
Hormone Replacement Therapy and its Long-term Impact

on the Survival of Women in the United Kingdom

Nurunnahar Akter

Doctor of Philosophy

University of East Anglia

School of Computing Sciences

December 2022

c© This copy of the thesis has been supplied on the condition that anyone

who consults it is understood to recognise that its copyright rests with the author

and that use of any information derived there from must be in accordance with

current UK Copyright Law. In addition, any quotation or extract must include

full attribution.



Abstract

Hormone replacement therapy (HRT) is an effective treatment for relieving symp-

toms of menopause. However, because of some adverse health consequences, in-

cluding an increased risk of breast cancer, many symptomatic women are cautious

about using HRT. Untreated menopausal symptoms may deteriorate quality of

life, increase the risk of developing other health problems, and place additional

pressure on the healthcare system. Past studies were mostly based on survey or

register data, whereas data from routine primary care may provide greater in-

sights about the effects of HRT in the general population. While previous studies

mainly investigated the impact of HRT on morbidities, all-cause mortality may

summarise the net benefits and risks.

This study investigated the long-term hazards of all-cause mortality as-

sociated with estrogen-only and combined (combination of estrogen and pro-

gesterone) HRT using a large electronic primary care records from The Health

Improvement Network database. 105,199 HRT users who started the treatment

at ages 46 to 65 and 224,643 matched non-users were selected for survival mod-

elling. The hazards of all-cause mortality associated with HRT were estimated

by a newly developed Weibull-Double-Cox model adjusting for important med-

ical, lifestyle, and socio-demographic factors. Multilevel multiple imputation

techniques were used to deal with missing data.

The length of study follow-up was up to 32 years (1984−2017), with an

average follow-up per participants was almost 14 years. During study follow-

up, a total of 21,751 women died, of whom 6,329 were HRT users, and 15,422

non-users. This research found that estrogen only HRT has no long-term impact

on mortality at any age, but combined HRT reduces the hazards of death from

all-causes. Furthermore, starting combined HRT between the ages of 51 to 55

reduces the hazards of mortality the most. The findings of this study may help

women in making an informed choice, and further educating the clinicians and

resource planners.
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Chapter 1

Introduction

This chapter first presents the background of hormone replacement therapy

(HRT) and then it explains the rationale for developing survival models to es-

timate the impact of HRT on longevity and morbidity in women population at

postmenopausal age. After that, the aims and objectives of this study are listed.

Next, the contributions of this study to HRT research are discussed. Finally, an

outline of this thesis is provided.

1.1 Background

Most women experience troubling menopausal symptoms as they approach meno-

pause due to a sharp fall in female sex hormones estrogen/oestrogen and pro-

gesterone. Postmenopausal women are more likely to develop life-threatening
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conditions such as osteoporosis, cardiovascular disease, and neurodegenerative

disorders as a result of these hormone deficiencies (Christiansen, 1996; Kawecka-

Jaszcz et al., 2002; Zárate et al., 2017). Hormone replacement therapy has been

used as an effective treatment in ameliorating menopausal symptoms since its

initiation in 1960s (National Institute for Health and Care Excellence, 2019;

Cagnacci and Venier, 2019). Other known benefits of HRT include slowed bone

loss, reduced cardiovascular disease, and improved quality of life after menopause

(Grady et al., 1992; Grodstein et al., 1994; Folsom et al., 1995; Persson et al.,

1996; Pentti et al., 2006). However, the actual risks and benefits of HRT have

long been disputed, owing to inconsistencies in results between observational

studies and randomised controlled trials, and more specifically, to the possible

increased risks of breast cancer. Although numerous studies have been conducted

in the past to investigate the effects of HRT, the majority of them focused on

either morbidity (Grady et al., 1995; Hodis et al., 2003; Margolis et al., 2004;

Beral et al., 2007) or cause-specific mortality (Persson et al., 1996; Schuetz et al.,

2007; Jang et al., 2019). The impact of HRT on the hazards of all-cause mortality

summarises the net measurement of the risks and benefits, but this has received

far less attention in previous studies.

The main aims of this study were to estimate the effect of estrogen-only

and combined HRT on the hazards of overall and age-specific all-cause mortality

in women using routinely collected primary care data in the United Kingdom

(UK).
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1.2 Rationale

Each year, approximately 1.5 million women in the UK suffer from moderate

to severe menopausal symptoms. Currently, there are around 13 million women

who are either in peri-menopausal or menopausal transition age, accounting for

one third of the entire UK female population (Menopause support UK, 2021).

Although HRT is an effective treatment for soothing menopausal symptoms and

is also protective against some other chronic medical conditions, due to the un-

certainty of its impact, many symptomatic women are left untreated. Untreated

menopausal symptoms increase the risks of developing other health conditions

and eventually put an additional burden on the resources of the health care sec-

tor, budget, and time. Postmenopausal women are not only at high risk of devel-

oping osteoporosis, cardiovascular disease, and neurological disease, these condi-

tions are also the leading cause of death in women in the UK (Climént-Palmer

and Spiegelhalter, 2019). According to the International Longevity Centre UK

(ILCUK, 2010), the total cost for hospital stays to the National Health Services

(NHS) for osteoporotic women is more than £400 million per year. Deaths from

osteoporotic fractures in women is approximately 6,000 each year in the UK (IL-

CUK, 2010). The burden of neurodegenerative and cardiovascular disease is also

considerable and it is increasing over time (ONS UK, 2019).

Longevity prospects in a population can be projected based on their co-

morbidities, treatments histories, lifestyle choices, and socio-economic status.

3



Survival models are useful for estimating the impact of medical conditions, treat-

ments or other risk factors on mortality and morbidity. A well developed survival

model, which ideally consists of a wide range of risk factors that influence the

variation in survival, may accurately forecast longevity. A more precise esti-

mates of survival and a better understanding of its variation can help to allocate

resources in a strategic way among patients, hospitals, and medical practices.

Health professionals also benefit from the survival modelling because it can help

to tailor the treatments according to the individual patient’s needs, and individ-

uals can gain knowledge about how certain medical conditions, treatments, and

lifestyle choices may affect their long-term survival prospects.

Accurate estimates of longevity prospects and understanding their vari-

ations are also important for many other organisations, such as insurance com-

panies, government, and pension fund providers. Actuaries are interested in

survival models because they provide insights on survival variations and hence

can be used for calculating the present value of the annuity of a pension fund, or

pricing of the insurance products. The life insurance companies have to continue

providing a payment to their clients until their death, and thereby it is of great

importance to them to estimate the life expectancy as accurately as possible. If

life expectancy is overestimated, clients pay lower insurance premiums for life

insurance, causing the insurers to lose money. On the other hand, if life ex-

pectancy is underestimated, clients pay more for life insurance, and the insurers

gain profits. A well-developed survival model can provide more insight about the
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factors affecting longevity, and these factors should be considered when pricing

annuities and other insurance products in order to set better annuity prices.

Survival models are also important for the government because they can

assist in making informed decisions regarding taxation, state pensions, and na-

tional insurance rates. Life expectancy may rise due to the advances in treat-

ments and healthy lifestyle choices, or it may fall over time due to disease out-

breaks. In the UK, the average life expectancy for both men and women has

been projected to increase (Office for National Statistics, 2018), meaning an in-

creased dependency of the pensioners on the workforce. This increased reliance

places a strain on the government’s budget for welfare spending while collecting

less revenue. By identifying age-specific risk factors for health and mortality,

the government can predict the expected age and duration of retirement, which

in turn can inform the expected participation in the workforce at each age, the

reasonable age of retirement for the population, as well as the expected depen-

dency by the retired. It is, therefore, crucial for the government to identify the

accurate survival trends in the general population and to understand the sur-

vival variation in order to sustain the economy. A well developed and up-to-date

survival model can provide information about the risk factors that influence mor-

tality direction over time, allowing for better allocation of government funds and,

as a result reducing pressure on welfare spending, increasing tax revenues, and

boosting pension savings.

Previous published survival models estimated the impact of HRT on the
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risks of mortality or morbidity, mostly using self-reported survey data. Ran-

domised control trials of longevity are seldom conducted as it involves long time

and high expenses. Furthermore, clinical trials are often restricted to a relatively

small number of participants. On the other hand, the increasing volume of elec-

tronic health data from UK primary care now allows for long-term follow-up of

thousands of patients and investigation of a wide range of risk factors. Mor-

tality registration is more up to date in primary care as general practitioners

(GPs) are informed if their patients died. These digital records are becoming

an invaluable resource for researchers, enabling them to assess the overall risks

of mortality or morbidity in various populations. Although the number of stud-

ies using electronic primary care records is increasing (Springate et al., 2014),

to date, no other published study has modelled the risks of all-cause mortality

associated with HRT using UK primary care data, and therefore there is a need

to modelling the impact of HRT using a large scale primary care data.

1.3 Existing survival models of HRT

Numerous survival models have been developed in the past to investigate the risks

and benefits of hormone replacement therapy (NICE, 2021). Majority of these

models estimated the risks of morbidity and cause-specific mortality associated

with HRT (Brenner et al., 1994; Christiansen, 1996; Ettinger et al., 1996; Cass

and Runowicz, 1998; Zandi et al., 2002; Hodis et al., 2003; Schuetz et al., 2007;
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on the Evaluation of Carcinogenic Risks to Humans et al., 2007; Freeman and

Sherif, 2007; Schierbeck et al., 2012), and only a small number of studies focused

on the risks of overall mortality (Hunt et al., 1990; Folsom et al., 1995; Manson

et al., 2017; Malek et al., 2019). However, there were differences in study design,

sample sizes, data collection method, and model development procedure in these

studies. In this section, a brief overview of previous HRT models is provided,

and some research gaps that were identified from those models are mentioned.

These studies and their findings will be discussed in greater detail in Chapter 2.

HRT was first made available in 1960s in the form of estrogen-only therapy,

and it was first prescribed in the UK in 1965 (Women’s Health Concern, 2017).

In 1966, a best-selling book by Robert A. Wilson inspired many menopausal

and postmenopausal women in western countries to receive estrogen therapy in

order to retain their femininity and increase life expectancy (Wilson, 1966). In

the 1970s, two small observational studies discovered that taking estrogen-only

HRT increased the risk of endometrial cancer (cancer of the lining of the uterus),

and the authors recommended that women with an intact uterus should receive

combined hormone therapy (Ziel and Finkle, 1975; Smith et al., 1975), which was

later supported by a number of larger studies (Persson et al., 1996; Collaborators

et al., 2005). Since then combined HRT was offered to women with a uterus, and

estrogen-only HRT to women without a uterus.

The Heart and Estrogen/Progestin Replacement Study (HERS) was the

first randomised, double blind, placebo-controlled trial that evaluated the im-
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pact of combined HRT on prevention of recurring coronary heart disease (CHD)

in American postmenopausal women (Grady et al., 1998), and found a reduced

CHD mortality in HRT users. In 1993, the Women’s Health Initiative (WHI)

set up a randomised, placebo-controlled trial in the United States (US) to ex-

amine the risks and benefits of both estrogen-only and combined HRT among

postmenopausal women (Women’s Health Concern, 2017). The Million Women

Study (MWS), a large observational study, was set up in the UK in 1996 to in-

vestigate the effects of HRT on breast cancer incidence and mortality. More than

a million women in the UK had signed up for the MWS (Emily et al., 2003). A

publication from the WHI trial in 2002 reported an increased incidence of breast

cancer in combined HRT users (Rossouw et al., 2002). In 2003, MWS also found

increased risks of breast cancer in both estrogen-only and combined HRT users

(Emily et al., 2003). The findings of these two major studies raised concerns

about the safety of HRT use, and as a result of this, the number of HRT users

dropped from two million to less than one million in the UK between 2002−2007

(Women’s Health Concern, 2017). However, a recent analysis of WHI trial found

no association of HRT with the risks of overall, cardiovascular, or total cancer

mortality during a cumulative follow-up of 18 years (Manson et al., 2017).

A Bayesian meta-analysis of 19 randomised controlled trials and 8 obser-

vational studies on HRT and overall mortality in 228,171 postmenopausal women

of mean age 55 found a 28% lower risk of mortality in HRT users (Salpeter et al.,

2009). Two separate meta-analyses on HRT and all-cause mortality performed
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by Boardman et al. (2015) and Benkhadra et al. (2015), and also Manson et al.

(2017) study from the WHI trial found no impact of HRT on overall mortality.

On the other hand, Malek et al. (2019) reported a 31% increased risk of death

from all-cause in postmenopausal US women who took HRT but experienced

menopause at the age of 45 years on average.

The effect of HRT on survival prospects was likely to be wrongly esti-

mated in past studies as majority of them did not account for other risk factors.

Existing clinical conditions have a strong influence on mortality and morbidity,

so adjusting for them in the model is important for obtaining a more accurate

estimate of the effect size. Some studies may have introduced a bias in favour

of HRT users due to the inclusion of healthy users in comparison to non-users

(Folsom et al., 2004; Grodstein et al., 1997). Only two studies have investigated

the individual effects of estrogen-only and combined formulations on the risk of

all-cause mortality (Stram et al., 2011; Manson et al., 2017): one found a lower

risk of mortality in combined HRT users, while the other found no association

with both formulations. However, Manson et al. (2017) results from the WHI

trial may not be generalisable to all users as each trial in WHI evaluated a single

dose, formulation, and route of administration of HRT. Other limitations of pre-

vious research include a lack of age-specific information on the use of HRT and

its long-term impact on all-cause mortality (Grodstein et al., 1999; Pentti et al.,

2006; Schierbeck et al., 2012). Furthermore, little information about missing

data and the time-varying hazards was provided in past studies.
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This study aims to fill some of the research gaps mentioned above by

developing survival models using routinely collected primary care data. The

goals and objectives of this HRT research are outlined in the next section.

1.4 Research aims and objectives

The primary goals of this study are to investigate the effects of estrogen-only

and combined HRT on the hazards of all-cause mortality in UK women while

adjusting for various important risk factors, and also to analyse how age at start-

ing HRT affects mortality. The Health Improvement Network (THIN) database

from UK primary care is used to develop survival models. The research focuses

on survival prospects of women who started HRT for the first time at the age

of 46 years or older, in comparison to their matched non-users of HRT. The

main objectives are to develop population-based survival models addressing the

following goals:

1. Review existing HRT models for longevity and morbidity to identify re-

search gaps and key risk factors that affect longevity and morbidity.

