index [91]. Masking out areas of
ocean would have the dual benefit of decreasing the potential number of false positives,
and reducing the processing time. This is also true for the false positive detections in
GC, which fall outside the main colony area. Again, input images could be manually pre-
processed by experts to restrict the search to known colony locations. Even without these
additions obvious false positives could be easily filtered out manually, with comparatively
little effort. It is also important to note that results would almost certainly be improved
by the addition of extra imagery, and the application of updated state-of-the-art CNN
architectures which are rapidly evolving.

3.5.3 Ground Truth Uncertainty

While the errors discussed in Section 3.4.2 can be clearly identified as incorrect due to
their locations, we find that in many cases the distinction is not so obvious. In Figure 3.9
we present regions of the images where there are a mixture of true positive, false positive
and false negative results. We can see that in fact the majority of these appear visually
identical, making it impossible to definitively rule out errors. Are false positives actually
albatrosses which were missed in the manual analysis? And can we confidently say
that false negatives are not incorrectly labelled albatrosses? These questions ultimately
lead back to the subjectivity in the manual analysis, and the level of uncertainty when
annotating such small and indistinct objects.

This ground truth uncertainty poses important questions for our analysis. To understand
the success of our U-Net method, it is important that we understand how effectively and
consistently human observers perform at the albatross detection task. This will allow
us to benchmark the results of our automated method within the context of human
performance. For this specific dataset there are additional questions relating to the four
images, with our visual analysis of the results indicating that there is more uncertainty
in some islands than others. For example for AP we have relatively few errors and
albatrosses contrast quite clearly against the bright green nesting habitat (Figure 3.9c),
while for lower scoring islands (such as AN) vegetation is darker and albatrosses are
less distinct (Figure 3.9b). This suggests that there could be more variability between
observer results for some islands than others. This ground truth uncertainty also feeds
into the U-Net method, since these subjective annotations are used to train the network.
Gaining a better understanding of ground truth confidence will allow us to assess which
labels to use in the supervised training scheme. While in this Chapter we have shown
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Figure 3.9: Example results where the distinction between true positives (green),
false positives (red) and false negatives (yellow) is unclear. This raises questions of
ground truth uncertainty, and subjectivity in the manual analysis. Presented for (a)

Bird Island, (b) Annenkov, (c) Apotres and (d) Grande Coulee.

that i) the U-Net and focal loss can successfully detect albatrosses and ii) the methods
transfer across to the different images with the exception of some errors due to noise
and different habitat types, we conclude that an assessment of ground truth uncertainty
is essential to benchmark the true success of the methods.
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3.6 Conclusion

In this Chapter we trained a U-Net architecture to automatically segment and detect al-
batrosses in 31-cm resolution WV-3 imagery. We performed a four-fold cross validation
across islands, and found varying average precision scores. In our analysis of misclas-
sifications we found a small number of locations where clear errors occurred, including
false positives over the ocean in AP and in unsuitable habitat in GC, as well as false
negatives under fine cloud haze in AP. We suggest future improvements including the
addition of habitat variables (e.g digital elevation models) and image pre-processing (e.g
dehazing) could enhance the results. However, in the majority of cases misclassifications
were visually difficult to discern from true albatross labels. We conclude that using one
observer’s subjective labels is insufficient, and that more investigation of inter-observer
variation and ground truth uncertainty is needed to place the results in context. In
Chapter 4 we will conduct this inter-observer analysis, by collecting additional annota-
tions from five observers. We will use these labels to assess the observer agreement for
each of the four images, and to provide a final assessment of the U-Net method success.



Chapter 4

Inter-observer Variation in
Satellite Counts of Albatrosses

4.1 Overview

In the Chapter 3 we presented a method for detecting albatrosses in VHR satellite
imagery. We used a dataset of WorldView-3 satellite images annotated by an expert
observer to train a U-Net detection method. The results of the method were promising,
however were challenging to accurately assess due to a high level of uncertainty sur-
rounding the ground truth labels. We concluded that the certainty of the annotations
would need to be quantified before the results could be placed in context. In this Chap-
ter we perform this uncertainty analysis, by collecting further labels from a number of
observers. In addition, we investigate how the choice of ground truth label can impact
the U-Net results, both at the training and assessment stage. In Section 4.3 we outline
the experimental protocol for collecting our observer counts and describe the network
experiments. We present the results of the inter-observer experiments in Section 4.4.1,
finding that there was a high degree of uncertainty in annotations, and that the level of
uncertainty differed between the four satellite images. In Section 4.4.2 we present the
network experiment results, determining that the U-Net detection method comes close
to human performance for all four colonies. We conclude by discussing limitation and
ideas for future improvements in Section 4.5.

4.2 Introduction

As discussed in Chapter 3, challenges with manual detection of wildlife in VHR satellite
imagery leads to ground truth uncertainty, which makes errors difficult to interpret.

67
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Different annotators may generate different sets of labels, and this inter-observer vari-
ation has a knock on effect when developing automated detection methods. Since the
majority of approaches (including the U-Net method presented in Chapter 3) are based
on supervised training schemes, the quality of ground truth labels has a direct impact on
the training and assessment of the model. Since the accuracy of a classifier is limited by
the accuracy of the provided labels, it is important to establish the level of uncertainty
to fully evaluate performance. In the absence of a gold-standard ground truth (i.e the
direct linking of satellite data to concurrent ground based surveys), 100% accuracy can-
not be the goal, and would in fact indicate over-fitting to a single observer’s subjective
annotations [60]. Only when we understand how accurately and consistently humans
perform at the task, can we benchmark the performance of an automated approach.

For the specific task of detecting albatrosses in WV-3 imagery, Fretwell et al. [42] noted
the effect of inter-observer variation in satellite counts of Bird Island. This particular
colony is subject to extensive ground-based surveys, and was used as a test case for
validating the manual satellite counts against ground observations. However, this anal-
ysis was conducted on a single satellite image of a single site, and the level of variation
may differ between islands or images. In this chapter we will investigate the level of
inter-observer variation for all colonies, and study the effect of label choice on the U-Net
CNN described in Chapter 3.

4.3 Methodology

4.3.1 Data Collection

All four satellite images had been annotated previously by the same experienced ob-
server (we term these our reference observer annotations). To extend this and assess
inter-observer variation, we conducted additional labelling experiments with five novice
volunteers (observers 1 - 5). Observers were all colour normal, with an age range of
23-29, and a mixture of two males and three females. They had no previous experi-
ence analysing satellite imagery or of the ecology of albatrosses. In our experiments,
we restricted changes in viewing conditions by using the same monitor and controlling
ambient lighting. Volunteers were given the same information prior to annotating, and
identical image patches were used to present examples of albatrosses and potentially
confounding objects such as rocks.

We follow the annotation procedure outlined in the original study [42], whereby images
were labelled by eye using separate polygons approximately matching the size of the
monitor (in our case 160 × 260m for viewing at a 1:600 scale). For visual analysis



Chapter 4 Inter-observer Variation in Satellite Counts of Albatrosses 69

the panchromatic and multispectral bands were pansharpened using the Gram-Schmidt
algorithm, resulting in a high resolution RGB image. This processing and the manual
analysis was conducted using ArcMap 10.5 (Environmental Systems Resource Institute,
Redlands, CA, USA). The time taken to analyse the images varied depending on their
size, with each observer taking approximately 30 minutes to complete AP, 1 hour each
for BI and AN, and approximately 2 hours for GC.

4.3.2 Network Architecture and Training

Our U-Net architecture remains the same as described in Chapter 3 Section 3.3.3. For
our analysis we investigate how closely total observer counts match, the extent of overlap
between annotations, and whether there is a best measure for combining them. This
includes taking the union of all points (i.e include any point labelled by an observer),
the intersection (i.e only include points labelled by all six observers), and each level in
between (i.e only include points labelled by at least two observers, at least three, etc).

We run experiments to assess the impact of ground truth selection on our supervised
training scheme. This can happen at both the assessment stage (i.e when comparing
our network predictions against our chosen ground truth) and at the training stage (i.e
when choosing which labels to use when training our network). For our experiments at
the assessment stage we use the majority vote labels (i.e only points annotated by at
least three observers are included in the ground truth) to train the network. The choice
for this is detailed later in Table 4.3. We then assess the results of the network against
all individual observers’ labels (the reference observer and observers 1 - 5), as well as
the intersection, union, and majority vote.

When assessing the impact of label choice at the training stage, we invert this and
train on the different options for ground truth and assess using the majority vote. We
also experiment with training using a ‘mixed’ ground truth, where we select a random
observer’s labels for every patch, at every epoch. We hypothesise that this random
shuffling will automatically encode observer uncertainty, as points which are only la-
belled by one observer will appear on average one sixth of the time, whereas those with
complete observer agreement will appear 100% of the time. For all analysis we train
each individual model three times, and present the results as the average of all three, to
mitigate for variation. All other network parameters are kept the same as described in
Chapter 3 Section 3.3.4, only the ground truth labels are altered.
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4.3.3 Hardware and Frameworks

Model training is performed on a PC workstation equipped with Intel i7-8700 CPU
@ 3.20GHz, 32GB of RAM and NVIDIA Titan Xp graphics card with 12GB of GPU
memory. PyTorch 1.12.0, Torchvision 0.13.0 and CUDA 11.6 were used in the training
and inference pipeline.

4.3.4 Evaluation Metrics

For our analysis of inter-observer variation we compare agreement using the F1-score
(defined in Chapter 2 Section 2.13). In our procedure we take one observer’s labels as
a ”predicted” result, and assess the accuracy of their predictions against every other
observer’s ”ground truth” labels. Using this approach enables us to calculate inter-
observer agreement in terms of F1-score accuracy (the same measure used to assess
our U-Net performance). We calculate the F1-score accuracy between every pair of
observers, and take the mean of all scores to get a measure of average accuracy (Av.
F1) for each of the four images. To assess U-Net performance we use Average Precision
(AvP) and mean Average Precision (mAP).

4.4 Results

4.4.1 Inter-observer Results

4.4.1.1 Total Counts

We initially assess the total number of albatrosses tagged by each observer in each of
the four islands (BI, AN, AP and GC). We find that the variation in total counts was
significant in some cases, and also differed between the four images (Table 4.1). For
example BI counts range from 612 to 994, with a standard deviation of 17% from the
mean. In contrast AP shows significantly higher agreement in total counts, with a
deviation of only 3% from the mean. This variation is likely to be due to the differences
in both the appearance of albatrosses, and the number of other spectrally similar objects
in the background. For example as we saw in Chapter 3 (refer in particular to Figure 3.2)
albatrosses are much clearer in AP, with the white points strongly contrasting against the
bright green, relatively uniform vegetation. In some cases albatrosses are also encircled
by a brown ring, indicating a cleared area of vegetation surrounding the nest. However
in other islands the contrast is weaker, with vegetation appearing more yellow and
albatrosses not as bright. This said, it is important to note that total counts do not
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capture the agreement between labels (two observers could label 100 completely separate
points), and to assess observer agreement we must compare how many annotations
coincide with the same object.

Table 4.1: Total counts with the mean, standard deviation, and percent deviation for
each island.

ref_ob ob1 ob2 ob3 ob4 ob5 mean ± std % dev
Bird Island 985 994 763 792 846 612 832 ± 145 17
Annenkov 161 155 116 177 174 120 151 ± 26 18
Apotres 171 165 168 177 174 162 170 ± 6 3

Grande Coulee 649 690 656 840 741 638 702 ± 77 11

Figure 4.1 shows the fraction of identified objects which were labelled by at least one
observer (obviously 100%), at least two observers, at least three, etc. We see that for AP,
over 84% of points in the image are labelled by at least three observers (i.e the majority),
suggesting strong agreement for a large fraction of the ground truth. GC shows a
similarly high agreement with 73% of annotations having majority agreement. However
for AN there is a particularly steep drop, with only 42% of annotations agreed on by the
majority, and over half the ground truth made up of low confidence annotations. This
level of ground truth uncertainty is likely to have a noticeable impact on our supervised
CNN.

Figure 4.1: The distribution of points labelled by multiple observers, compared across
the four islands. We see AN has the worst agreement (with only 20% of objects labelled
by all six observers), and that AP has the highest (almost 70% of objects labelled by

all six observers).
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4.4.1.2 Inter-observer Agreement

In Table 4.2 we show the inter-observer agreement for each of the four islands. Once again
the overall agreement between observers is highest for AP, in the best case achieving 0.95
between observer 1 and observer 2, and an overall average accuracy of 0.92 (Table 4.2c).
In contrast for AN (Table 4.2b) we only reach an average accuracy of 0.67 between
observers, with BI (Table 4.2a) and GC (Table 4.2d) falling in between (0.74 and 0.85
respectively). We also see little consistency in agreement between observer pairs, for
example observer 2 and 5 achieve the highest F1-score for AN, but the lowest for BI.

Table 4.2: Accuracy (as F1-score) between observer labels for (a) Bird Island, (b)
Annenkov Island, (c) Apotres Island, (d) Grande Coulee. We highlight the worst
(red) and best (green) scores, and calculate the mean F1-score per observer, as well as
the average F1 score (Av. F1) for each island. Averages exclude the 100% F1-scores

achieved when comparing an observer against themselves.

(a) BI: Av. F1 = 0.74 (b) AN: Av. F1 = 0.67
ref_ob ob1 ob2 ob3 ob4 ob5 ref_ob ob1 ob2 ob3 ob4 ob5

ref_ob 1.00 0.81 0.72 0.81 0.78 0.68 ref_ob 1.00 0.63 0.62 0.57 0.57 0.60
ob1 0.81 1.00 0.70 0.79 0.75 0.69 ob1 0.63 1.00 0.72 0.73 0.70 0.73
ob2 0.72 0.70 1.00 0.74 0.70 0.66 ob2 0.62 0.72 1.00 0.68 0.70 0.78
ob3 0.81 0.79 0.74 1.00 0.78 0.73 ob3 0.57 0.73 0.68 1.00 0.66 0.69
ob4 0.78 0.75 0.70 0.78 1.00 0.70 ob4 0.57 0.70 0.70 0.66 1.00 0.67
ob5 0.68 0.69 0.66 0.73 0.70 1.00 ob5 0.60 0.73 0.78 0.69 0.67 1.00

mean 0.76 0.75 0.70 0.77 0.74 0.69 mean 0.60 0.70 0.70 0.67 0.66 0.70

(c) AP: Av. F1 = 0.92 (d) GC: Av. F1 = 0.85
ref_ob ob1 ob2 ob3 ob4 ob5 ref_ob ob1 ob2 ob3 ob4 ob5

ref_ob 1.00 0.93 0.91 0.93 0.89 0.92 ref_ob 1.00 0.83 0.82 0.77 0.79 0.78
ob1 0.93 1.00 0.95 0.94 0.93 0.95 ob1 0.83 1.00 0.91 0.87 0.89 0.88
ob2 0.91 0.95 1.00 0.91 0.91 0.93 ob2 0.82 0.91 1.00 0.85 0.87 0.86
ob3 0.93 0.94 0.91 1.00 0.92 0.93 ob3 0.77 0.87 0.85 1.00 0.88 0.82
ob4 0.89 0.93 0.91 0.92 1.00 0.91 ob4 0.79 0.89 0.87 0.88 1.00 0.86
ob5 0.92 0.95 0.93 0.93 0.91 1.00 ob5 0.78 0.88 0.86 0.82 0.86 1.00

mean 0.92 0.94 0.92 0.93 0.91 0.93 mean 0.80 0.87 0.86 0.84 0.86 0.84

We perform a similar analysis to see which combination of observer labels (i.e the union,
agreement votes and intersection) offer the best accuracy (Table 4.3). We find that
using a ground truth consisting of points labelled by at least three observers (i.e the
majority vote) achieves the best mean F1-score when averaged across observers, with
the intersection scoring the worst for all four islands. We therefore choose to use the
majority vote as the baseline when training and assessing the results of our CNN.



