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ABSTRACT 

 The most sophisticated tools for studying future climates are General Circulation 

Models (GCMs). However, GCMs have biases, coarse resolution, and have not simulated 

all relevant scenarios. Stochastic weather generators (SWGs) produce synthetic daily time 

series of weather variables that, when calibrated with local observational data, can address 

the GCM bias and scale issues. If their parameters are perturbed using specific simulations, 

projections are still limited to scenarios simulated by the parent GCM. To solve this, the 

pattern scaling (PS) technique is applied for the first time to estimate SWG parameter 

perturbations for future scenarios or warming levels, by diagnosing GCM-simulated 

dependence of SWG parameters on global mean surface temperature (GMST). 

A daily SWG is developed for multiple weather variables and calibrated using 

observations from a range of climates. It uses a Markov-chain gamma-distribution model 

for precipitation and a regression model conditioned on precipitation for temperatures. A 

new assessment of Markov-chain model order across Köppen climate regimes finds that 

optimal model order primarily depends on performance metric. Another innovation is a 

generalised linear model for mean wind speed, with further regression models for humidity 

and radiation. The model is collectively referred to as the Globally Calibrated stochastic 

Weather Generator (GCWG). 

 Response patterns of the key precipitation and temperature parameters are diagnosed 

globally from GCM projections to demonstrate how to combine PS with the GCWG. For 

example, linear regression has been used to determine the response of first-order Markov 

probabilities to increasing GMST, with R2 scores typically exceeding 0.5 over land. Mean 

daily minimum temperatures show larger increases with GMST than maximums (increasing 

at 3.4°C/°C compared to 1.3°C/°C). GCWG parameters are hence perturbed by GCM-scale 

responses to construct local-scale time series for a range of scenarios with the potential to 

emulate those that have not yet been simulated by GCMs. 
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Figure A.1 - Scatter plots showing precipitation parameters against change in GMST. 

Location codes (e.g., GL) correspond to approximate GCM grid-cell location, with 

details given in Table A.1 .......................................................................................... 285 
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ACRONYMS 

CDD/CWD – Consecutive Dry Days per year/Consecutive Wet Days per year 

CMIP – Coupled Model Intercomparison Project 

CSDI/CS10 – Cold Spell Duration Index/Cold Spell 10th Percentile 

DJF – December, January, February 

ECAD – European Climate Assessment & Dataset 

FAO – Food and Agriculture Organization 

GCM – General Circulation Model 

GCWG – Globally Calibrated stochastic Weather Generator 

GLM – Generalised Linear Model 

GMST – Global Mean Surface Temperature 

GWL – Global Warming Level 

IAV – Interannual Variability 

IPCC – International Panel on Climate Change 

IVA – Interannual Variability in mean precipitation Amount 

IVO – Interannual Variability in precipitation Occurrence 

JJA – June, July, August 

MAM – March, April, May 

MLR – Multiple Linear Regression 

PET – Potential Evapotranspiration 

PS – Pattern Scaling 

RCP – Representative Concentration Pathway 

RMSE – Root Mean Squared Error 

SON – September, October, November 

SSP – Shared Socioeconomic Pathway 

SWG – Stochastic Weather Generator 

WSDI/WS90 – Warm Spell Duration Index/Warm Spell 90th Percentile 
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1 INTRODUCTION 

Climate change over the last 150 years has exceeded the changes that can be expected 

due to natural variability, and it is with confidence that anthropogenic greenhouse gas and 

aerosol emissions can be held responsible (Chen et al., 2021; Stocker et al., 2013). Changes 

to the climate can have severe implications on several sectors, including agricultural and 

hydrological management (Arnell et al., 2013), human health and mortality (Luber and 

McGeehin, 2008), and on tourism, fisheries, and on modifications to land-usage (IPCC, 

2022). Furthermore, there is wide agreement that changes to the frequency and severity of 

extreme events as a function of climate change are likely (Easterling et al., 2000; Seneviratne 

et al., 2021). It is therefore important that impact assessors, stakeholders who make decisions 

about adaptation and investment, and policymakers alike have access to climate projections 

that capture a range of potential future climate scenarios at high temporal and spatial scales. 

To aid with the construction of a tool that addresses these requirements, this thesis is part of 

a CASE studentship with industrial partner, Atkins. 

General Circulation Models (GCMs) are the most sophisticated tools at our disposal that 

are used to construct projections representing a range of scenarios, including mitigated and 

high-forcing pathways (Tebaldi et al., 2021). However, GCMs are constrained by the 

computational cost, resulting in the parameterisation of several sub-grid cell processes and 

a spatial resolution that may be too low for impact assessments. This has resulted in the 

development of several downscaling techniques, including the computationally efficient 

stochastic weather generators. In instances where GCM resolution is more appropriate for 

impact assessments (e.g., simulations produced by the recent HighResMIP (Haarsma et al., 

2016)), clarity of the forced changes, including their uncertainty, can nevertheless be limited 

by the low number of realisations. Although a range of possible scenarios representing 

changes in anthropogenic emissions and socio-economic factors have been explored by 

GCMs, it is difficult to discern the relative likelihoods of any given scenario, and uncertainty 

in the future climate cannot be addressed studying a few climate scenarios alone (Grübler 

and Nakicenovic, 2001). Pattern scaling has been widely used to emulate scenarios and time-

periods that GCMs have not produced projections for, providing a technique that helps 

expand the number of projections available to impact planners and helps address some of 

the issues associated with using just a limited number of direct GCM simulations. Assuming 

a linear relationship between global surface temperature change and local climate change in 

a variable, pattern scaling has typically only been used to construct projections over long 
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temporal scales (e.g., monthly, seasonally, annually) and usually only addresses changes in 

local-scale mean climate, not variability.   

While stochastic weather generators can be used to downscale GCM resolution, they 

are also computationally efficient tools that can produce long time series for a suite of 

weather variables at local scales and for a range of temporal scales (e.g., monthly, daily, sub-

daily). They are commonly used to produce temporally consistent time series (between 

variables as inputs into hydrological, agricultural or ecological models (Semenov et al., 

1998). Able to produce long time series with high temporal scales, stochastic weather 

generators can also be used to robustly assess the risk of extreme weather events. However, 

many stochastic weather generators (e.g., WGEN (Richardson and Wright, 1984), LARS-

WG (Semenov and Barrow, 2002)) that are in broad use have been calibrated only for a sub-

region of interest, frequently North America or Europe. These locations are not 

representative of all the different global climate regimes, where different configurations of 

the underlying statistical stochastic model may perform better. Furthermore, without some 

form of perturbation, stochastic weather generators are only able to produce time series that 

is statistically similar to an observed series. 

In this thesis, the pattern scaling technique will be combined with a stochastic weather 

generator to address some of the aforementioned issues. This has led to the development of 

a computationally inexpensive tool to construct daily, local-scale time series for a suite of 

weather variables and a range of future climate scenarios, utilising the strengths of the 

pattern scaling technique and stochastic weather generators. The main aims of this thesis 

can be broken down into four primary objectives: 

1. To develop a globally calibrated stochastic weather generator, assessed for multiple 

climatic regimes, and producing a suite of weather variables at a daily temporal 

scale, namely: precipitation, maximum and minimum temperature, mean wind 

speed, solar radiation and relative humidity. The stochastic weather generator 

developed here will be referred to as GCWG (Globally Calibrated stochastic 

Weather Generator).  

2. To use the pattern scaling technique to diagnose the response of GCWG parameters 

to a changing climate as simulated by GCMs. Pattern scaling will relate these 

changes to global mean surface temperature (GMST) and will include parameters 

accounting for changes in future variability. 
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3. To apply the response patterns diagnosed in Objective 2 to perturb observed GCWG 

parameters and hence to generate local-scale and daily timescale future scenario data 

to better understand climate uncertainty. 

4. To study weather extremes using the GCWG under present-day and future global 

warming levels (GWLs). 

1.1 THESIS STRUCTURE 

Chapter 2 is a literature review, comprised of four main sections. Observed and 

projected changes to the frequency and severity of extreme weather events are discussed in 

the first section. The second and third sections discuss GCMs, stochastic weather generators, 

and a selection of widely used downscaling techniques. Finally, the fourth section includes 

a review of pattern scaling strengths, limitations, and uses.  

Chapters 3, 4 and 5 address Objective 1, focussing on the development of a globally 

calibrated stochastic weather generator (GCWG) using a global network of weather station 

observations and case studies representative of five different climatic regimes (Peel et al., 

2007). A first-order Markov-chain gamma-distribution model for precipitation, conditional 

multiple linear regression model for maximum and minimum temperature, generalised linear 

model with a log-link function for mean wind speed, and multiple linear regression models 

for solar radiation and relative humidity are developed, using robust statistical testing 

models to validate choices.  

Chapter 3 mainly comprises of a first-author publication in the International Journal of 

Climatology, titled “Selecting Markov chain orders for generating daily precipitation series 

across different Köppen climate regimes”, assessing Markov-chain model-order 

performance (zeroth, first, second, and third) at reproducing observed precipitation globally 

using a range of metrics: Bayesian Information Criteria, the ability to reproduce observed 

distributions for wet- and dry-spell length and the interannual variability of precipitation 

occurrence. Further metrics are included in Chapter 3, including the ability to reproduce 

observed mean annual maximum 5-day precipitation and the interannual variability of mean 

precipitation. 

Chapter 4 further validates the precipitation model using observed data from five 

stations, representative of the five Köppen climate regimes (tropical, dry, temperate, 

continental and polar). The conditional, multiple linear regression model for daily maximum 
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and minimum temperature is also introduced and validated. The ability of GCWG at 

reproducing univariate and multivariate extremes is also assessed.  

Chapter 5 uses similar statistical tests as Chapter 4 to formulate and validate the 

generalised linear model for wind speed and the multiple linear regression models for solar 

radiation and relative humidity. The suites of observed and generated variables are also used 

to calculate evapotranspiration. This provides a good indicator into the proficiency of 

GCWG. 

Chapters 6 and 7 address Objectives 2 and 3. The first section of Chapter 6 is a 

manuscript that is planned for submission to Climatic Change. Chapter 6 diagnoses global 

patterns of GCM-scale GCWG precipitation parameter  responses to increasing GMST using 

two GCMs: IPSL-CM6A-LR (Boucher et al., 2020) and ACCESS-ESM1-5 (Ziehn et al., 

2020). The parameters consider are the first-order Markov chain transition probabilities and 

the gamma parameters of the wet-day amount distributions. The scaling of these parameters 

enables incorporation of changes in the daily variability alongside the mean. The responses 

are used to perturb observed parameters at two case study locations and hence produce long 

precipitation time series under a range of global warming levels (GWLs): 1.5, 2.0 and 4.0°C 

above pre-industrial. Extreme precipitation events are also assessed at different GWLs.  

Chapter 7 follows a similar trajectory to Chapter 6, though here GCWG temperature 

parameters have been pattern scaled using only ACCESS-ESM1-5 to derive the response 

patterns. Once more, spatial responses are used to perturb parameters calculated from 

observed station data at two case study locations to study local-scale future changes in 

maximum and minimum daily temperature. Univariate and multivariate (or compound) 

extremes at different GWLs are considered here.  

 Objective 4 is not addressed by any single chapter alone and, rather, is kept in mind 

throughout all chapters that address validation of methods used in stochastic weather 

generation and the construction of future projections. Stochastic weather generators can 

produce long running time series with computational efficiency, providing an opportunity 

to produce several realisations (i.e., multiple time series) of the climate for present-day and 

future climates. Long time series are required to study the changing risk of very rare events. 

Return periods, extreme indices, multivariate extremes, and wet- and dry-spell length 

distributions are all considered in the representation of extreme weather throughout this 

thesis. 
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 To summarise, local-scale projections are of great importance to impact assessors 

and as inputs to hydrological, ecological, and agricultural models. While there have been 

great advancements in GCM resolution and downscaling techniques in recent years, further 

methodological developments can offer an opportunity to study a wider range of futures and 

further explore uncertainty in climate projections. In summary, the work presented in this 

thesis utilises the strengths of stochastic weather generators with the strengths of the pattern 

scaling technique to produce a local-scale, computationally efficient tool that can emulate a 

range of climate futures and which offers functional advantages over existing techniques.   
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2  LITERATURE REVIEW 

 The current changes experienced by Earth’s climate are far greater than those 

expected to be seen through natural variability. Anthropogenic greenhouse gas and 

atmospheric aerosol emissions are held, with 95% certainty, responsible for the increase in 

mean global surface temperature (GMST) since pre-industrial times (Chen et al., 2021; 

Stocker et al., 2013). Alongside increases to the GMST, changes to the severity and 

frequency of extreme weather events have been recorded (Coumou and Rahmstorf, 2012) . 

How these extremes may continue to change in the future is of particular interest to impact 

assessors, as these extreme events can have severe adverse effects on several physical 

processes such as the hydrological cycle (Arnell et al., 2013), on a variety of sectors such as 

agriculture, tourism, forestry and fisheries (IPCC, 2022), and on human mortality and 

comfort (Luber and McGeehin, 2008). The effect climate change has and is projected to 

have on extreme weather events is discussed as part of this literature review.  

 The future behaviour of the climate and its response to varying greenhouse gas 

emissions is uncertain. The Paris Agreement, adopted in 2015 and formulated by the United 

Nations Framework Convention on Climate Change (UNFCCC), aims to unify efforts in 

limiting the increase in GMST to below 2°C compared with pre-industrial temperatures, 

with significant efforts to keep the increase to less than 1.5°C (Savaresi, 2016).  Climate 

change scenarios have been developed to account for a range of possible futures, integrating 

changes in socioeconomic and environmental factors, climate policy and population. These 

scenarios range from mitigation pathways to those with high anthropogenic forcings 

(O’Neill et al., 2014). Of course, with several potential climate futures, there is much 

uncertainty regarding which pathway we will follow.  

 There are several different types of models that can be used to produce projections 

of climate change scenarios, including general circulation models (GCMs) and stochastic 

weather generators (SWGs). It is important that risk assessors have access to realistic and 

robust models to simulate present and future climates under a variety of emission scenarios. 

These simulations are invaluable tools for impact studies, providing information to allow 

users to ideally minimise the negative but exploit the positive consequences of climate 

change (Ribalaygua et al., 2013). For a climate change scenario to be used in impact 

assessments, there are several requirements, including (but not limited to): 
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• scenarios should have daily temporal resolution and site-specific spatial resolution 

(the order of a few kilometres); 

• they should include a full suite of climate variables in their output; 

• changes in means, variability and extremes in climate should be included; 

• high-quality and long-running data. 

 GCMs, regional climate models (RCMs) and SWGs address different requirements. 

GCMs produce global, high-quality, long time series for a suite of weather variables, driven 

by anthropogenic changes to the atmosphere for a range of emissions and economic 

scenarios. While GCM projections are undoubtedly useful on a global scale, the models are 

computationally expensive, with spatial resolutions that are too low for use in impact 

assessments, alongside demonstrating significant biases in describing present-day climate 

(Sørland et al., 2018; Wu and Gao, 2020) arising from the parameterization of sub-grid scale 

processes such as convection, formation and microphysics of clouds, and local forcing (Eden 

and Widmann, 2014). RCMs were developed to address the course spatial resolution of 

GCMs and produce finer scale information that better represents sub-GCM grid-scale 

processes that is more suitable for impact assessments. However, it is thought that the use 

of RCMs leads to little improvement regarding the biases in the simulation of present-day 

climate, and the credibility of the models are highly dependent on the quality of the GCMs 

used to provide boundary conditions (Sørland et al., 2018; Wu and Gao, 2020). SWGs are 

an alternative, computationally inexpensive method of generating weather time series, 

capable of producing long-running data for a suite of weather variables based on 

observations (Wilson Kemsley et al., 2021). However, stochastic weather generators are not 

conditioned on circulation patterns, meaning they cannot be used without adjustment to 

study future climate. The strengths and weaknesses of GCMs, RCMs, and SWGs will be 

discussed in this chapter.  

2.1 EXTREME WEATHER EVENTS AND CLIMATE CHANGE 

 An association between increasing GMST and changes in the frequency and severity 

of extreme weather events has been established (Seneviratne et al., 2021). This is of 

particular interest to impact assessors, with human society and terrestrial ecosystems facing 

their greatest threats with an increase in the severity and/or frequency of extreme weather 

events. Despite a rapid increase in world agricultural production over the past few decades, 

climate disasters are also thought to be the main cause of variations in production and huge 

contributors to food insecurity (Li et al., 2009). There is therefore a push to better understand 
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how extreme weather events, such as heat waves, droughts, floods, and cyclones, might 

change at different global warming levels (GWLs) due to their devastating impacts on 

society. Discerning trends in the observations of extreme events since pre-industrial times 

is one such way of studying the impact climate change is having on such events. Climate 

change projections can also be used to assess the effects further changes to the climate may 

have on extreme events in the future. Observed trends and projected changes in extremes 

from model projections participating in Phases 5 and 6 of the Coupled Model 

Intercomparison Project (CMIP5 and CMIP6 respectively) will be discussed in this chapter. 

All changes in GMST are discussed relative to the pre-industrial mean surface temperature 

(1850-1900). 

 Studying the effect changing GMST may have on extreme events is subject to certain 

caveats.  Statistical analysis can be used to determine whether the frequency of occurrence 

or severity of an extreme event is significantly greater than expected in an unchanging 

climate (Coumou and Rahmstorf, 2012). Robust statistical analysis of extreme weather 

events requires: 

• a comparable, defined extreme; 

• careful selection of time series to reduce selection bias; 

• high-quality, long-running data. 

To address the first bullet point, the Expert Team on Climate Change Detection and Indices 

(ETCCDI) formulated 27 metrics that define comparable extremes that have been widely 

used to examine trends in temperature and precipitation extremes (Dunn et al., 2020). A full 

list of the indices can be found on 

http://cccma.seos.uvic.ca/ETCCDMI/list_27_indices.html. The second and third bullet 

points can be addressed using a range of the available climate projections and observations. 

However, underpinning much of the uncertainty into the study of changing extremes in 

future projections lies in the differences between climate models themselves (referred to as 

inter-model uncertainty), alongside uncertainty in future greenhouse gas and aerosol 

emissions. Uncertainties associated with projections will be discussed in detail in Section 

2.4.  

 The 21st century has seen a remarkable number of record-breaking heatwaves across 

the world, with studies holding global warming responsible in many cases. Examples 

include a heatwave across Moscow with a death toll of up to 11,000 and a harvest loss of 

30%, the most destructive Australian bushfires on record, and the hottest European summer 

http://cccma.seos.uvic.ca/ETCCDMI/list_27_indices.html
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in 500 years (Coumou and Rahmstorf, 2012). It has been postulated that anthropogenic 

warming trends have, at least, doubled the chance of such record-breaking heatwaves 

occurring in Europe, with the probability of very hot summers also largely increasing (Stott 

et al., 2004). Alongside an increase in the intensity, frequency, and duration of global hot 

extremes, there has been a decrease in those of global cold extremes (Alexander et al., 2006). 

This has resulted in a higher proportion of warm night-time temperatures; following analyses 

of global weather stations, Alexander et al. (2006) found a greater than doubled frequency 

of the number of annual warm nights across north Africa and northern South America. In 

line with global changes, Skansi et al. (2013) found widespread decreases in extreme cold 

indices, alongside less marked increases in warm extremes following analyses of a network 

of observations from South American weather stations. Magnitudes of change in extreme 

temperatures are often much larger than changes in GMST (IPCC, 2021a), particularly over 

mid-latitude land regions. This is due to greater warming trends on land than on the ocean’s 

surface, caused by the greater specific heat capacity of water than land. 

 CMIP5 and CMIP6 projections are in agreement that large increases in the 

temperature of hot and cold extremes will occur with a GMST increase of 1.5°C for a range 

of ETCCDI temperature indices. For example, less than half a degree of warming in GMST 

is responsible for changes in TXx (the monthly maximum value of daily maximum 

temperature) that exceed natural variability (Seneviratne et al., 2021). Warming in TNn (the 

monthly minimum value of daily minimum temperature) shows strong equator-to-pole 

amplification. Specifically, the Arctic sees an increase in warming of the coldest nights at a 

rate three times that of global warming. Increases in TXx are much more uniform over land, 

though increases in the temperature of hot extremes still show a rate of increase up to two 

times greater than global warming across mid-latitudes. Mueller et al. (2016) postulate that, 

even under moderate forcing pathways, more than half of the world’s population will 

experience hot summers 9 out of 10 years by the year 2050, where a hot summer is defined 

as a summer “with higher mean temperatures than during the historically hottest summer” 

(Mueller et al., 2016). Tebaldi and Wehner (2018) find significant differences in increases 

in TXx under different forcing pathways. By the end of the 21st century, 92% of land surface 

areas are projected to experience present-day 20-year return values of TXx every other year 

under a high forcing pathway, as opposed to 62% under a mitigating scenario (Tebaldi and 

Wehner, 2018). This highlights the effect a forcing pathway has on resultant projections and 

some of the associated uncertainties.  
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 Changes in extreme precipitation have been witnessed since pre-industrial times. 

Recent record-breaking examples of extreme precipitation include the Pakistani flood in 

2010 – the worst flood in its recorded history, affecting up to one-fifth of its land and 20 

million people, damages worth £1.3 billion following the wettest recorded autumn in Wales 

and England in 2000, and the highest levels of the Elbe River, Dresden, since records began 

in 1275 (Coumou and Rahmstorf, 2012). More recently, West Europe experienced 

widespread extreme precipitation in 2021 across Germany, Belgium, Luxembourg and 

neighbouring countries, resulting in catastrophic floods (Kreienkamp et al., 2021), with the 

intensity of 1- and 2-day precipitation in these regions having increased significantly as a 

function of climate change. A positive statistical relationship between the risk of great floods 

(“floods with discharges exceeding 100-year levels from basins larger than 200,000km2” 

(Milly et al., 2002)) and increasing GMST has been found, alongside a substantial increase 

of extreme precipitation across the mid-latitudes. Where observed precipitation data is 

available, a larger proportion of weather stations across Africa show significant increases in 

extreme daily precipitation than decreases, though observations cover only a limited region 

of the continent. Sun et al. (2021) studied the changes in Rx1day and Rx5day indices 

(maximum 1-day and 5-day precipitation amounts respectively) from observed precipitation 

records globally. Statistically significant increases in Rx1day and Rx5day indices in the late 

20th century have been noted in over two thirds of stations studied across much of the globe, 

including Asia, Europe and North America. Conversely, negative trends in Rx1day and 

Rx5day indices were not considered greater than could be expected by chance (Dunn et al., 

2020). Trends in changes to extreme precipitation are less clear across South America. While 

evidence suggests an increase in extreme precipitation, the trends are not considered robust. 

This is due to data sparsity and spatially varying trends in several regions (Skansi et al., 

2013).  

 Based on climate model projections, the risk of extreme precipitation is considered 

“very likely” to grow further as the climate continues to change in the future (Seneviratne et 

al., 2021). While the magnitude of changes to extreme precipitating events are dependent on 

climate scenario (Arnell and Gosling, 2016), CMIP5 models project increases in Rx1day 

indices regardless of forcing pathway. This is reiterated by the more recent CMIP6 

projections. An increase of just 0.5°C in GMST shows significant increases in extreme 

precipitation; this is indicated by the 50-year return periods of Rx1day and Rx5day not 

overlapping between 1.5°C and 2.0°C of warming. Though most land areas can expect an 

increase in extreme precipitation, decreases are projected across subtropical ocean areas due 
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to changes in storm track shifts. In some model realisations, these the changes in storm tracks 

may result in decreases in extreme precipitation over nearby land areas (Seneviratne et al., 

2021).  

 With projected increases in extreme precipitation events, it can be ascertained that 

the risk of flooding will also increase. However, extreme precipitation is not the only factor 

to consider in the study of flooding events. Modellers face several challenges in studying 

the changing risk of river floods, primarily relating to the inter-model uncertainty, alongside 

the accurate depiction of a range of other factors that contribute to floods, including storms, 

overflowing rivers and antecedent soil moisture. Despite this, there is confidence in an 

overall increase in the total global flood risk (Arnell and Gosling, 2016). Much of the 

changes to flood frequency (both increases and decreases) are found in south and east Asia. 

Increases to the frequency of great floods have also been projected to further increase 

substantially across Southeast Asia, Peninsular India, east Africa and the north Andes 

(Hirabayashi et al., 2013). He et al. (2022) quantifies GCM projected flood risk at a range 

of GWLs, finding decreasing return periods for 1 in 100-year floods for up to (for example) 

96% of major basin areas in India by 4°C GMST increase. This would subsequently result 

in a 2765% increase to the human exposure of such events, contrasting increases of 239% 

to human exposure over the 1.5°C GWL (He et al., 2022). This is undoubtedly a calamitous 

increase between the GWLs, and reiterates benefits of conforming with the Paris 

Agreement’s goal of limiting GMST increase to 1.5°C. With the water holding capacity of 

air increasing by approximately 7% per 1°C warming, even in locations where the frequency 

of precipitation occurrence may decrease, the amount of rainfall in any given event may 

increase. This may further exacerbate the risk of global flood risk (Trenberth, 2011).   

 An increase in GMST will lead to more evaporation, in turn increasing surface drying 

and potentially increasing the intensity and duration of droughts (Trenberth, 2011). 

Alongside a devastating impact on agricultural yield, prolonged drought can greatly impact 

ecosystem health, the economy, water supplies and the spread of vector borne diseases (Cole 

et al., 2002). These events are therefore considered one of the most dangerous extreme 

weather events for humans; for example, of all extreme events, droughts have resulted in the 

highest rate of mortality in the U.S. (Luber and McGeehin, 2008)). As such, it is important 

that impact assessors can consider how a change in drought severity may affect 

infrastructure and health, alongside how to reduce the environmental risk such events pose 

(Jones, 2001). As with floods, there are several factors that affect the occurrence of drought, 

including precipitation deficit, soil moisture deficit, air temperature and atmospheric 
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evaporative demand. Natural unforced variability, such as the El Niño-Southern Oscillation 

(ENSO) also significantly affects drought occurrence, with a decrease in global drought 

conditions under La Niña conditions (Trenberth et al., 2014). These factors present 

difficulties in the quantification of historical and future drought occurrence as a function of 

increasing GMST alone.   

 Observations show an increase in length and intensity of droughts across regions 

such as Europe and West Africa. Other regions, however, have experienced decreases in 

frequency and severity, such as Central America and north western Australia (Seneviratne 

et al., 2021). An increase in drying across low- and mid- latitudes is currently projected by 

several climate models under current and increasing greenhouse gas emissions (Trenberth 

et al., 2014). This is reiterated by the findings of Dai (2012), where it was found that over 

82% of CMIP5 models project a decrease in soil-moisture content in the top-10cm across 

Europe, southern Africa, southeast Asia, Australia and much of the Americas and the Middle 

East from 5 to 15% by the end of the 21st century. Vogel et al. (2020) find increases in hot 

and dry multivariate extremes (defined as having a 1% likelihood of occurrence) over many 

land-surface areas as GMST increases. Concurrent extreme hot and dry events can 

exacerbate the conditions required for drought. Hotspots of increasing occurrence in such 

events are present across northern South America and southern Africa. For example, at a 

GWL of 1.5°C, approximately 3 clusters of hot and dry extremes are projected per year. By 

4.0°C, this has increased to 9 clusters per year. It is known that drought and fire regimes 

interact closely, with, for example, Flannigan et al. (2000) finding that the contributing 

factors toward wildfire risk across the United States are projected to increase up to as much 

as 50% by 2060, and Kilpeläinen et al. (2010) similarly noting projected increases to the 

annual number of forest fire alarm days by the end of the 21st century.  

 There have been several studies attempting to assess the impact climate change might 

have on extreme storms, such as tropical cyclones, extratropical cyclones, and severe 

convective storms. Tropical cyclones typically cause the highest property damage and loss 

of all extreme events (Trenberth, 2011). There has been much speculation over whether 

increasing sea surface temperatures (SSTs) as a result of anthropogenic emissions, alongside 

other environmental changes, might increase cyclone activity (Knutson et al., 2019). 

Quantifying and attributing the impacts climate change may have on extreme storms 

presents several difficulties due to the short-lived, rare and localised behaviour of such 

events, alongside obtaining high-quality, accurate, and temporally consistent observations 

(Knutson et al., 2019; Knutson et al., 2010). However, it has been speculated that over the 
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last 40 years, an increasing intensity of cyclones has been witnessed, with almost a doubling 

in the number of the most severe tropical cyclones – though this trend is believed to be 

within natural variability (Mendelsohn et al., 2012). Although the frequency of tropical 

cyclones may lie within the expected occurrences due to natural variability, there is a 

suspected increase in the intensity of such storms, with the damage caused increasing. 

Maximum wind speeds associated with tropical cyclones are related to increased greenhouse 

gas warming and are suspected to increase with GMST (Elsner, 2020). However, with 

growing population and infrastructure in coastal, cyclone-prone areas, it is unlikely that 

climate change is a singular factor in this increased damage. Several factors currently hinder 

the study of cyclones and future climate change. These include limited historical records, 

under-reporting of low-damage storms and subjective recordings of damage and intensity.  

2.2  CLIMATE PROJECTIONS 

2.2.1 GENERAL CIRCULATION MODELS 

 Attempts at understanding the climate go back as far as ancient Greece. Whilst 

computational models were not possible until the early 1900s, conceptual and radiative-

convective models have been developed and theorized for centuries. Many theories and 

ideas have since been confirmed using computational models and observations, such as 

Halley’s theory of circulation and the preservation of atmospheric equilibrium, providing 

the foundations for early computational climate exploration (Edwards, 2011) and paving the 

way for the sophisticated GCMs in use today.  

 GCMs are presently the most powerful and sophisticated tools used for simulating 

future climate response to anthropogenic forcing. GCMs are primarily used to study the 

large-scale effects of climate change and are successful at simulating features of large-scale 

atmospheric circulations. GCMs have been used to study the Earth’s pre-industrial climate, 

confirming that anthropogenic greenhouse gas emissions and aerosols are warming the 

atmosphere (Roeckner et al., 1999). GCMs are global, numerical models used to simulate 

the physical processes of the Earth’s atmosphere (and oceans, unless they are an atmosphere 

only GCM), and can simulate atmospheric circulatory patterns with the earth and 

atmosphere divided into a three-dimensional grid. These complex models use partial 

differential equations to represent many conservation laws (e.g., atmospheric mass, 

momentum, energy, and water vapour), representations of sea ice, atmospheric radiation and 

convection, alongside several other important processes (Dubrovský, 1997). CMIP6 (the 
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most up to date Coupled Model Intercomparison Project) GCMs depict the Earth and its 

atmosphere using between 14 and 102 atmospheric layers above sea-level, and with 

horizontal resolutions generally between 100 and 250km, though in some higher-scale 

models, resolutions can reach up to 60km (IPCC, 2021b) . Although GCM resolution has 

come a long way in recent years, even the highest resolution GCMs produce climate 

variables on a scale that is inappropriate for impact assessments, and are therefore often 

described as representing area-averaged values for each grid-cell  (Wilks, 1999a), as 

opposed to local-scale climate. Furthermore, GCMs are known to imperfectly simulate the 

occurrence of extreme events due to their course resolution and the parameterisation of the 

physical drivers of such events (Bellprat and Doblas-Reyes, 2016).  

 GCMs have simulated Earth’s climate under past, present, and future conditions, 

with the capacity to study both transient and steady-state emission scenarios. Using these 

projections, GCMs can be used to study future greenhouse gas forcing scenarios with 

variable emissions. Currently, GCM-based studies often focus on long-term projections as 

the signal-to-noise ratio is robust, although closer time scales (i.e., decadal) are of more 

interest to impact assessors (Cabré et al., 2010).  However, running these coupled climate 

models for many different scenarios and time scales is currently not computationally viable 

or practical, as simulations tend to push computational capacities to their limits. Although 

the resolution of GCMs has greatly improved in recent years (IPCC, 2021b), impact and 

hydrological assessments require data at a much finer scale. There has been (and remains) a 

mismatch in scale between GCM outputs and the spatial scale required for hydrological 

assessments (Doblas-Reyes et al., 2021; Wood et al., 2004).  

 Despite the accuracy of GCMs at simulating changes in the climate system over large 

spatial scales, it is smaller-scale and regional details, such as, for example, steep topography, 

physical properties related to cloud formation and microphysics, and local-scale forcings, 

that are poorly portrayed due to the models’ limiting low temporal and horizontal resolutions 

(Ribalaygua et al., 2013). These processes often require parameterization and thus are a 

major cause of uncertainty in GCM simulations (Haarsma et al., 2016). Furthermore, it is 

local-scale changes that are of particular interest to impact modellers as it is these changes 

in local climate that are the determining factors in consequences to agricultural, ecological 

and hydrological systems (Wilks, 1999a) as opposed to the global scale changes. This coarse 

resolution is therefore a major weakness of GCMs and as such means they are unable to 

properly simulate certain physical processes, such as fine scale features of the hydrological 
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cycle, which require a much higher resolution, and cannot be used directly in impact 

assessments. 

To better represent some of these finer-scale processes, a selection of modelling 

centres partook in the High Resolution Model Intercomparison Project (HighResMIP) 

resulting in projections with resolutions of up to 25km  (Haarsma et al., 2016) as part of the 

recent Coupled Model Intercomparison Project 6 (CMIP6). HighResMIP simulations 

provide better descriptions of cloud formation, circulation characteristics, changes to water 

availability, and extreme events such as tropical cyclones (Roberts et al., 2020). However, 

higher resolutions of course result in a greater computational cost. A multitude of ensemble 

members are required to capture the unforced variability that occurs on top of the forced 

climate signal. Due to the increased computational power required, several ensembles have 

not yet been simulated by these higher resolution models. Alongside the requirement of 

several ensemble members to diagnose unforced from forced climate signals, several 

simulations that are representative of a wide range of scenarios is ever present. The added 

computational complexity of HighResMIP models has resulted in a smaller range of 

simulated scenarios. This unfortunately does not address the assertion that a wide range of 

possibilities ought to be considered to capture uncertainties in modelling the future climate, 

particularly for distant futures (Jones et al., 2016). 

There has been a significant effort to develop methods of downscaling GCM 

information to provide site-specific, higher resolution data that is more suitable for use in 

impact assessments  (Maraun et al., 2010; Wilby and Wigley, 1997; Wilks and Wilby, 1999). 

Several methods have been developed to downscale GCM projections to local scales that 

are more appropriate for impact assessments. These can broadly be categorised into two 

techniques: 

• dynamical downscaling, 

• statistical downscaling. 

Dynamical downscaling is usually in the form of the previously introduced RCMs. RCMs 

are numerical models with higher resolutions than GCMs, nested into a single GCM with 

boundary conditions defined by the driving GCM. Statistical downscaling techniques 

generally can be broken down into several categories; “perfect prognosis” (PP), “weather-

typing”, “stochastic weather generators” and “model output statistics” (MOS) (Maraun et 

al., 2010; Wilby et al., 2002b)  PP techniques develop statistical relationships between area-
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averaged and local-scale variables from observational data which can hence be applied to 

the GCM large-scale data. MOS is similar to PP, though relationships are instead determined 

between local-scale observations and simulated area-averaged data. Weather-typing 

methods are also a regression-based approach, though relationships are instead established 

between area-averaged variables that represent large scale circulation, and local-scale 

surface level variables.   

2.2.2 DYNAMICAL DOWNSCALING 

 There are many techniques that can be categorised as dynamical downscaling 

methods. One of the most prevalent and widely discussed dynamical downscaling methods 

is the “nesting technique”, resulting in the aforementioned RCMs. Regional climate models 

(sometimes also referred to as limited-area models, LAMs) are used to simulate weather 

variables over sub-global domains (e.g., Europe) with much higher resolutions than GCMs, 

resulting in better representation of several of the aforementioned sub-GCM grid-cell 

processes. GCM projections are used to supply an RCM with time dependent and initial 

boundary conditions  (Caya and Laprise, 1999; Maraun et al., 2010). RCMs hence produce 

projections that are physically consistent with external forcings, though with much higher 

resolutions than the driving GCM (Wilby et al., 2002b). The resultant resolution of an RCM 

is usually 5 - 50km; much higher than the usual 100 – 250km of present-day GCMs. 

Increasing GCM time step from (typically) 30 minutes to 5 minutes (or less) usually 

accompanies the increase in spatial resolution to maintain numerical stability (Maraun et al., 

2010).  

 As expected with a higher resolution, RCMs outperform GCMs in representing 

hydrological cycles, orographic effects, land-sea contrasts, and land-surface characteristics. 

The benefits of using an RCM are particularly noteworthy in the representation of 

precipitation in mountainous regions and locations with steep topographic changes (Frei et 

al., 2003). The greatest benefits contributed by RCMs in comparison to the driving GCMs 

is regarding the representation of precipitation (Frei et al., 2006). Mesoscale and fine-scale 

physical processes, such as precipitating weather systems and fronts are also represented 

better by RCMs than GCMs due to the increased resolution (Sørland et al., 2018) alongside 

better depictions of river flow (Pastén-Zapata et al., 2020). RCMs generally produce larger 

amounts of precipitation in comparison to their driving GCM, resulting in better 

representations of daily precipitation distributions. 
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 It is evident that RCMs add significant value compared to GCMs at modelling local-

scale climate (Rummukainen, 2016), though RCMs are still relatively computationally 

intensive while only yielding results that are typically not significantly better than simpler, 

statistical approaches (Wilks, 2010). Although the resolution of RCMs is much greater than 

GCMs, resolutions may still remain too course for practitioners such as flood planners and 

agricultural modellers that require local- or point-scale data (Vrac and Naveau, 2007; Wilby 

et al., 2002b). RCMs also include biases in modelling present-day climate, much like GCMs. 

The skill of downscaling precipitation is also somewhat variable by region, season, and the 

intensity and duration of precipitation events. It is also important to note that a 30-year (for 

example) RCM simulation represents only one possible realisation of a 30-year period. 

Natural variability is therefore a key source of uncertainty in the estimation of extreme 

weather events from RCM projections (Maraun et al., 2010). This method of dynamical 

downscaling is therefore constrained by the availability of RCM simulations. 

2.2.3 STATISTICAL DOWNSCALING 

 Statistical downscaling is a popular alternative for producing time series with higher 

resolutions than GCMs due to the  relative ease of use and good performance that is 

comparable with the dynamical approach (Eden and Widmann, 2014). Statistical 

downscaling approaches typically establish statistical links between weather over large 

spatial scales (GCM projections) and local-scale data (weather station observations) 

(Maraun et al., 2010). Observed daily means, medians and variances are generally 

reproduced well using statistical regression approach. However, low-frequency variations 

such as seasonal totals are reproduced with less skill and, much like dynamical downscaling, 

variances of variables – particularly precipitation – are underrepresented (Wilby et al., 

2002a; Wilks and Wilby, 1999). Statistical downscaling methods are also considered poor 

regarding accurate simulation of extreme precipitation events (Hashmi et al., 2011). Unlike 

the dynamical approach, statistical downscaling requires relatively little GCM driving data 

and does not stretch computational resources. Furthermore, in the study of present climates, 

statistical techniques tend to outperform dynamical ones due to avoiding any GCM-induced 

errors (Ribalaygua et al., 2013). There are several statistical techniques that can be used to 

establish relationships between station scale data and GCM (area-averaged) scale data; here 

the prominently used regression based (i.e., PP, MOS, and weather-typing) and stochastic 

weather generator techniques will be discussed.  
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There are several traditional regression-based downscaling methods, such as linear 

regression, canonical correction analysis, and principal component analysis that can all be 

used to downscale GCM-scale data. PP approaches determine relationships between 

observed, large-scale predictors and observed, local-scale predictands. However, 

observations for weather variables at GCM-scales are relatively rare, and as such reanalysis 

data tends to be used instead. The relationships between the observed (or reanalysis) large-

scale and local-scale variables can hence be applied to the future GCM-scale projections to 

derive simulated, local-scale time series. Modern PP methods tend to include a variable 

representing noise in the regression to better represent variability and extremes (Maraun et 

al., 2010).  

Model output statistics is an alternative approach that is thought to better represent 

low-frequency variations than traditional PP methods. In contrast to the statistical regression 

approach, MOS determines a relationship between simulated area-averaged predictors (from 

a GCM) and observed, local-scale predictands (Eden and Widmann, 2014; Maraun et al., 

2010). The relationship can hence be applied to a simulated predictor for a future GCM 

projection. MOS methods widely outperform regression downscaling methods but show 

differences in skill that are dependent on location and season. Similar caveats exist with 

MOS to statistical regression downscaling. To apply both regression techniques (MOS and 

statistical regression methods) to a climate change context, the predictors must capture the 

climate change signal and the statistical relationship determined from the fitting of the 

regression is assumed to remain constant under a changed climate, though it is thought that 

MOS has advantages over the statistical regression in both regards. Simulated precipitation 

(used as a predictor in MOS) is physically consistent with other atmospheric variables, 

making it less likely that any climate change signal is missed. An additional benefit of MOS 

is the use of relationships determined between simulated and observed variables over the 

same spatial scale to provide a correction for the model data. 

 An alternative approach that links local-scale variables to large-scale variables that 

represent circulation is known as weather-typing. Local-scale meteorological variables can 

be categorised into different weather states that are based on large-scale upper-air variables 

(Vrac et al., 2007; Wilby et al., 2002b). Simply, a statistical relationship between these 

weather states and a local, surface variable must be determined. Future scenarios are 

constructed in one of two ways. Observed variable distributions can be resampled, 

conditioned on circulations patterns produced by a GCM, or alternatively, Monte Carlo 

techniques can be used to simulate a synthetic sequence of weather patterns and then 
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resampling from observed data. This approach is attractive as it maintains sensible linkages 

between large scale climate drivers and local weather, upholding validity for a range of 

environmental variables and has applications for multi-sites (Vrac and Naveau, 2007; Wilby 

et al., 2002b). However, weather-typing downscaling techniques are typically inadequate in 

comparison to alternative methods in representing the occurrence of rare or extreme events. 

A further, major downfall of this approach is in its representation of precipitation changes. 

Changes in precipitation produced by changes to the frequency of the defined weather 

patterns are rarely consistent with GCM predicted changes. 

An alternative approach is the use of stochastic weather generators. SWGs can be 

used to downscale GCM data using the “change-factor” approach. A relationship between 

present (i.e., the control period) and a GCM time series representative of a future climate 

scenario can be determined and hence applied to observed, weather station scale data (Wilks, 

2010). Multiplicative change factors are widely used to identify changes in precipitation 

statistics (e.g., first-order Markov probabilities); 

𝑃𝐹𝑢𝑡

𝑃𝑂𝑏𝑠
=

𝑃𝐺𝐶𝑀𝐹𝑢𝑡

𝑃𝐺𝐶𝑀𝐶𝑜𝑛
 

where 𝑃 is a general variable  (Kilsby et al., 2007). 𝑂𝑏𝑠, 𝐶𝑜𝑛, 𝐹𝑢𝑡, and 𝐺𝐶𝑀 suffixes refer 

to the observed, control period, future and GCM-projected data respectively. The factor of 

change, α, (the righthand side of the above equation) is calculated on a calendar month basis 

to account for intra-annual seasonality in the climate change signal (Fatichi et al., 2011) and 

gives 

𝑃𝐹𝑢𝑡 =  𝛼𝑃𝑂𝑏𝑠 

 Additive change factors, 

𝑇𝐹𝑢𝑡 − 𝑇𝑂𝑏𝑠 = 𝑇𝐺𝐶𝑀𝐹𝑢𝑡 − 𝑇𝐺𝐶𝑀𝐶𝑜𝑛 

can be determined for all other weather variables (T), this time giving 

𝑇𝐹𝑢𝑡 = 𝑇𝑂𝑏𝑠 +  𝛼 

 Upon determining the changes to the weather variable statistics, these can be input 

into the stochastic weather generator to produce future, station scale data. This method is 

not restricted to GCMs – RCMs be used similarly, potentially providing better matches to 

local climate characteristics (Fatichi et al., 2011). 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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 A combination of regression and stochastic weather generator techniques can also 

be used in downscaling GCM projections. Semenov and Barrow (1997) present a multiple 

linear regression approach for use with the stochastic weather generator, LARS-WG. 

Relationships between anomalies in local scale predictands (e.g., mean temperature and 

precipitation) and regional scale predictors (GCM grid-box scale), including mean sea level 

pressure, temperature, and precipitation, can be calculated (Barrow et al., 1996).  

Relationships are determined over a control period (e.g., 1960 – 1990), usually for each 

month. The relationship can be applied to GCM derived changes, providing local scale, 

future parameters. The parameters can hence be used to drive a weather generator, such as 

LARS-WG. However, there are caveats with this method. Regression models generally 

perform better for temperature than precipitation. For both variables, regression models do 

not appear to perform well in explaining the variance of the observed data. The performance 

of this technique is very dependent on how accurately the regression models capture the 

variability of the observed data.  

An alternative example of such an approach is outlined by Wilks (2010), applied to 

the input parameters of a Markov-chain SWG (see more in Section 2.3). The conditional 

probabilities used in a SWG are, for example, a wet day following a wet day (𝑝11), a wet 

day following a dry day (𝑝01) and the average wet-day precipitation amount (𝜇). In this 

example, the parameters can be predicted using 

𝑝11 = 𝑎 + 𝑏𝑍 + 𝑐𝑍2 

𝑝01 = 𝑑 + 𝑒𝑍 + 𝑓𝑍2 

𝜇 = 𝑔 + ℎ𝑍 + 𝑖𝑍2 

where 𝑍 is vorticity at a nearby GCM grid-cell (Wilks, 2010) and 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ and 𝑖 

are regression coefficients. This example has been given due to GCMs typically 

overestimating the probabilities of precipitation on an area-averaged scale, and 

underestimating precipitation amounts (Wilks, 1999a), though there are several other 

regression techniques that have been proposed for different variables (Rummukainen, 1997).  

 Equations 2.5 – 2.7 are fit through combining the observed daily precipitation record 

with gridded reanalysis data (consistent with a chosen GCM). Changes in daily precipitation 

can hence be modelled through calculation from GCM simulated vorticity time series. 

However, variations in vorticity simulate insufficient variability in daily precipitation 

amounts – several extensions and adjustments to this method have since been made to 

(2.5) 

(2.6) 

(2.7) 
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incorporate further predictors, such as sea level pressure and surface specific humidity. 

Rummukainen (1997) notes that, in order to reduce the risk of omitting predictors that 

contain useful information, many predictors should first be considered in the regression. 

However, inclusion of more predictors increases the risk of overfitting regressions, and there 

is generally little consensus about which predictors are most appropriate to capture climate 

change signals (Eden and Widmann, 2014). 

 A final example of the application of regression-based downscaling techniques to a 

stochastic weather generator is the Statistical DownScaling Model (SDSM) developed by 

Wilby et al. (2000) for use in assessing local climate change impacts. Described as a hybrid 

of the regression-based and stochastic weather generator approaches to downscaling GCM 

projections, large-scale circulation patterns and atmospheric variables (e.g., circulation, 

humidity, vorticity), similar to the MOS technique, are used to condition the parameters of 

a local-scale stochastic weather generator (Hassan et al., 2014; Wilby et al., 2002b). This is 

similar to equations 2.5 – 2.7, where vorticity was used as a predictor. Prior to downscaling, 

a range of predictors are assessed from reanalysis datasets, based on correlations with the 

predictand to ensure appropriate variables are considered. This reduces the chance of 

overfitting the model, the risk of not including a predictor that contains valuable information, 

and importantly, is flexible based on the desired variable.  

2.3 STOCHASTIC WEATHER GENERATORS 

 Whilst stochastic weather generators can be used for GCM downscaling, they are a 

weather simulation technique in their own right. SWGs aim to reproduce the random nature 

of weather and are site-specific models that are not conditioned by circulation patterns. 

Unlike GCMs, stochastic weather generators are non-predictive and produce weather time 

series that are statistically similar to observed data for a given location. Meteorological 

events and physical processes are not considered in stochastic models. This method of 

generating sequences of weather based on statistical properties of observed data was initially 

developed to generate synthetic series of precipitation for hydrological modelling purposes 

(Semenov and Barrow, 2002) and has been used for decades, with the earliest examples 

developed in the 1960s (Gabriel and Neumann, 1962). By the 1980s, stochastic weather 

generators were being used to produce a range of climate variables, including maximum and 

minimum temperatures and solar radiation (Semenov et al., 1998). They are now used to 

produce long, temporally consistent records that are useful in many applications, including 

water resource engineering, flood analysis, agricultural assessments and ecosystem models. 
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 Conversely to GCMs, SWGs produce time series across small spatial scales (often 

spanning just a few kilometres, or for individual points) and are computationally 

economical. SWGs also have the capacity to model climate variables at a high temporal 

resolutions, typically simulating a suite of variables on a daily to sub-daily scale (Ailliot et 

al., 2015), and due to their computationally inexpensive design, can produce data that spans 

multiple decades, meaning their output is more appropriate for climate impact studies than 

GCMs  (Wilby and Wigley, 1997) whilst providing the opportunity for the robust study of 

rare and extreme events. Historically, SWGs do not consider spatial coherence. For example, 

two weather stations that are geographically close may synthesise weather that is 

contradictory in nature. However, there has been research into ensuring spatial coherence 

between generated time series that show promising results (such tools are typically referred 

to as multisite SWGs) (Peleg et al., 2017; Steinschneider and Brown, 2013; Dawkins et al., 

2022; Serinaldi and Kilsby, 2012). These methods span varying spatial and temporal scales, 

and utilise a range of stochastic techniques, including Markov chains and Generalized 

additive models for precipitation distribution location, scale and shape. Multisite SWGs will 

however not be considered here, as this study’s focus is on the subsequent application of 

pattern scaling to a SWG.  

 Stochastic weather generators generally produce a time series of precipitation first, 

followed by the simulation of any other weather variables, including (but not limited to) 

daily temperature, mean wind speed, relative humidity, and solar radiation. It is common for 

stochastic weather generators to produce daily time series, though methods for generating 

sub-daily time series have also been discussed (Peleg et al., 2017). Due to the conditioning 

of other weather variables on daily precipitation, precipitation is generally referred to as a 

“primary” variable. Temperatures (mean, diurnal range, maximum and/or minimum) are 

widely referred to as “secondary” variables due to their generation following and 

conditioned on precipitation, but often prior to the simulation of any other variables (referred 

to collectively as “tertiary” variables).  

 Markov-chain stochastic weather generators are widely used to generate daily 

precipitation time series. Alternative approaches, such as series-type weather generators and 

the Neyman-Scott Rectangular Pulse (NSRP) can also be used to generate sequences of 

precipitation. These models require  the determining of a suite of site-specific parameters 

based on observations (or, where lacking observations, reanalysis data) and aim to produce 

synthetic time series that are  statistically similar to the input data (Dubrovský, 1997). There 

are several methods that can be used to validate the effectiveness of the model, such as 
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information criterion and statistical testing. Markov-chain, series-type and NSRP SWGs will 

be discussed in turn here. 

 The earliest recorded stochastic weather generators are chain-dependent in nature, 

with precipitation modelled as a Markov process (Gabriel and Neumann, 1962). Initially 

designed to assist hydrological impact assessments, they were implemented as a simple 

method of modelling precipitation occurrence and amount. Markov chain weather 

generators are typically used to produce the driving occurrence of precipitation for a suite 

of weather variables, including solar radiation, minimum and maximum daily temperatures. 

In these SWGs, daily precipitation status (i.e., wet or dry) and amount (if a wet day is 

simulated) are first synthesised, followed by any other weather variables. Although changes 

in several other weather variables are projected as a function of changing climate, methods 

used to simulate precipitation time series will be a focus of this literature review. This is due 

to wide literature documenting different methods of generating daily precipitation in 

comparison to the secondary and tertiary variables; the relative complexity in producing 

accurate depictions of precipitation under present-day and future climates and due to the 

ultimate scaling of precipitation parameters in Chapter 6. 

 The most widely used Markov-chain SWGs use 2-states (i.e., wet or dry) to generate 

precipitation occurrence through conditioning the probability of a wet day on the status of 

the previous day(s). Although 2-state chains are most frequently used, there has been 

research into using a greater number of states to represent different precipitation amounts 

(Gregory et al., 1993). First order models are most commonly used, where order refers to 

the number of previous days considered in the calculation of transition probabilities (first 

orders consider precipitation occurrence on the day previous), although other orders are 

discussed in literature (Jimoh and Webster, 1996; Schoof and Pryor, 2008; Wilson Kemsley 

et al., 2021). For a first-order model, two independent transition probabilities are calculated 

from observed precipitation data: 

𝑃00 =
𝑛00

𝑛00 + 𝑛01
 

𝑃11 =
𝑛11

𝑛11 + 𝑛10
 

where 𝑃00 is the probability of a dry day following a dry day and 𝑃11 is the probability of a 

wet day following a wet day. Probabilities are typically calculated monthly. Indices 0 and 1 

refer to dry (0) or wet (1) days. The 𝑛 values are sums from the observed data; 𝑛01 is the 

(2.8) 

(2.9) 
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total number of wet days preceded by dry days, 𝑛0 the number of wet days, and so forth for 

the remaining 𝑛 values. It is important to note that 𝑃00 + 𝑃01 = 1 and 𝑃10 + 𝑃11 = 1 (Schoof 

and Pryor, 2008) (where, for example 𝑃01 is the probability of a wet day following a dry 

day). On a wet day, an amount of precipitation is usually taken independently from a two-

parameter gamma distribution, typically fitted monthly. Markov-chain SWGs that use a 

gamma distribution to simulate amount of precipitation on wet days are referred to as 

Markov-chain gamma-distribution models. 

 A key criticism of the first order approach is that it has a limited ‘memory’ of rare 

events, such as exceptionally long sequences of wet or dry weather, thus underestimating 

their occurrence (Semenov and Barrow, 1997). As a result, the interannual variance of 

precipitation can be poorly represented (i.e., suffering from “overdispersion”). Wilby et al. 

(2002) suggested additions to the calculation of first-order transition probabilities to better 

represent low-frequency statistics (such as seasonal totals and variances) through the 

inclusion of parameters that represent climate forcings such as the North Atlantic Oscillation 

index or Sea Surface Temperature anomaly. The inclusion of additional parameters to 

account for forcings bestowed no advantage over a model with no forcings in terms of daily 

diagnostics, though monthly statistics were much better represented by the forced 

parameters in several locations. It is important to note that overdispersion was not entirely 

eliminated, and remains an issue with Markov-chain SWGs (Wilby et al., 2002; Wilks and 

Wilby, 1999). 

 An alternative approach at improving the representation of interannual variance of 

precipitation occurrence may be with the use of higher order Markov chains (Jones and 

Thornton, 1993; Lennartsson et al., 2008). The aforementioned Markov-chain model is 

simple to generalise to higher orders. The precipitation status in a second order model is 

conditioned on the precipitation status of the previous two days, requiring the calculation of 

eight transition probabilities. The order can be increased further, with the number of 

transition probabilities required increasing exponentially, with the total number generalised 

as 2𝑚+1, where 𝑚 is the order of model. In a global comparison of model-order performance, 

Wilson Kemsley et al. (2021) noted differences in performance dependent on assessment 

metric. For example, third-order models commonly reproduced the observed distribution of 

dry-spell lengths most accurately, while first-orders better captured the observed 

distributions of wet-spell length. Differences in climate regime were also noted. However, 

it is documented that, should a low order model reasonably fit observed data, better estimates 
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of future weather are obtained while minimising the risk of overfitting. These findings reflect 

the requirement for a flexible approach regarding model-order choice (Coe and Stern, 1982).  

 Following the generation of a wet day, a Markov-chain gamma-distribution model 

attributes a random amount of precipitation from a gamma distribution that has been fitted 

monthly to the observed data. The two-parameter gamma distribution has several strengths 

and is considered a good fit for most global precipitation distributions. The distribution 

however, is not without weaknesses, and though it is the most commonly used, several 

studies have documented the use of other distributions instead (Lennartsson et al., 2008), 

such as the exponential or mixed exponential, skewed normal, or empirical distributions  

(Qian et al., 2005; Soltani and Hoogenboom, 2003a). The gamma distribution typically 

matches observed data with greater accuracy than exponential or skewed normal 

distributions (Semenov et al., 1998).  However, a failing with the 2-parameter gamma 

distributions is that they have been shown to underestimate the occurrence of small 

precipitation amounts and are thought to overestimate the probability of large precipitation 

amounts (Semenov et al., 1998). However, the two -parameter gamma distribution has also 

been shown to misrepresent distributions with heavy tails (Furrer and Katz, 2008), showing 

performance that is variable based on site. Using the mixed exponential distribution may 

reduce overdispersion in a SWG, though the fitting procedure is considerably more 

complicated than gamma distributions. Empirical distributions have greater flexibility and 

can therefore capture the shape of precipitation intensities with better accuracy than the 

aforementioned distributions. However, they require more parameters than the simple shape 

and scale parameters necessary to fit the gamma distribution, and therefore increase the 

complexity of scaling parameters with GMST (see Chapter 8 for future work relating to this 

point). 

 To summarise, Markov-chain gamma-distribution weather generators have several 

strengths. Firstly, the widely used first-order models only require the calculation of four 

independent parameters per month (i.e., 𝑃00, 𝑃11 , wet-day shape and scale parameters). This 

is a particularly attractive strength of this approach towards generating daily precipitation 

time series when considering Objective 2, discussed in more detail in Chapter 1. Secondly, 

Markov-chain models are flexible regarding the order (and number of states) used to 

generate precipitation occurrence. Should reproducing dry-spell length accurately, for 

example in drought assessments, be the focus of a study, higher orders (e.g., third order) 

may be used instead of first order (Wilson Kemsley et al., 2021). There is also flexibility 

regarding the choice of distribution used to model precipitation amount. While there are 
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advantages to alternative distributions, the two-parameter distribution will be used here to 

model intensity of rainfall on wet days due to its flexibility, simplicity, overall good 

performance globally, and wide use in approximating daily precipitation distributions in 

literature (e.g., Wilks, D.S., 1999a; Wilson Kemsley et al., 2021; Wilby and Wigley, 2002) 

. It is for these reasons that Markov-chain gamma-distribution weather generators are the 

primary focus of this section and will be used in the development of a globally calibrated 

weather generator in this thesis. 

 Series-type stochastic weather generators function slightly differently, and were 

developed to better represent long dry and wet spells than the Markov-chain approach 

(Racsko et al., 1991). In a series-type weather generator, precipitation status is determined 

using empirical or semi-empirical probability distributions for lengths of dry and wet spells 

that have been fitted to observed data. A wet spell is defined as a sequence of wet days 

followed and preceded by dry days (conversely for dry spells). These parameters are 

particularly important for assessing the impacts of climate change on crop growth and water 

resources. Series-type weather generators will be discussed in a comparison between series-

type and Markov-chain stochastic weather generators (see Table 2.1) 

 The NSRP model is another alternative method to generate sequences of 

precipitation. As with Markov and series-type weather generators, parameters are usually 

calculated monthly to account for seasonal variations. The NSRP model is flexible in its 

structure, and parameters relate to the physical processes underlying precipitation 

occurrence, such as convective rain cells (Cowpertwait et al., 1996). The occurrence of 

precipitation events (referred to as “storm origins”) are modelled as a Poisson process, with 

wet periods defined by the origins of the storm event. Parameters are also estimated for the 

waiting time for the origin of a “rain cell” (a rectangular pulse) following a storm origin, the 

lifetime of a rain cell, the number of rain cells attributed to a given storm origin, and the 

intensity of each rain cell (Cowpertwait, 2004, 1994). The duration of a rain cell is taken 

independently and randomly from an exponential distribution, with Poisson rates and 

durations typically modelled hourly. Rain cells may overlap, resulting in precipitation that 

is summed over concurrent cells.  Extensions have been made to the NSRP model to account 

for “heavy” and “light” rainfall events and the simulation of coherent precipitation events 

over multiple sites (Cowpertwait, 2004). While NSRP models show great accuracy in 

reproducing observed precipitation, they will not be considered further here. This is due to 

a relatively complex fitting procedure with many parameters in comparison to the alternative 
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Markov and series-type methods, alongside the requirement of hourly precipitation 

observations, which may be sparser in global coverage than daily records. 

 SWG input parameters are calculated from observed data, and therefore the resultant 

synthetic time series is representative of the observed climate that has been used to calibrate 

the generator (Qian et al., 2005). The quality of the observed data that is used as to calculate 

parameters is therefore one determinant of the accuracy of the simulated data (Soltani and 

Hoogenboom, 2003b), and therefore it is recommended that, to determine robust statistical 

parameters, at least 20 years of site-specific historical daily data is required (Semenov and 

Barrow, 1997). This raises an issue that GCMs do not face – in many locations across the 

globe, 20 years of daily observations are not readily available. This is essential to 

realistically model the temporal variability. Aside from potentially lacking data for various 

locations across the globe, there are several possible systematic errors in measuring daily 

climate variables, including typographical and transmission errors, and wind-caused 

undercatch of precipitation by gauges (Hulme, 1992).  

 Four prominent (Soltani & Hoogenboom, 2003) stochastic weather generators 

(WGEN (Richardson and Wright, 1984), SIMMETEO (Soltani and Hoogenboom, 2003a), 

AAFC-WG and LARS-WG) use a range of methods to produce weather time series. The 

methodologies used by these weather generators will be outlined, with key characteristics 

compared in Table 2.1. Note that only Markov and series-type weather generators are 

included in Table 2.1. This is due to a greater wealth of literature critiquing and comparing 

these types of SWGs, alongside a simpler fitting procedure than for example, NSRP models. 

Precipitation status and amount are arguably the most important variables to reproduce 

correctly. This is because several SWGs condition other climate variables on the 

precipitation, and this is a particularly important variable for use in hydrological, ecological 

and agricultural impact assessments. In many of the weather generators discussed in Table 

2.1, solar radiation and maximum and minimum daily temperatures are considered 

stochastic processes with daily means and standard deviations that are conditioned on 

precipitation status. 
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Table 2.1 – Four prominent stochastic weather generators, how they generate 

precipitation and the conditioning of maximum and minimum temperature and solar 

radiation on precipitation. 

 PRECIPITATION  

 STATUS DISTRIBUTION MIN & MAX TEMP, 

SOLAR RADIATION 

WGEN Defined as >0mm. 

1st order 2-state Markov 

chain applied to previous 

day’s dry/wet status. 

Different transition 

probabilities determined 

for each month. 

Precipitation amount 

follows a 2-parameter 

gamma distribution. 

Gamma parameters 

calculated for each month. 

Not conditioned on 

precipitation status 

SIMMETEO 1st order 2-state Markov 

chain used to calculate 

transitional probabilities 

for each month from 

monthly data. 

 

Precipitation amount 

follows a 2-parameter 

gamma distribution. 

Gamma parameters 

calculated for each month. 

Conditioned on 

precipitation status 

AAFC-WG 2nd order 2-state Markov 

chain applied to previous 

day’s dry/wet status. 

Different transition 

probabilities determined 

for each month. 

Precipitation amount 

follows empirical 

distribution estimated from 

log-transformed 

precipitation amounts on 

wet days bimonthly. 

Conditioned on 

precipitation status 

LARS-WG Defined as >0mm. 

Parameters are calculated 

for each month from 

lengths of dry and wet 

series (semi-empirical 

distribution). 

Precipitation amount 

follows a semi-empirical 

distribution (with 10 

intervals) with parameters 

calculated for each month. 

Amount of precipitation 

depends on amount from 

previous day’s status. 

Conditioned on 

precipitation status. 