2. Investigate the overall survival benefits or risks associated with different

types of HRT while adjusting for other important risk factors.

3. Investigate the effects of initiating HRT at different ages on survival while

controlling for other risk variables.
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4. Estimate the overall effect and the effect of starting age of HRT on the

hazards of death from all-causes using complete data (patients with com-

plete records only), as well as full data (all patients including those with

missing records) using multiple imputation techniques.

5. Investigate how health, lifestyle choices, socioeconomic factors and their

interactions, and also clustering by general practice affect mortality.

6. Investigate the risks of developing various chronic medical conditions in the

presence or absence of HRT treatment during follow-up.

7. Develop survival models to calculate life expectancy and the differences in

life expectancy between subpopulations with various characteristics.

1.5 Research contribution

This study contributes to existing HRT research by developing survival models

that estimate the effect of HRT on women’s survival as well as the variation in

survival due to the influence of various risk factors, and estimate the effect of

starting HRT at different ages. This research also contributes to actuarial science

by developing a model for calculating women’s life expectancy of postmenopausal

women.

The newly developed survival models address both the issue of underes-

timating the effects of HRT in incidence study designs due to the absence of
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controls, as well as address the issue of overestimating the effects of HRT in

prevalence study designs due to the adjustment by a limited number of risk fac-

tors. This study developed well fitted survival models using electronic primary

care data that have a long follow-up and retain information on a wide range of

risk factors for both cases and controls. Thus this study was able to adjust for

a variety of important risk variables such as comorbidities, treatments, lifestyle

and socio-economic factors, and also to examine the interaction effects within

and between all types of risk factors. As a result, the newly developed models

explored the survival variations in greater detail.

The primary care database used for this study is representative of the UK

population (Blak et al., 2011). Thus the newly developed survival models are

more generalisable than previous models that used survey or clinical trial data,

which in turn make these models more applicable in the clinical and actuarial

fields. This study will help women and their physicians in making an informed

decision about whether to start or continue HRT. This study also will help the

actuaries and government bodies with annuity pricing, and financial planning.

The findings of this study were published in the peer-reviewed medical

journal, BJOG: An International Journal of Obstetrics and Gynaecology (Akter

et al., 2022).
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1.6 Thesis outline

This section provides outline of the chapters in the thesis.

Chapter 2 starts with a brief introduction on HRT, including its use and

classification. Then a review of existing HRT research is presented. The first

part of literature review discusses the major studies that investigated the impact

of HRT, and then it presents the findings from major studies on mortality and

morbidity.

Chapter 3 begins by introducing different types of clinical data and ex-

plaining the importance of primary care data in building survival models. Then

it describes the structure of The Health Improvement Network database, and

the patient selection procedures from the database.

Chapter 4 explains the statistical methodologies for survival analyses.

First, it describes the various types of model assumptions used in survival anal-

yses. After that, the processes for parameter estimation and model selection

in a semi-parametric Cox regression model are described. The model evaluation

and validation procedures are then discussed. A Weibull-Double-Cox model that

was used to handle the non-proportionality of the hazards in the Cox model is

introduced. Finally, the methods for dealing with missing data are described.

Chapter 5 presents the distribution and characteristics of the study pop-

ulation extracted from the THIN database. The prevalence of the baseline con-
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ditions in the extracted data and its comparison to the prevalence in the UK

general population are discussed in this chapter.

Chapter 6 presents the model development procedures to estimate the ad-

justed hazards of all-cause mortality associated with estrogen-only and combined

HRT in the entire age group and the subgroups by first HRT treatment. The

goodness-of-fit of the models is also assessed and validated.

Chapter 7 describes the models developed to estimate the probability and

the hazards of developing various medical conditions during follow up in the

presence and absence of HRT. First, it presents the prevalence of the medical

conditions that the study participants were diagnosed with at follow-up, then it

presents the Kaplan-Meier survival analysis for estimating survival probabilities

in patients by their HRT treatment status. Then univariate Cox proportional

models are presented that are fitted to estimate the hazards of developing selected

medical conditions at follow-up.

Chapter 8 describes a model developed for calculating patient’s life ex-

pectancy. First, the model implementation procedures are explained and the

results from the model are presented. Then, the calculation of life expectancy

based on the model parameter estimates are explained. Finally, some scenario-

based life expectancies for women at postmenopausal ages are presented.

Chapter 9 summarises the findings of this study, its strengths and limita-

tions, and draws a conclusion of this thesis.
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Chapter 2

Review of hormone replacement

therapy

Chapter 1 provides the background of HRT and explains the rationale for de-

veloping HRT models to estimate women’s longevity after menopause, and the

aims and objectives of this study. This chapter first introduces HRT treatments

for menopausal symptoms and then it presents research findings from previous

studies. Sections 2.1 and 2.2 discuss menopause and its symptoms, as well as

diagnosis and treatments for menopausal symptoms. Section 2.3 describes the

design and settings of some major HRT studies that investigated its risks and

benefits. Results from these major studies as well as some other large studies

are described in Section 2.4 and 2.5, respectively.
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2.1 Menopause, its symptoms and treatments

Menopause is a natural process in women’s bodies that occurs when the menstru-

ation cycle stops, and as a result women are no longer able to become pregnant.

Usually, it happens to healthy women at the age between 50 to 55 years, but it can

occur early due to premature ovarian insufficiency, surgical bilateral oophorec-

tomy, chemotherapy or many other reasons. The average age for women to

reach menopause in the UK is 51 years (National Institute for Health and Care

Excellence, 2019). There are three stages of menopause: perimenopause/pre-

menopause, menopause, and post-menopause. In perimenopause stage, the men-

struation cycle starts to become irregular, and after several consecutive months

of irregular periods, it completely stops and eventually women reach menopausal

stage. Most women going through menopause suffer from various menopausal

symptoms. Some of the symptoms can be severe and have significant impact on

daily activities. In the medical literature, menopause is also known as climac-

teric.

Women going through menopause experience a wide range of symptoms,

which may vary greatly from woman to woman. These symptoms usually start

from the perimenopausal stage and can persist up to postmenopausal stage.

Common symptoms include hot flashes, night sweats, mood swings, sleep dis-

turbances, vaginal dryness, lack of libido, headache, palpitation, and urinary

incontinence. Among these, hot flashes and night sweating are commonly faced
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by most women, and these symptoms are collectively called vasomotor symp-

toms. Around 80% of women in the western countries are affected by these

menopause-related symptoms (Freeman and Sherif, 2007).

2.1.1 Diagnosis of menopause

Usually, the signs and symptoms of menopause are sufficient to tell women that

they have reached menopause. In some cases, doctors may recommend a blood

test if women are in their 40s, and are suffering from menopausal symptoms. The

blood test measures the levels of Follicle Stimulating Hormones (FSH) and estro-

gen (Mayo Clinic, 2018). FSH level rises and estrogen level falls in menopausal

women. However, these tests are tests not to be offered to women who are taking

contraceptives containing estrogen and/or progestogen because the contracep-

tives change natural FSH and estrogen levels in the blood (GP Notebook, 2016).

Vaginal pH level test is another effective method to confirm the menopause. The

pH level is around 4.5 in the vagina during the reproductive years. In menopausal

stage, it can rises to 6.0 (Healthline, 2018).

2.1.2 Treatment for menopausal symptoms

There are a number of hormonal and non-hormonal treatments available to re-

lieve the distressing menopausal symptoms. Among these treatments, hormone

replacement therapy is the most common and effective way to treat menopausal

17



symptoms and for reducing the long term impact of menopause. Some com-

plementary and alternative therapies, such as herbal remedies are also available

to treat menopausal symptoms, but there is not enough scientific evidence to

support these treatments.

2.2 Hormone replacement therapy in menopause

Hormone replacement therapy (HRT) is widely acceptable treatment for menopausal

symptoms. Different types, routes, forms, and preparations of HRT are available

to treat these symptoms, and the type of treatment depends on patients’ medi-

cal conditions and severity of the symptoms. HRT is also known as menopausal

hormone therapy (MHT), estrogen therapy (ET), estrogen replacement therapy

(ERT), and hormone therapy (HT).

2.2.1 History of HRT

HRT has been used for more than sixty years to treat menopausal hormone

deficiency in women. Although HRT was first introduced in the 1940s, it was

widely available for treatment from the 1960s (Panay et al., 2013). Estrogen

replacement therapy was first available on the market under the brand name

Premarin, which was extracted from the urine of pregnant mares (on the Evalu-

ation of Carcinogenic Risks to Humans et al., 2007). At that time, another form
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of female hormone called bio-identical hormone was also available for HRT treat-

ment. These bio-identical hormones are synthesised from soya bean or yam in

laboratories and their molecular structures are the same as hormones produced

in women’s bodies (Cirigliano, 2007). HRT was first used in the United King-

dom in 1965 (Women’s Health Concern, 2017). After raising concerns about the

use of only oestrogen, which has been linked to endometrial hyperplasia, it was

suggested that progesterone be included in HRT (Burkman et al., 2001). The

combination of estrogen and progesterone therapy was offered to those women

who had not have surgical hysterectomy after this finding. These days there is

a wide selection of estrogen and progesterone hormone therapy available. The

hormones come from both natural extraction and in synthesised form, and are

marketed under various brand names.

2.2.2 Types and routes of administration of HRT

HRT is available in a variety of forms. These can be taken orally as tablets

or non-orally like transdermal patches, implants, and by many other alternative

ways, including gel, cream, vaginal ring, and injection. HRT comes with estrogen-

only or combination of both estrogen and progesterone hormones. Combination

of estrogen and progesterone hormones in HRT is known as combined therapy

or combined HRT. Types of drugs used in estrogen-only therapy include estra-

diol, estrone, estriol, 17-β-estradiol, and tibolone. Among these, 17-β-estradiol,

estrone, and estriol are the bioidentical form of the hormone estrogen. The
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progestogen is a synthetic version of the hormone progesterone and drug types

include dydrogesterone, medroxyprogesterone, norethisterone and levonorgestrel

(NHS Choices, 2016). Micronized progesterone is a bioidentical form of the hor-

mone progesterone (Cirigliano, 2007). Estrogen-only HRT is used for women

who have had a hysterectomy. Combination therapy is used for women with

intact uterus because progesterone safeguards the uterus from endometrial can-

cer. Estrogen and progesterone are marketed under a large number of brand

names in different parts of the world. Examples of major brand names in which

estrogen has been marketed include Climara, Climen, Dermestril, Divigel, Es-

trace, Natifa, Estraderm, Estraderm TTS, Estradot, Estreva, Estrimax, Estring,

Estrofem, Estrogel, Evorel, Fem7 (or FemSeven), Menorest, Oesclim, Oestrogel,

Sandrena, Systen, and Vagifem. For progesterone, the major brand names are

Prometrium and Provera. Combined HRT is available under the brand names

Activelle, Angelic, Cliane, Femhrt, Prefest, Prempro, Climara pro, Combipatch,

Estalis, Eviana, Evorel Conti, Evorel Sequi, Kliogest, Novofem, Sequidot, and

Trisequens (FDA, 2018).

Figure 2.1 shows a flow chart of the different routes for the administration

of hormone replacement therapy. Table 2.1, lists different classes of HRT, their

trade names, and the other drugs available in the same class. Table 2.2 presents

the brand and generic names of different drugs class along with their routes of

administration.
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Figure 2.1: Different routes of administration of Hormone Replacement Therapy

Table 2.1: Different classes of drugs used for hormone replacement therapy

Drug class Trade name Other drugs

in the same class

Estrogen/Oestrogen Conjugated Equine Estrogen (CEE) Estradiol/Oestradiol

Conjugated Estrogen (CE) Estriol

Premarin Estrone

Tibolone

17-β-estradiol

Progesterone Progestogen/Progestin Dydrogesterone

Medroxyprogesterone

Norethisterone

Levonorgestrel

Micronized progesterone
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Table 2.2: Routes of administration of different classes of drugs used for HRT and
their brand names

Routes of administration Generic name Brand name

Oral tablets Estrogen-only:

Estradiol Estrofem

Estradoil acetate Femtrace

Estradoil valerate Progynova

Micronized estradiol Estrace

Progesterone-only:

Micronized progesterone Prometrium

Medroxyprogesterone Provera

acetate

Combination of both:

Estradiol/Norethindrone acetate Activella

Estradiol/Drospirenone Angeliq

Ethinyl estradiol/ Femhrt

Norethindrone acetate

Estradiol/Norgestimate Prefest

Conjugated estrogen/ Prempro

Medroxyprogesterone

Transdermal patches Estrogen-only: Alora

Estradiol Climara

Minivelle

Vivelle

Vivelle-Dot

Menostar

Estraderm

Combination of both:

Estradiol/Levonrgestrel Climara Pro

Estradiol/Norethindrone acetate Combipatch

Topical gels Estrogen-only: Estrogel

and oinments Estradiol Estrasorb

Estropipate Rontagel

Conjugated estrogens Divigel

Elestrin

Nasal sprays Estrogen-only: Aerodiol

Estradiol

Injections Estrogen-only:

Estradiol valerate Delestrogen

Estradiol undecylate Progynon Depot

Continued on next page
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Table 2.2 – Continued from previous page

Routes of administration Generic name Brand name

Polyestradiol phosphate Estradurin

Estradiol cypionate Depo-Estradiol

Vaginal ring Estrogen-only:

Estradoil Estring

Estradoil acetate Femring

In the following sections, some major HRT studies, their design, and find-

ings from these studies as well as findings from other larger studies are discussed.

2.3 Major studies on HRT

In this section, three large studies on HRT: the Women’s Health Initiative Study,

the Million Women Study, and the Nurses’ Health Study that were highlighted

in most HRT related research are described. The results of these studies will be

described in later sections of this chapter.