Chapter 4 Inter-observer Variation in Satellite Counts of Albatrosses 73

Table 4.3: Accuracy (as F1-score) when assessing each observer’s predictions (rows)
against all options for combined ground truths (ranging from taking the union of all
observer annotations, through to the intersection. Results for (a) Bird Island, (b)

Annenkov Island, (c) Apotres Island and (d) Grande Coulee.

(a) BI (b) AN
union ≥ 2 ≥ 3 ≥ 4 ≥ 5 inter union ≥ 2 ≥ 3 ≥ 4 ≥ 5 inter

ref_ob 0.83 0.91 0.88 0.83 0.75 0.55 ref_ob 0.67 0.66 0.70 0.69 0.70 0.56
ob1 0.83 0.87 0.87 0.82 0.75 0.54 ob1 0.66 0.85 0.84 0.81 0.78 0.57
ob2 0.71 0.77 0.79 0.80 0.78 0.65 ob2 0.54 0.78 0.85 0.88 0.84 0.70
ob3 0.72 0.85 0.89 0.89 0.83 0.64 ob3 0.72 0.82 0.79 0.74 0.70 0.52
ob4 0.75 0.84 0.85 0.84 0.79 0.61 ob4 0.71 0.81 0.77 0.74 0.71 0.53
ob5 0.61 0.73 0.78 0.80 0.82 0.75 ob5 0.55 0.76 0.84 0.88 0.85 0.68

mean 0.74 0.83 0.84 0.83 0.78 0.62 mean 0.64 0.78 0.80 0.79 0.76 0.59

(c) AP (d) GC
union ≥ 2 ≥ 3 ≥ 4 ≥ 5 inter union ≥ 2 ≥ 3 ≥ 4 ≥ 5 inter

ref_ob 0.91 0.94 0.94 0.93 0.94 0.90 ref_ob 0.79 0.83 0.85 0.85 0.85 0.83
ob1 0.89 0.96 0.98 0.98 0.97 0.92 ob1 0.82 0.92 0.95 0.95 0.92 0.80
ob2 0.90 0.95 0.94 0.96 0.95 0.91 ob2 0.80 0.91 0.94 0.95 0.92 0.82
ob3 0.92 0.96 0.96 0.95 0.94 0.88 ob3 0.92 0.92 0.90 0.88 0.83 0.71
ob4 0.92 0.95 0.94 0.93 0.92 0.89 ob4 0.85 0.93 0.93 0.91 0.88 0.76
ob5 0.88 0.93 0.95 0.96 0.97 0.93 ob5 0.78 0.87 0.90 0.90 0.91 0.84

mean 0.91 0.95 0.95 0.95 0.95 0.90 mean 0.83 0.90 0.91 0.91 0.89 0.79

4.4.2 Network Results

We present network results for each of our four islands, where each model was trained
using our leave-one-island-out cross validation (i.e trained solely on image tiles from
the three other islands). To assess the results of the network in the context of inter-
observer variation, we take the inter-observer F1-scores from Table 4.2, and plot them
as precision-recall points (Figure 4.2, gray points). We also add iso-F1 curves showing
the average inter-observer F1-score for reference (Figure 4.2, gray lines), these represent
the target for our network precision-recall curves to match human performance.

4.4.2.1 Altering Assessment Labels

The results of assessing the output of the network against different ground truth labels
are presented in Figure 4.2. We stress that all four models were trained with using
the same ground truth (the majority vote), and all other model parameters were kept
the same. We can see from the spread of precision-recall curves that our assessment of
model performance can vary significantly depending on our chosen ground truth. At
one extreme using the union gives us an overall lower recall, as many high uncertainty
points (e.g labelled by only one observer) are not predicted to be albatrosses by the
network. On the other hand assessing against the intersection we get a high recall but
lower precision, as more of the network predictions are assessed as false positives. We
also see a range of results assessing against each individual observer, showing the pitfalls
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of using a single set of labels, as many studies currently do. For example, for AN using
the reference observer labels would lead us to assess the model performing below human
accuracy, whereas simply choosing another observer (e.g observer 5) we would fall within
the range (Figure 4.2b). The spread is more evident in the islands with lower observer
agreement (BI and AN), opposed to those with higher observer agreement (AP and GC).
On average, across all four islands, the best mAP score comes from assessing against
the majority vote (mAP = 0.74) and the worst using the intersection (mAP = 0.59; for
summary see Appendix Table A.1). We also note that while models for BI and AN fall
within the range of human performance (exceeding the average observer F1-scores of
0.74 and 0.67 respectively), for GC and AP we do not hit this target.

Figure 4.2: Precision-recall curves assessed against different sets of ground truth for
(a) Bird Island, (b) Annenkov Island, (c) Apotres Island and (d) Grande Coulee. We
train the models using leave-one-island-out cross validation, and the majority vote labels
as training ground truth. Gray points show the individual inter-observer precision-
recall points, and grey lines show the corresponding F1-scores. Coloured lines show
the precision-recall curves when assessing model output against different ground truth

labels. The average precision (AvP) is the area under the precision-recall curve.
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4.4.2.2 Altering Training Labels

We see that the network is relatively robust to using different ground truth labels at the
training stage (Figure 4.3). For most of the islands there is little deviation in results
when trained on either an individual observer, union, majority or intersection ground
truth. The most notable exception to this is AN (Figure 4.3b), where we see a lot
of variation, and a dramatic drop in recall-precision when training on the intersection
labels (AvP = 0.460). This is likely to be because the network has only been trained
using high confidence points from the three other islands, which means uncertain points
(which Figure 4.1 showed account for over half the dataset in AN) are not predicted by
the network at test stage. We also see that using different training labels can improve
model performance when compared to training on the majority vote. For example in GC
(Figure 4.3d) training with observer three’s labels gives a better result (AvP = 0.735)
compared to the majority (AvP = 0.717), and brings us nearer the level of inter-observer
accuracy. The mAP scores (Appendix Table A.2) show that on average the reference
observer’s labels give us the best results across all images (mAP = 0.76). This is closely
followed by the ’mixed’ ground truth (mAP = 0.75).

4.5 Discussion

4.5.1 Manual Counts

Analysis of manual counts show that the level of inter-observer variation is significant,
and depends on the properties of the individual images. For example in our dataset we
have very high inter-observer agreement for AP (0.92), and much lower inter-observer
agreement for AN (0.67). Visual inspection of the images suggests the main reasons are
the contrast between albatrosses and background vegetation, and the number of visually
similar background objects such as rocks. For demonstration we present examples of
albatrosses which have been labelled by all six, exactly three, and only one observer
in Figure 4.4. While points labelled by all six observers tend to have a clear contrast
and relatively uniform background, for low confidence points there is often a very weak
signature, or uneven background. For example many points labelled by one observer are
in areas of rocky brown terrain. Even though the white dots themselves have a similar
appearance to albatrosses, the context of the background may have lead other observers
to discount them. For novice observers it may be beneficial to give further training,
such as information on likely nesting habitat, or perform pre-processing steps to reduce
the search area to only the most likely habitat regions. It may be possible to gain
this information from metrics such as the normalised difference vegetation index [91],
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Figure 4.3: Precision-recall curves for models trained on different ground truth labels,
for (a) Bird Island, (b) Annenkov Island, (c) Apotres Island and (d) Grande Coulee.
We train each model using leave-one-island-out cross validation, and a different set of
ground truth labels (coloured lines). All results are assessed against the majority vote
labels. Gray points show the individual inter-observer precision-recall points, and grey
lines show the corresponding F1-scores. The average precision (AvP) is the area under

the precision-recall curve.

and from digital elevation models which could be used to exclude regions with steep
slopes. These steps could also be incorporated into the automated approach, which
would perhaps improve detection results and also reduce processing times.

Interestingly in AP observers have labelled points below cloud cover (Figure 4.4), in
many cases with majority agreement. Viewed as isolated examples we would perhaps
not expect to see such high confidence in these annotations, as the clouds mask out most
colour information. This could be a consequence of the labelling procedure, where the
image is scanned as a grid, allowing observers to build a wider picture of the distribution
of albatrosses. If points below cloud cover are near a cluster of more clearly discernible
albatrosses, then observers may be more likely to annotate them. To remove this bias
patches could be presented in a randomised way, to make interpretation of the images
more standardised. It may also be interesting to investigate whether the cloud cover
examples could be enhanced by using dehazing algorithms [59, 74], to remove cloud
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cover as a pre-processing step. Incorporating the near-infrared (NIR) band could offer
a means of achieving this, as research has shown NIR information can be combined
with RGB channels to reduce the appearance of haze in images [38]. Enhancing RGB
images by incorporating additional multispectral information could improve detection
during manual analysis, and potentially reduce the amount of inter-observer variation
and uncertainty. Human observers could then benefit from the information provided in
non-RGB bands (for WV-3 this includes NIR-1, NIR-2, red-edge, yellow and coastal),
which can be trivially input to the CNN as imagery does not need to be visually inter-
pretable. These approaches could benefit surveys of other species, for example it has
been shown that the coastal band can aid detection of whales, since it penetrates further
through the water column [43]. Methods for enhancing and adjusting images could also
help to reduce variation in manual counts across different images.

4.5.2 Network Performance

Our CNN results highlight the importance of assessing performance within the context
of observer accuracy. This is particularly evident in AN, where our best performing
networks achieve peak F1-scores of approximately 0.7. While in general we would aim
to improve this score towards 100%, when we assess observer accuracy we find that these
network results are already in the range of human performance (average F1-score of 0.67).
This is also true for our results on BI, with an average observer accuracy of 0.74 and
peak network performance of over 0.8. However, even choosing the best scoring networks
for AP and GC, we fall below our average observer F1-scores. The primary cause for
this are the misclassifications discussed previously in Chapter 3 (Section 3.4.2). For AP
this was largely due to the network failing to detect albatrosses through cloud cover,
leading to a number of false negatives which lowers the overall recall scores. There were
also a small number of false positive detections in the ocean due to spectral distortion
and noise. For GC a large cluster of false positive detections of rocks, which were clearly
in unsuitable habitat far from the main colony areas, lowered the overall precision score.
As we discussed in Chapter 3, these misclassifications could be quickly filtered manually
or addressed through further additions to the network, and would bring the results for
these islands within the range of human performance.

We find the choice of ground truth labels has an impact on both the training and
assessment of our CNN. Choosing a single observer’s labels is not recommended, as we
can see significant variation in results, particularly at the assessment stage. In terms
of combining counts from multiple observers, using the majority vote can improve our
assessment, as many low certainty points are removed from the ground truth. However
this means discounting a large number of labels which, although low confidence, still
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Figure 4.4: Examples of albatrosses labelled by all six, exactly three, and only one
observer, for each of the four islands. Imagery from Maxar’s WorldView-3 satellite ©

2021 DigitalGlobe, Inc., a Maxar company.
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contain useful information. At the training stage we found that using a mixture of labels
can be a good alternative which avoids this problem. In the future other alternatives for
combining ground truth could be investigated, including having a probabilistic ground
truth (e.g 1 if labelled by all observers, 0.5 if labelled by half etc). Observers could also be
asked to assign a confidence class to each of their detections, for example if they think it
is certain, likely, or possible. This method has been employed in surveys of larger species
such as whales [28, 39]. Giving observers the option to rank their detections in this way,
rather than forcing a definite yes/no choice, may be equally informative as checking the
agreement between multiple observers. This would potentially reduce the number of
observers required to gauge uncertainty, although it may significantly increase the time
taken to manually label images. Finally there is potential to incorporate labels from
different observers into the architecture of the CNN itself, as shown in recent research
by Rodrigues et al. [123]. In this method a crowd-layer is added to the end of the
network, allowing each observer to be modelled separately, only combining predictions
in the final stages by the use of learned weights. They showed that modelling individual
observers in this way can improve classification performance, and is a useful approach
for any crowd-source annotated datasets.

4.5.3 Recommendations and Applications

While we have used wandering albatrosses as our study case, it is very likely that topics
discussed in this Chapter apply to VHR satellite surveys of other species, as well as UAV
and aerial surveys where image resolution is coarse and observer confidence is limited.
For example, observer uncertainty has been noted in aerial studies where there is a low
contrast between wildlife and background [20, 113], and when flight height and camera
resolution results in comparatively low ground sample resolution in relation to the size of
the target animal [17]. In particular we show that 1) manual counts of wildlife in satellite
imagery can vary significantly between observers, and importantly observer confidence
may differ between images, 2) new images may present challenges to CNNs trained on
small VHR satellite datasets, and 3) the choice of ground truth can impact supervised
schemes at both the assessment and training stage. We also highlight the importance of
assessing results of automated approaches within the context of inter-observer variation,
for each unique image, to accurately gauge performance.

In general the results of our automated CNN approach are promising; in our leave-one-
island-out cross validation we match human performance for two out of four islands, and
for the other two misclassifications are mostly obvious and therefore easy to filter. We
hope that these methods can facilitate future satellite surveys of wandering albatrosses,
with increased frequency and reduced cost. In particular, since the global breeding
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population of wandering albatrosses nest in relatively few locations (approximately 18%
on South Georgia, 44% on Prince Edward Islands and 38% on Crozet and Kerguelen
Islands [2]), the potential to conduct a global population survey using VHR satellite is
feasible. The methods could also be adapted for other species, such as the northern
royal albatross, which were shown to be visible in WV-3 imagery in previous studies
[42]. If repeated at regular intervals this would vastly improve our knowledge of spatial
and temporal population dynamics, for a species which is of high conservation concern.

4.6 Conclusion

In this Chapter we investigated inter-observer variation in satellite counts of wandering
albatrosses. We found that the agreement between observers differed for the four islands
in our dataset, resulting in different accuracy scores for each image. When placing the
results of our U-Net detection method (presented in Chapter 3) in the context of human
performance, we find that we match human accuracy for two our of the four images, with
the other two having obvious misclassifications which would be easy to filter manually.
We also conduct experiments into how the choice of ground truth labels can impact
the supervised training scheme, both at the assessment and training stage. This proves
to be an important factor, which should be considered in future applications. In the
next Chapter we will present work on another seabird remote sensing dataset, this time
focusing on UAV monitoring of canopy nesting species. We will again examine the
application of CNNs to the task, and consider platform and species specific challenges
when developing an automated approach.



Chapter 5

Single-view Detection of Abbott’s
Boobies in UAV Imagery

5.1 Overview

In Chapters 3 and 4, we investigated how CNNs can be used to count nesting seabirds in
VHR satellite imagery. We used a U-Net architecture to detect wandering albatrosses,
which are amenable to survey by satellite due to their size, colour, and open nesting
habitat. In our second application we will focus on automated detection of a different
seabird - the Abbott’s booby - a canopy nesting species endemic to Christmas Island.
Due to their smaller size and the complexity of their nesting habitat, alternative sur-
vey methods are required. Recently researchers at LaTrobe University have tested the
application of UAVs to complete this task, in particular using the process of Structure
from Motion (SfM) to generate 3D models of the survey area from multiple overlapping
2D images. In this Chapter we will outline properties of the Abbott’s booby dataset,
including how the images were collected, processed and annotated. We use the anno-
tated data to train a Faster R-CNN architecture to the detection task, and investigate
the performance on the 2D raw UAV images. To conclude, we outline the potential of a
multi-view approach, where projection information gained in the SfM process could be
used to map 2D raw image detections on to the 3D model. This would allow multiple
views of the same nest site to be mapped together, potentially increasing detection rates
for this canopy nesting species.