  

WGEN is a Markov-chain stochastic weather generator that uses a first order 2-state 

structure to determine precipitation status, and a two-parameter gamma distribution to 

determine precipitation amount with parameters and probabilities (equations 2.8 and 2.9) 
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calculated monthly. On wet days, precipitation amounts are randomly taken from the two-

parameter gamma distribution independently of the sequence of precipitation (Parlange and 

Katz, 2000). Daily precipitation amounts are considered independent and identically 

distributed variables each month. Following the simulation of status and (if relevant) amount 

of precipitation, daily minimum and maximum temperatures are simulated. In WGEN, 

minimum temperature is not conditioned on precipitation status and is obtained by fitting 

cosine functions to both the means and the coefficient of variations of observed data for 28-

day periods throughout the year. Maximum temperature follows a similar process, although 

unlike minimum temperature, is conditioned on precipitation status, thus fitting different 

cosine functions for wet and dry days (Semenov et al., 1998). 

 In a study across several different ecoregion divisions, WGEN was found to perform 

well at reproducing some variables and poorly at others (Semenov et al., 1998). WGEN 

accurately reproduced the mean numbers of wet days, although the accuracy of this was 

variable by location. Semenov et al. (1998) found that inter-annual variance in monthly 

precipitation simulated by WGEN tended to slightly underestimate the observed. This is 

thought to be due to the handling of precipitation events as independent from the monthly 

gamma distribution. It is also thought that rare events do not affect transition probabilities 

enough to capture the frequency of their occurrence, and as such the shapes of distributions 

for wet- and dry spell-length are not reproduced accurately enough. Despite this, WGEN 

was successful at reproducing the observed number of heavy precipitation events, although 

it is important to note that only a small number of weather stations have been considered. 

 Regarding temperatures, WGEN showed good accuracy with respect to the mean 

and variability of maxima and minima, although this performance (particularly in 

reproducing maxima) is highly dependent on location. Despite WGEN’s relatively good 

performance at reproducing observed temperatures, solar radiation appears to often be 

overestimated and monthly means frequently differ significantly to the observed. Smaller 

standard deviations and variances in solar radiation were also found. Many of WGEN’s 

weaknesses at modelling global climates are thought to stem from its original calibration for 

climates in the USA (Qian et al., 2008).  

 SIMMETEO is also a Markov-type weather generator that follows a slightly 

different approach to WGEN, producing daily weather variable time series from monthly 

statistics for precipitation, daily maximum and minimum temperatures, and solar radiation.  

Input parameters for SIMMETEO include the mean number of wet days, amount of 
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precipitation, solar radiation, maximum and minimum temperatures calculated monthly 

from observed data, as opposed to daily values (Bannayan and Crout, 1999). This is an 

advantage SIMMETEO has over WGEN – monthly records tend to be more readily available 

than daily data (Geng et al., 1986). In a given month, transition probabilities are calculated 

using the total precipitation and number of wet days. On wet days, precipitation amount is 

modelled once again by a 2-parameter gamma distribution.  

 To generate temperature and solar radiation, monthly climatic statistics for each 

variable are required. Means and standard deviations are estimated using first-order Fourier 

series requiring three climatic coefficients: the annual average, the amplitude (half of the 

difference between the maximum and minimum) and the month at which the maximum is 

reached, for each variable. Minimum temperature is generated independently of 

precipitation status, whereas maximum temperature and solar radiation require a wet- or dry-

day status. Values are sampled from normal distributions, with lag-1 auto- and cross-

correlations maintained between temperatures and solar radiation (Soltani and 

Hoogenboom, 2003a). 

 In a study of SIMMETEO’s performance across five sites in Iran, SIMMETEO was 

found to perform similarly to WGEN regarding the mean number of wet days, although with 

poorer performance in calculating variances in precipitation occurrence (Soltani and 

Hoogenboom, 2003a). Despite this, SIMMETEO was successful in generating the number 

of heavy precipitation events. No statistical difference was found between generated and 

observed monthly means in precipitation amount. SIMMETEO appeared to perform worse 

than WGEN with respect to generating daily maximum temperatures, although successfully 

reproduced minimum temperatures. Regarding solar radiation, SIMMETEO outperformed 

WGEN significantly, with most simulated means statistically similar to observed data. 

 Conversely to WGEN and SIMMETEO, LARS-WG is a series-type weather 

generator, developed at Long Ashton Research Station to overcome limitations of Markov-

type models with regards to precipitation occurrence (Semenov and Barrow, 2002). Semi-

empirical distributions of wet and dry spell lengths with ten intervals are fitted to an 

observed time series. Sequences of wet and dry spells are chosen from this distribution to 

determine precipitation status. On wet days, precipitation amount is determined from 

another semi-empirical distribution fitted to observed data. Separate semi-empirical 

distributions (for wet and dry spell lengths and wet day precipitation) are fitted for each 

month. The flexibility of the semi-empirical distribution allows the approximate fitting of a 



51 
 
 

variety of shapes by adjusting the histogram intervals. Minimum and maximum 

temperatures are conditioned on precipitation status and are determined through fitting 

Fourier series to means and standard deviations of observed data monthly, with separate 

Fourier series being fit for wet and dry days. Both minimum and maximum temperatures are 

fit to normal distributions. Solar radiation is also conditioned on precipitation status, with 

wet and dry semi-empirical distributions calculated for each month. 

 Multiple studies have studied LARS-WG’s ability to reproduce observed data across 

a range of different ecoregions (Qian et al., 2008, 2005; Semenov, 2008; Semenov et al., 

1998). LARS-WG performs relatively well at reproducing observed precipitation across all 

locations. Much like WGEN, LARS-WG performs well with respect to reproducing the 

number of heavy precipitation events, although in comparison WGEN, LARS-WG 

reproduces the full observed precipitation distribution more accurately. Regarding the length 

of wet and dry spells, LARS-WG outperforms WGEN. This is thought to be because rare 

events, such as unusually long wet or dry series, are not detected using the Markov-chain 

approach, whereas empirical distributions represent all wet and dry spell lengths present in 

the observed record. Monthly mean precipitation is also reproduced well, although generated 

inter-annual variance is lower than in observed data. Alongside accurately reproducing 

precipitation, the mean monthly maximum and minimum temperatures are reproduced well. 

Small errors in the reproduced distribution of temperatures arise through fitting a daily curve 

to average monthly values, arising from fitting the Fourier series. It is also important to note 

that in several locations globally, maximum and minimum daily temperatures do not follow 

normal distributions (Qian et al., 2008). This results in variable performance regarding the 

reproduction of variances in temperature (Semenov et al., 1998). 

 AAFC-WG (developed at Agriculture and Agri-Food Canada) was developed for 

impact assessors in Canada’s agricultural industry (Qian et al., 2008). Much like WGEN and 

SIMMETEO, AAFC-WG follows a Markov-type model, although using a second order 2-

state structure instead of first order to determine precipitation status. However, unlike 

SIMMETEO and WGEN’s two-parameter gamma distribution approach, AAFC-WG uses 

empirical distributions to determine the amount of precipitation on a rainy day. The 

empirical distributions are determined bimonthly from logarithm-transformed precipitation 

amounts. Solar radiation, minimum temperatures and maximum temperatures are each 

conditioned on the precipitation status of the given day. Empirical distributions for solar 

radiation and temperature are estimated from residual series; means and standard deviations 
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vary daily through a spline interpolation of monthly means and standard deviations of 

observed daily data (Qian et al., 2008), with different distributions for wet and dry days.  

 It was found that AAFC-WG simulates the distributions of wet and dry spells as 

accurately LARS-WG – with both distributions showing no statistical difference between 

observed and generated data across Canada (Qian et al., 2008). AAFC-WG was also 

successful in reproducing the mean and associated root-mean squared error in lengths and 

of wet and dry spells. AAFC-WG also outperformed LARS-WG at reproducing the observed 

probability distributions of temperature. Whilst the methods AAFC-WG use look promising, 

it is important to recognise that it has only been tested across a small number of Canadian 

weather stations. 

2.4 PATTERN SCALING 

 Whilst it is known that the climate is changing, the magnitude and regional patterns 

of climate change remain ambiguous whilst societal, economic and technological changes 

are also uncertain (Herger et al., 2015). It has been long known that there may be an infinite 

number of ‘pertinent, plausible, alternative futures’ (IPCC-TGICA, 1999), with some 

studies arguing that there is no basis for the relative likelihood of such futures to be 

quantified (Grübler and Nakicenovic, 2001). Mitchell et al. (1999), also states that “even 

with a perfect projection of concentrations, there would be considerable uncertainties in the 

resulting climate response”. Uncertainties in future projections may arise from choice of 

scenario, biases within models themselves, differences in simulating the radiative forcing 

and subsequent climate response, and internal variability (Lee et al., 2021) with Santer et al. 

(1990) describing each GCM as “an individual species within the genus of climate models”. 

Uncertainties  arising between models themselves may involve their treatment of clouds, sea 

ice and land surface processes, resolution used, and ocean representation (Santer et al., 

1990). Uncertainties pertaining to the simulation of radiative forcings may arise through 

differing conversions of emissions to concentrations, derivations of the forcings themselves, 

and modelling the resultant climate response (Mitchell et al., 1999), alongside further 

uncertainties regarding the pathway of future societal, technological, and economic 

developments (Herger et al., 2015).  

The ability to study a wide range of possible futures, and hence assess the associated 

risks and attempt to quantify some of the abovementioned uncertainty, is of importance to 

impact modelers and other end-users (Herger et al., 2015; Lynch et al., 2017).  It is also 
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known that long-term GCM projections are more robust than short-term anthropogenically 

forced simulations due to a more robust signal-to-noise ratio. However, impact assessors 

tend to need projections on shorter times scales, such as the early- and mid-21st century. 

With the assertion that the uncertainty in global futures cannot be fully addressed by the 

study of a select number of climate scenarios, the importance of developing a method to 

study a wider range of different climate scenarios with several realisations is emphasised.  

 Pattern scaling (PS) provides a computationally efficient technique that has primarily 

been used to address two major uncertainties; the underlying scenario used, and the 

structural uncertainties associated with individual model’s climate sensitivities (Lee et al., 

2021). PS can be used to construct additional climate change projections using GCM 

projections, and allows for climate change patterns to be scaled to represent a variety of 

GWLs, including scenarios with different sensitivities to climate forcing, different 

concentrations of greenhouse gas emissions, and for time periods where simulations have 

not been undertaken or are unavailable (Osborn et al., 2016). These simulations may be more 

useful to impact assessors, who require a variety of climate projections to be used 

independently or to analyse effects of mitigation policies compared to reference scenarios 

(Tebaldi and Arblaster, 2014). 

A computationally inexpensive technique, PS was originally developed to create 

projections from equilibrium responses of a GCM to a doubling of CO2 concentration, 

however more recently, PS has been used to construct a wide range of transient climate 

simulations from climate model projections (Osborn et al., 2016; Santer et al., 1990). This 

technique postulates that, for a given time period and scenario, the change in a climatic 

variable can be expressed as linear function of the global mean surface temperature change 

(Cabré et al., 2010; Tebaldi and Arblaster, 2014). A linear relationship is calculated between 

the GCM-scale changes in a variable, 𝑉, and the GMST anomaly, ∆𝑇,  

∆𝑉𝑥𝑖𝑗𝑦 =  ∆𝑇𝑥𝑦𝑉𝑖𝑗
′  

at each grid-cell (denoted by 𝑖), month/season (𝑗), period (𝑦), and forcing scenario (𝑥), where 

𝑉′ is a fixed, spatial, response pattern (Kennett and Buonomo, 2006). The response pattern 

is derived in units of local change in variable 𝑉 per degree Celsius of warming. For 

temperature changes, the units tend to be in 
𝑑𝑒𝑔𝑟𝑒𝑒𝑠

𝑑𝑒𝑔𝑟𝑒𝑒𝑠
, whereas precipitation changes are 

usually expressed as a percentage change per degree, 
%

𝑑𝑒𝑔𝑟𝑒𝑒𝑠
 . 

(2.10) 
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Two different methods have been discussed widely in the literature to determine the 

response pattern. The time-slice method (sometimes referred to as the “delta” method) 

determines the response pattern by studying two different, discrete time periods (epochs) for 

a given forcing scenario. To determine the response pattern, the difference in a variable’s 

anomaly between a future and a reference period is divided by the change in GMST between 

the two periods for each  GCM grid cell (Mitchell, 2003). The anomaly in variable 𝑉 is 

calculated at a regional scale (i.e., at a grid cell defined by 𝑖 in equation 2.10) with epochs 

usually around a century apart. It is common practice to choose a baseline epoch at the end 

of the 20th century, and a future epoch at the end of the 21st century to ensure the signal is 

from forced change and not internal variability (Tebaldi and Arblaster, 2014). The future 

epoch is often chosen based on a specified GMST change relative to preindustrial levels. 

Although computationally efficient, the time-slice method lacks adaptability to additional 

predictors and has less skill in estimating trends than the alternative linear regression method 

(Lynch et al., 2017). Results are also variable depending on the choice of epoch.  

Linear least squares regression is an alternative method that can be used to obtain 

the response of variable 𝑉 to changing GMST. This method is considered more robust and 

has hence been favoured in recent literature (Lustenberger et al., 2014; Lynch et al., 2017). 

Opposed to comparing epochs, the full GCM simulated time series can be utilised, 

improving the signal-to-noise ratio, which is primarily caused by natural variability. This 

also reduces associated mean-squared error. Due to the use of data across a continuous time 

series which may include different rates of warming, linear regression is also assumed to be 

more applicable to the study of presently unmodelled periods and scenarios (Mitchell, 2003). 

Ruosteenoja et al. (2007) suggest using ensemble means with different initial conditions to 

determine the response pattern, instead of using individual GCM responses. By using several 

different realisations of the same GCM, noise caused by internal variability may be further 

reduced and the strength of the climate change signal further strengthened. Although linear 

regression is considered a more robust method of obtaining the response pattern, some 

features, such as temperature change at high latitudes, cannot be approximated by linear 

relationships. 

The merits of this technique are clear, with both PS and the similar “time-shift” 

approach (not to be confused with the time-slice method for obtaining response patterns) 

discussed in the recent IPCC Assessment Report 2021 (Doblas-Reyes et al., 2021). The time-

shift approach defines a target GWL (a common GWL is 2°C, for example) and finds a 
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(typically) 20- to 30-year period wherein the GMST increase of the GCM matches the 

specified GWL (Herger et al., 2015; Matte et al., 2019; Vautard et al., 2014). This method 

maintains physical consistencies between variables that are not maintained by PS, as well as 

preserving space-time covariance. Despite this, Matte et al. (2019) found high correlations 

between regional responses obtained by PS and the time-shift approaches over Europe. 

Although there are benefits to the time-shift approach, its major drawback is that it cannot 

be used to study GWLs beyond those simulated by GCMs. For example, RCP2.6 scenarios 

may not be used to estimate certain GWLs reached by RCP8.5 as RCP2.6 simply does not 

reach the levels of GMST increase of RCP8.5. Furthermore, the time-shift approach does 

not consider effects if climate responses are a function of both increasing GMST and the 

rate of warming, which may decrease the skill of the technique for long time scales. 

While PS provides impact assessors and risk modellers with a computationally 

inexpensive tool to study a range of alternative scenarios from a limited number of GCMs 

(Tebaldi and Arblaster, 2014), there are two main causes of uncertainty in determining the 

response pattern. Both uncertainties, it is important to note, are also present with most 

emulators of future climate based on GCM results, including the previously mentioned time-

shift approach, and are not necessarily unique to PS. The first cause of uncertainty in 

determining regional climate response to GMST change is once more associated with the 

simulations themselves, referred to as “inter-model uncertainty” (Giorgi, 2008). This arises 

from the aforementioned differences between GCM simulations, and is considered by 

several studies a dominant cause of uncertainty in the construction of regional climate 

responses (Kittel et al., 1998; Tebaldi and Arblaster, 2014; Tebaldi and Knutti, 2018).  

The second is caused by the internal variability in the climate system itself. Several 

methods have been explored to reduce the impact internal variability has on identifying the 

response pattern. Using several initial-condition ensembles, as opposed to just one 

realisation, provides a better identification of the pattern from background internal 

variability (Mitchell, 2003). The same GCMs simulated under different forcing scenarios 

(e.g., pooled SSP3-7.0 and SSP5-8.5 data) can be used simultaneously to diagnose the 

response pattern, once again reducing the impact of internal variability (Osborn et al., 2018). 

Although this is a cause of uncertainty in determining the response pattern, several studies 

(Lustenberger et al., 2014; Osborn et al., 2018; Tebaldi et al., 2021) note that the error caused 

by internal variability is less than the inter-model uncertainty.  
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A critical assumption of pattern scaling is that there is a linear relationship between 

local climate change and the GMST increase. This assumption has been assessed in several 

studies. It has been found that this assumption is mostly valid regarding estimation of 

regional temperature changes (Cabré et al., 2010; Tebaldi and Arblaster, 2014). 

Comparisons between the time-shift approach and pattern scaling have been used to assess 

this assumption of linear scalability. Matte et al. (2019) employed this approach to assess 

the scalability of temperature and precipitation over Europe, finding higher correlations 

between the two methods for temperature than precipitation. The assumption of linear 

scalability with regards to precipitation is known to be weaker than temperature; this is 

thought to be due to differences in the parameterization of cumulus convection and cloud 

formation (Matte et al., 2019; Santer et al., 1990) and due to large interdecadal variability in 

regional precipitation patterns that tend to dominate the climate signal (Cabré et al., 2010). 

Osborn et al. (2018) showed that some of the poorer performance in the scaling of 

precipitation responses was due to unforced variability. Using a four-member initial 

condition ensemble (as opposed to one) much improved the performance of precipitation 

scaling, though errors still exist. Residual poor performance could be attributed to remaining 

unforced variability in the four-member ensemble mean. Despite this, precipitation remains 

approximately linearly scalable with global mean temperature with a good degree of 

accuracy (Tebaldi and Arblaster, 2014), particularly at longer time scales (Matte et al., 

2019). The effect of internal variability on precipitation can be reduced by scaling means 

over longer periods, e.g., over 30-years. For both temperature and precipitation, Giorgi 

(2005) found that the non-linear fraction of the climate change signal tends to decrease with 

the magnitude of the signal. This asserts that the assumption of linearity holds increasingly 

well as the climate change signal becomes more pronounced (Giorgi, 2005; Kennett and 

Buonomo, 2006).  

It is therefore advised that higher forcing scenarios should be interpolated to study 

lower scenarios (Mitchell, 2003) and not the other way around. This is thought to be because 

weaker forcing causes less well-defined patterns of linear coefficients, which, when 

extrapolated, lack the characteristics present in high forcing responses (Osborn et al., 2018). 

Although it is possible to obtain and extrapolate a response pattern from low-end warming 

scenarios, it is recommended that, when using pattern scaling to make projections under 

high-end warming scenarios, the patterns should be diagnosed from strong forcing scenarios. 

Lynch et al. (2017) find that signal-to-noise ratios are lower for patterns produced using 

RCP4.5 than RCP8.0. Osborn et al., (2018) suggest that, up until approximately 3.5oC of 
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warming, using a combination of warming scenarios (e.g., RCP2.6, 4.5 and 6.0) to determine 

the response pattern, followed by a high-end warming scenario (RCP8.5) to determine the 

response beyond. 

It is also assumed that the climate system has a linear response to anthropogenic 

forcing (Mitchell, 2003) and that the climate system and anthropogenic forcing are 

independent of each other. The validity of this assumption is hindered by short lived, 

regionally differentiated species, such as anthropogenic aerosols or black carbon (Shiogama 

et al., 2013; Tebaldi and Arblaster, 2014). While this assumption may not always be true, 

estimation errors in patterns caused by changes due to internal variability are considered 

small on a global scale (Lynch et al., 2017). 

Several studies have further assessed the accuracies of PS and the validities of its 

assumptions. The assumption that the change in any climatic variable’s spatial pattern for a 

given scenario remains constant with respect to global temperature change is critical. Cabré 

et al. (2010) use the time-slice method to assess the validity of this assumption for changes 

to the annual mean temperature and precipitation, producing spatial patterns for three 

different epochs. The assumption of scalability was evident for temperature and normalised 

precipitation changes, with some exceptions in Northern Hemisphere high latitudes. Tebaldi 

and Arblaster (2014) find that patterns produced by different Representative Concentration 

Pathways (RCPs) were highly correlated with each other, supporting the assumption that 

patterns generated by different forcing scenarios are not significantly different. The strongly 

mitigated RCP2.6, however, was excluded from determining multi-model patterns due to 

decreased correlations in patterns produced from different centuries. Lynch et al. (2017) note 

that differences in temperature change patterns produced by different RCPs (8.5 and 4.5) 

using linear regression were larger than differences using the time-slice approach. 

Statistically significant differences in patterns were found across mid-high latitudes (the 

Arctic, land areas bordering the Mediterranean, and the subtropical South Pacific (Lynch et 

al., 2017)).  

 Presently, PS is typically used to construct scenarios studying changes to the mean 

climate and do not consider changes in variability, typically scaling seasonal or annual 

means in temperature and precipitation. Examples include Cabré et al. (2010) constructing 

patterns for changes to annual and seasonal mean temperature and precipitation with 

changing GMST. Lynch et al. (2017) compared the delta-change and least squares regression 

approaches for the construction of patterns using seasonal and annual means in surface air 
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temperature. Alexeef et al. (2018), Mitchell (2003) and Tebaldi and Arblaster (2014) are all 

further examples of scaling mean statistics. Few studies have considered the incorporation 

of changing variability with GMST, with literature limited in comparison to the scaling of 

means (Herger et al., 2015; Osborn et al., 2016).  

PS is also considered more limited in the study of changes to extreme events, though 

there has been some research into scaling statistics relating to extreme events. This is likely 

due to the focus of most PS studies on constructing scenarios relating to mean climate and 

not the variability. One method used to study and assess changes to extremes was introduced 

by Lustenberger et al. (2014) wherein extreme temperature indices were scaled with GMST. 

The scaled relationship has variable results in accuracy, highly dependant on the scaled 

index. There is evidence that the relationship between some indices (such as cold-spell days 

index, CWFI, TX10P) and GMST change violates the assumption of linearity, and therefore 

should not be scaled. As with scaling precipitation and temperature, the uncertainty due to 

inter-model differences is once again greater than the uncertainty induced by internal 

variability.  

2.5 CHAPTER 2 SUMMARY 

 With undeniable evidence that our climate is changing, and little certainty regarding 

which pathway anthropogenic emissions and socio-economic factors will follow in the 

future, there is an ever-pressing need for sophisticated models that can construct a variety 

of projections to better understand the range of uncertainties we may face with regards to 

future climate and weather extremes. GCMs are the most sophisticated tools at our disposal 

to study the impact changing anthropogenic emissions will have on the Earth’s climate. 

While they provide detailed pictures of global changes the Earth may face, they are limited 

by their computational requirements, resulting in parameterization of several small-scale 

processes and therefore a course resolution. However, local-scale projections are much more 

useful for impact assessors and as inputs to hydrological, agricultural and ecological models. 

Furthermore, to fully understand the range of uncertainty associated with a changing climate, 

a wide range of scenarios (and several realisations of such scenarios) must be considered; 

more than those presently simulated by GCMs (Alexeeff et al., 2018). These uncertainties 

arise from the definition of scenarios themselves, inter-model differences in the derivation 

of the climates response to anthropogenic emissions and parameterization, internal 

variability, and biases within the models themselves.  
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 To address the mismatch between GCM-scale data and impact assessment 

requirements, a range of downscaling techniques have been introduced. A dynamical 

downscaling technique, RCMs are one such approach that can be used to construct regional 

climate projections. RCMs represent several sub-GCM scale features with greater accuracy 

than GCMs, including orographic effects, precipitation patterns in areas with steep 

topography, mesoscale processes such as precipitating weather fronts, and land-sea 

contrasts. However, despite the significant added value RCMs provide, RCMs tend to yield 

results that are similar to the computationally more efficient statistical approaches. RCMs 

are also dependent on the driving GCM, and biases in the simulation of present-day climate 

are still present. Statistical downscaling methods are computationally effective whilst 

showing similar skill in downscaling GCM simulations to the dynamical methods. There are 

a range of statistical downscaling approaches, including perfect prognosis, model output 

statistics, and stochastic weather generators. While downscaling techniques provide users 

with fine-resolution time series, uncertainties associated with modelling the future climate 

are not addressed, as only scenarios simulated by GCMs can be downscaled.  

 Prior to their introduction as a downscaling technique, SWGs were introduced and 

are widely used as computationally efficient tools that can simulate local-scale time series 

from observational or reanalysis data. They can produce high-quality, temporally consistent, 

long-running time series for a suite of weather variables at a local-scale, addressing a key 

requirement of the data needed for the robust statistical analysis of extreme weather events 

and with a resolution that is suitable for impact assessments. There are several methods that 

can be used to stochastically synthesise a suite of climate variables, though most approaches 

are dependent on their generation of precipitation. Markov chains, series-type weather 

generators, and NSRP are different approaches to the stochastic modelling of precipitation. 

Modelling of precipitation has been focussed on in this review, though Chapters 4 and 5 

address the generation of secondary and tertiary variables in greater detail. While SWGs are 

computationally efficient tools at modelling present day climate, they are probabilistic, not 

deterministic and they cannot be used to simulate time series for different scenarios without 

some perturbation of the parameters to represent future climates.  

 The construction of a range of scenarios, including those that are not simulated by 

GCMs, is necessary to better understand the wide range of uncertainties in modelling the 

future climate. Pattern scaling is a computationally efficient technique that has been 

introduced to construct projections for a range of scenarios or time-periods that have not 

been simulated by GCMs, or scenarios with presently only a limited number of ensembles.  
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A linear relationship between local climate change and changing GMST is assumed, with 

local responses of a variable to global climate change diagnosed from a GCM, normalised 

by GMST change. However, PS has typically been used to diagnose the response of seasonal 

(or annual) means in temperature and precipitation and has limitations in the study of 

extreme events.   

 The advantages of both stochastic weather generators and pattern scaling will be 

utilised in this thesis through the development of a globally calibrated, statistical tool, 

hereafter referred to as the Globally Calibrated stochastic Weather Generator (GCWG). The 

development of the GCWG in reproducing a range of observed climates  (Belda et al., 2014) 

is presented in Chapters 3 to 5, capable of generating daily times series of precipitation, 

maximum and minimum temperature, mean wind speed, solar radiation and relative 

humidity. The response of GCWG precipitation and temperature parameters (see Chapters 

3 and 4) to external forcing will be diagnosed from GCMs and hence used to perturb 

parameters calculated from weather station observations. The perturbed GCWG is therefore 

capable of generating local scale, long running time series for a suite of weather variables 

under any specified GWL representative of a range of scenarios, whilst avoiding GCM 

induced errors in modelling point-scale climate. Furthermore, the simulation of several 

realisations at a specified GWL or scenario with computational efficiency is possible using 

the GCWG. Unlike the discussed time-shift method, the use of PS provides a unique 

opportunity to produce long time series at a specified GMST level, rather than an average 

over a relatively small period (e.g., 30 years) to better quantify uncertainties related to the 

changing risk of weather extremes. To reiterate, the strengths of a stochastic weather 

generator and pattern scaling both address issues with using GCM projections to study the 

future climate alone, and both techniques will therefore be utilised in the construction of the 

GCWG to simulate future climate scenarios. Perturbing the parameters of the GCWG 

through PS will first address the issue regarding the limited number of scenarios (and the 

number of realisations) produced by GCMs. The perturbed GCWG also addresses the 

mismatch between GCM resolution and the scale required for impact assessments, while 

additionally providing an opportunity to produce several realisations of local climate with 

long-time series, and hence study the associated changing risk to extremes. 
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3 STOCHASTIC PRECIPITATION GENERATION 

WITH MARKOV CHAINS OF DIFFERENT 

ORDERS   

 Precipitation is considered a primary variable in the development of the Globally 

Calibrated stochastic Weather Generator (GCWG). This is due to the conditioning of 

secondary and tertiary variables on the precipitation of the day and the use of precipitation 

amounts as predictors. In this thesis, a Markov-chain gamma-distribution approach to 

generating stochastic precipitation sequences has been adopted in the GCWG following a 

comparison of methods presented Chapter 2, Section 2.3. To reiterate, the strengths of a 

Markov-chain gamma-model include their simplicity and computational efficiency, their 

common usage resulting in rich literature aiding in the development of a precipitation 

generator, flexibility regarding model-order, and finally, owing to the simplicity of the 

technique, it is relatively straightforward to diagnose the response of the parameters to global 

mean surface temperature (GMST) changes from climate model projections.  

For a first-order Markov-chain model (the most widely used in literature), only 4 

parameters are required to capture precipitation occurrence and the wet-day gamma 

distribution per month. Although series-type weather generators can approximate a wide 

variety of shapes effectively, many more parameters are required (for example, LARS-WG, 

a series-type weather generator, uses 21 per month) (Semenov and Barrow, 2002). 

Diagnosing the responses of Markov-chain gamma-distribution parameters to GMST 

increase is therefore also simpler than the parameters from alternative approaches. It is also 

apparent that, while first-order models are the most prevalent in literature, there are merits 

to using higher (and lower) orders, varying with geographic location and season (Hosseini 

et al., 2011). This provides some flexibility regarding the modelling of precipitation. 

Generally, zeroth order models require less computational power than higher orders, while 

second- and third-order models may have the capacity to better represent long dry spells, a 

known deficiency with first-order models (Lennartsson et al., 2008). Model-order 

performance is also variable on season, with Chin (1977) finding that higher orders are 

preferential in the winter season across the USA. Hybrid-order Markov-chain models have 

been suggested to accurately represent dry climates, with first-order dependence for wet 

spells, and higher-order dependence for dry-spells (Chen and Brissette, 2014; Wilks, 1999b) 

.   
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In this thesis, secondary (maximum and minimum temperatures, see Chapter 4) and 

a selection of tertiary variables (mean wind speed, solar radiation and relative humidity, see 

Chapter 5) will be conditioned on daily precipitation. Therefore, shortcomings in simulating 

precipitation occurrence may lead to inaccuracies in secondary and tertiary variables. This 

emphasises the need for an educated choice in model order used to simulate occurrence and 

amount of precipitation as accurately as possible. This chapter covers the methods used to 

simulate statistically similar time series to observed precipitation records, including a global 

assessment of model-order performance.  

 Many widely used stochastic weather generators have been calibrated for a specific 

study location. This limits their applicability to regions with different climate characteristics 

to the calibration site. The main section of this chapter (Section 3.1) has already been 

published under Wilson Kemsley et al. (2021) in International Journal of Climatology and 

compares the performance of zeroth, first, second and third order models at reproducing 

observed precipitation statistics at over 40,000 weather stations, covering five climatic 

regimes. Additional evaluations and analyses not included in that paper are provided here in 

Section 3.2. Results will be used to inform stochastic weather generator users of which 

model order performs best in each climatic regime. A Markov-chain-gamma-distribution 

model has been coded in Python to stochastically generate precipitation time series. Code 

has been written for zeroth, first, second, and third order chains. 

3.1 SELECTING MARKOV CHAIN ORDERS FOR GENERATING 

PRECIPITATION SERIES ACROSS DIFFERENT KÖPPEN 

CLIMATE REGIMES 

3.1.1 INTRODUCTION  

 Stochastic weather generators are a technique used to produce synthetic rainfall time 

series with high spatial and temporal resolutions. Computationally inexpensive tools, they 

can be used to produce long time series for use in hydrological and agricultural risk 

assessments when the record length or quality of representative observational data are 

inadequate. For example, measurement time series are often too short to robustly estimate 

the probability of extreme events, such as long wet- or dry-spells. Stochastic weather 

generators were initially developed to address these issues (Semenov et al., 1998), though 

they have since been applied to a broader range of problems (e.g., perturbing their 
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parameters so they produce synthetic time series under future climates (Eames et al., 2011)) 

and to other climate variables. 

 Precipitation is one of the most important variables for assessing risks affecting crop 

growth and the hydrological cycle. Precipitation is also often considered as the primary 

variable when stochastically modelling other weather variables (e.g., solar radiation, 

maximum and minimum temperatures) which can be conditioned on the precipitation status 

(Richardson, 1981). It is important that impact and risk assessors have access to the most 

accurate high-resolution models (Dubrovský, 1997), as generated data is often used in place 

of insufficient observed records as an input to hydrological, ecological and agronomic 

studies (Larsen and Pense, 1982). Therefore, it is particularly important to ensure accurate 

modelling of daily precipitation. 

 Markov chains are a commonly used stochastic approach to modelling daily 

precipitation. Simulated occurrence of rain is conditional on the previous day(s)’ 

precipitation status. The order of a Markov chain model refers to the number of previous 

days considered, i.e., a first-order model conditions precipitation status on the status of one 

previous day. Several of the widely used Markov-type weather generators (for example 

WGEN (Richardson and Wright, 1984) SIMMETEO (Soltani and Hoogenboom, 2003a) and 

AAFC WG(Qian et al., 2005)) use the same model order regardless of geographical location. 

Furthermore, many of these weather generators have been designed, implemented and tested 

for climates local to where they were produced, meaning they may not be optimal at 

generating realistic rainfall time series in different climates(Semenov et al., 1998). Despite 

the common use of first-order models in climate and hydrological impact studies, their 

limited memory of extremes has been criticised (Semenov and Barrow, 1997), and though 

it is accepted that different sites require different orders, first-orders remain prevalent 

(Lennartsson et al., 2008). However, the stochastic dependence on previous days’ 

precipitation is dependent on particular meteorological drivers (Chin, 1977), with first-order 

models commonly misrepresenting important meteorological properties (Ailliot et al., 

2015). 

 Although Markov-chain models are the focus of this study, there are several other 

methods used to stochastically model precipitation occurrence, including Markov renewal 

processes (MRP) (Foufoula‐Georgiou and Lettenmaier, 1987)  and series-based approaches 

(e.g. LARS-WG (Qian et al., 2005)). Both methods use observed wet or dry-spell lengths to 

generate synthetic precipitation time series differently to Markov-chain models. In MRP 
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models, the probability of precipitation depends on the number of days since the last 

precipitation event, whereas series-based weather generators draw lengths of wet and dry 

spells from semi-empirical distributions (Semenov et al., 1998). 

 

Figure 3.1 – Global locations of previous Markov chain model-order assessments used to 

inform this study. 

 Akaike (Tong, 1975) and Bayesian Information Criteria (Schwarz, 1978) are 

commonly used to select model order, balancing the model fit with the number of 

parameters. There have been several local or regional studies which have assessed the best 

model-order, including across the USA (Schoof and Pryor, 2008), Costa Rica (Harrison and 

Waylen, 2000), England (Gates and Tong, 1976), Sweden (Lennartsson et al., 2008), 

Canada, Israel,  India and Nigeria (Jimoh and Webster, 1996) using Information Criteria and 

other methods, including spell length analysis (Figure 3.1). Although many of these studies 

reiterate that a first-order model is adequate, seasonal and spatial variations in model-order 

choice were identified in all of them. Further studies critique this first-order assumption 

(Gates and Tong, 1976) and the use of an Information Criterion as the sole method of model-

order selection (Hosseini et al., 2011). 

 Further evidence suggests that using a first-order model, regardless of location, may 

not always reproduce observed weather accurately. Low order models are known to 

underestimate interannual and inter-seasonal precipitation variances (suffering from 

overdispersion (Katz and Parlange, 1998)), despite often being chosen by Information 
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Criteria (Harrison and Waylen, 2000). Higher-order models may more accurately reproduce 

variances in weather, though the risk of overfitting becomes more prominent.  

 A common use of precipitation generators is to estimate the probabilities of extreme 

events, such as long wet or dry spells, due to their ability to simulate long time series 

(Yaoming et al., 2004). Although Information Criteria are the most common methods used 

to assess model-order performance, they do not test the ability to accurately reproduce the 

distribution of wet- and dry-spell lengths, despite their importance for many applications. It 

is known (Lennartsson et al., 2008) that first-order models often do not reproduce dry spells 

accurately even though they are favoured by Information Criteria. This inability is an 

established issue with many Markov-type weather generators (Semenov and Barrow, 2002).  

Wet spells are important for hydrological modelling, impacting flood risk and soil erosion, 

whilst knowledge of dry-spell behaviour impacts agricultural and environmental planning, 

preparation for drought and irrigation infrastructure (Ochola and Kerkides, 2003). 

Therefore, a method to assess the ability of different model orders to reproduce observed 

wet- and dry-spell distributions is needed. 

 This chapter extends the existing knowledge base in several respects that are 

important for providing better guidance to users and developers of Markov chain weather 

generators. First, we undertake an assessment of preferential model order using multiple 

metrics of model performance. Alongside the Bayesian Information Criteria (BIC), we also 

quantify the ability of different model orders to reproduce observed distributions of wet- and 

dry-spell length, and the interannual variability of precipitation occurrence (referred to as 

IVO). In each case, we consider the relative performance of models with orders 0, 1, 2 and 

3. Higher orders are not considered in this study due to their increased risk of overfitting and 

greater computational demand, reducing usability. Second, we undertake a global 

assessment using more than 44,000 weather stations across most land areas. Third, using the 

global assessment, we consider whether the choice of model order is systematically 

dependent on the climate regime of each location. 

 Local climates can be classified into regimes according to several different 

characteristics, such as annual precipitation, interannual temperature and precipitation 

variances, cloud cover etc. (Belda et al., 2014). Here we use the Köppen climate 

classification which is one such classification in widespread use (Köppen, 1900), using 

monthly temperature and precipitation statistics to identify different climatic regimes across 

the world (Figure 3.2). 
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Figure 3.2 – The Köppen climate classification according to Chen and Chen (2013). There 

are some differences in terminology used for each class; in the current study, we denote 

class C as “temperate” and class D as “continental”. Figure from Chen and Chen (2013) 

3.1.2  DATA 

 We used daily precipitation data from the Global Historical Climatology Network 

Daily (GHCN-D) to fit Markov chain properties and evaluate the models. GHCN-D quality 

control procedures flag potentially inaccurate or inconsistent records, estimated to affect 

approximately 0.3% of the data. Flagged data was removed, and only weather stations with 

at least 20 cumulative years of daily precipitation remaining (Soltani and Hoogenboom, 

2003b) were used, resulting in a total of 44071 stations. Historical records were capped at 

their most recent 30 years, to reduce any artefacts that may arise from using records of 

different lengths.  
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 Each weather station was allocated a climate classification, determined by the centre 

of the Köppen grid cell which the longitude and latitude of the weather station was closest 

to. Locations are allocated to one of five overarching classes: tropical, dry, temperate, 

continental or polar. Within each class, regimes can be subcategorized further based on 

climatic behaviour. Our study applied each evaluation method to observed data in each 

overarching regime to determine the most appropriate model order for each climatic zone. 

Köppen classification data was taken from Chen and Chen (2013) on a 0.5x0.5 grid.  

Figure 3.3 – All available weather stations meeting the outlined criteria and their associated 

overarching climate classification. 

 It is clear from Figure 3.3 that there is not global coverage, and that some locations, 

such as the USA and most of Europe, have a significantly higher density of weather stations 

than others (such as Africa and South America). Nevertheless, even the least sampled class 

– polar – has over 400 stations with at least 20 years of observed data. 

3.1.3 METHOD 

3.1.3.1 MARKOV MODEL FITTING 

 A 2-state Markov chain-gamma model was used to simulate the occurrence and 

amount of precipitation, with 2-states referring to a day being either wet or dry. A day was 

described as “wet” if precipitation was above 0.1mm. This method of stochastic modelling 

is loosely based on the weather generator WGEN (Richardson and Wright, 1984). The 

probability of a wet day is conditional on the historical precipitation status. A 𝑘-th order 
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Markov-chain refers to the number of conditional 𝑘 previous days. For the widely used first-

order, 2-state model, the transition probabilities are: 

 

𝑝𝑖𝑗 =
𝑛𝑖𝑗

∑ 𝑛𝑖𝑚
1
𝑚=0

 

 

where 𝑖 and 𝑗 can represent wet (1) or dry (0) days. For example, 𝑝01 is the probability of a 

wet day following a dry day, and 𝑛01 the number of wet days following dry days (calculated 

from a historical dataset). This process can be extended to other orders:  

𝑝𝑖 =
𝑛𝑖

∑ 𝑛𝑚
1
𝑚=0

 

𝑝𝑖𝑗𝑞 =
𝑛𝑖𝑗𝑞

∑ 𝑛𝑖𝑗𝑚
1
𝑚=0

 

𝑝𝑖𝑗𝑞𝑙 =
𝑛𝑖𝑗𝑞𝑙

∑ 𝑛𝑖𝑗𝑞𝑚
1
𝑚=0

 

for orders 0, 2 and 3 respectively. The number of transition probabilities calculated therefore 

increases exponentially and can be generalised to 2𝑘+1 (where 𝑘 is model order). Transition 

probabilities were calculated for each month at each weather station, resulting in 12(2𝑘+1) 

transition probabilities for each station and each model order. However, the number of 

independent transition probabilities is half this number, i.e., 12(2𝑘), because 𝑝1 = 1 − 𝑝0. 

 It is a common assumption that precipitation amount is conditionally independent of 

precipitation occurrence (Richardson, 1981). Upon generating a wet day, a random 

precipitation amount is independently taken from the corresponding month’s two-parameter 

gamma distribution. For each month, shape (𝛼) and scale (𝛽) parameters were calculated 

from wet-day only data for each station. Thom estimators (Thom, 1958) were used for 

calculating the shape, 

𝛼 =
1 + (1 +

4𝐷
3 )

1
2

4𝐷
 

and the scale, 

(3.1) 

(3.2) 

(3.3) 
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𝛽 =
𝑥̅

𝛼
 

parameters, with sample statistic 

𝐷 = ln(𝑥̅) −
1

𝑛
∑ ln (𝑥𝑖)

𝑛

𝑖=1

 

where 𝑥 refers to amounts of precipitation and 𝑛 the number of wet days. This method is 

used in place of moment estimators, which are considered “inefficient” compared with the 

Thom estimators that make better use of the information in a dataset  (Wilks, 2011). 

3.1.3.2 MARKOV MODEL EVALUATION 

 Information Criteria are methods that can be used to determine how suitable different 

order Markov chains are for modelling precipitation occurrence, based on calculations of 

log-likelihood functions from the transition probabilities (Schoof and Pryor, 2008). Here, 

we chose the Bayesian Information Criterion (BIC) over the Akaike Information Criterion 

(AIC) because Katz (1981) showed that AIC estimators can be inconsistent, and also BIC is 

less prone to asymptotic bias and more widely used in recent literature (Harrison and 

Waylen, 2000; Schoof and Pryor, 2008). This method seeks to find the best model containing 

the fewest parameters (i.e., minimal 𝑘). For a 2-state Markov chain model of order 𝑘, BIC 

values are given by 

 

𝐵𝐼𝐶(𝑘) =  −2𝐿𝑘 + 2𝑘[ln(𝑁)] 

 

where 𝐿𝑘 is the log-likelihood function and 𝑁 is the number of days in the historical record 

used to calculate the transition probabilities. 𝐿𝑘 is calculated from the estimated transition 

probabilities using the functions given by Schoof and Pryor (2008) for each model order. 

The model order that minimises BIC is chosen as the best order.  

 As there are 12 sets of transition probabilities for each station, 12 BIC values for 

each model order were determined and compared enabling an evaluation of annual and 

seasonal model-order dependence. The mode of the model orders that minimise BIC across 

each of the 12 months was taken as the annual model order. Seasonal model-order choices 

(3.4) 

(3.5) 

(3.6) 
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were also studied, using the mode of the model orders that minimise BIC across June, July, 

August (JJA) and December, January, February (DJF).  

In addition to BIC, three other assessment criteria are considered, providing 

additional information on model suitability that cannot be gained by BIC alone. Each order’s 

ability to reproduce the distribution of wet and dry spell lengths was compared. A wet spell 

was defined as a period of wet days preceded and followed by a dry day (and vice versa for 

a dry spell). For each model order, 50 years of precipitation data were generated and the 

length of every wet and dry spell in the generated data determined. 

Kernel density estimation (KDE) can be used to determine a non-parametric 

probability density function of a random variable (Guidoum, 2015). KDE was used here to 

estimate probability density distributions (Rajagopalan et al., 1997) for wet- and dry-spell 

lengths (see Figure 3.4 for an example). Upon determining distributions for each model-

order, the root-mean-squared-difference (RMSD) between the observed distribution and the 

distributions produced by each Markov chain was calculated. A bandwidth of 2 days was 

used for KDE and a test across the climate regimes indicated that the results are not sensitive 

to this choice. In addition to comparing the full spell length KDE distributions, we also 

evaluate the performance of each model order at reproducing four percentiles (75, 90, 95 

and 99th) in the tail of the distributions. These percentiles are calculated directly from the 

underlying spell length data, rather than from the KDE distributions to avoid any dependence 

on the choice of KDE bandwidth.  

 

Figure 3.4 – Probability density distribution of the length of dry spells (left) and wet spells 

(right) produced by different model orders over a 50-year period at a weather station in 

Highcroft, Tasmania (GHCN-D station ID ASN00094028) 
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 Finally, each models’ ability to reproduce the IVO was tested. Once again, 50 years 

of daily precipitation occurrence was generated. The total number of wet days in each season 

or year was recorded, and the standard deviation of these 50 values (number of wet days per 

season/year over the 50-year period) was calculated. The model order producing the smallest 

absolute difference between the generated and observed standard deviation was deemed to 

perform best.  

3.1.4 RESULTS 

The methods outlined in section 3 were applied to 44071 weather stations that met 

criteria detailed in section 3. Results from these weather stations were aggregated into 837 

5° latitude by 5° longitude cells (Table 3.1) to reduce biasing area-average results to 

locations with dense station coverage (e.g., USA, Figure 3.3). This also increased the 

weighting of locations with sparse data coverage, for example across Africa and South 

America. The climate regime of a grid-cell was allocated by taking the modal classification 

from each individual station in the cell. This methodology was also applied to obtain an 

overall model-order for each grid-cell and each method of analysis used. 

Table 3.1 – Number of weather stations and corresponding grid cells in each climate regime. 

REGIME NO. OF 

STATIONS 

NO. OF 

CELLS 

Tropical 4140 173 

Dry 8555 139 

Temperate 20389 192 

Continental 10552 229 

Polar 435 104 

TOTAL 44071 837 

 

3.1.4.1 BAYESIAN INFORMATION CRITERION 

The Bayesian Information Criterion was the first method used to analyse model-

order performance. The BIC optimisation most often selected a first-order model to 

minimise BIC across all regimes (Table 3.2), in agreement with previous literature (Schoof 

and Pryor, 2008) but extending this finding to more regions, regimes and seasons. Although 

a first-order model may be allocated overall to each regime, there are clear behavioural 

differences between the zones. For tropical and dry regimes, a sizable minority of cells show 
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zeroth- or second-order dependence. A sizable minority of temperate cells (17.1%) are 

minimised by a second-order model, however unlike tropical and dry regimes, there are very 

few cells minimised by zeroth-order model. Conversely, first-order models almost 

universally minimise BIC for continental and polar cells (99.2% and 91.8% respectively). 

Table 3.2 – Gridded comparison of Markov model-order choices for each of the Köppen 

climate regimes based on each model order’s ability to minimise BIC. Values shown are the 

% of grid cells within each climate regime where the mode of individual stations’ best 

model-order is equal to 0, 1, 2 or 3. 

 0 1 2 3 

REGIME Ann. DJF JJA Ann. DJF JJA Ann. DJF JJA Ann. DJF JJA 

Tropical 11.8 17.4 18.5 56.2 53.2 53.8 30.3 27.5 24.7 1.7 3.8 3.9 

Dry 18.2 16.1 24.5 63.6 67.8 55.9 17.5 15.4 19.6 0.7 0.7 0.0 

Temp. 3.2 4.4 5.5 80.7 80.1 77.9 17.1 15.5 16.6 0.0 0.0 0.0 

Cont. 0.4 0.0 0.4 99.2 99.2 98.7 0.4 0.8 0.8 0.0 0.0 0.0 

Polar 4.1 3.1 4.1 91.8 84.5 86.6 3.1 11.3 8.2 1.0 1.0 1.0 

             

 

Figure 3.5 – Model-order choices for each 5°x5° grid cell, with colour representing model 

order choice as determined by Bayesian Information Criterion 

These differences in behaviour may arise from spatial variation (Figure 3.5). The 

majority of the northern hemisphere extra-tropics are best represented by a first-order model. 

There is much more variation across the southern hemisphere and the tropics, where zeroth- 

and second-order models are much more prevalent. For example, Chilean and Peruvian cells 
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do not show first-order dependence, but zeroth or second. Central African cells also show 

zeroth-order dependence, whereas Mainland Southeast Asia has many cells with second-

order dependence. 

 Central Africa primarily has tropical humid climates (fully humid, monsoon or with 

dry winters: Af, Am and Aw, respectively) alongside hot dry steppe and desert climates to 

the north (BSh and BWh respectively – Figure 3.2). Cells in tropical humid (Af) regions 

were found to show both first- and second-order dependence in equal measures (43.4%).  

Although dry desert (BWh) cells showed overall preference for first-order models (49.0%), 

a significant minority (33.7%) showed zero-order dependence. These differences in climatic 

zone account for some of the spatial variation noted in Figure 3.5. Cold arid dry steppe (BSk) 

cells are most often found in the northern hemisphere and show differences in behaviour to 

the overarching regime (dry). BIC was minimised by a first-order model in 91% of BSk cells 

– almost 30% more than the total dry group. The BSk cells without first-order dependence 

mostly occur in the South American steppe and instead show mostly second-order 

dependence. Sub-regimes across temperate, continental and polar regimes performed 

similarly to their aggregated behaviour. 

Several geographical regions have no usable GHCN-D data as indicated by an 

absence of cells in their location. These regions include Northern and South-West Africa, 

Maritime Southeast Asia, and the Middle East. These locations are often tropical and dry 

and are located around the equator or southern hemisphere. This is a limitation with using 

in situ observed data and has the potential to affect overall model-order preferences.  

 

Figure 3.6 – Model-order choice for JJA (BIC) minus the model-order choice for DJF (BIC). 
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The same overall picture emerges when model orders with the best BIC are 

considered on a seasonal basis (Table 3.2), i.e., that first-order models are selected most 

often in all Köppen regimes but zeroth-order models are a notable minority in tropical and 

dry regimes and second-order models are a notable minority in tropical, dry and temperate 

regimes. Nevertheless, some seasonal differences are apparent and can be seen in the model-

orders for DJF subtracted from JJA (Figure 3.6). Whilst the same model order is selected by 

BIC across most of the northern hemisphere in both seasons, it is once again cells in the 

tropics and southern hemisphere that experience the most variation. This variation is shown 

predominantly in tropical and dry regions once again (Table 3.2), although these fluctuations 

are minor.  Dry climates exhibit the most noticeable seasonal fluctuation, with first-order 

minimising BIC in 67.8% cases in DJF but only 55.9% in JJA. This is reflected in the 

increased number of zeroth-order cells in JJA.  

3.1.4.2 SPELL-LENGTH ANALYSIS 

Although first-order models most commonly minimise BIC across all climate 

regimes, this is not always the case when other metrics are used to assess model-order 

performance. 

Table 3.3 – Gridded comparison of Markov model-order choices for each of the Köppen 

climate regimes based on each model's ability to reproduce the interannual variability of 

precipitation occurrence (IVO) and distributions of wet-spell length and dry-spell length. 

Values shown are the % of grid cells within each climate regime where the mode of 

individual stations' best model-order is equal to 0, 1, 2 or 3 

  0    1   2   3  

REGIME Wet Dry IVO Wet Dry IVO Wet Dry IVO Wet Dry IVO 

Tropical 5.1 0.0 1.7 21.3 6.3 7.9 25.8 8.6 41.0 47.8 85.1 49.4 

Dry 0.0 1.4 0.0 67.8 9.2 11.2 7.7 10.6 63.9 24.5 78.7 25.2 

Temp. 1.1 1.1 0.0 58.6 6.7 13.3 6.6 3.9 58.6 33.7 88.2 28.2 

Cont. 0.0 0.4 0.0 89.9 5.2 25.6 0.0 0.0 53.9 10.1 94.4 21.4 

Polar 0.0 3.2 1.0 69.1 4.4 17.5 4.1 1.1 54.6 26.8 93.2 26.8 

 

Across all regimes except tropical, a first-order model most commonly outperforms 

others at reproducing the distribution of wet-spell lengths (Table 3.3). First-order models 

outperform the other models for wet-spell length at a large majority (89.9%) of continental 
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regime grid cells, whereas sizeable minorities of grid cells are best represented by third-

order models across dry, temperate and polar regimes (24.5%, 33.7% and 26.8% 

respectively). In the tropical regime, by contrast, third-order models most often perform the 

best, followed by the second and then first -order models. Across all regimes, zero-order 

models rarely or never reproduce wet-spell length distributions best. 

Though third-order models only outperform other orders for wet-spell lengths in 

tropical regimes, they are dominant as the best order for reproducing dry-spell length 

distributions (Table 3.3) across all regimes. This supports the work of Lennartson et. al. 

(2008), who found that higher order models better reproduce the distribution of very long 

dry spells in Sweden. There is less spatial variation of optimal model order for dry spells 

than with BIC and wet spells, reiterated by the high percentage (at least 78% across each 

regime) of cells being best represented by a 3rd order Markov chain (Table 3.3). For tropical 

and dry climates, there is a monotonic increase in preference for a model as the model’s 

order increases (hence with the lowest percentages for zeroth-order models). For the other 

climate regimes, more than 88% of grid cells have third-order models as the best performing 

for dry spells, and first-order models are the next most frequent. 
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Table 3.4 – The gridded median percentage difference between observed and generated dry-

spell length percentiles for each of the Köppen climate regimes and each model order. 

    PERCENTILE 

  MODEL 

ORDER 

75th 90th 95th 99th 

 TROPICAL 0 -6.5 -20.0 -25.3 -38.5 

1 14.5 3.4 -4.0 -19.9 

2 0.0 0.0 -4.6 -15.2 

3 3.8 8.3 1.2 -8.0 

 DRY 0 -20.5 -29.3 -34.2 -38.3 

1 5.8 -5.8 -13.1 -24.0 

2 -15.3 -16.3 -20.1 -23.6 

3 5.0 -3.8 -9.3 -17.7 

 TEMPERATE 0 -26.4 -33.4 -36.3 -39.3 

1 4.8 -1.6 -6.7 -16.2 

2 -25.0 -18.1 -16.5 -18.4 

3 3.5 0.3 -0.8 -6.0 

 CONTINENTAL 0 -25.0 -33.5 -35.4 -39.9 

1 3.0 -3.4 -7.9 -13.7 

2 -25.0 -17.9 -16.7 -17.0 

3 3.0 0.4 -1.0 -5.4 

 POLAR 0 -25.0 -33.3 -38.5 -46.7 

1 4.1 -3.1 -8.2 -18.2 

2 -25.0 -16.7 -18.0 -20.7 

3 0.0 0.0 0.0 -7.7 
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The ability of each model order to reproduce percentiles of the dry-spell length 

distributions was also studied. Percentage differences between the observed and generated 

dry-spell length 75th, 90th, 95th and 99th percentiles were calculated for each station, with the 

median percentage difference across grid cells given in Table 3.4. Medians were taken 

across regimes as opposed to means to reduce the influence of outliers.  

 Whilst each model order underestimates the 99th percentile of observed dry spells, 

there is a large improvement from zeroth order to third. Second- and first-order models tend 

to underestimate by a similar percentage, with third orders having as little as a 5.4% 

underestimation in continental regimes. This supports the work of Lennartson et. al. (2008), 

suggesting that lower order models do not accurately reproduce the distribution of very long 

dry spells. The largest median bias in these extreme (99th percentile) dry spells occurs in the 

dry Köppen regime, but even here the bias is much less when considering something slightly 

less extreme (e.g., 95th percentile) providing that a third order model is used. In all regimes, 

there is again a large improvement in reproducing the 95th percentile from zeroth to third 

order, though in this case second-order models tend to have larger median biases than first 

order. This is particularly noticeable in temperate, continental, and polar regimes. Third-

order models continue to have the smallest percentage differences at the 75th and 90th 

percentiles except for the tropical regime where the second-order model performs best. 

 The dominant patterns in the results are: (1) at the 75th percentile,  first and third 

order models slightly overestimate dry-spell lengths whereas the other two orders 

underestimate them; (2) the median bias in dry-spell lengths mostly decreases monotonically 

as the percentile increases, ending in the underestimation of the 99th percentile spell lengths 

by all model orders and (3) with few exceptions the biases are smallest for the third-order 

model, though the first-order model performs nearly as well for the 75th and 90th percentiles 

in most regimes.  
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Figure 3.7 – Gridded model-order choices using spell length distribution analysis for (a) 

wet spells and (b) dry spells. 

Spatial variations are once again important for model-order performance at 

reproducing both wet- and dry-spell length distributions (Figure 3.7), though not as 

prominently as seen earlier with BIC. The northern hemisphere extratropics are again almost 

universally best described by the same model-order (first for wet spells, third for dry spells). 

However, unlike BIC and dry spells, there is notable variation across Europe in model-order 

performance for wet spells (where third order appears prominent in the north-west, but first 

order elsewhere). This variation in model order across Europe contributes to third-order 

models outperforming other orders across a sizable minority of stations in temperate regimes 

(33.7%). However, it is across the tropics and southern hemisphere where most variation is 

present, primarily in tropical and dry regimes. Despite third- and first- order models 



79 
 
 

representing wet spells best in tropical and dry regimes respectively, a majority of tropical 

grid cells are represented best by an order other than third and a sizable minority (33.2%) of 

dry regime grid cells are represented by a model order other than first. While third-order 

models almost entirely outperform others across Brazil, Northern Australia and India, there 

is much more variation across Central Africa, despite being in the same regime (tropical). 

The wet-spell distribution across the Aw (tropical with dry winters) regime (Figure 

3.2), present across much of Brazil and Central Africa, is reproduced best by a third-order 

model in 61.1% of cells. This is higher than the overall 47.8% of tropical grid cells 

represented by a third-order model. Dry, hot-arid steppe (BSh) regions, present to the north 

of Central Africa, and across Australia and India, also often show third-order dependence 

(51.4%) despite first-order models most commonly outperforming others in dry regime grid 

cells. Sub-regimes for temperate, continental and polar climates follow similar patterns to 

their aggregated classifications for both wet- and dry-spell distributions. 

For both wet- and dry-spell distributions, there is notably less variation in model-

order performance across continental regimes than other classifications. It is important to 

note that continental climates (category D, termed “Snow”, in Figure 3.2) are almost 

exclusively present in the northern hemisphere extra-tropics, with each other regime present 

across the tropics and in the southern hemisphere. This potentially explains the greater 

variation in the other regimes.  

 

Figure 3.8 – Model-order choice for dry spells minus the model-order choice for wet spells. 

 



80 
 
 

The difference between model-order performance at reproducing wet-spell and dry-

spell distributions was studied (Figure 3.8) by subtracting the model-order choice for wet-

spell distributions from the choice for dry-spell distributions. For example, should a grid cell 

be best represented by a third-order model for dry spells and a first-order model for wet 

spells, the difference is +3. A difference of +2 is widespread across most of the northern 

hemisphere. This is as expected, with first-order models commonly outperforming all others 

for wet spells and third order for dry spells. It is important to note that for many locations, 

including Brazil, Central America, North Australia, India, Europe and Central Africa, the 

same model-order performs best for both wet and dry spells (a difference of 0, Figure 3.8).  

3.1.4.3 INTERANNUAL VARIABILITY OF PRECIPITATION 

OCCURRENCE 

In this section we evaluate the performance of the models at generating year-to-year 

variability in the number of wet days (i.e., precipitation occurrence). In all regimes, second-

order models most commonly reproduce the IVO, with the exception of tropical regime 

cells, where third order most commonly outperforms others (Table 3.3). In all regimes 

(except tropical), the IVO in at least 50% of cells is represented best by a second order 

model.  Although third-order models perform best in tropical regimes (49.4%), the number 

of cells represented best by a second-order models follows closely (41%). As with BIC and 

spell-length analysis, zeroth-order models rarely (or never) outperform others.   
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Figure 3.9 – Model-order choices for each 5°x5° grid cell, with colour representing model-

order choice as determined by interannual variability of seasonal precipitation occurrence 

for (a) March, April, May (MAM), (b) June, July, August (JJA), (c) September, October, 

November (SON) and (d) December, January, February (DJF). 

There are some notable differences in model-order performance at reproducing the 

interannual variability of precipitation occurrence for individual seasons across the regimes. 

Much like annual IVO, second-order models most commonly outperform others, with zeroth 

order rarely performing best (though with larger minorities than the annual occurrence). For 

all seasons in tropical regimes, third-order models consistently outperform others. While a 

small minority of cells are best represented by a first-order model annually (25.6% 

maximum, found in continental regimes), in JJA, first-order models outperform third-order 

models in both continental and polar regimes (by 27% and 34.1% respectively). 

There is less coherence in the spatial pattern of annual model-order choice for 

reproducing the IVO (not shown here) compared with BIC and spell-length analysis (Figure 

3.5 and Figure 3.7). Nevertheless, the individual seasons do have coherent patterns in the 

best-performing model order (Figure 3.9), but these patterns are somewhat opposite between 

seasons resulting in some cancellation of coherent patterns for the annual results. There is a 

stark contrast in the performance of third-order models at reproducing the seasonal IVO 

between DJF and JJA across the continental regime. In DJF, third-order models outperform 

others in 54.4% of continental cells, whereas in JJA this drops to only 6.8%. This is reflected 

in Figure 3.9. In JJA and MAM much of the northern hemisphere is represented best by 

second- and first-order models, whereas in DJF and SON, many of these cells in are instead 
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represented by a third-order model. These cells are mostly continental and temperate. The 

reverse is true for South America, where third orders are prevalent in JJA and MAM and 

second orders in DJF and SON. In JJA, third-order models outperform all others in both 

tropical and dry regimes (48.3 % and 47.1% respectively), with a sizable minority of second-

order cells. However, in DJF, third-order models perform best in only 27.5% of cells, with 

an increased percentage of second-order cells (49.3%).  Further seasonal differences can be 

noted across Australia, India and southern Africa. 

It is widely known that a common limitation of Markov chain models is in their 

underestimation of the observed interannual variability (Wilks, 2010; Wilks and Wilby, 

1999). Here, we find that all model orders tend to underestimate the observed variability, 

with zeroth-order models consistently underestimating more than higher-order models. For 

each model order, this underestimation is similar across all regimes and tends to decrease as 

model order increases. However, the improvement stops at second order, and here we find 

little difference between second and third orders. This agrees with previous findings that 

lower order models may be more prone to overdispersion (Katz and Parlange, 1998). The 

IVO tended to be underestimated by a greater percentage by all model orders in locations 

that had higher observed variability (China, South America, Pacific Islands) and less so in 

areas with lower observed variability (Australia, India, West USA). 

3.1.5 SUMMARY 

It is apparent that although each metric highlights different behaviour across the 

regimes, with stark variation between tropical/dry and continental regimes, the model order 

with the highest percentage of grid cells is the same across all regimes except tropical.  
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Table 3.5 – Model-orders for each metric with highest percentage of grid cells reproducing 

the observed data the best. 

 BIC WET 

SPELL 

DRY 

SPELL 

IVO 

TROPICAL 1 3 3 3 

DRY 1 1 3 2 

TEMPERATE 1 1 3 2 

CONTINENTAL 1 1 3 2 

POLAR 1 1 3 2 

 

 The model order with the highest percentage of grid cells in each regime can be said 

to perform best (Table 3.5). Bayesian Information Criterion and dry-spell length analysis 

each favour a single model order globally, despite behavioural differences in each regime. 