2.3.1 The Women’s Health Initiative Study

The Women’s Health Initiative (WHI) study, a large and long term national

health study in the US was primarily designed to assess some of the most com-

mon causes of mortality and morbidity including cancer, cardiovascular disease,

and osteoporotic fractures among American postmenopausal women. The WHI

was set up in 1993, and enrolled 161,808 healthy postmenopausal women of age
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50 to 79 into three randomised control trials (RCTs) and an observational study

(OS) at 40 United States clinical centres (WHI Organization). RCTs consisted of

three separate arms: The Hormone Therapy, Calcium/Vitamin D, and Dietary

Modification trial (Anderson et al., 1998). In Hormone Therapy trial, WHI

enrolled 27,347 women (mean age 63 years) between 1993 and 1998 to inves-

tigate the risks and benefits of receiving conjugate equine estrogen (CEE), and

CEE plus medroxyprogesterone acetate (MPA) therapy on coronary heart disease

(CHD), bone fractures and breast cancer. The treatment group was provided

daily oral CEE (0.625 mg)-alone to hysterectomised women, and combination

of CEE (0.625 mg) with MPA (2.5 mg) to women with intact uterus. In Cal-

cium/Vitamin D and Dietary Modification trial, WHI enrolled 36,282 and 48,835

participants, respectively. There were 68,132 women in total who participated

in randomised control trials. The observational study consisted of 93,676 post-

menopausal women in total. All participants from the Calcium/Vitamin D trial

also participated in the Dietary Modification trial. 8,050 women participated in

both the Hormone Therapy and Dietary Modification trials.

At the end of the initial study period in 2005, WHI Extension Studies

(2005-2010, 2010-2020) continued to follow-up all women who consented (WHI

Organization). WHI studies are considered as the first large, double-blinded, and

placebo-controlled clinical trials on HRT in healthy postmenopausal women. Due

to perceived increased risk of breast cancer, the CEE plus MPA trial was stopped

prematurely (after 5.6 years) in 2002 (Anderson et al., 2004). The CEE-alone
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Figure 2.2: Distribution of participants in Women’s Health Initiative clinical trial.

Figure is reproduced from Women’s Health Initiative (2018)

trial also stopped (after 7.2 years) in 2004 due to a perceived increased risk

of stroke (Manson et al., 2013). However, the post-intervension follow-up was

continued. Several articles have been published on the WHI Hormone Therapy

trial (Manson and Martin, 2001; Manson et al., 2013, 2017). Results from these

reports will be discussed in the following sections of this chapter. Figure 2.2

shows the distribution of the participants in different trial groups of the WHI.

2.3.2 The Million Women Study

The Million Women Study (MWS), a multi-centre, population-based prospective

cohort study was set up in the UK between 1996 and 2001 to investigate the

effects of HRT on women’s health and specifically, on the incident and fatal

breast cancer. It was a collaborative project between Cancer Research UK and
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the National Health Service (NHS). The MWS invited women aged 50 to 64 years

to attend one of 66 NHS Breast Screening Centres, and to participate in the study

(Emily et al., 2003). Attendees at these centres were given a study questionnaire,

which they were asked to complete and return at the time of breast screening.

The questionnaire asked for information about women’s sociodemographic status,

HRT use, and menstrual history. Around 70% of those attending the programme

returned the questionnaires and agreed to take part in the study. Over 1.3 million

women enrolled in the study during the study period. Approximately one in every

four women in that age group in the UK participated in the study, and this made

MWS the world’s largest observational study of its kind. A number of reports

from the MWS study on HRT and the risks of endometrial, ovarian, and breast

cancer had been published (Emily et al., 2003; Collaborators et al., 2005; Beral

et al., 2007). These results are discussed in Section 2.5.

2.3.3 The Nurses’ Health Study

The Nurses Health Study (TNHS) was a large and long-term prospective cohort

study in the USA that began in 1976. Its goal was to investigate the association

between diet, smoking, physical activity levels, obesity, oral contraceptive use,

hormone therapy, endogenous hormones, dietary factors, and other behaviours

and various chronic diseases. The study was divided into three cohorts: TNHS

original cohort, TNHS II, and TNHS 3. It recruited registered nurses of ages

30−55 years from across the different states of USA to respond to a set of baseline
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questionnaires (Grodstein et al., 1996). Follow-up questionnaires were sent bien-

nially to update the records of risk factors. The TNHS original cohort started in

1976 and it consisted of 121,700 married women. TNHS II cohort began in 1989

with 116,430 single and married women of ages 25−42. TNHS 3 cohort started

in 2010 and it adds licensed practice nurses and licensed vocational nurses to

TNHS II cohort. The enrolment of TNHS 3 cohort is currently open. From the

beginning of TNHS original cohort to TNHS 3, more than 280,000 participants

enrolled in the programme.

The results of the aforementioned major studies, as well as other large

previous HRT models on longevity and morbidity are described in the following

sections.

2.4 HRT and its impact on longevity

Numerous observational studies, pooled analyses, and a number of randomised

control trials assessed the effects of HRT on mortality. Majority of the mortality

investigations were cause-specific. Most HRT studies took place in developed

countries, and a large number were in the USA and UK. A significant number of

studies took place in some other European countries, such as Finland, Denmark,

Sweden, the Netherlands, Poland, and Italy. However, there was a wide variation

in study design, the size and composition of the study population, and the length

of follow-up. There was also a great variation in results among these studies. In
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this section, the results of some of the bigger studies on mortality are discussed.

Results of other studies that were reviewed can be found in Appendix A.

Folsom et al. (1995) conducted a prospective cohort study of the associa-

tion of HRT and overall mortality on 41,070 postmenopausal Iowa women aged

55 to 69, and after 6 year follow-up this study found that HRT users had a

reduced risk of all-cause mortality (relative risk (RR), 0.78; 95% confidence in-

terval (CI), 0.65−0.94). Nurses’ health study found that current hormone users

with coronary heart disease had the largest reduction in mortality (RR, 0.51;

95% CI, 0.45−0.70 ) (Grodstein et al., 1997). Hodis and Mack (2014) assessed

the existing studies on HRT and overall mortality in younger postmenopausal

women (less than 60 years at initiation) and found a consistent drop in overall

mortality of 30-50% in observational studies and of 19-39% in randomised trials.

In 1996, Persson et al. (1996) performed a cohort study of cancer incidence

and mortality in 22,597 Swedish women receiving estrogen-only and combined

HRT. The study follow-up was 13 years, and their findings suggested that the

use of combined HRT was associated with an increased risk of breast cancer

mortality (RR, 1.4; 95% CI, 1.1−1.8). They also found substantially increased

risk of endometrial cancer, with the RR of 5.0 and 95% CI, 1.6−5.9 in women

who received estrogen-only HRT, but those who received combined therapy had

no elevated risk. A longitudinal cohort study of the association of HRT and

gynaecological cancer, cardiovascular, and all-cause mortality on 4,544 women

of aged 45 to 54 years from England and Wales found a lower risk of overall
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mortality among HRT users (RR, 0.56; 95% CI, 0.47−0.66) (Hunt et al., 1990).

A meta-analysis of 26,708 participants from 30 clinical trials by Salpeter

et al. (2004) investigated all-cause deaths and deaths due to cardiovascular dis-

ease, cancer, or other causes of mortality in younger (mean age < 60 at initiation)

and older (mean age > 60) postmenopausal women. Their results showed that

HRT reduced mortality in the younger age group (Odds ratio (OR), 0.61; 95%CI,

0.39−0.95), but not in the older age group (OR, 1.03; 95%CI, 0.90−1.18). When

they analysed all ages combined, they found that HRT did not significantly affect

total mortality (OR, 0.98; 95%CI, 0.87−1.18), the risk for cardiovascular (OR,

1.10; 95%CI, 0.9−1.34) or cancer (OR, 1.03; 95%CI, 0.82−1.39) mortality, but

reduced mortality from other causes (OR, 0.67; 95%CI, 0.51−0.88). Five years

later, the authors conducted a Bayesian meta-analysis (Salpeter et al., 2009) of

19 randomized control trials consisting of 16,000 women of mean age 55 years

at baseline, and found reduced mortality risks (RR, 0.73, 95% CI, 0.52−0.96).

When they combined 8 observational studies with 19 trials totaling 228,171

women, their findings did not differ much (RR, 0.72, 95% CI, 0.62−0.82).

Boardman et al. (2015) performed a meta-analysis of 19 randomised con-

trol trials of 40,410 postmenopausal women to evaluate the effects of oral HRT on

all-cause mortality and on the prevention of cardiovascular disease. They found

no effects of HRT on all-cause mortality, cardiovascular death, non-fatal myocar-

dial infraction, angina, or coronary revascularisation. Another meta-analysis on

HRT and all-cause mortality performed by Benkhadra et al. (2015) also found
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no effect of HRT on mortality (RR, 0.99; 95% CI, 0.94−1.05). Pentti et al.

(2006) analysed the association between HRT and mortality in 52 to 70 year old

Finnish women focusing into account the duration of its use. Their study found

that HRT did not have any impact on death from any cause in any duration. In

their studies, the adjusted hazard ratios (HRs) were 1.05 (95% CI, 0.80−1.36)

in women who used HRT for less than 5 years, and 1.06 (95% CI, 0.78−1.46)

in women who used HRT for greater than 5 years compared to non-users. A

recent analysis from WHI trial concluded that both combined (HR, 1.02, 95%

CI 0.96−1.08) and estrogen-only (HR, 0.94, 95% CI 0.88−1.01) HRT were not

associated with all-cause mortality during the 18 years of cumulative follow-up

(Manson et al., 2017). On the contrary, a recent study by Malek et al. (2019)

found that all-cause mortality was 31% higher in US postmenopausal women on

HRT who had menopause at mean age of 45.

In the next section, existing results of the association of HRT with the

incidence of various medical conditions are presented.

2.5 Effect of HRT on morbidity

Numerous observational studies and a number of randomised controlled trials

investigated the effects of HRT on the development of various diseases (NICE,

2021). This section provides a review of the impact of HRT on various chronic

health conditions. Only studies that comprised larger sample sizes are discussed
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in this section. All other studies that were reviewed are summarised in the

Appendix A.

2.5.1 Osteoporosis

Osteoporosis is a condition in which the bone mass density decreases and bone

becomes more fragile. It is one of the most common causes of morbidity and

mortality in postmenopausal women in the western countries. Due to estrogen

deficiency, bone density decreases sharply in women, resulting in significant bone

mass loss during the postmenopausal years (Gauthier et al., 2011). Women with

osteoporosis are highly likely to face injuries such as wrist, hip and vertebral

fractures.

A report published by the International Longevity Centre (ILCUK, 2010)

on the current management of postmenopausal women aged 55 or over in the

UK shows the following alarming results:

• Overall, the number, rate and cost of fractures among women of this age

group are rising;

• The level of hospital admissions has increased from 10.4 per 1,000 popula-

tion in 2004/05 to 11.4 per 1,000 population in 2008/09;

• The tariff cost has risen from approximately £390 million in 2005/06 to

over £430 million in 2008/09;
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• The total cost to the NHS of hospital stays alone is in excess of £400 million

per year for women in this age group;

• Nearly 10% of women aged over 55 years who go into hospital with a

fracture die while they are an in-patient − this equates to around 6,000

deaths per year;

• There is a significant regional variation in levels of fracture admissions for

women.

Postmenopausal women are often prescribed HRT for osteoporosis treatment.

Several epidemiological studies have shown that long term use of HRT pro-

vides protection against bone fractures (Christiansen, 1996; Cauley et al., 2003;

Salpeter et al., 2009). A WHI trial of estrogen plus progestin showed 34% re-

duction in hip and clinical vertebral fractures, and 24% reduction in total osteo-

porotic fractures (Manson et al., 2013). Further analysis from WHI trial showed

an overall 33% hip fracture decrease in women who received the CEE plus MPA

and CEE-alone compared with the placebo group (Manson et al., 2017). During

the WHI study’s 13-year follow-up, women assigned to the CEE plus MPA group

had fewer bone fractures than the placebo group (HR, 0.81, 95% CI, 0.68-0.97).

2.5.2 Dementia

Dementia is a chronic cognitive disorder that affects communication and per-

formance of a person’s daily activities. Alzheimer’s disease (AD) is the most
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common form of dementia, causing 60%−80% of all dementia cases (Alzheimer’s

Association, 2018). It specifically affects parts of the brain that control thought,

memory and language. Older women are at a greater risk of Alzheimer’s disease

than men due to postmenopausal estrogen deficiency (Zandi et al., 2002). Over

the past three decades, several observational studies (Henderson et al., 1994;

Paganini-Hill and Henderson, 1994, 1996; Kawas et al., 1997; Baldereschi et al.,

1998; Zandi et al., 2002), randomized control trials (Mulnard et al., 2000; Wang

et al., 2000) and meta-analyses (LeBlanc et al., 2001; Henderson, 2014) have

been carried out to examine the relationship between HRT treatment and the

risk of developing dementia. Some observational studies suggested that early

initiation of HRT after menopause and its long term use delays the onset of

AD (Paganini-Hill and Henderson, 1996; Kawas et al., 1997; Baldereschi et al.,

1998). A meta-analysis of nine randomized clinical trials of estrogen-only HRT

conducted by Henderson (2014) found no improvement in cognitive symptoms

in AD women who received HRT. Mulnard et al. (2000) found adverse effect of

HRT treatment in women with AD. The WHI Memory Study (WHIMS) evalu-

ated the effect of combined HRT on dementia (Shumaker et al., 2003) and found

that combined HRT increased the risk of dementia in postmenopausal women

aged 65 years or older. They enrolled 4,532 healthy postmenopausal women who

were free from probable dementia and aged 65 years and older for the study.

Probable dementia as defined in their study included Alzheimer’s disease (AD),

vascular dementia (VaD) and mixed types (both AD and VaD). After an aver-
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age four years of follow up, the study found that the hazard ratio for probable

dementia was 2.05 (95% CI, 1.21−3.48) in combined HRT users compared to

the placebo group. At the same time, another WHI subgroup study on 2,947

hysterectomized women aged 65−79 years evaluated the effects of daily CEE

(0.625 mg)-only on the incidence of probable dementia (Shumaker et al., 2004).

After an average follow-up of 5.2 years, the study found that the relative risks of

probable dementia for CEE-alone versus placebo was 1.49 (95% Cl, 0.83-2.66).