81
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5.2 Introduction

The Abbott’s booby (Papasula abotti), although once wide ranging across the Pacific and
Indian Ocean, is now classed as Endangered under the IUCN Redlist [1]. It is endemic
to Christmas Island, an Australian overseas territory off the south coast of Indonesia,
where it nests in the emergent trees of the tropical forest canopy. However, due to the
challenging forest terrain and their top-of-canopy position (up to 40m above the forest
floor), identifying nests from the ground can be difficult. The last complete survey, still
seen as the most extensive and accurate, was conducted on foot using binoculars in
1991 [159]. However since then the composition of vegetation on the canopy floor has
become extremely dense [109], which would make the equivalent survey prohibitively
time consuming or impossible in many areas in the present day. Alternative survey
methods are being examined to perform the population census, which is in urgent need
of updating.

In recent years, UAVs have been used to survey a number of different species, including
birds. In comparison to satellite imagery (used to monitor albatrosses in Chapters 3 and
4), UAVs offer higher resolution and more flexibility, allowing researchers to tailor surveys
to their own requirements. While UAVs have been used to evaluate nesting status of
canopy breeding birds on a nest-by-nest basis [151], to date all larger scale UAV surveys
of birds have targeted ground-nesting species (e.g penguins [118], albatrosses [103] and
waterbirds [32]) which occupy open and flat habitat. For tree-nesting birds, such as the
Abbott’s booby, the complex surface of the canopy makes detection more challenging.
UAV images tend to be collected using nadir photography, where the camera axis is
angled directly below the UAV [23]. Even for species that only occupy the top level of
the canopy, leaves and branches may partially or completely obscure them when viewed
from this perspective alone. While Lipka et al. (unpublished) have shown that Abbott’s
booby nests can be seen in both UAV and helicopter surveys, the extent to which nests
are missed or misidentified is not certain.

For many elusive forest species thermal UAV imagery has been used to overcome this
detection challenge [102, 135]. Using this method wildlife can be detected by their ther-
mal contrast with the surrounding vegetation, allowing researchers to effectively ”see
through” the canopy. However, there can be practical limitations when timing ther-
mal surveys, particularly in tropical regions. Ideally flights will be conducted when the
thermal contrast is strongest, for example very early in the morning or during the night
[55]. This can add further constraints on survey teams, especially on small islands where
there are a limited number of personnel. In addition, thermal imagery can only be used
for surveys which target the direct detection of the animal. For other species, includ-
ing orangutans [106] and Abbott’s boobies, nests (or other signatures such as guano
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accumulation on leaves) can be more valuable indicators of breeding sites. Without a
thermal signature these important breeding site indicators would be difficult to discern.

Recently researchers at LaTrobe University have examined an alternative method for
surveying Abbott’s boobies in UAV imagery, using Structure from Motion (SfM) pho-
togrammetry [127]. In SfM multiple overlapping 2D raw images (here defined as the
unprocessed JPEG images captured by the UAV), taken from different locations, are
processed together to build a 3D model. The method can be used to render a 3D model
of any object or landscape, and is widely used for mapping forest canopies [31, 139].
Often the raw images are stitched together to form a single orthomosaic of the surveyed
area, using a mosaicing approach guided by the SfM model. This orthomosaic is com-
prised mostly of the nadir viewpoints, and in complex surfaces such as forest canopy can
appear significantly distorted. This can make it difficult to identify small objects, such
as wildlife. However, using the underlying raw images collected by the UAV, multiple
perspectives can be obtained of the same point in space. This provides more informa-
tion, and can increase the likelihood of detection when the object is obscured from a
certain angles, but visible in others.

Lipka et al. (unpublished) have conducted a manual analysis of the dataset presented
in this chapter, and found that detection rates of Abbott’s boobies significantly improve
when using the raw images compared to the orthomosaic alone. This is for two main
reasons: 1) we gain multiple perspectives of nest sites and reduce the issue of occlusion
by branches and leaves and 2) the raw images do not go through any processing, so
have higher quality and resolution than the final orthomosaic. While the benefits of
using the raw images are clear, manually analysing all raw images adds a significant
amount of processing time, in this dataset equivalent to covering roughly ten times the
area compared to direct analysis of the orthomosaic. To make the approach feasible for
island-wide surveys, automated methods are needed to process the data more efficiently.

As discussed in Chapter 2, CNNs have shown state-of-the-art performance in a number
of tasks, including object detection. In recent years there have been a number of papers
applying CNNs to detect wildlife in UAV imagery, including seabirds [75]. Specifically,
Faster R-CNN was recently shown to outperform four other popular detection networks
(including the two-stage R-FCN, and single-stage SSD, Retinanet and YOLO) at the
task of detecting birds in UAV imagery [70]. CNN results generally benefit from variety
in images, which can be artificially increased through different augmentations. In this
sense network training will also benefit from using the raw UAV images, which naturally
show a variety of perspectives, compared to training on the stitched orthomosaics.

In this chapter we will assess how well Faster R-CNN performs at the task of detecting
Abbott’s booby nest sites in raw UAV images. Objects of interest include adult birds,
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empty and occupied nests, and guano staining on leaves. We will use an annotated
dataset of 32 forest plots, collected across Christmas Island by Lipka et al. (unpub-
lished data), to train and test the methods. In this instance, we ignore the multi-view
information gained from overlapping images, and treat each raw image as independent.
We assess how well the network performs in comparison to an expert observer. To
conclude, we use labels provided in the manual analysis to assess the potential of a
multi-view approach - where detections from multiple overlapping raw images could be
combined to improve detection rates.

5.3 Methodology

5.3.1 Data Collection

In the study, 32 plots each of approximately 4 ha were selected across Christmas Island
(105°40’E, 10°25’S). These are each given a unique reference number (N01, N02, etc.).
Survey transects were designed and pre-programmed in DroneDeploy, mapping for DJI
(V. 4.1.0, DroneDeploy, San Fransico, California, USA). The UAV used to conduct the
surveys was a DJI Mavic Pro (MP1, SZ DJI Technology Co., Ltd., Shenzhen, China)
with a FC220 camera (sensor ½.3” 1/2.3” (CMOS), FOV 78.8° 26 mm, f/2.2 aperture)
in combination with an Apple IPad mini 4 (MK9P2X/A, Apple Pty Ltd, Sydney, New
South Wales, Australia) or a Samsung Galaxy S7 (SM-G930F, Samsung Electronics
Co., Ltd, Suwon, South Korea). Transects were flown with an average flight height of
between 30-50m above the canopy, and a flight speed ranging between 5 and 15m/s
(for an example transect see Figure 5.1a). Designs were programmed such that raw
images (which here we define as the original JPEG images before SfM processing, each
of dimension 4000×3000 pixels) were collected with front overlaps between 80 and 90%,
and side overlaps between 80 and 86%. On average there were 204±30 raw images
collected per plot, with a range of 136 to 262 (Figure 5.3a).

5.3.2 Data Pre-processing

5.3.2.1 Orthomosaic Generation

After UAV data was collected in the field, raw images were processed into orthomosaics
using SfM implemented in Agisoft (V 1.5.2, Agisoft LLC, St. Petersburg, Russia). We
present a brief outline of this procedure in Figure 5.1. First all images were aligned using
high accuracy, generic preselection, a 40,000 key point limit, a 10,000 tie point limit, and
adaptive camera model fitting. Following this high quality dense point clouds were built
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Figure 5.1: Example of SfM processing for plot N02. a) Raw images are captured
by the UAV, SfM is then used to construct a dense point cloud, and a final 3D model.
b) Examples of raw images collected by the UAV (4000 × 3000 pixels). c) The final

orthomosaic.

using aggressive depth filtering mode. These dense point clouds were used to generate
digital elevation models (DEMs). In the final stage the DEMs and point clouds were
used to generate orthorectified orthomosaic images (Figure 5.1c). Final orthomosaics
had an average ground sample distance of 2.18±0.30 cm/px.

5.3.2.2 Expert Annotation

All orthomosaics were visually scanned by an expert observer using the same software
used for SfM processing (Agisoft V 1.5.2, Agisoft LLC, St. Petersburg, Russia). A grid
was overlaid on the orthomosaic, and each cell was systematically scanned for seven
main Abbott’s booby AB objects (for a summary with descriptions see Table 5.1, for
image examples see Figure 5.2a). Five of these classes can be used to determine potential
breeding sites, and include guano staining on leaves (guano), empty and occupied nests
(empty nest, nest), and adult birds (adult, 2ndA). In the final manual assessment, these
classes were used in combination to determine potential breeding sites. For instance,
an empty nest next to a large accumulation of guano can be a better indicator of a
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permanent nest site (though unoccupied at time of survey), than a single booby perched
in a tree with no other classes present.

In addition, there were a number of cases where flying birds were captured at the time
of survey. These were also manually identified in the imagery, however are treated as a
special case in this analysis for two main reasons: (1) they are not useful for breeding
site identification so would ideally be excluded in an automated detection system, and
(2) since they are not stationary the same bird often appears at different locations in
multiple raw images captured by the UAV. Flying birds were labelled as two separate
classes: flying Abbott’s boobies (FAB) and other birds, which included goshawks, frigate
birds, red footed boobies, imperial pigeons and golden bosuns. All seven classes were
tagged with a single marker placed as central to the object as possible (or in the case of
guano which had a less uniform size, at the point of highest intensity).

Table 5.1: Summary of classes identified in manual analysis.

Class name Description
Guano White faecal staining on leaves
Adult Adult Abbott’s booby perched in a tree, but not on nest
2ndA Second adult Abbott’s booby in close proximity to another
Nest Adult Abbott’s booby on a nest
Empty nest Nest with no Abbott’s booby present
FAB A flying Abbott’s booby
Other bird A different species of bird (e.g goshawk, frigate bird)

Following the analysis of the orthomosaics, each of the underlying raw images was
scanned using the same annotation procedure. In Agisoft, any placed marker will au-
tomatically appear in the corresponding location in all other raw image viewpoints as
well as the orthomosaic. This feature was used to guide the annotation process. Objects
identified in multiple raw images were assigned a unique reference label, so that they
could be assessed as the same point in the orthomosaic. In many cases objects were
only visible in the raw images, as image stitching and occlusion by branches made them
impossible to discern in the orthomosaic (Figure 5.2b).

5.3.2.3 Class Balancing

The distribution of classes identified in the raw images using the manual analysis proce-
dure is presented in Figure 5.3b. Guano is the most prevalent (7639 examples) followed
by nests (4150 examples), while other classes such as other birds and adults are less
common (51 and 127 examples respectively). In Figure 5.3c we summarise the under-
lying number of unique objects (i.e ignoring multiple views), which are present in the
plots. On average we have ten views of each object in the raw images, hence there are
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Figure 5.2: a) Examples patches showing different classes; b) comparison of an adult
Abbott’s booby (AB) viewed in the orthomosaic, where there is just a single view and
distortion due to image stitching, and the same bird viewed in nine corresponding raw

images.

approximately ten times fewer real world objects (e.g 722 examples of guano, 484 nests
and only 11 adult birds identified in the plots).

To prepare our data for Faster R-CNN we first simplify our list of seven classes by com-
bining similar classes. We choose to form a two class detection problem of (i) guano and
(ii) all other Features of Interest (FOI). This helps to deal with two challenges. Firstly,
there are many classes which appear very visually similar, which can make it challenging
for the network to differentiate. For instance 2ndA and adult are visually identical when
viewed in isolation (without knowledge of their proximity), and a nest is defined as a
combination of two other classes (empty nest + adult). Preliminary tests showed that
using these classes separately caused the network to label each detection with multiple
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Figure 5.3: Summary of the ground truth annotations. a) The number of raw images
collected per plot, including the fraction which contain any Abbott’s booby objects.
b) The number of examples of each class in the raw images. c) The number of unique

objects identified, ignoring multiple-views.

class labels. Secondly combining classes helped to deal with class imbalance, where
nests formed the majority of annotations compared to other rare classes such as adult
and other bird (Figure 5.3b). After combining classes we were left with 5361 FOI labels
and 7639 guano labels in the raw images.

Secondly, we reformatted the ground truth annotations from centre point labels to
bounding boxes, which are required for Faster R-CNN. We took advantage of the fact
that due to the aerial perspective and approximately fixed flight height most objects
appear as a roughly fixed size across all images. We choose 50×50 pixel bounding boxes
for FOI, which was determined by visual inspection of the imagery. For guano a fixed
size bounding-box was harder to determine, since guano can cover different extents. In
the initial stage, we define larger bounding boxes of 150× 150 pixels for this class, again
based on visual inspection of the images.
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Table 5.2: Description of the different augmentations applied to the training data.

Augmentation Description
None No augmentation applied
Flips Flip input either horizontally, vertically or both
Bbox jitter Edges of bounding boxes are randomly shifted by ±3 pixels
Blur Blur the input using a random-sized kernel
Brightness contrast Randomly change the brightness and contrast of the input

Shift-scale-rotate 0.1 Randomly apply affine transforms: translate, scale and rotate
the input (scale limit=0.1)

Shift-scale-rotate 0.2 Randomly apply affine transforms: translate, scale and rotate
the input (scale limit=0.2)

Combination All above augmentation methods used in combination

5.3.2.4 Train, Validation and Test Splits

To assess the robustness of the methods we train Faster R-CNN using a four-fold cross
validation. In this dataset, it is likely that there is a high degree of correlation between
raw images collected in each of the individual plots. For example, by design there is a
large degree of overlap between raw images in the flight transects, they are collected at
the same time of day in the same weather conditions, and they capture an area of similar
habitat. To avoid bias in the train and test splits, we therefore partition the data by
plot. The 32 plots are divided into four groups of eight. In each fold 20 plots are used
for training, four for validation, and the remaining eight used as the test data. When
assigning data folds we try to ensure that the classes are as balanced as possible. To
determine this we generated 10,000 random splits of the data and chose the one which
minimised the variation between the number of FOI and guano. The final folds and
number of classes are presented in Appendix B.1.

5.3.2.5 Augmentation

We artificially increase the size of our training dataset by using different augmentation
methods (summarised in Table 5.2). We choose augmentation suited to aerial imagery -
namely flips and shifting, scaling and rotating images - since the orientation of images is
not important. We also test randomly adjusting the brightness and contrast, which can
emulate the changes in lighting conditions for different plots. Finally, we test adding
blur, which is introduced by the motion of the UAV, and random shifts to the bounding
box sizes. We test the effect of each of these individually, and compare to a baseline
of applying no augmentation. We implement these using the Albumentations python
library [18].
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5.3.3 Network Architecture

5.3.3.1 Faster R-CNN

For our detection network we use the PyTorch [112] implementation of Faster R-CNN
[122] with a ResNet-50-FPN [63] backbone, pre-trained on the COCO train2017 dataset
[93]. A detailed overview of the Faster R-CNN architecture is given in Chapter 2 Sec-
tion 2.10.2. Faster R-CNN was recently shown to outperform four other popular de-
tection networks (including the two-stage R-FCN, and single-stage SSD, Retinanet and
YOLO) at the task of detecting birds in UAV imagery [70]. In the pre-trained model the
network is designed to classify the 91 classes in the COCO dataset. We replace the net-
work head with our three class problem (FOI, guano and background). We train using
a fine-tuning process, whereby all pre-trained weights are updated using our annotated
raw image dataset.