For wet spells, each regime favours a first-order model, except tropical which prescribes 

third order. The Bayesian Information Criterion was satisfied by a first-order model across 

all regimes. A third-order model performs best at reproducing dry spells across all climate 

regimes (especially for the higher percentiles of the dry-spell length distribution), while 

second order reproduces the IAV of precipitation occurrence best in all regimes except 

tropical (once again prescribing third order).  

 Spatial variation was noted using each method of analysis. Much of the northern 

hemisphere contain cells with a high percentage following the overall metric’s model order 

prescription, regardless of their climate classification. It is across the tropics and southern 

hemisphere (South America, Central Africa and Mainland Southeast Asia) that shows the 

most variation from the model order for each method of analysis. These locations are often 

categorised into tropical and dry climates.   

 There are several other points of note. Whilst a third-order model best reproduces 

observed dry-spell distributions, first-order models are chosen as second best across 76.9% 

of cells. At the 95th and 99th percentile, while third-order models underestimate the observed 

percentiles the least, first order performs similarly at the lower percentiles. Third- and first-

order models perform second best at reproducing wet-spell distributions across 40.0% and 

54.4% of cells respectively. Third-order models also require the calculation of eight 

independent transition probabilities (per month) while a first-order model calculates only 
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two, thus the higher order model requires more computing power and, most importantly, 

increases the possibility of over-fitting a model. Although second-order models most 

commonly outperform others at reproducing the IAV of precipitation occurrence, first- and 

third-order models represent a sizable minority of stations in all regimes. It is important to 

note that while using a higher order model reduces the underestimation of IAV, all orders 

underestimate it, with little difference between second- and third-order models.   

 There is a noticeable dip in how frequently second-order models perform best at 

reproducing wet- and dry-spell distributions (Table 3.3). Here, unlike BIC (Table 3.2), 

model-order performance is not penalised for the number of parameters used. A potential 

cause of this dip could be that the percentage of third-order models is boosted by also being 

representative of the performance of model orders higher than three, which are not 

considered here. For example, when reproducing wet-spell distributions, there may be 

decaying performance across higher model orders which, in this study, might be 

encapsulated by the percentage of third-order grid cells.  

 However, there are limitations due to data coverage across much of northern and 

southwest Africa, the Middle East, Indonesia and the Philippines (Figures 3.5 to 3.9). Much 

of this domain falls into tropical and dry regimes, potentially impacting the overall model-

order choice of these climate types. Aggregating data into grid cells also loses some of the 

detail from sub-categorising the weather stations. In this analysis, continental regimes are 

almost completely represented by Dfb and Dfc climates (i.e., those with continental humid 

climates; Figure 3.2), with 78.6% of continental cells falling into one of these sub-categories. 

There is no representation of Dsa or Dsd (continental with dry summers) climates using the 

gridded approach at 5 resolution. Thus, the overall model-order choice for continental 

climates may not be representative of all sub-categories within the regime. A similar issue 

is noted across temperate and polar regimes. Only one grid-cell represents Csc and Cwc cells 

(climates with temperate, cool summers with dry summers and winters respectively), whilst 

over half of the temperate cells represent Cfa and Cfc (temperate, fully humid climates). 

3.1.6 CONCLUSION 

 The ability of four Markov chain weather generator models to generate realistic daily 

precipitation time series was assessed by four different methods across 44071 weather 

stations globally. Each weather station was allocated a regime based on Köppen’s climate 

classification system (Chen and Chen, 2013): tropical, dry, temperate, continental or polar. 
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To extend previous results, the performance of the different order models was assessed using 

four metrics: the widely used Bayesian Information Criterion, and the less commonly 

considered abilities to reproduce observed wet- and dry-spell lengths and the IAV in 

precipitation occurrence. 

 Analysis was undertaken for each weather station, and then performance was 

aggregated on a grid-cell basis to avoid the assessment being dominated by densely observed 

regions. Model performance measures were aggregated into 837 5x5 cells based on the 

longitudes and latitudes of the weather stations. Depending on which metric was used, 

different model-orders performed the best. First-order models most frequently minimised 

BIC and best reproduced observed wet-spell distributions across each regime except 

tropical. Whilst this agrees with other preceding local or regional studies, including across 

the USA (Schoof and Pryor, 2008), Nigeria (Jimoh and Webster, 1996) and Costa Rica 

(Harrison and Waylen, 2000), this finding has now been demonstrated on a near-global 

scale, and included a range of different climate regimes. Unlike other regimes, third-order 

models best reproduced observed wet-spell distributions across tropical regime locations. 

Third-order models also best reproduced dry-spell distributions across all regimes, 

strengthening previous evidence that a low-order model may not accurately reproduce 

extreme dry periods (Lennartsson et al., 2008). This is strengthened further by the ability of 

third-order models to reproduce most successfully the observed 99th percentile (and, in most 

cases, the 95th percentile) of dry-spell length distributions. Second-order models most 

commonly reproduced the IAV in precipitation occurrence best in each regime, once again 

with the exception of tropical regimes where third orders perform best. 

 Although the most frequently selected model order remained the same across 

different climate regimes for each metric (except for tropical regimes), interesting variations 

within and between regimes were found. Tropical and dry regimes showed the most 

deviation from overall behaviour. Third-order models reproduced both wet- and dry-spell 

distributions best across Brazil, India, North Australia and Europe, regardless of the climatic 

region. Central Africa, Mainland Southeast Asia and western South America also showed 

notable geographical variation of model-order performance for each metric. The behaviour 

of climate classification sub-categories often reflected the aggregated performance but there 

were some exceptions primarily across dry and tropical zones. However, many sub-

categories were not present or were only represented by a few grid cells in this study, 

resulting in temperate and continental regimes being more representative of some sub-
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categories than others. This leads to the notion that analysis of model order selection may 

be more beneficial on a finer spatial scale, i.e., sub-continental, or with greater inclusion of 

other sub-categories. This may better reflect the noted spatial variance.  

 This study has informed the next chapters on developing a global stochastic weather 

generator to synthesise daily time series of a suite of climatic variables, including maximum 

daily temperature and cloud cover. There are also several ways in which these results can be 

applied to industry and future research. As weather variables produced by a stochastic 

generator are frequently used as input into hydrological and agricultural models, our results 

show that it would be beneficial to use different model-orders to generate precipitation data 

depending on the purpose of the model. For example, studies focussing on extended dry 

periods may favour third-order models due to their superior ability to reproduce the upper 

tail of the dry-spell distribution, whereas a first-order model acts as a good, computationally 

efficient “all-rounder” for other studies. Tropical climates are an exception, where third-

order models reproduce distributions of both wet and dry spells and the IAV of precipitation 

occurrence best overall. This study can also inform users on the most appropriate model-

order to use based on the location of a specific region. For example, generating realistic wet-

spell distributions across Europe requires different model-orders to those favoured in the 

eastern USA, despite both regions falling into the temperate classification (Figures 3.2 and 

3.7a).  

3.2  SUPPLEMENTARY MATERIAL 

Analysis not included in Wilson Kemsley et al. (2021) have also been performed to 

better understand model-order performance across the globe. The main section of this 

chapter focussed on the performance at generating precipitation occurrence, whereas these 

additional tests evaluate the performance also at generating precipitation amounts. The 

amount of precipitation is an important metric to accurately reproduce, as it has implications 

on extremes such as flooding and drought. The metrics used here (annual maximum 5-day 

precipitation and interannual variability of annual or seasonal mean precipitation) depend 

upon both the generation of dry-wet sequences (i.e., by the order of the Markov chain) and 

upon the generation of amounts on wet days (drawn from the gamma distribution fitted to 

the observed wet-day amounts). Therefore, the outcome is dependant not only on the order 

of the Markov chain but also on the suitability of the gamma distribution to represent the 

precipitation amounts. 
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3.2.1 MEAN ANNUAL MAXIMUM 5-DAYPRECIPITATION  

 Each models’ ability to reproduce the mean annual maximum 5-day precipitation 

was tested. Similarly to Wilson Kemsley et al. (2021), 50-years of daily precipitation 

occurrence was generated. On days with precipitation >0.1mm, an amount of precipitation 

is randomly sampled from a gamma distribution that has been fit separately for each month 

to the observed wet-day precipitation amounts. The mean values of each (overlapping) 5-

day period were computed, and then the maximum 5-day mean during each calendar year 

was selected. These 50 annual maxima were averaged. These values, for each model order, 

were compared to the mean annual maximum 5-day precipitation of the observed record. 

The absolute difference between the generated and observed values was taken. The model 

order producing the smallest absolute difference was deemed to perform best. 

 

Figure 3.10 – Model-order choice for performance at reproducing annual maximum mean 

5-day precipitation. 
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Table 3.6 – Gridded comparison of Markov model-order choices for each of the Köppen 

climate regimes based on each model's ability to reproduce the observed annual maximum 

mean 5-day precipitation. Values shown are the % of grid cells within each climate regime 

where the mode of individual stations’ best model-order is equal to 0, 1, 2 or 3. 

 MODEL ORDER 

 0 1 2 3 

Tropical 34.4 28.7 25.2 11.6 

Dry 30.6 21.8 17.5 30.2 

Temp. 35.0 29.2 23.0 13.8 

Cont. 34.3 31.2 25.9 8.6 

Polar 40.3 31.2 21.8 6.7 

 

 A zeroth-order model was found to reproduce the annual maximum mean 5-day 

precipitation best across all climatic regimes (Table 3.6). However, unlike previous 

methods of analysis, differences between model-orders are less clearly distinguished. For 

each regime, only 34 – 41% of cells are represented best by a zeroth-order model, closely 

followed by first-order models with between 21% and 32% of cells. Unlike the previous 

methods, spatial patterns in model-order choice for best representing 5-day maximum 

precipitation are also less clear (Figure 3.10).  

The difference in performance between each model order is also significantly smaller 

for this analysis than for BIC and wet-/dry-spell length analysis. This is expected because 

annual maximum 5-day precipitation depends partially on the distribution of wet spells 

(which is influenced by model order) and partly on the gamma distribution of wet-day 

rainfall amounts (which is independent of model order). The other performance metrics 

depend solely on the sequencing of wet and dry days, which is different between model 

orders.  
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3.2.2 INTERANNUAL VARIABILITY OF MEAN PRECIPITATION 

Table 3.7 – Gridded comparison of Markov model-order choices for each of the Köppen 

climate regimes based on each model's ability to reproduce the observed interannual 

variability of mean precipitation amount. Values shown are the % of grid cells within each 

climate regime where the mode of individual stations’ best model-order is equal to 0, 1, 2 

or 3. 

 MODEL ORDER 

 0  1 2 3 

Tropical 12.5  22.6 36.3 28.6 

Dry 5.0  23.0 46.8 25.2 

Temp. 3.3  15.3 64.4 16.9 

Cont. 3.0  30.9 47.9 18.2 

Polar 6.5  28.3 39.1 26.0 

 

Section 3.1.4.3 studied the ability of each model order to reproduce the interannual 

variability in precipitation occurrence (IVO). Here, the capabilities of each model order to 

reproduce the interannual variability in mean precipitation amount (IVA) has been assessed 

using 50-years of generated time series. While it can be expected that the results here 

complement those in Table 3.3, there are some subtle differences. 

 Second-order models most commonly reproduce IVA best across each regime 

(Table 3.7) followed by third-order models in tropical, dry, and temperate regimes, and first 

order in continental and polar. Third-order models typically reproduce IVO best in tropical 

regimes, differing from IVA, whereas the highest performing model order remains 

consistent for each other regime. Reproducing IVA considers occurrence and amount of 

precipitation. This difference in model-order performance could be explained through the 

fitted monthly gamma distributions. Conversely to Figure 3.9,  Figure 3.11 shows that some 
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of the largest changes in seasonal model-order choice can be seen in South America and 

sub-Saharan Africa; both largely tropical regions.   

 In temperate regimes, most cells (64.4%) are best represented by a second-order 

model. In all other regimes, a second-order model outperforms others in no more than 48% 

of cells. In dry, temperate, and polar regimes, first- and third-order models perform similarly 

(23% and 25.2%, 15.3% and 16.9%, and 28.3% and 26.0% respectively). As with BIC and 

spell-length analysis, zeroth-order models rarely outperform other orders, reproducing the 

IVA best across 12.5% of tropical cells and far fewer cells in the other regimes. The spatial 

pattern of model-order performance for reproducing the interannual variability of annual 

mean precipitation is shown in Figure 3.11and is less spatially coherent than with BIC and 

spell-length analysis over most land-surface areas. 

 

Figure 3.11 – Model-order choices for each 5°x5° grid cell, with colour representing model-

order choice as determined by interannual variability comparison. 

There are also differences in model-order performance at reproducing the seasonal 

IVA (Figure 3.12). Much like IVO, second-order models most commonly outperform others, 

with zeroth orders rarely performing best. Alongside South America and sub-Saharan 

Africa, the most notable seasonal differences in model-order performance are present across 

much of the northern hemisphere. In MAM/JJA, much of the northern hemisphere is 

represented by a second order best, whereas in SON/DJF the preference for third order is 

more widespread. This is reflected by third-order models outperforming others in many 

continental cells in SON and DJF (63.1% and 54.2%, respectively), which are primarily 

present in the northern hemisphere.  
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The reverse is true for South America, where third orders are prevalent in MAM/JJA, 

and second orders in SON/DJF. These cells are commonly in tropical or dry regimes. In JJA, 

third order models outperform all others in tropical and dry regimes (47.6% and 45.3%, 

respectively) with a sizable minority of second-order cells. Similarly, dry regimes in MAM 

are best represented by third-order models (42.5%) with similar proportions of tropical cells 

represented by second (35.7%) and third (33.3%) orders. Further seasonal differences can 

be noted across Australia and southern Africa. 

The magnitude of IVA underestimation varies by model order. Figure 3.13 reiterates 

the known limitation of Markov-chain models’ underestimation of interannual variability 

(we have shown here both in occurrence and amount). While most points lie just below the 

generated = observed line, correlation coefficients are less than 0.4 for all model orders 

studied. The ratio between generated and observed IVA values has also been calculated for 

each weather station studied in section 3.1.4 (Figure 3.14). Second-order models have the 

highest proportion of stations that fall into the 0.9-1.04 bin. Zeroth-order models have many 

stations falling into bins with a ratio of 0.59 and less. For first, second and third orders, the 

IVA is underestimated by between 36 and 40%. Each model order rarely produces IVAs that 

exceed observed variability.  

Figure 3.12 – Model-order choices for each 5°x5° grid cell, with colour representing model-order 

choice as determined by inter-seasonal variability comparison for a) March, April, May (MAM), b) 

June, July, August (JJA), c) September, October, November (SON) and d) December, January, 

February (DJF). 
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Figure 3.13 – Heat-scatter plots showing the generated against observed interannual 

variability for each weather station studied using model orders (top left) zero, (top 

right) one, (bottom left) two and bottom (right) three, with correlation coefficients 0.27, 

0.31, 0.32 and 0.33 respectively. 
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Figure 3.14 - Histogram showing the ratios between observed and generated values in IVA 

where the ratio is  
𝑽𝒈𝒆𝒏

𝑽𝒐𝒃𝒔
 where V is the interannual variability of mean precipitation for 

generated time series using each model order. 

3.3 CHAPTER 3 SUMMARY 

  It has been shown that different methods of evaluation prescribe different model 

orders, with exceptions for precipitation in tropical regimes. Following the results presented 

in Wilson Kemsley et al. (2021) (section 3.1), first-order models are recommended as a 

suitable “all-rounder”. This is due to their computational efficiency, strong performance at 

reproducing the distribution of wet-spell lengths across all regimes and their similar 

performance to other model orders at reproducing IVO and IVA. When studying extreme 

events (for example, hydrological drought and flood) it is important that the distribution of 

wet and dry spell lengths is accurately captured. If there is greater emphasis on variability 

and extreme dry-spell lengths, a third-order model is recommended. This chapter provides 

the buildings blocks for the GCWG in providing a model for generating precipitation 

occurrence and amount. 
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 Chapters 4 through 7 will build upon the results here, conditioning the secondary 

(maximum and minimum temperatures) and tertiary (mean wind speed, solar radiation, and 

relative humidity) on precipitation occurrence and/or amount. The GCWG will primarily 

consider first-order models unless stated otherwise. This is in part due to their good 

performance in several metrics, but also due to their computational simplicity. As outlined 

in Chapter 1, the precipitation input parameters for the GCWG further developed in Chapters 

4 and 5 will be perturbed using the pattern scaling technique globally. For precipitation, the 

perturbed parameters in question will be the monthly first-order Markov probabilities (𝑃00 

and 𝑃11) and wet-day gamma-distribution parameters (α and β).  
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4 STOCHASTIC WEATHER GENERATOR 

PRIMARY AND SECONDARY VARIABLE 

CALIBRATION AND VALIDATION 

 Following the generation of daily precipitation time series, the Globally Calibrated 

stochastic Weather Generator (GCWG) simulates the secondary and tertiary variables. The 

secondary variables (daily maximum and minimum temperature) are conditioned on the 

generated precipitation time series. To generate the tertiary variables, the GCWG requires a 

time series of daily precipitation and temperature values. The tertiary variables considered 

in the GCWG are mean daily wind speed, mean daily solar radiation, and maximum/mean 

daily relative humidity. These variables have been chosen as they can be used to estimate 

evapotranspiration. Inaccuracies in the generation of precipitation time series will negatively 

impact the secondary and tertiary variables. Likewise, inaccuracies in the generation of 

temperature time series may further negatively impact the simulation of the tertiary 

variables. This chapter therefore focusses on further validating the Markov-chain gamma-

precipitation model outlined in Chapter 3, and the calibration and testing of a multivariate 

linear regression model at generating daily temperature time series. 

 While Chapter 3 widely focussed on model order assessment, this chapter will assess 

the use of the previously described Markov-chain gamma-distribution model at reproducing 

observed precipitation at a selection of weather stations using three methods of analysis. 

Correlations between observed and stochastically simulated precipitation statistics will be 

studied alongside the Mann-Whitney U test used to compare monthly total precipitation, and 

extreme value analysis. A multivariate linear regression model, with regressions conditioned 

on the four precipitation statuses introduced in Chapter 3 (WW, WD, DW, and DD, where 

DW refers to a dry day preceding a wet day), will be used to stochastically produce daily 

temperature time series. This model will also be validated in this chapter using statistical 

testing and comparisons between observed and generated extreme indices. Finally, the 

accuracy of generated concurrent extremes (in precipitation and temperature) will be 

assessed. 
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Table 4.1 – Locations and regimes of weather stations used to calibrate the GCWG. Each 

location contains records for precipitation, maximum and minimum temperature, and mean 

daily wind speed. 

LOCATION LAT, LON RECORD LENGTH 

(YEARS) 

REGIME SOURCE 

Key West, Florida 24.6, -81.6 66 Tropical savanna, Aw NOAA 

Fort Huachuca 31.6, -110.3 54 Hot desert, BWh NOAA 

Phoenix, Arizona 33.4, -112.0 62 Hot desert, BWh NOAA 

Reykjavik, Iceland 64.1, -21.8 57 Subpolar oceanic, Cfc ECAD 

Tallinn, Estonia 59.4, 24.7 56 Humid continental, Dfb ECAD 

Aasiaat, Greenland 68.4, -52.8 63 Polar, ET ECAD 

 

  A range of weather stations across the five overarching Köppen climatic regimes 

(introduced in Chapter 3) have been used to calibrate and validate the combined precipitation 

and temperature model, shown in Table 4.1 and Figure 4.1. The use of a small sample of 

weather stations covering a range of climatic regimes is a widely used method to validate 

the use of a stochastic weather generator (Brunner et al., 2021; Dabhi et al., 2021). Typically, 

studies have used weather stations used that are geographically close (i.e., in one country or 

continent), and have not considered a range of globally representative observations. Long, 

high quality, observational time series with the inclusion of a wide range of climatic 

variables are limited in spatial coverage, and several locations used to calibrate the model 

are present in the USA or Europe. However, to ensure the most globally representative 

model possible whilst working within the constraints of limited spatial data coverage, 

locations have been chosen to span a range of the climatic regimes discussed in Chapter 3. 

The reasoning behind this is that a “hot desert” location in the USA ought to have similar 

precipitation and temperature characteristics as a “hot desert” station elsewhere in the world. 

 Observed datasets have been accessed from the National Centers for Environmental 

Information (NOAA) and the European Climate Assessment & Dataset (ECAD) (Klein 

Tank et al., 2002) projects. In the following sections and chapters, weather stations in the 

same climatic regime have been used interchangeably, i.e., Phoenix has been used in Section 

4.1 and Fort Huachuca in 4.2; both stations are categorised as “hot desert” (BWh) locations 

and are geographically close (both in Arizona, USA). The weather station used is based on 

data availability and quality.  
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Figure 4.1 – The mean daily temperature (right-side y-axis) and mean daily precipitation 

(left-side y-axis) by month for the six weather stations outlined in Table 4.1 from top to 

bottom) Key West, Fort Huachuca, Phoenix, Reykjavik, Tallinn, and Aasiaat. Bars 

represent mean daily precipitation and stars mean temperature.  Note different y-axes on 

the plots. 
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 Figure 4.1 shows the climates in each location used to calibrate the GCWG. As each 

station lies in the Northern Hemisphere, seasonal cycles in temperature are similar at each 

location, though with very large differences in magnitude and Key West, lying closest to the 

tropics and therefore showing a cycle smallest in seasonal changes. Cycles in precipitation 

show greater differences, with several locations showing greatest rainfall during the warmer 

months, contrasting with Reykjavik showing greatest precipitation in the cooler months; 

Key West showing a non-sinusoidal precipitation pattern; and Reykjavik and Tallinn with 

daily mean precipitation >1mm most of the year. 

4.1 FURTHER VALIDATION OF THE STOCHASTIC 

PRECIPITATION MODEL 

 The choice of a first-order Markov-chain gamma model for simulating precipitation 

occurrence in the GCWG has been outlined in Chapter 3. This section discusses the 

performance of a first-order Markov-chain gamma-distribution model at reproducing 

observed precipitation at an individual station basis, using observed data from a sample of 

weather stations presented in Table 4.1. Third order Markov chains have also been used in 

some instances to provide a comparison, due to their improved performance at reproducing 

distributions of dry-spell length (Chapter 3, Table 3.3) and for comparison.  

 In this section, independent training and test datasets have been used for each site, 

both taken from the corresponding observed record. While this is not widely seen in 

literature for the validation of a stochastic weather generator, this ensures the statistical 

testing is robust. Two thirds of the observed record have been used to calculate the 

precipitation parameters (referred to as the training dataset). In all instances this gives a large 

enough sample to accurately estimate Markov probabilities (Soltani and Hoogenboom, 

2003b). The remaining third of the observed record has been held back and is used as the 

test dataset for comparison with a stochastically generated 300-year precipitation time 

series. This provides an unbiased estimate of the skill of the precipitation model. For the rest 

of this sub-section, “observed” refers to the test dataset (one third of the dataset), while 

“generated” (or “simulated”) has been produced using parameters derived from the training 

dataset (two thirds of the dataset). Data has not been split into thirds chronologically. 

Instead, every third year is held back for use as the test dataset. This is to ensure any trends 

from increasing global or regional climate change are captured.   
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4.1.1 STOCHASTIC WEATHER GENERATOR PERFORMANCE AT 

REPRODUCING OBSERVED MEAN PRECIPITATION 

 Scatter plots between various observed and generated precipitation metrics have 

been produced for the five weather stations (Vu and Mishra, 2020).  The means and standard 

deviations in daily precipitation (averaged over all days, wet and dry), the mean precipitation 

only on wet days, and the mean number of wet days have all been calculated monthly for 

the observed and 300-years of generated data. High correlations between observed and 

generated data indicate good performance at capturing the annual cycle of the observed data. 

Table 4.2 – Pearson's Correlation Coefficient between simulated and observed values for 

a range of metrics. The mean daily precipitation (and standard deviation thereof), mean 

wet-day precipitation, and the mean number of wet days are calculated for each month 

from the observed and generated datasets.  

 

  PEARSON’S CORRELATION COEFFICIENT 

(SIMULATED AGAINST OBSERVED) 

Weather Station Years in 

Training 

Set 

Mean Wet + 

Dry-day 

Precip 

Std. Wet+ 

Dry-day 

Precip 

Mean 

Wet-day 

Precip 

No. of 

Wet 

days 

Key West, Florida 

Phoenix, Arizona 

Reykjavik, Iceland 

Tallinn, Estonia 

Aasiaat, Greenland  

44 

42 

38 

38 

42 

0.94 

0.79 

0.91 

0.90 

0.73 

0.25 

0.75 

0.84 

0.96 

0.55 

0.57 

0.71 

0.95 

0.97 

0.69 

0.98 

0.65 

0.78 

0.99 

0.95 

 Mean 0.85 0.67 0.78 0.87 
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a) 

b) 
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d) 

c) 

Figure 4.2 – Scatter plots between observed and synthetic precipitation statistics over 

each station and each month for: a) mean daily precipitation (all days); b) standard 

deviation in daily precipitation (all days); c) mean daily precipitation (wet days only) and 

d) the mean number of wet days per month. 
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 For each metric, most locations show strong positive correlations between the 

observed and generated values (with values shown in Table 4.2). Scatter graphs (Figure 4.2) 

illustrate not just the correlations but also the magnitudes of these four statistics. Mean daily 

precipitation (on wet and dry days, i.e., all days) is reproduced well, with high correlation 

coefficients in all locations (>0.7). Standard deviations of daily amounts (on all days) are 

also well reproduced in Reykjavik, Tallinn, Phoenix, and Aasiaat. The correlation between 

observed and generated standard deviations in daily precipitation is weaker in Key West, 

with generated values generally estimating lower variability than observed, and one outlier 

month (with very high observed standard deviation) weakening the correlation. A lower 

correlation is also found for the mean wet-day precipitation in Key West (Table 4.2) than at 

other locations and there is greater scatter for this statistic, shown in Figure 4.2. However, 

Figure 4.2d shows that the generated number of mean wet days per month in Key West is 

highly correlated to the observed values (reflected by a correlation coefficient of 0.98). This 

indicates that it is likely not the occurrence of precipitation that is weakening the 

performance, but the amount of precipitation on wet days, therefore suggesting that the 

fitting of the gamma distribution is the likely cause of lower correlations in wet-day 

statistics. Although there are fewer wet days per month in Key West, they tend to have a 

greater amount of precipitation and greater variability (Figure 4.2c) than locations such as 

Reykjavik, Tallinn and Aasiaat. There will therefore be a smaller sample size available to 

calculate the shape and scale parameters despite the heaviest rainfall, perhaps resulting in 

unrealistic estimations and therefore the smallest correlations.  

The highest correlations between observed and generated precipitation are found in 

the mean wet and dry day precipitations alongside the mean number of wet days per month, 

with mean correlations of 0.85 and 0.87 respectively (averaged over all sites). This is likely 

due to the good performance of the Markov model at reproducing the occurrence of wet days 

in comparison to the weaker performance of the gamma distribution at accurately 

reproducing the daily amounts, alongside smaller samples (in Key West and Phoenix) used 

to calculate gamma parameters. When a third-order model is used in place of first order, 

these correlations decrease slightly (a maximum of a 6% decrease) in all locations except 

Key West, where there is a 1% increase, indicating little difference between the two model 

orders at reproducing daily mean statistics at these sites. This supports the conclusions found 

in Chapter 3, whereby a first-order model has been chosen due to its all-round high 

performance alongside its computational efficiency.  
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If the test and training datasets are the same, utilising the full observed record to 

calculate GCWG input parameters (resulting in between 58 and 64 years of data), 

correlations between monthly statistics are very high for all metrics, largely increasing 

(where possible) on those shown in Table 4.2. This highlights the requirement of long, high-

quality data, and issues that may arise in locations with less consistent precipitation, though 

it is important to note that testing generated data against a training dataset will of course 

improve validation metrics alongside decreasing the robustness of the comparison. 

 Instead of one 300-year generated time series, ten 30-year periods have been 

simulated (i.e., ten realisations of the present-day climate at each site). As before, training 

and test datasets differ, with a larger training than test dataset (in the same 2:1 ratio). The 

monthly means in daily precipitation are calculated for the observed (test) dataset and 

generated datasets. It can be expected that, if the observed dataset and ten generated datasets 

are realisations of the same climate system, observed monthly means will generally lie 

within the range of generated monthly means. Data has been produced using first- and third-

order models for comparison, based on results presented in Chapter 3, wherein a first-order 

model was preferred for several metrics, though long dry-spells and tropical regimes widely 

prescribed a third-order model.  

Table 4.3 – The number of months where the observed mean daily precipitation lies 

between the maximum and minimum generated values.  

LOCATION 1ST ORDER 3RD ORDER 

Key West 9 9 

Phoenix 8 6 

Reykjavik 10 7 

Tallinn 10 6 

Aasiaat 8 6 
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Using a first-order model, performance in all locations is generally very good, with 

the observed mean falling between the upper and lower generated means in at least 7 months 

at all locations (Table 4.3). First orders outperform third orders in all locations except Key 

West, where model orders perform equally. This further supports the findings presented in 

Chapter 3, wherein a first-order model was recommended as an appropriate all-rounder for 

all climatic regimes. Categorised as tropical, it is not all that surprising that first and third 

orders show similar results in Key West, where several metrics showed better performance 

with a third-order model than in other regimes (Chapter 3, Table 3.5).  

a) 
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b) 

c) 
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Figure 4.3 – Observed means in daily precipitation from the test dataset (stars) and the 

range of generated means using a first-order model (black dashed with error bars) at a) 

Key West, b) Phoenix, c) Reykjavik, d) Tallin and e) Aasiaat. Daily mean precipitation is 

calculated monthly, with error bars representing the largest mean and smallest mean from 

the 10 simulations. The dotted line represents the training dataset used to generate the 30-

year simulations. 

d) 

e) 
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Annual cycles in mean daily precipitation are reproduced well at all locations (Figure 

4.3). Where an observed mean does not fall within the range of generated values, the test 

and training datasets frequently show large differences in precipitation amounts. This is most 

noticeable in Phoenix (August through May), in Key West (July), in Tallinn (October), and 

in Aasiaat (June and August). Increasing the number of generated realisations from ten may 

result in a range of values that may better represent the true variability of the climate. 

Observed means generally fall within the range of generated means during drier months, 

with less agreement in the wetter months. This may once more be a result of better 

performance of the Markov-chain model than the gamma distribution at approximating daily 

precipitation amounts. 

Reykjavik and Tallinn show the closest matches between observed and generated 

means (Table 4.3). A potential cause of the larger disagreement in Key West, Phoenix and 

Aasiaat can be explained through the weaker correlations in mean wet-day precipitation 

(Table 4.2). While all locations show strong correlations between the number of wet days in 

the observed and generated datasets, Key West, Phoenix and Aasiaat show slightly weaker 

correlations in mean wet-day precipitation amounts than at Reykjavik and Tallinn. In each 

of these locations, there are also fewer observed wet days per month (Figure 4.2) than at 

Reykjavik and Tallinn, in turn resulting in smaller sample sizes available to calculate wet-

day shape and scale parameters. This reiterates the previously discussed issue with smaller 

sample sizes available to fit monthly gamma-distributions in daily precipitation, therefore 

perhaps requiring longer observed records to effectively capture the true distribution and 

resulting in the lower agreement shown in Figure 4.3. 

In both methods of analysis presented in this chapter, approximating daily 

precipitation with the two-parameter gamma distribution is likely the prevalent cause of 

differences between observed and generated time series. This is unsurprising; although the 

gamma distribution is widely used to approximate daily precipitation, Vlček and Huth 

(2009) note that the Kolmogorov-Smirnov test tends to be widely misused in place of the 

Lilliefors test in climate literature, thus exaggerating the acceptance of the gamma 

distribution as a suitable fit. Nevertheless, the gamma distribution remains appropriate in 

over half of the weather stations across Europe examined by Vlček and Huth (2009), who 

also found that there tends to be little geographic coherence in the acceptance of the gamma 

distribution for daily precipitation amounts. The gamma distribution will however still be 

used in the GCWG while recognising its limitations, due to its important strengths: it is 
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positively skewed, bounded at zero, and has the flexibility to represent a range of rainfall 

distributions and shapes while utilising only two parameters (Husak et al., 2007; Wójcik et 

al., 2014). It is this simplicity of using only two parameters that will be exploited in Chapters 

6, wherein these parameters will be scaled with increasing global mean surface temperature. 

4.1.2 STOCHASTIC WEATHER GENERATOR PERFORMANCE AT 

REPRODUCING OBSERVED EXTREME PRECIPITATION 

RETURN PERIODS 

Section 4.1.1 assessed the GCWG’s capacity to reproduce the annual cycles of 

precipitation. Whilst it is important to accurately reproduce the observed mean behaviour of 

precipitation, the study of extremes and how they might change in the future holds great 

value. Extreme value analysis (EVA) will be used here to assess how accurately the GCWG 

can reproduce return periods in extreme precipitation. Katz (1999) outlines EVA for 

precipitation generated by a Markov-chain gamma-distribution model. The first-order 

Markov chain model outlined in Chapter 3 can be reparametrized in terms of the probability 

of a wet day (here defined as 𝜋), and the first-order autocorrelation coefficient, 𝑑, where 

𝜋 =
𝑝01

𝑝01 + 𝑝10
 

and 

𝑑 = 𝑝11 − 𝑝01. 

 

In a specified period of 𝑇 days, the number of occurrences of precipitation with 

intensity greater than 0.1mm is denoted by 𝑁(𝑇). Over this period, the maximum amount 

of precipitation is defined as 

𝑀𝑇 = max{𝑍1, 𝑍2, … 𝑍𝑁(𝑇)} 

where 𝑍𝑘is the amount of precipitation on the k-th day. In classical EVA, the following 

result 

Pr{𝑎𝑇(𝑀𝑡 − 𝑏𝑡) ≤ 𝑥} → 𝐺(𝑥) ≡ exp(−𝑒−𝑥), 

−∞ < x < ∞, as T →  ∞ 

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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can be used for a non-random, fixed number of independent, identically distributed variables 

(such as precipitation with the gamma distribution), where G is the limiting cumulative 

density function called the Type 1 extreme value distribution with zero location parameter 

and unit scale parameter (Katz, 1999). Following Katz’s methodology, if the parent 

cumulative density function is a gamma distribution, one choice of normalising coefficients 

𝑎𝑇, and 𝑏𝑇 is defined as  

𝑎𝑇 =
1

𝛽
,

𝑏𝑇

𝛽
=  𝑐𝑇 + (𝛼 − 1) ln(𝑐𝑇),   where 𝑐𝑇 = ln [

𝑇𝜋

𝛤(𝛼)
] 

 

where 𝑎𝑇 > 0, 𝛼 and 𝛽 are the shape and scale parameters of the gamma distribution 

respectively (as defined in Chapter 2, equations 2.3 and 2.4), and 𝛤 denotes the gamma 

function. Note that 𝑇𝜋 in equation 4.5 is the expected number of wet days. A design value, 

𝑥(𝑟), is commonly introduced in engineered systems to allow for extreme events such that 

𝑟 = Pr {𝑀𝑇 > 𝑥(𝑟)} 

corresponding to the return period of 
1

𝑟
 years (such that a probability of 𝑟 =  0.01 refers to 

a 100-year return period). Though the autocorrelation coefficient, 𝑑, has been defined as part 

of the reparameterization process, the design value is only dependent on the parameters of 

the chain-dependent process (here, π, α and β). In this special case where the parent 

distribution is the gamma distribution, the design value can be expressed as 

𝑥(𝑟) = 𝑏𝑇 −
ln[− ln(1 − 𝑟)]

𝑎𝑇
 . 

Equation 4.7 has been used to calculate design values for 10- and 50-year return 

periods from an observed record at each site. Here, the full observed record will be utilised 

(instead of differing training and test datasets as in Section 4.1.1) to provide the longest 

record possible to best calculate the design values. Design values have been calculated for 

the month with the highest mean daily precipitation (averaged over all days, wet and dry) 

from the observed record. This corresponds to a T of 28, 30 or 31 dependent month.  

The ability of the first-order Markov-chain gamma-distribution model to reproduce 

the return periods for specified design values is tested. Instead of calculating the design 

value, the return period, r, is calculated using the observed design value corresponding to 

either a 10- or 50-year return period. Rearranging equation 4.7 therefore gives 

(4.6) 

(4.7) 

(4.5) 
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𝑟 = 1 −  𝑒−𝑒
𝑎𝑡(𝑏𝑡−𝑥(𝑟))

. 

The calculated design values (for 10- and 50-year return periods) from the observed record 

are substituted into equation 4.8 to calculate return periods from 300-years of generated data. 

 

Table 4.4 – The generated return periods for design values with 10- and 50-year observed 

return periods during the month with the highest mean daily precipitation (calculated from 

observational data). Design values are calculated from the observed record, with return 

periods from the generated data corresponding to the relevant design value. Factor refers 

to how many times larger the generated return period is from the specified 10 or 50 years. 

   

 The GCWG simulates longer return periods than are present in the observed data, 

and in all instances, simulated 10-year return periods more accurately than 50-years. This is 

perhaps a reflection of the capabilities of the gamma distribution poorly representing 

extreme tail ends of daily precipitation; it is known that the extreme tail of gamma 

distributions is not always heavy enough (Furrer and Katz, 2008) leading to 

underestimations in the likelihoods of high precipitation intensities. Despite first-order 

models typically reproducing the full wet-spell length distribution more accurately than 

other orders, a known downfall of Markov-chain models is also in their accurate 

representation of extreme events (Wilson Kemsley et al., 2021). Locations with smaller 

design values are also represented more poorly than locations with larger design values.  

 

Table 4.4 shows better reproductions of return periods in Key West and Tallinn than all other 

  10-YEAR RETURN 

PERIOD 

50-YEAR RETURN 

PERIOD 

Location Month Design 

Value 

(mm) 

Return 

Period 

(years) 

Factor Design 

Value 

(mm) 

Return 

Period 

(years) 

Factor 

Key West September 75.2 13.7 1.4 104.0 121.2 2.4 

Phoenix August  25.0 18.3 1.8 36.9 121.8 2.5 

Reykjavik February 26.5 20.0 2.0 35.6 140 2.8 

Tallinn August 34.8 14.4 1.4 47.5 77.5 1.6 

Aasiaat  September 25.6 21.3 2.1 35.8 219.9 4.4 

(4.8) 
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locations. These two locations also have the highest design values for 10- and 50- year return 

periods. 

 As a primary purpose of constructing this GCWG is to use it in a tool to study 

changes to the climate and hence the frequency and intensity of extremes using the pattern 

scaling technique, the simplicity of the two-parameter gamma distribution is a major 

advantage. Furthermore, Osborn et al. (2016) have demonstrated the use of the pattern 

scaling technique for diagnosing changes in total monthly precipitation gamma shape 

parameters with GMST increase, showcasing the merits of the techniques. Similar 

methodology will analogously be applied to the daily shape and scale parameters in this 

thesis. Therefore, despite the significant overestimation of return periods, the gamma 

distribution will still be used in this study. It is perhaps advisable that, when studying 

changes to return periods using the perturbed weather generator, changes are considered 

relative to a stochastic simulation of the reference period, rather than relative to the raw 

observed data.  

4.2 STOCHASTIC GENERATION OF THE SECONDARY 

VARIABLES 

 The strengths and weaknesses of a Markov-chain gamma-parameter model to 

reproduce observed precipitation series have been discussed in Chapter 3 and Section 4.1. 

While precipitation is considered a primary weather variable and is arguably one of the most 

important variables to accurately reproduce, there is also great importance in accurately 

reproducing daily temperature values. Similarly to precipitation, daily temperature time 

series are used in applications such as agricultural and ecological modelling. 

4.2.1 GENERATING DAILY MAXIMUM AND MINIMUM 

TEMPERATURES 

 There are a range of methods that can be used to stochastically generate daily 

temperature time series, some of which have been briefly discussed in Chapter 2. Here, a 

selection of these methods will be examined in greater detail. While it is not uncommon to 

generate daily mean temperature and diurnal range, daily maximum (𝑇𝑥) and minimum (𝑇𝑛) 

temperatures will be simulated by the GCWG. This is in part due to much of the available 

observed weather station data containing daily maximums and minimums only, and also to 

allow the study of changes to extremes under different degrees of warming in Chapter 7, 
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alongside assessing the GCWG’s capabilities at reproducing observed extreme temperature 

statistics.  

 WGEN, an early Markov-chain gamma-model for precipitation, produces daily 

maximum and minimum temperature time series using a multivariate weakly stationary 

generating processes, a process given by Matalas (1967), with the inclusion of daily solar 

radiation (Matalas, 1967; Richardson and Wright, 1984). While this method maintains 

correlations between temperature and solar radiation, parameters in this process are 

determined seasonally, and are not conditioned on precipitation status. Issues in reproducing 

observed means in 𝑇𝑥 and 𝑇𝑛 arose in locations where observations did not follow simple 

sinusoidal shapes, as assumed by the model. Extreme statistics were also reproduced less 

accurately than means. Solar radiation is also a required variable in this process, while many 

weather stations only record daily precipitation and temperature. To ensure the widest global 

applicability, it is more desirable to use the fewest variables possible that presently have the 

widest availability.  

 An alternative approach is used in LARS-WG (Semenov and Barrow, 2002). A 

Gaussian (normal) distribution is used to model 𝑇𝑥 and 𝑇𝑛 . The means and standard 

deviations of 𝑇𝑥 and 𝑇𝑛 are calculated daily from observations. A Fourier series is hence 

used to smooth the daily means and standard deviations to represent an annual cycle, with 

separate series fitted on wet and dry days (Qian et al., 2008). Unlike WGEN, this therefore 

incorporates conditioning on the precipitation status of the day. A lag-1 autocorrelation 

process is used between 𝑇𝑥 and 𝑇𝑛, with different parameters depending on the precipitation 

status of the day. An issue that may arise with using daily means and standard deviations 

conditioned on the precipitation status is potentially small data samples. The maximum 

sample size for a given day of the year is equal to the number of years of observed data. In 

practice, some of these days will be wet, and some will be dry, meaning even smaller sample 

sizes. While fitting Fourier series will reduce noise arising from small sample sizes, in some 

locations where there are very few (or no) wet or dry days, the processes may not accurately 

represent actual temperature values.  

 AAFC-WG uses a slightly different approach that tends to reproduce observed 

temperatures better than LARS-WG, though with more complexity (Qian et al., 2005). An 

empirical distribution is fit to 𝑇𝑥 and 𝑇𝑛 residual series. Daily means and standard deviations 

are estimated using a spline interpolation procedure on monthly statistics. This is done 

separately for wet and dry days, once again maintaining correlations between the variables. 
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Much like WGEN, correlation matrices are calculated from 𝑇𝑥 and 𝑇𝑛, and daily solar 

radiation; however, lag-0 and lag-1 matrices are also used in AAFC-WG. This builds upon 

WGEN in that generation of temperature is conditioned on the precipitation status, alongside 

maintaining correlations between maxima and minima in temperature and solar radiation 

(Qian et al., 2008). Due to the additional complexity of the method, the parameters are not 

suitable to demonstrate the applicability of the pattern scaling technique to a stochastic 

weather generator for generating daily temperature values (Chapter 7).   

 Here, the daily maximum and minimum temperatures will be generated using a 

conditional, first-order multivariate autoregressive approach, generally following 

methodology used in the Climatic Research Unit Weather Generator (CRUWG) (Jones et 

al., 2016) with some additions motivated by techniques present in other weather generators. 

The distributions of maximum and minimum temperature are much less skewed than 

precipitation (Richardson, 1981), and a commonality between many methods of stochastic 

temperature generation is the use of a normal distribution to model daily temperature values 

(Qian et al., 2008; Semenov and Barrow, 1997). As such, a Gaussian distribution will be 

used here. 

 An autoregressive approach will also be used due to the serial correlation of daily 

temperature values from one day to the next, caused by heat storage (Richardson, 1981). 

Autoregression is a common feature of many stochastic temperature models. Aside from 

strong daily correlations, temperature values are also generally linked to the precipitation 

status. On days with heavy precipitation, temperatures are more likely to fall below normal. 

The process also shows strong oscillations seasonally. Therefore, the proposed model for 

generating daily maximum and minimum temperatures uses autoregressive relationships 

calculated at least monthly, with previous day’s temperature and either the previous or 

present day’s precipitation (which is used is dependent on the precipitation status) as the 

predictors.  

 First, a time series of daily maximum and minimum temperature (e.g., observed or 

reanalysis) is converted to a residual series. To convert the observed time series to residuals, 

bimonthly means and standard deviations in 𝑇𝑥  and 𝑇𝑛 are calculated (where bimonthly 

refers to twice per month). Means and standard deviations are calculated for each 

precipitation transition state defined in Chapter 3 (WW, WD, DD and DW where, for 

example, DW refers to a wet day preceded by a dry day) for the first (days 1-15 inclusive) 

and second (days 16 onwards, regardless of month for simplicity) halves of the month. The 
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observed temperature record is hence standardised by subtracting the mean and dividing by 

the standard deviation corresponding to the appropriate half-month and precipitation state. 

This results in the calculation of 8 means and standard deviations per calendar month. 

 This residual series is then modelled as a first-order autoregressive process with a 

different model structure for each precipitation transition state. The generated precipitation 

time series is used to establish the transition state of a day, informing which of equations 4.9 

– 4.12 to use to simulate the daily temperature residual (Ti). For the DD transition state 

(current dry day preceded by a dry day): 

𝑇𝑖 = 𝑎1𝑇𝑖−1 + 𝑏1 + 𝜀1 

for the WW transition state (current wet day preceded by a wet day): 

𝑇𝑖 = 𝑎2𝑇𝑖−1 + 𝑏2 +  𝜀2 

for the DW transition state (current wet day preceded by a dry day): 

𝑇𝑖 = 𝑎3𝑇𝑖−1 + 𝑐3𝑃𝑖 + 𝑏3 +  𝜀3 

and finally, the WD transition state (current dry day preceded by a wet day): 

𝑇𝑖 = 𝑎4𝑇𝑖−1 + 𝑐4𝑃𝑖−1 + 𝑏4 + 𝜀4 

Coefficients 𝑎𝑁, 𝑏𝑁 and 𝑐𝑁 are fitted using multiple linear regression of the standardised 

observed series of temperature and precipitation (also standardised). The suffixes 𝑖 and 𝑖 −

1 indicate the present or previous day, respectively, and 𝜀  are independent, Gaussian error 

terms. While means and standard deviations are calculated bimonthly, regression equation 

coefficients are instead determined monthly. This is to reduce the risk of overfitting the 

model, alongside ensuring an appropriate number of samples are included in determining 

the regression coefficients. Linear autoregressive models of this type (conditioned on 

precipitation transition state) have been used to generate daily temperatures with good 

accuracy at a range of sites, including the Caribbean (Jones et al., 2016), the United 

Kingdom (Jones et al., 2009; Kilsby et al., 2007) and The Upper Indus Basin (Forsythe et 

al., 2014). 

In instances where there are few (or no) temperature values corresponding to a 

specified precipitation state, the following process is used to determine the regression 

equation coefficients: 

(4.9) 

(4.10) 

(4.11) 

(4.12) 
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1. The preceding and following month will also be used to calculate the regression 

equations for only the precipitation status that does not have a large enough sample 

size. For example, if there are limited WW days in January, all WW days in 

December, January and February will instead be used. 

2. If the sample remains too small, the preceding and following two months will be 

used. For example, if there are limited WW days in January, WW days in November, 

December, January, February and March will instead be used.  

 The generated residual series is converted back into temperature values by reversing 

the process used to convert the observed series to residuals. The generated residual is 

multiplied by the observed standard deviation and added to the observed mean 

corresponding to the correct half-month and precipitation transition state of the day. In some 

instances, generated 𝑇𝑛 may exceed 𝑇𝑥 . In these instances, a correction process described 

by Dabhi et al. (2021) is followed, where the mean temperature is calculated (𝑇𝑚𝑒𝑎𝑛 =
𝑇𝑥+𝑇𝑛

2
) 

and a small positive number, 𝛿, is randomly (where 𝛿 < 0.2°C) added to and subtracted 

from 𝑇𝑚𝑒𝑎𝑛 to determine 𝑇𝑥 and 𝑇𝑛 respectively.  

 Where possible, means and standard deviations (conditioned on precipitation status) 

will be calculated bimonthly. These will be used to convert the observed and generated series 

to and from residuals. Bimonthly parameters will be used, where possible, to ensure the most 

globally representative model and in line with the methods outlined by Kilsby et al. (2007). 

The benefit of using bimonthly parameters is shown in Figure 4.4 for Reykjavik, Iceland, 

and Tallinn, Estonia. In some instances, the difference between the temperature in the first 

half of a month and the second half exceeds differences between monthly values themselves. 

This is most noticeable in the transition seasons, i.e., in the Spring (MAM) and Autumn 

(SON) months. In DJF and JJA, differences between half-months (and months themselves) 

are relatively small. In MAM and SON however, differences up to 4°C are noted between 

the first and second half of November and March in Tallinn, with differences between the 

monthly and bimonthly parameters up to 2°C in some instances in both locations.  
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Figure 4.4 – Mean daily maximum temperatures calculated bimonthly and monthly in 

Reykjavik on days with WD transition states and mean daily minimum temperatures 

calculated bimonthly and monthly in Tallinn on days with DD transition states. 

 While in the displayed locations, each transition state contains large samples of 

temperatures on days with each transition sate, an issue may arise where there are few (or 

no) observations of a given state in a half-month. To address this issue, a user specified 
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minimum sample size will be required to estimate the bimonthly conditional means and 

standard deviations. In instances where the size of sample does not meet the specification 

due to limited or no observations, a best estimate is taken instead using the following process 

(hereafter referred to as the “temperature sample size correction process”):  

1. If any sample size for a particular half-month and precipitation transition state is less 

than the specified minimum, the mean and standard deviation for that precipitation 

transition state is calculated using days with the correct transition state but for the 

full month instead of only a half-month period. 

2. If the sample size remains too small, the means and standard deviations on wet or 

dry days for the corresponding half-month will be used instead. For WD and DD 

transition states, dry days will be used. For DW and WW, wet days will be used. 

3. If the sample size is still too small, three months of temperature observations for days 

corresponding to the correct transition state (DW, WD, DD or WW) will be used 

instead, using the months preceding, including, and following the original half-

month. 

4. If the sample size is still too small, wet and dry means and standard deviations are 

instead calculated over three months. As in step 2, wet days will be used for the WW 

and DW transition states and dry days for DD and WD.  

5. Finally, if the sample size remains too small, but not zero, Fourier series will be fit 

to the bimonthly means and standard deviations to smooth the data. The smoothed 

values will be used in place of the observational values. If the sample size is zero, 

the monthly mean (with no conditioning on precipitation status) will be used instead. 

 The outlined procedure aims to give a best estimate of the mean and standard 

deviation of the temperature in any half-month, conditioned where possible on precipitation 

status, whilst also capturing the annual cycle of temperature accurately. These steps are 

shown in Figure 4.5. Although the LARS-WG approach has not been used in the 

development of the GCWG, Fourier series will be used to smooth data in instances where 

sample sizes are not large enough (step 5).  
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Figure 4.5 – Flowchart showing the steps in the temperature sample size correction process. 

N is the specified minimum sample size.  
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 An example of this process is shown for Fort Huachuca, Arizona with a specified 

minimum sample size of N = 25 days (Figure 4.6). Before correcting the temperature sample 

size, several half-months contain little to no data for WW and DW days – a common 

occurrence for a dry location. Different half-months have been corrected using different 

stages of the temperature sample size correction process. From approximately 50 years of 

observed weather data, there are only 7 days with a WW precipitation status in the second 

half of January. After following the temperature sample size correction process, daily 

temperature statistics on WW days have instead been calculated using a three-month period 

(December, January, and February), resulting in 65 observations. In the second half of 

March, there are 18 DW days in the observed record. The mean temperatures have instead 

been calculated using DW days in all of March, resulting in 44 observations. Although 

temperature statistics for different half-months and precipitation statuses have been 

calculated using varying steps of the correction process, the annual cycle in Fort Huachuca 

has been preserved accurately. The standard error in the mean has also been reduced in 

several cases. This is reflected by the much smaller error bars for several half-months 

following the temperature sample size correction process. For example, in the second half 

of May, the standard error in the WW mean is 3.73°C. After increasing the sample size to 

>25 observations, the error has decreased by 81% to only 0.73°C. Standard errors in all half-

months and precipitation statuses do not exceed 1.15°C after following the temperature 

sample size correction process. This increases the confidence in estimating an accurate value 

of the true temperature for a given transition state. 

 Figure 4.6 also highlights the importance of using four transition states, instead of 

simply wet or dry (as several of the previously published methods use), and that the results 

are physically plausible. Higher daily maximum temperatures are observed throughout the 

year during dry spells (DD), as might be expected in the desert climate of Fort Huachuca. 

However, the temperatures on dry days differ substantially according to whether the 

preceding day was dry (DD) or wet (WD). Daytime temperatures are further suppressed 

during a sequence of wet days, especially in February and March but also in many other 

months (WW means are cooler than DW means).   
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Figure 4.6 – Bimonthly means in daily maximum temperature at Fort Huachuca before 

(top) and after (bottom) the temperature sample size correction process. Error bars show 

the standard error in the mean. 
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 Some locations may also not require means and standard deviations calculated on a 

bimonthly basis due to smaller increases or decreases in temperature over the course of a 

month.  However, to ensure locations such as Tallinn (shown in Figure 4.4) and potentially 

many other locations globally are best represented, bimonthly parameters will be used as 

default in the GCWG. Locations with limited sample sizes for specific precipitation statuses 

have been tackled using the temperature sample size correction process (Figure 4.5).    

4.2.2 STOCHASTIC WEATHER GENERATOR PERFORMANCE AT 

REPRODUCING OBSERVED MAXIMUM AND MINIMUM 

TEMPERATURE  

 Means and standard deviations in maximum and minimum temperature, conditioned 

on the precipitation status, have been calculated bimonthly with monthly regression 

equations. As in Section 4.1, training and test datasets differ, where the training dataset 

comprises two thirds of the full observed record, and the test dataset the remaining third 

(split every three years). As in section 4.1.1, ten 30-year periods of daily 𝑃, 𝑇𝑥  and  𝑇𝑛 have 

been generated using approximately 38 – 42 years of data. For the rest of this section, 

“observed” refers to the test dataset (one third of the observed data), while “generated” (or 

“simulated”) has been produced using parameters derived from the training dataset (two 

thirds of the observed data). It can once again be expected that, should the observed dataset 

and the ten generated datasets be realisations of the same climate system, the observed 

means will generally lie within the range of generated means. 

Table 4.5 – The number of months where the observed mean daily 𝑇𝑥 or 𝑇𝑛 falls within the 

range of generated means from ten 30-year simulations for both maximum and minimum 

temperature (column labelled “NO. MEANS”). The root-mean-squared-error (RMSE) has 

been calculated between the observed and generated means, monthly. RMSE shown here is 

the mean RMSE averaged over all 12 months. 

 NO. MEANS RMSE  

SITE 𝑻𝒙 𝑻𝒏 𝑻𝒙 𝑻𝒏 

Key West 10 7 0.10 0.13 

Fort Huachuca 9 7 0.24 0.21 

Reykjavik 11 10 0.24 0.26 

Tallinn 9 8 0.37 0.42 

Aasiaat 7 7 0.19 0.18 
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In each location, the observed mean lies within the range of generated means from 

the ten 30-year simulations in over half of the months (shown in Table 4.5 and Figure 4.7). 

In many cases where the range of generated means does not encompass the observed value 

from the testing period, the differences are nevertheless quite small. This is reflected by low 

mean RMSE at all sites (<0.5), including those where fewer observed means lies within the 

range of generated means. In all locations, the full range of generated means are captured 

within one standard deviation of the observed record for daily maximum and daily minimum 

temperature (standard deviation not shown here) even if the observed mean does not lie 

within the range of generated means. This suggests that the GCWG is generally producing 

good realisations of the true climate. 

 Performance is slightly better regarding maximum daily temperatures than minima. 

While daily temperatures are widely assumed to follow a normal distribution, Qian et al. 

(2008) notes that this is not always the case at some locations or for every month; this could 

be a cause for the different levels of agreement between observed and generated means. It 

is also known that the distribution of daily minimum temperature is slightly more skewed 

than maximums (Dabhi et al., 2021). This could result in slightly less accurate reproduction 

of observed minimum temperature, reflected by fewer generated means capturing the 

observed in Table 4.5. 

 Unlike precipitation, there tends to be little temporal structure regarding the months 

where the observed mean is not captured by the range of generated means. Instead, the most 

notable cause appears to be due to larger differences between the training and test datasets 

themselves. While generated means lie very close to the training data, it is important that the 

GCWG also captures the variability accurately. Like precipitation, the range of generated 

values may better capture true climate variability by increasing the number of simulations 

from ten. This way, the chances of generating an unusually warm or cold month (for 

example, test data for February in Tallinn or August in Key West respectively) or period 

(test data in Aasiaat) are increased.  
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Figure 4.7 shows that the methods outlined in Section 4.2.1 accurately reproduce the 

observed annual cycles in 𝑇𝑥  and 𝑇𝑛. In comparison with precipitation, the generated mean 

ranges in daily maximum and minimum temperature (error bars shown in Figure 4.7) are 

much smaller, though despite this, the number of months with observed means falling within 

the range of generated means is very similar. This is likely a reflection of the greater 

variability in daily precipitation than in daily temperature.  

While it is important to accurately reproduce observed means in daily maximum and 

minimum temperature, the ability to capture the variability is arguably of greater importance 

in the study of extremes (Katz and Brown, 1992; Seneviratne et al., 2021). To assess the 

GCWG’s ability to reproduce observed temperature variability, the observed and generated 

monthly variances have been compared using Bartlett’s test for the ten 30-year realisations. 

This results in ten statistical tests between observed and generated variances per month, 

using the same training and test datasets as before. This results in 12 tests per simulation. 

Figure 4.7 – Observed mean (stars and diamonds) and the generated means (black with 

error bars) in daily 𝑇𝑥 and 𝑇𝑛 (top and bottom curves, respectively) at a) Key West, b) Fort 

Huachuca, c) Reykjavik, d) Tallin and e) Aasiaat. Mean daily maxima and minima are 

calculated monthly, with error bars representing the largest mean and smallest mean from 

the 10 simulations. The dotted line represents the training dataset used to generate the 30-

year simulations. 

 

e) 
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The mean number of simulations that show no statistical differences are taken over the 12 

months and presented in Table 4.6 (out of a maximum 10). 

Table 4.6 – The mean number of simulations showing no statistical difference between 

observed and generated variances per month. For example, a value of 7.3 represents on 

average 7.3 simulations show no statistically significant differences between the observed 

and generated variances per month. 

VARIABLE 𝑻𝒙   𝑻𝒏  MEAN 

Key West 6.4 4.0 5.2 

Fort Huachuca 5.2 6.2 5.7 

Reykjavik 6.8 7.3 7.1 

Tallinn 5.9 6.3 6.1 

Aasiaat 6.7 4.8 5.8 

MEAN 6.2 5.7  

 

In most locations, at least half of the ten simulations show no statistical differences 

between the observed and generated variances per month on average with, no temporal 

patterns recognised (i.e., performance based on the annual cycle). Greater performance is 

shown in reproducing the variance in daily maximum temperatures than minima. This 

appears to be a common feature of this GCWG; the model tends to reproduce maxima with 

greater accuracy than minima. This is likely due to the aforementioned assumption of 

normality holding stronger for maximum temperatures than minima. 

The Expert Team on Climate Change Detection and Indices (ETCCDI) established 

a suite of indices to represent the extreme ends of precipitation and temperature probability 

distributions. The ability to reproduce observed extreme indices in daily temperature will be 

tested using monthly and bimonthly temperature parameters. The warm spell duration 

indicator (WSDI) and cold spell duration indicator (CSDI) are two indices defined by the 

ETCCDI that have used to assess the annual count of warm and cold periods respectively in 

a record, relative to a baseline period (e.g., 1960 – 1990) (Kim et al., 2020). Here, two 

metrics have been introduced based on the WSDI and CSDI indices. The 90th percentile in 

daily maximum temperature and 10th percentile in daily minimum temperature has been 

calculated annually from the test dataset. Warm spells and cold spells occur when at least 6 

consecutive days experience maxima or minima that exceed or fall below the 90th and 10th 

percentiles respectively. The annual count of warm and cold spells will be defined as the 
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WS90 and CS10. It is important to note that a warm (or cold) spell must last at least 6 days, 

though in some instances, the period may be longer. Regardless of length, the spell will only 

add one to the total annual count.  

Table 4.7 – The annual number of observed and generated occurrences where the 

maximum temperature exceeds the 90th percentile for at least 6 consecutive days (WS90) 

and where the minimum temperature falls below the 10th percentile for at least 6 

consecutive days (CS90).  

 

  

 

 

 

 

 The GCWG reproduces the annual number of warm spells accurately at Tallin, 

Reykjavik and Aasiaat. Poorer performance in reproducing CS10 is present in most 

locations, with sizeable underestimates in Key West, Fort Huachuca and Aasiaat. Dabhi et 

al. (2021) found that a stochastic weather generator following an autoregressive lag-1 

structure tended to underestimate cold spell extremes while hot spell extremes were 

generally well reproduced. This is likely due to the previously discussed more skewed 

minimum temperature distribution (Dabhi et al., 2021). This assumption of normality may 

hence result in the GCWG not capturing the potentially non-Gaussian shape of the more 

skewed minimum temperature distributions, causing poorer performance in reproducing 

cold spell extremes.  

Poorer ability at reproducing extreme indices and (though to a lesser degree) 

observed variances in Key West and Fort Huachuca than other locations may be explained 

by a combination of model-order choice and the temperature sample size correction process. 

In Chapter 3, it was found that the distributions of wet-spell length, dry-spell length, and the 

interannual variability of precipitation occurrence are all best represented by third-order 

Markov chains in tropical regimes, of which Key West is categorised into. Weaker 

performance may therefore be due to inaccuracies in reproducing observed precipitation 

transition states. While Figure 4.2d shows strong correlations between the mean number of 

 WS90 CS10 

LOCATION Observed Generated Observed Generated 

Key West 2.2 0.7 1.9 0.2 

Fort Huachuca 2.0 0.8 1.6 0.8 

Reykjavik 1.8 1.9 1.3 1.1 

Tallinn 1.8 1.7 1.8 2.1 

Aasiaat 1.5 1.1 1.6 0.3 
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wet days per month for observed and generated data, the exact precipitation state may not 

accurately be reproduced. For example, transition states DD and WD both result in a dry 

day but would correspond to a different regression equation, mean and standard deviation, 

used to calculate the temperature on that day.  

A similar issue may arise in Fort Huachuca, which is in a dry regime. A dry regime 

may be more susceptible to longer spells with no precipitation than other regimes. A known 

limitation of the first-order Markov chain (that has been used here) is the ability to reproduce 

long dry spells (Lennartsson et al., 2008), and Chapter 3 concluded that distributions of dry-

spell length are better captured by a third-order model in all locations. This means there may 

be a smaller proportion of DD days in the generated record than the observed record at Fort 

Huachuca. It is clear from Figure 4.6 that the temperature on DD days is much larger than 

on WD days, despite both corresponding to a dry day. This once again may affect the choice 

of regression equation, mean and standard deviation used to calculate the temperature.  

The temperature sample size correction process (Figure 4.5) may also affect the 

ability to reproduce observed variances and hence the extreme indices. Some half-months 

may use temperature values from a range of different months depending on the length of the 

sample and which step of the process provides a long enough record. This may in turn result 

in a wider range of values used to calculate the temperature parameters for a given half-

month, thus increasing the standard deviation used to convert the residual series into 

temperature values and therefore potentially overestimating the variance.  