A recent case-control study conducted on 118,501 women of age 55 and

over using CPRD and Qresearch datasets found no overall risks of developing

dementia in HRT users (Vinogradova et al., 2021). Imtiaz et al. (2017) conducted

an observational study on estrogen-only HRT and Alzheimer’s disease based on

Finland’s hospital register and self-reported data. Their study followed up 8,195

women of ages 47−56 for 20 years, and found no association of estrogen-only

HRT with AD risk (HR, 0.92, 95% CI, 0.68−1.2). However, another recent case-

control study on HRT and the risk of Alzheimer disease in 83,688 postmenopausal

women of age 60 and over in Finland showed that the use of HRT was associated

with 9%−17% increased risk of Alzheimer disease (Savolainen-Peltonen et al.,

2019). They also found that the risk of the disease did not differ significantly

between estrogen-only (OR, 1.09, 95% CI, 1.05−1.14) and combined therapy

(OR, 1.17, 95% CI, 1.13−1.21). Results from different studies on HRT and

dementia appears to indicate that although early initiation of HRT delays the

onset of dementia, late initiation may be detrimental.
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2.5.3 Cardiovascular disease

Cardiovascular disease (CVD) is an umbrella term for conditions affecting the

heart and blood vessels. Coronary heart disease (CHD), stroke, transient is-

chaemic attack (TIA), peripheral arterial disease (PAD), myocardial infarction,

deep vein thrombosis, and pulmonary embolism are the most common forms of

CVD. There are an estimated 3.5 million women living with CVD in the UK,

with around 78,000 dying from conditions such as heart attack and stroke each

year, accounting for a quarter of all female deaths (British Heart Foundation,

2016). CVD kills more than twice as many women as breast cancer in the UK.

It is known that oestrogen helps to reduce the formation of fatty-plaques in

women’s heart. So, after menopause, women are more likely to develop cardio-

vascular disease than men. An observational study conducted by Gast et al.

(2011b) showed that women with vasomotor symptoms have an increased risk

of CHD. Majority of observational studies suggest that HRT may have benefi-

cial effects in lowering the risk of cardiovascular events among postmenopausal

women (Grodstein et al., 1994; Grodstein and Stampfer, 1995; Grodstein et al.,

1997; Boardman et al., 2015). However, results from the randomised control

trials are mixed (Hulley et al., 1998; Hodis et al., 2003; Schierbeck et al., 2012).

Hodis and Mack (2014) showed that HRT may protect women from cardiovas-

cular disease if started around the time of menopause, but other studies showed

that late initiation could be harmful (Hulley et al., 1998). Gast et al. (2011a)

pooled data from a Dutch and Swedish population-based sample of 10,787 women
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of age 46 to 64 years who were free of CVD at baseline to study the effect of

HRT on CVD, and found no association of HRT with CVD risk. Grodstein and

Stampfer (1995) found that women who are receiving HRT treatment currently

are at 50% lower risk of occurring CHD than a never user. Heart and Estro-

gen/progesterone Replacement Study (HERS) found no overall reduction in risk

of CHD among postmenopausal women (Hulley et al., 1998). A meta-analysis

of 19 randomised trials consisting of 40,410 postmenopausal women showed that

HRT had no protective effects against death from CVD (Boardman et al., 2015)

but was associated with an increased risk of stroke (RR, 1.24, 95% CI, 1.10-1.41).

2.5.4 Breast cancer

Each year, about 55,000 women are diagnosed with breast cancer in the UK

(Macmillan Cancer Support, 2019). It becomes more common in women after

menopause. Although the exact cause of breast cancer is not clearly known, it is

thought that some factors, such as not having any children, first child birth after

the age of 30, not breast feeding the children, early menarche (having period

before the age of 12), late menopause (after the age of 55), taking oral contra-

ceptive pill, prior family history of breast cancer, obesity, and so on, increase

the risk of breast cancer. To date, the majority of published studies have found

an increased risks of breast cancer in HRT users (Manson and Martin, 2001;

Rossouw et al., 2002; Emily et al., 2003; Manson et al., 2013). In 2002, a study

from the WHI trial found that combined HRT increased the risk of breast cancer
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in women by 26% (Rossouw et al., 2002). However, further reports of WHI indi-

cate that estrogen-only HRT decreased the risk of breast cancer by 23% (Manson

et al., 2013). The MWS showed that current use of HRT increases the incidence

of breast cancer (Emily et al., 2003). They reported that use of HRT reduces

the sensitivity of mammography, making it less likely to detect breast cancer.

Their findings also showed that the risk was substantially greater for combined

HRT. The results are based on 517 deaths in women who had no history of

breast cancer at recruitment. Another study showed that estrogen alone does

not increase the risk of breast cancer if taken for 5−7 years and women initiating

HRT ten or more years after the menopause experience a 23% reduction in risk

(Stefanick et al., 2006). In contrast, a randomised control trial of 1,006 healthy

Danish women of ages 45−58 undertaking combined hormone therapy concluded

early initiation and prolonged HRT did not result in an increased risk of breast

cancer (Schierbeck et al., 2012). Recently, a meta-analysis of 143,887 individual

participant data from 58 studies on HRT and breast cancer risk showed that any

type of HRT except vaginal estrogen was associated with a greater risk of breast

cancer, which increased steadily with duration of use (Beral et al., 2019). The

study found that risk was higher for combined therapy than for estrogen-only

preparation. In summery, results from the various studies indicate that HRT is a

risk factor for breast cancer, and that combined therapy users have greater risk

than the estrogen-only users.
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2.5.5 Endometrial and Ovarian cancer

Endometrial cancer is a type of cancer that develops in the tissues of the en-

dometrium (lining of the uterus) in women. It is also known as uterine or womb

cancer. According to the WHO, approximately 320,000 women are diagnosed

with endometrial cancer worldwide each year and 76,000 die, making it the sixth

most common cancer in women (McGuire, 2016). There was a 40% increase in

endometrial cancer in the UK between 1993 and 2013 (Galaal et al., 2014). There

is a high risk of endometrial hyperplasia in women who use estrogen-only HRT.

A meta-analysis of 30 observational studies found an increased risk of endome-

trial cancer among estrogen-only HRT users compared to non-users (RR, 2.3,

95% CI, 2.1-2.5), but no increased risk of mortality from endometrial cancer.

(Grady et al., 1995). Persson et al. (1999) investigated the risk of developing

endometrial cancer on a cohort of 8,438 Swedish women. Their findings showed

that there was a fourfold increased risk of invasive endometrial cancer in women

who used estrogen-only therapy (RR, 4.2; 95% CI, 2.5-8.4), while those who used

combined HRT had no significant risk (RR, 1.4; 95% CI, 0.6-3.3).

Ovarian cancer is a type of cancer that develops in the ovaries. Ovarian

cancer is the seventh-most common cancer in women and the eighth-most com-

mon cause of death from cancer (WHO, 2014). It is more common in Europe

and North America than in Africa and Asia (WHO, 2014). A cohort study of

44,241 postmenopausal women on HRT and the risk of ovarian cancer found
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an increased risk of developing ovarian cancer in HRT users (RR, 1.6; 95% Cl,

1.2-2.0) (Lacey Jr et al., 2002). They also found that the increasing duration of

estrogen-only use was highly associated with the risk of developing ovarian can-

cer. However, the information on the types of HRT was absent in their report.

An observational study conducted by Folsom et al. (2004) on estrogen-only HRT

and ovarian cancer among 31,381 postmenopausal Iowa women also showed an

elevated risk of ovarian cancer (RR, 1.7; 95% Cl, 1.1-2.8). However, a meta-

analysis of 12 case-control studies consisting of 2,197 cases and 8,893 controls

did not find an increased risk (RR, 0.9; 95% CI, 0.7-1.3 in hospital-based studies

and RR, 1.1; 95% CI, 0.9-1.4 in population-based studies)(Harris et al., 1992).

2.5.6 Lung cancer

Lung cancer is a commonly diagnosed cancer and a leading cause of mortality

in women in the UK. Women are more prone to developing lung cancer than

men and it kills more women each year than breast cancer, uterine cancer, and

ovarian cancer combined. Even though it is believed that smoking is the number

one cause of lung cancer in women, a higher percentage of women who develop

lung cancer are life-long non-smokers (Verywellhealth, 2018). In 2011, about

19,700 women were diagnosed with lung cancer in the UK, making it the second

most common cancer diagnosed in women after breast cancer (NHS Choices,

2015). However, there is a lack of research to understand the association between

HRT and lung cancer. A population-based cohort study performed by Adami
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et al. (1989) on Swedish postmenopausal women found that lung cancer risks

increased in women who received HRT. Hampton (2009) studied the incidence

of non-small cell lung cancer and mortality during 5.6 years of intervention with

HRT or placebo, and found that past use of combined HRT increased the risk

of dying from lung cancer. However, a recent meta-analysis by Yao et al. (2013)

of 25 studies with 656,403 participants showed a reduced lung cancer risk in

females receiving HRT treatment (OR, 0.91; 95%CI, 0.83-0.99). Their study

found that HRT decreases lung cancer risks in the patients with BMI< 25 kg/m2

and never smokers (OR, 0.65 and 0.86 respectively). Their study also concluded

that HRT increased the risk of lung cancer in women with early menopause.

Further research may be needed to understand the association between HRT

and lung cancer.

2.5.7 Colorectal cancer

Colorectal cancer, often known as bowel or colon cancer is considered the third

leading cause of cancer and death in women (Cokkinides et al., 2005). The risk of

colorectal cancer starts to rise in the mid-40s and continues to rise as women get

older (Burkman et al., 2001). In 2015, there were 18,700 new cases of colorectal

cancer and 7,300 deaths resulting from colorectal cancer in women in the UK

(Cancer Research UK, 2015). Grodstein et al. (1999) conducted a meta-analysis

of 18 epidemiological studies on postmenopausal HRT use and colorectal cancer,

and found a 20% reduction in the risk of colon cancer in HRT users compared to
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never users (RR, 0.80; 95% CI, 0.74 - 0.86). They further found a 34% reduction

in the risk of colorectal cancer in current HRT users (RR, 0.66, 95% CI, 0.59

- 0.74). A cohort study by Calle et al. (1995) on 422,373 cancer free women

found significantly decreased risk of colon cancer (RR, 0.71; 95% CI, 0.61 -

0.83) in women who took estrogen-only therapy. They also found decreased risk

of mortality from colon cancer among current estrogen-only users, and there

was trend of decreasing risk with increasing years of use among all HRT users.

Pooled results from the WHI intervention and extended post-intervention follow-

up of two hormone therapy trials found no impact of HRT on mortality from

colorectal cancer (HR, 1.21; 95% CI, 0.79-1.84 for estrogen-only, and HR, 1.44;

95% CI, 0.97-2.15 for combined HRT) (Manson et al., 2017). It is thought that

HRT decreases pancreatic bile acids that may promote colon cancer incidence in

women (Burkman et al., 2001). The majority of studies found a reduced risk of

colorectal cancer in HRT users, and hence health professionals should consider

this benefit when prescribing HRT to women.

2.5.8 Diabetes

Diabetes mellitus is a chronic metabolic disorder that is primarily associated

with the imbalance of glucose and insulin levels in the bloodstream. Based on

the nature of the diabetes, it is classified as Type 1 and Type 2. Around 10%

of the cases are Type 1 and 90% are Type 2. According to the International

Diabetic Federation (IDF), there are about 371 million people worldwide who
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have diabetes. In recent years, the number of people diagnosed with diabetes in

the UK is estimated to be 3.5 million and among them 44% are women (Diabetes

UK, 2015). This means that 1 in every 16 women in the UK has diabetes.

Margolis et al. (2004) examined the effect of postmenopausal hormone therapy

on diabetes incidence and insulin resistance using WHI randomized controlled

data on 15,641 postmenopausal women of ages 50−79, and found that combined

HRT reduces the incidence of diabetes (HR, 0.79, 95% Cl, 0.67-0.9). Pooled

results of 107 trials showed that HRT reduced the onset of diabetes in women

without diabetes (RR, 0.70, 95% Cl, 0.60-0.90) (Salpeter et al., 2006). Results

from various studies appear to indicate that HRT helps women to reduce the

risk of developing diabetes.

2.6 Concluding remarks

This chapter reviewed the existing studies on hormone replacement therapy. It

introduced HRT, its use, and the classification of HRT drugs. Then it presented

existing results of association of HRT with mortality and morbidity. HRT is

administrated in a variety of forms and routes, as evidenced by existing studies.

The majority of all-cause mortality studies found either a lower risks of overall

death or no effect on overall mortality in postmenopausal women who initiated

HRT at younger ages (average age 55). However, a small number of studies

reported an increased risk of all-cause mortality in women who started HRT on
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or before the age of 45. This could be the result of complications associated with

early menopause. Morbidity studies showed varied impact of HRT on different

classes of disease. In summary, the majority of morbidity analyses found reduced

risks of osteoporosis, colorectal cancer, diabetes, and cardiovascular disease in all

types of HRT users, but an increased risk of breast cancer in combined HRT users,

and an increased risk of endometrial cancer in estrogen-only users. Although no

reduced risks of dementia were found in HRT users, larger studies reassured that

there were no increased risks either.
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Chapter 3

Review of primary care data and

data extraction

In Chapter 1, the rationale, aims and objectives of developing HRT survival

models were described. In Chapter 2, past studies related to HRT were reviewed

in details. This chapter introduces the major primary healthcare databases in

the UK, specifically The Health Improvement Network (THIN) database, which

was used to extract patient information, and develop survival models of HRT.

First, it describes different types of clinical data and discusses the significance

of primary healthcare data in survival modelling of HRT. Then the structure

of the THIN database and the clinical codes for data extraction are explained.

Finally, the design of the study and participant selection from the database are

described.
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3.1 Sources of clinical data

Most research related to medical and health sciences relies on clinical data. This

kind of data are either routinely collected during the period of ongoing patients’

care or as a part of a clinical trial program or a designed observational study.