5.3.4 Hyperparameters

To fine-tune our network we begin with the hyper-parameters recommended in the Py-
Torch documentation [112]. We use stochastic gradient descent with momentum of 0.9,
weight decay 0.0005 and an initial learning rate of 0.001. We use a learning rate sched-
uler with a step size of 5 and gamma set to 0.1 (so that the learning rate is divided by
10 every 5 epochs). We used a batch size of 2, and trained the network for 15 epochs,
saving the model at the point where mAP on the validation set was the highest. This
state model was used to make the final predictions on the test set.

5.3.5 Hardware and Frameworks

Model training is performed on a PC workstation equipped with Intel i7-8700 CPU
@ 3.20GHz, 32GB of RAM and NVIDIA Titan Xp graphics card with 12GB of GPU
memory. PyTorch 1.12.0, Torchvision 0.13.0, CUDA 11.6, and Albumentations 1.0.3
were used in the training and inference pipeline.

5.3.6 Evaluation Metrics

To evaluate our model we use the Average Precision (AP) score for for each class, as
well as the mean Average Precision (mAP) to average results across classes. We also
report recall, precision and the F1-score for specific confidence thresholds. All metrics
are described in detail in Chapter 2 Section 2.13.
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Table 5.3: Effect of different augmentation methods on the results, in terms of average
precision (AP) for each of the two classes (FOI and guano), and the mean average
precision (mAP) averaged over classes. Scores are presented as the mean and standard

deviation when averaged across the four test folds.

Augmentation FOI AP Guano AP mAP
None 0.488 ± 0.047 0.414 ± 0.048 0.451 ± 0.060
Flips 0.513 ± 0.048 0.434 ± 0.056 0.473 ± 0.065
Bbox jitter 0.480 ± 0.052 0.429 ± 0.038 0.454 ± 0.052
Blur 0.490 ± 0.054 0.421 ± 0.042 0.455 ± 0.059
Brightness contrast 0.498 ± 0.052 0.422 ± 0.049 0.460 ± 0.063
Shift-scale-rotate 0.1 0.514 ± 0.053 0.472 ± 0.045 0.493 ± 0.053
Shift-scale-rotate 0.2 0.504 ± 0.049 0.465 ± 0.048 0.485 ± 0.052
Combination 0.518 ± 0.046 0.472 ± 0.049 0.495 ± 0.053

5.4 Results

The results of our augmentation experiments are presented in Table 5.3. We find that
each proposed augmentation on its own improves the final mAP score, with shift-scale-
rotate (with a scaling limit of 0.1) giving the biggest improvement compared to the
baseline (improving the mAP from 0.451 to 0.493). We find that using a scaling limit of
0.2 for this was less successful, possibly because this over-exaggerated the variation in
flight height naturally present in the dataset. For our final selection we use a combination
of all augmentation methods (with scaling on shift-scale-rotate set to 0.1), which gives
us a final mAP score of 0.495 when averaged across the folds (0.518 for FOI’s and 0.472
for guano).

5.4.1 Faster R-CNN Results

The results of the best performing Faster R-CNN model are presented in Figure 5.4. For
the training and validation curves (Figure 5.4a) we see that the training loss continues to
decrease marginally before the final epoch, while the mAP on the validation data levels
after approximately 10 epochs of training. In Figure 5.4b we present the precision-recall
results for each of the four test data folds. For FOI we see that the average precision
(AP) scores range across the folds, from 0.44 (fold 4) to 0.57 (fold 1). At peak, we
achieve accuracy (in terms of F1-score) of 0.6 for FOI detections, and recall levels do
not exceed 70% for any of the folds. In general we have lower scores for guano, with AP
scores ranging from 0.41 (fold 3) to 0.52 (fold 1). Precision values for guano also tend
to decrease more steeply in comparison to FOI predictions, with peak F1-accuracy of
approximately 0.5.
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Figure 5.4: a) Training loss and validation mAP for the best scoring Faster R-CNN
network. b) Precision-recall curves for the best scoring Faster R-CNN network, assessed

on the test set for all four data folds.
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Figure 5.5: Example per-plot precision-recall curves and mean average precision
(mAP) results for a) plot N22 which scores the lowest mAP at test stage, possibly
due to challenging areas of white branches, and b) plot N11 which scores the highest

mAP at test stage, with a FOI AP score of 0.739 and very few false positives.

5.5 Discussion

Lower scores for guano are not unexpected, as the class is less well defined than birds and
nests. The boundary is unclear, it can vary in spread and intensity, and is more easily
confused with other objects such as leaves in bright sunlight or white branches of trees.
Guano is also used primarily as an auxiliary class for breeding site identification, adding
certainty when other FOI are detected in close proximity. We bear these factors in mind
when assessing guano detection results, and will primarily focus on correct identification
of FOI in our analysis.
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We also see that there is some variation in performance between the different data folds.
In Appendix B.1-B.4 we present the precision-recall curves for each of the eight plots
included in every data fold, with examples of the lowest and highest scoring individual
plots presented in Figure 5.5. In some plots the network performs worse, with plot N22
scoring the lowest mAP overall (mAP = 0.232, Figure 5.5a). This may be due to the
presence of large amounts of white branches, which are confused for FOI and guano in
some cases, as well as the bright sunlight causing areas to look white and washed out.
In contrast we achieve good results for other plots, such as N11 which has the highest
mAP score of 0.682 (and FOI AP = 0.739, Figure 5.5b). In this plot there are few bare
branches and the lighting appears more muted, meaning there are very few false positive
FOI and guano predictions.

Visual inspection of the network detections gives us some important insights into the
Faster R-CNN predictions. In Figure 5.6 we present some examples from four overlap-
ping raw images captured by the UAV, and highlight two main points.

Firstly, the network often predicts guano with a series of overlapping bounding boxes (e.g
Figure 5.6a). This is due to the fact that the boundary of guano is poorly defined. During
manual annotation single markers were placed at the point where guano intensity was
highest (i.e the whitest point), however the exact choice of this location is subjective and
does not give an indication of the extent, shape or spread of the guano. While we define
fixed bounding box sizes of 150 × 150 pixels, drawing more precise boundaries would
require completely re-annotating the raw images which would be prohibitively time
consuming in this instance. However, we can still leverage these overlapping detections,
by changing our assessment to accept any guano prediction which intersects with a
ground truth bounding box. In this way we can gain more information about the spread
and extent of guano than would be possible with a single bounding box.

The second point is that, due to the different viewpoints images are captured at, the
same object can appear more clearly in some images than others. This can lead to the
network missing objects, or predicting them with lower confidence scores. For example,
in Figure 5.6 the FOI in viewpoint (a) is quite unclear and detected with a low confidence
of 25%, however in the subsequent views (b)-(d) the same FOI is detected with confidence
scores exceeding 90%. This effect can lead to lower recall scores, and makes it more
challenging to determine the final threshold to use for network predictions.

5.5.1 False Negative Analysis

We explore the impact of uncertainty in multi-view detections in Figure 5.7, focusing
only on FOI opposed to guano. For this we threshold the Faster R-CNN predictions at
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Figure 5.6: Examples of raw image detections on four sequential images from the
UAV. Yellow boxes show ground truth annotations, red boxes show Faster R-CNN
predictions (with class and confidence score). The blue boxes show a zoomed portion
of the same nest site (FOI and guano) tracked between images (a)-(d). In image (a)
the view of the FOI is less clear - and detected with only 25% confidence - whereas
from the views in images (b)-(d) the FOI is detected with over 90% confidence. Guano
does not cover a clearly defined area, and so multiple overlapping boxes are predicted,

as seen in image insets (a) and (b).

0.1. We arrange multi-view FOI detections from the lowest scoring (according to Faster
R-CNN prediction confidence, including false negatives which were completely missed
by the network), to the highest. We can see that FOI which are predicted with lower
confidence or missed are often not clearly visible. Whereas those taken from a clearer
angle are predicted with high confidence (in many cases over 90%). In some cases all
views are missed by the network (Figure 5.7 100% FN), while in others only a proportion
are missed, or non at all.

The number of false negatives in multi-view detections could partly be attributed to the
manual analysis process. In this Agisoft facilitated annotation by displaying any marker
placed on a raw image at the same point in every overlapping raw. Where objects were
less clear, this information could have increased the observer confidence for particular
views, which may not have been assessed as a detection when seen in isolation. In
our assessment of the raw image performance, these missed objects reduce the overall
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Figure 5.7: Multi-view detection examples, ordered by Faster R-CNN confidence
score and including false negatives (FN). We show two examples each, divided into
those where i) all views were missed by the network (100% FN) ii) over 50% FN, iii)
under 50% FN, and iv) no views were missed. In many cases, low confidence or false
negative FOI are very unclear or mostly obscured by leaves, while network confidence

tends to increase for clearer views.

recall. However, the difficulty of the detection is not taken into consideration in this
assessment, and would require further investigation into ground truth uncertainty. Fur-
thermore, the inclusion of these challenging objects in the training datasets may impact
the performance of the network, as discussed in the albatross dataset in Chapter 4.

5.5.2 False Positive Analysis

In Figure 5.8 we focus on false positive detections made by the network. For this we have
no multi-view information, so instead present a selection of the highest scoring (above
90%) single examples. In many cases light coloured branches cause false detections,
these can sometimes appear through the foliage as patches of white roughly the same
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Figure 5.8: Examples of high scoring (> 90%) false positives. In many cases branches
cause false detections, possibly due to their similarity to empty nests. Small patches of
guano can be falsely predicted as FOI, as the bright white resembles adult birds. In a
small number of cases there may be FOI which were missed in the manual analysis, in
this example a similar object was detected in four sequential raw images (DJI_0102,

DJI_0103 etc).

size as adult birds. In other cases it appears that guano is falsely detected with high
confidence. Again this is due to the spectral similarity, and possibly also the fact that
many FOI in the training data contain or are surrounded by guano staining on the
leaves. Finally, a small number of false positives may in fact be birds which were missed
in the annotation process in all, or a subset, of the overlapping raw images. We also note
that these false detections may only appear in a single raw image, and may not have the
support of detections in additional views. Using a multi-view approach outlined in the
next section, it may be that many of these false positive detections would be discounted.

5.5.3 Potential of Multi-view Detection

We hypothesise that a multi-view approach - where the single-view Faster R-CNN de-
tections are merged - will allow us to use these detections of varying confidence to our
advantage. In this section we explore the potential of this approach by using the labels
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provided in the manual analysis. In the multi-view approach, false negatives in the
single-view can be compensated for by successful detections from other viewpoints. The
case where this would not be possible is when all viewpoints are false negatives in the
single-view Faster R-CNN detection stage.

In Figure 5.9a we explore in more detail the objects which are completely missed (i.e
all viewpoints are classed as false negatives in our Faster R-CNN assessment). We plot
the number of completely missed objects in terms of the total number of views and
the underlying FOI classes. We find that the majority of missed objects are nests where
there is only one view (accounting for 21 missed objects). This low number of viewpoints
can be due to two reasons i) the FOI may be located near the boundary of the surveyed
plot, where there are fewer overlapping UAV images, and ii) the FOI is impossible to
detect in all other viewpoints. We can see that the number of missed nests decreases as
the number of potential views increases.

We present image examples of the missed objects in Figure 5.9b. For the 21 nests with
only one view, we see that most are quite unclear and challenging to detect visually,
with the majority of the bird obscured by leaves. At the other end of the scale, where
nests are missed in multiple (12, 14 and 19) views, nests are in challenging background
of bare branches. This can potentially weaken the signature compared to detecting them
against green foliage, as in the majority of examples in the dataset. Missed empty nests
are also visually similar to branches, and have a small representation in the training
dataset (a total of 32 in all plots). Missed second adult birds (2ndA) are unclear or
also in challenging background, and in addition may be missed due to their proximity
to another bounding box for the first adult bird. In this sense detection of 2ndA objects
is not of as high importance. Finally in the case of missed other birds we see that black-
bodied frigate birds, quite spectrally different to white Abbott’s boobies, are missed in
all raw images. In addition one view of a goshawk is missed, however this is in the
shadow of the lower canopy. As noted in section 5.3.2.2, flying birds will not map to
a fixed point when adopting a multi-view method, and ideally would be excluded from
analysis as they do not indicate breeding sites. Hence in the next stage flying and other
birds will not contribute to the final false negative count.

In all, 76 of our 635 FOI ( 12%) are missed in all views at the Faster R-CNN stage.
However our assessment shows that these missed objects are largely challenging cases
which are difficult to distinguish visually, are only visible in a small number of views, or
are flying birds which we later wish to discount. All other objects, which were detected
in at least one view in the raw images, can potentially be detected in a multi-view
approach. In Figure 5.10 we assess the potential of this method. We consider that a FOI
is correctly recalled if it has at least one successful Faster R-CNN detection in any view.
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Figure 5.9: a) Heatmap with cells showing the number of completely missed objects
(i.e false negative in every available view). We compare the total number of views and
the detailed class labels. A large number of missed objects (21) are nests which are only
annotated in a single raw image b) Gallery of completely missed objects. Many of the
21 nests with only one-view are unclear, and those which are missed in multiple-views
(12, 14 and 19) are in challenging background with bare branches. Missed empty nests
are also visually similar to branches and have a small representation in the training
dataset. Second adult birds (2ndA) are unclear and may be missed due to proximity
to another bounding box for the first adult bird. Other birds which were not detected

are black-bodied frigate birds, and one-view of a goshawk which is in shadow.
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Figure 5.10: We assume a FOI is recalled when at least one view is correctly detected
by Faster R-CNN. We assess (a) the potential object recall using different confidence
thresholds, averaged across the four folds, and (b) potential false positives at the dif-

ferent confidence thresholds.

Since each detection has an associated confidence, the measure of a ’successful Faster
R-CNN detection’ will be dictated by our acceptance confidence threshold. We calculate
the number of objects which are recalled in this way, for a range of confidence threshold
values between 0.1 and 0.9. When averaged across the four folds, we see using a network
confidence threshold of 0.1, we could potentially recall over 80% of FOI’s on average.
This recall level remains relatively constant when increasing the confidence threshold,
remaining at around 80% until 0.4, and only falling to approximately 70% even with a
very high threshold of 0.8. In the second plot, we assess how the number of false positives
would be affected by this varying confidence threshold. In this case false positives are all
considered as independent single detections, and so we see a high number (on average
4000) at threshold 0.1, which decreases exponentially as the threshold increases (e.g to
under 1000 at 0.4). We suggest that in many cases these false positives will be one-off
detections in a single raw image, and hence a multi-view approach could filter them out
and improve the overall accuracy.

These results outline the possibility of a multi-view approach, which we will develop
and assess in the next chapter (Chapter 6). This assessment was completed using labels
from the manual analysis, while the final method will depend on how accurately the raw
image detections will map to the 3D real-world location, and the subsequent clustering
and classification of multi-view detections. However, in this Chapter we have seen that
Faster R-CNN can offer promising results on a challenging dataset, and there is scope
for the analysis to be improved when combining multiple viewpoints.
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5.6 Conclusion

In this Chapter we presented a dataset of UAV images of nesting Abbott’s boobies,
processed using SfM. We trained a Faster R-CNN detection network to locate FOI and
guano in the raw UAV images. We achieve mAP scores of 0.50±0.05, with average
precision of 0.52±0.05 for FOI and 0.47±0.05 for guano, when averaged across the four
test folds. In our results analysis we find that a proportion of missed detections are
attributed to FOI being obscured from clear view by branches and leaves. We propose
that a multi-view approach, where detections from multiple viewpoints are merged, will
improve results. In Section 5.5.3 we explored the potential of this using labels provided
in the manual analysis. We conclude that a multi-view approach has the potential to
achieve over 80% recall, with the false negative objects largely being very challenging
to detect. We hypothesise that a potentially large number of false positives will be
filtered out due to being single outlying detections in the raw images, which will not
map to multiple points in the orthomosaic. In the following Chapter we will outline our
proposed multi-view approach. We will use projection information derived in the SfM
process to cast 2D raw image detections into their corresponding 3D real world location.
This will allow us to cluster multi-view detections, potentially allowing for improved
detection of elusive canopy species.