4.2.3 STOCHASTIC WEATHER GENERATOR PERFORMANCE AT 

REPRODUCING OBSERVED MULTIVARIATE EXTREMES 

 Whilst it is important to accurately reproduce precipitation and temperature 

independently, it is also desirable to correctly reproduce the correlations between the two. 

Relationships between the two variables are particularly important to accurately model in 

the study of concurrent extreme events. Strong impacts are associated with these 

multivariate extremes, and processes that cause extreme weather events tend to be spatially 

or temporally dependent. Despite this, relatively little attention has been given to such events 

and, traditionally, risk assessments tend to consider only one driver of extreme weather, 

potentially leading to underestimations of risk (Brunner et al., 2021; Zscheischler et al., 

2018).  
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 To assess the skill of the conditional, multiple linear regression method outlined in 

Section 4.2.1 (equations 4.9 – 4.12), the capabilities of the GCWG at reproducing observed 

correlations between the two variables have been assessed. The maximum and minimum 

temperatures on very wet days (exceeding the 90th percentile) and the mean maximum 

temperature over dry spells (10 days or more with no precipitation) have both been studied.  

The maximum and minimum temperatures on days where the precipitation exceeds 

the 90th percentile (referred to here as very wet days) have been compared using observed 

and 300 years of generated data. As before, training and test datasets differ, though here the 

observed record has been split into a 1:1 ratio to provide longer test datasets for comparison 

with percentiles calculated from the training dataset (with test and training datasets 

comprising odd and even years of the record respectively). The reference 90th percentiles in 

daily precipitation for Key West, Fort Huachuca, Reykjavik, Tallinn and Aasiaat are 6.6, 

1.5, 7.1, 5.9 and 3.3 mm per day respectively, calculated from the observed (test) dataset. 

 Boxplots have been produced for 𝑇𝑥  and  𝑇𝑛 on all days where precipitation is equal 

to or exceeds the reference 90th percentile for both observed and generated data (Figure 4.8). 

Temperatures on very wet days tend to be reproduced well by the GCWG. This is reassuring 

for the GCWG’s applications in studying behaviour of concurrent wet and hot, or wet and 

cold, extremes. The GCWG generally reproduces the median, mean, and interquartile ranges 

of very wet day 𝑇𝑥  and  𝑇𝑛 well, though medians and interquartile ranges in 𝑇𝑥   tend to be 

slightly better represented than in 𝑇𝑛. This may once more be due to inaccuracies previously 

discussed in reproducing the observed distribution of minimum temperature. While 

interquartile ranges are largely well reproduced, generated data tends to overestimate the 

ranges of temperature on very wet days slightly; this is most prevalent in Key West for 

minimum temperature, though also true for other locations. Outliers are also much more 

prevalent in generated datasets. Generally, these outliers fall below the range of 

temperatures; though a large number are present both above and below at Key West, 𝑇𝑛.  
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Figure 4.8 – Boxplot showing the observed (solid) and generated (dashed) maximum 

(top) and minimum (bottom) daily temperatures for very wet (daily precipitation 

exceeding the 90th percentile) days. 
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 Extreme hot and dry conditions have the potential to intensify summer heatwaves 

and associated hazards, including drought and fire risk (Flannigan et al., 2000; Kilpeläinen 

et al., 2010). Vogel et al. (2020) studied changes in frequency of clustered extreme hot and 

dry events at different degrees of warming, projected from CMIP6 simulations. Vogel et al. 

(2020)’s method of studying concurrent extremes will be loosely used here. Here, a hot 

extreme is defined as a day where the maximum temperature exceeds the 99th percentile. 

Precipitation is aggregated over 90 days, with the date of the sum defined as the last day of 

the 90-day period. A dry extreme is defined as a day where the 90-day total precipitation 

falls below the 1st percentile in 90-day total precipitation. The number of times an extreme 

hot and extreme dry day fall within the same month is recorded over each 10-year period in 

either the observed data or in 300 years of generated data (i.e., in months per 10-years). As 

an example, a recording of 1 would correspond to 1 occurrence of an extremely hot and 

extremely dry day within the same month per 10 years on average. Here, the full observed 

record is used as both the training and test datasets. This is to ensure there are enough years 

in the observed record to fully capture the occurrence of such extremes. Vogel et al. (2020) 

instead use the 99.9th and 0.1st percentiles to define extreme hot and dry conditions 

respectively, however, their findings indicate very few to no regions show clustered hot and 

dry extremes under present day conditions using this definition, therefore slightly less 

extreme percentiles have been used here. 

Table 4.8 – The number of occurrences of extreme hot and extreme dry days per month per 

10 years, and concurrent extreme hot and dry days occurring in the same month per 10 

years. “Obs.” columns refer to the observed dataset, and “Gen.” to the generated.  

 

 

 

 

 

  

Included in Table 4.8 are the mean months per 10-year period where at least one day 

exceeds the 99th percentile in maximum temperature and falls below the 1st percentile in total 

90-day precipitation. For concurrent extremes, it is unsurprising that values are close to (or 

 HOT DRY HOT AND DRY 

LOCATION Obs. Gen. Obs. Gen. Obs. Gen. 

Key West 11.6 11.6 3.3 0.3 0.4 0.1 

Fort Huachuca 18.0 20.6 4.8 4.0 2.3 1.4 

Reykjavik 12.0 13.7 3.7 0.7 0.4 0.1 

Tallinn 14.1 12.1 3.6 0.7 0.4 0.1 

Aasiaat 15.9 19.5 2.7 0.0 0.0 0.0 
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even) zero (see Figure 2 from Vogel et al. (2020)) except for Fort Huachuca, where 2.3 

months per 10 years experience clustered hot and dry extremes. The occurrence of extremely 

hot days is reproduced well at each site. However, the number of months with extremely dry 

days is underestimated at most locations. This ultimately results in the occurrence of 

concurrent hot and dry extremes to be underestimated by the GCWG. While the frequency 

of these concurrent hot and dry extremes tends to be underestimated in all locations, values 

are very small to begin with, and the representation of univariate hot extremes are 

reproduced well. This is a limitation of this model (accurately reproducing extreme 

compound metrics) that should be assessed prior to each individual application. It is 

therefore perhaps advisable that when studying changes to the frequency of these clustered 

extremes, a reference period should be generated by the GCWG first (spanning the years of 

the observed record) and the frequency of such events determined from this synthetic time 

series. The frequency of concurrent extremes from a generated time series under different 

levels of warming can then be compared to the reference frequency multiplicatively to 

estimate the change in risk of these concurrent events. For example, if the occurrence of the 

concurrent extreme is 0.1 times every 10 years under present day climate as simulated by 

the GCWG but 0.5 under a future simulation, it could be estimated that the probability of 

such events co-occurring in the future is 5 times greater. This could then be applied to the 

observed occurrence to estimate future risk. 

4.3 CHAPTER 4 SUMMARY 

 A precipitation and temperature weather generator using a Markov-chain gamma-

model and a multivariate linear regression model, conditioned on precipitation transition 

state, has been introduced (GCWG) and its performance at reproducing observed weather at 

a selection of locations assessed. In wider literature, training and test datasets tend to be the 

same (i.e., the full observed record (Schoof and Pryor, 2008; Semenov et al., 1998; Vlček 

and Huth, 2009)), reducing the robustness of statistical testing. Where possible, training and 

test datasets should be independent of each other, to reduce bias and the risk of 

overestimating the skill of the model. While this may have resulted in more failures of the 

statistical tests, performance is generally very good, and the practical significance of the 

results is undeniable. 

 Correlations between observed and generated mean precipitation statistics are 

generally very high, particularly in metrics that are primarily testing the occurrence of 

precipitation (Table 4.2). This is reflected by high correlations between the observed and 
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generated mean number of wet days per month. Metrics that consider correlations between 

the amounts of precipitation tend to be weaker, though in most locations still remain strong. 

This is likely due to the use of a gamma distribution to approximate daily precipitation 

amounts. Key West, in the tropical regime (Table 4.1), shows weaker correlations in 

reproducing observed mean precipitation, and this is perhaps caused by a smaller sample 

size of wet days, with large amounts of precipitation, present in the training dataset used to 

calculate the shape and scale parameters of the gamma distribution.  

 The annual cycle of precipitation has been preserved with great accuracy in all 

locations, with the GCWG producing sensible realisations of the true climate from ten 30-

year simulations. Conclusions from Chapter 3 have been reiterated; at all sites first-order 

models outperform third orders (except Key West, where first and third orders perform 

similarly). The performance of the model tends to be greater during drier months, and most 

of the differences between observed and generated precipitation is likely caused by larger 

differences in the training and test datasets. However, the GCWG must also represent the 

climate variability accurately; running more than ten simulations may increase the chances 

of producing exceptionally wet or dry months, which may have been the case for the test 

datasets in locations such as Aasiaat, where agreement between observed and generated data 

is weaker than other locations. 

 Annual cycles in maximum and minimum temperatures are well reproduced in all 

locations studied, with generated means falling within half of a standard deviation of the 

observed mean in all locations and all months studied and many observed means within the 

range of ten generated 30-year mean values. Annual cycles in both maximum and minimum 

daily temperature are clearly reproduced accurately (Figure 4.7). Variances also tend to be 

reproduced well, though with more noticeable differences in Key West and Fort Huachuca. 

This is perhaps caused by the temperature sample size correction process outlined in Figure 

4.5, though it is of course necessary to ensure a sample size large enough to reduce further 

inaccuracies in calculating temperature statistics.  

 Reproducing extremes in both precipitation and temperature shows more 

inaccuracies than mean behaviour, though this is a known issue with Markov-type weather 

generators. Return periods for observed extreme precipitation are largely overestimated, by 

up to 2.6 and 5 times for 10 and 50-year return periods respectively. This is likely due to the 

gamma distribution’s poor representation of the tail. Frequencies of WS90 are reproduced 

well in all locations, though the frequency of CS90 is widely underestimated. Maximum and 
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minimum temperatures are well reproduced on very wet days, though the GCWG tends to 

produce more extreme temperature values than are present in the observed record.  

 Despite underestimates in reproducing some extreme behaviour in precipitation and 

minimum temperature, the behaviour of the GCWG is generally very good, and has been 

calibrated using weather stations across all five climate regimes whilst maintaining 

relatively simple relationships between variables. Maintaining the simplicity of the input 

parameters is of particular importance when diagnosing relationships between the parameter 

and its response to increasing GMST (Chapter 7). Reiterating the objectives outlined in 

Chapter 1, these relationships between increasing GMST and each parameter will ultimately 

be used to perturb the GCWG’s inputs to study a range of future climates at different global 

warming levels. To work around the underestimates in extreme behaviour, studying 

multiplicative changes (rather than absolute changes) is worth investigating. For example, 

when studying changes in return periods for a 50-year flood, future comparisons should be 

made to a GCWG generated baseline and then applied to the observed data.  
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5 GENERATION AND VALIDATION OF MODELS 

FOR THE TERTIARY VARIABLES 

 Wind speed, radiation and humidity are defined as “tertiary” variables due to their 

generation following, and their widely modelled dependency on, the primary (precipitation) 

and secondary (maximum and minimum temperatures) variables. Here, different models 

will be proposed for mean wind speed, solar radiation, and relative humidity. The 

dependency on the primary and secondary variables has been included in each model to 

ultimately allow the study of a full suite of stochastically produced climatic variables under 

different global warming levels (GWLs). Though this has not been shown in this thesis, a 

description of future work that may incorporate changes in the tertiary variables has been 

discussed in Chapter 8. The combined generation of the primary, secondary, and tertiary 

variables together constitute the full Globally Calibrated stochastic Weather Generator 

(GCWG) developed as part of this research.  

 The tertiary variables have been chosen partially following the Climatic Research 

Uni Weather Generator (CRUWG) (Jones et al., 2016) and are the variables required to 

calculate daily potential evapotranspiration (PET) using the Penman-Monteith equation in 

place of direct measurement. The Penman-Monteith equation is the Food and Agriculture 

Organization (FAO) recommended method used for calculating PET, widely used in 

literature, requiring a site’s latitude, air temperature, wind speed, radiation, and humidity. 

Of these parameters, it is solar radiation, temperature and wind speed that have the greatest 

effect on daily PET (Allen et al., 1998).  

 A sample of weather stations across the five Köppen climatic regimes have been 

used to validate models for the tertiary variables for use in the GCWG; the climatology and 

annual cycles for precipitation and temperature at these weather stations are outlined in 

greater detail in Chapter 4 (see Figure 4.1and Table 4.1). Observational data from weather 

stations will be used to determine a model for generating daily mean wind speed, with NASA 

POWER data (accessible from https://power.larc.nasa.gov/) used for solar radiation and 

relative humidity where observed records for the full suite of variables are absent.  

   

https://power.larc.nasa.gov/
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5.1 DAILY MEAN WIND SPEED 

5.1.1 A GENERALISED LINEAR MODEL FOR GENERATING 

MEAN DAILY WIND SPEED 

Daily wind speed time series are necessary in several fields, including engineering 

sensitivity analyses, construction of wind speed sensitive structures and the operation and 

maintenance of wind farms (Lydia et al., 2016; Sahin and Sen, 2001). Wind speed is also 

one of the main meteorological variables that affects daily evapotranspiration (Sentelhas et 

al., 2010). This section introduces and validates a model for generating daily mean wind 

speeds.  

 A Markov-chain gamma-model and a multiple linear regression model have been 

used to produce synthetic time series for precipitation and temperature, respectively. Neither 

of these methods will be used to simulate mean daily wind speeds. This is due to the strongly, 

positively skewed distributions of daily mean wind speed which are not as accurately 

reproduced using methods such as linear regression. In comparison to precipitation and 

temperature, there is less literature on the stochastic simulation of mean daily wind speed. 

Daily maximums and means in hourly (or in some cases, sub-hourly) wind speeds have both 

received more attention in literature (Aksoy et al., 2004; Nfaoui et al., 1996; Sahin and Sen, 

2001; Yan et al., 2002).  

 Though precipitation is non-normally distributed like wind speeds, a Markov-chain 

approach will not be used here. Wind speeds do not have the high proportion of zero values 

to account for, and while there are examples of the use of a Markov-chain model to generate 

wind speeds in literature (e.g., Aksoy et al., 2004; Jones and Lorenz, 1986; Sahin and Sen, 

2001), a required feature is the definition of a number of states with specified wind speed 

values, as opposed to the simple (and intuitive) two-state (wet or dry), precipitation statuses 

outlined in Chapter 3. Wind speed states are defined by an upper and lower limit (e.g., 2 to 

4m/s). Following the generation of a daily wind speed state, a random wind speed is chosen 

between the lower and upper limits of the state. Aksoy et al. (2004) suggested a ten-state 

Markov-chain model to generate hourly wind speeds, though they state that the upper and 

lower limits of a given state is “highly subjective” and Sahin and Sen (2001) express that 

choice of categorisation is “rather arbitrary”. This subjectivity is also extended into the 

choice of the number of states. Herein lies the main issue with a multiple state Markov-chain 

wind speed generator for global use – the definition of the transition states. For example, a 
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location with small variability in daily wind speeds may need fewer states than a site with 

higher variability. This issue could also arise within an individual site, where it may not be 

suitable to define the same states for different months or seasons of the year. Furthermore, 

these Markov-chain models tend to be univariate in nature. An important feature of the 

GCWG is the incorporation of some dependence on the primary or secondary variables in 

the generation of each tertiary variable. This is to provide the opportunity to potentially study 

changes in the tertiary variables as a function of increasing global mean surface temperature 

(GMST) indirectly through the pattern scaling of the primary and secondary variables.   

 Generalised linear models (GLM) are an alternative, widely used technique 

discussed in literature to model daily wind speeds (Yan et al., 2002).  GLMs consider a daily 

wind speed as a sample from its own distribution, where all observations are drawn from the 

same family of distributions. The Weibull, lognormal and Rayleigh distributions have all 

been used to model daily wind speeds  (Sahin and Sen, 2001) though the gamma distribution 

has been used here. While Weibull is generally considered the best approximation to 

observed daily wind speed distributions, the differences between Weibull and gamma are 

deemed insignificant when studying geographical and seasonal patterns of change. As a 

primary objective of this GCWG is ultimately in the construction of future climate scenarios, 

the gamma distribution is deemed appropriate here. Furthermore, gamma distribution GLMs 

are simple to implement in Python. Only predictors, a specified GLM transformation (here, 

the log link), distribution (gamma) and daily wind speed shape parameters (calculated 

monthly from the observed record) are required. This is a significantly reduced number of 

parameters to the alternative Markov-chain approach, with much less subjectivity that arises 

from the choice of wind-speed states. While also possible to generate wind speeds using a 

bounded multiple linear regression (MLR) model (e.g., Jones et al. (2016)), GLM gamma-

regressions may be preferential where the distribution of the predictand is highly skewed 

and, unlike alternative MLR approaches, will not need any additional constraints to ensure 

the generated variable is positive. 

 The mean of a gamma distribution, 𝜇, will be estimated daily using a linear 

combination of parameters, where 

ln 𝜇 =  𝛽0 +  ∑ 𝐵𝑗𝑥𝑗

 

𝑗

 

where 𝛽0 is a constant and all other 𝛽s are coefficients independently measuring the effect 

of the predictors, 𝑥𝑗 . A log link function will be used to calculate the mean itself, such that 

(5.1) 
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𝜇 = exp(𝛽0 +  ∑ 𝐵𝑗𝑥𝑗
 
𝑗 ). Model parameters are determined monthly, resulting in 12 sets of 

parameters.  

 Though following a multiple linear regression model, Jones et al. (2016) suggest the 

predictors for tertiary variables on day 𝑖 are precipitation (𝑃𝑖 ), mean temperature (𝑇𝑚𝑒𝑎𝑛𝑖 
), 

temperature range (𝑇𝑟𝑎𝑛𝑔𝑒𝑖  
), and previous days’ value (lag-1 autocorrelation coefficient). In 

the CRUWG, correlations between the tertiary variables generated should be indirectly 

maintained through their common dependencies on 𝑃𝑖 , 𝑇𝑚𝑒𝑎𝑛𝑖 
 and 𝑇𝑟𝑎𝑛𝑔𝑒𝑖  

. However, as 

previously ascertained, a linear model is neither the most appropriate nor widely used in the 

simulation of daily wind speeds, and while predictors will be loosely based on the 

methodology of Jones et al. (2016), they will instead be in used in a GLM. Other predictors 

are discussed in literature, including geographical effects such as altitude, latitude, 

longitude, and seasonal cycles (Yan et al., 2002)  

 To determine which of the abovementioned parameters will be used to simulate daily 

wind speeds in the GCWG, three GLMs with differing predictors will be assessed (where 

𝑊𝑖−1 and 𝑃𝑖 are previous day’s wind speed and present day’s precipitation respectively): 

Model 1: 𝑊𝑖−1, 

Model 2: 𝑊𝑖−1, 𝑇𝑥𝑖
 and 𝑇𝑛𝑖

, 

Model 3: 𝑊𝑖−1, 𝑇𝑥𝑖
, 𝑇𝑛𝑖

 and 𝑃𝑖. 

Though Jones et al. (2016) use 𝑇𝑚𝑒𝑎𝑛 
 and 𝑇𝑟𝑎𝑛𝑔𝑒  

as predictors, present day maximum (𝑇𝑥𝑖
) 

and minimum (𝑇𝑛𝑖
) temperature will be used instead. The GCWG generates maxima and 

minima instead of diurnal range and mean due to more widely available observations and to 

aid in a more accurate study of extreme weather. The following transformations 

𝑇𝑚𝑒𝑎𝑛 =
𝑇𝑥 + 𝑇𝑛

2
 

and 

 𝑇𝑟𝑎𝑛𝑔𝑒 = 𝑇𝑥 − 𝑇𝑛 

link 𝑇𝑚𝑒𝑎𝑛 
 and 𝑇𝑟𝑎𝑛𝑔𝑒  

to 𝑇𝑥 and 𝑇𝑛 (noting that the former is only an approximation to the 

true 24-hour mean but is a commonly used approximation). All models discussed in 

literature, regardless of type (e.g., GLM or Markov chain), incorporate an element of 

autocorrelation. Here, each proposed model uses a lag-1 autocorrelation coefficient. 

(5.2) 

(5.3) 
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Autocorrelation is responsible for much of the variation in daily wind speeds, with some 

models using several days prior (Aksoy et al., 2004; Nfaoui et al., 1996; Yan et al., 2002). 

However, only lag-1 autocorrelation will be considered here; it has been found that wind 

speed autocorrelation coefficients show a negative trend with increasing lag 

(Khanmohammadi et al., 2021). Daily temperatures and precipitation amounts are the only 

other parameters considered. Reiterating the goal of the GCWG for use in the construction 

of climate scenarios under different GWLs, it is important that the predictors in the wind 

speed model are the ones that will be scaled with increasing GMST.  

 Maxima and minima in daily temperature have been included as predictors in both 

Model 2 and 3. Maxima and minima are considered as they are direct outputs from the 

GCWG in Chapter 4 and are closely related to the diurnal range and mean following 

equations 5.2 and 5.3. It is known that temperature gradients result in pressure differences, 

which in turn can produce changes to wind speed. For example, in a statistical analysis of 

the relationship between wind speed, pressure and temperature, Wooten (2011) found that 

wind speed is correlated to surface temperature.  

Precipitation will be considered in Model 3. Higher wind speeds will promote greater 

evaporation, which may destabilise the boundary layer and trigger deep convection. Back 

and Bretherton (2005) found surface wind speeds are responsible for only small fraction of 

variability in precipitation in the Pacific ITCZ region, but there are significant correlations 

between the two variables at high-column relative humidities (Back and Bretherton, 2005). 

In a study of correlations between solar radiation, wind speed, and precipitation in 

California, Mohammadi and Goudarzi (2018) note a strong possibility of anti-correlation 

between wind speed and precipitation during very strong El Niño events (Mohammadi and 

Goudarzi, 2018). In a study in Sweden, Johansson and Chen (2003) found that in locations 

with steep orographic changes, wind speed is an indicator of strengths of frontal systems 

and therefore precipitation. Topography is another factor not considered in the Köppen 

classification system, and therefore the consideration of precipitation as a predictor may 

benefit the model in some locations with steep orographic changes.   
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To assess which predictors to use, log-likelihood ratio tests were performed at the 

95% confidence level, comparing Model 2 with 1, and Model 3 with 2, to establish whether 

the additional parameters are necessary. 

Table 5.1 – The number of months where a statistically significant improvement is found on 

the previous model using the log-likelihood ratio test and a confidence level of 95%. Model 

2/1 represents the number of months where a statistically significant improvement is found 

when using Model 2 instead of Model 1 for generating daily mean wind speed. 

 NO. OF MONTHS WITH 

STATISTICALLY SIGNIFICANT 

LOG-LIKELIHOOD RATIOS 

LOCATION Model 2/1 Model 3/2 

Key West 7 0 

Fort Huachuca 11 2 

Reykjavik 9 2 

Tallinn 12 3 

Aasiaat 12 9 

 

In all instances, a statistically significant improvement in model fit was seen using 

daily maximum and minimum temperatures (Model 2) as well as previous days’ wind speed 

(Model 1) in over half of the months. In Tallinn and Aasiaat, improvements were seen in all 

months. With the addition of precipitation (Model 3), statistically significant improvements 

are less common, and in Key West, there are none at all. Aasiaat is the only site where Model 

3 shows statistically significant log-likelihood ratios in a majority of months. This suggests 

that in many instances, minimal benefit is added through the inclusion of precipitation as 

well as temperature.  

  The significance of each predictor can be further assessed using the p-values 

produced by the GLM for each month (Table 5.2). Previous day’s wind speed is a 

statistically significant predictor in all months at all sites. This is an expected result, due to 

autocorrelation being responsible for much of the variation in daily wind speeds (Aksoy et 

al., 2004; Nfaoui et al., 1996; Yan et al., 2002).  In at least half of the months (and at least 

10 in two of the five sites), maximum and minimum temperatures are statistically significant 

predictors (except for 𝑇𝑥𝑖
 in Fort Huachuca, where it is statistically significant in only 5 
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months). Precipitation, however, is not commonly a statistically significant predictor, except 

for at Aasiaat. This supports the findings for Model 3 in the log-likelihood ratio tests shown 

in Table 5.1. 

Table 5.2 – The number of months where a predictor is statistically significant (i.e., with p-

values < 0.05) in the GLM for generating daily mean wind speed. 

 NO. MONTHS WITH 

STATISTICALLY 

SIGNIFICANT PREDICTORS 

LOCATION 𝑊𝑖−1, 𝑇𝑥𝑖
 𝑇𝑛𝑖

 𝑃𝑖 

Key West 12 6 7 3 

Fort Huachuca 12 5 6 2 

Reykjavik 12 10 8 2 

Tallinn 12 10 10 4 

Aasiaat 12 11 12 10 

 

 Following the results presented in Table 5.1 and Table 5.2, daily mean wind speed 

will be generated using the previous day’s value and the present day’s maximum and 

minimum temperature (predictors in Model 2). Precipitation has not been included due to its 

limited improvement of the model at most sites, to minimise the risk of overfitting the model, 

and to reduce computational power required.  

 To validate the use of a gamma distribution in generating daily mean wind speed, 

time series have been generated for the observed mean daily wind speeds using the observed 

predictors for a range of weather stations across the range of Köppen climate regimes. The 

same weather stations introduced in Chapter 4, Table 4.1 will be used. Daily mean wind 

speed has been generated using time series of observed daily maximum and minimum 

temperatures, and previous days’ wind speed. The Anscombe residuals, 

𝐴𝑖𝑗 =  √
𝑦𝑖𝑗

𝜇𝑖𝑗

3
 

have been calculated, where 𝑦 is the observed wind speed and 𝜇 the estimated mean of the 

gamma distribution on day 𝑖 in location 𝑗 (Yan et al., 2002). If the distribution of the 

Anscombe residuals is Gaussian, it asserts confidence that the data is well described by a 

(5.4) 
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gamma distribution and can therefore be used to model daily mean wind speed. Figure 5.1 

shows that the residuals are mostly normally distributed, with slight deviations in the upper 

and lower tails in Reykjavik and Aasiaat respectively.  

Figure 5.1 – Anscombe residual QQ plots for Key West, Fort Huachuca, Reykjavik, 

Tallinn and Aasiaat (top left to bottom middle) for daily mean wind speed. 
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After the mean of the distribution for a given day has been estimated, a wind speed 

is generated randomly from a gamma distribution with a constant shape parameter, ν, 

(calculated monthly from the observed record), but with varying scale, λ, based on the 

estimated value of μ, where  

𝜆 =
𝜇

𝜈
. 

5.1.2 ASSESSING GENERALISED LINEAR MODEL 

PERFORMANCE AT REPRODUCING OBSERVED MEAN 

DAILY WIND SPEED 

 Generated precipitation and temperature values have been produced using the 

methods outlined in Chapters 3 and 4. Training and test datasets will differ using the same 

method introduced in Chapter 4, where the test dataset consists of every third year, and the 

training dataset all remaining years (a 2:1 training to test dataset ratio). Again, “observed” 

data refers to the test dataset and “generated” (or “simulated”) means data that has been 

produced with the model fit to the training dataset. All references of wind speed in this 

section, unless explicitly stated otherwise, describe daily means.  

 Fifteen 30-year simulations have been produced for daily precipitation, maximum 

and minimum temperatures, and wind speed. Fifteen simulations, as opposed to ten, have 

been used here due to capture the greater variability in daily mean wind speeds than in the 

primary and secondary variables. The range of means produced by the fifteen simulations is 

calculated and compared to the observed means for each month. The same logic presented 

in Chapter 4 is followed here; if the observed dataset and the fifteen generated datasets are 

considered realisations of the same climate system, it can be expected that the observed 

means will generally lie within the range of generated means. 

   

(5.5) 
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The Mann-Whitney U and Levene tests have been performed on the observed and 

generated wind speeds for each month over the fifteen 30-year simulations. This results in 

fifteen sets of statistical tests per month. The mean number of simulations per month 

showing no statistical differences between observed and generated data is shown in Table 

5.3 (out of a maximum of fifteen).  

Table 5.3 – The number of observed means that lie within the range of 15 generated means 

and the mean number of simulations (averaged over 12 months) that show no statistical 

differences out of a maximum of 15 using the Mann-Whitney U test to compare means, and 

Levene's test to compare variance (at the 95% significance level). 

  MEAN SIMULATIONS PER 

MONTH SHOWING NO 

STATISTICAL DIFFERENCES 

 

LOCATION 

No. of observed means 

within range of generated 

 

Mann-Whitney U 

 

Levene’s Test 

Key West 7 7.6 12.0 

Fort Huachuca 6 8.0 12.1 

Reykjavik 11 8.6 12.4 

Tallinn 9 7.5 8.5 

Aasiaat 9 6.3 9.1 

 

 Performance is more dependent on site here than with temperature and precipitation 

though observed means lie within the range of generated means in at least half of the months 

at each site. All instances where the observed mean does not fall within the range of 

generated means, the full range of generated means lies within half a standard deviation of 

the observed. The performance of the model does not appear to be affected by the season or 

magnitude of wind speed (shown in Figure 5.2). Generated means tend to slightly 

underestimate mean daily wind speed, with observed means lying towards (or sometimes 

above) the upper end of the generated range.  

 In Key West, Fort Huachuca, and Reykjavik, over half of the simulations show, on 

average, no statistical differences between the observed and generated means.  At all sites, 

the variance of the data is reproduced more accurately than the mean.  In Key West, none of 

the observed and generated means are statistically similar from June to October. It is 

between these months that GCWG simulated temperature shows poorer agreement with the 
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observed data, with observed maximum temperature in June and minimum temperatures in 

June, August, September and October, lying outside the range of generated values (see 

Chapter 4, Figure 4.7). In all other months except April, differences between observed and 

generated means were insignificant in all simulations. Similarly, all simulations in 

November, December, January and February show statistical differences in the mean at 

Aasiaat. Once again, these are the months for which the generated temperature series were 

less realistic than the summer months in Aasiaat, where observed means in maximum 

temperature lie outside the range of generated values in December and February, and 

minimum temperatures in November, December and February. This may demonstrate the 

impact inaccuracies in primary and secondary variables might have on the generation of 

tertiary variables.  

 A further reason for poorer performance in the statistical tests in Aasiaat may be due 

to the elimination of precipitation as a predictor. Table 5.1 and Table 5.2 show that most 

months at this site would benefit from the inclusion of precipitation as a predictor. This, in 

combination with the use of a gamma distribution (where a Weibull may perform better), to 

approximate daily values may also be responsible for some of the greater statistical 

differences between the observed and generated values. Figure 5.1 shows that the Anscombe 

residuals deviate from a normal distribution here more than at any other site. Although the 

residuals at Reykjavik also show deviation from a normal distribution in the upper tail, the 

number of values is less than in the lower tail at Aasiaat. 
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Figure 5.2 – Observed means in daily mean wind speed (coloured, stars with error bars 

showing one half of a standard deviation), wind speed from the training dataset (coloured, 

dotted, no error bars) and the generated means (black with error bars) calculated monthly, 

with error bars representing the largest mean from all fifteen simulations and the smallest 

mean (black, dashed) for a) Key West, b) Fort Huachuca, c) Reykjavik, d) Tallinn, and e) 

Aasiaat. 

 As with precipitation and temperature, the annual cycle in mean daily wind speed 

has been preserved accurately by the model. Despite some statistical differences between 

the observed data and the simulations, all locations show few practical differences between 

the datasets. For example, in Tallinn where, on average, 7.5 simulations per month show 

statistical differences in the mean, it is clear from Figure 5.2 that the differences between 

the observed and simulated values are not large. This supports the use of the GCWG in its 

ability to produce an alternative realisation of the climate that is similar in nature to the 

observed. It is also important to note that statistical significance is directly related to sample 

size. Generated sample sizes are large, with a minimum of 840 values. This will increase the 

likelihood of a statistical test deeming the samples statistically different, despite the 

closeness of the generated result to the observed.   

e) 
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 Most sites show that months with greater observed standard deviations in mean daily 

wind speed generally tend to simulate a wider spread of values. This is most noticeable in 

Fort Huachuca, where the observed standard deviation in January is larger than August. 

Similarly, the range of generated means is larger in January than August. This indicates that 

the model is reproducing the variability between months successfully.  

 An important feature to reproduce is the correlations between wind speed and the 

primary and secondary variables. With 𝑇𝑥 and 𝑇𝑛 as predictors, some conditioning on 

precipitation status is also included because their generation depends on the wet/dry state of 

the current (and sometimes the previous) day. In this thesis, pattern scaling of wind speed 

input parameters has not been studied, but changes in future wind speed could be 

incorporated through the future changes in temperature, which will then influence the 

generated wind speeds. 100 years of precipitation, maximum and minimum temperature, 

and daily mean wind speed have been generated using the training dataset. Pearson’s 

correlation coefficients have been calculated for wind speed-temperature and wind speed-

precipitation relationships. 

Table 5.4 – Pearson correlation coefficients between observed and generated wind speed 

with variables Tx, Tn and P. O and G represent observed and generated correlations 

respectively. 

 𝑻𝒙 𝑻𝒏 𝑷 

LOCATION O G O G O G 

Key West -0.25 -0.32 -0.10 -0.16 0.01 -0.06 

Fort Huachuca -0.06 -0.03 -0.01 0.01 0.01 -0.03 

Reykjavik -0.12 -0.11 -0.10 -0.17 0.23 0.05 

Tallinn -0.16 -0.19 -0.05 -0.08 0.04 -0.01 

Aasiaat -0.05 0.03 -0.10 -0.14 0.19 0.01 

 

 It is expected that correlations between wind speed and maximum and minimum 

temperatures should be reproduced well due to their use as predictors in the GLM. 

Correlations in most instances are reproduced with the correct sign and magnitude. Where 

the sign is incorrect, observed correlations between wind speed and temperature are 

extremely close to zero (no correlation). For example, in Fort Huachuca, the correlation 

between observed and generated wind speeds and minimum temperature is -0.01 and 0.01 
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respectively. Both values are essentially showing no correlation, despite the change of sign. 

Key West, Reykjavik and Tallin show the strongest (though still weakly negative) observed 

correlations between maximum temperature and wind speed. These are well reproduced by 

the GCWG. Observed near-zero correlations between wind speed and precipitation are also 

reproduced well at Key West, Fort Huachuca, and Tallinn. Aasiaat and Reykjavik show 

slightly stronger (though still weak) positive correlations between wind speed and 

precipitation in the observed dataset. In both locations, the GLM produces negligible 

correlations between the two variables, though in the same direction (positive). 

 Weak correlations between wind speed, temperature, and precipitation are not 

surprising. This is because at most locations, wind speeds are not usually thought to be 

strongly determined by these variables (Parlange and Katz, 2000).  In all locations, observed 

and generated wind speeds show no correlations with precipitation, except Reykjavik and 

Aasiaat, where weakly positive correlations are present in the observed data.  However, 

Table 5.2 showed that in most locations, temperatures do have significant effects on the 

regression. Despite weak correlations, it is important to incorporate a primary or secondary 

variable in this model; this is to allow changes in daily mean wind speed to be produced 

indirectly through the scaled future changes in the primary and secondary variables.  

 While the results presented here suggest previous days’ wind speed and daily 

maximum and minimum temperatures are sufficient predictors in the GCWG, it is important 

to note that, whilst a site in each weather regime has been considered, the Köppen climate 

classification system does not consider wind speeds in its categorisations. Therefore, the use 

of the five regimes which are categorised on temperature and precipitation alone, may not 

be representative of the range of global wind speed behaviour. It is also important to note 

that in all locations except Key West, at least 2 months of the year were better represented 

by a model with the inclusion of precipitation (Table 5.1).  
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5.2 DAILY SOLAR RADIATION    

Daily solar radiation (insolation) data is an important climatic variable for many 

applications. Such sectors include the application and development of renewable energy, in 

the study of environmental pollution, crop production and in hydrological and agricultural 

models (Shrestha et al., 2019). Solar radiation is also another quantity required to accurately 

calculate reference PET using the Penman-Monteith equation. One of the most important 

variables in the calculation of PET, solar radiation provides the energy that is required to 

change the state of water molecules from liquid to vapour.  

 There is greater discussion in literature regarding the stochastic generation of solar 

radiation than wind speeds, however it is widely known that there are several issues with 

observational solar radiation data. In comparison to the primary and secondary variables, 

solar radiation is rarely measured, and, where it is measured, poor maintenance of equipment 

and high costs of replacement results in several months of data missing or inadequate quality 

of data (Ayodele and Ogunjuyigbe, 2015). To counter this issue, NASA POWER datasets 

will be used instead of weather station records.  

5.2.1 NASA POWER PROJECT DATA 

 Long, temporally consistent daily time series of precipitation, maximum and 

minimum temperature with solar radiation are not widely globally available or are lacking 

in quality and coherence. Although the European Climate Assessment & Dataset (ECAD) 

(Klein Tank et al., 2002) time series contain several stations with a full suite of climatic 

variables, locations are spatially close (i.e., Europe and North Africa) and do not capture a 

range of climatic regimes. Instead, data has been sourced from the NASA POWER Project 

(accessed from https://power.larc.nasa.gov/). Solar radiation data is available globally with 

records starting in 1981, a 1° x 1° latitude/longitude grid and meteorological variables on a 

½° x ½° grid. Solar and meteorological parameters have been derived using a combination 

of satellite and model-based methods. In a comparison between NASA POWER data and 

weather station observations carried out at Fort Huachuca, Tallinn and Aasiaat (for 

example), annual cycles of the variables are very similar and as such, the NASA POWER 

data is therefore deemed an appropriate alternative for the validation of this model. 

 

 

https://power.larc.nasa.gov/
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Table 5.5 – Site names, regimes and coordinates of NASA POWER data used in place of 

observational data. 

LOCATION CLIMATIC REGIME LATITUDE   LONGITUDE 

Brasília, Brazil Tropical savanna, Aw -15.8 -47.9 

Fort Huachuca, USA Hot desert, BWh 31.6 -110.3 

Punta Arenas, Chile Subpolar oceanic, Cfc -53.1 -70.6 

Tallinn, Estonia Humid continental, Dfb 59.4 24.8 

Aasiaat, Greenland Polar, ET 68.7 -52.9 

 

 Brasília, Brazil has been used in place of Key West, USA, and Punta Arenas, Chile 

in place of Reykjavik, Iceland. Replaced locations are in the same sub-classification as 

previous sites and have been chosen to diversify the locations studied away from North 

America and Europe. While it is more desirable to use observational data in calibrating the 

model, it is also of importance to use long, temporally cohesive time series, that span a range 

of climatic regimes. 

5.2.2 GENERATING SOLAR RADIATION BY TRANSFORMING TO 

A CLEARNESS INDEX AND USING A MULTIPLE LINEAR 

REGRESSION MODEL 

 Several methods have been discussed in literature to generate daily solar radiation 

time series. As with many other variables, most methods incorporate some form of 

autocorrelation. Nicks and Harp (1980) proposed a model conditioned on the precipitation 

status of the day (as generated by a Markov-chain model, utilising the same four states 

defined in Chapters 3 and 4), independently of temperature values. Monthly means, standard 

deviations and lag-1 correlation coefficients are the only parameters required in this method 

of solar radiation generation. While Nicks and Harp (1980) found that solar radiation was 

accurately reproduced in 11 out of 12 months, their study was carried out at only one site 

(Chickasha, Oklahoma) with only 11 years of training data, and non-independent training 

and test datasets. While this method does incorporate dependence on precipitation status, 
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most other methods outlined in the literature also contain an element of temperature 

dependence. This is due to a direct correlation between temperature and solar radiation. 

 Richardson (1981, 1982) suggested a multivariate, weakly stationary generating 

process, comprising of maximum temperature, minimum temperature, and solar radiation, 

with different parameters on wet and dry days. This method has briefly been discussed in 

Chapter 4, Section 4.1 in reference to temperature generation.  Fourier series are used to 

smooth daily means and standard deviations in temperature and solar radiation, conditioned 

on the wet or dry status of the day. The observed records are hence converted to residuals, 

and matrices of lag-0 and lag-1 cross-correlation coefficients used to generate a residual 

series. For the application of this method, several parameters must be calculated for each 

day of the year. While Richardson (1981) suggests that the parameters can be reduced due 

to few differences in the inter-variable correlations between sites studied, only 3 sites were 

studied, all located in the contiguous USA. It is therefore not with confidence that these 

inter-variable correlations will remain the same across the globe, and, even after reducing 

the number of parameters, several still remain. This method will therefore not be used to 

generate solar radiation in the GCWG. 

 A first-order autoregressive, multivariate linear model will instead be used to 

simulate daily solar radiation time series following a transformation of the entire radiation 

time series to a clearness index (a measure of the atmospheric clarity). While stochastically 

modelling clearness index in this way is novel, such a transformation has previously been 

used by Ayodele and Ogunjuyigbe (2015) to predict monthly averages in solar radiation. A 

time series of daily clearness index will hence be produced and transformed back into a daily 

solar radiation value following generation of a full series. The rationale for targeting a 

clearness index rather than solar radiation directly is that physical features that determine 

temporal variations in atmospheric clarity (principally the presence and optical thickness of 

clouds) are linked to the occurrence of precipitation and to the minimum and maximum 

temperature, whereas the other contributors to solar radiation (day of year and latitude) are 

static. This is therefore a simple transformation that requires little computational power and 

the only additional variable required for the calculation is the readily available latitude of 

the site.  

  The maximum extraterrestrial radiation (𝐷𝐸) for a given day of the year (1 for 1st 

of January, 365 for 31st December) 𝑖, and specified latitude 𝜙, can be calculated using  

(5.6) 
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𝐷𝐸(𝑖, 𝜙) =
24

𝜋
𝐼𝑠𝑐𝐸0(𝑑) [

𝜔𝑠(𝑖, 𝜙)sin𝛿(𝑖)sin𝜙 

+cos𝛿(𝑖)cos𝜙sin𝜔𝑠(𝑖, 𝜙)
] 

where the solar constant, 𝐼𝑠𝑐  ~ 4.921
𝑀𝐽

𝑚2ℎ𝑟
 , 𝐸0 is the eccentricity factor, 𝜔𝑠 is the sunrise 

hour angle in radians, and 𝛿 the declination. For leap years, the final day of the year (𝑖 =

366) is replaced by 𝑖 = 365 instead. The eccentricity factor varies with day, where 

𝐸0(𝑖) = 1 + 0.033 cos (
2𝜋𝑖

365
) 

with sunrise angle defined as  

𝜔𝑠(𝑖, 𝜙) = cos−1(− tan 𝜙 tan 𝛿(𝑖)) 

with the constraints  

𝜔𝑠(𝑖, 𝜙) = 𝜋   if − tan 𝜙 tan 𝛿(𝑖) > 1, 

and 

𝜔𝑠(𝑖, 𝜙) = 0   if − tan 𝜙 tan 𝛿(𝑖) < 1. 

Finally, the declination is defined as  

𝛿(𝑖) = 𝛿𝑀 sin (
2𝜋(𝑖 + 284)

365
) 

where  

𝛿𝑀 =
23.45𝜋

180
. 

 The observed insolation can be transformed to a clearness index using 

𝐶𝑖 =
𝑅𝑖

𝐷𝐸𝑖
 

where 𝐶 is clearness index, 𝑅 is the observed solar radiation (in MJ) and 𝐷𝐸 is the maximum 

extraterrestrial radiation (in MJ) reaching the latitude of observation, calculated using 

equation 5.6 for Julian day, 𝑑. This in turn provides a time series of daily clearness indexes 

instead of radiation values.  

 To generate clearness index on day 𝑖 (𝐶𝑖), precipitation, maximum and minimum 

temperature, and previous day’s clearness index will be used as predictors, such that 

(5.7) 
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𝐶𝑖 = 𝑐 + 𝑑𝑃𝑖 + 𝑒𝑇𝑥𝑖
+ 𝑓𝑇𝑛𝑖

+ 𝑔𝐶𝑖−1 +  𝜀 

where 𝑑, 𝑒, 𝑓, and 𝑔 are coefficients of regression, 𝑐 is a constant, and 𝜀 is an independent, 

standard, Gaussian error term. Clearness index is a constrained variable; it cannot exceed or 

fall below 1 or 0 respectively. In instances where the model generates a value ≥ 0.99, the 

GCWG will set the value to 0.99. Similarly, for a day with a generated value of ≤ 0.01, the 

GCWG will set the value to 0.01. Finally, equation 5.7 can be rearranged such that generated 

clearness index is multiplied by the maximum potential DE on Julian day 𝑑, calculated from 

equation 5.6, to estimate a given day’s total solar radiation. Prior to the regression, observed 

clearness index must be converted to a residual series using means and standard deviations 

relevant to the month of the observation. Regressions are fit monthly, resulting in 12 sets of 

coefficients that vary by site. Following the simulation of a residual time series, the values 

are converted back to an insolation using the corresponding month’s observed mean and 

standard deviation. 

 Predictors have been chosen based on each variable’s relationship with solar 

radiation. There is of course a direct, positive correlation between temperature and solar 

radiation. Simply, a fraction of the radiation reaching the Earth will be absorbed and 

converted into heat, therefore responsible for the temperature. The total radiation reaching 

and being absorbed by the Earth’s surface from the sun is dependent on several factors, 

including geographic location, surface albedo, season, and weather conditions. It is intuitive 

that on a cloudy day where there is less insolation, temperature will likely be lower. 

Precipitation has also been chosen as a predictor because it is generally positively correlated 

to cloud coverage, which is in turn negatively correlated with insolation. The Pearson 

correlation coefficients between the variables at each site introduced in Table 5.5 between 

solar radiation and daily maximum temperature, minimum temperature and previous days’ 

solar radiation are all statistically significant, and positive (strongly, at most sites). 

Conversely, correlations between solar radiation and precipitation are negative. 

 The same process (equation 5.8) can be used to generate daily insolation values 

directly without any transformation, simply substituting daily solar radiation values 

(measured in MJ), 𝑅, in place of clearness index, 𝐶. However, it is advised that solar 

radiation values are converted into clearness indexes in most cases, following a comparison 

of the residuals of regression. Time series of daily solar radiation and clearness index have 

been produced using the observed precipitation, maximum and minimum temperature, and 

previous day’s solar radiation or clearness index respectively. The residuals (the difference 

(5.8) 
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between the predicted and actual observed values) from each method have been compared 

at each site. If the residuals are normally distributed, a QQ-plot should show a straight line. 

It is clear from Figure 5.3 that the residuals are much closer to a normal distribution 

following the clearness index transformation in Tallinn and Punta Arenas. At some sites, the 

transformation from solar radiation to clearness index does little to change the distribution 

of the residuals (i.e., Brasília). In this instance, however, the original, untransformed 

distribution of solar radiation is much closer to a normal distribution than in Tallinn and 

Punta Arenas.   

 Based on the sites studied here, the transformation will be recommended prior to the 

regression. Transforming the variable does not seem to cause any ill effects in generating 

solar radiation times series in locations where the transformation does not improve the 

distribution of the residuals, like Brasília. Therefore, the transformation may ensure the most 

globally applicable solar radiation model. Furthermore, transforming the variable does not 

change the risk of overfitting, nor does it add any extra parameters to the model and thus 

any increase in computational time is negligible.   
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Figure 5.3 – QQ plots showing regression residuals for left) insolation and 

right) clearness index at top) Brasília, middle) Punta Arenas, and bottom) 

Tallinn. 
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5.2.3 ASSESSING THE MULTIPLE LINEAR REGRESSION MODEL 

PERFORMANCE AT REPRODUCING OBSERVED DAILY 

SOLAR RADIATION 

 The full NASA POWER series for each site is split into training and test datasets in 

the same 2:1 ratio as in Section 5.1.2. However, the NASA POWER datasets are 

significantly shorter in length than the previously used observed records, spanning 

approximately 30 to 40 years (with only 30 years of solar radiation data regardless of full 

record length). Splitting the data in the same 2:1 ratio as before (training to test datasets) 

leaves at least 20 years to calculate parameters in the training dataset, but only 10 years in 

the test dataset. For simplicity and consistency with other sections, test data will be referred 

to as “observed”, despite originating from satellite/model outputs. “Generated” (or 

“simulated”) will once again refer to the data simulated using the parameters calculated from 

the training dataset. The ability to reproduce the observed daily solar radiation, not clearness 

index, will be assessed here. NASA POWER solar radiation time series is provided in units 

of kWh/m2. This has been converted into units of MJ/m2.  

 Thirty 10-year simulations have been produced at each site. This is to reflect the 

smaller size of the test dataset (only 10 years) than for other variables. The range of means 

in daily insolation produced by the each of the thirty simulations is calculated and compared 

to the observed data by month. Once again, if the observed dataset and the thirty generated 

datasets are realisations of the same climate system, it can be expected that the observed 

means will generally lie within the range of generated means. The Mann-Whitney U test and 

Levene’s test have been used to compare the mean and variance respectively of each of the 

thirty generated datasets.  
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Table 5.6 – The number of observed means that lie within the range of 30 generated means 

out of a maximum 12. The mean numbers of simulations averaged over 12 months that show 

no statistical differences out of a maximum of 30 using the Mann-Whitney test to compare 

means, and Levene’s test to compare variance. 

  MEAN SIMULATIONS PER MONTH 

SHOWING NO STATISTICAL 

DIFFERENCES 

 

 

LOCATION 

No. of observed 

means within range 

of generated 

 

 

Mann-Whitney 

 

 

Levene’s Test 

Brasília 10 12.5   8.8 

Fort Huachuca 11 16.8 14.5 

Punta Arenas 8 20.1 24.0 

Tallinn 11 21.4 19.8 

Aasiaat 8 15.7 14.4 

  

 Observed monthly means in daily solar radiation lie within the range of generated 

means in at least 8 months at all sites. In any instance where the observed mean lies outside 

the range of generated means, the observed value lies within half a standard deviation of the 

full range. It is important to note that training and test datasets are much smaller here than 

in the validation of the GCWG’s ability to reproduce other variables, resulting in larger 

variance in both test and training datasets. At all sites but Brasília, there are no significant 

differences between observed and generated means in at least half of the thirty simulations.  

Similarly, at least fourteen of the thirty simulations show no significant differences between 

the observed and generated variances at all sites but Brasília. Model performance is weaker 

in Brasília, where a mean of 12.5 simulations per month show statistically similar means, 

and only 8.8 for variance. A potential cause of the lower performance at Brasília may be the 

temperature correction sample size process outlined in Chapter 4, Section 4.2. Although 

Chapter 4 uses observational records as inputs to the model, issues present with the 

stochastic generation of precipitation and temperature discussed in Chapter 4 are still present 

here. Firstly, due to the even shorter training datasets here (in all variables), several half-

months contain very few recordings for WD and DW days in Brasília. To provide a large 

enough sample size, the temperature for several half-months has instead been calculated 
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using several months of data (i.e., if the first half of January does not have enough a large 

enough sample of WD days, so WD days in December, January and February would be used 

instead). Temperatures make up half of the predictors to the solar radiation model and much 

like generating daily wind speed, any inaccuracies in reproducing the observed temperature 

accurately will also affect the resultant solar radiation model.  

 Another cause of the lesser performance may be due to the distribution of the 

regression residuals themselves at Brasília. The distribution of the solar radiation residuals 

is more normally distributed than other locations prior to the transformation into a clearness 

index. While the Gaussian-likeness has improved following the transformation, the 

improvement is much smaller than at other sites. Conversely, at Punta Arenas and Tallinn, 

residuals prior to the transformation are less normally distributed than Brasília, though 

following the transformation the residuals approximate a normal distribution extremely 

closely with much better agreement than Brasília (Figure 5.3). With residuals that are less 

normally distributed, the applicability of the regression is reduced. 

 Brasília has also been used instead of Key West to generate solar radiation following 

a first-order Markov-chain model to generate daily precipitation. In Chapter 3, it was 

determined that a third-order model most commonly represents precipitation in tropical 

regimes best for a range of metrics. Although both sites are sub-categorised as Aw (tropical 

savanna climate), Figures 3.9 and 3.12 show differences in the model order that best 

reproduces the observed interannual variability of precipitation occurrence (IVO) and 

amount (IVA) between the two locations, with different model orders performing better in 

different seasons at Brasília. This may result in slightly weaker precipitation performance in 

Brasília than at other sites, resulting in poorer performance in reproducing solar radiation. 
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a) 

b) 
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c) 

d) 
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Figure 5.4 – Observed means in daily solar radiation (coloured stars) and the generated 

means in daily solar radiation (black with error bars), calculated monthly, with error bars 

representing the largest mean from all 30  simulations and the smallest mean (black, dashed) 

at a) Brasília, b) Fort Huachuca, c) Reykjavik, d) Punta Arenas, and e) Aasiaat. 

 Annual cycles in solar radiation have been preserved by the model accurately at all 

sites. As with wind speed, despite statistical differences between observed and generated 

means and variances, all sites show excellent practical significance, and once again supports 

the use of the GCWG as a tool to produce alternative realisations that are similar to the 

observed climate. This practical significance is particularly important at Brasília, Fort 

Huachuca and Aasiaat, where up to two thirds of the simulations show statistical differences. 

It is clear from Figure 5.4 that even in these locations, the annual cycles are captured 

exceptionally well at Fort Huachuca and Aasiaat. It is also reassuring to note the different 

shapes that the GCWG is able to capture; Brasília for example has a very weak annual cycle, 

whereas it is very strong in Aasiaat.  

e) 
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5.3 DAILY RELATIVE HUMIDITY  

5.3.1 GENERATING DAILY RELATIVE HUMIDITY USING A 

MULTIPLE LINEAR REGRESSION MODEL 

 Relative humidity describes the ratio of how much water vapour is in the air to the 

maximum amount of water vapour the air could hold at any given temperature, expressed as 

a percentage. The primary reason for the inclusion of relative humidity in this GCWG is due 

to the role the variable plays in daily changes in reference evapotranspiration. With less 

available moisture in the air (therefore a lower relative humidity), evaporation is enhanced 

from open water sources and soils. Conversely, at higher relative humidities, evaporation 

rate is decreased. However, relative humidity is also an important variable in the study of 

wildfires, virology and human physiology (Williams et al., 2019). Changes to relative 

humidity can have direct and substantial impacts on physiological processes, including eye 

irritation and asthma, severe ill-effects on human comfort, the alteration of virus spread, 

alongside combinations of increased relative humidity and temperature reducing evaporative 

cooling of the body which can result in dangerous core body temperature levels 

(Gunawardhana et al., 2017; Wang et al., 2018).   

 Despite the significance of relative humidity in several fields, stochastically 

producing time series of daily relative humidity is largely undiscussed in literature in 

comparison to the primary, secondary, and other tertiary variables considered in this GCWG 

(Gunawardhana et al., 2017). Dew point is more frequently discussed, which can ultimately 

be converted into a relative humidity using daily temperature. Wallis and Griffiths (1997) 

proposed a model for generating dew point (alongside other variables) using a matrix of 

correlation coefficients between maximum and minimum temperatures, solar radiation, 

horizontal and vertical wind components at 1200 and 2400 LST, and dew point. This is 

similar to the process described by Matalas (1967) and Richardson (1981), but further 

developed to include more tertiary variables, assuming each variable is normally distributed 

and weakly-stationary.  

 However, to reduce errors that may arise through converting dew point temperature 

to relative humidity (using generated temperature values), a multivariate linear regression 

model will be used to directly generate relative humidity daily time series. Unlike the solar 

radiation to clearness index transformation, where only latitude is required, converting a 

generated time series of dew point temperature to relative humidity would also require the 
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generated daily temperature values. However, synthetic temperature values would also have 

been used to generate the residual dew point temperature series. By using the synthetic 

temperatures to generate a dew point temperature, and then in the conversion to a relative 

humidity, any errors in simulating temperature values will impact the resultant relative 

humidity twice.  

 Daily relative humidity (𝑅𝐻) values on day 𝑖 are transformed into a residual series 

using monthly means and standard deviations.  An autoregressive multivariate linear 

regression model, 

𝑅𝐻𝑖 = 𝑣 + 𝑤𝑃𝑖 + 𝑥𝑇𝑥𝑖
+ 𝑦𝑇𝑛𝑖

+ 𝑧𝑅𝐻𝑖−1 +  𝜀 

where 𝑤, 𝑥, 𝑦 and 𝑧 are coefficients of regression, 𝑣 is a constant, and 𝜀 is an independent, 

standard, Gaussian error term, is used to generate a residual series. The constant and 

regression coefficients are fit monthly, resulting in 12 regressions. Following the simulation 

of a synthetic residual series, values are transformed back into relative humidities using the 

corresponding observed mean and standard deviation, calculated each month. Like clearness 

index, 𝑅𝐻 𝑖𝑠 a constrained variable, though here with lower and upper limits of 0 and 100% 

respectively. If the model generates a value ≤1 or ≥ 99, values of 1 and 99% will be infilled 

respectively.   

 Daily temperatures, precipitation, and previous days’ relative humidity have been 

chosen as predictors due to the relationships and significant correlations between relative 

humidity and these variables. Increased temperature results in the increased water-holding 

capacity of air, therefore increasing the maximum amount of water vapour that air can hold. 

Consequently, as temperature increases (if all other factors influencing relative humidity 

remain constant), relative humidity decreases. Conversely, an increase of precipitation will 

result in an increase in humidity due to more water available for evaporation. Similarly, 

higher humidities increase the likelihood of precipitation; if relative humidity reaches 100%, 

condensation and precipitation may occur. These known relationships are reflected by the 

Pearson correlations at each studied site between observed maximum/minimum temperature 

and relative humidity ranging from -0.20 to -0.80, precipitation and relative humidity 

between 0.20 and 0.40, and the lag-1 autocorrelation coefficient in all cases exceeding 0.60. 

All correlations are statistically significant, reassuring their use as predictors in the model.  

(5.9) 
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5.3.2 ASSESSING THE MULTIPLE LINEAR REGRESSION MODEL 

PERFORMANCE AT REPRODUCING OBSERVED DAILY 

RELATIVE HUMIDITY 

 Relative humidity records are not widely available (Gunawardhana et al., 2017; 

Nicks and Harp, 1980). To address this issue, NASA POWER data at sites Brasília, Fort 

Huachuca, Punta Arenas, Tallinn and Aasiaat, introduced in Table 5.5, will be used once 

more. Relative humidities from the NASA POWER datasets are provided at a height of 2m. 

The same training and test data as in Section 5.2 has been used here (a 2:1 ratio of training 

to test datasets). For consistency with other sections, test data will be referred to as 

“observed”, despite originating from model outputs. “Generated” (or “simulated”) will once 

again refer to the data simulated using the parameters calculated from the training dataset.  

 Thirty 10-year simulations of daily relative humidity have been produced at each 

site, using generated maximum and minimum temperatures, precipitation, and previous 

days’ humidity as predictors. Again, 10-year simulations are more representative of the 

length of test period (approximately 13 years here). The range of means in daily relative 

humidity produced by the thirty simulations is calculated and compared to the observed data 

for each month. Applying the same logic as before, if the observed dataset and the thirty 

generated datasets are realisations of the same climate system, it can be expected that the 

observed means will generally lie within the range of generated means.  

 The non-parametric Mann-Whitney U and Levene tests have been used to compare 

the observed and (thirty) generated means and variances respectively. Although some sites 

show approximate normal distributions in the observed and generated humidities, non-

parametric tests will be used to ensure robustness where the distribution is non-normal, and 

to account for the constrained nature of the variable. 
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Table 5.7 – The number of observed daily means calculated monthly in relative humidity 

that lie within the range of 30 generated means out of a maximum 12. The mean numbers of 

simulations averaged over 12 months that show no statistical differences out of a maximum 

of 30 using the Mann-Whitney test to compare means, and Levene’s test to compare 

variance. 

  MEAN SIMULATIONS PER 

MONTH SHOWING NO 

STATISTICAL DIFFERENCES 

 

LOCATION 

No. of observed means 

within range of generated 

 

Mann Whitney 

 

Levene’s Test 

Brasília 8 20.7 22.3 

Fort Huachuca 8 9.9 10.8 

Punta Arenas 10 24.2 23.2 

Tallinn 11 17.3 19.0 

Aasiaat 10 19.1 15.2 

  

 At all sites, at least three quarters of observed means calculated monthly in daily 

relative humidity lie within the range of thirty generated means. At Brasília, Punta Arenas, 

Tallinn and Aasiaat, at last half of the simulations (averaged over all 12 months) show 

statistically similar means and variances. Here, Fort Huachuca shows the least accurate 

generation of relative humidities. An issue that has already been discussed in Section 5.2.3, 

it is important to note that the temperature sample size correction process introduced in 

Chapter 4, Section 4.2, may impact the resultant generated temperature and thus the tertiary 

variables. With shorter records used here than in Chapter 4, there are even more occurrences 

where the minimum sample size required to calculate bimonthly means and standard 

deviations in maximum and minimum temperature is not met. More half-months will 

therefore have the temperature parameters calculated using data not necessarily 

corresponding to the half-month (i.e., using three monthly means and standard deviations 

instead).  Much like solar radiation, relative humidity is typically strongly correlated to 

(particularly maximum) temperature. Any inaccuracies in generating the temperature will 

therefore carry forward into the relative humidity.  

In Section 5.2.3 it was instead Brasília that showed the weakest agreement between 

observed and generated solar radiation, with the temperature sample size correction process 
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a suggested reason for the lesser performance. It could therefore be expected that Brasília 

would once again show the weakest performance at reproducing relative humidity, and Fort 

Huachuca at reproducing the solar radiation. However, performance may be dependent on 

the strength of the correlations at each site between the tertiary variable and temperature. 

For example, solar radiation is much more strongly negatively correlated to maximum 

temperature at Brasília (-0.8) than at Fort Huachuca (-0.4). Conversely, relative humidity is 

more strongly correlated with maximum and minimum temperature at Fort Huachuca (0.7 

and 0.4 respectively) than at Brasília (0.4 and 0.0 respectively). This may result in 

inaccuracies in temperature generation affecting the variables differently depending on 

location.  

 

 

a) 
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b) 

c) 
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Figure 5.5 – Observed means in daily relative humidity (coloured stars) and the generated 

means in relative humidity (black with error bars) calculated monthly, with error bars 

representing the largest mean from all thirty simulations and the smallest mean, at from a) 

Brasília, b) Fort Huachuca, c) Reykjavik, d) Punta Arenas, and e) Aasiaat. 

d) 

e) 
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 Annual cycles, shown in Figure 5.5, are reproduced accurately, with the range of 

generated means always lying within one standard deviation of the observed (not shown 

here) even in instances where there are a large number of statistical differences (e.g., Fort 

Huachuca). A range of shapes are present across the five sites. For example, Punta Arenas 

and Tallinn both have sinusoidal shapes but with peaks in June and February respectively. 

Aasiaat has a large peak in February, followed by a smaller peak in August. The shape of 

each distribution is reproduced with high accuracy. This is reassuring of the use of the 

multiple linear regression model to reproduce observed relative humidity, despite some of 

the statistical differences shown in Table 5.7. Despite statistically significant differences 

between the observed and simulated datasets, generated relative humidity remains 

meaningful for practical applications at Brasília, Punta Arenas, Tallinn, Aasiaat, and from 

July to December in Fort Huachuca.  

 Despite as many as 8 observed means lying within the range of generated means, 

only approximately one third of the simulations have statistically similar means and 

variances at Fort Huachuca. Although the temperature sample size correction process may 

contribute to this, a further cause of the inaccuracies in Fort Huachuca may be caused by 

large differences between the training and test datasets, demonstrated in Figure 5.6 

(alongside Punta Arenas for comparison, where statistical differences between observed and 

generated simulations are far less prevalent). Differences of up to 10% are present between 

daily means (calculated monthly) in the training and test datasets at Fort Huachuca, 

conversely to a maximum difference of 1% in Punta Arenas. In Fort Huachuca, all five of 

the months where the observed means do not lie within the range of generated values are in 

the first five months of the year, where training and test datasets differ most strongly. 