Clinical data can be classified into six major categories, such as (i) Electronic

health records, (ii) Administrative data, (iii) Claims data, (iv) Patient/disease

registries, (v) Health surveys and (vi) Clinical trials data (Health Science Li-

brary, 2020). Electronic health records are obtained from the hospital, clinic

or general practice, and include a broad range of information such as patients’

demographics, diagnoses, treatments, drug prescriptions, laboratory tests, hos-

pitalisations etc. Administrative data are primarily hospital discharge data that

are reported to a government agency. Claims data comes from the health insured

patients who used the healthcare delivery systems. Disease registries are clinical

information systems that record only a limited range of data for chronic condi-

tions such as Alzheimer’s disease, diabetes, cancer, heart disease, asthma, and

others. Health surveys are mainly conducted by the government agencies aiming

to provide an accurate evaluation of the population health, and prevalence esti-

mates of various disease conditions. National health surveys are one of the few

types of data collected specifically for research purposes, and this type of data

are more widely accessible to the researchers. Clinical trials data comes from

the experimental study that aims to test new drugs, treatments, or interventions

such as randomised control trials.
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Clinical trials are designed to measure specific outcomes, risk factors, and

exposures. In most cases, the number of participants is small to moderate in

clinical trials, and the study usually covers a selected population from a limited

region. This kind of data collection is more expensive and takes a longer period

to gather information as the study requires a number of trial phases. Health sur-

vey data are collected by interviewing patients based on pre-set questionnaires,

which is potentially subject to recall, and thus a chance of bias remains. Disease

registries are only concerned with particular chronic conditions and hence this

type of data contains only a limited range of information.

In routinely collected data, patients’ information is recorded by the clin-

icians or practitioners at the time they visit the GP. Thus the amount of data

collection depends on how frequently a person visited the primary or secondary

care, and what type of information the clinicians find relevant to record. This

type of data may contain a detailed medical history of patients but it might

also have a substantial amount of missing entries for the risk factors that the

researchers are interested in investigating. For example, women, children, and

sicker person tend to visit the hospital or GP more frequently and so their records

are more likely to be updated than men and healthy people. Therefore data on

blood pressure, alcohol intake, or smoking status are likely to have more miss-

ing entries for the men and the healthier people. In addition, the clinicians or

practitioners may code the same medical conditions and treatments in different

ways in different practices. This could result in underestimation of the number
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of patients selected for a specific condition.

To improve the quality of healthcare provided by the general practitioners,

the Quality and Outcomes Framework (QOF) was introduced in the UK in 2004

(Gillam et al., 2012). It is a pay scheme which measures the performance of

the GPs and other private practices in terms of the management of the most

common chronic medical conditions, major public health concerns, and provision

of preventive health services such as blood pressure checking or screening. After

the initiation of the QOF, data recording has greatly improved in primary care

sector (Taggar et al., 2012).

To improve the validity of research, and accuracy of prevalence estimates

it is important to use the same set of codes in all medical studies. There is

a clinical codes repository available online at ClinicalCodes.org to ensure that

medical and health science researchers identify a medical condition or treatment

by using the same set of codes (Springate et al., 2014).

In primary care databases, there is a high volume of person-years data

available compared to hospital registries or health survey. All-cause mortality

is reliably recorded in primary care database because GPs must be informed

that their patients have died (BMA, 2013). In addition, as primary care data

hold information on the comprehensive medical history rather than only on a

set of specific target conditions, new risk factors can be studied which are not

usually recorded in disease registers, or prospective trial cohort studies. Since
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those potential risk factors are routinely recorded in primary care, there is an

increasing use of this kind of data to develop survival models in clinical and

epidemiological research.

Results from clinical trials or observational studies that prospectively col-

lected data might not be generalisable due to strict inclusion and exclusion crite-

ria, the relatively small sample size of population, and a small number of medical

centres participating in the study. Secondary data and disease registers might

only be representative of severe or chronic medical conditions. In primary care,

clinicians keep a record of all kinds of treatments which was given to their pa-

tients. In the UK, primary care data are representative of the general population

as almost all of its residents are registered at a general practice under the Na-

tional Health Service. GPs are also informed when a patient enters into the

secondary care (Hall, 2009). It means that primary care data retains records of

both mild and severe conditions.

Although full primary care records would include all the UK population,

the existing electronic medical databases include approximately 6% to 10% of

all general practices. Hence there could be variation in representativeness of a

particular databases by clinical system or geographical level, and therefore it

is important to ensure the validity of the risk models on data from different

participating general practices. While each type of clinical data has its own

strengths and limitations, primary care data is an indispensable resource for

estimating the long-term effect of HRT on the survival of women in the UK.
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3.2 Primary care databases in the UK

In the UK, there are four independent public healthcare providers: the National

Health Service (NHS) in England, NHS Wales, NHS Scotland, and Health and

Social Care in Northern Ireland, which is collectively known as NHS. National

health services provide free access to all types of primary and secondary health

care to all UK nationals. To get this service, a person must be registered to a

local GP practice. Patients records are updated electronically by the primary

care physicians or nurses while they visit the practice. Since nearly all residents

in the UK are registered to a local GP practice, and a wide range of information

on the patients including demographics, treatment history, medical conditions

are recorded, there is a high volume of follow-up data stored in this system.

According to the British Medical Association (2018), there are 7,613 GP practices

in England, 958 in Scotland, 454 in Wales, and 349 in Northern Ireland.

There are a number of software systems used by the GPs and nurses to

electronically record patients’ health information. In England, among 7,526 GP

practices, Egton Medical Information Systems (EMIS) was used in 4199 (56%),

followed by SystmOne in 2552 (34%) and Vision software in 636 (9%) practices

(Kontopantelis et al., 2018). However, there were great regional variability found

in all of these systems. Kontopantelis et al. (2018) reported that EMIS covers

data from the West of England, London and the South; SystmOne covers the

East and some regions in the South; and Vision software includes data from
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London, the South, Greater Manchester and Birmingham.

There are a number of primary care databases in the UK storing these

longitudinal electronic health records of anonymous patients from different prac-

tices. However, not all the practices are connected to the database systems.

These databases are increasingly used for various medical research purposes since

they record a high volume of data and provide opportunity to access a wide range

of health information.

The main three large primary care databases in the UK that store these

electronically recorded information are: the QResearch, the Clinical Practice

Research Datalink (CPRD), and The Health Improvement Network (THIN)

database (Vezyridis and Timmons, 2016). CPRD was previously known as Gen-

eral Practice Research Database (GPRD). QResearch database is linked to the

EMIS services and includes medical records from approximately 1,000 practices.

THIN and CPRD are connected through the Vision software system and more

than 600 practices contributed to the database by 2015 (Vezyridis and Timmons,

2016). There were approximately half of the practices in THIN which overlap

with CPRD database (Seminara et al., 2011). All of these databases keep records

of anonymised patients who have been registered at some point at the participant

GP practice, and thus also include patients who are not active or transferred out

or died. The databases retain a wide range of information on patients including

demographics, diagnoses, treatments, consultations, and lifestyle choices. The

validity of these clinical information was investigated by systematic reviews and
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external comparisons (MacDonald and Morant, 2008; Blak et al., 2011).

Access to all of the major UK primary care databases mentioned above

is potentially costly and requires approval from the scientific review committee.

Approval is based on submitting an application with a clear research plan and

the source of funding. This study made use of THIN database because the IFOA

funding covered the cost of accessing it. The study was approved by THIN sci-

entific review committee on 27 September 2018 (approval number: 16THIN095).

A detailed description of THIN database is given in the following subsections.

3.2.1 Overview of THIN database

In this study, a subset of The Health Improvement Network (THIN) database

comprising patients born on or before 1960 has been used. THIN database stores

a collection of longitudinal health records of anonymised patients from various

general practices in the UK. The database was set up by In Practice Systems

(INPS) in 2003 which collaborates with IMS Health (IMS Health Incorporated,

2015b). INPS developed and maintains VISION software to store registered

patients data from various general practices, and the IMS Health provides access

to the electronically recorded data for medical research purposes (Wijlaars, L.,

2015). Individual patient’s information is recorded in THIN in the same way

across the different operating clinical systems. Currently, THIN database retains

the electronic medical records of 17 million non-identifiable patients equivalent
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to 92 million person-years data (IQVIA Medical Research Data, 2017). There

are 3.1 million actively registered patients in the database from over 770 general

practices, covering 6.2% of the UK population (IQVIA Medical Research Data,

2017). All data in THIN are fully anonymised, processed and validated by CSD

Medical Research UK. Data from THIN is made accessible to external researchers

conducting protocol driven studies via IQVIA under a sub-license or research

agreement approved by THIN Scientific Review Committee. At present, THIN

is a registered trademark of Cegedim SA in the United Kingdom and other

countries. Reference made to the THIN database is intended to be descriptive

of the data asset licensed by IQVIA.

3.2.2 Structure of THIN database

In THIN database, patients’ data are arranged by individual general practice.

Each practice has an unique alphanumeric code with one lowercase letter followed

by a four digit number. The information on different medical conditions are

catalogued using hierarchical Read codes. These codes are also alphanumeric

and grouped into different themed chapters (e.g. cancer), and include terms

relating to symptoms, diagnoses, procedures, and laboratory tests (Wijlaars, L.,

2015). Prescription of drugs are currently entered using Multilex codes, which

can be easily linked to British National Formulary (BNF) codes in THIN. Most

practices now have laboratory data which can be automatically transferred to

the electronic medical record.
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Table 3.1: Main file types in THIN database. Adapted from Wijlaars, L. (2015)

File Name Descriptions

PATIENT Age, sex, registration date when

entering the practice, and date

when leaving the practice

MEDICAL Medical diagnoses, date of diagnosis,

and location (e.g., GPs office, hospital, consultant)

of the event and an option for adding

free text referrals to hospitals and specialists

THERAPY All prescriptions along with the date issued,

formulation, strength, quantity, and dosing instructions,

indication for treatment for all new prescriptions,

and events leading to withdrawal of a drug or treatment

ADDITIONAL Vaccinations and prescription contraceptives;

HEALTH DATA miscellaneous information such as smoking,

(AHD) height, weight, immunizations, pregnancy,

birth, death, and laboratory results

POSTCODE Postcode linked area based socio-economic,

VARIABLE ethnicity and environmental indices

INDICATORS (PVI)

CONSULTATION Date, time and duration of consultation

STAFF Gender and roles of staff who entered the data

THIN data is structured by seven ASCII (American Standard Code for In-

formation Interchange) standardised files. In these seven files are names Patient,

Medical, Therapy, Additional Health Data (AHD), Postcode Variable Indicator,

Consultation, and Staff. AHD file is linked with Patient file by patient ID. In

Table 3.1, the main file names and description of the content of the files in THIN

database system are presented.
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3.2.3 Representativeness of THIN data

To build a good statistical model, the sample should well reflect the targeted

population, a high number of follow-up data must be available, and the impor-

tant risk factors should be adjusted for to minimise the residual confounding.

Thus it is essential to assess at what extent THIN is comparable to the general

population. A number of studies assessed the representativeness of THIN to

the UK general population (Hippisley-Cox et al., 2008; MacDonald and Morant,

2008; Maguire et al., 2009; Blak et al., 2011). Blak et al. (2011) compared

the demographics, deprivation status (Townsend score), Quality and Outcomes

Framework (QOF) conditions prevalence and deaths records from THIN with

the national statistics and QOF 2006/2007 data, and concluded that THIN is

generalisable to the UK population in terms of demographics and crude preva-

lence of chronic medical conditions. They also reported that the death rates

in THIN and the UK national death rates are similar when adjusted for demo-

graphics and deprivation. However, Hippisley-Cox et al. (2008) reported that

there are slightly more patients in THIN from affluent areas. It is therefore im-

portant to adjust the deprivation index in model development in order to obtain

representative estimates of the UK population. Blak et al. (2011) also reported

that THIN includes slightly fewer people of age under 25 years, but this will not

affect this study as it focused on women who are aged 46 or over at study entry.

The prevalence of the baseline characteristics in selected study population was

calculated and compared with the UK national statistics of disease prevalence.
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This will be discussed in Chapter 5 in details.

3.3 Clinical codes

Clinical codes are the symbolic form of medical terminology that the clinicians

and health service providers use when recording patient’s data. Thus, knowledge

of clinical codes is required to extract patient’s information from the electronic

medical record (EMR) databases. It is also needed to establish the validity of

research using EMR databases. In this section, two types of clinical codes, the

(i) British National Formulary codes and (ii) Read codes are introduced.

3.3.1 The British National Formulary codes

The British National Formulary (BNF) is a UK based drug reference book that

contains a list of coded information on medicines prescribed by the GPs and

healthcare professionals (EBM DataLab, 2014). BNF provides information on

the dosages, side effects, and indications for over 70,000 medicines. It displays

medicines in a hierarchical order, and the NHS Business Services Authority

(BSA) classify pseudo-codes to drugs and chemicals using a legacy version of

the BNF hierarchy (NHS Booklet, 2017). This pseudo-classification is used as

a unique identifier in the Practice Level Prescribing Data to show what was

prescribed. These BNF codes give a lot of information about a drug or appli-
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ance. The first character indicates which part of the BNF a drug is from. For

example, drugs in BNF Chapter 4 (Central Nervous System) always begin with

“04” (EBM DataLab, 2014). The code then further subdivided into sections. For

example, Section 3 of Chapter 4 in BNF contains Antidepressant Drugs, all start-

ing with“0403”. The last few characters of the BNF code provide more detailed

information about any specific drug, such as whether the product is generic or

branded, and about the presentation of the drug (e.g. whether it is a capsule or

tablet, and the strength of the drug). Each year, in March and September, the

BNF updates their codes (NHS Digital, 2017). NHS Prescription Services update

their BNF classifications once a year. In general, BNF codes for the drugs are

organised in the following way:

• Characters 1 and 2 show the BNF chapter

• Characters 3 and 4 show the BNF section

• Characters 5 and 6 show the BNF paragraph

• Character 7 shows the BNF sub-paragraph

• Characters 8 and 9 show the chemical substance

• Characters 10 and 11 show the product

• Characters 12 and 13 show the strength and formulation

• Characters 14 and 15 show the equivalent

56



The ‘equivalent’ is defined in the following way:

1. If the product is a generic, the 14th and 15th character will be the same as

the 12th and 13th character.

2. If the product is a brand, the 14th and 15th character will match that of the

generic equivalent.