Chapter 6

Multi-view Detection of Abbott’s
Boobies Using Structure from
Motion

6.1 Overview

In the previous Chapter we outlined a method for detecting Abbott’s booby Features
of Interest (FOI; including empty and occupied nests, perched and flying birds) and
guano in UAV images using Faster R-CNN. In our approach detections of the same
object from different raw images were treated independently, and in many cases were
missed in certain viewpoints due to partial occlusion. We proposed that a multi-view
approach, where detections of the same object are merged, would improve object recall
and reduce false positives. In this Chapter we outline this multi-view approach, which
consists of three main stages: 2D-to-3D projection, clustering and classification. Our
final method successfully recalls 62% of FOI (and 66% of guano) with precision of 67%
(50% for guano). We examine misclassifications and outline areas for improvement, and
discuss how these methods can be directly applied to Abbott’s booby surveys, as well
as easily transferred to other species.

6.2 Introduction

Structure from Motion (SfM) is a process which enables a 3D model of a scene or object
to be constructed from multiple offset 2D images, using principles of multi-view geometry
[61]. It is a technique that has been applied extensively in a range of fields, including

102
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augmented reality [46], archaeology [57] and the geosciences [152]. It is also frequently
used for forest canopy mapping, with researchers using the final 3D model to estimate
forest height, density and biomass [73]. In these applications the final 3D model is the
main focus of the analysis, with the original 2D raw images only used at the model
construction phase. However, for detection of small objects such as wildlife (which can
often get lost or distorted in the final stitched orthomosaic image), the underlying raw
images (i.e the original unprocessed JPEG images collected by the UAV) provide more
viewpoints and greater opportunity for detection, particularly for elusive forest canopy
species. We propose using these raw images in a multi-view detection approach will
provide a solution for monitoring species in these challenging environments.

Objects detected in raw UAV images can be projected into their corresponding real
world 3D coordinates using camera parameters estimated during the SfM process. This
provides a means of matching multi-view detections of the same object into the same
point in space. A key benefit is that all raw image information can be used to guide
detection, rather than using the final stitched orthomosaic alone. In the literature we
found only a small number of papers employing a similar technique. This includes for
sewer inlet detection in urban environments [107], detection of fruit in trees [47] and
identifying and classifying objects in x-ray luggage scans [138]. More recently a similar
technique was applied to wildlife detection, focusing on counting cattle in open grassland
[132]. However in that study the terrain was relatively flat and open, there were fewer
issues with occlusion of wildlife from different viewpoints, and the effect of stitching and
errors in image projection are likely to be less significant than the forest canopy surface.
As yet, the methods have not been tested extensively, and to the best of our knowledge
have not been applied to surveying wildlife in forest canopy.

In this Chapter we will outline our multi-view detection method, following a similar
pipeline proposed by Moy de Vitry et al. [107] for sewer inlet detection. We first
take our Faster R-CNN detections (the results of Chapter 5) and perform a 2D-to-3D
projection to get their corresponding real-world coordinates. We then perform clustering
using the DBSCAN algorithm, to group multi-view detections. Finally, we perform a
classification stage, where we filter false positive detections. While in this application
we focus on detecting seabirds nesting in forest canopy, we highlight that the methods
are general and could easily transfer to object detection tasks in any imagery processed
using SfM.
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Figure 6.1: The multi-view detection pipeline. In Stage 1 Faster R-CNN detections
are projected from image pixel coordinates to real world 3D coordinates, allowing multi-
view detections of the same object to be mapped together on the orthomosaic. In Stage
2 we cluster these multi-view detections using the DSCAN algorithm, and calculate a
range of cluster properties (e.g area, density and average confidence). These clusters
are compared to ground truth data to assign true positive (TP), false positive (FP)
and false negative (FN) labels. Finally in Stage 3 we train a classifier to predict TP

clusters, to filter out excess FPs and give the final prediction result.

6.3 Methodology

6.3.1 2D-to-3D Projection

In order to project the objects detected in the raw 2D UAV images onto the 3D or-
thomosaic, we first establish our 2D-to-3D projection system. Given that UAV images
are collected in motion, every raw UAV image {I1, I2, .., In} is taken from a different
viewpoint and camera pose. The mapping between image pixels and their 3D world
coordinate is estimated during the SfM process, which predicts and outputs different
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camera parameters for each image It. This includes the camera’s intrinsic matrix K, as
well as a rotation matrix Rt and translation vector tt for each unique image.

In any given raw image It, with a Faster R-CNN detection centered at pixel coordinate
(u, v), our target is to find its location in the 3D world coordinate system (X,Y, Z)T .
This can be calculated using pinhole camera model transformations [61]. The equation
to transform a world point (X,Y, Z)T into a camera-relative point (x, y, z)T is given by
the equations:


x

y

z

 = K

Rt


X

Y

Z

+ tt

 (6.1a)


u

v

1

 =


x/z

y/z

1

 (6.1b)

To invert this operation, and retrieve the 3D world coordinates from a pixel coordinate
(u, v) in image It, we solve Equations 6.1 as follows:


X

Y

Z

 = R−1
t

zK−1


u

v

1

− tt

 (6.2)

This is equivalent to projecting a ray from the camera projection center to the 3D model,
and finding the point at which the ray intersects with the surface mesh of the 3D model.

6.3.2 Data Pre-processing

In Equation 6.2, we know K, Rt and tt as they are outputs from the SfM process.
The only remaining unknown is z; the distance between the camera and the 3D surface
mesh. To find z we construct the surface mesh model in Agisoft (V 1.5.2, Agisoft LLC,
St. Petersburg, Russia). We select the option to reuse depth maps constructed in the
original SfM processing (detailed in Chapter 5 Section 5.3.2), with high quality and
aggressive depth filtering. Then, for every camera image It we export the corresponding
Zt; an image showing the distance to the surface mesh from every pixel in It. We
present an example of one of these pairings in Figure 6.2. Extracting the z value at
pixel coordinates (u, v) gives us all values needed to solve Equation 6.2.
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Figure 6.2: (a) An example raw image and (b) its corresponding depth map, formed
by rendering a surface mesh and calculating the real world distance from the camera’s

projection centre to every point on the mesh.

6.3.3 Network Architecture

The multi-view detection method consists of three main stages (outlined in Figure 6.1).
Firstly, the Faster R-CNN detections from the raw UAV images (the results of Chap-
ter 5) are projected from 2D raw images into 3D real world coordinates. Detections
corresponding to the same object form clusters on the orthomosaic. In stage two we
cluster these multi-view detections using the DBSCAN algorithm, and compare the pro-
posed clusters to ground truth data to assess whether they are True Positives (TPs),
False Positives (FPs) or False Negatives (FNs). Finally, for each cluster proposed by
DBSCAN, a range of attributes are calculated. This includes the number of detections
in the cluster, the density of detections, and the average detection confidence score. In
stage three these attributes are used to classify clusters into TPs and FPs, with the aim
of filtering FPs and giving the final result. In the following sections we outline each of
these three stages in full.

6.3.3.1 Stage 1: Projection

The first stage is to project the Faster R-CNN detections generated in Chapter 5 onto the
3D orthomosaic model. For each 2D UAV image It we extract the center pixel for each
Faster R-CNN bounding box prediction (u, v). Using the depth map Zt for the image
It, we determine the z needed to solve equation 6.2, and project the 2D point (u, v) on
to the 3D model. We initially choose to project all Faster R-CNN detections with a
confidence value greater than 0.1. In our clustering stage we experiment with different
choices of detection confidence threshold (dT ) as a hyperparameter. Once detections
from all 2D UAV images have been projected, those corresponding to the same object
form clusters in the real world coordinate system.
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6.3.3.2 Stage 2: Clustering

In Stage 2 we cluster projected detections using the Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) algorithm [34] implemented in the python
scikit-learn library [114]. The DBSCAN algorithm is described in detail in Chapter 2
Section 2.12.1. We use the Euclidean metric calculate the distance between points, and
treat min samples N and ε as hyperparameters (detailed in Section 6.3.4). DBSCAN
assigns points into clusters based on the density parameters, with any unassigned points
classified as noise (unless N = 1, in which case noise points form a cluster of size one).

Once points have been assigned to clusters, we form a detection outline by taking the
convex hull: the smallest convex polygon that encloses all points in the cluster. Since
only the centre of the Faster R-CNN bounding box detections are projected, we add a
1m buffer to the convex hull to replicate the bounding box size. For guano, which does
not have a clearly defined central point, this approach allows us to estimate the area of
guano coverage. This can be useful for determining true Abbott’s booby breeding sites,
where the spread of guano is likely to be larger compared to non-breeding sites.

Before our final classifier stage, we must assign either a True Positive (TP) or False
Positive (FP) label to our DBSCAN clusters by comparing them to the ground truth
data. These TP/FP labels will be used to train supervised classification algorithms to
filter FPs following the clustering stage. We form the cluster ground truth used for this
assessment by projecting the raw image annotations (described in detail in Chapter 5
Section 5.3.2.2) to the 3D model, using the equations outlined in Section 6.3.1. We
use the unique object tags assigned during manual analysis to group these multi-view
detections into single clusters. We again form a convex hull around these points and
add a 1m buffer. Proposed DBSCAN clusters are labelled as TP if their convex hull
intersects with the convex hull of a ground truth cluster with an intersection over union
(IoU) greater than 0.1. If the IoU is less than 0.1 then the proposed cluster is labelled
as FP.

6.3.3.3 Stage 3: Classification

For each cluster identified by DBSCAN we calculate a range of features. These are used
to characterise and classify FOI and guano detections into TPs and FPs, with the aim
of filtering out FP clusters for the final result. The full list of features calculated is
presented in Table 6.1, and includes the maximum, average and total confidence scores
of all points in the cluster, cluster area, and the number of detections per cluster.
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Table 6.1: Summary of cluster features used for classification stage.

Feature Name Description
n_dets Number of detections in the cluster
raw_count Number of raw images which map to the cluster center
image_count Number of raw images where the detections came from
max_score Maximum confidence score of any point in the cluster
avg_score Mean of the cluster confidence scores
total_score Sum of the cluster confidence scores
area Area of the cluster convex hull
density Density of points in the cluster (n_dets / area)

To classify clusters we compare three different models (implemented in scikit-learn [114],
with general model overviews presented in Chapter 2): a logistic regression model (LR;
detailed in Section 2.11.2), a support vector classifier (SVC; Section 2.11.1), and a
multilayer perceptron (MLP; Section 2.7.3) with 100 hidden layers and ReLU activations.
For each model we perform a hyperparameter search to find optimal values for other
settings, which are summarised in Section 6.3.4. All three of our chosen classifiers output
a classification probability score, which we use as the final prediction confidence.

For our classifier train/validation/test splits we use the same folds outlined in Chapter 5
Section 5.3.4 for training the Faster R-CNN network, where the 32 plots were divided
into four groups of eight (refer to Appendix B.1 for the complete list of plots per fold).
We balance TP and FP classes in the training set by downsampling the more common
class to match the number of examples of the rarer class (with FPs generally being more
prevalent). We found experimentally that this performed equivalently to upsampling
the rarer class, without introducing extra computation time.

6.3.4 Hyperparameters

In our hyperparameter experiments we test the best choice of DBSCAN parameters
ε (ranging from 1 to 10 metres using a step size of 1) and N (1, 2 and 3). These
ranges were informed by initial coarser scale experiments, as well as visual inspection
of the data (estimating realistic sizes of FOI and guano sites, and using knowledge of
the number of views per object from our analysis in Chapter 5). We also test different
detection thresholds (dT ) for the projected Faster R-CNN detections (ranging from 0.1
to 0.9 using a step size of 0.1). The choice of dT determines the number of false positive
Faster R-CNN detections which are projected, which influences the amount of noise at
the clustering stage.

For each of the three classifiers we perform a grid search for a range of different parame-
ter settings, detailed in Table 6.2. For all combinations we also test different data scaling



Chapter 6 Multi-view Detection of Abbott’s Boobies Using Structure from Motion 109

and transform methods: standard scaling, min-max scaling, normalization, power trans-
former and quantile transformer. Since the output of the clustering stage influences the
success of the classification stage (i.e due to the numbers of FP/TP examples, and the
cluster properties) this grid search is performed in combination with our clustering ε, N
and dT experiments.

Table 6.2: Hyperparameter combinations tested for each of the three classifiers: lo-
gistic regression (LR), support vector classifier (SVC) and a multi-layer perceptron

(MLP). Methods implemented in scikit learn [114].

classifier parameter grid search values
penalty none, l2LR C 0.01, 0.1, 1.0
kernel linear, poly, rbf, sigmoidSVC C 0.01, 0.1, 1.0
alpha 0.001, 0.01, 1, 5
solver sgd, adamMLP
learning rate constant, adaptive

6.3.5 Hardware and Frameworks

Model training is performed on a PC workstation equipped with Intel i7-8700 CPU
@ 3.20GHz, 32GB of RAM and NVIDIA Titan Xp graphics card with 12GB of GPU
memory. All clustering and classification was performed using scikit-learn 1.0.2. Surface
meshes were calculated in Agisoft V 1.5.2, and took approximately 20 minutes per plot
to generate using the hardware setup.

6.3.6 Evaluation Metrics

We compare the overall performance of our models using the mean average precision
(mAP) score; the area under the precision-recall curve, averaged across the four data
folds. When reporting per fold or per class results we use the Average Precision (AP). We
also use recall, precision and Fβ-scores compare results at specific confidence thresholds.

6.4 Results

6.4.1 Hyperparameter Results

We summarise the results of our hyperparameter search for each class (FOI and guano)
and each method (LR, SVC and MLP) in Table 6.3. We find that the mAP scores are
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Table 6.3: Clustering and classification results for FOI and guano predictions. We
present the best mAP scores (mean and standard deviation averaged across four data
folds) for the three classifiers, as well as the optimal hyper-parameters used to achieve

the results (italics).

class clf val mAP test mAP N ε dT trans C pen kernel alpha solver lr
LR 0.59±0.08 0.60±0.07 1.0 5.0 0.5 quantile 1.0 l2 - - - -
SVC 0.58±0.09 0.61±0.08 1.0 5.0 0.5 quantile 0.01 - poly - - -foi
MLP 0.59±0.08 0.61±0.07 1.0 5.0 0.5 quantile - - - 0.01 adam adapt
LR 0.57±0.11 0.57±0.02 1.0 8.0 0.4 quantile 1.0 l2 - - - -
SVC 0.57±0.11 0.57±0.02 1.0 8.0 0.4 quantile 0.1 - linear - - -guano
MLP 0.57±0.10 0.58±0.02 1.0 8.0 0.4 quantile - - - 1.0 adam adapt

very similar for the three methods, with an mAP of 0.60-0.61 for FOI’s and 0.57-0.58
for guano. For our hyper-parameter tuning experiments, we find that the best data
transform for all methods is the quantile transformer. For the LR classifier the optimal
test mAP is achieved for C = 1.0 and penalty = l2, which is the same for both FOI and
guano classes. For SVC we find C = 0.01 and a polynomial kernel give the best results
for FOI, while C = 0.1 and a linear kernel give the best score for guano. Finally for
our MLP classifier the adam optimizer and an adaptive learning rate are the best choice
for both classes, while α = 0.01 is optimal for FOI and α = 1.0 is optimal for guano.
For our DBSCAN clustering parameters we see that a minimum sample of N = 1 gives
the best result for all classes and classifiers. Between classes the choice for ε is ε = 5

for FOI and ε = 8 for guano for each of the three methods. Having a larger ε follows
logically as guano is less clearly defined and has a larger spread than FOI’s. The choice
of the confidence threshold on Faster R-CNN predictions is also consistent between the
classifiers, with dT = 0.5 for FOI and dT = 0.4 for guano.