Furthermore, the standard deviations in the test and training set are much larger in Fort 

Huachuca than at any other site. This potentially highlights an issue with using smaller 

datasets to determine GCWG input parameters.  
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Figure 5.6 – Mean daily relative humidity in the training and test datasets for top) Fort 

Huachuca and bottom) Punta Arenas, calculated monthly. 

 Another potential cause for the weaker performance of the model may lie with using 

the linear regression model itself. Using the observed records for precipitation, maximum 

and minimum temperatures, and previous day’s relative humidity, values for relative 

humidity have been produced using equation 5.7. The residuals (actual observed values 

minus predicted values) are shown in QQ-plots in Figure 5.7. If the residuals are normally 

distributed, they should show a straight line, and it is with confidence that the suggested 

multivariate linear regression is a suitable technique for modelling the variable. Residuals at 

Punta Arenas and Aasiaat resemble normal distributions the closest. These sites also have 

the fewest statistical differences between observed and generated relative humidities. 

Tallinn and Fort Huachuca show similar approximations to normal distributions, though to 
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a lesser degree than at Punta Arenas and Aasiaat. The QQ-plot for Brasília suggests the 

residuals of regression are not normally distributed; this may be a contributor towards the 

poorest statistical agreement with the observed values. 

  

  

Figure 5.7 – QQ-plots showing the residuals of regression for top) Brasília and Fort 

Huachuca, middle) Reykjavik and Tallinn, and bottom) Aasiaat. 
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5.4 REPRODUCING OBSERVED INTER-TERTIARY VARIABLE 

CORRELATIONS  

 Models for simulating daily time series for each of the three tertiary variables have 

been introduced: a generalised linear model for wind speed which allows a non-normal 

distribution, a transformation to clearness index and multiple linear regression model for 

solar radiation, and a multiple linear regression model for relative humidity. 100 years of 

daily data has been generated for precipitation, maximum and minimum temperature, wind 

speed, solar radiation and relative humidity using the NASA POWER data split into a 2:1 

ratio (training to test dataset). To determine whether correlations between the tertiary 

variables have been preserved through their individual dependencies on the primary and/or 

secondary variables, Pearson’s correlation coefficient has been calculated for the observed 

(test) with the generated datasets between the tertiary variables.  

Table 5.8 – Pearson’s correlation coefficients from the observed and generated daily time 

series for relative humidity-wind speed and relative humidity-solar radiation  

  Brasília Fort 

Huachuca 

Punta 

Arenas 

Tallinn Aasiaat 

WIND 

SPEED 

Observed -0.33 0.07 -0.34 0.28 0.14 

Generated -0.23 0.00 -0.06 0.26 0.10 

SOLAR 

RADIATION 

Observed -0.30 -0.66 -0.71 -0.75 -0.40 

Generated -0.35 -0.56 -0.65 -0.67 -0.35 

  

 The GCWG accurately reproduces correlations between relative humidity and wind 

speed, and relative humidity and solar radiation. Generated and observed correlations (not 

shown in Table 5.8) between solar radiation and wind speed are negligible (between -0.1 

and 0.1) at all locations except Tallinn and Aasiaat, where observed and generated 

correlations are both weakly negative. Although the sites in this study show little correlation 

between the two variables, it is reassuring that the observed relationships between wind 

speed and solar radiation are reproduced accurately due to practical impacts relating to 

renewable energy sources. For example, Mohammadi and Goudarzi (2018) note potential 

anti-correlation between wind speed and solar radiation during very strong El Niño events 

across California. This relationship could be utilised in the planning of renewable energy 
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sources; where there is less solar energy potential, higher wind energy potential may 

complement the decrease.  

A range of correlations between relative humidity and wind speed are present at the 

different sites. While all correlations are relatively weak, in some locations the correlation 

is positive (e.g., Tallinn and Aasiaat) and others negative (Brasília and Punta Arenas). In 

most cases, the GCWG reproduces the observed correlations with a good degree of accuracy. 

The largest differences between observed and generated correlations are present at Punta 

Arenas. Despite this, the observed correlation remains weakly negative (-0.34), with an 

extremely weak negative correlation in the generated dataset (-0.06).  

 Knowing that solar radiation is strongly correlated to temperature and relative 

humidity negatively correlated to temperature, the observed negative correlations shown in 

Table 5.8 between solar radiation and relative humidity are expected. It is reassuring the 

GCWG reproduces these correlations between relative humidity and solar radiation with the 

correct sign and magnitude at each site. Correlations vary from weakly to strongly negatively 

correlated, with the largest difference between any observed and generated correlation only 

0.09. This demonstrates the GCWG’s good ability at reproducing correlations between the 

tertiary variables accurately. Of the three inter-variable relationships, this is arguably the 

most important to accurately reproduce. Sunny weather (i.e., high solar radiation) in 

combination with low relative humidity is important for agricultural processes (such as 

cereal crop harvesting) and can increase forest-fire ignition risk (Ruosteenoja and Räisänen, 

2013). While the two variables tend to be negatively correlated, in instances where both are 

higher than usual (alongside temperature) there is an increased risk to human mortality. 

Furthermore, in the absence of observational data, several methods rely on relative humidity 

(alongside other variables) to calculate daily solar radiation. 

 Punta Arenas and Brasília show strong (>-0.5) and weak (<-0.5) negative 

correlations, respectively, between relative humidity and solar radiation. Using the observed 

record and 100 years of generated data, boxplots have been produced for the relative 

humidities on all days where the solar radiation falls below the 10th percentile and exceeds 

the 90th percentile (with percentiles calculated from the observed data). The inverse 

relationship between the two variables is clearly shown, with higher average relative 

humidities on the days falling below the 10th percentile in solar radiation, and lower average 

relative humidities on days exceeding the 90th percentile in solar radiation. The range of 

relative humidities on days where the solar radiation falls below the 10th percentile is also 
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accurately reproduced in both locations. While the mean relative humidity on days with solar 

radiation exceeding the 90th percentile is well reproduced, Figure 5.8 shows much larger 

ranges in Punta Arenas and (though to a lesser degree) Brasília in the generated datasets. It 

is important to reiterate that the sample size of the observed data is much smaller than the 

generated; hence many more outliers in the generated data shown in Figure 5.8. Despite this, 

the upper tail is generally reproduced well, with differences between the observed and 

generated values of around 4%. Due to the greater negative implications of simultaneous 

high solar radiation (and temperature) alongside high relative humidity, it is arguably more 

important to reproduce the upper tail than the lower tail effectively. 



178 
 
 

Figure 5.8 – Relative humidities on days where the solar radiation falls below the 10th 

percentile (calculated from the observed data) and exceeds the 90th percentile (calculated 

from the observed data) for top) Brasília and bottom) Punta Arenas. 
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5.5 CALCULATION OF REFERENCE EVAPOTRANSPIRATION 

USING OBSERVED AND GENERATED WEATHER 

VARIABLES 

 Evapotranspiration is an important agrometeorological variable in the hydrological 

cycle, describing evaporation and transpiration. A widely used variable in hydrological and 

agricultural models, evapotranspiration is used to understand local water budgets and cycles 

and is often used to assist in the development of infrastructure and irrigation planning and 

management. Furthermore, evapotranspiration is also an important variable in distinguishing 

the climatology of a region. Understanding precipitation at a site alone may not be enough 

to distinguish between a dry or moist climate. However, evapotranspiration is not a widely 

observed variable due to a wide range of complexities in taking measurements. These 

include flaws in experimental design, interpretation of results and even the measurement 

equipment itself (Allen et al., 2011).  

 Reference evapotranspiration describes the rate of evaporation and transpiration 

from a reference surface (that is not short of water), and was initially developed to study the 

atmospheric evaporative demand independently of crop type, development, and 

management practices (Allen et al., 2006). Reference evapotranspiration is a purely 

climatological variable and can be calculated using meteorological variables only. The main 

meteorological variables that affect reference evapotranspiration are solar radiation, air 

temperature, humidity, and wind speed. Using the outlined models for daily wind speed, 

solar radiation and relative humidity, alongside the models described in Chapter 4 for 

generating maximum and minimum temperature, daily reference evapotranspiration can be 

calculated.  

 Reference evapotranspiration has been calculated with the ETo Python package 

(documentation accessible from https://eto.readthedocs.io/en/latest/intro.html) using the 

FAO Penman-Monteith method. This package is also able to estimate reference 

evapotranspiration in the absence of several of the tertiary variables, making it applicable at 

sites that have not recorded variables such as solar radiation or humidity. Reference 

evapotranspiration will be calculated at Punta Arenas and Brasília. These sites have been 

chosen due to the excellent performance of the GCWG in temperate climates and the weaker 

(though still good) performance in tropical climates. NASA POWER data for Punta Arenas 

and Brasília has been split into the same 2:1 ratio (training to test datasets) as before. 
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Reference evapotranspiration is first calculated from the observed (test) dataset. References 

to “observed” evapotranspiration describe reference evapotranspiration calculated from the 

observed (test) dataset. Similarly, “generated” (or “simulated”) reference evapotranspiration 

refers to reference evapotranspiration calculated from the generated variables, using 

parameters calculated from the training dataset. Thirty 10-year simulations of maximum and 

minimum temperature, mean wind speed, solar radiation and relative humidity have been 

produced using the training dataset and hence daily reference evapotranspiration calculated. 

Thirty 10-year simulations (as opposed to ten 30-year simulations as in Chapter 4 and 

Section 5.1) have been used to once again better reflect the shorter length of the test dataset.  

  Figure 5.9 shows excellent practical agreement between generated and observed 

monthly means in daily reference evapotranspiration at Punta Arenas. In most months, 

generated evapotranspiration at Brasília shows good practical agreement with the observed. 

Weaker performance at Brasília than Punta Arenas is expected, due to weather stations in 

tropical regimes consistently showing less accuracy in reproducing (in particular, tertiary) 

weather variables than those in temperate locations (such as Punta Arenas). It is important 

to reiterate that the test dataset only spans 10 years. This is not a particularly long record, 

especially when considering derived quantities such as reference evapotranspiration that 

depend upon several climatic variables. This may be responsible for some of the differences 

between the observed and generated datasets. However, the annual cycle at both locations 

is captured accurately, with the shape, timing and amplitudes of the generated reference 

evapotranspiration closely aligning with the observed. This is reassuring of the proficiency 

of the GCWG.  
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Figure 5.9 –  Observed mean daily evapotranspiration (coloured stars) and generated 

mean daily evapotranspiration calculated from generated variables (black with error 

bars), with error bars representing the largest mean from all 30 simulations and the 

smallest mean (black, dashed) at top) Brasília and bottom) Punta Arenas. 
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 At Punta Arenas, the observed reference evapotranspiration lies within the range of 

generated values in all months, with at least 60% of the simulations showing statistically 

similar means and variances.  The GCWG does, however, produce several months where 

the range of generated monthly means in daily reference evapotranspiration does not capture 

the observed at Brasília. This is reflected by only a small proportion of statistically similar 

means (approximately 17%). 

Table 5.9 - The number of means in daily reference evapotranspiration calculated from the 

observed (test) dataset that lie within the range of 30 means calculated from generated 

variables out of a maximum 12. The mean numbers of simulations averaged over 12 months 

that show no statistical differences out of a maximum of 30 using the Mann-Whitney test to 

compare means, and Levene’s test to compare variance. 

  MEAN SIMULATIONS PER 

MONTH SHOWING NO 

STATISTICAL DIFFERENCES 

 

Location 

No. observed means within 

range of generated 

 

Mann Whitney 

 

Levene’s Test 

Brasília 3 5.1 10.9 

Punta Arenas 12 18.1 19.8 
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 The overall distributions of all daily values show few differences between the two 

datasets at both sites (Figure 5.10). Observed reference evapotranspiration at Brasília shows 

a larger median, mean, and range than Punta Arenas, which is accurately captured by the 

GCWG. There are many more outliers in the upper tail at Brasília, indicating a more skewed 

distribution, once again accurately captured by the generated data. This demonstrates the 

capability of the GCWG to capture a range of distributions in daily reference 

evapotranspiration. Figure 5.9 and Figure 5.10 highlight the merits of not only statistically 

testing the data, but to also visualise it. Although there are several statistical differences, the 

generated time series is generally showing a realistic realisation of the observed climate. 

This reiterates once more that with larger sample sizes, statistical tests are more likely to 

pick up on small differences between the datasets. However, it is clear that for many 

Figure 5.10 – Evapotranspiration calculated using observed and generated variables for 

Brasília and Punta Arenas. One of the thirty simulations is shown here. 
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applications, the GCWG will sufficiently simulate an accurate time series of weather 

variables that can be used to calculate a realistic realisation of the reference 

evapotranspiration.  

5.6 CHAPTER 5 SUMMARY 

  Models for generating daily time series for each of the tertiary variables (mean wind 

speed, solar radiation and relative humidity) have been introduced. A requirement of each 

model was to incorporate some dependency on a primary (precipitation) or secondary 

(maximum and minimum temperature) variable. This is because only the primary and 

secondary variables will be scaled with increasing global mean surface temperature in 

Chapters 6 and 7. Changes to the tertiary variables as a function of GMST could therefore 

be incorporated through the changes in precipitation and temperature (though not 

investigated as part of this research). 

 A generalised linear model (GLM) to simulate daily mean wind speeds has been 

demonstrated, using lag-1 autocorrelation, maximum and minimum temperatures as 

predictors with a gamma distribution and a log-link function. The model shows good 

statistical agreement and excellent practical agreement with observed data at each of five 

sites (Key West, Fort Huachuca, Reykjavik, Tallinn, and Aasiaat). Inter-variable 

correlations are generally well reproduced, though at most sites correlations are weak. A 

multivariate linear regression model has been used to produce solar radiation and relative 

humidity time series using lag-1 autocorrelation coefficients, maximum and minimum 

temperatures, and precipitation as predictors. NASA POWER data (which combines satellite 

and model data) has been used in place of weather station observations due to a lack of high 

quality, multivariate records, using Brasília in place of Fort Huachuca and Punta Arenas in 

place of Reykjavik. A transformation to and from a clearness index is recommended for the 

solar radiation model. This is to ensure that regression residuals are approximately normally 

distributed. Generated solar radiations and relative humidities show good statistical 

agreement with observed data at most sites, with Brasília and Fort Huachuca showing the 

least accuracy. Despite this, annual cycles are accurately reproduced at each site, and 

generated data shows excellent practical agreement with the observed at most sites.  

 Temperatures and tertiary variables have been used to calculate daily reference 

evapotranspiration with the ETo Python package, using the FAO Penman-Monteith 

equation. Generated and observed reference evapotranspiration time series show excellent 
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agreement at Punta Arenas, and to a lesser degree, at Brasília. This is an expected result; in 

all comparisons between generated and observed data, the GCWG tends to perform better 

in temperate locations (i.e., Reykjavik and Punta Arenas) than at tropical sites (i.e., Key 

West and Brasília). However, at both sites, the generated time series continues to 

demonstrate the GCWGs ability to reproduce sensible realisations of the climate, with good 

practical agreement between generated and observed datasets.  

 This chapter has demonstrated the strengths of this simple GCWG, utilising a limited 

number of parameters for each tertiary variable, whilst maintaining some dependency on the 

primary and/or secondary variables. Furthermore, this dependency has accurately captured 

the correlations between the tertiary variables without the inclusion of additional predictors. 

Using weather stations that cover a range of climatic regimes provides confidence of the 

globally representative nature of the GCWG. Generated time series for each tertiary variable 

shows good to excellent practical agreement with observations, supporting the skill of the 

GCWG at reproducing realistic realisations of a location’s actual climate.  
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6 PATTERN SCALING THE PRIMARY VARIABLE 

WEATHER GENREATOR PARAMETERS  

Chapters 3 to 5 saw the development of the Globally Calibrated stochastic Weather 

Generator (GCWG), validated using a global network of gridded weather station 

observations, and a selection of observations representative of the five Köppen climate 

regimes (tropical, dry, temperate, and polar) (Köppen, 1900). In this chapter, precipitation 

parameter response to external climate forcings will be diagnosed from two General 

Circulation Models (GCMs) as a function of increasing global mean surface temperature 

(GMST). To reiterate, these parameters include monthly P00, P11 (the probability of a dry 

day given that the previous day is dry, and the probability of a wet day given that the previous 

day is wet, respectively), α and β (wet-day shape and scale, respectively).  

Responses will be diagnosed from the IPSL-CM6A-LR and ACCESS-ESM1.5 GCMs 

and have hence been compared to each other and wider literature. Following the diagnosis 

of primary parameter response, parameters calculated directly from weather station 

observations will be perturbed to generate precipitation time series that may be 

representative of a range of global warming levels (GWLs) whilst reducing GCM-induced 

errors at representing local-scale climate arising from their course resolution and 

parameterisation of several sub-GCM grid-scale processes (such as cloud microphysics and 

local forcings).  

Section 6.1 recaps the Markov-chain gamma-distribution model discussed in Chapters 

2, 3 and 4, and reiterates some of the literature discussed in Chapter 2 pertaining to pattern 

scaling. This approach has been taken to facilitate the preparation and submission of a 

manuscript titled “Pattern Scaling the Parameters of a Stochastic Weather Generator to 

Represent Changes in Climate: A Demonstration for Primary Variables” to Climatic Change 

in due course. The GCWG is therefore not referred to explicitly in the manuscript, though 

the parameters and models described are those used in the GCWG. 
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6.1 PATTERN SCALING THE PARAMETERS OF A STOCHASTIC 

WEATHER GENERATOR TO REPRESENT CHANGES IN 

CLIMATE: A DEMONSTRATION FOR PRIMARY VARIABLES 

6.1.1 INTRODUCTION 

 General Circulation Models (GCMs) are the most sophisticated and widely utilized 

tools used to study the climate’s response to external forcings. However, GCM outputs may 

not be directly suitable for impact assessments due to their coarse resolution (Mitchell, 2003) 

or, in cases where the resolution is suitable (e.g., the recent High Res MIP (Haarsma et al., 

2016)), limited numbers of simulations representing only a few scenarios have been run, 

therefore not fully capturing unforced variability. Several methods have been discussed in 

the literature to address the mismatch between GCM area-averaged outputs and the local-

scale resolutions required for hydrological, agricultural, and ecological assessments, 

including statistical and dynamical downscaling techniques (Maraun et al., 2010). Stochastic 

weather generators are a tool that have been used to statistically downscale GCM outputs 

and produce long time-series for a range of weather variables at a local-scale (Jones et al., 

2016; Wilks, 2010, 1999a). The weather generator parameters are typically estimated using 

a local observed record, and then projected changes in the parameters (to represent a possible 

future climate) are diagnosed from GCM simulations for a specific scenario and time period. 

While this addresses the resolution mismatch, it can only be applied to scenarios or time 

periods simulated by the GCM. Although a defined range of climate scenarios have been 

considered by the sixth Coupled Model Intercomparison Project (CMIP6) GCMs covering 

mitigated, weak, and high forcing scenarios, there is no quantification of each scenario's 

likelihood (Tebaldi et al., 2021; van Vuuren et al., 2011) and therefore the study of a handful 

of scenarios alone does not capture the range of uncertainty. 

 Pattern scaling (PS) addresses the issue of limited simulations. Originally developed 

to create transient projections from equilibrium responses of a GCM to doubled CO2 

concentration, PS has more recently been used to construct projections for scenarios and 

time periods where fully coupled projections are not available, and to better understand 

uncertainties associated with inter-model variability (Lynch et al., 2017; Osborn et al., 2016; 

Santer et al., 1990; Tebaldi and Arblaster, 2014).  It is an approach that has been applied 

within the IPCC Sixth Assessment Report (IPCC, 2021a). A computationally inexpensive 

technique, PS assumes a linear relationship between local climate change (e.g., within a grid 



188 
 
 

cell), and the global mean surface temperature (GMST) change. It uses this linearisation to 

approximately emulate the projections from a GCM. Osborn et al. (2016, 2018) argued that 

this linear approximation does not need to be perfect (it is an approximation after all) but 

that, to be useful, the errors arising from this approximation should be small relative to the 

other sources of uncertainty (e.g., small relative to the spread of results in an ensemble of 

different GCMs). A spatial pattern of this relationship is derived from transient GCM data 

expressed in a normalised way, for instance, as change per degree Celsius of GMST change. 

The resulting pattern can hence be scaled by a specific GMST change (the 'scaling factor'), 

or a time series of GMSTs, to emulate the climate at a specified global warming level 

(GWL).  

 The raw GCM data used to define the spatial patterns are usually composed of 

monthly, or seasonal, means and are typically time filtered (e.g., a multi-year running 

average) to clarify the external forcing signal. As a result, further treatment of the PS output 

is needed to investigate extreme events at different time scales (e.g., daily events), and 

variability responses (e.g., inter-annual variability) to forcings are not routinely accounted 

for despite their importance (Katz and Brown, 1992; Seneviratne et al., 2021) – although 

variability parameters can be scaled, independently, alongside the mean of the climate 

variable itself, e.g., Osborn et al. (2016). 

 Stochastic weather generators (SWGs) can be used to downscale GCM outputs and 

are frequently used to produce time series for a range of weather variables in the absence of 

high quality, consistent records, for use in hydrological and agricultural risk assessments 

(Semenov et al., 1998). Long, synthetic time series also allow for more accurate estimation 

of the probabilities of extreme events, such as long wet or dry spells, where observed records 

may be too short. SWGs are computationally inexpensive and can produce several 

realisations of the climate that they have been calibrated by. However, unlike GCMs, SWGs 

do not represent the physical processes that determine the climate change induced by 

external forcing. This means that they cannot, on their own, be used to produce realisations 

of the future climate without some perturbation. Instead, changes in their parameters need 

to be provided by an external source (such as diagnosing changes from GCM or Regional 

Climate Model (RCM) simulations). Note that other approaches to statistical downscaling 

are conditioned on large-scale variables such as atmospheric temperature, humidity and 

circulation patterns, and these predictor variables also need to be diagnosed from GCM or 

RCM simulations. 
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 This study, therefore, applies PS to the first-order transition probabilities and wet-

day gamma parameters of a SWG (defined in Section 6.1.2) with the aim of generating long 

time-series emulating presently un-simulated scenarios (i.e., representative of presently 

unmodelled GCM - scenario combinations), whilst also addressing the issues regarding 

coarse GCM resolution and reducing the impact of GCM-induced errors in the projection of 

local scale climates. To demonstrate this approach, global gridded transition probability and 

gamma parameter responses to external forcings such as increased greenhouse gas emissions 

will be diagnosed using the IPSL-CM6A-LR GCM. GMST is used as a metric to quantify 

the changes to regional climates and therefore, responses will be discussed relative to 

changing GMST (i.e., how do these parameters scale with GMST?). The implications of the 

response patterns to resultant precipitation will be interpreted and hence compared to 

observed and projected trends in precipitation with changing GMST. Finally, the response 

patterns will be used to perturb transition probabilities calculated from weather station 

observations at Santarém, Brazil and Reykjavik, Iceland, and generate precipitation 

occurrence under three global warming levels (GWLs); 1.5, 2.0 and 4.0°C.   

6.1.2 DATA AND METHODS 

6.1.2.1 SELECTION OF CLIMATE SCENARIOS AND GCMS 

A wide range of future forcing pathways are covered by the CMIP6 ScenarioMIP 

“Tier 1” experiments, from strongly mitigated (i.e., SSP1-2.6) to high end forcing (i.e., 

SSP5-8.5) scenarios (O’Neill et al., 2016; Riahi et al., 2017; Tebaldi et al., 2021). Three of 

the four experiments (SSP1-2.6, SSP2-4.5 and SSP5-8.5) are analogous to CMIP5 

experiments, studying similar levels of radiative forcing by 2100 (corresponding to RCPs 

2.6, 4.5 and 8.5). SSP3-7.0 has been constructed to fill a gap between medium (SSP2-4.5) 

and high (SSP5-8.5) pathways (Tebaldi et al., 2021). Weaker forcing or strongly mitigated 

scenarios are known to produce less well-defined response patterns, which, when 

extrapolated, lack characteristics present in higher forcing responses. Strongly mitigated 

scenarios are also thought to show non-linear precipitation changes (Wu et al., 2010) with 

the spatial characteristics of warming changing as the deep ocean temperature reaches 

equilibrium (May, 2012). Whilst it is possible to extrapolate patterns from low-end warming 

scenarios, it has been recommended that patterns should instead be diagnosed from strong 

forcing scenarios (Mitchell, 2003) and it has been shown that response patterns diagnosed 

excluding high-end scenarios may perform poorly beyond certain GWLs (Osborn et al., 
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2018). It is because of this that, of the four widely available Tier 1 ScenarioMIP scenarios, 

only the high-end forcing scenarios, SSP3-7.0 and SSP5-8.5, will be used to produce climate 

response patterns. SSPs 3-7.0 and 5-8.5 both result in higher GMST increases by 2100 than 

other SSPs. This will reduce inaccuracies that may arise when scaling SWG input parameters 

changes from low-end warming scenarios. Furthermore, the pooling of two SSPs provides 

a larger sample size, thus improving the signal-to-noise ratio of the forced response against 

internal climate variability (Osborn et al., 2018). 

 SSP5 represents the high-end of future pathways and describes a future with high 

mitigation challenges with fossil-fuel dominated development. Investments in human and 

social capital are increased, with a greater emphasis on resource and energy intensive 

lifestyles globally. In turn, there are higher energy demands with high exploitation of fossil-

fuel resources and delays in uptake of climate mitigation policies (Riahi et al., 2017) 

resulting in an external forcing of 8.5Wm-2 by 2100. Alternatively, SSP3 describes a future 

of resurgent nationalism with high societal vulnerability. SSP3-7.0 is an update on RCP7.0 

and represents a medium-to-high pathway. This scenario combines substantial land use 

changes (including in global forest cover), high near-term climate-forcing emissions, and 

the largest population growth of all scenarios (12.6 billion by 2100) (Riahi et al., 2017). 

 While any GCM could have been chosen because this is a proof-of-concept rather 

than putting forward a new climate change projection, there are nevertheless some reasons 

why IPSL-CM6A-LR was chosen. First, it has an initial condition ensemble of runs for each 

of the SSPs considered here (rather than a single run) which allows more accurate climate 

change patterns to be diagnosed when the signal-to-noise ratio is small (Mitchell, 2003). 

Here, four realisations of both SSPs have been used to diagnose the responses. Second, it 

has a moderate-to-high climate response: the GMST change by 2100 slightly exceeds the 

“very likely” ranges assessed by AR6 (IPCC, 2021) and its equilibrium climate sensitivity 

is 4.52°C, which lies towards the upper end of AR6 assessed range. These slightly stronger 

GMST changes will also improve the signal-to-noise ratio. These advantages will help to 

make the diagnosed change patterns more accurate, so that differences between PS emulated 

and GCM projections at a specified GWL can be investigated. The inter-model spread of 

responses is likely to be larger (Osborn et al., 2016; Tebaldi and Arblaster, 2014) but 

quantifying that is not the focus of this study. 

 Four initial-condition ensemble members with differing realisations of SSP5-8.5 and 

SSP3-7.0 ScenarioMIP simulations and historical CMIP6 simulations will be used to 
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diagnose the spatial response of the first-order Markov probabilities. Historical simulations 

run from 1850 – 2015, and ScenarioMIP simulations from 2015 – 2100. Each realisation has 

unique, internally driven components that are independent of the forced external climate 

signal which remains constant between realisations. The components of unforced variability 

in the ensemble members are independent of each other (Jones et al., 2011), thus it can be 

expected that pooling four ensemble members will reduce the size of the internal, unforced 

variability by half relative to using a single member (Osborn et al., 2018). Increasing the 

number of ensemble members beyond four is not computationally efficient for the 

improvement in the error; to further reduce the error by another half would require sixteen 

ensemble members (with many GCMs not simulating this number of realisations).  

 Historical simulations have been concatenated with the corresponding ScenarioMIP 

realisation to produce a temporally consistent series from 1850 to 2100. For example, the 

first realisations of SSP3-7.0 and SSP5-85 (r1i1p1f1) have been concatenated with the first 

realisation of the historical simulation (r1i1p1f1). The concatenated time series will 

hereafter be referred to as historical+SSP3-7.0 and historical+SSP5-8.5. The four 

historical+SSP3-7.0 and four historical+SSP5-8.5 ensemble members will be pooled, 

resulting in eight temporally consistent time series from 1850-2100.  

6.1.2.2 DETERMINING THE SPATIAL RESPONSE PATTERNS   

 There are several different methods of generating daily precipitation time series, 

including Markov-chain gamma-distribution models, series-type empirical distributions 

(Semenov and Barrow, 2002), Markov renewal processes (Foufoula‐Georgiou and 

Lettenmaier, 1987) and  the Neyman–Scott Rectangular Pulse method (Cowpertwait, 2004). 

A summary of the approaches is provided in Chapter 2, Section 2.3. Here, due to the 

simplicity of the parameters lending themselves suitably to pattern scaling, a Markov-chain 

gamma-distribution model will be used here. 

 First-order, 2-state Markov chains are frequently used to stochastically simulate 

daily precipitation occurrence (Richardson and Wright, 1984), where two-state refers to the 

precipitation status of a day i.e., either wet or dry, with “wet” here defined as a precipitation 

amount of at least 0.1mm. Following the generation of a binary number sequence 

representing wet or dry days, Markov-chain weather generators typically attribute an amount 

of precipitation to a wet day independently from a two-parameter gamma distribution, fitted 

monthly. While higher-order models have merits first order Markov chains are the most 
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commonly used in literature (Jimoh and Webster, 1996; Schoof and Pryor, 2008), and in a 

global comparison of zeroth, first, second, and third model-order performance, Wilson 

Kemsley et al. (2021) showed that first-order models are the most accurate at reproducing 

observed distributions of wet-spell length and outperformed all others using the Bayesian 

Information Criterion (BIC) globally. For this reason, first-order Markov chains only will 

be considered here.  

 The response of first order transition probabilities and wet-day gamma parameters 

to changing GMST will be diagnosed from IPSL-CM6A-LR. First order transition 

probabilities are defined as 

𝑃𝑖𝑗 =
𝑛𝑖𝑗

∑ 𝑛𝑖𝑚
1
𝑚=0

 

where 𝑖 and 𝑗 represent wet (1) or dry (0) days and 𝑛𝑖𝑗  the number of days in the observed 

record corresponding to the precipitation state defined by 𝑖 and 𝑗 on the preceding and 

current day respectively. Transition probabilities are calculated for each of the twelve 

calendar months, resulting in four probabilities per month: P11 (a wet day preceding a wet 

day), P00 (a dry day preceding a dry day), P01 (a dry day preceding a wet day) and P10 (a wet 

day preceding a dry day), though the number of independent transition probabilities is only 

two per month, where 𝑃11 = 1 − 𝑃10. Patterns for P00 and P11 will be presented here. 

 For a given month, the change in a transition probability, 𝑃, at a GCM grid-cell with 

latitude and longitude coordinates 𝑥 and 𝑦 will be regressed using least squares regression 

against the GMST change relative to 1850-1900, such that  

𝑃𝑥𝑦𝑛 − 𝑃𝑥𝑦,𝑛=0 = 𝑎𝑃𝑥𝑦
(𝑇𝑛 − 𝑇𝑛=0) + 𝑐𝑃𝑥𝑦

 

where 𝑛 is any 30-year window and with 𝑛 = 0  referring to the first 30-year window used 

to calculate parameters. The gradient of the regression, 𝑎𝑃𝑥𝑦
 and the intercept, 𝑐𝑃𝑥𝑦

 will differ 

for each cell. The gradients plotted globally form the spatial response pattern for each 

transition probability. The full historical+SSP3-7.0 time series will be used in the regression, 

but only the responses diagnosed from 2000-2100 of the historical+SSP5-8.5 time series 

will be considered. This is to avoid duplication of responses diagnosed from the historical 

simulation.  

Linear regression has been chosen over a simple time-slice (or “delta-change”) 

method. The time-slice approach is more sensitive to random noise caused by internal 

(6.1) 

(6.2) 
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variability which may then affect the size of the scaled responses. Unlike the time-slice 

approach, regression effectively uses the full simulated time-series (i.e., 1850-2100) further 

reducing the influence of internal variability (Ruosteenoja et al., 2007) and eliminates 

differences that may arise in choosing the epoch of the slices (Lynch et al., 2017). 

 The response of wet-day gamma-distribution parameters to changing GMST is 

determined as a fractional change, as opposed to a least-squares regression (Osborn, 1997; 

Osborn et al., 2016). The shape (𝛼) and scale (𝛽) parameters for days where the precipitation 

exceeds 0.1mm are similarly calculated from 30-year windows every 5 years from 1850 to 

2100 using the historical+SSP3-7.0 and historical+SSP5-8.5 time series for each month. 

Shape and scale parameters are calculated using the Thom estimators  

𝛼 =
1 + (1 +

4𝐷
3 )

1
2

4𝐷
 

𝛽 =
𝑥̅

𝛼
 

with sample statistic 

𝐷 = ln(𝑥̅) −
1

𝑛
∑ ln(𝑥𝑖)

𝑛

𝑖=1

 

where 𝑥 is the precipitation on wet day 𝑖, with a total of 𝑛 wet days. Thom estimators make 

better use of the information in a dataset and are considered more efficient than moment 

estimators (Wilks, 2011). 

  Although PS is usually applied to mean climate, recently Osborn et al. (2016) 

applied the pattern scaling technique to monthly precipitation shape parameters – that, 

together with the mean precipitation change, determines the distribution of monthly total 

precipitation. Similar methodology will be applied here, though to daily wet-day shape and 

scale parameters. Fractional changes to these parameters, referred to collectively as 𝑊, are 

regressed against the change in GMST anomaly (relative to 1850-1900) for each grid cell in 

a GCM, with coordinates 𝑥 and 𝑦, such that 

𝑊𝑥𝑦𝑛

𝑊𝑥𝑦,𝑛=0
= 𝑎𝑊𝑥𝑦

(𝑇𝑛 − 𝑇𝑛=0) + 𝑐𝑊𝑥𝑦
. 

(6.3) 

(6.4) 

(6.5) 

(6.6) 



194 
 
 

where 𝑛 corresponds to the 𝑛th 30-year period and  𝑛 = 0 once again refers to the first 30-

year period with a calculated parameter. 𝑊𝑥𝑦,𝑛=0 is averaged across all ensemble members 

in the first recorded 30-year window (usually 1850-1880) where possible. However, some 

grid cells may have limited or no wet days during a given month over the first (or any) 30-

year period making an estimation of the wet-day gamma distribution challenging or 

impossible. If, in a given month for any 30-year period, there are less than 30 wet days (i.e., 

one per month), no gamma distribution will be recorded. If this happens to be in the first 30-

year window (i.e., 1850-1880), 𝑊𝑥𝑦,𝑛=0 in equation 6.6 is instead the first 30-year period 

that contains a calculated gamma parameter. This may be averaged across all ensemble 

members (if all of them contain recordings in the same 30-year window) or just one 

ensemble member. If 𝑊𝑛=0 is not calculated from the first 30-year period, the corresponding 

𝑇𝑛=0 in equation 6.6 will also be calculated over the same 30-year period.  

 Unlike the transition probabilities, this may result in some locations and months 

containing fewer data points for regression. If there are less than ten recordings of 𝑊𝑥𝑦𝑛 

across all simulations (i.e., at least ten points in the regression), it is determined that there is 

not enough data to robustly identify a change in the parameter with changing GMST, and 

thus the slope 𝑎𝑊𝑥𝑦,, for a given month and grid cell, is set equal to zero. This is a 

conservative choice: in the absence of robust information about the projected change, no 

change is assumed. 

6.1.2.3 APPLICATION OF THE SPATIAL RESPONSE PATTERNS 

The GCM-diagnosed response of a transition probability to changing GMST can be 

utilised by a SWG to produce local scale, daily time series, under a range of different climate 

scenarios and time periods. The transition probabilities calculated directly from observations 

can be perturbed for a range of GWLs using the gradient from equation 6.2 for the 

corresponding grid-cell. Data from two weather stations are used here (Santarém, Brazil, 

and Reykjavik, Iceland), which have been chosen based on large and differing parameter 

responses at their locations (presented in Section 6.1.3). Furthermore, these locations are 

classified as having tropical (Santarém) and temperate (Reykjavik) climates. Chapters 3 

through 5 showed the strongest performance of the Markov-chain gamma-distribution 

weather generator at reproducing observed precipitation in temperate regimes, alongside the 

weakest performance in tropical locations.   

 First-order transition probabilities will be scaled additively; 
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𝑃𝑇 = 𝑃0 + 𝑎𝑃𝑥𝑦
 ∆𝑇  

where 𝑃𝑇 is the new transition probability following a specified global temperature change 

∆𝑇 relative to the observed period (where the observed transition probability is 𝑃0). 

Coordinates 𝑖 and 𝑗 refer to the grid-cell that encloses the coordinates of the location of the 

weather station used to calculate 𝑃0. Probabilities have upper (1) and lower (0) limits. If 

after scaling 𝑃𝑇 > 1 or 𝑃𝑇 < 0, the transition probability is simply truncated just below the 

limits at 0.999 and 0.001 respectively.  

 Osborn et al. (2016) suggested that a multiplicative approach instead of an additive 

approach was appropriate for pattern scaling shape and scale parameters, because they are 

bounded at zero. Wet-day gamma distribution parameters are therefore scaled 

multiplicatively; 

𝑊𝑇 = 𝑊0(1 + 𝑎𝑊∆𝑇) 

where 𝑊𝑇 is the new gamma parameter following the global temperature change ∆𝑇 relative 

to the observed period (for which the observation-based gamma parameters are 𝑊0). Once 

again, the scaled parameters must be constrained to the physically allowed range (𝑊 > 0). 

If a parameter falls below 0 following scaling, it will instead be set to an arbitrary small 

number (i.e., 0.01). Though using a different method, Wilby and Wigley (2002) similarly 

compared changes in daily gamma distributions to assess precipitation under different 

scenarios. 

 The perturbed transition probabilities, 𝑃𝑇 , and wet-day parameters, 𝑊𝑇 , can hence be 

used to generate time series of precipitation under the specified GWLs. This method of 

synthetic time series generation avoids GCM-induced bias because the starting point is the 

parameter set fitted to observations and only changes in parameters are taken from the GCM. 

For a given site, the area-averaged data can vary significantly from the local, weather station 

scale data. Using local-scale data perturbed by GCM predicted trends will reduce errors in 

estimating the local climate. An example of this will be given in the following Section. 

(6.7) 

(6.8) 
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6.1.3 RESULTS AND DISCUSSION 

6.1.3.1 TRANSITION PROBABILITY RESPONSE TO CHANGING 

GMST 

 Spatial responses for dry-day to dry-day and wet-day to wet-day probabilities, 

hereafter referred to as P00 and P11, have been produced using IPSL-CM6A-LR and are 

shown in Figure 6.1 (see Appendix for example linear regression scatter plots). Deductions 

about the transition probabilities, P01 and P10, can be drawn from P00 and P11 respectively. 

For visualisation purposes, the maximum and minimum transition probability responses 

(gradient in equation 6.2) are capped at 6 and -6 respectively, where a value of 6 (-6) 

indicates an increase (decrease) of 6 in a transition probability per degree GMST increase. 

Note that the colour bars have been reversed for P11 and P00 to indicate increasing wet or dry 

conditions with consistent colours. While spatial distributions have been produced over land 

and ocean, attention will be focussed over land-surface areas due to the increased relevance 

of these locations in impact assessments. Seasons may be referred to by their months, where 

DJF refers to December, January, February, MAM March, April, May, JJA June, July, 

August and SON September, October and November.  

 Several regions, now discussed in turn, show strong transition probability responses 

to increasing GMST. Firstly, within South America, strong responses are present with large 

magnitudes in the north, east, and monsoon regions, including across the Amazon rainforest. 

IPSL-CM6A-LR generally shows a decrease in the number of wet days alongside increased 

dry day frequency and dry-spell length across these regions., with decreasing P11 (therefore 

increasing P10) and increasing P00 (hence decreasing P01) in several months (note that the 

mean length of dry spells is 
1

1−𝑃00
). During the wettest months over the Amazon region 

(January to March), P11 remains mostly constant with increasing GMST. North-eastern 

Brazil shows strong decreases in P11 in April and May, around the start of the region’s dry 

season. This, combined with the strongest P00 responses during the dry season (May to 

October), the length and intensity of the dry season in these regions may increase, 

heightening the risk of meteorological droughts. This, alongside homogenous decreases in 

P11 from July to October over Brazil, reiterates literature findings that the maximum number 

of consecutive dry days per year (CDD) in the Amazon basin and north-eastern Brazil, 

alongside the length of the dry season, is projected to increase with climate change 

(Sörensson et al., 2010).  
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 Response patterns are less pronounced in North America than South America. 

Increases in P11 are present across Canada and Alaska throughout the winter (DJF) with 

slight decreases in all other seasons. Conversely, decreases in P00 are present in the winter 

with increases in other months. This suggests an overall increase in wet-day frequency and 

wet-spell length during winter. Responses are weaker in magnitude across the contiguous 

USA, closer to zero for large spatial areas. Where there are stronger responses, mainly in 

western USA, some months show increases in P00 with only slight decreases in P11. This 

suggests only a slight increase to dry-day frequency, with longer dry-spells. This differs over 

the east coast where there are increases in P11 from May to October.  

 In Central America, P11 remains relatively constant with increasing GMST. 

Exceptions are present primarily over coastal grid cells from May to August, where large 

negative trends are noted. Central America shows much stronger responses than North 

America for P00 from June to September, where large increases can be seen, with responses 

bounded by large decreases over the Pacific Ocean. While the wet and dry seasons vary by 

country and are dependent on temperature anomalies in the east-equatorial Pacific and 

Tropical North Atlantic Oceans (Hidalgo et al., 2013), the strongest probability responses 

tend to fall in an individual country’s wet season. The responses suggest increased CDD 

alongside a reduced occurrence of wet days during these wet seasons. This agrees with the 

findings of Ortega et al. (2021) that decreases in overall precipitation are projected by the 

end of the 21st century in this region. 
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 Figure 6.1 – Monthly change in P11 (a) and P00 (b) per degree GMST 

increase, diagnosed using pooled IPSL-CM6A-LR historical, SSP3-7.0 and 

SSP5-8.5. 

a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) 
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 Spatial responses of P11 to increasing GMST vary across Asia. Across Saudi Arabia, 

Yemen and Oman, strong seasonal changes dominate with large increases in P11 from May 

to November. This indicates decreased CDD  in what is generally already considered a dry 

season in this region (Almazroui et al., 2012). Decreases in P11 are present during the wet 

season, though with much smaller magnitude than the increases during the dry season. P00 

responses to increasing GMST across this region are smaller in magnitude. Some decreases 

are noted in the dry months, though with much less spatial coverage and magnitude than 

changes in P11. Still, this remains an annual increase in wet-day frequency. During monsoon 

seasons (for example, JJA in India and July and August over East Asia), the response of the 

transition probabilities show little change. This is likely due to monsoon dynamics 

governing the precipitation patterns, resulting in precipitation occurrence on most days. 

Across south and central Asia, the magnitude of P11 response is close to zero, though some 

increases in east India can be seen. Increases in P00 are present across the Himalayan 

Mountain range, while regions just south see little change. While not as strong, this is also 

notable with P11 responses, where across the Himalayas there are decreases in P11 and 

increases further south. These responses suggest an increased dry-day frequency alongside 

increased CDD. Responses across north and west China and east Russia change seasonally 

and reiterate patterns across similar latitudes in North America. P11 increases with GMST in 

winter (generally November to March) and decreases in the summer months (April to 

October). As with P11, P00 patterns tend to reiterate changes at similar latitudes in North 

America. However, patterns in north-east China and Korea differ, with P11 decreasing in 

winter and increasing in summer (though with less magnitude and sparser spatial coverage), 

alongside increases in P00 large in magnitude during the winter months. Altogether, this 

suggests less frequent precipitation, with longer dry spells, during the winter season.  

 Magnitudes of the probability responses are large across much of Africa. Decreasing 

P11 responses, large in magnitude, are present across much of west Africa from May to 

August. Contrasting the decreases in P11, large increases in P00 are present from July to 

September. This strongly supports the findings of Klutse et al. (2018), wherein 80% of 

studied RCMs agreed with increasing CDD and decreasing maximum consecutive wet days 

per year (CWD) with rising GMST over the Guinea Coast region (Klutse et al., 2018). 

Decreasing P11 probability is also seen in southern Africa (June through October) though 

with smaller magnitude, with increases in P00 present during several months. This agrees 

with studies into increased drought and CDD risk in the southern African region (Almazroui 

et al., 2021). Conversely, strong increases in P11 are present across central and east Africa 
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from August to January, covering large spatial areas in SON.  The combination of changes 

across central Africa and the Sahara suggests an increased wet-day frequency. In the east 

African region, the response of P00 to GMST increase is weaker, though decreases are 

present in SON. This indicates an increased number of wet days, implying wetter weather 

(in the absence of the wet-day parameters). These responses reiterate the general consensus 

of a wetter east Africa as a function of climate change (Cooper et al., 2008).  

 In general, as GMST increases, IPSL-CM6A-LR projects a slightly higher frequency 

of wet days, with longer wet spells in the winter (DJF) over much of northern Europe. The 

opposite is true in the summer (JJA); a higher frequency of dry days, with longer dry spells, 

is indicated. Central Europe shows approximately constant P11 responses, with spatial 

responses across Europe showing some similarities to North American responses at similar 

latitudes. During the winter months, northern Eurasia shows widespread increases, though 

small in magnitude, in P11. As with north Canada, these responses reduce in magnitude and 

coverage until summer, where most of Europe and Eurasia experiences decreases in P11.  P00 

responses also show strong seasonal variations. Winter months show spatially widespread 

decreases in P00, while the rest of the year shows increasing P00, with some very strong, 

localised responses in April, May, September and October over the Eurasian subarctic and 

wider, but more modest increases over the rest of the continent.  

 Responses across Oceania are smaller in magnitude than other regions. While much 

of Australia shows weak patterns, increasing P11 is noted in the east (New South Wales and 

Queensland) from November to March, with greatest magnitude in December and January. 

Decreases in P11 are present in several other months, with decreases found in south Australia, 

evident from July onwards, with very strong southern coastal decreases by October. P00 is 

less sensitive to increasing GMST with small magnitudes of change. The largest changes 

(decreases) are present in north Australia in December, January, and February. Slight 

increases are shown in south Australia from August to November, though with lesser 

magnitude. Responses over islands in Oceania are less defined.   
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6.1.3.2 WET-DAY GAMMA DISTRIBUTION PARAMETER 

RESPONSE TO CHANGING GMST 

 The wet-day gamma parameter responses are shown as fractional changes per degree 

warming, where a value of +0.5 indicates an increase of 50% of the original value per degree 

warming, i.e., for a shape parameter of 3 and a response of 0.5, the parameter following 1 

degree of warming becomes 4.5 (a 50% increase). Shape and scale parameter changes (per 

°C) have been capped at +/-1, and +/-0.5, respectively, for visualisation purposes (Figure 

6.2 and Figure 6.3). The first finding from these maps is that these patterns are spatially 

coherent. This indicates that the dependence of these parameters on GMST change can be 

diagnosed without being dominated by local scale noise and hence that the idea to pattern 

scale the parameters of the weather generator has merit. 

 While interpreting transition probability response to changing GMST is intuitive, 

inferring changes to the wet-day parameters is less straightforward. It is difficult to reach 

Figure 6.2 – Fractional change in wet-day shape parameter per degree GMST increase, 

diagnosed from IPSL-CM6A-LR historical, SSP3-7.0 and SSP5-8.5. 
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conclusions on changes to resultant wet-day gamma distributions through studying changes 

to one parameter alone, since unlike P11 and P00, shape and scale parameters are not 

independent of each other, each affecting the wet-day distribution’s properties. A change in 

the shape parameter will, instinctively, result in a distribution with a different shape; for 

example, a large increase in shape from an initial value of 1 will adjust the distribution from 

an exponential-type character towards a more bell-shaped function, with the breadth of all 

distributions (irrespective of shape) also determined by the scale parameter. A decrease in 

shape parameter indicates a more positive skew. Here, shape responses will be discussed in 

absence of any changes in the scale parameter. 

 Changes to the shape parameter (shown in Figure 6.2) are seemingly less affected by 

the seasons than the transition probabilities, with fewer spatial patterns of note. All months 

show slight fractional increases to the shape parameter over most land surface areas. Most 

regions do not show strong or seasonal changes to shape parameter response, with 

noteworthy exceptions in Africa and South America.  

 The shape parameter shows strong, seasonally changing responses in West and 

Central Africa, with spatially widespread responses from July to September. These large 

increases may result in a less skewed distribution in a warmer climate (e.g., a present-day 

climate with many low-precipitation days but occasional very wet days could move towards 

one with more consistent precipitation amounts), with the strongest responses coinciding 

with strong increasing (decreasing) P00 (P11) probability. This suggests large changes to daily 

precipitation in this region. However, the actual chance of very wet days also depends on 

the scale parameter and on the probability of wet days, both of which are also changing. 

Much of Saharan Africa shows no response to increasing GMST simply based on a limited 

sample of wet days per 30-year period available to calculate the parameters. Unlike 

transition probability response, South Africa shows seasonally consistent responses, small 

in magnitude. 

 While much of South America shows patterns that reflect the global, slight increases 

in wet-day shape parameter, stronger responses are present over the Amazon region from 

February to May, and southeast Brazil throughout the year.  These tend to be the locations 

that show the strongest transition probability responses. While several land areas show slight 

increases, Brazil sees slight decreases in shape parameter along the east coast in August, 

September and October. This indicates a move towards a more positively skewed, 

exponential-type distribution. 
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 Responses across North and Central America are approximately constant annually, 

with slight increases shown in most months and greatest magnitudes present in the high 

latitudes. Exceptions are noted across east USA from June to September, where slight 

decreases are present. Unlike the responses across Africa and South America, coherence 

with transition probability response is not noted. Much like the transition probability 

responses, patterns over Europe and most of Eurasia tend to reflect those in similar latitudes 

over North America.  

 For most months, Southeast Asia and India also show responses that reflect the 

patterns over most land surface areas. However, some localised, positive responses are 

present over Southeast Asia and India in several months, for example, August. While P11 is 

mostly constant with increasing GMST in these regions, P00 shows strong increases (over 

Burma, Thailand and South China). The combination of an increased chance of consecutive 

dry days, alongside a less skewed precipitation distribution, suggests changes to the resultant 

precipitation character of these regions, depending, of course, upon scale changes too. 

Responses over central and northern China usually follow patterns present in similar 

latitudes across North America and Europe, with increases to the shape parameter in most 

months. However, in July, August and September, large areas in the east show slight 

decreases to the shape parameter with increasing GMST. These months fall within China’s 

wet season (May to September), indicating large implications on the overall mean daily 

precipitation during these months. 
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Figure 6.3 – Fractional change in wet-day scale parameter per degree GMST increase, 

diagnosed from IPSL-CM6A-LR historical, SSP3-7.0 and SSP5-8.5.  

 Scale parameters show weaker responses to GMST increase than the shape 

parameters, this time with widespread, slight decreases. Regions that show the largest 

changes in shape parameter tend to also show the strongest scale parameter responses to 

GMST change, with more global seasonal changes (Figure 6.3). The scale parameter defines 

the horizontal and vertical scaling of the distribution, where in the absence of changes to the 

shape distribution, an increase indicates a stretching of the distribution, a shift towards larger 

precipitation amounts and greater variability. Conversely, a decrease indicates a shift 

towards smaller precipitation amounts, less variability and loads the distribution towards 

smaller precipitation amounts. 

 Parts of Africa again show the strongest seasonal changes to parameter response, 

especially in and to the south of the Sahel. From June to September, decreases in scale with 

increasing GMST are present across West and Central Africa. This coincides with the 

strongest increases of the shape parameter with increasing GMST. While the increasing 

shape parameter suggests a distribution with less exponential features (less positive 
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skewness) but also an increased mean and variance, it is accompanied by a decrease in scale 

which reduces the mean and variance (without changing the skewness) so that the net effect 

is hard to determine from the individual parameter changes. The varying wet-day parameter 

responses, alongside strong transition probability response, result in changes to the region 

that are not intuitive. This is unsurprising, as Cooper et al. (2008) note particular 

uncertainties with regards to precipitation projections in the West African region.  

 South America shows decreases in the scale parameter with increasing GMST in 

several months, present over Amazon and central Brazil from September to November. This 

coincides with the dry season in these regions, indicating a distribution that is loaded towards 

smaller precipitation amounts on the few wet days that do occur. Such a negative trend is 

additionally worrisome when considering these regions show strong P00 and P11 responses 

that indicate increasing dry day frequency. Conversely, slight increases in Chile and Peru 

are present in several months, indicating a shift of the distribution towards higher wet-day 

precipitation amounts.  

 While shape parameter response remained widely constant with increasing GMST 

and with positive magnitude across Central and North America, seasonally varying patterns 

are present with the scale response. Neutral responses are present from November to April 

with increases present in all other months, focussed on the east coast of the USA and 

appearing to peak in September. Unlike the patterns across Africa, coherence with transition 

probability response is not noted. Increases are present over Central America from June to 

August. In the absence of changes to the shape parameter, increases to the scale indicate 

increases to the mean and variance. 

 Shape parameter response to GMST over India and Southeast Asia shows slight 

increases, notably in August, with decreases in the scale parameter during July to September, 

indicating a shift of the wet-day precipitation distribution towards lighter precipitation 

amounts. Eastern China, once more, shows patterns of a different sign to elsewhere in 

Southeast Asia and India, with moderate increases visible predominantly from June to 

September and within China’s wet season. On account of the scale response, at least, a 

precipitation regime with a wider spread of values may be expected.  
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6.1.3.3 APPLICATION OF RESPONSES TO A STOCHASTIC 

WEATHER GENERATOR 

 To demonstrate the applicability of the response patterns to a stochastic weather 

generator, synthetic precipitation time series at two weather stations under different GWLs 

have been produced using perturbed parameters (following equations 6.7 and 6.8). 

Santarém, Brazil, and Reykjavik, Iceland have been chosen as case study locations for 

reasons provided in Section 6.1.2. Santarém sits at the confluence of the Tapajós and 

Amazon Rivers. A tropical monsoon climate, Santarém experiences similar temperatures 

throughout the year, with strongly defined wet (November through July) and dry (August 

through October) seasons. GCM-diagnosed responses at Santarém show generally 

increasing P00 and decreases in P11, the latter particularly pronounced in September and 

October. Reykjavik is located on the southwest coast of Iceland. A subpolar oceanic climate, 

Reykjavik too has defined wet and dry seasons, coinciding with the winter (DJF) and 

summer (JJA) months respectively. Transition probability responses at Reykjavik are 

weaker than Santarém, alongside year-round, slight increases to the shape parameter. Global 

Summary of the Day data, provided by the National Centers for Environmental Information 

(NCEI), have been used for Santarém (dataset identifier: NCEI DSI 3505, accessible from 

https://www.ncei.noaa.gov/access/metadata/landing-

page/bin/iso?id=gov.noaa.ncdc:C00516) and the European Climate Assessment & Dataset 

(ECAD) for Reykjavik (Klein Tank et al., 2002). Note that this section aims to demonstrate 

the applicability of the PS method to perturbing the parameters of a SWG and not in-depth 

analysis of the future climate at the two case study locations.  

 Observed parameters, 𝑃𝑂 and 𝑊𝑂, for each month have been calculated from the 

weather station records. A synthetic 100-year precipitation time series is first generated 

using the SWG configured with observed parameters directly from weather station 

observations. This is hereafter referred to as the “reference” period. The GCM grid cell that 

encompasses the geographical coordinates of each weather station has been used to 

determine 𝑎𝑃𝑥𝑦
 and 𝑎𝑊𝑥𝑦 . Parameters have been scaled using GMST increases (relative to 

the 1850-1900 mean) representing GWLs of 1.5, 2.0, and 4.0°C. The time periods covered 

by the observed data records used to estimate the reference SWG parameters differ between 

the two sites. The mean observed GMST anomaly using the HadCRUT5 dataset (Morice et 

al., 2021) relative to 1850-1900, are 0.78°C for the time period with observations at 

Santarém (1990 – 2020) and 0.56°C for the period with observations at Reykjavik (1970 – 

https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00516
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2020). Observed GMST anomalies have been calculated using the HadCRUT5 dataset 

(Morice et al., 2021). The difference between the observed GMST and each GWL is 

calculated and substituted into ∆𝑇 in equations 6.7 and 6.8 to determine 𝑃𝑇 and 𝑊𝑇 

respectively. Using the scaled parameters, further 100-year time series are produced for both 

stations.  

Figure 6.4 demonstrates the resultant transition probabilities for all months and the 

wet-day gamma distributions for April at Santarém following perturbation with the IPSL-

CM6A-LR response patterns. April has been provided as an example due to large changes 

in the scaled wet-day distribution. Perturbed transition probabilities show large increases to 

P00 from January to April, indicating increases to mean dry-spell length during these months. 

There are also large changes to distribution of precipitation amount at the GWLs in April. 

The shape parameter has increased from the reference period to a GWL  

(from 0.7 to 1.9) and is accompanied by a decrease in the scale (from 20.7 to 8.5). Such 

changes are reflected in the mean and variance. During the reference period, the mean wet-

day precipitation is 15.1mm/day with a standard deviation of 17.6mm/day. At GWL of 

4.0°C, the mean has increased to 16.4mm/day with a standard deviation of 11.8mm/day. 
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    Santarém shows large decreases in mean precipitation from January to April with 

increasing GMST (Figure 6.5), particularly beyond 2°C. In all other months, changes are 

minimal. Strong transition probability responses drive this decreased precipitation; the mean 

number of wet days per year decreases from 108.8 during the reference period to 75.0 by 

Figure 6.4 – Transition probabilities (top panel: blue lines scaled P11 orange lines 

scaled P00) and wet-day gamma distribution for April (bottom) at Santarém at 

different GWLs with shapes 0.7, 1.0, 1.2, and 1.9 and scales 20.7, 18.0, 16.1 and 8.5 

during the reference period and GWLs of 1.5, 2.0 and 4.0°C respectively.  
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4°C GWL. February, March and April show exceptionally strong increases in P00 (+10.3% 

and +15.7% per °C GMST increase respectively for March and April), relating to increases 

of 35.8% and 54.6% with respect to the reference period (see Figure 6.4). Large decreases 

in the mean number of wet days in April further reflect this increase; the reference period 

experiences an average of 20.8 wet days per month, whereas at a GWL of 4°C, the mean 

number of wet days is only 11.3. While the decreasing number of wet days in March and 

April are a primary driver for the decreases in mean precipitation by 4°C, at lower GWLs 

there are slight increases in mean wet-day precipitation during these months, reflected in the 

perturbed wet-day gamma distribution. An example is shown for April in Figure 6.4, where 

the mean has only increased by 1.3mm/day from the reference period to GWL 4.0°C. As the 

GMST increases, the distribution shows greater variability with higher values and less skew. 

At a GWL of 2°C (approximately 1.5°C warmer than the reference period), there are still 

19.0 wet days per April. This is only a slight decrease on the reference period’s 20.8 days. 

However, at 2°C, the mean wet-day precipitation has increased by 20%. This reflects the 

changes to the wet-day distribution and further, more pronounced changes occur under the 

4°C GWL. This results in small increases in monthly mean daily precipitation between the 

lower GWLs. At the 2°C GWL the distribution shows greater variability a higher mode 

(around 3mm/day). More pronounced changes in the distribution occur under the 4°C GWL, 

where the April mode rises to about 10mm/day. However, at this GWL in April, there are 

only 11.3 wet days per month, thus resulting in the large reductions in mean precipitation 

despite the changes to the wet-day distribution. 

 Changes to precipitation in March and April are in stark contrast with May (and 

indeed the remainder of most of the year), where the responses of transition probabilities 

and wet-day gamma distributions to changing GMST are close to zero, thus resulting in little 

change to the number of and precipitation on wet days. The reduction in precipitation at a 

GWL of 4°C for the first quarter of the year is shown to be distinct and agrees with those 

changes discussed in literature. For example, Sörensson et al. (2010) found increases to 

CDD, alongside significant decreases in winter (DJF) and spring (MAM) total precipitation 

in the Amazon basin. Averaging the generated precipitation over these seasons agrees with 

these findings. Ortega et al. (2021) note that, in this region, agreement amongst CMIP6 

models is only present during SON. This happens to coincide with the season showing the 

smallest changes at each GWL.   
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Figure 6.5 – Mean precipitation (mm/day) at Santarém (top) and Reykjavik (bottom), at 

different GWLs. Error bars show the standard error in the mean.  
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 Conversely, mean daily precipitation at Reykjavik is projected to increase sizeably 

in several months (especially September to December). The largest increases are present 

during the winter months, DJF (already the wettest season). In these months, increases of at 

least 14% in mean wet-day precipitation are present, with up to 21% in December. Alongside 

increases in mean precipitation, there are large changes to the variability over these months. 

Increases in mean precipitation are accompanied by an increase of 11.9% (averaged from 

September to December) in the standard deviation of daily precipitation, with the largest 

increase in December (15.5%). The total number of wet days per month is relatively 

unchanged (i.e., from 18.1 during the reference period to 18.4 at GWL 4°C) during these 

months. This change in variability is therefore solely from the changes to the wet-day 

precipitation distributions, and not the change in wet or dry day frequency. Changes in 

variability may therefore result in the number of very wet days, resulting in a potentially 

increased risk of extreme precipitation. This is a known result of warming GMST; as the 

atmosphere warms, the water holding capacity increases (Trenberth, 2011) resulting in 

larger rainfall events. 

 Changes to the mean precipitation and the number of wet days per month from May 

to July (the driest months) are much smaller. Figure 6.6 shows that the transition 

probabilities during these months are approximately constant. Changes to the distribution of 

wet-day precipitation are not large enough to affect the mean precipitation over these 

months. However, from January to April the probability of a dry day occurring is slightly 

increasing, with increases in P00 and decreases in P11. Despite this, the precipitation in 

January, March, and April remains fairly unchanged between the GWLs. This is due to 

changes in the wet-day gamma parameters. From January to May, the mean wet-day 

precipitation is projected to increase by an average of 11.9%. Therefore, despite decreases 

in the number of wet days per month, the precipitation that may be expected on any wet day 

during this period is larger. The percentage change is largest in February (15.7%) where the 

total precipitation increases at each GWL, despite the decreases to the wet-day frequency.  
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To further investigate the advantages of using a SWG when configured with 

parameters that are derived from observations and then scaled, as opposed to configuration 

with parameters that are diagnosed directly from GCM daily precipitation data (e.g., for 

reference period and then again for some future climate period), the existing Santarém data 

is compared with a new synthetic SWG series representing the latter approach. For this 

comparison, GCM daily precipitation data for the cell containing Santarem is extracted for 

the four IPSL-CM6A-LR SSP3-7.0 ensemble members. From these series, any simulated 

year where the GMST change (relative to the 1850 – 1900 mean) corresponds to 0.78 ∓ 

10% (the reference GWL) or 4°C ∓ 10% is identified and used to define two sets of SWG 

transition probabilities and wet-day gamma parameters (a reference set, and a GWL 4°C set). 

Using these parameters, two new batches of 100-years precipitation are generated via the 

SWG for the reference and warming period. These data are referred to as the “GCM-driven” 

data and are compared to the existing stochastically simulated Santarém data (shown in 

Figure 6.5, top panel) generated using observed parameters and the scaled-observed 

parameters (referred to here as “observation-driven”).   