3.3.2 Read codes

Read codes are a comprehensive list of clinical terminology that are used by the

GPs and health professionals in the UK to record the treatment or care given to

their patients. These includes a wide range of clinical entities, such as, drugs,

treatment, surgery, diagnosis, signs and symptoms, and a variety of administra-

tive items. These codes were first introduced by Dr James Read in 1982 follow-

ing the initiation of a GP-based computer system, and thereby named after him

(Springate et al., 2014). Later in 1985, it was recognised by the NHS, and since

then Read codes are used throught the services (NHS Digital, 2018a). There are

two versions of Read codes available: Version 2 (v2) and Version 3 (CTV 3 or

v3). Both v2 and v3 provide a standard vocabulary for health professionals to

enter patients’ information and procedures in computer systems across primary

and secondary care in the UK. To improve the validity and reproducibility of

medical research, lists of Read codes for various medical conditions are available

online at ClinicalCodes.org (Springate et al., 2014).
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3.4 Study design and participant selection

In this section, the design of the study, patient selection process, and inclu-

sion/exclusion criteria for patients for the development of the HRT survival

model are explained first. After that, full data extraction procedure from THIN

is described.

3.4.1 Design of HRT study

This study focused on estimating the long-term effect of estrogen-only and com-

bined HRT on the hazards of all-cause mortality in healthy women. A matched

cohort study was conducted to estimate the association between hazards of death

and HRT treatment using retrospectively collected health records from THIN

database. Patients who started any formulation of oral or transdarmal HRT

for the first time at the age of 46 years or above were selected as the exposed

group. The reason for selecting patients aged 46 and onward is that the peri-

menopausal stage usually starts around the age of 46 in most healthy women in

the UK (National Institute for Health and Care Excellence, 2019). The unex-

posed group were never users of HRT or any type of drug containing estrogen

and/or progesterone. To create a balanced cohort, patients in the exposed group

were matched with patients up to three in the unexposed group by birth year

and general practice. A balanced cohort ensures that the groups compared are

of similar characteristics except for the exposure of interest (Buring, 1987). A
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balanced cohort increases the statistical power and efficiency of a model as well

(Greenland and Morgenstern, 1990). Matching by year of birth allows for con-

sideration of possible medical advancements over time (Kleinbaum and Klein,

2012). When patients from multiple medical practices are included in a study,

the medical practice should also be matched because patients from the same

practice are more likely to be comparable with each other (Rasbash et al., 2012).

The study entry point for patients in the exposed group was the date

when they were prescribed the first HRT, and for the unexposed group it was

the study entry date of their matched HRT users. Use of the HRT start date as

the study entry for the matched non-users point allowed this study to estimate

the hazards in both groups within the same follow-up time frame. The study

cut-off point was 1st January 2017. Participants were followed-up from the study

entry until death, transfer to another practice, or the study end date, whichever

came first. Patients were only eligible to be included in the study if at the

time of study entry they had been registered at a general practice as an active

patient for at least one year, and their health records had been accessed at least

once within the past ten years. Patients with a previous history of any kind of

cancer, acute myocardial infarction, severe heart failure, stroke (except transient

ischaemic attack), chronic kidney disease (stage 3 to 5), dementia, surgically

induced menopause before 45 years of age, premature ovarian insufficiency, and

premature menopause were excluded from the study at baseline to assess the

long-term impact of HRT on healthy postmenopausal women.
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HRT users were classified as either estrogen-only or combined HRT users.

Patients were grouped as combined HRT users if they received estrogen and

progesterone in a single prescription or in two separate prescriptions. The base-

line characteristics for inclusion in the survival models were age at first HRT

treatment, birth year, type 2 diabetes, osteoporosis, peripheral arterial/vascular

disease (PAD/PVD), coronary heart disease (CHD), oophorectomy, hysterec-

tomy, hypertension, systolic and diastolic blood pressure (SBP/DBP), hyperc-

holesterelomea, anti-hypertensive drugs, smoking, body mass index (BMI), and

deprivation status. Baseline characteristics were chosen based on their impor-

tance as determined by literature review and expert knowledge with the team.

The Standard Query Language (SQL) server 2016 was used to extract data from

THIN. The full data extraction process is described in the next subsection.

3.4.2 Data extraction

The subset of THIN data used for this study retains the electronic medical records

of 3,515,292 patients who were born on or before the year 1960 and followed up to

January 2017. Among them 1,664,457 (47.4%) patients were male and 1,850,835

(52.6%) female. The selection of HRT users, non-users, and the matching process

are described in the following subsections.

60



Selection of HRT users

Female patients with a record of HRT prescription were first selected as the

possible exposed group. These patients were identified using the BNF codes of

drugs containing oestrogen and/or progesterone. There are four such types of

BNF codes containing these drugs: 06040101 (oestrogen), 06040102 (oestrogen

and progesterone combined), 08030100 (oestrogen in malignant disease), and

08030200 (progesterone in malignant disease). Among these codes, only 06040101

and 06040102 codes correspond to HRT drugs for menopausal treatments. The

BNF codes 08030100 and 08030200 refer to certain types of cancer treatment

drugs, and thereby were excluded when selecting patients prescribed HRT. Thus,

using the BNF codes (06040101, 06040102) for menopausal treatment, 496,145

women were selected in total. They constituted 26.8% of female population in

THIN subset. Next, the active patients were identified by considering those who

have valid medical records for at least twelve months after their registration

date in the corresponding general practice, and whose health record had been

accessed at least once in the past ten years. Actively registered patients who

were prescribed HRT after the acceptable mortality reporting (AMR) date of

the corresponding general practice were included in the study. AMR date is

a starting date from which practice-recorded mortality was close to age- and

sex-standardised national mortality rates. However, active patients whose first

HRT prescription was issued before the AMR date of the corresponding practice

were also selected in this study if they continued HRT after the AMR date.
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Excluding patients with invalid records, 369,716 patients remained to be eligible

for inclusion in the exposed group, which is approximately 20% of the total

number of women patients in the subset of THIN database. Active patients

who were at least 46 years of age or above at their first HRT prescription were

then selected. There were 281,003 (15.2%) women in total who started HRT

for the first time at 46 years or above between 1984 and 2017. After that,

patients with any type of cancer, and patients who have had acute myocardial

infraction (AMI), severe heart failure, stroke (except TIA), dementia, surgically

induced menopause before the age of 45, chronic kidney disease (CKD) stage 3-5,

premature menopause, premature ovarian insufficiency, and women undergoing

in vitro fertilization (IVF) treatment were excluded. This left 151,683 (8.2%)

female patients to be eligible for inclusion in the exposed group. After excluding

patients with invalid data entries, such as those with a negative time length from

the first HRT prescription to the death, transferred or study end date, there were

135,663 (7.3%) women who were finally eligible for inclusion in the exposed group

(see Figure 3.1).

Selection of HRT non-users

After selecting all female patients who took HRT, there were 1,354,690 (73.2%)

women left in the THIN subset, who were possibly eligible to be enrolled in

the unexposed group. Among them, women who received any kind of hormonal

drugs containing estrogen and/or progesterone, including hormonal contracep-
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tives, were excluded. After excluding these patients, there were 973,701 (52.6%)

women who remained in the unexposed group. Excluding patients with inactive

status, invalid records, and all of the medical conditions that were excluded from

the exposed group, there were 610,628 patients left in the unexposed group who

were eligible to be the possible non-users, which is 33% of total female popula-

tion in THIN subset. These women were eligible for matching with the selected

patients in the exposed group.

Matching

Patients in the exposed group were matched to patients in the unexposed group

based on their year of birth and general practice. The justification of matching

patients by these factors was explained in subsection 3.4.1. As there were more

unexposed patients than those in the exposed group, the matching ratio was set

to 1:3, however, in a number of cases, the maximum number of non-users that

matched per HRT users was less than 3. Matching patients in the exposed group

with up to ten patients in the unexposed group is optimal, although matching five

or more unexposed patients hardly improves the statistical efficiency (Raboud

and Breslow, 1989). For this reason, the majority of studies match fewer than

five unexposed participants with one exposed participant (Cepeda et al., 2003).

There were 112,354 patients in total in the exposed group, each of whom

got at least one, two, or three matched non-users, and the total number of
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Figure 3.1: Selection procedure of study participants. HRT users were matched with

non-users by year of birth and general practice.

matched non-users was 245,320. Out of the initial 135,663 selected HRT users,

23,309 patients were excluded because there were no exact matches based on the

matching criteria. Among 112,354 HRT users, 94,132 patients received combined

HRT and 18,222 patients received estrogen-only HRT. Figure 3.1 presents a flow-

chart of the selection process of the study participants.
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3.5 Summary

In this chapter, the types and classification of clinical data, their availability,

and the importance in developing survival models for HRT using primary care

data are explained first. Then the structure of The Health Improvement Network

electronic database and clinical codes for data extraction were discussed. Finally,

the design of the study and the full data extraction process are explained. The

full dataset selected for this research contains 112,354 HRT users and 245,320

matched non-users of HRT, and these patients were considered for model devel-

opment.
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Chapter 4

Review of statistical methods in

survival analysis

In Chapter 1, the background, rational, aims and objectives of HRT study were

discussed. Chapter 2 provided a review of the HRT literature, and Chapter 3

discussed the importance of primary care data in developing HRT models, as well

as the data extraction process from the THIN database. This chapter discusses

the statistical procedures and techniques used to model the survival from the

primary care data. Section 4.1 introduces the common terminologies and nota-

tion used in survival analysis. Then the parametric and non-parametric survival

models are discussed in Section 4.2 and 4.3, respectively. In the subsequent sec-

tions, the semi-parametric Cox regression model, parameter estimation from the

Cox regression model, and test-statistics to validate the model are presented.
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Finally, in Section 4.9, the technique for multiple imputation and the pooling

estimated parameters from imputed models are discussed.

Survival analysis is a collection of statistical techniques for analysing the

time to an event of interest (Kleinbaum and Klein, 2012). The event can be

death, relapse from remission, or a particular disease incidence. For this re-

search, the primary outcome of interest is survival time from the study entry

to the event of death from all-cause for the HRT users compared to non-users.

Survival analysis is widely used in medical sciences, biological sciences, engineer-

ing, and many other areas of research. The main goals of survival analysis are

to estimate and interpret survival and/or hazard functions, to compare survival

and/or hazard functions across subgroups, and to assess the relationship of ex-

planatory/predictor variables to survival time of the subject. The capability to

handle censored survival times makes survival analysis most appealing in medical

research. The survival analysis techniques which are relevant to this study are

explained below.

4.1 Terminology and notation

In this section, commonly used terminology and notation in survival analysis,

such as the survival function, hazard function, cumulative hazard, probability

density function, and censoring are described.
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4.1.1 Survival time

Survival time is the time elapsed from the study entry until an event of interest

occurred. The survival time is a random variable denoted by T , and let t be any

specific value of T . Since survival time cannot be negative, the values of T are

always non-negative, i.e., T ≥0.

4.1.2 Probability density function

The different values that the random variable T can take have a probability

distribution, and the probability density function (p.d.f) of T is denoted by f(t).

It is defined as the limit of the probability that an individual faces an event in

the short time interval [t, t+ ∆t) per unit width ∆t, i.e.,

f(t) = lim
∆t→0

P (t ≤ T < t+ ∆t)

∆t
. (4.1)

Thus the p.d.f, f(t), gives the instantaneous potential for an event to

occur at t per unit time. The probability distribution of the survival time T can

be defined through the survivor/survival function, the hazard function or the

cumulative hazard function. The survival function, S(t), gives the probability

that a person survives longer than some specified time t, i.e., the random variable

T exceeds the specified time t (Kleinbaum and Klein, 2012). It is defined by:

S(t) = P (T > t) = 1− F (t) =

∫ ∞
t

f(u)du, (4.2)

68



where F (t) is the cumulative distribution function (c.d.f); the probability that

the random variable T is less than or equal to the specified time t, i.e.,

F (t) = P (T ≤ t) =

∫ t

0

f(u)du. (4.3)

Survivor functions are always monotonically decreasing as the probability

of survival decreases with time, i.e., S(t) ≤ S(u) for all t ≥ u. Initially, at time

t = 0, it is assumed that the survival probability, S(0) = 1, and as time increases,

lim
t→∞

S(t) = 0, so that a possibility of eternal life is excluded. In survival analysis,

the survival time is also referred to as event failure time.

4.1.3 Hazard function

The hazard function, denoted by h(t), gives the instantaneous potential per unit

time for the event to occur, given that the individual has survived up to time t.

It is defined by (Kleinbaum and Klein, 2012):

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)

∆t
=

f(t)

1− F (t)
. (4.4)

This could be thought of as the probability of experiencing the event in

the next instant given that the event has not happened yet. The hazard function

is always non-negative and it has no upper bound. It is also termed the hazard

rate, the conditional failure rate, the instantaneous death rate, the intensity rate,

or the force of mortality. The hazard function is particularly useful to describe

the chance of an event occurring over time. An increasing hazard of mortality
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could be an effect of natural ageing while a decreasing hazard of mortality could

be a result of recovering after a surgery or receiving a specific treatment. A

bathtub shaped hazard function is often appropriate to explain the hazard of

death for populations followed for an entire lifetime.

The cumulative hazard function is the integral of the hazard function from

time 0 to t. It is denoted by H(t) and defined by:

H(t) =

∫ t

0

h(u)du =

∫ t

0

f(u)

1− F (u)
du = − log(1− F (t)) = − log(S(t)). (4.5)

4.1.4 Relation between survival function and hazard func-

tion

There is a clearly defined relationship between the survival function, S(t) and

the hazard function, h(t). One can be derived from another using the following

formulae (Kleinbaum and Klein, 2012):

S(t) = exp [log(S(t)] = exp

[
−
∫ t

0

h(u)du

]
= exp[−H(t)]; (4.6)

and

h(t) = − d

dt
[logS(t)] = −

[
dS(t)/dt

S(t)

]
= −

[
d(1− F (t))/dt

S(t)

]
=
f(t)

S(t)
, (4.7)

where f(t) is the first derivative of the cumulative distribution function F (t),

i.e., f(t) is the probability density function.
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4.1.5 Censoring

In time to event data, individual’s true survival time may not be exactly known.