We examine the relationship between ε and dT further in Figure 6.3, using N = 1 and
the optimal classifier hyper-parameters outlined in Table 6.3. Again, the results are
very consistent between the three different classifiers. For FOI we find the worst mAP
scores at dT = 0.1 and ε = 10. With these settings there are a significant number of false
positive Faster R-CNN detections which are all clustered together due to the high ε value.
This results in single, large clusters forming on the orthomosaic. Results improve with
increasing dT thresholds, as the boundaries between clusters are clearer when erroneous
false positive Faster R-CNN detections are removed. We see a similar pattern for guano
clusters, although the optimal values fall at higher ε values due to guano clusters being
generally more spread out than FOIs. We see at higher dT thresholds (e.g > 0.9)
the results for guano are significantly worse. This is due to the fact that in general
Faster R-CNN predicts guano less confidently than FOI, and so many point detections
are excluded completely at this cut off. Since we have agreement between all three
models, we can be confident in our selection of ε and dT (FOI: ε = 5 & dT = 0.5,
Guano: ε = 8 & dT = 0.4). When selecting a final choice for the classifier we see
very marginal differences, so for the remaining results we select the LR model for its
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simplicity in comparison to SVC and MLP. In addition the same LR hyperparameter
selection provides optimal results for both FOI and guano, making the model completely
consistent for both classes.

6.4.2 Detection Results

We present the final precision-recall curves, using our chosen LR classifier, in Figure 6.4.
We see that there is some variation in performance across the different test folds, with
greater variation for FOI (ranging from AP = 0.51 for fold 3 to AP = 0.68 for fold 0)
than guano predictions (ranging from AP = 0.55 to AP = 0.60). In terms of F1-score
accuracy, we see a peak of approximately 0.7 for FOI and 0.65 for guano, with an average
accuracy of approximately 0.6 for both classes. We note that recall does not exceed the
80% mark for either class, meaning that at least 20% nests are missed by the method,
irrespective of the selected operating point.

In Figure 6.5a we plot the F1-score against different threshold values, to determine the
point at which maximum overall accuracy is achieved. In our application missing nest
sites could be viewed as more costly than having false positives, as finding missed sites
would require an exhaustive manual search, whereas FPs could be manually filtered out
comparatively quickly. We therefore also plot the F2-score results Figure 6.5b, where
recall is weighted with twice the importance of precision. Since the optimal F1-score
thresholds give higher precision than recall, we choose to use the F2-score thresholds
(0.55 for FOI, 0.44 for guano) as thresholds to present the final results. These give us
average recall values of 62% for FOI and 66% for guano, with precision scores of 67%
(FOI) and 50% (guano).

6.4.3 Final Detection Output

In Table 6.4 we present a summary of the final detection outputs using the F2-score
informed confidence thresholds (FOI : 0.55, guano : 0.44). At the chosen operating
point 62±3% of FOI are successfully detected by the method, and 66±5% of guano.
Correspondingly we have precision scores of 67±7% for FOI and a slightly poorer result
of 50±8% for guano. In terms of practical application, for this dataset we see the method
would return a total of 446 FOI detections, 150 of which would be false positives. These
150 FPs remain after the classification stage successfully filtered 1220 (an average 89%)
of FP detections made at the clustering stage (classed as True Negatives - TN). We see
similar success for guano detections, with approximately 80% of FPs filtered out by the
classification stage. In terms of false negatives (FNs), 185 of the total 481 FOI ground
truth clusters were not detected by the method. We see that a large fraction (on average
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Figure 6.3: Sensitivity to DBSCAN clustering parameters for different choices of ε
and Faster R-CNN detection threshold dT (with minimum samples N = 1 and optimal
classifier hyper-parameters). Scores are the mAP on the test set, averaged across the
four data folds. Presented for both FOI and guano, using a) logistic regression (LR),

b) support vector classifier (SVC) and c) multi-layer perceptron (MLP).
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Figure 6.4: Precision-recall results for each of the four test folds, using the best scoring
logistic regression (LR) classifier. Presented for a) FOI’s, with an mAP = 0.604 and

b) guano, with an mAP = 0.574.

Figure 6.5: Fold-averaged F-scores plotted against confidence threshold for a) FOI
and b) guano detections. We investigate i) the F1-score, where precision and recall
have equal weighting, ii) the F2-score, where recall has two times more weighting than

precision. Grey lines show the point where peak F-score is achieved.
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Table 6.4: Per fold results for the optimal confidence thresholds (FOI : 0.55 and
Guano : 0.44). We report the average precision (AP) recall (rec), precision (prec), and
the total number of true positives (TP), false negatives (FN), false positive (FP) for
the detection results. We also report the number of true negatives (TN), which are FPs
correctly filtered out at the classification stage, and the corresponding percentage of
correctly filtered FPs (FP_filt). For FNs we report the percentage which were missed at
the clustering stage (FN_clus), and the percentage which were TPs incorrectly classified

at the classification stage (FN_clf).

Class Fold AP Rec Prec TP FN FP TN FP_filt FN_clus FN_clf
0 0.68 0.64 0.75 86 48 28 279 91% 65% 35%
1 0.61 0.64 0.69 70 40 32 309 91% 70% 30%
2 0.62 0.60 0.65 63 42 34 240 88% 67% 33%FOI

3 0.51 0.58 0.58 77 55 56 392 88% 71% 29%
Total - - - 296 185 150 1220 - - -
Mean 0.60 0.62 0.67 - - - - 89% 68% 32%
Std 0.07 0.03 0.07 - - - - 1.9% 2.9% 2.9%

0 0.58 0.60 0.60 107 72 70 321 82% 69% 31%
1 0.60 0.66 0.52 92 47 85 359 81% 87% 13%
2 0.57 0.71 0.41 82 34 117 397 77% 74% 26%Guano

3 0.55 0.67 0.47 115 56 131 501 79% 82% 18%
Total - - - 396 209 403 1578 - - -
Mean 0.57 0.66 0.50 - - - - 80% 78% 22%
Std 0.02 0.05 0.08 - - - - 2.1% 8.1% 8.1%

68%) of these were missed at the clustering stage, while fewer (on average 32%) were
TPs which were incorrectly classed as FPs at the classification stage. We see a similar
pattern for guano detections (78% of FNs missed at clustering, 22% misclassified).

In Appendix Table C.1 we summarise the results from Table 6.4 for each individual plot
in the test folds. We find that the success varies, with the best performance achieved
for plot N02 (across class mAP of 0.81: FOI AP = 0.84, guano AP = 0.78) and the
worst for plot N38 (across class mAP of 0.28: FOI AP = 0.40, guano AP = 0.19). In
Figure 6.6 we present these as example results on the orthomosaics, using our chosen
threshold values. For the best scoring plot (N02; Figure 6.6a) we are able to successfully
detect seven out of eight FOI, with one FN and one FP. When visually assessing the
raw image annotations for the FN cluster, we find that it is very challenging to discern.
In addition, a cluster of guano was correctly identified next to it, so it may be that used
in combination an expert analyst would be able to identify the area as a breeding site.
When plotting the raw image detections for the FP, we notice that this in fact appears
to be a nest site which was missed in the manual annotation. We also note that in
both cases the FOIs are not visible in the stitched orthomosaic views. For the worst
performing plot (N38; Figure 6.6b) we find that most errors were introduced by missed
guano. Of 13 guano ground truth clusters, only three were successfully detected, and
a further four were FPs. Inspecting FN guano patches we find that in most examples
these are small patches of staining which is challenging to detect in the raw images.
Comparatively, the results are better for FOI, with three of seven correctly detected,
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and only two FPs. We see one of the FPs is caused by a white branch of similar size to
an adult Abbott’s booby.

6.5 Discussion

6.5.1 Clustering Stage Assessment

In our final results we find that the majority of FNs (68% of FOI and 78% of guano
annotations) are missed at the clustering stage. Either these were not detected in any
view by Faster R-CNN (or detected with low confidence), or they were not successfully
clustered and matched to ground truth at the DBSCAN stage. After clustering, these
missed detections cannot be retrieved at the classification stage (which can only classify
and filter out FPs). We summarise the overall success of the clustering stage in Table 6.5
and find that on average 26% of objects are missed at this point (for both FOI and guano
classes). This gives us baseline recall values of 0.74 before going through to classification.
We also note the large number of false positive clusters (1370 for FOI and 1981 for
guano), equating to very low precision scores of approximately 0.2 for both classes. The
role of the classification stage is to remove these FPs while retaining as many TPs as
possible.

Considering the FNs missed at the clustering stage in more detail, in our initial Faster
R-CNN assessment (Chapter 5 Section 5.5.3) we estimated that approximately 12% of
FOI were not detected in any view at the Faster R-CNN stage (when using a detec-
tion threshold of 0.1). This represented our best case recall score for our multi-view
approach. In our visual assessment of those missed objects, we found that the majority
were visible in only a single raw image, were in challenging background, or represented
rarer examples such as empty nests (refer back to Chapter 5 Figure 5.9 for image ex-
amples). In Figure 6.7a we repeat this assessment using our final results. We find again
that most missed objects were only identified in small number of view points in the
manual analysis. For example of the 109 nest sites which were not detected, 72 were
identified in five or less views. Of the nests which were missed in more than five raw
images, they again represent challenging cases, which were likely only detected by Faster
R-CNN with a low confidence score (below the dT = 0.5 threshold we found gave overall
best results). We also find that empty nests present challenges, with the method missing
8 out of a total of 17 in the dataset. A large proportion of second adult birds (2ndA:
defined as birds found near another nesting bird) were also missed (8 out of a total of
14 in the dataset). However, we found that in all cases the actual nest site was correctly
detected (Figure 6.7b). Since the ultimate goal of the surveys is to identify Abbott’s
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Table 6.5: Summary of the results after the clustering stage, using the optimal param-
eters (FOI: ε = 5, N = 1, dT = 0.5 / Guano: ε = 8, N = 1, dT = 0.4). We summarise
the number of true positive (TP), false negative (FN) and false positive (FP) clusters,
as assessed against the ground truth. Final recall (rec) and precision (prec) scores are
approximately 0.7 and 0.2 respectively. Of the total objects, approximately 26% are

assessed as FN at the clustering stage.

Class Fold Rec Prec TP FN FP total objects % FN
0 0.77 0.25 103 31 307 134 23.1%
1 0.75 0.19 82 28 341 110 25.5%
2 0.73 0.22 77 28 274 105 26.7%FOI

3 0.70 0.17 93 39 448 132 29.5%
Total - - 355 126 1370 481
Mean 0.74 0.21 - - - - 26.2%
Std 0.03 0.03 - - - - 2.7%

0 0.72 0.25 129 50 391 179 27.9%
1 0.71 0.18 98 41 444 139 29.5%
2 0.78 0.15 91 25 514 116 21.6%Guano

3 0.73 0.17 125 46 632 171 26.9%
Total - - 443 162 1981 605 -
Mean 0.74 0.19 - - - - 26.5%
Std 0.03 0.043 - - - - 3.4%

booby breeding sites, these could still be assessed as successful detections of a nest site,
despite not locating the second adult.

The problem with detecting rare classes is common in computer vision tasks, as there
are fewer examples which can be used in supervised training. In this example empty
nests do not have the bright white blob of an adult Abbott’s booby, which is present
in the nest FOIs which make up the majority of examples in the dataset. Collecting
more images of empty nests would likely improve these results, and with enough data
could allow us to separate them into a class of their own (rather than grouping into
one FOI class). This could help to guide the training, and avoid the network becoming
biased towards FOIs which contain an adult bird. Empty nests are also easy to confuse
with branches in trees, and determining if it is truly a nest requires expert knowledge.
For example other factors such as the proximity to guano staining, or location in the
tree, may guide an expert in their interpretation. For this dataset we only have a single
observer’s annotations, and so evaluating the uncertainty in the ground truth (as we did
with our albatross dataset in Chapter 4) is not possible at this stage. However, with
this information we could draw more formal conclusions of how the automated method
compares against subjective human analysis.
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Figure 6.7: Heatmap with cells showing the number of FNs according to their full
class label and the total number of raw image views. We see that many missed objects
are only visible in a low number of views, and classes like second adults (2ndA), and
empty nests present challenges. b) Examples of 2ndA clusters which were missed but

the corresponding nest was successfully detected.

6.5.2 Classification Stage Assessment

In our results we find that our LR classifier successfully filters high percentages of false
positives (on average 89% of FOI and 80% of guano; Table 6.4) using our final confidence
thresholds. Investigating the performance of the classifier alone (ignoring FNs missed
at the clustering stage), we achieve mAP scores of 0.81 and 0.78 for FOI’s and guano
respectively (Figure 6.8a). Measured in terms of the Receiver Operating Characteristic
(ROC) curve, which takes into account the true negative rate (i.e correctly filtered FPs),
we have mean Area Under the Curve (AUC) scores of 0.92 for FOI and 0.93 for guano
(Figure 6.8b). This shows that the classifier is very effective at filtering out excess FP
clusters. Despite this, there is not perfect separability between TP and FP clusters,
with a trade off between recall and precision depending on the final threshold value. We
found in our classifier comparison experiments that the LR, SVC and MLP methods
all gave very similar results, suggesting that alternative classifiers are unlikely to offer
significant gains. This is likely because we have a relatively simple feature space (with
only eight variables), and that TP and FP clusters cannot be categorically separated
based on these features alone.
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Figure 6.8: Results of the logistic regression (LR) classifier (ignoring FNs missed at
the clustering stage). We present a) precision-recall curves and b) the ROC curves for

each test fold.

In Figure 6.9 we plot the probability density functions (PDFs) of the eight variables
used for classification, and in Table 6.6 assess their relative importance based on both
the F-score and mutual information criteria. In our feature ranking we find under both
measures the top three features are image_count (the number of raw images where a
detection was made), n_dets (the number of detections in the cluster - almost synony-
mous with image_count except for cases when there are two detections in the same raw
image), and the total_score (the sum of the confidence scores for every detection in the
cluster). We can see from the PDFs that the majority of FPs fall in the lower end of
these scales, with clusters made up of only a few low confidence detections. These are
likely to be false positives which were detected by Faster R-CNN in a single raw image,
but which were not repeatedly detected in other views. On the other hand, for TPs
there is a trend towards larger numbers of detections in each cluster, with higher total,
average and maximum confidence scores. However we also note that in all cases there
is some overlap in the TP/FP distributions, with some TPs also having low numbers
of detections and total scores. This makes drawing a definitive boundary between the
classes challenging.
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Figure 6.9: Probability Density Functions (PDFs) for each of the variables used in the
classification stage, showing the distribution of True Positives (TP) and False Positives
(FP) from our clustering stage assessment. We present the results for the FOI class

only.