 

Figure 6.6 – Transition probabilities (blue lines scaled P11, orange lines 

scaled P00) at Reykjavik under different GWLs. 
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Figure 6.7 – Mean daily precipitation from 100-year GCWG simulations using GCM-driven 

and observation-driven parameters for the reference period and a GWL of 4°C. 

 Through comparison of the reference periods, it is evident from Figure 6.7 that there 

are errors in modelling local climate using the GCM-driven precipitation. Observation-

driven precipitation peaks in March, with GCM-driven precipitation peaking later in April. 

GCM-driven precipitation underestimates the observed mean precipitation in March by 

21%, and, from August to November (the driest months), observed precipitation is 

overestimated by 35%. Furthermore, a shorter dry season and a wetter wet season are 

simulated by GCM-driven precipitation than observations suggest. Accurately depicting the 

wet and dry seasons, alongside the precipitation amounts, is crucial for water resourcing and 

management (for example). Comparing precipitation at 4°C demonstrates that general trends 

are reflected by both the GCM- and observation-driven precipitation time series. Wet 

seasons both show decreases in precipitation, with smaller changes during the dry season. 

The months with the largest decreases in the GCM-driven precipitation at the 4°C GWL also 

show the largest decreases in the observation-driven data. While most months of 

observation-driven data show changes in precipitation in the same direction as the GCM-

driven data, on occasion the direction of the change differs (e.g., during the dry season). 

However, some differences between the precipitation in the GCM-driven and observation-

driven data are not surprising, as scaling responses have been constructed using SSP5-8.5 

data alongside the SSP3-7.0 simulations that are shown here. Additionally, constraints 

associated with using a linear relationship to diagnose the scaling responses will, by 
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definition, not always precisely capture actual GCM-projected changes in precipitation 

character for some grid cells and months.  

 Time series stochastically generated using local-scale, observed parameters 

perturbed by area-averaged responses to GMST increase can be used to assess a range of 

impacts on precipitation character, including monthly totals, interannual variability, the 

distribution of wet- and dry-spell lengths and extreme indices, while reducing GCM-induced 

biases. It is important to note that different GCMs will likely produce differing responses of 

the parameters to increasing GMST, and the demonstrative analysis in this study uses just 

one GCM as an example. Through diagnosing similar response patterns from alternative 

GCMs, a wider range of realisations for specific global warming levels can be constructed 

to better explore and account for a range of uncertainties for consideration in robust 

adaptation plans.  

6.1.4 CONCLUSION 

 The applicability of the pattern scaling technique to the transition probabilities and 

wet-day gamma parameters of a stochastic weather generator have been demonstrated. The 

response of two transition probabilities, P11 and P00, and wet-day gamma distribution 

parameters to changing GMST have been diagnosed using four ensemble members each of 

historical, SSP3-7.0 and SSP5-8.5 simulations produced by IPSL-CM6A-LR. These scaling 

patterns have been diagnosed globally and have then been applied to two specific locations 

to illustrate the approach in full. Scaled responses have been used to perturb parameters 

calculated from weather station observations and hence generate 100 years of precipitation 

at Santarém, Brazil, and Reykjavik, Iceland, for a selection of GWLs. 

 Transition probability response generally agrees with wider studies, CMIP5, CMIP6, 

and downscaled projections. The response of the transition probabilities to changing GMST 

is seasonally varying, with the strongest land responses generally across Africa, South 

America and Southeast Asia. In the northern hemisphere, similar latitudes tend to show 

similar responses in magnitude, direction, and spatial coverage. This is most noticeable with 

P11 where winter months (DJF) show widespread increases with GMST, and summer months 

show prevalent decreases. The response of the wet-day gamma parameters to changing 

GMST are less intuitive to interpret, and in most locations, seasonally varying patterns are 

not present. However, once again, Africa and South America show the largest, seasonally 
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varying responses, indicating changes to the precipitation nature in these regions, in 

combination with strong transition probability response.  

 The effect of transition probability and wet-day gamma parameter responses to 

GMST increase have been demonstrated for two locations. Observed parameters at 

Santarém, Brazil and Reykjavik, Iceland, have been perturbed using local responses to 

increasing GMST to produce time series at three GWLs; 1.5, 2.0 and 4.0°C. Both locations 

show different responses to GMST increase. In Santarém, several months have very strong 

transition probability responses, associated with large decreases in wet-day frequency and 

increasing P00 in several months. Wet-day gamma parameter responses result in distributions 

with increased shape, and slight increases to mean daily precipitation in some months. In 

these same months (February, March and April for example), by 4°C, however, increases to 

P00 are so great that the number of wet days per month drops substantially, with simultaneous 

and large decreases in mean daily precipitation. Conversely, responses at Reykjavik show 

sizeable increases in mean daily precipitation during the wet season, though predominantly 

caused by changes to the wet-day gamma distributions. Transition probability response is 

weaker than at Santarém, with the largest differences in precipitation occurrence between 

the GWLs occurring during January to March. Despite decreases in the number of wet days, 

mean daily precipitation tends to remain unchanged, once again due to changes in the wet-

day parameters resulting in greater precipitation amounts on wet days.  

 Applying PS to a SWG utilises the advantages of both techniques and unifies them 

into a single methodology. PS provides a method for the construction of a wide range of 

climate scenarios to capture a range of uncertainties with computational efficiency. SWGs 

can produce several realisations of long, local-scale time series, that are suitable for impact 

assessments, and which can be statistically representative of the weather at the site used for 

calibration. This study has utilised parameter responses to GMST change to perturb 

observed parameters at Santarém and Reykjavik, generating synthetic data with reduced 

GCM-induced bias, at a local-scale more appropriate for impact assessors and as inputs to 

hydrological, agricultural, and ecological models, and with the potential to emulate 

scenarios, time periods, and GMST increases not simulated by GCMs.  
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6.2 RESPONSES FROM AN ADDITIONAL GCM – ACCESS-ESM1.5 

 The above manuscript (Section 6.1) outlines the methods for constructing transition 

probability and wet-day gamma parameter responses from increasing GMST using the 

IPSL-CM6A-LR GCM. To better appreciate inter-model uncertainties between response 

patterns, diagnosis of global parameter response patterns from a further GCM, ACCESS-

ESM1.5, will be performed. ACCESS-ESM1.5 has the same nominal resolution as IPSL-

CM6A-LR but a lower sensitivity to climate forcing. 

Figure 6.8 – The GMST anomalies relative to 1850-1900 of the two GCMs (ACCESS-

ESM1.5 and IPSL-CM6A-LR) used to diagnose GCWG precipitation parameter response to 

GMST change. 

 A range of GMST anomalies by 2100 is projected by the two GCMs, shown in Figure 

6.8. CMIP6 models show stronger future global warming trends than CMIP5 projections 

due to increased climate sensitivity values. The GMST increases projected by ACCESS-

ESM1.5 fall just above the best estimates for SSP3-7.0 and SSP5-8.5 (3.6 and 4.4°C 

respectively) (IPCC, 2021a). Osborn et al. (2018) found that global temperature increases 

greater than 3°C have very small errors in diagnosing response patterns across most global 

land areas (with exceptions in Northern Hemisphere summers). This is due to the externally 

forced signal becoming much stronger compared to the unforced internal variability. Both 
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ACCESS-ESM1.5 and IPSL-CM6A-LR GCMs project GMST increases greater than 3°C 

for each scenario used in the construction of response patterns.  

 Responses will be diagnosed from ACCESS-ESM1.5 precipitation projections 

analogously to IPSL-CM6A-LR using equations 6.2 and 6.6. Four realisations each of the 

concatenated historical+SSP3-7.0 and historical+SSP5-8.5 daily precipitation time series 

will be pooled, resulting in eight temporally consistent time series from 1850-2100. As 

before, the full historical+SSP3-7.0 time series will be used in the regression, but only 2000-

2100 from historical+SSP5-8.5 to avoid double counting the historical part. ACCESS-

ESM1.5 results will be discussed and compared to the IPSL-CM6A-LR patterns presented 

earlier in Section 6.1.3. 

6.2.1 TRANSITION PROBABILITY RESPONSE  

 Much like IPSL-CM6A-LR, ACCESS-ESM1.5 P11 shows strong, seasonally varying 

responses to GMST across north-eastern South America, South American monsoon regions, 

and Canada (Figure 6.9). The magnitude of P00 response to increasing GMST varies to IPSL-

CM6A-LR’s across Central America, the Arabian Peninsula, the USA and Europe, though 

generally agreeing with the direction of change, with larger differences over east Africa, 

Southeast Asia, and Australia. 

 South America once more shows some of the strongest transition probability 

responses to increasing GMST. Responses across the Amazon and monsoon regions of 

South America are generally similar to IPSL-CM6A-LR, and overall increases in dry-day 

frequency and dry-spell length are once more projected across north, east, and monsoon 

regions, showing decreasing P11 and increasing P00. This further supports several studies 

pertaining to increased CDD (Alexander et al., 2006; Kim et al., 2020; Marengo et al., 2009) 

across these regions. A feature that is not present in IPSL-CM6A-LR diagnosed patterns but 

is present here, is a strong increase in P00 adjacent to and across the Andes Mountain range 

in most months. The greatest magnitudes are present in the Dry (mid) and Tropical 

(northwest) Andes. P11 changes are less prominent in this area, with slight negative trends in 

the Wet (south) Andes. Projected precipitation changes in the eastern slope of and equatorial 

Andes are generally poorly agreed upon between models (Ortega et al., 2021). This is 

reflected by IPSL-CM6A-LR showing decreases in P00 across this region, while, depending 

on month, ACCESS-ESM1.5 shows strong increases to no response at all. P11 remains 

approximately constant with increasing GMST from November to March. The strongest 
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decreasing responses of P11 to increasing GMST are present in July to October, during the 

dry season. Increases in P00 are found in this region all year round, with varying magnitudes. 

These combined responses will ultimately lead to an annual increase in dry days alongside 

increased CDD, particularly during the dry season.  

 While IPSL-CM6A-LR shows responses that vary in magnitude across North 

America, ACCESS-ESM1.5 shows more uniform, strong responses (though generally in the 

same direction as IPSL-CM6A-LR). During the spring (MAM) and summer (JJA), 

responses across central Canada show strong decreases (increases) in P11 (P00). This suggests 

summers with more frequent and longer dry spells. In the winter months (DJF), P11 is 

constant with GMST, though some increasing trends are noted across north Canada and 

Alaska. Alongside increases in P11, decreases in P00 are prevalent in these areas. As the 

seasons change from spring (MAM) to summer (JJA), the spatial area in north Canada with 

increasing (decreasing) P11 (P00) begins to reduce until by summer, little area shows these 

increases (decreases). This suggests north Canada and Alaska may expect winter months 

with more frequent, longer wet spells. The contiguous USA shows widespread, though 

smaller in magnitude relative to much of Canada, decreases in P11 during most months.  P00 

response patterns mirror this; large regions (focussed on the centre and west) of the 

contiguous USA show increases in P00, with smaller areas showing small decreases in the 

east.  
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 Figure 6.9 – Change in P11 (a) and P00 (b) per change degree GMST increase, 

diagnosed from ACCESS-ESM1.5historical, SSP3-7.0 and SSP5-8.5. 

a) 
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 P11 response patterns produced by ACCESS-ESM1.5 over Africa are similar to 

IPSL-CM6A-LR, showing widespread increases in the east and decreases in the south. 

Differences between GCM responses exist mainly regarding the season of change; in SON, 

ACCESS-ESM1.5 shows little response over east Africa, with the largest increases in DJF. 

IPSL-CM6A-LR instead shows much larger spatial coverage, with increases present in DJF, 

and less so in SON. While IPSL-CM6A-LR shows decreases in P11 over north Africa, neither 

GCM indicates a sizeable increase in CDD over north and Saharan Africa. This is not 

altogether surprising, as it is known that CMIP6 models tend to underestimate CDD in this 

region (Kim et al., 2020). Seasonally varying decreases in P11 are present in west Africa, 

with similar spatial patterns to IPSL-CM6A-LR, though lesser in magnitude. However, in 

this region ACCESS-ESM1.5 diagnosed P00 patterns are generally very similar to IPSL-

CM6A-LR. An overall increase in P00 and a decrease in P11 once more suggests more 

frequent, longer dry spells in this region, potentially leading to an intensification of CDD 

over west Africa, and therefore agreeing with IPSL-CM6A-LR responses. 

 Slight increases in P11 are present year-round across most of India. ACCESS-

ESM1.5 shows strong patterns surrounding the Himalayas for P00. While this location tends 

to show similar responses to IPSL-CM6A-LR, the increases east of the Himalayas and 

decreases just southwest are much stronger and are present most of the year. Like IPSL-

CM6A-LR, patterns across north and west China and east Russia are consistent with similar 

latitudes in Europe and North America for both P11 and P00. Conversely, large differences 

are noted across Southeast Asia, where much stronger increases in P00 than IPSL-CM6A-

LR are present for much more of the year. Furthermore, in this region there are large 

decreases in P11 from June to November. Combined with year-round increases in P00 (also 

peaking in magnitude from June to November), large increases in the length and frequency 

of dry spells is suggested, agreeing closer with projections from a range of RCMs predicting 

increases in CDD and decreases in CWD over several regions in Southeast Asia than IPSL-

CM6A-LR responses (Ge et al., 2019).    

 It is also clear from Figure 6.1 –  Figure 6.9 that differences in the way the GCMs 

resolve large topographical features affects the resultant pattern, evidenced by patterns over 

the Andes and the Himalayas. In transition probability responses produced by ACCESS-

ESM1.5, there are clear spatial patterns that represent the aforementioned mountain ranges. 

This is much less prevalent in IPSL-CM6A-LR, and in the responses of the wet-day 

parameters. 
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 A further, major difference between the response patterns diagnosed from IPSL-

CM6A-LR and ACCESS-ESM1.5 is present over Australia, where much stronger patterns 

are visible for the latter GCM. In all seasons, P11 decreases with increasing GMST, though 

with varying magnitudes. Patterns are strongest from May through October. The P00 

response patterns, while not as strong in magnitude or spatial coverage, show increases 

concentrated between May and October. New South Wales in particular sees the strongest 

decreases and increases in P11 and P00 respectively. This supports CMIP5 projected drying 

trends in east Australia (Dai et al., 2018). 

 It is known that inter-model uncertainty is much greater than the uncertainty within 

each GCM. This is particularly true for modelling changes in precipitation, and, in a recent 

study, Kim et al. (2020) note that large inter-model spread exists regarding the simulation 

of extreme precipitation. It is therefore not expected that each GCM will produce responses 

that are identical. Inter-model spread is reflected by some of the differences presented in the 

response patterns shown here. While similarities exist between the GCMs in the responses 

of P11 and P00 to changing GMST over much of Africa, exact geographical location, season, 

and magnitude of change varies between each model. For example, in SON, little change in 

P11 is projected over east Africa by ACCESS-ESM1.5, with increases in DJF. Conversely, 

IPSL-CM6A-LR shows increasing P11 responses that are very large in magnitude and spatial 

coverage in SON, with little change in DJF. IPSL-CM6A-LR and ACCESS-ESM1.5 

transition probability responses alone do not accurately reflect projected increased 

aridification and desertification in the arid and semiarid regions of east Africa (Haile et al., 

2020). This is not an issue solely present in CMIP6 projections; Cooper et al. (2008) found 

that in a comparison of 21 CMIP5 GCMs, models do not necessarily agree on positive or 

negative changes in precipitation trends, with discrepancies across African regions. 

 Despite some differences between the GCM diagnosed responses, there are several 

regions where there is good agreement. This tends to be where the magnitude of the pattern 

is strong or covers large geographical areas. For example, North America and Europe show 

similar responses with seasonal differences in P11 and P00 reiterated by locations with similar 

latitudes. There is generally good agreement between the GCMs that South America will 

experience a widespread overall decrease in wet days, with increased dry spell length and 

frequency, though with varying amounts of spatial coverage. Both ACCESS-ESM1.5 and 

IPSL-CM6A-LR show similar patterns over South American monsoon regions, southern 

Africa, and Southeast Asia, where there are projected increases to the intensification of 

consecutive dry days. Both GCMs predicts large increases in P00 across South American 
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monsoon regions and southern Africa, though with largest magnitude shown in ACCESS-

ESM1.5 over Southeast Asia. However, Almazroui et al. (2021) state that “CMIP6 models 

tend to overestimate the CDD over some regions” (page 493), including several locations 

that the two GCMs produce consistent increasing P00 responses, including north and central 

east Africa and Amazonia, reiterated by the findings of Kim et al. (2020). 

6.2.2 WET-DAY GAMMA PARAMETER RESPONSE  

 Although transition probability responses diagnosed by ACCESS-ESM1.5 and 

IPSL-CM6A-LR are relatively similar, the same is not true regarding the parameters of the 

daily wet-day gamma distributions. This highlights some of the large inter-model 

differences regarding the modelling of precipitation. It is not altogether surprising that there 

are significant differences in the wet-day parameter responses to GMST increase; it is known 

that there is much uncertainty in precipitation projections (Kim et al., 2020; Torres and 

Marengo, 2013). Section 6.1.3.2 demonstrated that it is challenging to make assumptions on 

the changes to the resultant daily precipitation distribution through the study of changing 

parameters alone, though a comparison between the modelling centres’ response patterns 

will be discussed.  
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While IPSL-CM6A-LR shows generally increasing shape parameters over most 

land-surface areas, ACCESS-ESM1.5 instead shows slight decreases (Figure 6.10). 

Responses are also smaller in magnitude than IPSL-CM6A-LR. Note the maximum and 

minimum responses here have been capped at +0.5 and -0.5, respectively. Despite 

differences in sign, similarities are found regarding locations that show the strongest 

magnitudes to changing GMST. South America and Africa show seasonally changing 

responses with large magnitudes, while North America, Europe, Central and East Asia show 

generally seasonally consistent responses. Much like the transition probability patterns, 

locations with similar latitudes in the northern hemisphere show similar responses to GMST 

increase. Strongest decreases to the shape parameter are present during winter (DJF). 

 From November to February, spatially dense decreases to the shape parameter, large 

in magnitude, are present across Central Africa. It is in these months that no responses are 

diagnosed from IPSL-CM6A-LR due to too few wet days in the simulations. This suggests 

ACCESS-ESM1.5 altogether projects more precipitation over Central Africa than IPSL-

Figure 6.10 – Fractional change in wet-day shape parameter per degree GMST 

increase, diagnosed from ACCESS-ESM1.5 historical, SSP3-7.0 and SSP5-8.5. 



224 
 
 

CM6A-LR. Here, there is little coherence with the transition probability response (where 

there is little change to P00, with slight increases to P11).  It is also these locations that in July 

to September, IPSL-CM6A-LR shows spatially widespread increases to the shape 

parameter, large in magnitude. In August and September, north-east Africa and the Arabian 

Peninsula also show strong decreases. These decreases, in absence of scale responses, 

indicate a potential decrease in variability and mean of wet-day precipitation amounts 

alongside greater skew.  

 Much of southern South America show responses that reflect trends shown over most 

other land-surface areas, with slight decreases to the shape parameter in several months. It 

is once again over the Amazon regions and central South America where responses deviate 

most from other land-surface areas. In these regions, large decreases in shape are present 

during most months. However, notable increases are also present from July to September in 

eastern Brazil. Though the spatial coverage is small, the magnitude is large. While the 

resolution of the topography of the Andes evidently affected transition probability response, 

there appears to be less influence on shape response.  

 Further locations with noteworthy differences to larger scale geographic trends 

include India, north-east Russia and, to a lesser degree, Southeast Asia. The monsoon and 

rainy seasons in India typically fall between June and September. In May and June, increases 

to the shape parameter are large in magnitude and cover much of east and central India, 

suggesting changes to the variability and a decrease in skew of wet-day precipitation at the 

start of the monsoon season. Increases are also present in north-east Russia in January to 

March. These regions also show strong transition probability response patterns in all months 

generally indicating a move towards more wet days (with increasing P11 and decreasing P00). 

In combination with the increasing shape parameter, this may suggest wet days with less 

consistent precipitation could be expected. Finally, Southeast Asia tends to show decreases 

that are larger in magnitude than most other land-surface areas in Asia from July to 

September (and to a lesser degree, most other months), indicating a more skewed 

distribution. Conversely, increases are present in Indonesia and Papua New Guinea from 

March to May. 
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Figure 6.11 – Fractional change in wet-day scale parameter per degree GMST increase, 

diagnosed from ACCESS-ESM1.5 historical, SSP3-7.0 and SSP5-8.5. 

 ACCESS-ESM1.5 diagnosed wet-day scale parameter responses show greater 

magnitude than the shape parameter, and the analogous scale responses diagnosed from 

IPSL-CM6A-LR – note the colourbar has instead been capped at +1 and -1 for maximum 

and minimum responses, respectively. Seasonal changes are present in the scale response 

similar to the shape response. ACCESS-ESM1.5 generally shows a widening of the wet-day 

precipitation distribution and a move towards larger precipitation values, with increases in 

scale parameter over most land-surface areas, including North America, Europe, and Asia, 

where increases are present regardless of season, with magnitudes once again peaking during 

DJF. Africa and South America once more shown the strongest responses with the most 

seasonal variation. 

 Australia shows some spatial and seasonal variability in scale parameter response, 

though with generally small magnitude. These responses are not dissimilar from the scale 

responses diagnosed from IPSL-CM6A-LR, where changes small in magnitude are present 
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in several months.  From February to May, an increase in the scale parameter with GMST 

is present in most regions, indicating a widening of the distribution (similar to several land-

surface areas). In May, the east coast shows decreases, which cover an increasingly large 

area up until October. Unlike IPSL-CM6A-LR, ACCESS-ESM1.5 also shows large 

increases in dry day frequency and spell length, with P00 and P11 responses large in 

magnitude on the east coast from June to October. Changes in the shape are typically small 

in magnitude, therefore indicating that alongside general drying, when precipitation does 

occur during these months, smaller amounts with less variability could be expected, further 

exacerbating drying.  

 Africa shows much variation in scale parameter response that does not appear to be 

related to the shape parameter responses. From April to June, most of the continent shows 

slight increases in scale. This is in stark contrast to the IPSL-CM6A-LR diagnosed 

responses, where these months show the strongest, decreasing responses over much of 

Central Africa. ACCESS-ESM1.5 instead shows increases large in magnitude that are 

present in several other months. From December to March, Central and east Africa show 

large increases, indicating a shift of the distribution towards larger precipitation values and 

perhaps greater variability (when considered in absence of shape changes). Of course, in this 

region changes are present in both the shape and scale parameters, leading to uncertainty 

regarding the resultant changes to the wet-day precipitation distribution.  

 The scale parameter response varies less so than the shape parameter over South 

America. Western South America generally shows increases in all months, while the east 

typically shows decreases. The eastern decreases in scale parameter cover the largest spatial 

area in August and September. This coincides with the largest increases to the shape 

parameter. This may indicate a wet-day distribution with less skew alongside an increased 

load towards smaller precipitation values. However, it is difficult to ascertain changes to the 

variability, as increasing shape implies greater variability, while decreasing scale results in 

the opposite. Transition probability responses indicate a large decrease in the total number 

of wet days (see Figure 6.9), altogether suggesting large changes in the monthly distributions 

of daily precipitation in this region.   

 North America, Europe and most of Asia show similar spatial and seasonal trends in 

the scale response as the shape response, though here with widespread increases (as opposed 

to decreases in shape). Scale response over India once more show differences to overall 

trends in the region, with concentrated decreases in the parameter in May and June in the 
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east. This coincides with large increases in the scale parameter, once again indicating sizable 

changes in daily precipitation around the start of the monsoon season. Changes in 

precipitation during the Indian monsoon season have been established by Loo et al. (2015), 

wherein widespread decreases are noted across central and southern India. Conversely, 

increased in precipitation is noted in the northeast. The patterns in Figure 6.11 also make a 

distinction between these regions, with the scale responses differing in sign between these 

areas. 

6.3 APPLICATION OF IPSL-CM6A-LR AND ACCESS-ESM1.5 

DIAGNOSED RESPONSES TO OBSERVED DATA 

 Section 6.1.3.3 demonstrated the application of the scaled response patterns to 

observed parameters at Santarém, Brazil, and Reykjavik, Iceland. To further validate the 

application of the technique, compare results from different GCMs, and thus better 

demonstrate inter-model uncertainties, the responses shown in Figure 6.2 and Figure 6.9 will 

also be applied to observational data at Santarém and Reykjavik. The precipitation produced 

by parameters scaled by IPSL-CM6A-LR diagnosed responses will be the same as in Section 

6.1.3.3 for Santarém and Reykjavik, though here ACCESS-ESM1.5 diagnosed responses 

will also be presented. Alongside the reasons outlined in Section 6.1.3.3 for the choice of 

Santarém and Reykjavik as case studies, the sites are categorised as tropical and temperate, 

respectively. Chapter 3 determined that the GCWG shows weakest performance in tropical 

regimes and strongest performance in temperate and continental classifications. Therefore, 

Santarém and Reykjavik have been chosen to also demonstrate the technique in regions with 

different GCWG skill. Figure 6.12 demonstrates the locations of both sites. 
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 100 years of daily precipitation has been generated at each site using parameters 

calculated from the observed records. Parameters are then perturbed using the transition 

probability and wet-day gamma parameter responses diagnosed from IPSL-CM6A-LR and 

ACCESS-ESM1.5 (presented in Figures 6.2, 6.3, 6.9 and 6.10) following equations 6.7 and 

6.8. ∆𝑇 has been substituted such that the altered parameters are representative of GWLs of 

2.0 and 4.0°C. Precipitation at GWLs of only 2.0 and 4.0°C (excluding 1.5°C) have been 

produced here for ease of comparison in Figure 6.13 and Figure 6.14. Once again, it is 

important to note that the observed precipitation records for Santarém and Reykjavik do not 

correspond to the same GMST anomalies relative to the 1850-1900 mean. The mean 

observed GMST anomaly has been averaged over years in the observed record using the 

HadCRUT5 dataset (Morice et al., 2021). To reiterate, at Santarém, this is 0.78°C (from 

1990 – 2020) and at Reykjavik, the averaged observed GMST anomaly for its reference 

period is 0.56°C (from 1970 – 2020). 100 years of daily precipitation time series at Santarém 

and Reykjavik have already been produced using parameters scaled by the IPSL-CM6A-LR 

responses. Figure 6.13 and 6.14 show the previously presented results alongside 100 years 

of precipitation generated by parameters scaled by ACCESS-ESM1.5. Precipitation 

Figure 6.12 – ACCESS-ESM1.5 diagnosed P00 response to increasing GMST in February, 

showing the locations of Santarém and Reykjavik. February has been provided as an 

example based on strong responses. 
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produced using parameters perturbed by IPSL-CM6A-LR and ACCESS-ESM1.5 diagnosed 

responses will be referred to as “IPSL-scaled” and “ACCESS-scaled” for simplicity. 

 

Figure 6.13 – Mean daily precipitation in Santarém during the reference period (black 

squares), and at the 2.0 and 4.0°C GWLs produced using ACCESS-ESM1.5 (coloured 

circles) and IPSL-CM6A-LR (coloured stars) precipitation parameter responses. Error bars 

are the standard error in the mean, hidden by the symbols in some cases where standard 

error is small. 

 At GWL 4.0°C, IPSL-scaled and ACCESS-scaled precipitation both show large 

decreases relative to the reference period during the wet season at Santarém (January to 

May). ACCESS-scaled precipitation shows an approximately linear decrease in 

precipitation between the GWLs in all months, and in all but one month (April), decreases 

exceed those in IPSL-scaled precipitation. IPSL-scaled precipitation, however, shows small 

increases in March and April at the 2.0°C GWL followed by decreases at 4.0°C The 

differences in their respective wet-day gamma parameter responses are primarily 

responsible for the conflicting changes at 2.0°C. This is unsurprising; ACCESS-ESM1.5 

shows approximately constant shape response with decreasing scale, resulting in decreasing 

precipitation. Conversely, the interactions between shape, scale, and precipitation 

occurrence result in slight increases to the IPSL-scaled precipitation (discussed in more 

detail in Section 6.1.3.3). Further differences are noted during the dry season. ACCESS-
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scaled precipitation clearly depicts a dry season that is at least one month longer, starting in 

July (instead of August) where, at 4.0°C, there is less precipitation than in any dry-season 

month during the reference period. Instead, IPSL-scaled precipitation is approximately 

constant (showing marginal increases) during November and December. ACCESS-scaled 

precipitation continues to show large decreases, arguably extending the dry season beyond 

October and into December.  

Precipitation changes are smaller in magnitude (and hence severity) at Reykjavik 

than at Santarém. ACCESS- and IPSL-scaled precipitation both agree with the direction of 

precipitation change in several months. Both GCM-scaled time series project the largest 

changes in precipitation during Reykjavik’s wettest months (September through March). 

There are several instances (in both ACCESS- and IPSL-scaled precipitation) where 

increases (or decreases) are present at 2.0°C followed by a reversal at 4.0°C. ACCESS-

scaled examples include January April, May, and December. IPSL-scaled examples include 

April and July. This is likely caused by interactions between the changing number of wet 

days per month alongside sizeable changes in the wet-day precipitation distributions, 

Figure 6.14 – Mean daily precipitation in Reykjavik during the reference period (black 

squares), and at the 2.0 and 4.0°C GWLs produced using ACCESS-ESM1.5 (circles) and 

IPSL-CM6A-LR (stars) precipitation parameter responses. Error bars are the standard 

error in the mean, hidden by the symbols in some cases where standard error is small. 
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wherein at smaller GMST increases, either changes to the frequency of wet-day occurrence 

or changes to the wet-day distribution dominate the resultant changes in precipitation. 

Precipitation in November exemplifies this. While transition probability response is 

generally similar between the two GCMs, differences in their wet-day gamma-parameter 

responses are present. For example, IPSL-CM6A-LR shows a 7% increase in shape per 

degree GMST increase with approximately constant scale. ACCESS-ESM1.5 instead shows 

a decrease of 3% in the shape parameter, with an increase of 6% in the scale. These responses 

ultimately result in an ACCESS-scaled wet-day distribution that produces slightly smaller 

precipitation values, while the IPSL-scaled wet-day distribution shows much more 

variability with higher values.  

 To gain some insight into the differences between ACCESS- and IPSL-scaled 

precipitation extremes, changes to the 99th percentile of dry-spell length and “50-year” 

precipitation events will be assessed (changes to the 99th percentile of wet-spell length are 

much smaller than dry-spell length under each GWL and are therefore not shown here). 

Table 6.1 – 99th percentile in dry-spell length distribution under different GWLs. GWLs 

0.78°C and 0.56°C correspond to the reference periods at Santarém and Reykjavik, 

respectively. 

   DRY SPELL 99TH PERCENTILE (DAYS) 

 GWL (°C) IPSL-CM6A-

LR 

ACCESS 

 0.78 33.0 33.0 

Santarém 2.00 40.8 64.0 

4.00 63.4 137.0 

 0.56 11.0 11.0 

Reykjavik 2.00 12.0 12.0 

4.00 12.0 14.0 

 

At Santarém, each GCM projects large increases in the 99th percentile of dry-spell 

length. This is unsurprising due to the strong decreasing and increasing P11 and P00 trends 

respectively in both GCMs. ACCESS-scaled precipitation shows an increase in the 99th 

percentile of dry spell corresponding to an increase of approximately four times the 

reference period. Large increases in the 99th percentile of dry-spell length in the ACCESS-

scaled precipitation are also unsurprising due to the addition of 3 months to the dry season 
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(Figure 6.13). While this is an exceptionally large increase, it is known that CMIP6 models 

overestimate consecutive dry days over much of South America, including Santarém’s 

location (Almazroui et al., 2021; Kim et al., 2020), and that perhaps in this instance, the 

precipitation generated by IPSL-CM6A-LR may be a better reflection of future trends. 

Reykjavik shows smaller changes to the 99th percentile of dry-spell length, though this is 

expected. Both GCMs project changes over Iceland that are much smaller in magnitude than 

Brazil, with relatively small changes to the daily precipitation.  

 In Chapter 4, Section 4.1.2, the return periods of extreme events were studied at five 

weather stations (including Reykjavik). It was noted that the GCWG (much like many 

stochastic weather generators) tends to underestimate the frequency of extreme 

precipitation, wherein return periods for 10-year and 50-year extreme events calculated 

directly from the observed data are largely underestimated (shown in Chapter 4, Section 

4.1.2). Instead, a comparison between the generated return periods at different GWLs 

relative to the reference period was advised to reduce GCWG errors in simulating such 

extremes. To demonstrate this, design values for 50-year return periods are calculated 

directly from the observed weather station data at both Santarém and Reykjavik (following 

the same equations 4.5 – 4.7). Using 500 years of generated data (with unscaled parameters, 

calculated from the observed record), the generated return period corresponding to the 

observed 50-year design value is calculated from the reference run. The return periods for 

the observed 50-year design value are then calculated for GWLs 2.0 and 4.0°C during the 

wettest month of the observed record. Despite significant underestimates in the generated 

return periods (i.e., the reference period), events will still be referred to as a “50-year” event. 

The return periods at different GWLs can then be compared to the generated return period 

for the reference period to establish a multiplication factor (i.e., the return period at each 

GWL divided by the generated reference return period). This multiplication factor can then 

be used to estimate the future frequency of such an event (i.e., multiplication factor 

multiplied by 50-years).  

 

 

 

 



233 
 
 

Table 6.2 – Return periods for “50-year” extreme precipitation generated using observed 

parameters (reference period) and parameters scaled for GWLs of 2.0 and 4.0° C during 

the wettest month of the year. Design values are calculated from the observed record. Return 

periods are calculated from the generated data corresponding to the relevant design value. 

GCWG “50-year” Return Period is the “50-year” return period calculated from the 

stochastically simulated reference run using the observed design value.  

    RETURN PERIOD (YEARS) 

Location Design 

Value 

(mm) 

GCWG “50-

year” Return 

Period (yrs) 

GCM GWL 2.0°C GWL 4.0°C 

Santarém 158.2 111 IPSL-CM6A-LR 200 1000+ 

 ACCESS-ESM1.5 250 1000+ 

Reykjavik 35.6 140 IPSL-CM6A-LR 101 74 

 ACCESS-ESM1.5 67 45 

  

 Santarém sees a large increase in the return periods of observed “50-year” 

precipitation, resulting in a decreased frequency of such occurrences. This is unsurprising 

due to the large increases in dry-spell length, caused by large increases in P00. While both 

GCMs predict at least a tenfold increase to the return period of “50-year” extreme 

precipitation by 4.0°C (and thus a decrease in the frequency of occurrence), this varies at 

2.0°C, wherein IPSL-scaled precipitation shows an increased return period of 1.8 times the 

reference period, and ACCESS-scaled 2.25. While P00 response is similar between the two 

GCMs, the magnitude of the P11 response is more varied. It is evident from Figure 6.1 that 

IPSL-CM6A-LR projects weaker and less spatially widespread P11 responses than 

ACCESS-ESM1.5 over much of South America. This results in a P11 response of only -

0.96%/°C under IPSL-CM6A-LR (in February) where ACCESS-ESM1.5 has a response of 

-3.2%/°C.  

 Conversely, in Reykjavik, the return period for extreme precipitation decreases 

under both GCMs, resulting in greater frequency of “50-year” precipitation, though with 

large deviation between the GCMs. A decrease by a factor of 3.1 has occurred from the 

reference period to a GWL of 4.0°C under ACCESS-ESM1.5. This multiplication factor, 

when applied to the observed data (i.e., not to the generated GCWG-reference data) would 

suggest a 50-year flood occurring instead every 16 years. It is interesting that the return 
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period under ACCESS-ESM1.5 shows a greater decrease in return period than IPSL-CM6A-

LR. From Figure 6.14 alone, it is clear that IPSL-scaled precipitation generally shows larger 

increases than ACCESS-scaled. Despite this, larger decreases in P11 are diagnosed by IPSL-

CM6A-LR than ACCESS-ESM1.5 in February. This suggests that there will likely be longer 

wet-spells in the ACCESS-scaled precipitation than IPSL-scaled, perhaps contributing to 

the larger increases to the occurrence of “50-year” precipitation. 

6.4 CHAPTER 6 SUMMARY 

 This chapter introduces the pattern scaling technique to the input parameters of the 

GCWG, utilising the advantages of both PS and SWGs. SWGs are an ideal tool for 

producing long, temporally consistent time series for a suite of weather variables. They are 

commonly used to produce high-quality data as an input for impact assessments in several 

fields, including hydrology, agriculture, and ecology. Capable of producing very long time 

series with computational efficacy, SWGs are also ideal for robustly assessing extremes at 

a specified GWL. Although a widely used statistical downscaling technique, SWGs can only 

produce time series corresponding to climate scenarios and time periods that GCMs have 

simulated and from which changes in the key parameter values can be determined. The few 

scenarios GCMs have simulated alone cannot be used to fully address climate uncertainty. 

Herein lies the gap that this chapter (and Chapter 7) has addressed. 

PS is a computationally efficient technique that can be used to emulate a range of 

climate scenarios and time periods, though typically only changes in mean climate have been 

studied, generally over monthly, seasonal, or annual temporal scales. This chapter instead 

applies PS to daily precipitation statistics. The principles of PS have been applied to the 

input parameters of a SWG (here, the GCWG), including the transition probabilities (P00 

and P11) and wet-day shape and scale parameters. This provides a technique that not only 

emulates changes in mean local-scale climate at specified GWLs, but also better represents 

changes to local-scale variability, therefore allowing more robust estimates regarding the 

changing risk of extremes. A proposed manuscript for publication in Climatic Change 

detailing the responses of the GCWG parameters (transition probabilities and wet-day 

gamma parameters) diagnosed from the IPSL-CM6A-LR GCM and subsequent application 

to weather station data at Santarém, Brazil, and Reykjavik, Iceland has been included. The 

responses of the GCWG parameters have additionally been diagnosed from the ACCESS-

ESM1.5 GCM to gain insight into the inter-model uncertainties in stochastic weather 

generator response patterns. 
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 There are several similarities between the GCM-diagnosed transition probability 

response patterns. Similarities primarily exist in locations with responses large in magnitude 

or spatial area, resulting in agreement over much of North America, Europe (where 

responses are large in geographic coverage) and South America (where responses are strong 

in magnitude). In locations where similar transition probability responses are present, trends 

generally agree with projections in literature. Several similarities exist regarding the 

geographic location of strong shape and scale responses between the two GCMs, though 

oftentimes with opposing magnitudes. It is known that differences between the GCMs 

themselves are the largest cause of uncertainties in the diagnosis of response patterns. This 

is evidenced by discrepancies in the wet-day parameter responses, and transition probability 

response over Australia, southeast Asia, and east Africa.  

 Daily precipitation time series have been produced for Santarém, Brazil and 

Reykjavik, Iceland, using responses diagnosed from the two GCMs for GWLs of 2.0 and 

4.0°C. This has demonstrated the application of the pattern scaling technique through 

perturbing local-scale parameters (calculated directly from observational records) by the 

area-averaged relationships to increasing GMST diagnosed from the GCMs. Stochastic 

weather generators can produce long records at a specified GWL, allowing robust 

calculation of the risk of extreme events. This has been demonstrated here; the 99th percentile 

of dry-spell length, and changes to the return period of a 50-year extreme precipitation have 

both been calculated from a reference period and at the two GWLs.  

It is of course exceptionally important that there are robust methods for simulating 

future precipitation for a range of climate scenarios to better understand uncertainties, 

especially considering the known inter-model differences in GCM precipitation projections. 

To reiterate, the advantages of both stochastic weather generators and pattern scaling have 

been utilised here. Long, daily time series can be produced at a specified GWL, 

incorporating changes to both the mean and variability at a local scale, suitable for use in 

impact assessments or as an input to hydrological models. This has avoided GCM-induced 

bias in local-scale simulations whilst providing a method of robustly assessing the risk of 

extreme events at different GWLs.  This method of producing local scale time series has 

advantages over several traditional pattern scaling techniques due to the inclusion of changes 

in the variance through the scaling of the wet-day gamma parameters on daily temporal 

scales.  
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7 PATTERN SCALING THE SECONDARY 

VARIABLE WEATHER GENERATOR 

PARAMETERS 

 Chapter 6 has demonstrated the application of the pattern scaling (PS) technique to 

the precipitation parameters (transition probabilities and wet-day gamma parameters) of the 

Globally Calibrated stochastic Weather Generator (GCWG) developed in Chapters 3 to 5. 

While future changes to precipitation are exceptionally important to consider with regards 

to the assessment of impacts which a changing climate may have on the hydrological cycle, 

water resource management, and to the frequency and severity of extreme precipitation, 

considering changes in the distribution of maximum and minimum daily temperatures is also 

of great value. Changes to the maximum or minimum temperature may have sizeable 

impacts on human comfort and mortality, crop yields, and the exacerbation of the conditions 

required for drought or wildfire ignition through evapotranspiration (Li et al., 2009; Luber 

and McGeehin, 2008; Seneviratne et al., 2021; Stott et al., 2004). This chapter is analogous 

to Chapter 6, though instead applying PS to a selection of GCWG temperature parameters 

(introduced in Chapter 4). 

 In the GCWG, temperature is considered a secondary variable and is generated 

following the simulation of a synthetic precipitation time series. To recap, observed 

minimum and maximum temperatures (𝑇𝑥 and 𝑇𝑛, respectively) are transformed into a 

residual series using means and standard deviations that have been calculated bimonthly 

(i.e., from days 1-15 for the first half of the month, and days 16 onwards for the second half 

of the month) and conditioned on precipitation transition state. Precipitation transition state 

(or precipitation status) refers to the precipitation on the day of the temperature measurement 

and the preceding day, with one of four states possible: WW, WD, DW, or DD (where, for 

example, WD refers to a dry day preceded by a wet day). This results in the calculation of 8 

means and standard deviations per month. A linear regression model with equations that are 

dependent on the precipitation transition state on a given day is used to generate a residual 

series of 𝑇𝑥 and 𝑇𝑛. Following the transformation, regression coefficients are fitted monthly 

for each precipitation state, resulting in a total of 4 regression equations per month. 

Predictors in the linear model are also dependent on the precipitation state (see equations 

4.9 – 4.12, Chapter 4). The residual series is then generated using the synthetic precipitation 

time series also produced by the GCWG. Residuals are converted back into temperature 
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values using the corresponding observed mean and standard deviation for the precipitation 

status and day of the month.  

 Of these various parameters (means and standard deviations of 𝑇𝑥 and 𝑇𝑛, together 

with the regression coefficients that link the temperature residual series to the predictors), it 

is the conditional, bimonthly means and standard deviations in 𝑇𝑥 and 𝑇𝑛 that will be scaled 

with increasing global mean surface temperature (GMST). Regression coefficients will not 

be scaled as a function of GMST change and will therefore be assumed to remain constant 

regardless of GWL. There is little literature assessing whether the intervariable correlations 

between temperature and precipitation will scale linearly (or change at all) as a function of 

GMST, and therefore is beyond the scope of this research. However, it is known that 

temperature changes scale more linearly with GMST change than precipitation patterns 

(Tebaldi and Arblaster, 2014), partly due to a smaller component of natural variability that 

affects the estimates of the forced signal of temperature change compared to precipitation. 

However, as with precipitation scaling, temperature is usually scaled over larger temporal 

scales, for example monthly, seasonally, or annually. Here, daily statistics are scaled whilst 

additionally incorporating conditioning on precipitation status.   

The changes in local-scale temperature parameters are assumed to be reasonably 

represented by changes in General Circulation Model (GCM) grid-scale temperature. GCM 

grid-scale responses of the bimonthly mean and standard deviations in daily 𝑇𝑥 and 𝑇𝑛, 

conditioned on precipitation status, to changing GMST will be diagnosed analogously to the 

transition probability response. The changes to a bimonthly mean or standard deviation, 𝑆, 

in 𝑇𝑥 and 𝑇𝑛 at a GCM grid-cell with latitude and longitude coordinates 𝑥 and 𝑦 will be 

regressed using linear least squares regression against the change in GMST anomaly 

(relative to 1850-1900), such that  

𝑆𝑥𝑦𝑛 − 𝑆𝑥𝑦,𝑛=0 = 𝑎𝑆𝑥𝑦
(𝑇𝑛 − 𝑇𝑛=0) + 𝑐𝑆𝑥𝑦

 

where 𝑛 is any 30-year window and with 𝑛 = 0  referring to the first 30-year window used 

to calculate parameters (1850-1880). Advantages of using linear least squares regression 

instead of alternative methods (such as the time-slice method) are given in Section 6.1.2, 

though in short, regression methods reduce the impact of noise caused by internal variability 

relative to the alternative time-slice approach and effectively utilise the full simulated time 

series. The gradients of the regressions, 𝑎𝑆𝑥𝑦
 and the intercept, 𝑐𝑆𝑥𝑦

 will differ for each grid-

(7.1) 



238 
 
 

cell. The gradients will be plotted on a map to create the resultant spatial response pattern 

for each mean and standard deviation (i.e., 8 per month).  

 A similar issue to calculating the gamma parameters is present here. In some half-

months, there may be no recorded temperatures for a given transition state. For example, in 

a given half-month there may be no wet days following dry days, resulting in no data for the 

DW transition state. While no shape or scale parameters were estimated for similar 

occurrences in Chapter 6, here the temperature sample size correction process (defined in 

Chapter 4, Figure 4.5) will be used to estimate a temperature corresponding to the half-

month and transition state using a minimum sample size of 25 daily values. This increases 

the computational time required significantly, and as such only responses for GCM grid-

cells with a land-surface area equalling 25% or more will be determined. Due to the added 

computational complexity required in determining bimonthly temperature means and 

standard deviations that are conditioned on the precipitation status, only one GCM has been 

used to construct temperature parameter response patterns to provide a prototype to 

demonstrate the approach. Furthermore, instead of calculating temperature parameters over 

30-year periods shifted in steps of 5 years, steps of 10 years were used. This is also to 

compromise between reducing the computational time required to diagnose the response and 

ensuring a suitable signal-to-noise ratio.  

 Only ACCESS-ESM1.5 will be used to diagnose the response of  means and standard 

deviations in 𝑇𝑥 and 𝑇𝑛 to GMST change (Ziehn et al., 2020). While this will not provide an 

insight into inter-model uncertainties associated with temperature projections, there is 

generally greater agreement regarding the resultant temperature response patterns than 

precipitation responses (Tebaldi and Arblaster, 2014). As in Chapter 6, ScenarioMIP SSP5-

8.5 and SSP3-7.0 and CMIP6 historical projections have been used to diagnose parameter 

response, with corresponding realisations of historical and ScenarioMIP simulations 

concatenated. Concatenated historical and SSP3-7.0 and SSP5-8.5 simulations will be 

referred to as historical+SSP3-7.0 and historical+SSP5-8.5 respectively. Due to time 

constraints, only two realisations each of historical+SSP5-8.5 (r1 and r2) and 

historical+SSP3-7.0 (r3 and r4) have been used to diagnose response patterns, resulting in 

four (as opposed to eight) pooled time series. Corresponding historical+SSP5-8.5 and 

historical+SSP3-7.0 ensemble members for precipitation must be used to determine the 

precipitation status of a given day. Strong forcing scenarios have been used once again to 

ensure a robust signal-to-noise ratio and to increase accuracy though interpolating scenarios 

as opposed to extrapolating. While the use of only four pooled scenarios (as opposed to the 
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eight used in Chapter 6) may reduce the signal-to-noise ratio and potentially obscure some 

of the climate change signal from internal variability, these errors are less pronounced in 

comparison to precipitation projections.  

 Regression coefficients will be assumed to remain constant with changing GMST, 

and only the bimonthly means in maximum and minimum temperature will be scaled with 

GMST. Responses will once again be used to perturb parameters calculated directly from 

observations, this time additively, where the new mean or standard deviation, 𝑆𝑇 , following 

a GMST of ∆𝑇 relative to the observed period is equal to  

𝑆𝑇 = 𝑆𝑂 + 𝑎𝑆𝑥𝑦
 ∆𝑇  

where 𝑆𝑂 is the parameter calculated from the observed (local-scale) record. Perturbed 

bimonthly means and standard deviations can hence be used to produce synthetic time series 

at different global warming levels (GWLs) using the corresponding precipitation time series 

produced by the shape, scale, and transition probabilities that have been analogously scaled 

by the ACCESS-ESM1.5 diagnosed precipitation parameter responses. This will provide 

local-scale time series that maintain intervariable correlations while avoiding GCM induced 

errors in simulating climate at a high resolution. 

 In this chapter, GCM grid-scale bimonthly mean and standard deviation 𝑇𝑥 and 𝑇𝑛 

global responses to increasing GMST will be presented, conditioned on the precipitation 

status of the day. ACCESS-ESM15 diagnosed precipitation (see Chapter 6, Section 6.3) and 

temperature parameter responses will hence be used to perturb observed parameters at 

Santarém, Brazil, and Reykjavik, Iceland to produce daily 𝑇𝑥 and 𝑇𝑛 time series at GWLs of 

1.5, 2.0 and 4.0°C. 

7.1 SECONDARY VARIABLE RESPONSES 

 The response of bimonthly temperature means and standard deviations used to 

convert observed temperatures to a residual series (and hence from a generated residual 

series to temperature values) have been diagnosed using the ACCESS-ESM1.5 GCM. 

Means and standard deviations in 𝑇𝑥 and 𝑇𝑛  have been calculated for the first and second 

half of each calendar month, considering four precipitation transition states: DD, WD, DW, 

and WW. Seasons are referred to by their months, where SON refers to September, October 

and November, DJF December, January, February, MAM March, April, May, and JJA June, 

July, August. Though responses have been determined bimonthly, for concision and to better 

(7.2) 
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demonstrate seasonal changes, the responses have been averaged over SON, DJF, MAM 

and JJA. This corresponds to an average of 6 responses (first and second half of the month 

for each of the three months) averaged per season and per precipitation transition state. 

 Table 7.1 – Global land and annual average grid-cell mean change (°C) per degree GMST 

increase (°C) (in units of °C /°C) on days with precipitation transition states DD, DW, WD 

and WW (here the response has been averaged using the responses from both the first and 

second half of a month). 

 MEAN 

Precipitation 

Status 

𝑻𝒙 𝑻𝒏 

DD 1.42 3.71 

WD 1.33 3.56 

DW 1.30 3.31 

WW 1.22 2.94 

 

Mean 𝑇𝑥 and 𝑇𝑛 responses over all land-surface areas have been averaged for each 

precipitation status, with the averaged responses shown in Table 7.1.When averaged over 

all land-surface areas, grid cell increases in 𝑇𝑥 and 𝑇𝑛 are larger than the rate of GMST 

increase. It is virtually certain that warming over land exceeds ocean areas, resulting in 

warming rates that exceed the GMST increase (Lee et al., 2021). It is also evident that grid 

cell temperature increase on dry days exceeds increases on wet days and that the daily 

minimum temperatures are rising at a quicker rate than the daily maximums. This is an 

expected result; it is widely known that night-time temperatures (where daily minima 

typically occur) have been increasing at a greater rate (approximately double) than day time 

maximums over land-surface areas (Alexander et al., 2006; Salinger, 2005). This is thought 

to be caused by increased levels of mean daily cloud cover that dampen daytime warming 

relative to night-time (Cox et al., 2020). ACCESS-ESM1.5 diagnosed responses 

approximately reiterate this, with minimum daily temperatures warming at a rate between 

2.3 and 2.7 times quicker than maxima (depending on precipitation transition state). 

7.1.1 DAILY MAXIMUM MEAN TEMPERATURE RESPONSE 

The response of GCM grid-scale mean daily maximum temperature to increasing 

GMST has been diagnosed from the ACCESS-ESM1.5 GCM. In Figure 7.1 and Figure 7.2 
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responses have been capped at -1°C and 5°C per degree GMST (units hereafter referred to 

as °C/°C) increase for ease of viewing, though in some locations the responses may be 

greater. Mean 𝑇𝑥  responses vary substantially across the globe, though perhaps with less 

spatial variability than precipitation. Exceptionally strong responses are present in South 

America, and over high-latitudes in North America and Eurasia, with several other land-

surface areas showing regional mean 𝑇𝑥  increases that are larger than 1°C/°C, including 

Australia, northern and southern Africa, southern Europe, the Arabian Peninsula, and India. 

While not specifically considering daily maximum temperatures, a similar global pattern is 

shown in Chapter 4 of the IPCC WGI, Figure 4.31, at different levels of global warming, 

where North American and Eurasian high-latitudes, Amazonian South America, central 

Eurasia and northern and southern Africa show the strongest warming (Lee et al., 2021). 

Patterns are generally similar between the precipitation states, with similarities 

predominantly present on dry days (DD and WD, Figure 7.1) or wet days (DW and WW, 

Figure 7.2). Areas that show strong patterns will be discussed in turn.  

In northern Eurasia, increases in mean 𝑇𝑥  that far exceed 1°C/°C are geographically 

widespread for each precipitation status, with the strongest responses in the highest latitudes. 

Differences in response are small between precipitation transition states, with the strongest 

responses for all states occurring in the north during the autumn months (SON). Though 

slightly smaller in magnitude, spatially widespread increases that far exceed 1°C/°C are 

present in north and northeast Eurasia throughout all other seasons. Responses over central 

Asia are geographically extensive during summer (JJA) for all precipitation statuses. DD 

days show smaller increases during winter, while all other precipitation statuses show 

slightly stronger patterns in all months except December and January. In central and 

southern Europe, mean 𝑇𝑥 responses are closer to 1°C/°C for many months of the year. 

However, during the summer (JJA), all precipitation statuses show strong positive 

responses, indicating a large rise in mean 𝑇𝑥  that is generally independent of precipitation 

status. Therefore, regardless of any projected changes in precipitation, it is likely that the 

greatest warming over the Mediterranean region may be experienced in the summer. This is 

in agreement with the findings of Lionello and Scarascia (2018), who note larger increases 

in 𝑇𝑥 during the summer months than the winter months, when more surplus energy is 

partitioned into sensible heat transfer. 
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Subarctic land surface areas show strong responses to GMST increase regardless of 

precipitation occurrence or continent (i.e., both Eurasia and North America), most prominent 

in SON and DJF (with strongest magnitude and spatial coverage in January and February). 

These responses are unsurprising due to polar amplification, a known phenomenon of 

anthropogenic climate change that results in larger changes to the surface temperature of the 

high latitudes than the global average (Lee et al., 2021). Several feedback mechanisms are 

present in the high latitudes, including the surface albedo, lapse rate, and Planck feedbacks 

Figure 7.1 – Change in mean maximum daily temperature (°C) per degree GMST 

increase(°C) seasonally averaged using all bimonthly means within each season on DD 

days (left) and WD days (right). Colour bar is in units of °C /°C. 
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(Smith et al., 2019). While these mechanisms are present at other latitudes, the mechanisms 

in combination in relation to other latitudes is largely responsible for polar amplification. 

Lapse rate is responsible for negative feedback in lower latitudes and positive feedbacks 

over the high latitudes (during SON and DJF months), thus intensifying polar amplification. 

Positive lapse rate feedback arises when the surface warms at a greater rate than the 

atmosphere, resulting in decreased cooling from long-wave radiation emitted to space 

(Boeke et al., 2021). Planck feedback is the rate at which the loss of infrared energy per unit 

of vertically uniform warming of the surface and troposphere is increasing (Cronin, 2020). 

While Planck feedback is negative everywhere, the effect is smaller at the poles, thus 

reducing the cooling experienced at these high latitudes relative to other latitudes. Finally, 

with decreasing sea ice coverage as the planet warms, surface albedo at the poles contributes 

to positive feedback. The strongest mean 𝑇𝑥 responses over the subarctic regions also 

typically coincide with the lowest sea ice cover (usually mid-September) (Belchansky et al., 

2004; Serreze and Meier, 2019). This may accelerate the rate of sea ice melt further or 

increase the length of the melt season. These mechanisms are clearly represented by a strong 

polar response that is presented in these responses, and features relating to polar 

amplification will continue to be present throughout the global patterns that are presented in 

this chapter.  
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South America shows strong, spatially dense increases in mean 𝑇𝑥 per degree GMST 

increase regardless of precipitation status. The strongest responses tend to fall on any dry 

day, where mean 𝑇𝑥 increase exceeds the GMST increase substantially in several months 

over the Amazon and South American monsoon regions. Increases in DD temperature are 

particularly alarming when considered alongside the increasing responses of P00 in Section 

6 and align with the studies of Vogel et al. (2020), who demonstrated large increases in the 

frequency of concurrent hot and dry extremes in the Northeast Brazil and Amazon rainforest 

regions. This also aligns with several other studies, projecting large increases in the 

Figure 7.2 – Change in mean maximum daily temperature (°C) per degree GMST 

increase(°C) seasonally averaged using all bimonthly means within each season on DW 

days (left) and WW days (right). Colour bar is in units of °C /°C. 
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occurrence of extremely hot days and heatwaves (Marengo et al., 2009; Vincent et al., 2005). 

Though large increases are present on DD days in all months, the temperature on WD days 

shows greater increases during the dry season (August to November). The mean maximum 

temperature on WW days shows a weaker response to GMST increase, with changes close 

to 1°C/°C in DJF and MAM, (though in particular, December, January, May and June). This 

is during the wet season over the Amazon rainforest. In combination with the increasing 

frequency of dry days and length of dry spells, it is likely that increases in mean 𝑇𝑥 may be 

dominated by the WD and DD day responses.  

While transition probability response across Africa indicated localised, seasonal 

changes to precipitation occurrence, mean 𝑇𝑥 responses are more geographically consistent 

across the continent. Regardless of precipitation status, responses below 1°C/°C frequently 

occur in several seasons, predominantly in December and January, with DD days showing 

the smallest increases in  𝑇𝑥 over the most months (October to January) across equatorial 

Africa. Regardless of strength of response or precipitation status, equatorial Africa shows 

weaker responses than the north and south. The spatial changes approximately resemble a 

distinction between African drylands (in the north and south) and non-drylands. The 

responses imply increased warming over the dryland regions. Responses in southern Africa 

are unsurprising as it is thought that warming is exacerbated due to strong soil-moisture-

temperature coupling (Gevaert et al., 2018; Lee et al., 2021). ACCESS-ESM1.5 diagnosed 

responses show large increases in P00 from June to September over southern Africa, 

suggesting increased drying with GMST increase. These conditions may lead to an increased 

risk of drought and may have negative implications on human health and agriculture.  

Further hotspots of large mean 𝑇𝑥  increase (that have not already been discussed) 

include Vietnam, Cambodia and Thailand. On DD and WD days, increases are strongest in 

August, with WW days showing the strongest responses in June, and DW days in June and 

July. These strong responses coincide with the start of the southwest summer monsoon 

season, where the probability of a wet days (WW or DW) will be higher than dry days. This 

suggests future warming will most likely follow the responses on wet days more closely 

than dry days.  
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7.1.2 DAILY MAXIMUM TEMPERATURE STANDARD DEVIATION 

RESPONSE 

 Regions that show the largest changes to mean 𝑇𝑥 typically also show strong daily 

standard deviation responses. Most notably, these areas include the Amazon and monsoon 

regions of South America and the high latitudes of North America and Eurasia. These 

regions also show seasonal fluctuations regarding spatial coverage, magnitude, and direction 

of the response. Strong responses are also noted across Africa and Australia. Responses 

shown have been capped at -0.5°C/°C and 0.5°C/°C change in standard deviation. Dry day 

(DD and WD) and wet day (DW and WW) responses show several similarities, usually only 

differing slightly regarding spatial coverage. For this reason, only the DD and WW 

responses have been included here, averaged seasonally (for similar reasoning as Section 

7.1.1). 

𝑇𝑥 standard deviation responses across Eurasia show large seasonal and spatial 

variations. There are sizeable seasonal differences in the responses across Europe, with large 

differences present on days with differing precipitation statuses. In southern and eastern 

Europe, the strongest responses are on DD days in SON and MAM (transition seasons), 

where widespread decreases in standard deviation are present. Conversely, there is little 

response on WW days during these months. Instead, increases on WW days are present in 

several other months, though with less spatial coverage and magnitude than DD responses, 

peaking in geographic coverage during the summer (JJA). On DD days, northern Europe 

and much of Russia show widespread decreases in several months, though strong increases 

are also noted in JJA. Summer changes coincide with strong increases to P00 and decreases 

in P11 (Figure 6.9) resulting in a drying of the region. This drying may therefore be 

responsible for the increases to the standard deviation; drier soils can reduce the buffering 

effect of heat going into evaporation rather than increasing the temperature, therefore 

resulting in a higher standard deviation than wetter soils. Responses on WW days reiterate 

DD decreases in December to March, followed by almost exclusively increasing responses 

present from June to September.  
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The largest standard deviation responses (decreases) coincide with the greatest 

increases to mean 𝑇𝑥 as a function of increasing GMST over most northern and high 

latitudes. Such responses indicate rapid warming in these latitudes with less daily variability. 

It should be noted that decreases in the standard deviation of these subarctic latitudes may 

be more pronounced due to the loss of sea-ice as a consequence of increased surface 

temperature, resulting in exposed ocean which in turn has a higher heat capacity than sea-

ice, therefore resulting in fewer fluctuations in daily temperature (Bathiany et al., 2018). 

These regions do however tend to show the greatest inter-model and inter-scenario 

Figure 7.3 – Change in standard deviation of daily maximum temperatures per 

degree GMST increase on (left) DD and (right) WW averaged seasonally. Colour 

bar units are °C /°C. 
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differences in regional temperature response (Herger et al., 2015; Tebaldi et al., 2021). Inter-

model differences are primarily caused by disagreements regarding the edges of sea ice 

retreat and inter-scenario differences due to differences in timings regarding persistent ice 

melt.  

 Though responses are shown seasonally, hotspots of strong standard deviation 

response are noted over Cambodia, Thailand and Vietnam for only a few months of the year 

(much like the mean 𝑇𝑥 response). On DD days, decreases in the standard deviation are 

present in June and July, followed by large increases in August (resulting in the net increase 

shown in Figure 7.3). On WW days, increases are present in June and July. These strong 

changes are once again during the monsoon season. Due to the responses falling during the 

monsoon season, the region tends to have many more wet days than dry days. Therefore, 

despite decreases to the standard deviation on DD days, it is likely that the standard deviation 

in 𝑇𝑥 will primarily show increases. This, in conjunction with the sizable mean 𝑇𝑥 increases, 

may result in a large increase in the number of extremely hot days and heatwaves due to 

greater variability. It is, however, important to note the transition probability responses in 

this region will also impact the future standard deviation in 𝑇𝑥. ACCESS-ESM1.5 diagnosed 

transition probability responses indicate increases in dry-day frequency from June to 

August. The resultant changes to 𝑇𝑥 standard deviation will therefore be dependent on the 

total number of wet or dry days.  

A range of responses are present over North America. In the high latitudes, decreases 

in standard deviation are widespread and large in magnitude on DD and WW days during 

the winter (DJF) and early spring (MAM) months. By summer (JJA), the wet-day responses 

across Canada almost exclusively show slight increases (with some exceptions in the 

northeast on DW days in August). Conversely, dry-day responses show greater variations 

regarding the direction of change, with both increases and decreases present across the high-

latitudes (most visible in SON). Transition probability responses in summer across these 

regions generally show a drying trend, with an increased frequency of dry days and increases 

in dry-spell length. Based on the variability of dry-day standard deviation responses, it is 

difficult to deduce the resultant risk of temperature extremes in this region from the response 

patterns alone. In comparison to Canada and the subarctic grid-cells, responses over the 

contiguous USA are relatively weak. The strongest changes are present in the north and the 

east coast, with occasional localised hotspots of strong response and few seasonal variations. 
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Bathiany et al. (2018) note that in a comparison of climate models, Amazonia 

showed exceptionally large increases to the annual 𝑇𝑥  standard deviation due to changes 

occurring in all seasons. This is loosely true for the ACCESS-ESM1.5 diagnosed responses. 