Most survival analyses encounter this key analytical problem, and it is termed

as censoring (Kleinbaum and Klein, 2012). Several reasons cause censoring, such

as an individual did not experience the event during the follow-up period, lost

during the follow up, or died (if the event of interest is not death) before the

study ends. The most well known types of censoring are left, interval, and right

censoring (Prinja et al., 2010). In left censoring, the event happens before the

start of the study. In interval censoring, the event occurs within a time interval

rather than at any certain time (Hosmer et al., 2011). In right censoring, the

event did not occur before or during the study period, and thus the true survival

time is longer than the censoring time. The main causes of right censoring are

that the subject is no longer in the study or the study ends before the subject

has faced the event. In survival data, right-censoring is the most common type

of censoring. In this study, all censored observations are right-censored, where

the censoring occurred due to patients being alive at the end of the study or

transferred to another general practice during the study period. In survival data,

censoring and failures are usually coded with a dichotomous censoring indicator

δi, where δi = (0, 1). If the subjects are censored, then δi = 0, and if the event

of interest occurred then δi = 1. The observations which are not censored are

called complete observations.
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In the next section, different types of parametric models used in survival

analysis are described.

4.2 Parametric survival models

If the probability density function f(t), of the survival time t, follows a particular

distribution then it could be modelled by parametrically. A number of parametric

families of distributions are used in the analysis of survival data. In this section,

some of the most important parametric survival distributions, such as Exponen-

tial, Weibull, Log-normal, Log-logistic, Gompertz, and Gompertz−Makenham

distributions are introduced. These parametric models are widely used in medi-

cal and actuarial applications.

4.2.1 Exponential distribution

If the hazard function is equal to a positive constant, so that h(t) = λ, then

the survival time follows an exponential distribution. Thus using Eq. (4.6), the

survivor function for exponential distribution can be written as:

S(t) = exp

[
−
∫ t

0

λdu

]
= exp(−λt), (4.8)

and therefore, the probability density function is given by

f(t) = λ exp(−λt), (4.9)
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for a parameter λ > 0.

The exponential distribution was the first widely used lifetime distribution

model. However, the application of this model is very limited as a constant

hazard is very unusual in real life.

4.2.2 Weibull distribution

The Weibull distribution is one of the most commonly used lifetime distribu-

tions in biological and medical applications. In Weibull distribution, the hazard

function takes the form

h(t) = pλptp−1, (4.10)

where λ is a scale parameter and p is a shape parameter of the distribution. The

Exponential distribution is a special case of Weibull distribution when the shape

parameter p = 1 in Eq. (4.10).

The survivor function for the Weibull distribution can be written as:

S(t) = exp

[
−pλp

∫ t

0

up−1du

]
= exp(−λt)p. (4.11)

The probability density function of the Weibull distribution is

f(t) = pλptp−1 exp(−λt)p, (4.12)

for the shape parameter p > 0 and scale parameter λ > 0.
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The log-hazard of the Weibull distribution can be written as:

log h(t) = p log(λ) + log(p) + (p− 1) log(t), (4.13)

which is a linear function of log(t) with constant intercept, (p log(λ) + log(p))

and slope (p− 1). Thus the hazard increases monotonically if p > 1, constant if

p = 1, and decreases monotonically if p < 1.

The Weibull model is fairly flexible, and has been found to provide a good

fit for a wide range of lifetime data.

4.2.3 The Log-Normal distribution

If logarithm of the survival time T is normally distributed with mean µ and

variance σ2 i.e., log(T ) ∼ N(µ, σ2) then the survival time T is log-normally

distributed. The survival function of the log-normal distribution can be written

S(t) = 1− Φ

(
log(t)− µ

σ

)
, (4.14)

where µ is a location parameter, the parameter σ is the shape parameter and

Φ(·) is the cumulative probability distribution function of a standard normal

distribution. The formula for the hazard function of the log-normal distribution

is

h(t) =

(
1

σt

)
φ

(
log t

σ

)[
Φ

(
− log t

σ

)]−1

, (4.15)
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where φ(·) is the probability density function of the standard normal distribution.

The probability density function of log-normal distribution is given by

f(t) =

(
1

σt
√

2π

)
exp

(
−(log(t)− µ)2

2σ2

)
(4.16)

4.2.4 Gompertz distribution

A random variable T follows the Gompertz distribution if the survivor function

takes the following form:

S(t) = exp

[
−α
β

(exp(βt)− 1)

]
, (4.17)

where α is a scale parameter and β is a shape parameter, with α > 0 and β > 0.

The hazard and log-hazard functions of the Gompertz distribution are given by:

h(t) = α exp (βt), (4.18)

and

log h(t) = log(α) + βt, (4.19)

The cumulative hazard function of the Gompertz distribution is:

H(t) =
α

β
(exp(βt)− 1); t > 0. (4.20)

The log hazard (4.19) of the Gompertz distribution is a linear function with an

intercept log(α) and slope β. The probability density function of the Gompertz

distribution is:

f(t) = α exp (βt) exp

[
−α
β

(exp(βt)− 1)

]
. (4.21)
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Actuaries, biologists and demographers often use the Gompertz distribution to

model the lifespan of adult population.

4.2.5 Gompertz−Makeham distribution

Gompertz−Makeham distribution is the extension of the Gompertz distribution,

where the hazard function takes the form:

h(t) = α exp(βt) + λ. (4.22)

Here α, β and λ are positive real parameters. The survival and the probability

distribution function of the Gompertz−Makeham distribution are:

S(t) = exp

[
−λt− α

β
(exp(βt)− 1)

]
. (4.23)

f(t) = (α exp(βt) + λ) exp

[
−λt− α

β
(exp(βt)− 1)

]
. (4.24)

Gompertz−Makeham distribution is widely used in the actuarial tables

to describe human mortality.

In the next section, the non-parametric survival analysis for unknown

distribution is described.

4.3 Non-parametric statistical methods

Non-parametric or distribution-free methods are frequently used to describe time-

to-event data. These methods are easy to understand and implement. In this
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section, most widely used non-parametric methods of estimating survival func-

tion namely the Kaplan-Meier method, and commonly used non-parametric tests

for comparing survival functions are discussed.

4.3.1 Kaplan-Meier method

The Kaplan-Meier (KM) method is a non-parametric statistical procedure to es-

timate the survival probabilities, and other distribution characteristics, such as

the median survival time from the observed survival data (Kaplan and Meier,

1958). KM method allows estimation of the survival curves from censored ob-

servations and it is particularly useful when the data are right-censored.

Let 0 < t(1) < t(2) < . . . < t(m) be the distinct ordered observed survival

times that are sorted in ascending order, dj be the number of deaths that occurred

at time t(j) where 1 ≤ j ≤ m, and nj be the number of subjects at risk of

dying just before time t(j) excluding subjects who are censored at time interval

[t(j−1), t(j)). Then the KM method estimates the survival function at time t(j) as:

Ŝ(t(j)) = Ŝ(t(j−1))

(
1− dj

nj

)
. (4.25)

Substituting the survival probabilities at times t(j−1), t(j−2), . . . , t(1) respectively

in equation (4.25), the KM estimator of survival function at time t can be ob-

tained as:

Ŝ(t) =
∏

j:t(j)≤t

(
1− dj

nj

)
. (4.26)
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Figure 4.1: A Kaplan-Meier curve of the estimated survival function plotted using
the example data shown in Table 4.1. The “+” sign indicates the time when subjects
are censored. At time 6, 7, 10, 23, and 34 there were censored observations. The
vertical jumps show the time points when events occurred.

The ratio
dj
nj

gives the probability of experiencing an event at time t(j),

given that the individuals have not experienced the event before that time. The

KM estimator Ŝ(t) is a decreasing right-continuous step function with jumps at

death times. It is also known as the “product-limit estimator” as the survival

function in Equation (4.26) is the product of the estimated probabilities of sur-

viving in small successive time intervals, [t(j−1), t(j)) up to time t. The subjects

who are censored are excluded from the number at risk of dying in each time

interval. The length of the jumps depends on the total number of events ob-

served and the number of observations censored. The estimated median survival

time in KM method is the survival time at which the estimated survival function

reaches 0.5. An example of survival data is shown in Table 4.1, and Figure 4.1

is the KM plot for these data.
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Table 4.1: An example data and calculations used to construct the KM curve in
Figure 4.1

Ordered Number Number Number of Estimated

event time at risk of events censored observations survival probability

t(i) ni di at [t(i), t(i+1)) Ŝ(ti)

0 21 0 0 1
6 21 3 1 0.85
7 17 1 1 0.80
10 15 1 1 0.75
11 13 1 0 0.69
13 12 1 0 0.63
16 11 1 0 0.57
17 10 1 0 0.51
19 9 1 0 0.45
20 8 1 0 0.39
22 7 1 0 0.33
23 6 1 1 0.27
32 4 2 0 0.14
34 2 1 1 0.10

The variance of the estimated survival function, Ŝ(t) is calculated by

Greenwoods’s formula (Greenwood, 1926):

v̂ar
[
Ŝ(t)

]
=
[
Ŝ(t)

]2 ∑
j:t(j)≤t

dj
nj(nj − dj)

(4.27)

and the square root of the estimated variance gives the standard error. The

KM estimator Ŝ(t) is asymptotically normally distributed for a large number

of observations (Hosmer et al., 2011). Therefore, the 100(1 − α)% confidence

interval for the survival function can be calculated as:

Ŝ(t)± z(1−α/2)

√
v̂ar

[
Ŝ(t)

]
, (4.28)

where z(1−α/2) denotes the upper α/2 percentile of a standard normal distribution,

and

√
v̂ar

[
Ŝ(t)

]
gives the standard error. However, the endpoints of the interval
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can be negative or greater than one. To form a confidence interval in the range 0

to 1, Kalbfleisch and Prentice (2002) suggest to obtain a confidence interval for

the log-log survival function and then transform back to the confidence interval

for the survival function. If Ĉl and Ĉu denote the lower and upper endpoints

of the confidence interval for the log-log survival function, respectively then the

confidence interval for S(t) is

(
exp[− exp(Ĉu)], exp[− exp(Ĉl)]

)
.

These endpoints lie in the interval (0, 1) and most statistical software packages

report the confidence interval suggested by Kalbfleisch and Prentice (2002).

4.3.2 Non-parametric tests for comparing survival distri-

butions

It is often of great interest to compare the survival prospects for different groups

of patients, for example patients receiving different treatments. By using the

KM estimators for the survival probabilities across the groups and plotting them

together, it may be clear that there is a difference between the groups. However,

from the pictorial representation, it might not be clear whether the difference has

occurred only by chance or if there is actually a statistically significant difference.

Hypothesis testing is a widely used and effective way to test whether there are

some differences between groups.

80



Comparing two groups

Suppose that there are two types of treatments for a condition. Suppose that

n1 patients were randomly selected to receive treatment 1, and n2 patients were

randomly selected to receive treatment 2, for a total of n = n1 + n2 patients in

the study. Let the survival functions of the two groups be S1(t) for treatment 1

and S2(t) for treatment 2.

The hypotheses for comparing two groups of patients are

H0 : S1(t) = S2(t)

vs

H1 : S1(t) 6= S2(t).

When there is no censoring, the above hypotheses can be tested using standard

non-parametric tests. For example, to compare the survival experience of two

groups, the Wilcoxon rank sum test or the Mann-Whitney U test can be used. In

the presence of censoring, a number of tests have been suggested in the literature

(Marubini and Valsecchi, 2004). The most frequently used of them is the Mantel-

Haenszel (log-rank) test.

Combine two samples of sizes n1 and n2 into a single sample of size n =

n1 + n2. Let t(1) < t(2) < . . . < t(m) denote the m distinct ordered failure times

in the combined sample, and dj is the number of failures at time t(j) for j ≤ m.

Also let nj be the number of patients at risk of failing just prior to time t(j).

Further let n1j and n2j be the number of patients at risk just before t(j) in group
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1 and group 2, respectively, and d1j and d2j are the number of failures in group

1 and group 2, respectively at time t(j). The data at time t(j) (j = 1, 2, . . . ,m)

can be arranged into a 2× 2 contingency table as on Table 4.2.

Table 4.2: 2× 2 contingency table at observed time t(j)

Event
Samples

Total
1 2

Failed d1j d2j dj

Survived n1j − d1j n2j − d2j nj − dj
Total n1j n2j nj

Mantel and Haenszel (1959) suggested a method of comparing the ob-

served cell frequencies with the corresponding expected cell frequencies, where

expected cell frequencies are computed under the condition of fixed row and col-

umn totals. Since the marginal totals in a 2×2 contingency table are fixed, only

one cell frequency can be assigned randomly, say d1j.

Under the null hypothesis and given the equal failure of probabilities,

the distribution of d1j is hyper-geometric (Marubini and Valsecchi, 2004) with

parameters nj, dj and n1j. Hence the mean and variance of d1j are

E(d1j) = n1j
dj
nj

and Var(d1j) =
n1jn2jdj(nj − dj)

n2
j(nj − 1)

,

respectively.

The log-rank statistic (without continuity correction) suggested by Mantel

and Haenszel (1959) is

χ2
M−H =

{
∑m

j=1[d1j − E(d1j)]}2∑m
j=1 Var(d1j)

, (4.29)
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which under H0, approximately follows a chi-square distribution with 1 degree

of freedom.

There are several tests that belong to the same family as the Mantel-

Haenszel (log-rank) test, such as the Gehan, Tarone-Ware and Prentice tests

(Marubini and Valsecchi, 2004). The Mantel-Haenszel chi-square test equally

weights all the differences between the observed and the expected cell frequencies,

while the other above mentioned tests weight the observed minus the expected

cell frequencies differently at different points of failure.

Suppose wj represents the weight at failure time t(j), then the statistic

χ2 =
{
∑m

j=1wj[d1j − E(d1j)]}2∑m
j=1w

2
jVar(d1j)

is distributed as chi-square with 1 degree of freedom under the null hypothesis

of equality of two survival distributions.

The Mantel-Haenszel statistic considers unweighted differences between

the observed and the expected cell frequencies, i.e., wj = 1 (j = 1, 2, . . . ,m).