Table 6.6: Feature ranking of FOI variables according to a) the F-score and b) the
mutual information score.

a) F-score ranking b) Mutual info ranking
Feature F-scores Feature Mutual info
image_count 943.5 total_score 0.224
total_score 779.0 image_count 0.207
n_dets 702.2 n_dets 0.194
density 634.0 density 0.191
max_score 568.4 max_score 0.161
avg_score 270.1 area 0.156
area 142.1 avg_score 0.106
raw_count 52.4 raw_count 0.029

To improve the classification stage we could consider adding extra features, for instance
elevation. The elevation could be used to filter out clusters which are outside the suitable
habitat range for Abbott’s boobies, which tend to nest at the very top of the canopy. For
this particular dataset there were ground truthing issues during data collection which
made the elevation models very variable between plots, so it was not factored into this
analysis. Further habitat variables could also be considered, such as the clusters’ bearing
in the tree, since Abbott’s boobies tend to nest on the north west side to shelter from the
prevailing wind. This would require some further processing to automatically determine
the relative location of clusters within individual trees, however the addition of such
habitat variables is a topic which could be discussed with expert ecologists.

It is also important to note that the final aim of the surveys is to count active breeding
sites, rather than individual FOI and guano sites as we have in this analysis. Breeding
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site identification requires significant expertise, for example taking into consideration the
presence and extent of guano build up near FOIs, the structure of a nest in case it is left
over from a previous breeding season, and possibly detecting chicks or eggs within the
nest. Combinations such as a low confidence nest detection along with a high confidence
guano detection could lead to a positive assessment as a breeding site, compared to
say a very confident detection of an adult bird which is not near any nest or guano.
By formalising these measures we could potentially train a second stage classifier, to
combine the detected FOIs and guano and categorise them as either breeding or non-
breeding sites. When viewed in this light misclassifications associated with the individual
classes may not be as important, or could be compensated for by the nearby detection
of another object. This would be the case, as discussed previously with missed second
adult birds, which could be compensated for by detecting the associated first adult bird.

6.5.3 Misclassification Analysis

We present a gallery showing our highest scoring FP detections after the final classifica-
tion stage in Figure 6.10. We find that the majority of FP FOI predictions are caused
by white branches which appear similar to adult birds and nests. If the same branch is
detected in multiple raw image views, then the cluster is predicted to be a TP by our LR
classifier. This can be a problem in plots which have a lot of bare branches, and could be
affected by the time of year the survey is conducted in. For example in the dry season
certain trees drop their leaves, which may lead to more FPs for surveys conducted in
this period. One of our examples appears to be a tree stump which is detected next
to the road, which shows the potential of using altitude to rule out detections which
are not in the canopy level. In some cases branches also appear similar to empty nests,
which can be visually hard to distinguish without expert knowledge.

Other FPs identified were a small number of flying Abbott’s boobies (Figure 6.10b). In
this multi-view method our aim is to avoid detecting flying birds in the final result, as
they are not associated with a nest site. Also, since they are in motion during the UAV
survey, detections of the same flying bird appear at different points in the orthomosaic.
We find that the classification stage filters many of these out, as they form a cluster
of only one detection, which is more associated with the FP class. However, in some
cases this single detection can have very high confidence (e.g 0.96 and 0.99 for the two
examples presented), so overall the cluster can be assigned a TP label with relatively
high confidence (e.g of 0.57 and 0.63 respectively for our examples). For guano, we find
the presence of roads in some plots introduces FP detections (Figure 6.10c). When bright
road surface is viewed through sparse leaves, it can be interpreted as bright staining on
the surface of the leaves by the network. Since there are relatively few examples of roads
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Figure 6.10: Examples of common false positive (FP) results. a) The most common
cause for high scoring FP detections are white branches which appear similar to birds
or nests. b) In some cases flying birds (which we wish to exclude from final detections)
are still included. c) For guano road showing through the canopy can cause FPs. d) In
a small number of cases clusters are assessed as FP although the detections in the raw

images appear correct.

in each training fold, these errors would likely be reduced by the addition of more data.
Furthermore, these misclassifications can be observed and manually removed relatively
quickly by directly looking at the orthomosaic, without the need to assess the underlying
raw images.

Finally, we find that a small number of FPs appear to contain correct detections in
the raw images (Figure 6.10d). When assessing these FP clusters on the orthomosaic,
we find that this can be caused by uncertainty in the 2d-to-3D projection stage. Since
FOIs are relatively small objects we would expect most points to map together very
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Figure 6.11: Example of false positives due to projection error. The ground truth
points are projected to different areas of the canopy, forming a large convex hull (blue
outline). While three of the four ground truth points are successfully detected, they
are not merged at the clustering stage due to their large separation. They are therefore

assessed as false positives (FPs).

closely. In a perfect model, where all projected points mapped together exactly to a
single location, we would have a cluster covering an area of approximately 3m2 (a circle
with radius equal to our convex hull buffer of 1m). However, in some cases projection
errors mean that multi-view detections are cast over large extents, which impacts the
success of our clustering stage. In Figure 6.11 we present an example of this, where the
projected ground truth detections form a cluster covering nearly 300m2. While three of
the four views were successfully detected by the network, due to their spread they were
not successfully clustered using our DBSCAN parameters. Instead the three detections
form individual clusters. Since none of the points have IoU greater than 0.1 with the
ground truth cluster, none are assessed as TP, and the ground truth cluster itself is
assessed as FN. In the final result our classifier predicts the three clusters to be true
FOI detections, with confidence scores of 0.56, 0.59 and 0.77. Clearly this can introduce
some errors in our analysis. In the following section we discuss the cause and extent of
these projection errors in more detail.

6.5.4 Projection Error

As noted in our misclassification analysis, some of our detection errors are caused by
uncertainty in the 2D-to-3D projection stage. A level of uncertainty is anticipated in
the SfM process, influenced by factors during image collection (e.g the consistency of
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the UAV flight height during transects), as well as the accuracy parameters selected in
the processing stage (e.g choosing the number of tie points). However, we find further
projection inaccuracies for Abbott’s booby nest sites in certain locations. Recalling the
method for projecting raw image pixel coordinates to 3D world coordinates: we calculate
a ray from the camera projection centre to the 3D model, and find the point at which it
intersects the 3D surface mesh model (represented by the depth map Zt for each image
It). However, the 3D surface mesh is modelled as a continuous smooth surface, while the
forest canopy is naturally complex with gaps, discontinuities and protruding branches.
When FOIs are detected on branches at the edge or very top of the canopy, or are only
visible through a gap in the canopy, then projection errors can occur.

Figure 6.12 we show an example of this projection error using the ground truth anno-
tations. We can see that in Figure 6.12b projected points form a tight cluster in the
orthomosaic, while for a nearby nest the projected points are spread over a large area
(Figure 6.12c). Assessing the well clustered case, we see that the depth maps form a
relatively accurate model of the canopy at this location (when compared against the raw
images). The detected nest sits towards the centre of the tree, and so in all three exam-
ples our projected ray intersects with the depth map at the correct location. However,
in the poorly clustered example the nest sits at the top of a branch protruding from
the main canopy. Since the surface mesh model does not accurately render these fine
scale details, we see that the depth maps do not capture what is observed in the raw
images. For example, in raw image DJI_0376 the nest is accurately annotated, but in
the corresponding depth map we predict our projected ray to intersect with the road
clearing behind. This is why points in this cluster are spread across locations on the
road and surrounding canopy (Figure 6.12a). Plotting the histogram of all ground truth
cluster areas in the dataset (for FOI points only, excluding guano), we find a long tailed
distribution (Figure 6.13). While the majority of projected annotations form relatively
tight clusters between 3 - 10 m2, a small percent cover larger extents, up to a maximum
of 597m2. Clearly, individual nests cannot cover this area in real life, and so we can
safely assume that this is caused by inaccurate projection when using the smooth 3D
surface mesh. These outlying cases cause errors at the DBSCAN clustering stage, as the
ε which produces the best results for the majority of the dataset does not capture these
edge cases.

There are many options which could be considered to deal with projection error. Firstly
the data collection and processing stage could be refined. For example during UAV
transects images could be collected with higher degrees of overlap, to allow for clearer
reconstruction of the canopy surface, and different SfM accuracy settings could be ex-
perimented with (for instance increasing the number of tie points). At the 2D-to-3D
projection stage, errors could be accounted for to some extent by projecting all corners
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Figure 6.13: Histogram showing the distribution of FOI ground truth cluster areas,
on a log10 scale. Many points are accurately projected and so form tight clusters, with
areas between 3 - 10m2. However, there are outlying cases where clusters have areas of

up to 597m2, caused by projection errors.

of the Faster R-CNN bounding boxes, as opposed to only the center point. Instead of
single points this would produce polygons on the orthomosaic, which would appear more
stretched where there is large uncertainty (Figure 6.14). This information could possibly
be factored in at the clustering stage, for example by using different weightings for each
point in the DBSCAN algorithm. Alternatives such as spectral clustering could also
be investigated and compared to the success of DBSCAN. Finally, alternative measures
could be used at the cluster assessment stage. Currently we use a cluster IoU of 0.1 to
label predictions as either TP, FP, or FN, however we could change this criterion. For
example we could compute the distances between every point in the predicted cluster
and every point in the ground truth cluster, to factor in how well individual raw image
detections are matched. Currently the penalty for cases with projection error is high (e.g
for the example in Figure 6.11 we gain three FPs and one FN), so finding an alternative
assessment would improve results for these outlying cases.

6.5.5 Applications and Future Work

In our discussion we have highlighted several potential areas for future work. This
includes i) improving the results of our Faster R-CNN detector (with further discussion
in Chapter 5), ii) reducing projection error at the 2D-to-3D projection stage, iii) testing
alternative clustering algorithms or comparison measures at the clustering stage and iv)
improving classification accuracy by adding additional features, such altitude. Many
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Figure 6.14: Comparison of projecting the centre of Faster R-CNN bounding boxes
(red dots) compared to projecting the corners and forming polygons (pink lines). Pro-
jecting the corners captures some of the projection error, as polygons stretch towards

the true nest location.

of these challenges are introduced by having a multi-stage system, where each stage
is dependant on the output of the previous one. Ultimately, combining these separate
stages into an end-to-end system would provide a more elegant and likely more successful
method. For instance, in this case we train our CNN architecture as a first step, and
later stages are all performed as post-processing. However if this projection information
could be built into the CNN stage, either through training or making adjustments to
the architecture itself, then the process could be optimised as one.

Despite these areas for improvements, the methods currently provide very promising
results on a challenging dataset. We achieve final average recall values above 60%
(FOI=0.62; guano=0.66) and precision scores of 67% for FOI and 50% for guano. Not-
ing the exceptions and quick improvements outlined in the discussion, this could be
directly applied to Abbott’s booby surveys to reduce the manual analysis time. We also
note that these values were calculated using our optimal F2-score thresholds (FOI=0.56;
guano=0.44), however these could easily be adjusted to reduce the number of false neg-
atives. Additional false positives could then be manually filtered by an expert observer,
for example using automatically generated image galleries. While this manual analysis
would take time to conduct, it would be significantly reduced compared to an exhaustive
search of every raw image. Reducing thresholds to those determined by the F3-score for
example (Figure 6.15), would increase average recall to approximately 70% for both FOI
and guano, with precision dropping to 40% for both. In real terms for this dataset, this
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Figure 6.15: Fold-averaged F3-scores plotted against confidence threshold for a) FOI
and b) guano detections.

would require an observer to manually filter through 827 galleries of proposed FOI clus-
ters, with 333 true positives and 494 false positives (missing 148). It is likely a number
of false positives could be removed in advance based on direct inspection of the ortho-
mosaic, for example using expert knowledge of their preferred nesting habitat or tree
species, or discounting false detections over the road. The cost benefit of this approach
should be discussed with the end user, to assess the feasibility for future surveys.

6.6 Conclusion

In this Chapter we have outlined a method for detecting Abbott’s boobies nesting in
forest canopy using UAV SfM imagery. To the best of our knowledge, this is the first
attempt to apply a multi-view detection method to monitor canopy species. Since we
use RGB imagery it has particular benefit for surveys targeting objects such as nests
(opposed to the direct detection of the animal itself), where thermal UAV imagery is
not suitable. The methods have direct applicability to other canopy species, including
other species of booby as well as surveys of chimpanzee [12, 145] and orangutan [154]
nests. In fact, since all that is required is a SfM generated model, the techniques are
directly applicable to any dataset constructed using this method. Similar approaches
have already been used to improve detection of cattle in open grasslands [132], and would
be of particular benefit in habitats here partial occlusion can occur at certain viewpoints.
This could include species on cliffs, in semi-wooded grasslands, and mangroves. These
also represent environments which are challenging to access for traditional ground-based
counts, and so having an efficient UAV survey as an alternative is of particular benefit.
In line with our albatross detection method (Chapters 3 and 4) we find that CNNs
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can provide a general purpose framework for monitoring wildlife in remotely sensed
datasets.



Chapter 7

Conclusions and Future Work

7.1 Contributions

In this thesis we have developed two approaches for detecting wildlife in challenging
remote sensing datasets, using the latest CNN architectures.

Our first application, for research objective 1 (RO1), centered on detecting wandering
albatrosses in 31-cm satellite imagery. This was the first application of deep learning
to directly survey individual birds from space. In Chapter 3 we presented our U-Net
detection method, and showed that the segmentation approach could successfully delin-
eate the small point objects from the complex background (mAP=0.669). We showed
the generalisability of the methods by performing a cross validation across islands, to
assess how well the method transfers to new locations. We achieved mixed results for the
four locations (average precision scores: BI=0.761, AN=0.508, AP=0.777, GC=0.628).
Assessing the results on a per-island basis allowed us to identify causes for misclassifica-
tions, including false negatives under cloud haze and false positives due to image noise,
which can be used to inform satellite surveys of other wildlife. We also highlighted the
challenges with dealing with ground truth uncertainty and the effect of inter-observer
variation, which motivated our experiments for RO2.

For RO2, in Chapter 4 we collected empirical data on inter-observer variation in satel-
lite counts of albatrosses. The new (publicly available [16]) dataset of annotations can
be used to benchmark manual and automated detection methods for the species, and
consists of point annotations for four different colonies from 6 different observers. We
developed a measure of inter-observer accuracy (based on the F1-score) which was di-
rectly comparable to our CNN results, which we suggest is a novel and useful method
for similar analyses. Importantly, we found that our inter-observer F1-score accuracies

130
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differed significantly between the four images in the dataset (BI: 0.74, AN: 0.67, BI: 0.92,
GC: 0.85). These findings have direct implications for the counting of other species from
satellite images, and emphasises the need to consider uncertainty on a case-by-case ba-
sis. In our network experiments we showed that choosing different labels at the training
and assessment stage can have a significant impact on supervised training schemes. At
assessment stage we found using the majority vote labels gave the overall best perfor-
mance (mAP=0.74), while using a ”mixed” ground (where a different set of observer
labels are presented at each training epoch) provided promising results at the training
stage (mAP=0.75). These insights help to inform the best practice for choosing ground
truth labels for similar datasets, for instance those annotated by citizen scientists (e.g
[81]).

For our second application we focused on detecting Abbott’s boobies in forest canopy
using UAV imagery (RO3). In Chapter 5 we showed that a fine-tuned Faster R-CNN
architecture is able to detect nest site features of interest and guano with reasonable suc-
cess mAP=0.5, FOI AP=0.52, Guano AP=0.47). False positives were largely caused by
branches which had similar spectral properties and shape to nesting Abbott’s boobies.
Faster R-CNN performed well when nest sites and guano were clearly visible, with pre-
diction confidence decreasing when objects were partially occluded by the forest canopy.
In our misclassification analysis we found that in many cases false negatives could be
compensated for by clear detections from another angle, which lead us to recommend
and propose a multi-view approach.