On DD days, increases to the standard deviation of 𝑇𝑥 are present over western Brazil (the 

Amazon region) bounded by the Andes Mountain range in Peru and Bolivia in all seasons. 

However, a region of decreasing standard deviation is present just to the east of the 

increasing response. Conversely, on WW days, these regions almost exclusively show 

increases to the standard deviation, with some exceptions to the east (that are slightly more 

present on DW days, not shown here). From December to May, the Amazon regions 

experience a wet season, meaning changes to the resultant distribution of 𝑇𝑥 may be 

impacted more by wet-day responses than those on dry days. However, it has been 

established that there will be an increase to the frequency of dry days and length of dry spells 

in this region, coinciding with some decreasing dry-day standard deviation responses. 

However, there are several regions where WW and DD responses show agreement in sign 

(increasing), and it can thus be expected that there will be sizeable increases to the variability 

of 𝑇𝑥 which, alongside large increases to mean 𝑇𝑥, may increase the risk of hot extremes. In 

regions where there are opposite signs of change on wet and dry days, changes to 

precipitation occurrence must also be considered. 

While the response of mean daily 𝑇𝑥  was weaker over Africa in comparison to other 

regions, concentrated geographical regions experience comparatively strong increases in the 

standard deviation. On DD days, responses are weak from January through to May, however 

in JJA, equatorial Africa shows a belt of increasing standard deviation, alongside increases 

along the north-western coast. This is also present on WD days, though perhaps with wider 

spatial coverage and more noise. Similar patterns are present on WW days, though increases 

continue into SON, also moving northward. Increases large in magnitude are present on the 

north coast from January to March (this is also the case for DW and, to a lesser extent, on 

WD days). Year-round increases are present in southern Africa on WW days, with increases 

smaller in magnitude present for all other precipitation statuses. Although mean 𝑇𝑥 responses 

were close to 1°C/°C GMST increase, increases in the standard deviation may result in a 

greater frequency of extremely hot days. Decreases are also present, with concentrated, 

localised spatial coverage over Liberia, Cote d’Ivoire and Ghana all year (mainly on DD 

days). 
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Mean 𝑇𝑥 response was fairly consistent over Australia (with magnitude consistently 

slightly larger than 1°C/°C), however, here there are seasonal and spatial changes to the 

standard deviation response. Most of the year, southern Australia shows increases in the 

standard deviation for each precipitation status resulting in an increased daily variability. 

Similarly, on WW days, increases cover most of the country from February to April. On DD 

days, it is primarily only the south that shows increases. The north shows decreases in SON 

on both DD and WW days, coinciding with the dry season. Although 𝑇𝑥 response shows 

fewer spatial patterns than other regions, on dry days northern Australia shows the strongest 

warming during these months. This suggests an overall hotter northern Australia, with less 

variation between daily 𝑇𝑥 values. 

7.1.3 DAILY MINIMUM MEAN TEMPERATURE RESPONSE 

The responses of the mean 𝑇𝑛 to GMST increase are presented here. Note a different 

scale for the changes to the means; regional responses have been capped at 1°C/°C to 

6°C/°C. As before, some locations may have responses that exceed 6°C, though for 

visualisation purposes these have been capped. The responses are generally larger in 

magnitude than those for mean 𝑇𝑥with less geographically concentrated patterns and greater 

spatial variation. Regions that experience the strongest 𝑇𝑥 response to GMST increase also 

tend to show the strongest 𝑇𝑛 response to GMST increase. These include Northern Canada, 

subarctic grid-cells, and much of South America. Responses over Europe and much of Asia 

also show seasonally varying strong responses. This is reflected by high correlation 

coefficients between the responses of mean 𝑇𝑥 and 𝑇𝑛 for each precipitation status, shown 

in Table 7.2 (with a mean correlation of 0.71). Strong responses will once again be discussed 

in turn. 
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Table 7.2 – Pearson’s correlation coefficient between mean 𝑇𝑥 and 𝑇𝑛 response. 

Correlations are calculated using the response of 𝑇𝑥 and 𝑇𝑛 means from the same grid 

cell. 

PRECIPITATION 

STATUS 

MEAN 𝑻𝒙 –  𝑻𝒏  

CORRELATION 

DD 0.68 

WD 0.64 

DW 0.73 

WW 0.82 

Mean 0.71 

 

While much of central Eurasia showed mean  𝑇𝑥 responses between 1°C/°C and 

3°C/°C, 𝑇𝑛 means show stronger responses of up to at least 6°C with large differences 

seasonally. This strong mean 𝑇𝑛 response is unsurprising; Alexander et al. (2006) found in 

a global comparison of observed changes to extreme indices, the largest annual change in 

extreme events corresponding to changes in minimum temperature is present over Eurasia. 

During spring (MAM) and summer (JJA) months, vast geographical regions show increases 

in 𝑇𝑛, peaking in magnitude during DJF (with slightly stronger responses on dry days than 

wet days). Based on the transition probability responses (Chapter 6, Figure 6.9), it is likely 

that the proportion of WW days in the future will decrease over central Eurasia, wherein 

overall wet day probability over much of this region is decreasing, particularly during MAM 

and JJA. This would lead to a higher proportion of DD and WD days, resulting in increases 

in mean 𝑇𝑛 that are more aligned with dry-day temperature responses. During the autumn 

(SON) and extending into the winter (DJF) months, much of Europe shows increases closer 

1°C/°C on dry days, while northeast Russia, east China and India all show stronger increases, 

with Russia showing the strongest increases in winter with increases of up to 6°C/°C 

regardless of precipitation state. Increases are present in all months and for each precipitation 

transition state in subarctic cells, demonstrating polar amplification once more. In central 

and Mediterranean Europe, the strongest responses are most prominent in autumn and 

summer months, with larger magnitudes than 𝑇𝑥. This once again implies greater warming 

during the summer months, however, in a comparison of CMIP5 projections, Lionello and 

Scarascia (2018) found greater increases in 𝑇𝑥than 𝑇𝑛, resulting in an increased diurnal 

temperature range over these regions. Responses diagnosed from CMIP6 ACCESS-ESM1.5 



252 
 
 

imply the opposite, perhaps highlighting the range of uncertainties associated within climate 

models themselves.   

North America shows a range of 𝑇𝑛 responses. In winter (DJF) the contiguous USA 

shows responses closer to 1°C/°C for all precipitation statuses. WW days perhaps show the 

strongest seasonal changes, with widespread strong increases from summer (JJA) through 

to autumn (SON). Other precipitation statuses also show an intensification of response 

during these seasons, though with less magnitude than on WW days.  Responses are stronger 

over Canada and once again, in the subarctic grid cells, than the contiguous USA, again 

Figure 7.4 – Change in mean minimum daily temperature (°C) per degree GMST 

increase(°C) seasonally averaged using all bimonthly means within each season on DD 

days (left) and WD days (right). Colour bar is in units of °C /°C. 
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demonstrating polar amplification, where increases reach up to 6°C/°C on DD, WD and DW 

days in all months except JJA. Responses are slightly weaker on WW days in this region. 

Northern Canada and subarctic grid-cells show seasonally varying transition probability 

responses, generally projecting increases to the frequency and length of wet spells during 

the winter (DJF) and conversely increases to the frequency and length of dry spells during 

the summer. Despite the strongest summer 𝑇𝑛 patterns occurring on WW days, it is 

increasingly likely that the DD and WD responses will have a greater effect on the resultant 

temperature distribution, resulting in lower increases.  

While the strongest response of mean 𝑇𝑥 to GMST increase on DD, WD, DW and 

WW days is concentrated over small spatial regions with large magnitude over South 

America, the strongest increases in mean 𝑇𝑛 tend to be smaller in magnitude but with greater 

geographic coverage. Responses are strong on any dry day (DD or WD) and most notable 

over Brazil from March to October, where there are increases in mean 𝑇𝑛 of approximately 

3 – 4°C/°C. Responses on WW days are widespread and strong from June to September, 

covering almost the entirety of the continent (except for southern Argentina and Chile). It is 

important to note that these strong responses occur during the region’s dry season, where 

there are usually few wet days. This may result in several months having calculated mean 

temperatures using various steps of the temperature correction sample size process, resulting 

in patterns that are closer in nature to previous months’ responses or the response on days 

with different precipitation status. The changes shown in Figure 7.4 and Figure 7.5 support 

the findings of Vincent et al. (2005), noting decreases in the diurnal temperature range from 

a selection of weather station observations in this region, caused by increases in 𝑇𝑛 that 

exceed increases in 𝑇𝑥. 

Across Africa, mean 𝑇𝑛 responses show similarities to mean 𝑇𝑥, with widely 

geographically coherent patterns. DD days once again show the weakest responses, though 

this time with greater magnitude than the patterns mean 𝑇𝑥. All precipitation statuses show 

the weakest responses in December, January and February, and once more there are stronger 

responses in the northern and southern regions (drylands) of the continent than equatorial 

Africa.  
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7.1.4 DAILY MINIMUM TEMPERATURE STANDARD DEVIATION 

RESPONSE 

Much like the stronger mean 𝑇𝑛 responses, 𝑇𝑛 daily standard deviations also show 

stronger responses to GMST increase than 𝑇𝑥 (shown in Figure 7.4 and Figure 7.5). Note 

the colour bar here has been capped at -0.75°C/°C and +0.75 °C/°C to capture the stronger 

responses (relative to 𝑇𝑥 standard deviation). However, much like the similarities between 

spatial patterns in mean 𝑇𝑥and 𝑇𝑛, there are also several similarities in the response of the 

𝑇𝑛 standard deviation to the standard deviation of 𝑇𝑥. These include strong decreasing 

Figure 7.5 – Change in mean minimum daily temperature (°C) per degree GMST 

increase(°C) seasonally averaged using all bimonthly means within each season on DW 

days (left) and WW days (right). Colour bar is in units of °C /°C. 
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responses over Canada and north Eurasia, alongside increases over South America. DD and 

WD and WW and DW also show similar responses to each other, so once more only the DD 

and WW responses will be shown here, averaged seasonally. 

Daily 𝑇𝑛 standard deviations across Eurasia again show exceptionally strong 

responses to GMST increase, varying seasonally. On wet days, decreases cover much of 

north and eastern Eurasia from autumn (SON) through to spring (MAM), peaking in 

coverage and magnitude in winter (DJF). Central Asia shows slight increases from March 

to September (though smaller in magnitude, and not shown in Figure 7.6 due averaging 

seasonally) while the geographical coverage of decreasing responses in the high latitudes 

diminishes in size.  South China particularly shows strong increases in standard deviation 

from DJF, and Vietnam, Cambodia and Thailand show similarly strong increases in JJA and 

early SON. The implications of an increasing standard deviation may result in a greater 

frequency of extremely high (and low) 𝑇𝑛, resulting in, perhaps, extremely hot (or cold) 

nights. However, due to the increasing mean 𝑇𝑛, it is unlikely that there will be a sizable 

increase in extremely cold nights, though considering the increases to the mean and standard 

deviation of 𝑇𝑛 in this region, alongside 𝑇𝑥 responses, may result in an increased occurrence 

of concurrent hot days and hot nights. The consecutive occurrence of extremely hot days 

and hot nights is widely used as a measure of extremely hot spells that are considered 

exceptionally dangerous for human health and have been used to explain heatwave mortality 

rates (Zhu et al., 2021). In a study of consecutive occurrence of hot days and hot nights 

(COH), Zhu et al. (2021) found that tropical regions (including Southeast Asia) can expect 

an increased frequency of COH under RCP8.5, supporting the conclusions made here. 

Across Europe, DD days show a generally similar pattern to north Eurasia, though with less 

geographically widespread decreases in the standard deviation from November to April. 

Instead, a concentrated region of large decrease is noted across central and eastern Europe 

from November to March. Both wet and dry-day responses are weaker over summer (JJA).  
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 North America shows two distinct patterns. Across the high latitudes, widespread 

decreases, large in magnitude, are present, with the greatest responses in winter (DJF) and 

the first few months of spring (MAM) on both wet and dry days. The responses here show 

decreased standard deviation in high-latitude grid-cells, perhaps once again resulting from 

loss of sea-ice (Bathiany et al., 2018). Conversely, across the contiguous USA (and in some 

months, southern Canada), responses indicating an increased standard deviation on dry days 

are present, primarily from November through to spring. This is also true for wet days, 

though with less magnitude. These months are typically the coldest in the USA and coincide 

Figure 7.6 – Change in standard deviation of daily minimum temperatures per 

degree GMST increase on (left) DD and (right) WW averaged seasonally. Colour 

bar units are °C /°C. 



257 
 
 

with only small changes to mean 𝑇𝑛, therefore there perhaps an increased risk of both 

extremely hot and, unlike previously where mean 𝑇𝑛 increases rapidly (e.g., southeast Asia), 

cold nights.  

  Once again there is a distinct pattern across Africa, wherein northern and southern 

African drylands show increases in several months, with equatorial and sub-Saharan Africa 

generally show little change. This is most prominent in the WW response patterns, where 

all seasons (except DJF) show widespread increases to the standard deviation. This may also 

indicate an increased frequency of exceptionally hot nights which, in conjunction with the 

large increases in 𝑇𝑥 standard deviation, may contribute to an increased frequency of COH.  

This agrees with the findings of Zhu et al. (2021), finding large increases in COH frequency 

over western Africa. An increased frequency of COH was also found over eastern Africa, 

though 𝑇𝑛  responses show smaller magnitudes than in 𝑇𝑥 here. 

While the standard deviation of 𝑇𝑥  responses in Amazonian South America showed 

both increases and decreases, here the 𝑇𝑛 standard deviation responses only show increases 

over these regions, alongside most of Brazil. Increases are present in all months and for all 

precipitation statuses. Responses are less geographically concentrated than the analogous 𝑇𝑥 

standard deviation responses and seemingly have greater spatial coverage on wet days. 

Despite increases to mean 𝑇𝑛, large increases in the standard deviation may cause a greater 

number of cold nights. Alongside a potentially decreasing diurnal range (through the faster 

warming of 𝑇𝑛 than 𝑇𝑥) the Amazon Basin region may also experience a similar increase in 

COH as Southeast Asia. Once again, with increasing 𝑇𝑛 mean and standard deviation, it is 

unlikely that there will be a large increase in extremely cold nights however there may be 

an increased frequency of extremely hot nights. In combination with the large increases to 

the 𝑇𝑥 mean and standard deviation, the region is at risk of greater COH frequency. This is 

once again supported by Zhu et al. (2021), who note strong increases to COH frequency also 

occurring in the Amazon basin.  

7.2 APPLICATION OF THE RESPONSES TO A STOCHASTIC 

WEATHER GENERATOR 

 For consistency with Chapter 6, Section 6.3, observed weather at Santarém, Brazil 

and Reykjavik, Iceland, will be used to demonstrate the application of the temperature 

response patterns to the stochastic generation of data using the GCWG. Santarém is a 

tropical location (like Key West, Florida and Brasília, Brazil, used in previous chapters in 
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the validation of the GCWG) with exceptionally strong regional temperature responses to 

GMST increase. Reykjavik has a temperate climate, with temperature responses that are 

somewhat affected by polar amplification. The GCWG has shown consistently strong 

performance in temperate regimes, with slightly weaker performance for tropical climates. 

Sites in each of these regimes have been chosen to demonstrate the applicability of PS at 

sites where the GCWG typically shows stronger and slightly weaker (though still with good 

accuracy) performance.  

 Bimonthly temperature parameters must first be calculated from the observed 

records. Parameters can then be scaled using the responses presented in Section 7.1 

following equation 7.2. ∆𝑇 is substituted into equation 7.2 such that it is equal to the 

difference between three GWLs – 1.5, 2.0 and 4.0°C – and the GMST anomaly that is 

averaged over the period covered by the observed record. As in Chapter 6, the GMST 

anomaly is calculated from the HadCRUT5 observed dataset (Morice et al., 2021), relative 

to the 1850 – 1900 mean. The GMST anomalies averaged over the observed records for 

Santarém and Reykjavik correspond to 0.78°C and 0.56°C respectively. Based on the 

similarities between the responses during the first half and second half of the month, and, 

for standard deviation, the similarities between responses on wet days (WW and DW) and 

dry (DD and WD) days, it is perhaps unnecessary to diagnose and hence apply responses 

bimonthly or based on all four precipitation statuses (i.e., distinguishing between wet or dry 

may be adequate) or alternatively, monthly responses instead of bimonthly may be 

sufficient. However, as this was not known until they had already been diagnosed, bimonthly 

responses considering all four precipitation statuses will still be used here. Following the 

scaling of the parameters, 100 years of daily precipitation and temperature data will be 

generated using the observed and the three sets of perturbed parameters representative of the 

different GWLs. Changes to the distributions of daily maximum and minimum temperature 

at the different GWLs will be compared to the data generated using observed parameters 

(referred to as the reference period). 

 At Santarém, large increases in 𝑇𝑥 and 𝑇𝑛  are present at each GWL that far exceed 

the increases in GMST (Figure 7.7). For example, when the GMST anomaly is increased by 

3.2°C from the reference period to a GWL of 4.0°C, the mean maximum temperature in 

Santarém is projected to increase by 7.5°C. This corresponds to a warming rate of over 

double the GMST increase. The rate of warming is even faster for minimum temperatures, 

where the rate is almost four times the rate of GMST increase. The largest increases relative 
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to the reference period in 𝑇𝑥 and 𝑇𝑛 are present from March to August. Such large increases 

in both 𝑇𝑥 and 𝑇𝑛 coincide with the region’s dry season. When considered with the 

precipitation changes presented in Chapter 6, increases in maximum and minimum 

temperature during the dry season may exacerbate the frequency of compound hot and dry 

extremes in the future. Aside from the obvious changes to the mean daily maximum and 

minimum temperatures, such increases in 𝑇𝑛 play an important role in the decreasing of the 

diurnal temperature range.  

Figure 7.7 - Monthly mean daily maximum (top) and minimum 

(bottom) temperature at different GWLs at Santarém, Brazil. 
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 It is known that the variability of a distribution is more relevant in the causation of 

extreme events (Katz and Brown, 1992; Seneviratne et al., 2021) than changes to the mean. 

The temperature distributions shown in Figure 7.8 are much wider at the higher GWL, 

showing increased variability at higher GMSTs. While the changes to mean 𝑇𝑥 are smaller 

than the changes to mean 𝑇𝑛 at Santarém, the changes to the 𝑇𝑥 standard deviation are much 

larger, resulting in a standard deviation at 4.0°C GWL of 3.2°C in comparison to 1.5°C at 

GWL 1.5°C. Conversely, the standard deviation of 𝑇𝑛 is 1.6°C at GWL 4.0°C compared to 

1.3° at 1.5°C. Changes to the standard deviation of 𝑇𝑥 in particular will likely result in an 

increased occurrence of extremely hot events at the higher GWLs. These changes support 

several studies, indicating substantial increases in hot extremes over South American 

Amazon regions (Marengo et al., 2009; Vogel et al., 2020; Zhu et al., 2021).  

 It is important to note that the responses with the largest magnitude are usually on 

DD days. It is also known that the CMIP6 models tend to overestimate the frequency of 

consecutive dry days (CDD). In Chapter 6, Section 6.2.1, it was shown that precipitation 

parameters perturbed by the ACCESS-ESM1.5 GCM show large increases in the 99th 

percentile of dry-spell length distribution, indicating large increases to the number of DD 

days. The occurrence of DD days therefore may be overestimated in the stochastic 

simulation of precipitation here, in turn resulting in the DD-scaled temperature means and 

standard deviations being used more frequently. 

Figure 7.8 – The distribution of daily maximum (solid line) and minimum (dashed 

line) temperatures at GWLs of 1.5 and 4°C calculated using daily temperatures from 

all months for Santarém (left) and Reykjavik (right). 
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 At Reykjavik, increases in 𝑇𝑥 and 𝑇𝑛are smaller than at Santarém. Between the 

reference period and GWL of 4°C, 𝑇𝑥 is projected to increase by 3.3°C; approximately the 

same as the GMST increase between the two GWLs (of 3.4°C). 𝑇𝑛 however, increases at 

approximately twice the rate of 𝑇𝑥 (and also GMST). The largest warming in 𝑇𝑥 and 𝑇𝑛 tends 

to occur during the winter months (DJF) and March (early spring, MAM). Unlike Santarém, 

decreases to the standard deviation occur at each GWL (Figure 7.8). By 4.0°C GWL, the 

standard deviation has decreased by 11% for 𝑇𝑥 and 20% for 𝑇𝑛 relative to the reference 

period. Without the increased mean temperature, this would imply a lesser frequency of 

extreme events. However, with the addition of increased mean 𝑇𝑥 and 𝑇𝑛, the frequency of 

warm extreme events (if defined relative to the reference period) will likely still increase. 

The reduction in standard deviation will however reduce some potential increases to 

frequency and/or severity of such events, and when coupled with the warmer mean 

temperature the frequency and/or severity of cold extremes will be much reduced. 

  An issue with the GCWG pertaining to the faster warming of 𝑇𝑛 arises in Reykjavik 

(though of course not limited just to Reykjavik). More days are generated by the GCWG 

where 𝑇𝑛 exceeds 𝑇𝑥. Wherever the maximum and minimum distributions overlap, it is 

possible for the GCWG to generate a larger 𝑇𝑛 than 𝑇𝑥. This is demonstrated in Figure 7.8, 

wherein at GWL of 4.0°C, much of the 𝑇𝑛 than 𝑇𝑥 distributions at Reykjavik overlap (and, 

at the tail-ends of the distribution, at Santarém). In Chapter 4, a correction process was 

introduced to account for instances where this may occur, following methods defined by 

Dabhi et al. (2021). In instances where 𝑇𝑛 exceeds 𝑇𝑥, the mean temperature is calculated 

(𝑇𝑚𝑒𝑎𝑛 =
𝑇𝑥+𝑇𝑛

2
) and a small positive number, 𝛿 , is randomly chosen (where 𝛿 < 0.2°C). 

This number is added to and subtracted from 𝑇𝑚𝑒𝑎𝑛 to determine 𝑇𝑥 and 𝑇𝑛 respectively.   
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7.2.1 EXTREME EVENTS AT HIGHER GLOBAL WARMING 

LEVELS 

 To better assess some of the associated risks of increasing GMST pertaining to an 

increased (or decreased) frequency of extreme events at different GWLs, the WS90 and 

Figure  7.9 – Monthly mean daily maximum (top) and minimum 

(bottom) temperature at different GWLs at Reykjavik, Iceland. 
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CS10 indices introduced in Chapter 4 will be used to study the generated time series at 

Santarém and Reykjavik. To reiterate, WS90 is a measure of warm spells where a warm 

spell is defined as a period of at least 6 days where the maximum temperature exceeds the 

90th percentile. CS90 is a measure of cold spells, where a cold spell is similarly defined as a 

period of at least 6 days where the minimum temperature falls below the 10th percentile. The 

annual count includes spells that are 6 days or more (i.e., a cold spell of 10 days is counted 

as 1 cold spell, the same as a cold spell of 6 days). Percentiles are calculated from the 

reference period; this is to give an indication of the increased or decreased frequency of 

events relative to the observed period (note 1.5°C projections have been omitted from Table 

7.3 for brevity). 

Table 7.3 – Annual WS90 and CS10 count and length in Santarém and Reykjavik during the 

reference period and at GWLs 2.0 and 4.0°C. Percentiles have been calculated from the 

reference period. 

 

 

 

 

  

 As is expected under a warming climate, the number of warm spells each year 

increases from the reference period to GWL 4°C at both sites, alongside increases to the 

mean length of warm spells. An exceptionally large increase of 557% in warm spell length 

is present in Santarém, wherein at a GWL of 4°C, the total number of individual warm spells 

per year has decreased in comparison with a GWL of 2.0°C. However, this is far from an 

indicator of a reduction in days that can be categorised as belonging to a warm spell; instead, 

the number of discrete spells reduces as individual spells join together into fewer but longer 

spells. For example, an average of 5.9 warm spells per year with average length 58.8 

corresponds to a total of 345.2 days that belong to a warm spell. This is a huge increase on 

the 15.8 mean days belonging to a warm spell per year during the reference period. At 

Reykjavik, there is also an increase in the annual count of warm spells, though to a much 

smaller degree than Santarém. The mean number of warm spells increases by a factor of 2.5, 

with an increase in length of 114%.  Both sites see decreases in CS10 resulting in 0 cold 

  WS90 CS10 

LOCATION  Ref 2.0°C 4.0°C Ref 2.0°C 4.0°C 

Santarém Count 1.6 12.1  5.9  0.1 0.0 0.0 

 Length 8.9 21.0  58.5 6.0 0.0 0.0 

Reykjavik Count 1.7 3.4 4.4 1.1 0.0 0.0 

 Length 8.3 10.8 17.8 8.0 6.0 0.0 
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spells by GWL 4.0°C. This is expected; at both sites, mean 𝑇𝑛 has increased at a rate that 

exceeds the GMST increase by at least double. This is accompanied by a small increase in 

the standard deviation at Santarém and a decrease at Reykjavik. The small increase in 

standard deviation at Santarém is not enough to produce exceptionally low 𝑇𝑛  values 

considering the large increases to the mean. Although many impacts associated with a 

warming climate are negative, for some factors, a reduction in the number of cold nights 

may be beneficial, including reducing animal mortality caused by cold stress (Jones, 2001). 

This next method of analysis is analogous to Chapter 4, Section 4.2.3, where the skill 

of the GCWG at reproducing observed multivariate extremes was assessed. The occurrence 

of extremes in temperature and precipitation in quick succession (or simultaneously) are 

considered more damaging to society, ecosystems, agriculture and human health and 

comfort in comparison to their isolated occurrence (Dash and Maity, 2021; Zscheischler et 

al., 2018). It is therefore desirable that tools are able to study changes to the frequency or 

severity of multivariate extremes for successful adaptation, though only recently has more 

attention been given to such events, including in Chapter 11 of the recent IPCC report 

(Seneviratne et al., 2021). An advantage of constructing synthetic precipitation and 

temperature time series using a pattern scaled GCWG is that correlations between the 

variables are maintained. Alongside the advantages pertaining to scaling variability in both 

variables, an opportunity to assess the changing risk of consecutive extremes in temperature 

and precipitation is provided.  

The warmest temperatures typically coincide with the dry seasons over most land 

regions. Such a negative correlation is typically driven by land surface feedbacks that are 

associated with the impacts of soil moisture limitation on surface temperature (Zscheischler 

and Seneviratne, 2017). Therefore, concurrent hot and wet extremes are unusual in many 

regions. Still, there are several studies which have assessed the changing risk of such 

extremes, including a study into the changing frequency of joint hot and wet extremes across 

India (Dash and Maity, 2021) and a study into the global co-occurrence of extreme hot and 

wet events over short time periods at different GWLs (Vogel et al., 2020). Maximum 

temperature on days where the precipitation exceeds the 95th percentile calculated from the 

reference period (referred to as “very rainy” days) at each site and GWL is determined.  
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At both sites, the maximum temperature on very rainy days increases at each GWL 

(Figure 7.10). This is of course an expected outcome considering the warming at each site, 

presented in Figures 7.7 and 7.9. At each GWL, the maximum temperature on very rainy 

days shows negative skew. At Reykjavik, there are few changes to the distribution of 

maximum temperature on very rainy days at each GWL, though the skew becomes more 

apparent at larger GWLs. This is reflected by similar increases in temperature on very rainy 

days to the temperature on all days from the reference period to GWL 4.0°C (of 2.9°C and 

2.8°C, respectively). The number of very rainy days has also increased, though this is 

expected based on the increasing precipitation in several months (Chapter 6, Section 6.3).  

 In Santarém, the number of days where the precipitation exceeds the 95th percentile 

(calculated from the reference period) decreases at each GWL (corresponding to a decrease 

of approximately 50% from the reference period to GWL of 4.0°C). This is also unsurprising 

considering the exceptionally large increases to the dry-spell length shown in Chapter 6, 

Section 6.3. On days where the precipitation exceeds the 95th percentile, there has been a 

mean increase of 6.8°C in the maximum temperature from the reference period to GWL of 

4.0°C. This is similar to (though slightly smaller than) than mean increases to maximum 

temperature irrespective of precipitation occurrence (7.5°C). Unlike Reykjavik, the 

temperature on very wet days does not show skew. Instead, the interquartile range is small 

Figure 7.10 - Daily maximum temperatures on days with precipitation exceeding the 

95th percentile from the reference period 
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(increasing at higher GWLs) though several outliers are present at each GWL. Despite the 

number of very rainy days decreasing, the number of outliers shown in Figure 7.10 has 

increased by 4.0°C GWL. The upper outliers therefore indicate a higher likelihood of 

extremely hot and very rainy days, which aligns with the large increases to both the mean 

and standard deviation of 𝑇𝑥 at Santarém. 

 Finally, the occurrence of extremely hot and extremely dry conditions at different 

GWLs will be assessed analogously to Chapter 4, Section 4.2.3. Concurrent hot and extreme 

events are associated with several hazards, including increased wildfire risk (Zscheischler 

et al., 2018), exacerbation of summer heatwaves, negative impacts on crop yield, disease 

spread, and human mortality (Luber and McGeehin, 2008). It is therefore imperative that 

there are robust methods for assessing changes to the frequency and/or severity of such 

events. The co-occurrence of a hot and dry extreme is defined in the same way as in Chapter 

4, Section 4.2.3, loosely based on the methodology of Vogel et al. (2020). Here, an extremely 

hot day is one in which the maximum temperature exceeds the 99th percentile calculated 

from the reference period. Total precipitation is summed over a rolling 90-day period, with 

the date of the period defined as the last calendar day of the 90-day window. A dry extreme 

is defined as a day where the 90-day precipitation falls below the 1st percentile calculated 

from the reference period. The mean number of times where an extremely hot day and 

extremely dry day fall within the same month are recorded per every 10-years in Table 7.4. 

Table 7.4 – The number of occurrences of extreme hot and extreme dry days per month per 

10 years. 

 HOT AND DRY EVENTS 

GWL Ref 1.5°C 2.0°C 4.0°C 

Santarém 0.4 2.5 2.6 9.9 

Reykjavik 0.8 1.1 1.0 0.9 

 

Co-occurrences of extremely hot and extremely dry days only fall within the same 

month on average 0.4 times during the reference period at Santarém. This is projected to 

increase by a factor of almost 25 by GWL 4.0°C, resulting in almost 10 months per 10-years 

(i.e., 1 month per year) that experience at least one extremely hot and extremely dry day. 

This reflects the findings of Vogel et al. (2020) wherein Amazonian South America showed 

increases in the co-occurrence of extreme hot and dry events during the same year, month, 
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and week that exceeded most other land-surface areas. This is certainly reassuring of the 

pattern scaled GCWG’s capabilities at assessing the changing frequencies of such events at 

higher GWLs. Such increases in the co-occurrence of extreme hot and dry days per month 

per 10-years also suggests increases to the frequency of weekly clustered extremes. To 

elaborate, during the reference period, no weeks contain an extremely hot and extremely dry 

day per 10-year period. By a GWL of 4.0°C however, an average of 0.4 weeks per 10-year 

period experiences at least one extremely hot and extremely dry day.  

 During the reference period, Reykjavik experiences just over double the number of 

consecutive hot and dry extremes than Santarém (recall that “hot” and “dry” are defined 

relative to local conditions, i.e., the thresholds are different between the sites). The frequency 

of consecutive hot and dry extremes however remains relatively unchanged at the different 

GWLs. This is likely due to increasing precipitation, thus decreasing the frequency of 

isolated extreme dry event, alongside increases to the maximum temperature, thus increasing 

the frequency of isolated extreme hot events. Larger increases to these events at Santarém 

than Reykjavik are also likely for two reasons. The first is that regional mean maximum 

daily temperature responses at Santarém exceed those at Reykjavik for all transition states, 

therefore greater warming is expected. Furthermore, the standard deviation in 𝑇𝑥 increases 

much more at Santarém than Reykjavik (where the standard deviation decreases). This will 

ultimately result in a greater spread of  𝑇𝑥 values, with greater frequency of values that are 

far from mean  𝑇𝑥. 

7.3 CHAPTER 7 SUMMARY 

 The GCWG presented in Chapters 3 – 5 can simulate daily time series for maximum 

and minimum temperature, conditioned on the generated precipitation status of the day, 

using monthly regression equations and bimonthly means and standard deviations. GCM 

grid cell-scale (sometimes referred to as regional) responses of the conditional bimonthly 

means and standard deviations in maximum and minimum temperature to changing GMST 

over land-surface areas have been diagnosed from four ensemble members of the ACCESS-

ESM1.5 GCM using linear least square regression. Monthly linear regression coefficients 

(relating precipitation and temperature) have been assumed to remain constant as a function 

of GMST increase. 

 The responses presented in Figures 7.1 to 7.6 show several similarities with trends 

present in historical temperature observations and studies on future warming patterns based 
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on CMIP5 and CMIP6 projections. The most notable features are the stronger warming 

signals over the high latitudes and subarctic regions, with temperatures increasing more in 

the northern hemisphere than the southern (Tebaldi and Arblaster, 2014). Hotspots in 

warming are also present over South America, Southeast Asia and southern Europe. Mean 

minimum temperature responses are usually less spatially concentrated than maximum 

temperatures, with wider regions showing large increases. The rate of warming is greater 

with regards to daily minimum temperature than maximum temperature, indicating a faster 

warming of night-time temperatures than daytimes. Responses are typically similar on wet 

days (WW and DW) and dry days (DD and WD), though with some differences in magnitude 

and spatial coverage. The largest differences shown in response are typically between WW 

and DD days. Changes to the distribution of temperature are therefore also dependent on 

changes to the precipitation occurrence.  

 Daily standard deviations tend to show the strongest response to GMST change in 

regions that also show strong mean responses, typically including the high-latitudes, North 

America, and much of Europe and Eurasia. Strong standard deviation signals in the high 

latitudes are unsurprising. It is known that due to sea-ice loss, the variability in daily 

temperatures will reduce due to the increased heat capacity of the exposed ocean. However, 

it is also these regions that show the greatest inter-model differences due to the 

disagreements in the rate of sea-ice loss. Strong responses are also present over the African 

drylands, Australia and Southeast Asia. There is generally a spatial separation in the 

response patterns between the decreases over the high latitudes and subarctic grid cells, and 

the increases that are present over most other locations. This pattern is particularly 

pronounced in the 𝑇𝑛 standard deviation responses. There are of course some exceptions; on 

dry days, regions in South America, southwest Africa, and Southeast Asia all show large 

decreases for at least three months of the year in the  𝑇𝑥 standard deviation. On wet days 

from June to September, high latitudes show weaker 𝑇𝑛 standard deviation responses, 

positive in magnitude.   

The scaling of observed parameters and hence the construction of future time series 

at different GWLs have been demonstrated using weather station data at Santarém, Brazil, 

and Reykjavik, Iceland. Santarém shows warming in both 𝑇𝑥 and 𝑇𝑛 at a much faster rate 

than Reykjavik, with both sites showing sizable increases in the rate of daily minimum 

temperature warming than maximum temperature. While it is of course important to have 

accurate depictions of mean, regional-scale climate change, the diagnosed changes in the 
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daily standard deviations of  𝑇𝑥 and  𝑇𝑛 are invaluable in the construction of local-scale 

synthetic time series that are suitable are inputs for hydrological, agricultural and impact 

assessment models due to the incorporation of changes to the variability. This is a further 

advantage of the scaling of daily parameters; oftentimes monthly, seasonal, or annual 

statistics are not of the correct temporal scale for such assessments. The ability to produce 

long local-scale time series also provides a method for studying future changes to the 

frequency and/or severity of univariate and multivariate extremes. Such analysis of extremes 

has been demonstrated here; changes to warm and cold spell occurrence and length, the 

maximum temperature on very rainy days, and the frequency of extremely hot and dry day 

co-occurrence at the three GWLs at Santarém and Reykjavik.  

Chapters 6 and 7 have demonstrated the diagnosis of the GCWG’s primary and 

secondary variables’ response to GMST increase and the subsequent perturbation of 

observed weather station parameters to produce synthetic time series at different GWLs. 

There are several strengths in this method of emulating future climate scenarios. Firstly, 

stochastically generated time series have fine temporal and spatial scale. The GCWG has 

been developed using weather station data, which of course has a much higher resolution 

than direct GCM-outputs. This makes the GCWG-simulated data more appropriate for local-

scale impact assessments. On the same note, station-scale data may contain weather patterns 

that are not represented by GCM-scale outputs (for example caused by steep topographic 

changes or local forcings that are not resolved by the GCM). These may be better captured 

at future GWLs using the scaled GCWG opposed to direct GCM output.  Secondly, pattern 

scaling has typically been used for constructing scenarios with larger temporal scales, 

usually monthly, seasonal, or annual statistics. Daily time series are more appropriate for 

impact assessments or as inputs to hydrological and agricultural models.  Furthermore, the 

GCWG can generate very long time series at any (non-transient) GWL with computational 

efficiency. This provides temporally consistent, long records that are suitable for the robust 

assessment to the changes at a specific GWL. On a similar note, the PS technique provides 

a method of constructing several realisations of the climate for a range of GWLs, including 

those not presently simulated by GCMs, therefore providing a method to better represent 

and understand future climate uncertainty. Finally, another strength is in the better inclusion 

of variability that traditional pattern scaling methods. Daily wet-day precipitation shape and 

scale parameters, alongside temperature standard deviations (conditional on scaled 

precipitation status) all contribute to changes in precipitation and temperature variability.  
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8 THESIS SUMMARY AND CONCLUDING 

REMARKS 

The development of a stochastic weather generator (SWG) that has been calibrated 

using a selection of weather stations representative of the five overarching Köppen climate 

classifications (tropical, dry, temperate, continental and polar (Ackerman, 1941)) has been 

presented in Chapters 3 through 5 (named the Globally Calibrated stochastic Weather 

Generator, GCWG). The GCWG produces synthetic daily time series for a suite of weather 

variables, including precipitation (a primary variable), maximum and minimum temperature 

(secondary variables), mean wind speed, solar radiation, and relative humidity (tertiary 

variables). The pattern scaling (PS) technique was then extended to the estimation of the key 

parameters of the GCWG under a warmer climate. This section summarises the methods and 

key findings presented in this thesis as part of the development of the GCWG and the 

subsequent application of PS to construct local-scale daily time series at different global 

warming levels (GWLs). 

The models used to generate each of the variables and the parameters required are 

summarised in Table 8.1. This thesis has focussed on the stochastic generation and 

subsequent application of PS to precipitation and temperature only. Though the tertiary 

variables will likely be affected by climate change, there is more literature documenting the 

effects of climate change on the primary and secondary variables, including detrimental 

impacts on hydrological and agricultural planning, human health, comfort and mortality, and 

changes to extreme event severity and occurrence (Cook et al., 2018; Kilpeläinen et al., 

2010; Seneviratne et al., 2021; Trenberth, 2011). Furthermore, many studies have assessed 

the applicability of PS to these variables and critiqued the assumptions underlying the 

technique (e.g., Tebaldi and Arblaster (2014), Osborn et al. (2016, 2018), Mitchell (2003), 

Cabré et al. (2010)). However, even for precipitation and temperature, PS has almost 

universally been applied only to changes in their monthly means. Here, the literature is 

advanced through the application of the PS technique to the parameters of a SWG, i.e., 

changes in parameters that represent daily timescale characteristics including variability, 

skewness, and sequencing of wet and dry days (which have knock on effects to the other 

variables via their dependence on precipitation state). The structure and parameters of the 

GCWG have therefore intentionally been kept simple to allow for pattern scaling.  
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A selection of weather stations representative of the five climate classifications have 

been used for validation of the GCWG. In the validation of GCWG’s ability to reproduce 

observed time series, separate training and test (referred to as “observed”) datasets have been 

used throughout. This is an improvement over some prior studies that used the same training 

and test datasets to evaluate a model. This has ensured the robustness of the statistical testing 

and subsequent analysis. It is important to note that using different test and training datasets 

will likely increase the number of generated datasets showing statistically significant 

differences from the observed than other studies where test and training datasets are the 

same. Furthermore, a wide range of metrics (including those that are not widely used and 

are challenging in nature) in combination have been used to validate the GCWG. A range of 

properties have therefore been evaluated, including the reproduction of observed 

intervariable relationships, extremes, and compound events. 

Chapter 3 assessed the performance of four orders of Markov chain at accurately 

reproducing precipitation from a network of global weather station observations. While 

similar analysis has been presented elsewhere, studies have typically been constrained to 

smaller geographic regions such as the USA (Schoof and Pryor, 2008), Nigeria (Jimoh and 

Webster, 1996) or Sweden (Lennartsson et al., 2008), and typically only using one or two 

performance metrics. This thesis has expanded upon previous literature by using Global 

Historical Climatology Network Daily (GHCN-D) observations, aggregated into 5° latitude 

by 5° longitude cells with at least 100 cells present in each of the five Köppen climate 

regimes. Furthermore, six metrics were used to assess model-order performance across the 

five climatic regimes, including Bayesian Information Criteria, the ability to reproduce 

observed distributions of wet- and dry-spell lengths, the ability to reproduce observed 

interannual variability of precipitation occurrence and amount, and the ability to reproduce 

observed mean annual maximum 5-day precipitation. This thesis finds that performance is 

generally more sensitive to assessment metric rather than climate regime, with exceptions 

in tropical regions where third-order models typically perform best regardless of metric. 

Much of this work has been published in the International Journal of Climatology by Wilson 

Kemsley et al. (2021). Despite the good performance of third-order models, first orders have 

been used to generate precipitation occurrence throughout the remainder of this thesis to 

reduce the number of scalable parameters. Nevertheless, future work could apply these 

techniques to higher order models, provided that GCM ensembles are large enough to 

reliably estimate changes in the higher order transition probabilities. 
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Table 8.1 – Primary, secondary, and tertiary variables and the models used to simulate 

them. P is precipitation, Tx and Tn are maximum and minimum temperatures respectively, 

W is mean daily wind speed, R solar radiation and H relative humidity.  

   MODEL PARAMETERS 

Primary  

 

P 

Occurrence Markov-chain model; first order for 

wet-spell length, third order for tropical 

regimes, dry-spell length. Probabilities 

calculated monthly. 

P00 and P11 (first order) 

P0000, P0010, P0110, P0100, 

P1000, P1010, P1110, P1110 

(third order) 

Amount “Wet” day defined as >0.1mm. Values 

taken independently from monthly 

fitted gamma distributions. 

Wet-day shape (α) and 

scale (β) gamma  

Secondary Tx and Tn Multiple linear regression models to 

generate residual series with 

coefficients fitted monthly with 

predictors determined by precipitation 

status. Residual series converted using 

bimonthly means and standard 

deviations conditioned on precipitation 

status.  

Mean and standard 

deviation on WW, WD, 

DW and DD days 

Regression 

coefficients, e.g., 𝑎1, 𝑏1 

and 𝜀1 

Tertiary W Generalised linear model using log-link 

function and a gamma distribution, 

fitted monthly. Maximum and 

minimum temperature and lag-1 

autocorrelation used as predictors. 

Monthly shape, ν, 

scale, 𝜆, and 

generalised linear 

model coefficients, 𝛽𝑛 

R Following a transformation to a 

residual series of clearness index, 

multiple linear regression model fitted 

monthly using precipitation, maximum 

and minimum temperature, and lag-1 

autocorrelation as predictors. Residual 

series calculated using monthly means 

and standard deviations. 

Station latitude, 

monthly mean, 

standard deviation, and 

regression coefficients 

H Converted to residual series using 

monthly means and standard 

deviations. Multiple linear regression 

model, fitted monthly using 

precipitation, maximum and minimum 

temperature, and lag-1 autocorrelation 

as predictors.  

Monthly mean, 

standard deviation, and 

regression coefficients 

 

At the selection of weather stations used in this thesis, the GCWG has reproduced 

the primary and secondary variables with excellent practical accuracy. Annual cycles are 

reproduced well, and the GCWG has synthesised credible realisations of the climate at each 

site for both the primary and secondary variables. Errors between observed and generated 

time series of maximum and minimum temperature are small. The ability of the GCWG to 



273 
 
 

reproduce observed extremes in both precipitation and temperature has also been assessed. 

The frequency of extreme event occurrence is typically underestimated. For example, return 

periods of extreme precipitation events are typically overestimated by a factor of between 

1.4 and 4.4. This results in an underestimation of, for example, 50-year rainfall events. While 

this is a drawback of the model, it is a widely known issue with SWGs that is not unique to 

the GCWG (Dubrovský, 1997; Kilsby et al., 2007; Soltani and Hoogenboom, 2003a). To 

utilise the GCWG in the study of the changing risks to the frequency of extreme events, a 

comparison relative to a generated reference period (as opposed to observations) may be 

used instead. An example of this is provided in Chapter 7. Reproducing multivariate extreme 

events shows variable performance. The maximum and minimum temperature on very wet 

days is reproduced well at all sites. The number of extremely hot and extremely dry days 

per month is slightly underestimated by the model. Univariate extremes in maximum 

temperature have been well reproduced at several sites, and, in all sites, the mean number of 

occurrences of extremely hot days per month has been captured well by the GCWG.  

Tertiary variables use the primary and/or secondary variables as predictors in each 

of their respective models. This may provide the potential to assess changes in tertiary 

variables as a function of the primary and secondary variables (see Section 8.1 for future 

work). Much like the primary and secondary variables, the tertiary variables have been well 

reproduced by the GCWG at all sites with inter-tertiary variable accurately simulated. The 

GCWG shows similar performance at reproducing solar radiation and relative humidity. 

Accuracy is weaker at sites where the calculation of bimonthly means and standard 

deviations in temperature may have been adjusted using the temperature sample size 

correction process, presented in Chapter 4. These variables are generally strongly correlated 

to temperature, therefore inaccuracies in the generation of temperature may carry forward 

to the generation of solar radiation and relative humidity. Observed variance in wind speed 

has been more accurately captured than its mean. However, annual cycles in each variable 

have been captured with a great degree of accuracy, with annual maxima, minima and ranges 

also reproduced accurately. This has been exemplified by good reproduction of reference 

evapotranspiration at sites in tropical and temperate regimes (where the GCWG performs 

worst and best respectively). 

 With the good performance of the GCWG demonstrated, PS has hence been used to 

diagnose a selection of primary and secondary variable parameters’ responses to increasing 

GMST. Pattern scaling has typically been used to construct scenarios using scaled changes 

in means over larger temporal scales (e.g., annual, seasonal, monthly). Here, parameters 
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representing daily climate have been scaled, with a greater emphasis on capturing changes 

to climate variability than many previous studies.  

This thesis has presented the spatial responses of the transition probabilities and wet-

day gamma parameters to increasing GMST, diagnosed from two GCMs (IPSL-CM6A-LR 

and ACCESS-ESM1.5). The purpose was to illustrate how the approach could be applied in 

practice and to find out whether the response patterns of the parameters looked physically 

plausible in relation to prior work, rather than (e.g.) being dominated by local-scale noise. 

Responses show several similarities between the two GCMs, though an insight into inter-

model uncertainties (one of the largest uncertainties associated with modelling the future 

climate) has been demonstrated where the spatial patterns differ. Regions where the 

responses are similar include South America, Canada, and Northern Eurasia. Africa, 

Australia and Southeast Asia show the largest differences in the response patterns between 

the two GCMs. However, differences are typically regarding magnitude of the signal and 

not the direction of the response. The wet-day shape parameters show larger differences 

between the two modelling centres, resulting in different changes to the variability of the 

resultant wet-day gamma distribution. The response of bimonthly means and standard 

deviations, conditioned on precipitation status (WW, WD, DW or WD), in maximum and 

minimum temperature to increasing GMST have also been diagnosed using the ACCESS-

ESM1.5 GCM. Regions that show the strongest precipitation parameter response typically 

showed strong temperature parameter response. As expected, minimum temperatures 

showed warming at a greater rate than maxima, with large changes in variability across 

several regions in the Northern Hemisphere. 

Following the diagnosis of the responses, parameters calculated directly from 

observations can be perturbed under a specified GMST increase (e.g., a transiently 

increasing scenario of GMST or, as here, a specific GWL). The perturbed parameter values 

can hence be used in the GCWG to generate time series at a range of GWLs. There are 

several strengths to this technique that will be briefly summarised: 

➢ Scenarios (e.g., specific GWLs or scenarios intermediate to the commonly used 

Shared Socioeconomic Pathways SSPs) not presently simulated by GCMs can be 

emulated 

➢ Several realisations of a climate scenario can be produced with computational 

efficiency 

➢ Greater incorporation of changes in climate variability than other PS techniques 
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➢ Initial parameter values obtained by fitting to observations include local-scale 

climatology and as such reduce GCM errors  

➢ Long time series can be produced for the robust assessment of extreme events and 

subsequent changes as a function of GMST increase. 

PS has been widely used to emulate scenarios for time periods and scenarios that are 

not presently simulated by GCMs. The construction of precipitation and temperature 

scenarios at GWLs of 1.5, 2.0 and 4.0°C has been demonstrated in Chapters 6 and 7, though 

theoretically any GWL may be used. The use of a SWG in the construction of these scenarios 

also allows for the generation of several different realisations at a single GWL, which 

provides an opportunity to address climate uncertainty from unforced variability (noting, 

however, the smaller interannual variability often produced by this type of weather generator 

and evaluated in Chapter 3). While not demonstrated at the different GWLs in Chapters 6 

and 7, the use of several realisations in the validation of the GCWG was shown in Chapters 

4 and 5. This provides a method to study a range of uncertainties in the future climate at a 

single GWL.  

Several PS studies have typically only assessed changes to mean climate, usually 

diagnosing the spatial response of monthly, seasonal or annual statistics in temperature 

and/or precipitation to increasing GMST (Doblas-Reyes et al., 2021). Although there has 

more recently been discussion into better incorporation of climate variability, this has been 

limited to the shape parameter of monthly total precipitation gamma distributions, with 

daily temporal scales not addressed (Osborn et al., 2016). Changes in climate variability 

are particularly important in studying the changes to the frequency and severity of extreme 

events. This thesis has scaled multiple parameters that contribute to changes in variability 

on a daily temporal scale. For precipitation, the response of both the wet-day gamma 

parameters and transition probabilities to increasing GMST contribute to changes in the 

variability. Shape and scale parameters determine the mean, variance, and skew of wet-day 

precipitation amounts. This directly impacts the variability of daily precipitation. Changes 

to precipitation occurrence also impact the variability. For example, if the total monthly 

precipitation increases, but the number of wet days per month decreases, there will be an 

increase to the variability for that month. Standard deviations in daily temperature that are 

conditioned on the precipitation statuses (which, at several locations are also changing) 

have also been scaled with GMST. 
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GCM scale data is typically referred to as “area-averaged” (e.g., representing the 

average over a GCM grid cell or larger), resulting in errors if used to represent local-scale 

present-day climate. The errors arise due to parameterisation of several sub-GCM grid-scale 

processes and steep topographic effects, alongside unresolved local forcings such as black-

carbon or sulphate aerosols (Murphy, 1999; Tebaldi and Arblaster, 2014).  This may result 

in local, weather-station scale data being misrepresented by the area-averaged climate. 

Applying GCM-derived responses to parameters calculated directly from observations will 

therefore reduce inaccuracies from GCMs, and therefore better represent the local-scale 

climate. An example of this has been provided in Chapter 6 for Santarém, Brazil.  

Finally, scaling of the GCWG parameters provides an opportunity to produce 

synthetic precipitation and temperature daily time series of any length at a specified GWL. 

Several impact assessments (e.g., hydrological, ecological, agricultural) require very long 

time series to robustly determine risks. This method will provide impact assessors a tool that 

can produce long time series at a range of GWLs with computational efficiency, and the 

changing risk of extreme events may therefore be determined. This has been demonstrated 

in Chapters 6 and 7, including an assessment into the changing risks of compound extremes.  

This thesis has combined a stochastic weather generator that has been calibrated 

globally (GCWG) with the pattern scaling technique to aid in the construction of scenarios 

that address future climate uncertainty, evaluate the changing risk to climate extremes, and 

emulate scenarios and time periods that GCMs have not yet simulated. Chapters 3 and 6 

present manuscripts that have been published in the International Journal of Climatology 

and are being prepared for submission to Climatic Change, respectively, demonstrating 

novel research into global Markov-chain model order performance and the application of 

the pattern scaling technique to the parameters of a Markov-chain gamma-distribution SWG. 

The work presented in this thesis is an exciting development into the stochastic generation 

of weather under different climate scenarios, paving the way for further research in this field.  

8.1 FUTURE RESEARCH THAT COULD BUILD ON THIS THESIS 

This thesis has demonstrated strengths of the pattern scaling technique applied to the 

parameters of a stochastic weather generator. This has opened the door for several interesting 

developments that may be considered in furthering this research. Firstly, this thesis aimed 

to demonstrate the application of the PS technique to the parameters of a SWG and briefly 

investigate inter-model uncertainties in precipitation parameter response. To further capture 



277 
 
 

inter-model uncertainties, parameter response could be diagnosed from further GCMs.  It 

has been evidenced in Chapter 6 that large differences in the resultant time series at GWLs 

may arise due to sizeable differences in parameter response simulated by two GCMs. This 

is a relatively simple extension, though it is intensive regarding computational time required 

to diagnose parameter changes, and for this reason has not been included in this thesis. Once 

the parameter response patterns have been diagnosed, however, the use of the combined PS-

GCWG system allows weather sequences under many possible future climates to be 

generated very quickly and with much less computational power than running additional 

GCM simulations. 

In this thesis, the parameters of a Markov-chain gamma-distribution SWG have been 

scaled with GMST. The parameters of such SWGs are simple to calculate from 

observations and GCM projections. However, there are several other methods of 

generating daily precipitation time series that each have their own strengths (discussed in 

greater detail in Chapter 2, Section 2.3). For example, series-type weather generators (e.g., 

LARS-WG (Semenov and Barrow, 2002)) are thought to represent the lengths of wet and 

dry spells with greater accuracy than Markov-type weather generators, though with several 

more parameters. The tail-ends of wet-spell and dry-spell length distributions have 

implications on the occurrence of extreme events such as drought. It therefore may be 

interesting to diagnose the response of parameters to climate forcing from alternative 

SWGs. It is, however, important to reiterate that the parameters of a Markov-chain 

gamma-distribution SWG are simple to calculate from GCM projections, resulting in a 

relatively straightforward, intuitive regression. The perturbation of alternative stochastic 

precipitation models using the response to climate forcing diagnosed from GCM 

projections may be more complex, especially for models that rely on sampling from 

observed data rather than based on parameters. 

In addition to the parameters detailed in Table 8.1, there are several parameters that 

have been coded implicitly to the GCWG. These include the threshold precipitation for a 

wet day (the GCWG uses 0.1mm), the definition of a season throughout the analyses 

(assumed to be the temperate four seasons) and, for example, the number of additional 

months searched to ensure that the sample size for calculation of parameters (and 

similarly, their response to forcings) is large “enough”. These implicit parameters have not 

been assessed as part of this work, and have been decided based on wider literature and 

scientific reasoning. However, these choices may affect the resultant performance of the 
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GCWG, and testing of the weather generator’s sensitivity to changes in these choices may 

prove interesting.  

The observational data used in this thesis has been assumed to be of good quality; it 

is also potentially the only observational data that many impact assessors have access to. It 

is known that observational datasets are potentially prone to a range of biases. For 

example, a disproportionate number of observed precipitation amounts tends to end in “5” 

or “10” (dubbed the 5/10 error). One speculated cause of the 5/10 error is thought to be 

due to the way in which measuring sticks are labelled or marked (amongst a range of other 

potential causes; see Daly et al. 2007 for comprehensive suggestions). Further sources of 

bias in precipitation observations include: fewer recordings on Sundays, changes in data 

capture method during within an observational period, poorly collected or archived data 

and changes in site location that result in changed topography (Wilby et al., 2017; Viney  

and Bates, 2004). Such biases have been found to underestimate, for example, wet- and 

dry-spell lengths. Therefore, assessment of the quality of the raw observational data may 

be beneficial in truly representing the local-scale climate. 

  Chapter 3 presented an analysis of Markov chain model-order performance using a 

global, gridded network of weather station observations. The value of this global analysis 

is clear. The gamma distribution shows good performance at reproducing the overall 

distribution of wet-day precipitation; however, weaknesses were highlighted in Chapter 4 

at reproducing extreme behaviour. Such inaccuracies might be reduced by using different 

distributions in some climatic regimes where the gamma distribution is less suitable. The 

choice of distribution has received relatively little attention in comparison to the choice of 

model order in both this thesis and the wider literature. It may therefore be interesting to 

discern whether there are differences regarding the best distribution to represent daily 

precipitation amounts, particularly the extreme end of the distribution, that are dependent 

on climate regime, or, as with Markov chain model-order, assessment metric, following a 

similar study to Chapter 3.   

A further area of interest lies in the correlations between the primary and secondary 

variables. In this thesis, the correlations between the primary and secondary variables are 

assumed unchanging as a function of GMST increase due to limited literature assessing the 

relationship between the variables with climate change, and due to the computational 

complexity and larger sample sizes (e.g., more GCM ensemble members) required to 

diagnose the response of several coefficients from 4 regression equations per month. The 
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changing relationship between the two variables, and whether it may scale linearly with 

GMST, may be interesting to investigate.  

Finally, Chapter 5 introduced multiple linear regression models for both solar radiation 

and relative humidity. Tertiary variable parameters have not been scaled as a function of 

GMST and future work could consider how best to do this. It has been mentioned throughout 

the thesis that changes in the tertiary variables as a function of GMST may arise indirectly 

as a function of changes to the primary and secondary variables, which are perturbed by 

scaling their parameters with GMST.  However, the equations provided in Chapter 5, Section 

5.2.2 and 5.3.1 cannot be used to model future climates without some adjustment. Linear 

regression coefficients are calculated from the residual series of observed solar radiation, 

maximum temperature, minimum temperature, and precipitation. The generated series of 

precipitation, maximum and minimum temperature are also converted into residual series 

using perturbed (observed plus pattern-scaled changes according to the change in GMST) 

means and standard deviations. Therefore, the residual series do not themselves capture any 

changes to the mean temperature or precipitation, only the variability. Using the regression 

coefficients calculated from the observed residual series, a synthetic solar radiation residual 

series is generated. This of course results in the resultant solar radiation time series only 

incorporating changes to the variability as a function of change in the other variables, and 

not the mean. Future work could consider an alternative approach, such as scaling 

parameters such as monthly shape (wind speed) or means and standard deviations (solar 

radiation and relative humidity) with increasing GMST to produce changes to the tertiary 

variables.   
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APPENDIX 

It’s widely known that precipitation scales less linearly than temperature. To 

demonstrate the linear regressions for the Markov probabilities and wet-day parameters, a 

selection of grid-cells from the IPSL-CM6A-LR GCM representative of the five overarching 

Köppen climatic regimes have been chosen to demonstrate the varying strengths of 

regression (Figure A.1). R2 values for the linear regressions have been calculated, and are 

shown in Table A.1. X-axis GMST shown in the corresponding figures is in reference to 

GMST change relative to the first 30-year period used to calculate the parameter. Note that 

linear regression performed on both shape and scale parameters are fractional changes 

relative to the first 30-year period used to calculate the parameter as discussed in Section 6. 

Table A.1 –  Locations, month, Köppen zone, and R2 scores for the linear regressions performed on 

a range of GCWG parameters. Corresponding locations are shown in Figure A.1 using the codes 

shown in the “Figure” column below. Location, latitude, and longitude, refer to a location within 

the GCM grid-cell. 

    Linear Regression R2  for 

Parameter 

Figure Location (lat, lon) Month Koppen Zone Pww shape scale 

 

CG 

Lobolo, Democratic 

Republic of the Congo, 

7.4S, 30E 

 

Feb 

 

Aw 

 

0.23 

 

0.83 

 

0.85 

AU Calvert, Australia, 16.2S, 

137.5E 

Jan Am 0.43 0.48 0.11 

CD Bir Arakay, Chad, 15.2N, 

20.0E 

Nov BWh 0.41 0.50 0.80 

EC Villa Seca, Ecuador, 3.8S, 

80W 

Jan BSh 0.50 0.15 0.40 

GR Alma, Georgia, USA, 

31.4N, 82W 

Dec Cfa 0.18 0.54 0.01 

FR Les Angles, France, 

43.0N, 0E 

May Cfb 0.81 0.51 0.54 

IN St. Leon, Indiana, USA, 

39.29N, 85W 

July Dfa 0.71 0.77 0.60 

NW Folldal, Norway 

62.1N, 10E 

Feb Dfc 0.66 0.55 0.72 

GL Greenland, 72N, 35W Nov EF 0.54 0.68 0.85 
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CG Pww CG shape 

CG scale AU PWW 

AU shape 
AU scale 
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EC shape 
EC scale 

CD Pww CD shape 

CD scale 

EC PWW 
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FR PWW 

GR PWW GR shape 

GR scale 

FR shape FR scale 
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NR Pww 

NR shape NR scale 

IN Pww IN shape 

IN scale 
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GL Pww GL shape 

GL scale 

Figure A.1 – Scatter plots showing precipitation parameters against change in GMST. 

Location codes (e.g., GL) correspond to approximate GCM grid-cell location, with 

details given in Table A.1.  



286 
 
 

REFERENCES 

Ackerman, E.A., 1941. The Köppen Classification of Climates in North America. Geogr. 

Rev. 31, 105–111. 

Ailliot, P., Allard, D., Monbet, V., Naveau, P., 2015. Stochastic weather generators: an 

overview of weather type models. J. la Société Française Stat. 156, 101–113. 

Aksoy, H., Toprak, Z.F., Aytek, A., Ünal, N.E., 2004. Stochastic generation of hourly 

mean wind speed data. Renew. Energy 29, 2111–2131. 

https://doi.org/10.1016/j.renene.2004.03.011 

Alexander, L. V., Zhang, X., Peterson, T.C., Caesar, J., Gleason, B., Klein Tank, A.M.G., 

Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., 

Revadekar, J., Griffiths, G., Vincent, L., Stephenson, D.B., Burn, J., Aguilar, E., 

Brunet, M., Taylor, M., New, M., Zhai, P., Rusticucci, M., Vazquez-Aguirre, J.L., 

2006. Global observed changes in daily climate extremes of temperature and 

precipitation. J. Geophys. Res. Atmos. 111, 5109. 

https://doi.org/10.1029/2005JD006290 

Alexeeff, S.E., Nychka, D., Sain, S.R., Tebaldi, C., 2018. Emulating mean patterns and 

variability of temperature across and within scenarios in anthropogenic climate 

change experiments. Clim. Change 146, 319–333. https://doi.org/10.1007/s10584-

016-1809-8 

Allen, R.G., Pereira, L.S., Howell, T.A., Jensen, M.E., 2011. Evapotranspiration 

information reporting: I. Factors governing measurement accuracy. Agric. Water 

Manag. https://doi.org/10.1016/j.agwat.2010.12.015 

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 2006. Crop evapotranspiration - Guidelines 

for computing crop water requirements - FAO Irrigation and drainage paper 56, 

Remote Sensing of Environment. 

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. FAO Irrigation and Drainage Paper 

No. 56 - Crop Evapotranspiration, in: Food and Agriculture Organisation of the 

United Nations, Rome 300. 

Almazroui, M., Islam, M.N., Jones, P.D., Athar, H., Rahman, M.A., 2012. Recent climate 

change in the Arabian Peninsula: Seasonal rainfall and temperature climatology of 

Saudi Arabia for 1979-2009. Atmos. Res. 111, 29–45. 



287 
 
 

https://doi.org/10.1016/j.atmosres.2012.02.013 

Almazroui, M., Saeed, F., Saeed, S., Ismail, M., Ehsan, M.A., Islam, M.N., Abid, M.A., 

O’Brien, E., Kamil, S., Rashid, I.U., Nadeem, I., 2021. Projected Changes in Climate 

Extremes Using CMIP6 Simulations Over SREX Regions. Earth Syst. Environ. 5, 

481–497. https://doi.org/10.1007/s41748-021-00250-5 

Arnell, N.W., Gosling, S.N., 2016. The impacts of climate change on river flood risk at the 

global scale. Clim. Change 134, 387–401. https://doi.org/10.1007/s10584-014-1084-5 

Arnell, N.W., Lowe, J.A., Brown, S., Gosling, S.N., Gottschalk, P., Hinkel, J., Lloyd-

Hughes, B., Nicholls, R.J., Osborn, T.J., Osborne, T.M., Rose, G.A., Smith, P., 

Warren, R.F., 2013. A global assessment of the effects of climate policy on the 

impacts of climate change. Nat. Clim. Chang. 3, 512–519. 

https://doi.org/10.1038/nclimate1793 

Ayodele, T.R., Ogunjuyigbe, A.S.O., 2015. Prediction of monthly average global solar 

radiation based on statistical distribution of clearness index. Energy 90, 1733–1742. 

https://doi.org/10.1016/j.energy.2015.06.137 

Back, L.E., Bretherton, C.S., 2005. The relationship between wind speed and precipitation 

in the Pacific ITCZ. J. Clim. 18, 4317–4328. https://doi.org/10.1175/JCLI3519.1 

Bannayan, M., Crout, N.M.J., 1999. A stochastic modelling approach for real-time 

forecasting of winter wheat yield. F. Crop. Res. 62, 85–95. 

https://doi.org/10.1016/S0378-4290(99)00008-8 

Barrow, E., Hulme, M., Semenov, M., 1996. Effect of using different methods in the 

construction of climate change scenarios: Examples from Europe. Clim. Res. 7, 195–

211. https://doi.org/10.3354/cr007195 

Bathiany, S., Dakos, V., Scheffer, M., Lenton, T.M., 2018. Climate models predict 

increasing temperature variability in poor countries. Sci. Adv. 4. 

https://doi.org/10.1126/sciadv.aar5809 

Belchansky, G.I., Douglas, D.C., Platonov, N.G., 2004. Duration of the Arctic sea ice melt 

season: Regional and interannual variability, 1979-2001. J. Clim. 17, 67–80. 

https://doi.org/10.1175/1520-0442(2004)017<0067:DOTASI>2.0.CO;2 

Belda, M., Holtanová, E., Halenka, T., Kalvová, J., 2014. Climate classification revisited: 



288 
 
 

From Köppen to Trewartha. Clim. Res. 59, 1–13. https://doi.org/10.3354/cr01204 

Bellprat, O., Doblas-Reyes, F., 2016. Attribution of extreme weather and climate events 

overestimated by unreliable climate simulations. Geophys. Res. Lett. 43, 2158–2164. 

https://doi.org/10.1002/2015GL067189 

Boeke, R.C., Taylor, P.C., Sejas, S.A., 2021. On the Nature of the Arctic’s Positive Lapse-

Rate Feedback. Geophys. Res. Lett. 48, e2020GL091109. 

https://doi.org/10.1029/2020GL091109 

Boucher, O., Servonnat, J., Albright, A.L., Aumont, O., Balkanski, Y., Bastrikov, V., 

Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., 

Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D’Andrea, F., Davini, P., 

de Lavergne, C., Denvil, S., Deshayes, J., Devilliers, M., Ducharne, A., Dufresne, 

J.L., Dupont, E., Éthé, C., Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.A., 

Gardoll, S., Gastineau, G., Ghattas, J., Grandpeix, J.Y., Guenet, B., Guez, Lionel, E., 

Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., 

Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur, G., 

Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., Madeleine, J.B., 

Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, 

I., Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., 

Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont, R., Traore, A.K., 

Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., Vuichard, N., 2020. Presentation 

and Evaluation of the IPSL-CM6A-LR Climate Model. J. Adv. Model. Earth Syst. 12. 

https://doi.org/10.1029/2019MS002010 

Brunner, M.I., Gilleland, E., Wood, A.W., 2021. Space-time dependence of compound 

hot-dry events in the United States: Assessment using a multi-site multi-variable 

weather generator. Earth Syst. Dyn. 12, 621–634. https://doi.org/10.5194/esd-12-621-

2021 

Cabré, M.F., Solman, S.A., Nuñez, M.N., 2010. Creating regional climate change 

scenarios over southern South America for the 2020’s and 2050’s using the pattern 

scaling technique: Validity and limitations. Clim. Change 98, 449–469. 

https://doi.org/10.1007/s10584-009-9737-5 

Caya, D., Laprise, R., 1999. A semi-implicit semi-Lagrangian regional climate model: The 

Canadian RCM. Mon. Weather Rev. 127, 341–362. https://doi.org/10.1175/1520-



289 
 
 

0493(1999)127<0341:asislr>2.0.co;2 

Chen, D., Chen, H.W., 2013. Using the Köppen classification to quantify climate variation 

and change: An example for 1901–2010. Environ. Dev. 6, 69–79. 

https://doi.org/10.1016/J.ENVDEV.2013.03.007 

Chen, D., Rojas, M., Samset, B.H., Cobb, K., Diongue Niang, A., Edwards, P., Emori, S., 

Faria, S.H., Hawkins, E., Hope, P., Huybrechts, P., Meinshausen, M., Mustafa, S.K., 

Plattner, G.-K., Tréguier, A.-M., 2021. Framing, Context, and Methods., in: Masson-

Delmott, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, 

Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., 

Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B. (Eds.), Climate Change 

2021: The Physical Science Basis. Contribution of Working Group I to the Sixth 

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 

University Press, Cambridge, United Kingdom and New York, NY, USA. 

Chen, J., Brissette, F.P., 2014. Comparison of five stochastic weather generators in 

simulating daily precipitation and temperature for the Loess Plateau of China. Int. J. 

Climatol. 34, 3089–3105. https://doi.org/10.1002/joc.3896 

Chin, E.H., 1977. Modeling Daily Precipitation Occurrence Process With Markov Chain. 

Water Resour. Res. 13, 949–956. https://doi.org/10.1029/WR013i006p00949 

Coe, R., Stern, R.D., 1982. Fitting Models to Daily Rainfall Data. J. Appl. Meteorol. 21, 

1024–1031. https://doi.org/10.1175/1520-0450(1982)021<1024:fmtdrd>2.0.co;2 

Cole, J.E., Overpeck, J.T., Cook, E.R., 2002. Multiyear La Niña events and persistent 

drought in the contiguous United States. Geophys. Res. Lett. 29, 25-1-25–4. 

https://doi.org/10.1029/2001GL013561 

Cook, B.I., Mankin, J.S., Anchukaitis, K.J., 2018. Climate Change and Drought: From 

Past to Future. Curr. Clim. Chang. Reports. https://doi.org/10.1007/s40641-018-0093-

2 

Cooper, P.J.M., Dimes, J., Rao, K.P.C., Shapiro, B., Shiferaw, B., Twomlow, S., 2008. 

Coping better with current climatic variability in the rain-fed farming systems of sub-

Saharan Africa: An essential first step in adapting to future climate change? Agric. 

Ecosyst. Environ. 126, 24–35. https://doi.org/10.1016/j.agee.2008.01.007 

Coumou, D., Rahmstorf, S., 2012. A decade of weather extremes. Nat. Clim. Chang. 



290 
 
 

https://doi.org/10.1038/nclimate1452 

Courty, L.G., Wilby, R.L., Hillier, J.K., Slater, L.J., 2019. Intensity-duration-frequency 

curves at the global scale. Environ. Res. Lett. 14, 084045. 

https://doi.org/10.1088/1748-9326/ab370a 

Cowpertwait, P.S.P., 2004. Mixed rectangular pulses models of rainfall. Hydrol. Earth 

Syst. Sci. 8, 993–1000. https://doi.org/10.5194/hess-8-993-2004 

Cowpertwait, P.S.P., 1994. Generalized point process model for rainfall. Proc. R. Soc. 

London, Ser. A Math. Phys. Sci. 447, 23–37. https://doi.org/10.1098/rspa.1994.0126 

Cowpertwait, P.S.P., O’Connell, P.E., Metcalfe, A. V., Mawdsley, J.A., 1996. Stochastic 

point process modelling of rainfall. I. Single-site fitting and validation. J. Hydrol. 

175, 17–46. https://doi.org/10.1016/S0022-1694(96)80004-7 

Cox, D.T.C., Maclean, I.M.D., Gardner, A.S., Gaston, K.J., 2020. Global variation in 

diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation 

and its association with leaf area index. Glob. Chang. Biol. 26, 7099–7111. 

https://doi.org/10.1111/gcb.15336 

Cronin, T.W., 2020. How well do we understand the Planck feedback?, in: AGU Fall 

Meeting. AGU. 

Dabhi, H., Rotach, M.W., Dubrovský, M., Oberguggenberger, M., 2021. Evaluation of a 

stochastic weather generator in simulating univariate and multivariate climate 

extremes in different climate zones across Europe. Meteorol. Zeitschrift 30, 127–151. 

https://doi.org/10.1127/metz/2020/1021 

Dai, A., Zhao, T., Chen, J., 2018. Climate Change and Drought: a Precipitation and 

Evaporation Perspective. Curr. Clim. Chang. Reports. https://doi.org/10.1007/s40641-

018-0101-6 

Daly, C., Gibson, W.P., Taylor, G.H., Doggett, M.K., Smith, J.I., 2007. Observer Bias in 

Daily Precipitation Measurements at United States Cooperative Network Stations. 

Bull. Am. Meteorol. Soc. 88, 899-912. https://doi.org/10.1175/BAMS-88-6-899 

Dash, S., Maity, R., 2021. Revealing alarming changes in spatial coverage of joint hot and 

wet extremes across India. Sci. Rep. 11, 1–15. https://doi.org/10.1038/s41598-021-

97601-z 



291 
 
 

Dawkins, L.C., Osborne, J.M., Economou, T., Darch, G.J.C., Stoner, O.R., 2022. The 

Advanced Meteorology Explorer: a novel stochastic, gridded daily rainfall generator. 

J. Hydrol. 607, 127478. https://doi.org/10.1016/j.jhydrol.2022.127478 

Doblas-Reyes, F.J., Sörensson, A.A., Almazroui, M., Dosio, A., Gutowski, W.J., Haarsma, 

R., Hamdi, R., Hewitson, B., Kwon, W.-T., Lamptey, B.L., Maraun, D., Stephenson, 

T.S., Takayabu, I., Terray, L., Turner, A., Zuo, Z., 2021. Linking Global to Regional 

Climate Change, in: Masson-Delmott, V., Zhai, P., Pirani, A., Connors, S.L., Péan, 

C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, 

K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, 

R., Zhou, B. (Eds.), Climate Change 2021: The Physical Science Basis. Contribution 

of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel 

on Climate Change. Cambridge University Press. In Press. 

Dubrovský, M., 1997. Creating Daily Weather Series with Use of the Weather Generator. 

Environmetrics 8, 409–424. https://doi.org/10.1002/(SICI)1099-

095X(199709/10)8:5<409::AID-ENV261>3.0.CO;2-0 

Dunn, R.J.H., Alexander, L. V., Donat, M.G., Zhang, X., Bador, M., Herold, N., 

Lippmann, T., Allan, R., Aguilar, E., Barry, A.A., Brunet, M., Caesar, J., Chagnaud, 

G., Cheng, V., Cinco, T., Durre, I., de Guzman, R., Htay, T.M., Wan Ibadullah, 

W.M., Bin Ibrahim, M.K.I., Khoshkam, M., Kruger, A., Kubota, H., Leng, T.W., 

Lim, G., Li-Sha, L., Marengo, J., Mbatha, S., McGree, S., Menne, M., de los 

Milagros Skansi, M., Ngwenya, S., Nkrumah, F., Oonariya, C., Pabon-Caicedo, J.D., 

Panthou, G., Pham, C., Rahimzadeh, F., Ramos, A., Salgado, E., Salinger, J., Sané, 

Y., Sopaheluwakan, A., Srivastava, A., Sun, Y., Timbal, B., Trachow, N., Trewin, B., 

van der Schrier, G., Vazquez-Aguirre, J., Vasquez, R., Villarroel, C., Vincent, L., 

Vischel, T., Vose, R., Bin Hj Yussof, M.N.A., 2020. Development of an Updated 

Global Land In Situ-Based Data Set of Temperature and Precipitation Extremes: 

HadEX3. J. Geophys. Res. Atmos. 125. https://doi.org/10.1029/2019JD032263 

Eames, M., Kershaw, T., Coley, D., 2011. On the creation of future probabilistic design 

weather years from UKCP09. Build. Serv. Eng. Res. Technol. 32, 127–142. 

https://doi.org/10.1177/0143624410379934 

Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R., Mearns, L.O., 

2000. Climate extremes: Observations, modeling, and impacts. Science (80-. ). 289, 



292 
 
 

2068–2074. https://doi.org/10.1126/science.289.5487.2068 

Eden, J.M., Widmann, M., 2014. Downscaling of GCM-simulated precipitation using 

model output statistics. J. Clim. 27, 312–324. https://doi.org/10.1175/JCLI-D-13-

00063.1 

Edwards, P.N., 2011. History of climate modeling. Wiley Interdiscip. Rev. Clim. Chang. 

2, 128–139. https://doi.org/10.1002/wcc.95 

Elsner, J.B., 2020. Continued increases in the intensity of strong tropical cyclones. Bull. 

Am. Meteorol. Soc. https://doi.org/10.1175/BAMS-D-19-0338.1 

Fatichi, S., Ivanov, V.Y., Caporali, E., 2011. Simulation of future climate scenarios with a 

weather generator. Adv. Water Resour. 34, 448–467. 

https://doi.org/10.1016/j.advwatres.2010.12.013 

Flannigan, M.., Stocks, B.., Wotton, B.., 2000. Climate change and forest fires. Sci. Total 

Environ. 262, 221–229. https://doi.org/10.1016/S0048-9697(00)00524-6 

Forsythe, N., Fowler, H.J., Blenkinsop, S., Burton, A., Kilsby, C.G., Archer, D.R., 

Harpham, C., Hashmi, M.Z., 2014. Application of a stochastic weather generator to 

assess climate change impacts in a semi-arid climate: The Upper Indus Basin. J. 

Hydrol. 517, 1019–1034. https://doi.org/10.1016/j.jhydrol.2014.06.031 

Foufoula‐Georgiou, E., Lettenmaier, D.P., 1987. A Markov Renewal Model for rainfall 

occurrences. Water Resour. Res. 23, 875–884. 

https://doi.org/10.1029/WR023i005p00875 

Frei, C., Christensen, J.H., Déqué, M., Jacob, D., Jones, R.G., Vidale, P.L., 2003. Daily 

precipitation statistics in regional climate models: Evaluation and intercomparison for 

the European Alps. J. Geophys. Res. Atmos. 108, 4124. 

https://doi.org/10.1029/2002jd002287 

Frei, C., Schöll, R., Fukutome, S., Schmidli, J., Vidale, P.L., 2006. Future change of 

precipitation extremes in Europe: Intercomparison of scenarios from regional climate 

models. J. Geophys. Res. Atmos. 111, 6105. https://doi.org/10.1029/2005JD005965 

Furrer, E.M., Katz, R.W., 2008. Improving the simulation of extreme precipitation events 

by stochastic weather generators. Water Resour. Res. 44. 

https://doi.org/10.1029/2008WR007316 



293 
 
 

Gabriel, K.R., Neumann, J., 1962. A Markov chain model for daily rainfall occurrence at 

Tel Aviv. Q. J. R. Meteorol. Soc. 88, 90–95. https://doi.org/10.1002/qj.49708837511 

Gates, P., Tong, H., 1976. On Markov Chain Modeling to Some Weather Data. J. Appl. 

Meteorol. 15, 1145–1151. https://doi.org/10.1175/1520-

0450(1976)015<1145:OMCMTS>2.0.CO;2 

Ge, F., Zhu, S., Peng, T., Zhao, Y., Sielmann, F., Fraedrich, K., Zhi, X., Liu, X., Tang, W., 

Ji, L., 2019. Risks of precipitation extremes over Southeast Asia: Does 1.5°C or 2°C 

global warming make a difference? Environ. Res. Lett. 14, 044015. 

https://doi.org/10.1088/1748-9326/aaff7e 

Geng, S., Penning de Vries, F.W.T., Supit, I., 1986. A simple method for generating daily 

rainfall data. Agric. For. Meteorol. 36, 363–376. https://doi.org/10.1016/0168-

1923(86)90014-6 

Gevaert, A.I., Miralles, D.G., de Jeu, R.A.M., Schellekens, J., Dolman, A.J., 2018. Soil 

Moisture-Temperature Coupling in a Set of Land Surface Models. J. Geophys. Res. 

Atmos. 123, 1481–1498. https://doi.org/10.1002/2017JD027346 

Giorgi, F., 2008. A simple equation for regional climate change and associated uncertainty. 

J. Clim. 21, 1589–1604. https://doi.org/10.1175/2007JCLI1763.1 

Giorgi, F., 2005. Interdecadal variability of regional climate change: Implications for the 

development of regional climate change scenarios. Meteorol. Atmos. Phys. 89, 1–15. 

https://doi.org/10.1007/s00703-005-0118-y 

Gregory, J.M., Wigley, T.M.L., Jones, P.D., 1993. Application of Markov models to area-

average daily precipitation series and interannual variability in seasonal totals. Clim. 

Dyn. 8, 299–310. https://doi.org/10.1007/BF00209669 

Grübler, A., Nakicenovic, N., 2001. Identifying dangers in an uncertain climate. Nature 

412, 15–15. https://doi.org/10.1038/35083752 

Guidoum, A.C., 2015. Kernel Estimator and Bandwidth Selection for Density and its 

Derivatives: The kedd Package. 

Gunawardhana, L.N., Al-Rawas, G.A., Kazama, S., 2017. An alternative method for 

predicting relative humidity for climate change studies. Meteorol. Appl. 24, 551–559. 

https://doi.org/10.1002/met.1641 



294 
 
 

Haarsma, R.J., Roberts, M.J., Vidale, P.L., Catherine, A., Bellucci, A., Bao, Q., Chang, P., 

Corti, S., Fučkar, N.S., Guemas, V., Von Hardenberg, J., Hazeleger, W., Kodama, C., 

Koenigk, T., Leung, L.R., Lu, J., Luo, J.J., Mao, J., Mizielinski, M.S., Mizuta, R., 

Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., Von Storch, J.S., 2016. 

High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. 

Geosci. Model Dev. 9, 4185–4208. https://doi.org/10.5194/gmd-9-4185-2016 

Haile, G.G., Tang, Q., Hosseini-Moghari, S.M., Liu, X., Gebremicael, T.G., Leng, G., 

Kebede, A., Xu, X., Yun, X., 2020. Projected Impacts of Climate Change on Drought 

Patterns Over East Africa. Earth’s Futur. 8. https://doi.org/10.1029/2020EF001502 

Harrison, M., Waylen, P., 2000. A note concerning the proper choice for Markov model 

order for daily precipitation in the humid tropics: A case study in Costa Rica. Int. J. 

Climatol. 20, 1861–1872. https://doi.org/10.1002/1097-

0088(20001130)20:14<1861::AID-JOC577>3.0.CO;2-9 

Hashmi, M.Z., Shamseldin, A.Y., Melville, B.W., 2011. Comparison of SDSM and LARS-

WG for simulation and downscaling of extreme precipitation events in a watershed. 

Stoch. Environ. Res. Risk Assess. 25, 475–484. https://doi.org/10.1007/s00477-010-

0416-x 

Hassan, Z., Shamsudin, S., Harun, S., 2014. Application of SDSM and LARS-WG for 

simulating and downscaling of rainfall and temperature. Theor. Appl. Climatol. 116, 

243–257. https://doi.org/10.1007/s00704-013-0951-8 

He, Y., Manful, D., Warren, R., Forstenhäusler, N., Osborn, T.J., Price, J., Jenkins, R., 

Wallace, C., Yamazaki, D., 2022. Quantification of impacts between 1.5 and 4 °C of 

global warming on flooding risks in six countries. Clim. Change 170, 1–21. 

https://doi.org/10.1007/s10584-021-03289-5 

Herger, N., Sanderson, B.M., Knutti, R., 2015. Improved pattern scaling approaches for 

the use in climate impact studies. Geophys. Res. Lett. 42, 3486–3494. 

https://doi.org/10.1002/2015GL063569 

Hidalgo, H.G., Amador, J.A., Alfaro, E.J., Quesada, B., 2013. Hydrological climate 

change projections for Central America. J. Hydrol. 495, 94–112. 

https://doi.org/10.1016/j.jhydrol.2013.05.004 

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., 



295 
 
 

Kim, H., Kanae, S., 2013. Global flood risk under climate change. Nat. Clim. Chang. 

3, 816–821. https://doi.org/10.1038/nclimate1911 

Hosseini, R., Le, N., Zidek, J., 2011. Selecting a binary Markov model for a precipitation 

process. Environ. Ecol. Stat. 18, 795–820. https://doi.org/10.1007/s10651-010-0169-1 

Hulme, M., 1992. A 1951-80 global land precipitation climatology for the evaluation of 

general circulation models. Clim. Dyn. 7, 57–72. https://doi.org/10.1007/BF00209609 

Husak, G.J., Michaelsen, J., Funk, C., 2007. Use of the gamma distribution to represent 

monthly rainfall in Africa for drought monitoring applications. Int. J. Climatol. 27, 

935–944. https://doi.org/10.1002/joc.1441 

IPCC-TGICA, 1999. Guidelines on the Use of Scenario Data for Climate Impact and 

Adaptation Assessment. Version 1. Prepared by Carter, T.R., M. Hulme, and M. Lal, 

Intergovernmental Panel on Climate Change, Task Group on Scenarios for Climate 

Impact Assessment. 

IPCC, 2022. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution 

of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel 

on Climate Change. Cambridge University Press. In Press. 

IPCC, 2021a. The Physical Science Basis. Contribution of Working Group I to the Sixth 

Assessment Report of the Intergovernmental Panel on Climate Change, in: Masson-

Delmott, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, 

Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., 

Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B. (Eds.), Climate Change 

2021. Cambridge University Press, Cambridge, United Kingdom and New York, NY, 

USA. 

IPCC, 2021b. Annex II: Models [Gutiérrez, J M., A.-M. Tréguier (eds.)], in: Masson-

Delmott, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, 

Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., 

Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B. (Eds.), Climate Change 

2021: The Physical Science Basis. Contribution of Working Group I to the Sixth 

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge 

University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2087–

2138. https://doi.org/10.1017/9781009157896.016.2087 



296 
 
 

Jimoh, O.D., Webster, P., 1996. The optimum order of a Markov chain model for daily 

rainfall in Nigeria. J. Hydrol. 185, 45–69. https://doi.org/10.1016/S0022-

1694(96)03015-6 

Jones, C.D., Hughes, J.K., Bellouin, N., Hardiman, S.C., Jones, G.S., Knight, J., Liddicoat, 

S., O’Connor, F.M., Andres, R.J., Bell, C., Boo, K.O., Bozzo, A., Butchart, N., 

Cadule, P., Corbin, K.D., Doutriaux-Boucher, M., Friedlingstein, P., Gornall, J., 

Gray, L., Halloran, P.R., Hurtt, G., Ingram, W.J., Lamarque, J.F., Law, R.M., 

Meinshausen, M., Osprey, S., Palin, E.J., Parsons Chini, L., Raddatz, T., Sanderson, 

M.G., Sellar, A.A., Schurer, A., Valdes, P., Wood, N., Woodward, S., Yoshioka, M., 

Zerroukat, M., 2011. The HadGEM2-ES implementation of CMIP5 centennial 

simulations. Geosci. Model Dev. 4, 543–570. https://doi.org/10.5194/gmd-4-543-

2011 

Jones, D.I., Lorenz, M.H., 1986. An application of a Markov chain noise model to wind 

generator simulation. Math. Comput. Simul. 28, 391–402. 

https://doi.org/10.1016/0378-4754(86)90074-1 

Jones, P.D., Harpham, C., Burton, A., Goodess, C.M., 2016. Downscaling regional climate 

model outputs for the Caribbean using a weather generator. Int. J. Climatol. 36, 4141–

4163. https://doi.org/10.1002/joc.4624 

Jones, P.D., Harpham, C., Kilsby, C., Glenis, V., Burton, A., 2009. Projections of future 

daily climate for the UK from the Weather Generator, Weather. 

Jones, P.G., Thornton, P.K., 1993. A rainfall generator for agricultural applications in the 

tropics. Agric. For. Meteorol. 63, 1–19. https://doi.org/10.1016/0168-1923(93)90019-

E 

Jones, R.N., 2001. An environmental risk assessment/management framework for climate 

change impact assessments. Nat. Hazards 23, 197–230. 

https://doi.org/10.1023/A:1011148019213 

Katz, R.W., 1999. Extreme value theory for precipitation: Sensitivity analysis for climate 

change. Adv. Water Resour. 23, 133–139. https://doi.org/10.1016/S0309-

1708(99)00017-2 

Katz, R.W., 1981. On Some Criteria for Estimating the Order of a Markov Chain. 

Technometrics 23, 243–249. https://doi.org/10.1080/00401706.1981.10486293 



297 
 
 

Katz, R.W., Brown, B.G., 1992. Extreme events in a changing climate: Variability is more 

important than averages. Clim. Change 21, 289–302. 

https://doi.org/10.1007/BF00139728 

Katz, R.W., Parlange, M.B., 1998. Overdispersion Phenomenon in Stochastic Modeling of 

Precipitation. J. Clim. 11, 591–601. https://doi.org/10.1175/1520-

0442(1998)011<0591:OPISMO>2.0.CO;2 

Kennett, E.J., Buonomo, E., 2006. Methodologies of pattern scaling across the full range 

of RT2A GCM ensemble members. Met Office Hadley Centre for Climate Prediction 

and Research: Exeter, UK. 

Khanmohammadi, N., Rezaie, H., Behmanesh, J., 2021. The effect of autocorrelation on 

the diagnostic procedures. Meteorol. Atmos. Phys. 133, 565–577. 

https://doi.org/10.1080/03610926.2021.1971246 

Kilpeläinen, A., Kellomäki, S., Strandman, H., Venäläinen, A., 2010. Climate change 

impacts on forest fire potential in boreal conditions in Finland. Clim. Change 103, 

383–398. https://doi.org/10.1007/s10584-009-9788-7 

Kilsby, C.G., Jones, P.D., Burton, A., Ford, A.C., Fowler, H.J., Harpham, C., James, P., 

Smith, A., Wilby, R.L., 2007. A daily weather generator for use in climate change 

studies. Environ. Model. Softw. 22, 1705–1719. 

https://doi.org/10.1016/j.envsoft.2007.02.005 

Kim, Y.H., Min, S.K., Zhang, X., Sillmann, J., Sandstad, M., 2020. Evaluation of the 

CMIP6 multi-model ensemble for climate extreme indices. Weather Clim. Extrem. 

29, 100269. https://doi.org/10.1016/j.wace.2020.100269 

Kittel, T.G.F., Giorgi, F., Meehl, G.A., 1998. Intercomparsion of regional biases and 

doubled CO2-sensitivity of coupled atmosphere-ocean general circulation model 

experiments. Clim. Dyn. 14, 1–15. https://doi.org/10.1007/s003820050204 

Klein Tank, A.M.G., Wijngaard, J.B., Können, G.P., Böhm, R., Demarée, G., Gocheva, 

A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R., Bessemoulin, 

P., Müller-Westermeier, G., Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzgerald, D., 

Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., Van 

Engelen, A.F.V., Forland, E., Mietus, M., Coelho, F., Mares, C., Razuvaev, V., 

Nieplova, E., Cegnar, T., Antonio López, J., Dahlström, B., Moberg, A., Kirchhofer, 



298 
 
 

W., Ceylan, A., Pachaliuk, O., Alexander, L. V., Petrovic, P., 2002. Daily dataset of 

20th-century surface air temperature and precipitation series for the European Climate 

Assessment. Int. J. Climatol. 22, 1441–1453. https://doi.org/10.1002/joc.773 

Klutse, N.A.B., Ajayi, V.O., Gbobaniyi, E.O., Egbebiyi, T.S., Kouadio, K., Nkrumah, F., 

Quagraine, K.A., Olusegun, C., Diasso, U., Abiodun, B.J., Lawal, K., Nikulin, G., 

Lennard, C., Dosio, A., 2018. Potential impact of 1.5 °C and 2 °C global warming on 

consecutive dry and wet days over West Africa. Environ. Res. Lett. 13, 055013. 

https://doi.org/10.1088/1748-9326/aab37b 

Knutson, T.R., Camargo, S.J., Chan C.L.J., Emanuel. K., Ho, C-H., Kossin, J., Mohapatra, 

M., Satoh, M., Sugi, M., Walsh, K., Wu, L., 2019. Tropical Cyclones and Climate 

Change Assesment: Part I: Detection and Attribution. Bull. Am. Meteorol. Soc., 100, 

1987-2007. https://doi.org/10.1175/BAMS-D-18-0189.1 

Knutson, T.R., McBride, J.L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., 

Kossin, J.P., Srivastava, A.K., Sugi, M., 2010. Tropical cyclones and climate change. 

Nat. Geosci. https://doi.org/10.1038/ngeo779 

Köppen, W., 1900. Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren 

Beziehungen zur Pflanzenwelt. Geogr. Z. 6, 593–611. 

Kreienkamp, F., Philip, S.Y., Tradowsky, J.S., Kew, S.F., Lorenz, P., Arrighi, J., 

Belleflamme, A., Bettmann, T., Caluwaerts, S., Chan, S.C., Ciavarella, A., De Cruz, 

L., de Vries, H., Demuth, N., Ferrone, A., Fischer, E.M., Fowler, H.J., Goergen, K., 

Heinrich, D., Henrichs, Y., Lenderink, G., Kaspar, F., Nilson, E., L Otto, F.E., 2021. 

Rapid attribution of heavy rainfall events leading to the severe flooding in Western 

Europe during July 2021, Royal Netherlands Meteorological Institute (KNMI). 

Deutscher Wetterdienst. 

Larsen, G.A., Pense, R.B., 1982. Stochastic Simulation of Daily Climatic Data for 

Agronomic Models. Agron. J. 74, 510–514. 

https://doi.org/10.2134/agronj1982.00021962007400030025x 

Lee, J.-Y., Marotzke, J., Bala, G., L. Cao, S.C., Dunne, J.P., Engelbrecht, F., Fischer, E., 

Fyfe, J.C., Jones, C., Maycock, A., Mutemi, J., Ndiaye, O., Panickal, S., Zhou, T., 

2021. Future global climate: scenario-based projections and near-term information, 

in: Masson-Delmott, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., 

Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., 



299 
 
 

Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, R., Zhou, B. 

(Eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working 

Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate 

Change. Cambridge University Press, Cambridge. 

Lennartsson, J., Baxevani, A., Chen, D., 2008. Modelling precipitation in Sweden using 

multiple step markov chains and a composite model. J. Hydrol. 363, 42–59. 

https://doi.org/10.1016/j.jhydrol.2008.10.003 

Li, Y., Ye, W., Wang, M., Yan, X., 2009. Climate change and drought: a risk assessment 

of crop-yield impacts. Clim. Res. 39, 31–46. https://doi.org/10.3354/cr00797 

Lionello, P., Scarascia, L., 2018. The relation between climate change in the 

Mediterranean region and global warming. Reg. Environ. Chang. 18, 1481–1493. 

https://doi.org/10.1007/s10113-018-1290-1 

Loo, Y.Y., Billa, L., Singh, A., 2015. Effect of climate change on seasonal monsoon in 

Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci. 

Front. 6, 817–823. https://doi.org/10.1016/j.gsf.2014.02.009 

Luber, G., McGeehin, M., 2008. Climate Change and Extreme Heat Events. Am. J. Prev. 

Med. https://doi.org/10.1016/j.amepre.2008.08.021 

Lustenberger, A., Knutti, R., Fischer, E.M., 2014. The potential of pattern scaling for 

projecting temperature-related extreme indices. Int. J. Climatol. 34, 18–26. 

https://doi.org/10.1002/joc.3659 

Lydia, M., Suresh Kumar, S., Immanuel Selvakumar, A., Edwin Prem Kumar, G., 2016. 

Linear and non-linear autoregressive models for short-term wind speed forecasting. 

Energy Convers. Manag. 112, 115–124. 

https://doi.org/10.1016/j.enconman.2016.01.007 

Lynch, C., Hartin, C., Bond-Lamberty, B., Kravitz, B., 2017. An open-Access CMIP5 

pattern library for temperature and precipitation: Description and methodology. Earth 

Syst. Sci. Data 9, 281–292. https://doi.org/10.5194/essd-9-281-2017 

Maraun, D., Wetterhall, F., Ireson, A.M., Chandler, R.E., Kendon, E.J., Widmann, M., 

Brienen, S., Rust, H.W., Sauter, T., Themel, M., Venema, V.K.C., Chun, K.P., 

Goodess, C.M., Jones, R.G., Onof, C., Vrac, M., Thiele-Eich, I., 2010. Precipitation 

downscaling under climate change: Recent developments to bridge the gap between 



300 
 
 

dynamical models and the end user. Rev. Geophys. 48. 

https://doi.org/10.1029/2009RG000314 

Marengo, J.A., Jones, R., Alves, L.M., Valverde, M.C., 2009. Future change of 

temperature and precipitation extremes in south america as derived from the PRECIS 

regional climate modeling system. Int. J. Climatol. 29, 2241–2255. 

https://doi.org/10.1002/joc.1863 

Matalas, N.C., 1967. Mathematical assessment of synthetic hydrology. Water Resour. Res. 

3, 937–945. https://doi.org/10.1029/WR003i004p00937 

Matte, D., Larsen, M.A.D., Christensen, O.B., Christensen, J.H., 2019. Robustness and 

scalability of regional climate projections over Europe. Front. Environ. Sci. 7, 163. 

https://doi.org/10.3389/fenvs.2018.00163 

May, W., 2012. Assessing the strength of regional changes in near-surface climate 

associated with a global warming of 2°C. Clim. Change 110, 619–644. 

https://doi.org/10.1007/s10584-011-0076-y 

Mendelsohn, R., Emanuel, K., Chonabayashi, S., Bakkensen, L., 2012. The impact of 

climate change on global tropical cyclone damage. Nat. Clim. Chang. 2, 205–209. 

https://doi.org/10.1038/nclimate1357 

Milly, P.C.D., Wetherald, R.T., Dunne, K.A., Delworth, T.L., 2002. Increasing risk of 

great floods in a changing climate. Nature 415, 514–517. 

https://doi.org/10.1038/415514a 

Mitchell, J.F.B., Johns, T.C., Eagles, M., Ingram, W.J., Davis, R.A., 1999. Towards the 

construction of climate change scenarios. Clim. Change 41, 547–581. 

https://doi.org/10.1023/a:1005466909820 

Mitchell, T.D., 2003. Pattern Scaling. An Examination of the Accuracy of the Technique 

for Describing Future Climates. Clim. Change 60, 217–242. 

https://doi.org/10.1023/A:1026035305597 

Mohammadi, K., Goudarzi, N., 2018. Study of inter-correlations of solar radiation, wind 

speed and precipitation under the influence of El Niño Southern Oscillation (ENSO) 

in California. Renew. Energy 120, 190–200. 

https://doi.org/10.1016/j.renene.2017.12.069 



301 
 
 

Morice, C.P., Kennedy, J.J., Rayner, N.A., Winn, J.P., Hogan, E., Killick, R.E., Dunn, 

R.J.H., Osborn, T.J., Jones, P.D., Simpson, I.R., 2021. An Updated Assessment of 

Near-Surface Temperature Change From 1850: The HadCRUT5 Data Set. J. 

Geophys. Res. Atmos. 126, e2019JD032361. https://doi.org/10.1029/2019JD032361 

Mueller, B., Zhang, X., Zwiers, F.W., 2016. Historically hottest summers projected to be 

the norm for more than half of the world’s population within 20 years. Environ. Res. 

Lett. 11, 044011. https://doi.org/10.1088/1748-9326/11/4/044011 

Murphy, J., 1999. An evaluation of statistical and dynamical techniques for downscaling 

local climate. J. Clim. 12, 2256–2284. https://doi.org/10.1175/1520-

0442(1999)012<2256:aeosad>2.0.co;2 

Nfaoui, H., Buret, J., Sayigh, A.A.M., 1996. Stochastic simulation of hourly average wind 

speed sequences in Tangiers (Morocco). Sol. Energy 56, 301–314. 

https://doi.org/10.1016/0038-092X(95)00103-X 

Nicks, A.D., Harp, J.F., 1980. Stochastic generation of temperature and solar radiation 

data. J. Hydrol. 48, 1–17. https://doi.org/10.1016/0022-1694(80)90062-1 

O’Neill, B.C., Kriegler, E., Riahi, K., Ebi, K.L., Hallegatte, S., Carter, T.R., Mathur, R., 

van Vuuren, D.P., 2014. A new scenario framework for climate change research: the 

concept of shared socioeconomic pathways. Clim. Change 122, 245–266. 

https://doi.org/10.1201/b20720-20 

O’Neill, B.C., Tebaldi, C., Van Vuuren, D.P., Eyring, V., Friedlingstein, P., Hurtt, G., 

Knutti, R., Kriegler, E., Lamarque, J.F., Lowe, J., Meehl, G.A., Moss, R., Riahi, K., 

Sanderson, B.M., 2016. The Scenario Model Intercomparison Project (ScenarioMIP) 

for CMIP6. Geosci. Model Dev. 9, 3461–3482. https://doi.org/10.5194/gmd-9-3461-

2016 

Ochola, W.O., Kerkides, P., 2003. A Markov chain simulation model for predicting critical 

wet and dry spells in Kenya: Analysing rainfall events in the kano plains. Irrig. Drain. 

52, 327–342. https://doi.org/10.1002/ird.94 

Ortega, G., Arias, P.A., Villegas, J.C., Marquet, P.A., Nobre, P., 2021. Present-day and 

future climate over central and South America according to CMIP5/CMIP6 models. 

Int. J. Climatol. 41, 6713–6735. https://doi.org/10.1002/joc.7221 

Osborn, T.J., 1997. Areal and point precipitation intensity changes: Implications for the 



302 
 
 

application of climate models. Geophys. Res. Lett. 24, 2829–2832. 

https://doi.org/10.1029/97GL02976 

Osborn, T.J., Wallace, C.J., Harris, I.C., Melvin, T.M., 2016. Pattern scaling using 

ClimGen: monthly-resolution future climate scenarios including changes in the 

variability of precipitation. Clim. Change 134, 353–369. 

https://doi.org/10.1007/s10584-015-1509-9 

Osborn, T.J., Wallace, C.J., Lowea, J.A., Bernie, D., 2018. Performance of pattern-scaled 

climate projections under high-end warming. Part I: Surface air temperature over 

land. J. Clim. 31, 5667–5680. https://doi.org/10.1175/JCLI-D-17-0780.1 

Parlange, M.B., Katz, R.W., 2000. An extended version of the Richardson model for 

simulating daily weather variables. J. Appl. Meteorol. 39, 610–622. 

https://doi.org/10.1175/1520-0450-39.5.610 

Pastén-Zapata, E., Jones, J.M., Moggridge, H., Widmann, M., 2020. Evaluation of the 

performance of Euro-CORDEX Regional Climate Models for assessing hydrological 

climate change impacts in Great Britain: A comparison of different spatial resolutions 

and quantile mapping bias correction methods. J. Hydrol. 584, 124653. 

https://doi.org/10.1016/j.jhydrol.2020.124653 

Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-

Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644. 

https://doi.org/10.5194/hess-11-1633-2007 

Peleg, N., Fatichi, S., Paschalis, A., Molnar, P., Burlando, P., 2017. An advanced 

stochastic weather generator for simulating 2-D high-resolution climate variables. J. 

Adv. Model. Earth Syst. 9, 1595–1627. https://doi.org/10.1002/2016MS000854 

Qian, B., Gameda, S., Hayhoe, H., 2008. Performance of stochastic weather generators 

LARS-WG and AAFC-WG for reproducing daily extremes of diverse Canadian 

climates. Clim. Res. 37, 17–33. https://doi.org/10.3354/cr00755 

Qian, B., Hayhoe, H., Gameda, S., 2005. Evaluation of the stochastic weather generators 

LARS-WG and AAFC-WG for climate change impact studies. Clim. Res. 29, 3–21. 

https://doi.org/10.3354/cr029003 

Racsko, P., Szeidl, L., Semenov, M., 1991. A serial approach to local stochastic weather 

models. Ecol. Modell. 57, 27–41. https://doi.org/10.1016/0304-3800(91)90053-4 



303 
 
 

Rajagopalan, B., Lall, U., Tarboton, D.G., 1997. Evaluation of kernel density estimation 

methods for daily precipitation resampling. Stoch. Hydrol. Hydraul. 11, 523–547. 

https://doi.org/10.1007/BF02428432 

Riahi, K., van Vuuren, D.P., Kriegler, E., Edmonds, J., O’Neill, B.C., Fujimori, S., Bauer, 

N., Calvin, K., Dellink, R., Fricko, O., Lutz, W., Popp, A., Cuaresma, J.C., KC, S., 

Leimbach, M., Jiang, L., Kram, T., Rao, S., Emmerling, J., Ebi, K., Hasegawa, T., 

Havlik, P., Humpenöder, F., Da Silva, L.A., Smith, S., Stehfest, E., Bosetti, V., Eom, 

J., Gernaat, D., Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G., 

Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J.C., Kainuma, M., Klimont, 

Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A., Tavoni, M., 

2017. The Shared Socioeconomic Pathways and their energy, land use, and 

greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 42, 

153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009 

Ribalaygua, J., Torres, L., Pórtoles, J., Monjo, R., Gaitán, E., Pino, M.R., 2013. 

Description and validation of a two-step analogue/regression downscaling method. 

Theor. Appl. Climatol. 114, 253–269. https://doi.org/10.1007/s00704-013-0836-x 

Richardson, C.W., 1981. Stochastic simulation of daily precipitation, temperature, and 

solar radiation. Water Resour. Res. 17, 182–190. 

https://doi.org/10.1029/WR017i001p00182 

Richardson, C.W., Wright, D.A., 1984. WGEN: A Model for Generating Daily Weather 

Variables. United States Dep. Agric. Agric. Res. Serv. ARS-8 83. 

Roberts, M.J., Camp, J., Seddon, J., Vidale, P.L., Hodges, K., Vannière, B., Mecking, J., 

Haarsma, R., Bellucci, A., Scoccimarro, E., Caron, L.P., Chauvin, F., Terray, L., 

Valcke, S., Moine, M.P., Putrasahan, D., Roberts, C.D., Senan, R., Zarzycki, C., 

Ullrich, P., Yamada, Y., Mizuta, R., Kodama, C., Fu, D., Zhang, Q., Danabasoglu, G., 

Rosenbloom, N., Wang, H., Wu, L., 2020. Projected Future Changes in Tropical 

Cyclones Using the CMIP6 HighResMIP Multimodel Ensemble. Geophys. Res. Lett. 

47, e2020GL088662. https://doi.org/10.1029/2020GL088662 

Roeckner, E., Bengtsson, L., Feichter, J., Lelieveld, J., Rodhe, H., 1999. Transient climate 

change simulations with a coupled atmosphere-ocean GCM including the 

tropospheric sulfur cycle. J. Clim. 12, 3004–3032. https://doi.org/10.1175/1520-

0442(1999)012<3004:TCCSWA>2.0.CO;2 



304 
 
 

Rummukainen, M., 2016. Added value in regional climate modeling. Wiley Interdiscip. 

Rev. Clim. Chang. 7, 145–159. https://doi.org/10.1002/wcc.378 

Rummukainen, M., 1997. Methods for statistical downscaling of GCM simulations. 

Reports Meteorololgy Climatol. 29. 

Ruosteenoja, K., Räisänen, P., 2013. Seasonal changes in solar radiation and relative 

humidity in europe in response to global warming. J. Clim. 26, 2467–2481. 

https://doi.org/10.1175/JCLI-D-12-00007.1 

Ruosteenoja, K., Tuomenvirta, H., Jylhä, K., 2007. GCM-based regional temperature and 

precipitation change estimates for Europe under four SRES scenarios applying a 

super-ensemble pattern-scaling method. Clim. Change 81, 193–208. 

https://doi.org/10.1007/s10584-006-9222-3 

Sahin, A.D., Sen, Z., 2001. First-order Markov chain approach to wind speed modelling. J. 

Wind Eng. Ind. Aerodyn. 89, 263–269. https://doi.org/10.1016/S0167-

6105(00)00081-7 

Salinger, M.J., 2005. Climate variability and change: Past, present and future - An 

overview. Increasing Clim. Var. Chang. 9–29. https://doi.org/10.1007/1-4020-4166-

7_3 

Santer, B.D., Wigley, T.M.L., Schlesinger, M.E., Mitchell, J.F.B., 1990. Developing 

climate scenarios from equilibrium GCM results. 

Savaresi, A., 2016. The Paris Agreement: A new beginning? J. Energy Nat. Resour. Law 

34, 16–26. https://doi.org/10.1080/02646811.2016.1133983 

Schoof, J.T., Pryor, S.C., 2008. On the proper order of Markov chain model for daily 

precipitation occurrence in the contiguous United States. J. Appl. Meteorol. Climatol. 

47, 2477–2486. https://doi.org/10.1175/2008JAMC1840.1 

Schwarz, G., 1978. Estimating the Dimension of a Model. Ann. Stat. 6, 461–464. 

https://doi.org/10.1214/aos/1176344136 

Semenov, M.A., 2008. Simulation of extreme weather events by a stochastic weather 

generator. Clim. Res. 35, 203–212. https://doi.org/10.3354/cr00731 

Semenov, M.A., Barrow, E.M., 2002. A Stochastic Weather Generator for Use in Climate 

Impact Studies. 



305 
 
 

Semenov, M.A., Barrow, E.M., 1997. Use of a stochastic weather generator in the 

development of climate change scenarios. Clim. Change 35, 397–414. 

https://doi.org/10.1023/A:1005342632279 

Semenov, M.A., Brooks, R., Barrow, E., Richardson, C., 1998. Comparison of the WGEN 

and LARS-WG stochastic weather generators for diverse climates. Clim. Res. 10, 95–

107. https://doi.org/10.3354/cr010095 

Seneviratne, S.I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Luca, A. Di, Ghosh, 

S., Iskandar, I., Kossin, J., S.Lewis, Otto, F., Pinto, I., M.Satoh, Vicente-Serrano, 

S.M., Wehner, M., Zhou, B., 2021. Weather and Climate Extreme Events in a 

Changing Climate, in: Masson-Delmott, V., Zhai, P., Pirani, A., Connors, S.L., Péan, 

C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, 

K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Waterfield, T., Yelekçi, O., Yu, 

R., Zhou, B. (Eds.), Climate Change 2021: The Physical Science Basis. Contribution 

of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel 

on Climate Change. Cambridge University Press, Cambridge and New York, NY, 

USA, pp. 1513–1766. https://doi.org/10.1029/2018GL080768 

Sentelhas, P.C., Gillespie, T.J., Santos, E.A., 2010. Evaluation of FAO Penman-Monteith 

and alternative methods for estimating reference evapotranspiration with missing data 

in Southern Ontario, Canada. Agric. Water Manag. 97, 635–644. 

https://doi.org/10.1016/j.agwat.2009.12.001 

Serenaldi, F., Kilsby, C.G., 2012. A modular class of multisite monthly rainfall generators 

for water resource management and impact studies. J. Hydrol. 464-465, 528-540. 

https://doi.org/10.1016/j.jhydrol.2012.07.043 

Serreze, M.C., Meier, W.N., 2019. The Arctic’s sea ice cover: trends, variability, 

predictability, and comparisons to the Antarctic. Ann. N. Y. Acad. Sci. 1436, 36–53. 

https://doi.org/10.1111/nyas.13856 

Shiogama, H., Stone, D.A., Nagashima, T., Nozawa, T., Emori, S., 2013. On the linear 

additivity of climate forcing-response relationships at global and continental scales. 

Int. J. Climatol. 33, 2542–2550. https://doi.org/10.1002/joc.3607 

Shrestha, A.K., Thapa, A., Gautam, H., 2019. Solar radiation, air temperature, relative 

humidity, and dew point study: Damak, Jhapa, Nepal. Int. J. Photoenergy 2019. 

https://doi.org/10.1155/2019/8369231 



306 
 
 

Skansi, M. de los M., Brunet, M., Sigró, J., Aguilar, E., Arevalo Groening, J.A., 

Bentancur, O.J., Castellón Geier, Y.R., Correa Amaya, R.L., Jácome, H., Malheiros 

Ramos, A., Oria Rojas, C., Pasten, A.M., Sallons Mitro, S., Villaroel Jiménez, C., 

Martínez, R., Alexander, L. V., Jones, P.D., 2013. Warming and wetting signals 

emerging from analysis of changes in climate extreme indices over South America. 

Glob. Planet. Change 100, 295–307. https://doi.org/10.1016/j.gloplacha.2012.11.004 

Smith, D.M., Screen, J.A., Deser, C., Cohen, J., Fyfe, J.C., García-Serrano, J., Jung, T., 

Kattsov, V., Matei, D., Msadek, R., Peings, Y., Sigmond, M., Ukita, J., Zhang, X., 

2019. The Polar Amplification Model Intercomparison Project (PAMIP) contribution 

to CMIP6: Investigating the causes and consequences of polar amplification. Geosci. 

Model Dev. 12, 1139–1164. https://doi.org/10.5194/gmd-12-1139-2019 

Soltani, A., Hoogenboom, G., 2003a. A statistical comparison of the stochastic weather 

generators WGEN and SIMMETEO. Clim. Res. 24, 215–230. 

https://doi.org/10.3354/cr024215 

Soltani, A., Hoogenboom, G., 2003b. Minimum data requirements for parameter 

estimation of stochastic weather generators. Clim. Res. 25, 109–119. 

https://doi.org/10.3354/cr025109 

Sörensson, A.A., Menéndez, C.G., Ruscica, R., Alexander, P., Samuelsson, P., Willén, U., 

2010. Projected precipitation changes in South America: A dynamical downscaling 

within CLARIS, in: Meteorologische Zeitschrift. pp. 347–355. 

https://doi.org/10.1127/0941-2948/2010/0467 

Sørland, S.L., Schär, C., Lüthi, D., Kjellström, E., 2018. Bias patterns and climate change 

signals in GCM-RCM model chains. Environ. Res. Lett. 13, 074017. 

https://doi.org/10.1088/1748-9326/aacc77 

Steinschneider, S., Brown, C., 2013. A semiparametric multivariate, multisite weather 

generator with low-frequency variability for use in climate risk assessments. Water 

Resour. Res. 49, 7205–7220. https://doi.org/10.1002/wrcr.20528 

Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, 

A., Xia, Y., Bex, V., Midgley, P.M., 2013. Climate change 2013 the physical science 

basis: Working Group I contribution to the fifth assessment report of the 

intergovernmental panel on climate change, Climate Change 2013 the Physical 

Science Basis: Working Group I Contribution to the Fifth Assessment Report of the 



307 
 
 

Intergovernmental Panel on Climate Change. 

https://doi.org/10.1017/CBO9781107415324 

Stott, P.A., Stone, D.A., Allen, M.R., 2004. Human contribution to the European heatwave 

of 2003. Nature 432, 610–614. https://doi.org/10.1038/nature03089 

Sun, Q., Zhang, X., Zwiers, F., Westra, S., Alexander, L. V., 2021. A global, continental, 

and regional analysis of changes in extreme precipitation. J. Clim. 34, 243–258. 

https://doi.org/10.1175/JCLI-D-19-0892.1 

Tebaldi, C., Arblaster, J.M., 2014. Pattern scaling: Its strengths and limitations, and an 

update on the latest model simulations. Clim. Change 122, 459–471. 

https://doi.org/10.1007/s10584-013-1032-9 

Tebaldi, C., Debeire, K., Eyring, V., Fischer, E., Fyfe, J., Friedlingstein, P., Knutti, R., 

Lowe, J., O’Neill, B., Sanderson, B., Van Vuuren, D., Riahi, K., Meinshausen, M., 

Nicholls, Z., Tokarska, K., Hurtt, G., Kriegler, E., Meehl, G., Moss, R., Bauer, S., 

Boucher, O., Brovkin, V., Yhb, Y., Dix, M., Gualdi, S., Guo, H., John, J., Kharin, S., 

Kim, Y.H., Koshiro, T., Ma, L., Olivié, D., Panickal, S., Qiao, F., Rong, X., 

Rosenbloom, N., Schupfner, M., Séférian, R., Sellar, A., Semmler, T., Shi, X., Song, 

Z., Steger, C., Stouffer, R., Swart, N., Tachiiri, K., Tang, Q., Tatebe, H., Voldoire, A., 

Volodin, E., Wyser, K., Xin, X., Yang, S., Yu, Y., Ziehn, T., 2021. Climate model 

projections from the Scenario Model Intercomparison Project (ScenarioMIP) of 

CMIP6. Earth Syst. Dyn. 12, 253–293. https://doi.org/10.5194/esd-12-253-2021 

Tebaldi, C., Knutti, R., 2018. Evaluating the accuracy of climate change pattern emulation 

for low warming targets. Environ. Res. Lett. 13, 055006. 

https://doi.org/10.1088/1748-9326/aabef2 

Tebaldi, C., Wehner, M.F., 2018. Benefits of mitigation for future heat extremes under 

RCP4.5 compared to RCP8.5. Clim. Change 146, 349–361. 

https://doi.org/10.1007/S10584-016-1605-5/TABLES/1 

Thom, H.C., 1958. A Note on the Gamma Distribution. Mon. Weather Rev. 86, 117–122. 

Tong, H., 1975. Determination of the Order of a Markov Chain by Akaike’s Information 

Criterion. J. Appl. Probab. 12, 488–497. 

Torres, R.R., Marengo, J.A., 2013. Uncertainty assessments of climate change projections 

over South America. Theor. Appl. Climatol. 112, 253–272. 



308 
 
 

https://doi.org/10.1007/s00704-012-0718-7 

Trenberth, K.E., 2011. Changes in precipitation with climate change. Clim. Res. 47, 123–

138. https://doi.org/10.3354/cr00953 

Trenberth, K.E., Dai, A., Van Der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R., 

Sheffield, J., 2014. Global warming and changes in drought. Nat. Clim. Chang. 

https://doi.org/10.1038/nclimate2067 

van Vuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, 

G.C., Kram, T., Krey, V., Lamarque, J.F., Masui, T., Meinshausen, M., Nakicenovic, 

N., Smith, S.J., Rose, S.K., 2011. The representative concentration pathways: An 

overview. Clim. Change 109, 5–31. https://doi.org/10.1007/s10584-011-0148-z 

Vautard, R., Gobiet, A., Sobolowski, S., Kjellström, E., Stegehuis, A., Watkiss, P., 

Mendlik, T., Landgren, O., Nikulin, G., Teichmann, C., Jacob, D., 2014. The 

European climate under a 2°C global warming. Environ. Res. Lett. 9, 034006. 

https://doi.org/10.1088/1748-9326/9/3/034006 

Vincent, L.A., Peterson, T.C., Barros, V.R., Marino, M.B., Rusticucci, M., Carrasco, G., 

Ramirez, E., Alves, L.M., Ambrizzi, T., Berlato, M.A., Grimm, A.M., Marengo, J.A., 

Molion, L., Moncunill, D.F., Rebello, E., Anunciação, Y.M.T., Quintana, J., Santos, 

J.L., Baez, J., Coronel, G., Garcia, J., Trebejo, I., Bidegain, M., Haylock, M.R., 

Karoly, D., 2005. Observed trends in indices of daily temperature extremes in South 

America 1960-2000. J. Clim. 18, 5011–5023. https://doi.org/10.1175/JCLI3589.1 

Viney, N.R., Bates B.C., 2004, It never rains on Sunday: the prevalence and implications 

of untagged multi-day rainfall accumulations in the Australian high quality data set. 

Int. J. Climatol. 24, 1171-1192. https://doi.org/10.1002/joc.1053 

Vlček, O., Huth, R., 2009. Is daily precipitation Gamma-distributed? Adverse effects of an 

incorrect use of the Kolmogorov-Smirnov test. Atmos. Res. 93, 759–766. 

https://doi.org/10.1016/j.atmosres.2009.03.005 

Vogel, M.M., Hauser, M., Seneviratne, S.I., 2020. Projected changes in hot, dry and wet 

extreme events’ clusters in CMIP6 multi-model ensemble. Environ. Res. Lett. 

https://doi.org/10.1088/1748-9326/ab90a7 

Vrac, M., Naveau, P., 2007. Stochastic downscaling of precipitation: From dry events to 

heavy rainfalls. Water Resour. Res. https://doi.org/10.1029/2006WR005308 



309 
 
 

Vrac, M., Stein, M., Hayhoe, K., 2007. Statistical downscaling of precipitation through 

nonhomogeneous stochastic weather typing. Clim. Res. 34, 169–184. 

https://doi.org/10.3354/cr00696 

Vu, T.M., Mishra, A.K., 2020. Performance of multisite stochastic precipitation models for 

a tropical monsoon region. Stoch. Environ. Res. Risk Assess. 34, 2159–2177. 

https://doi.org/10.1007/s00477-020-01871-4 

Wallis, T.W.R., Griffiths, J.F., 1997. Simulated meteorological input for agricultural 

models. Agric. For. Meteorol. 88, 241–258. https://doi.org/10.1016/S0168-

1923(97)00035-X 

Wang, P., Goggins, W.B., Chan, E.Y.Y., 2018. A time-series study of the association of 

rainfall, relative humidity and ambient temperature with hospitalizations for rotavirus 

and norovirus infection among children in Hong Kong. Sci. Total Environ. 643, 414–

422. https://doi.org/10.1016/j.scitotenv.2018.06.189 

Wilby, R.L., Clifford, N.J., De Luca, P., Harrigan, S., Hillier, J.K., Hodgkins, R., Johnson, 

M.F., Matthews, T.K.R., Murphy, C., Noone, S.J., Parry, S., Prudhomme, C., Rice, 

S.P., Slater, L., Smith, K.A., Wood, P.J., 2017. The 'dirty dozen' of freshwater 

science: detecting then reconciling hydrological data biases and errors. WIREs Wat. 

4, e1209. https://doi.org/10.1002/wat2.1209 

Wilby, R.L., Conway, D., Jones, P.D., 2002a. Prospects for downscaling seasonal 

precipitation variability using conditioned weather generator parameters. Hydrol. 

Process. 16, 1215–1234. https://doi.org/10.1002/hyp.1058 

Wilby, R.L., Dawson, C.W., Barrow, E.M., 2002b. SDSM - A decision support tool for the 

assessment of regional climate change impacts. Environ. Model. Softw. 17, 145–157. 

https://doi.org/10.1016/s1364-8152(01)00060-3 

Wilby, R.L., Wigley, T.M.L., 2002, Future changes in the distribution of daily 

precipitation totals across North America. Geophys. Res. Lett. 29, 39-1. 

https://doi.org/10.1029/2001GL013048   

Wilby, R.L., Wigley, T.M.L., 1997. Downscaling general circulation model output: A 

review of methods and limitations. Prog. Phys. Geogr. 

https://doi.org/10.1177/030913339702100403 

Wilks, D.S., Wilby, R.L., 1999. The weather generation game: a review of stochastic 



310 
 
 

weather models. Prog. Phys. Geogr. 23, 329-357. 

https:/doi.org/10.1177/030913339902300302 

Wilks, D.S., 2011. Statistical methods in the atmospheric sciences, Academic Press. 

Wilks, D.S., 2010. Use of stochastic weather generators for precipitation downscaling. 

Wiley Interdiscip. Rev. Clim. Chang. 1, 898–907. https://doi.org/10.1002/wcc.85 

Wilks, D.S., 1999a. Multisite downscaling of daily precipitation with a stochastic weather 

generator. Clim. Res. 11, 125–136. https://doi.org/10.3354/cr011125 

Wilks, D.S., 1999b. Interannual variability and extreme-value characteristics of several 

stochastic daily precipitation models. Agric. For. Meteorol. 93, 153–169. 

https://doi.org/10.1016/S0168-1923(98)00125-7 

Williams, A.P., Abatzoglou, J.T., Gershunov, A., Guzman-Morales, J., Bishop, D.A., 

Balch, J.K., Lettenmaier, D.P., 2019. Observed Impacts of Anthropogenic Climate 

Change on Wildfire in California. Earth’s Futur. 7, 892–910. 

https://doi.org/10.1029/2019EF001210 

Wilson Kemsley, S., Osborn, T.J., Dorling, S.R., Wallace, C., Parker, J., 2021. Selecting 

Markov chain orders for generating daily precipitation series across different Köppen 

climate regimes. Int. J. Climatol. 41, 6223–6237. https://doi.org/10.1002/joc.7175 

Wójcik, R., Pilarski, M., Miętus, M., 2014. Statistical downscaling of probability density 

function of daily precipitation on the Polish coast. Meteorol. Hydrol. Water Manag. 2, 

27–36. https://doi.org/10.26491/mhwm/21590 

Wood, A.W., Leung, L.R., Sridhar, V., Lettenmaier, D.P., 2004. Hydrologic implications 

of dynamical and statistical approaches to downscaling climate model outputs. Clim. 

Change 62, 189–216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e 

Wooten, R.D., 2011. Statistical Analysis of the Relationship Between Wind Speed, 

Pressure and Temperature. J. Appl. Sci. 11, 2712–2722. 

Wu, J., Gao, X., 2020. Present day bias and future change signal of temperature over 

China in a series of multi-GCM driven RCM simulations. Clim. Dyn. 54, 1113–1130. 

https://doi.org/10.1007/s00382-019-05047-x 

Wu, P., Wood, R., Ridley, J., Lowe, J., 2010. Temporary acceleration of the hydrological 

cycle in response to a CO 2 rampdown. Geophys. Res. Lett. 37, 12705. 



311 
 
 

https://doi.org/10.1029/2010GL043730 

Yan, Z., Bate, S., Chandler, R.E., Isham, V., Wheater, H., 2002. An analysis of daily 

maximum wind speed in northwestern Europe using generalized linear models. J. 

Clim. 15, 2073–2088. https://doi.org/10.1175/1520-

0442(2002)015<2073:AAODMW>2.0.CO;2 

Yaoming, L., Qiang, Z., Deliang, C., 2004. Stochastic modeling of daily precipitation in 

China. J. Geogr. Sci. 14, 417–426. https://doi.org/10.1007/bf02837485 

Zhu, J., Wang, S., Fischer, E.M., 2021. Increased occurrence of day–night hot extremes in 

a warming climate. Clim. Dyn. https://doi.org/10.1007/s00382-021-06038-7 

Ziehn, T., Chamberlain, M.A., Law, R.M., Lenton, A., Bodman, R.W., Dix, M., Stevens, 

L., Wang, Y.P., Srbinovsky, J., 2020. The Australian Earth System Model: ACCESS-

ESM1.5. J. South. Hemisph. Earth Syst. Sci. 70, 193–214. 

https://doi.org/10.1071/ES19035 

Zscheischler, J., Seneviratne, S.I., 2017. Dependence of drivers affects risks associated 

with compound events. Sci. Adv. 3. https://doi.org/10.1126/sciadv.1700263 

Zscheischler, J., Westra, S., Van Den Hurk, B.J.J.M., Seneviratne, S.I., Ward, P.J., Pitman, 

A., Aghakouchak, A., Bresch, D.N., Leonard, M., Wahl, T., Zhang, X., 2018. Future 

climate risk from compound events. Nat. Clim. Chang. 

https://doi.org/10.1038/s41558-018-0156-3 

 