In Chapter 6 our main contributions were implementing a multi-view method for de-
tecting Abbott’s boobies in UAV SfM imagery, to overcome issues with occlusion and
uncertainty based on viewing angle (RO4). To the best of our knowledge this is the first
attempt to apply this technique to canopy nesting species in UAV SfM imagery. We
found the multi-view method gave reasonable results when using the F2-score threshold
(recall: FOI=0.62, guano=0.66; precision: FOI=0.67, guano=0.5). However recall could
be improved to 0.7 for both classes by adjusting to F3-score thresholds, with precision
falling to 0.4. We suggest that the additional false positives could be easily removed in
a manual review stage, and could be directly applied to Abbott’s booby surveys in the
future. We also investigated different causes of errors, including at the projection, clus-
tering and classification stage, and proposed methods to overcome them. Highlighting
these is an important step in developing these novel techniques in the future.

We highlight that while both methods we have developed in this thesis have direct
applications to the target species, they also adopt general frameworks which could be
easily transferred to other wildlife, as well as more general satellite and UAV object
detection tasks.
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7.2 Research Applications

Following on from our albatross research, we were successful in gaining funding to
continue further work from Darwin Plus1. In the project we will be conducting an
archipelago-wide survey of all wandering albatross colonies on South Georgia, leverag-
ing crowd-sourced annotations from citizen scientists. This data will be collected and
used to update the U-Net method, by adding more data to the training set. It will also
allow for further research into inter-observer variation, following on from the findings of
Chapter 4. This will be the first step in expanding the satellite survey method, with the
intention of extending to a global survey of wandering albatrosses in the near future.
The satellite survey technique will also be trialled on a new species, the Critically En-
dangered Tristan albatross (Diomedea dabbenena), to i) validate if they are detectable
in WV-3 imagery and if so ii) test if the same U-Net method can transfer to different
albatross species.

There are also direct applications of our U-Net method to other great albatross species,
such as the northern royal albatross (Diomedea sanfordi), which have already been
proven to be visible in WV-3 imagery [42]. In applications for wildlife apart from
albatrosses, the U-Net approach presented in our publications [15, 16] has subsequently
been used to detect wildebeest in 41cm GeoEye-1 satellite imagery with good success
(F1-score of 0.87) [156]. This shows that the method transfers well to wildlife in other
environments, and which have a lower contrast to background than the albatrosses in this
study. It also shows promise for transferring to images collected by other VHR satellites,
aside from WV-3. Given the wide range of animals that have been the subject of satellite
survey - for example whales [28], seals [81, 104], elephants [33], polar bears [137] and
penguins [40] - there is a great potential to transfer this general CNN framework to
detect other wildlife.

Our multi-view Abbott’s booby detection method will be directly applied to perform
counts over an additional 70 forest plots across Christmas Island (Lipka et al., unpub-
lished data). These plots have already been imaged and processed using SfM, but have
not been manually annotated due to time constraints. The multi-view method will en-
able these to be analysed and added to the final census results for this year, and could be
used to aid in future Abbott’s booby surveys on the island. As discussed in Chapter 6,
the multi-view approach could also be trialled on other canopy species, for example to
detect chimpanzee and orangutan nests [12, 145, 154], and to other detection tasks where
multi-view information would be beneficial.

1Project code DPLUS132: Monitoring albatrosses using very high resolution satellites and citizen
science. URL: https://www.darwininitiative.org.uk/project/DPLUS132/
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7.3 Discussion and Future Work

In Section 7.1 we outlined key successes and contributions from our research objectives.
However we have noted limitations and areas for improvement throughout the thesis.
Here we draw together common themes that apply across both applications, and identify
areas for future work.

In our applications we noted that the inclusion of extra habitat information could help
to guide automated detection methods. For example, in both cases digital elevation
models (DEMs) could be used in conjunction with the spectral bands to encode habitat
preference into the network decision. For the wandering albatross dataset this would
help to reduce the chance of false positive detections of rocks in high altitude regions,
as well as false detections in the ocean. Slope could also be calculated directly from the
DEM, and used to highlight flatter regions of the islands where the wandering albatrosses
prefer to nest [42]. For the Abbott’s booby dataset incorporating the 3D canopy height
model could help to exclude false positive detections on the road, and in trees which are
lower than their preferred nesting height. By enforcing these constraints during training
we can be more confident that our detections are in realistic habitat for the species of
interest. The best method for encoding this extra information along with the spectral
channels would have to be examined. It could be that DEMs could be stacked directly
with the RGB inputs, although weight initialisation for these channels would have to
be considered. It may also be achievable through multi-task learning [125], for example
if the CNN were to learn to detect the target species as well as predict elevation as an
auxiliary task. Advances in multi-task learning for 3D object detection, developed in the
field of self-driving cars [90], could also provide an end-to-end solution for the Abbott’s
booby SfM detection task.

A second theme is that of ground-truth uncertainty. Although we did not collect em-
pirical evidence of inter-observer variation for the Abbott’s booby dataset, we noted
that in many examples ground truth annotations made from certain viewpoints were
unclear to an untrained observer. As we saw from our inter-observer experiments in
Chapter 4, these uncertain annotations can have an effect on our supervised training
scheme. This highlights the limitations of relying on ground truth data when train-
ing supervised CNN detection methods. We emphasise that instead of just assessing
the level of ground truth uncertainty between human observers, more investigation is
needed to assess the impact of ground truth label choice when training CNNs. Methods
for dealing with uncertain ground truth, and in particular combining multiple observer
labels, are particularly relevant given the recent trend of conducting large scale satellite
surveys using crowd-sourcing. This includes LaRue et al.’s Satellites Over Seals project
[81], the jointly run British Antarctic Survey/ World Wildlife Fund Walrus From Space
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campaign [3], as well as the Darwin Plus albatross project described above in Section 7.2.
These campaigns have provided a platform to process huge amounts of satellite imagery,
for instance in the case of Weddell seals surveying over 250,000km2 of Antarctic fast ice
[81]. In these projects each image is assessed by multiple volunteers, and so when de-
veloping automated approaches the best choice of training label should be considered.
As discussed in Chapter 4, this could include taking a majority vote census, forming a
probabilistic ground truth, or testing new CNN architectures which build crowd layers
into their design (for instance [123]). As more crowd-sourced data is collected, this is
likely to be an active and interesting research area to pursue.

Finally, while we have developed applications for UAV and satellite images separately,
multi-model surveys are an interesting avenue for future research. In these methods
information from UAV and satellite images could be combined or transferred to aid
detection. This has been employed to detect whales in satellite imagery, by training a
CNN using downsampled aerial images [13]. More recently even web-searched photos
have been used to train a CNN to detect polar bears in aerial images [21]. These tech-
niques can be especially beneficial for sparsely distributed wildlife where it is challenging
to collect real world examples for CNN training. For certain species which congregate
in large groups and so can be monitored using non-VHR satellites (for instance emperor
penguin colonies [45] and walrus haul-outs [36], which have both been identified in 10m
resolution Sentinel-2 imagery), different resolution sensors could be used in combina-
tion. For example free Sentinel-2 imagery could be used to detect and monitor species
congregations over large areas and fine temporal scales, and costly VHR images could
be tasked to count individuals within the group. This would enable global monitoring of
species which have extremely large ranges. For more elusive species such as the canopy
nesting Abbott’s booby, information from other sensors such as low-cost audio devices
[131] could be used to inform nest locations. Ultimately data collected from multi-sensor
networks, and processed using state-of-the-art machine learning, could pave the way for
autonomous monitoring of species in challenging-to-access environments.
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Table A.1: Average precision scores from the U-Net trained on the majority vote, and
assessed against different ground truth labels.

BI AN AP GC mAP
ref_ob 0.76 0.51 0.79 0.59 0.66
ob1 0.65 0.59 0.80 0.71 0.69
ob2 0.54 0.60 0.79 0.67 0.65
ob3 0.70 0.55 0.77 0.64 0.67
ob4 0.61 0.57 0.74 0.65 0.64
ob5 0.59 0.62 0.81 0.69 0.68
union 0.62 0.50 0.70 0.58 0.60
majority 0.75 0.68 0.79 0.72 0.74
inter 0.48 0.51 0.82 0.56 0.59
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Table A.2: Average precision scores from the U-Net trained on different ground truth
labels, and assessed against the majority vote.

BI AN AP GC mAP
ref_ob 0.8 0.73 0.79 0.72 0.76
ob1 0.81 0.69 0.67 0.72 0.72
ob2 0.74 0.58 0.77 0.74 0.71
ob3 0.81 0.67 0.76 0.74 0.74
ob4 0.81 0.64 0.73 0.71 0.72
ob5 0.81 0.50 0.79 0.71 0.70
union 0.69 0.69 0.78 0.69 0.71
majority 0.75 0.68 0.79 0.72 0.74
inter 0.48 0.51 0.82 0.56 0.59
mixed 0.81 0.70 0.79 0.69 0.75
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Table B.1: Data splits used for four-fold cross validation, including the number of
features in each plot, and the total per fold.

Test Fold Plot Ref Date FOI examples Guano examples
N04 2019-09-26 442 504
N05 2019-07-23 54 87
N06 2019-07-23 115 223
N07 2019-07-24 66 95
N10 2019-08-14 258 171
N22 2019-07-02 105 266
N26 2019-10-01 145 144

1

N60 2019-10-08 185 423
Total: 1370 1913

N02 2019-09-18 121 52
N03 2019-09-16 148 242
N08 2019-10-16 21 25
N11 2019-09-18 108 97
N18 2019-09-24 26 20
N25 2019-10-03 173 262
N27 2019-07-29 579 989

2

N114 2019-09-09 129 247
Total: 1305 1934

N09 2019-08-15 353 254
N17 2019-10-09 47 22
N19 2019-07-04 10 40
N38 2019-07-03 25 86
N50 2019-09-18 99 143
N73 2019-10-03 122 299
N100 2019-10-22 651 608

3

N110 2019-07-01 56 27
Total: 1363 1479

N01 2019-07-22 32 81
N14 2019-07-19 102 355
N15 2019-07-17 0 13
N20 2019-07-05 202 234
N23 2019-10-10 342 281
N24 2019-07-19 186 164
N97 2019-09-10 283 975

4

N101 2019-10-24 176 210
Total: 1323 2313
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Figure B.1: Per-plot precision-recall curves for test data fold 1. Including average
precision (AP) for FOI’s and guano, as well as the mean average precision (mAP)

averaged across classes.
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Figure B.2: Per-plot precision-recall curves for test data fold 2. Including average
precision (AP) for FOI’s and guano, as well as the mean average precision (mAP)

averaged across classes.
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Figure B.3: Per-plot precision-recall curves for test data fold 3. Including average
precision (AP) for FOI’s and guano, as well as the mean average precision (mAP)

averaged across classes.
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Figure B.4: Per-plot precision-recall curves for test data fold 4. Including average
precision (AP) for FOI’s and guano, as well as the mean average precision (mAP)

averaged across classes.
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Table C.1: Final results for every plot in the four test folds. mAP is the mean of
the average precision scores across classes (FOI and guano). We report the average
precision (AP) per class, the recall, precision, and actual number of true positives and

negatives, and false positives and negatives.

Fold Plot mAP Class AP Rec Prec TPs FNs FPs TNs
foi 0.73 0.68 0.71 25 12 10 76N04 0.665 guano 0.6 0.67 0.59 22 11 15 55
foi 0.28 0.29 0.67 2 5 1 20N05 0.325 guano 0.37 0.33 0.38 3 6 5 23
foi 0.51 0.38 0.71 5 8 2 23N06 0.585 guano 0.66 0.7 0.76 16 7 5 24
foi 0.7 0.67 0.67 4 2 2 19N07 0.66 guano 0.62 0.64 0.54 7 4 6 18
foi 0.77 0.71 0.85 17 7 3 34N10 0.715 guano 0.66 0.5 1 10 10 0 19
foi 0.64 0.64 0.9 9 5 1 40N22 0.515 guano 0.39 0.41 0.46 13 19 15 77
foi 0.78 0.58 1 7 5 0 21N26 0.745 guano 0.71 0.83 0.71 15 3 6 43
foi 0.75 0.81 0.65 17 4 9 46

1

N60 0.685 guano 0.62 0.64 0.54 21 12 18 62
foi 0.84 0.88 0.88 7 1 1 9N02 0.81 guano 0.78 0.67 0.8 4 2 1 21
foi 0.6 0.59 0.77 10 7 3 26N03 0.695 guano 0.79 0.78 0.64 18 5 10 40
foi 0.67 1 0.5 3 0 3 10N08 0.71 guano 0.75 1 0.5 4 0 4 8
foi 0.88 0.88 0.88 7 1 1 14N11 0.79 guano 0.7 0.89 0.53 8 1 7 23
foi 0.5 1 0.4 2 0 3 10N18 0.365 guano 0.23 0.75 0.23 3 1 10 25
foi 0.71 0.8 0.67 8 2 4 55N25 0.74 guano 0.77 0.88 0.52 14 2 13 64
foi 0.54 0.5 0.69 24 24 11 146N27 0.51 guano 0.48 0.53 0.46 31 28 36 137
foi 0.43 0.64 0.6 9 5 6 39

2

N114 0.49 guano 0.55 0.56 0.71 10 8 4 41
foi 0.69 0.65 0.68 17 9 8 55N09 0.6 guano 0.51 0.86 0.3 12 2 28 81
foi 0.5 0.5 1 3 3 0 19N17 0.585 guano 0.67 1 0.5 3 0 3 20
foi 0.5 0.5 1 1 1 0 11N19 0.345 guano 0.19 0.14 0.1 1 6 9 26
foi 0.4 0.29 0.5 2 5 2 11N38 0.275 guano 0.15 0.23 0.43 3 10 4 26
foi 0.62 0.67 0.44 8 4 10 15N50 0.625 guano 0.63 0.67 0.52 14 7 13 34
foi 0.62 0.54 0.7 7 6 3 29N73 0.65 guano 0.68 0.82 0.41 14 3 20 74
foi 0.66 0.66 0.72 21 11 8 78N100 0.705 guano 0.75 0.89 0.52 33 4 30 85
foi 0.54 0.57 0.57 4 3 3 22

3

N110 0.44 guano 0.34 0.5 0.17 2 2 10 51
foi 0.42 0.5 0.75 3 3 1 13N01 0.38 guano 0.34 0.44 0.16 4 5 21 69
foi 0.25 0.24 0.5 4 13 4 47N14 0.39 guano 0.53 0.67 0.47 16 8 18 59
foi 0 0 0 0 2 14N15 0 guano 0 0 0 0 3 8 47
foi 0.52 0.36 0.83 10 18 2 24N20 0.58 guano 0.64 0.76 0.68 19 6 9 34
foi 0.74 0.75 0.75 18 6 6 53N23 0.67 guano 0.6 0.69 0.51 18 8 17 79
foi 0.75 0.81 0.76 13 3 4 17N24 0.625 guano 0.5 0.47 0.7 7 8 3 39
foi 0.35 0.77 0.44 20 6 25 131N97 0.515 guano 0.68 0.76 0.57 37 12 28 95
foi 0.54 0.6 0.43 9 6 12 93

4

N101 0.5 guano 0.46 0.7 0.34 14 6 27 79
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