However, when the assumption of Cox proportional hazards over the follow-up

period is violated, log-rank test is less powerful than the Gehan or Tarone-Ware

(Tarone and Ware, 1977) tests. The Gehan (1965) statistic (χ2
G) uses nj as

the weight at time point t(j). That is, the Gehan statistic gives more emphasis

to earlier failures. This test assumes that the censoring distributions of both

groups are the same. Tarone and Ware (1977) showed that when censoring

distributions widely differ then Gehan’s test performs poorly. The weights used

83



in the Tarone and Ware (1977) statistic (χ2
T−W ) are the geometric means of the

weights considered in χ2
M−H and χ2

G statistics.

Comparing more than two groups

Suppose, we have a sample from each of G (G > 2) treatment groups (popula-

tions). We are interested in comparing the survival experience of G populations,

i.e., our null hypothesis is

H0 : S1(t) = S2(t) = . . . = SG(t) (4.30)

against the alternative that at least two of the survival functions Sg(t) are un-

equal, i.e.,

H1 : Sg(t) 6= Sl(t) for some g 6= l.

The following test is an extension of the Mantel-Haenszel chi-square test

for two groups. Suppose the G samples are combined into a single sample of

size n = n1 + n2 + . . . + nG, and t(1) < t(2) < . . . < t(m) are the ordered failure

times in the combined sample. Instead of using a 2× 2 contingency table at t(j)

for comparing two groups, as in the Mantel-Haenszel chi-square test, we need to

form a 2×G contingency table at t(j) for comparing G populations.

The notation used in the 2 × G contingency Table 4.3 is similar to the

notation used in Table 4.2.

The log-rank test for G populations also compares the observed and ex-

84



Table 4.3: 2×G contingency table at observed time t(j)

Event
Samples

Total
1 2 . . . g . . . G

Failure d1j d2j . . . dgj . . . dGj dj

Survive n1j − d1j n2j − d2j . . . ngj − dgj . . . nGj − dGj nj − dj
Total n1j n2j . . . ngj . . . nGj nj

pected cell frequencies of the number of failures for any (G − 1) cells out of

G cells. The distribution of the observed number of failures follows a (G − 1)

dimensional multivariate hyper-geometric distribution under the null hypothesis

and fixed marginal totals (Marubini and Valsecchi, 2004). The expected number

of failures at t(j) in the g-th sample is

E(dgj) = ngj
dj
nj
.

Hence the sum of the differences between dgj and E(dgj) for the g-th sample is

(summing over all time points)

Ug =
m∑
j=1

[dgj − E(dgj)].

The (G − 1) × 1 vector with elements Ug, using the G-th sample as the

reference, is

U = (U1, U2, . . . , Ug, . . . , UG−1)>.

The test statistic requires the (G− 1)× (G− 1) dimensional variance-covariance

matrix Σ(t(j)) of U at t(j). The (g, l)-th component of Σ(t(j)) is

Σg,l(t(j)) =


ngj(nj − ngj)dj(nj − dj)

n2
j(nj − 1)

; g = l

−ngjnljdj(nj − dj)
n2
j(nj − 1)

; g 6= l
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where g, l = 1, 2, . . . , (G−1). Then the variance-covariance matrix of U is (sum-

ming over k failure times)

Σ =
m∑
j=1

Σ(t(j)).

The Mantel-Haenszel test statistic for comparingG populations is a quadratic

form

χ2
M−H = U>Σ−1U . (4.31)

This statistic approximately follows a chi-square distribution with (G−1) degrees

of freedom under the null hypothesis. This test statistic reduces to test statistic

given in Equation (4.29) if G = 2.

Similar to the log-rank test for comparing two populations this general

version of the log-rank test is one of a family of chi-square tests for comparing G

groups of populations. The alternative test statistics are formed by calculating

the weighted differences between the observed and the expected number of fail-

ures. Suppose w1, w2, . . . , wm are the weights for the time points t(1), t(2), . . . , t(m).

Then the test statistic for comparing G populations becomes

χ2
W = U>WΣ−1

W UW (4.32)

where U(W )g =
∑m

j=1 wj[dgj − E(dgj)] and ΣW is the variance-covariance matrix

of UW . This statistic also approximately follows a chi-square distribution with

(G− 1) degrees of freedom.
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4.4 Cox proportional hazards model

If two or more groups of subjects in the study differ only by the treatment of

interest, then non-parametric methods such as Kaplan-Meier estimation and log-

rank test are useful to compare the survival probabilities among groups. How-

ever, in most cases, the subjects in the groups differ by some other additional

characteristics, such as demographical variables (e.g., age, sex, socio-economic

status, or education), behavioral variables (e.g., smoking history, alcohol con-

sumption, dietary habits, physical activity level) or physiological variables (e.g.,

blood pressure, blood glucose level, heart rate) that may affect their outcome. In

these cases, such variables may be used as covariates of interest in explaining the

response variable. Once these potential covariates are adjusted for, the compari-

son of survival times among groups should be less biased and more precise than a

simple comparison such as non-parametric method. In this section, a semipara-

metric regression model, the Cox proportional hazards model which was used in

this study is introduced (Cox, 1972). This model allows to quantify the asso-

ciation between the time to event and a set of specified predictor/explanatory

variables.

The Cox proportional hazards (PH) model is a widely applied semiparametric

statistical model for analyzing survival data. In medical research, it is commonly

used to investigate the relationship between the survival time of patients, and

one or more predictor variables. The model allows to assess the effect of several

risk factors on survival time simultaneously. The formula for the Cox PH model
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is usually written in terms of the hazard function, h(t,X) as:

h(t,X) = h0(t)exp

(
p∑

k=1

βkXk

)
. (4.33)

Here, the covariate vector X = (X1, X2, . . . , Xp) is a collection of time indepen-

dent predictor variables that are used to predict an individual’s hazard associated

with those variables. The unknown coefficients β = (β1, β2, ..., βp)
> measure the

effect of the predictor variables that we want to estimate on the log-hazard scale.

The h0(t) is the unspecified baseline hazard function that reflects the changes in

hazard function, h(t,X) over time, and the term exp (
∑p

k=1 βkXk) characterizes

how hazard function changes with the covariates. The Cox PH model is termed

a semiparametric model because of its unknown baseline hazard function h0(t).

The model (4.33) provides an expression for the hazard for an individual with

the given set of explanatory variables at time t. Let Xi1, Xi2, . . . , Xip be the

set of values of covariates for the ith individual. The hazard function for this

individual can be written as:

hi(t,X) = h0(t) exp(β1Xi1 + β2Xi2 + . . .+ βpXip). (4.34)

The linear component, (β1Xi1 + β2Xi2 + . . . + βpXip) in the model is known

as risk score or prognostic index for the ith individual. According to the Cox

PH model, the hazard ratio for any two individuals with covariate vectors X =

(X1, X2, ..., Xp) and X∗ = (X∗1 , X
∗
2 , ..., X

∗
p ) does not depend on time. This prop-

erty is called the proportional hazards (PH) assumption in the Cox model. Haz-

ard ratio can be estimated from the risk scores. Calculation of hazard ratio will

be discussed in the next subsection.
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Explanatory variables on which a hazard function may depend, are subdi-

vided into covariates and factors. A covariate is a continuous predictor variable

that takes the numerical values, such as age, body mass index or systolic blood

pressure. A factor is a categorical variable that takes a limited set of values,

which are known as the levels of the factor. For example, smoking might be

a factor with three levels, such as ex-smoker, current smoker, and non-smoker.

Covariates and their combinations, are readily incorporated in the linear compo-

nent in the Cox PH model. Factors having two levels are also directly used in the

model, whereas factors having more than two categories need to be converted

into dummy or indicator variables.

The baseline hazard, h0(t) in the Cox PH formula (4.34) is a function of

time t, but it does not involve the covariates X. In contrast, the exponential

expression involves the explanatory variables X, but it does not involve the

time t. So, the covariates X and their effects are time-independent. If all

the covariates X are equal to zero, i.e., X1 = X2 = ... = Xp = 0 then the Cox

model (4.33) reduces to the baseline hazard function h0(t). This property of

the Cox model is the reason why h0(t) is called the baseline hazard function.

One important feature of the Cox PH model is that the vector of parameters

β = (β1, β2, ..., βp)
> can be estimated without specifying the baseline hazard

function h0(t). Thus, using the Cox PH model, with a minimum of assumptions,

the primary information desired from a survival analysis can be obtained.

An important advantage of the Cox PH model is that when the PH as-
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sumptions are satisfied, it gives reliable results, and the users do not need to

worry about the choice of a parametric model. That is, the Cox PH model is

robust for the parametric distribution. This is why it is referred to as a semi-

parametric model. The exponential form of the hazard function ensures that the

fitted model always provides positive estimated hazard.

4.4.1 Interpreting the hazard ratios

A hazard ratio (HR) in the Cox PH model is the ratio of the hazard function

for one individual to the hazard function for the other individual. If X∗ =(
X∗1 , X

∗
2 , ..., X

∗
p

)
is the set of predictor variables for one individual in the exposed

group, and X = (X1, X2, ..., Xp) for another individual in the unexposed group,

then the hazard ratio is defined by

HR =
h(t,X∗)

h(t,X)
=
h0(t) exp [

∑p
k=1 βkX

∗
k ]

h0(t) exp [
∑p

k=1 βkXk]
. (4.35)

Thus, once the values for any two sets of predictors, X∗ and X are specified, the

value of the estimated hazard ratio is constant and it does not depend on time.

Equation (4.35) states the proportional hazard assumption in the Cox model.

Hence, the hazard ratio is estimated as

ĤR = exp

[
p∑

k=1

β̂k(X
∗
k −Xk)

]
. (4.36)

An important feature of the hazard ratios in Cox PH model is that they are

adjusted for all other covariates in the model.
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If the two individuals differ by only one covariate Xk which denotes the

exposure status, i.e., X∗k = 1 and Xk = 0, then

ĤR = exp(β̂k), (4.37)

where β̂k is the estimated log-hazard ratio of Xk in the model. If β̂k is negative,

the value of the hazard ratio is less than one, then the exposure is associated

with decreased risk and longer survival time for the exposed group. If β̂k is zero,

ĤR is equal to one, then there is no difference in survival between groups. When

β̂k is positive, the hazard ratio is greater than one, and then the exposed group

has the increased risk and shorter survival time. However, it is important to note

that the hazard ratio is a comparison between groups only and thus it does not

give any indication of exactly how long it will take for an individual in either

group to experience the event.

4.4.2 Parameter estimation

The parameters in the general Cox PH model in Equation (4.33) are denoted by

βk’s. The estimates of these parameters, β̂k’s are obtained through the maximum

likelihood estimation (MLE). The estimated parameters β̂k’s are the estimated

effects of the respective covariates in the model. The MLE of the Cox PH model

parameters is performed by maximizing the partial likelihood function L(β),

where β is the collection of unknown parameters βk. The likelihood function

used in the inference for the Cox model is called “partial” likelihood as the
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likelihood only includes probabilities for the subjects who are not censored, that

means the subjects who only got the event (Kleinbaum and Klein, 2012).

Suppose that there are n individual observations in the study. Let t(1) <

t(2) < . . . < t(m) denote the m distinct ordered times at which the events hap-

pened, and X(j) = (Xj1, Xj2, . . . , Xjp) be the values of the explanatory variables

for the individual who experienced the event at the jth ordered time t(j) (j ≤ m).

First assume that there are no ties in the event times, i.e., not more than one

subject has experienced the event at the same time point. This means that m

subjects experienced the event, and the remaining (n−m) observations are right

censored. Then the jth term of the partial likelihood function takes the form

Lj(β) =
exp

(∑p
k=1 βkX(j)k

)∑
l∈R(t(j))

exp (
∑p

k=1 βkXlk)

=
exp(β>X(j))∑

l∈R(t(j))
exp(β>X l)

,

(4.38)

where β> is the transposed vector of regression coefficients βk, and
∑

l∈R(t(j))
exp(β>X l)

is the sum of the hazards for members of the risk set R(t(j)). The risk set R(t(j))

contains the subjects who are still at risk at time t(j), i.e., the subjects who

are not censored before that time. Then the partial likelihood function used to

obtain the maximum likelihood estimator is written as

L(β) =
m∏
j=1

Lj(β) =
m∏
j=1

exp(β>X(j))∑
l∈R(t(j))

exp(β>X l)
. (4.39)

The maximum likelihood estimation of β using the partial likelihood func-

tion is then obtained by maximizing the natural logarithm of the partial likeli-
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hood function L(β) (Hosmer et al., 2011):

logL(β) = l(β) =
m∑
j=1

β>X(j) − log

 ∑
l∈R(t(j))

exp(β>X l)

 . (4.40)

The maximization process is carried out by taking partial derivatives of l(β) with

respect to βk’s (k = 1, 2, . . . , p), setting all the derivatives equal to zero, and then

solving a system of p partial differential equations for the unknown parameters.

The partial derivative of (4.40) with respect to β is called the score vector, and

denoted by

U (β) =
∂l(β)

∂β
. (4.41)

The kth element of the score vector U(β) is written as:

Ui(β) =
∂l(β)

∂βk

=
m∑
j=1

(
X(j)k −

∑
l∈R(t(j))

Xlk exp(
∑p

k=1 βkXlk)∑
l∈R(t(j))

exp(
∑p

k=1 βkXlk)

)
; k = 1, 2, . . . , p

=
m∑
j=1

(
X(j)k −

∑
l∈R(t(j))

Xlk exp(β>X l)∑
l∈R(t(j))

exp(β>X l)

)

=
m∑
j=1

(
X(j)k − A(j)k

)
,

(4.42)

where

A(j)k =

∑
l∈R(t(j))

Xlk exp(β>X l)∑
l∈R(t(j))

exp(β>X l)
. (4.43)

The solution of score equation U(β) = 0 is carried out using iterative methods,

such as Newton-Raphson technique which requires the score vector, U(β), and

observed information matrix I(β). The score vector U (β) in Equation (4.41) is

of order p×1, and information matrix I(β) is the p×p matrix of negative second
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derivatives of the partial log-likelihood, i.e I(β) is given by

I(β) = − ∂2l(β)

∂β∂β>
. (4.44)

The (k, h)th element of the information matrix in Equation (4.44) is given

by

Ik,h(β) = − ∂2l(β)

∂βk∂βh

=
m∑
j=1

[∑
l∈R(t(j))

XlkXlh exp(β>X l)∑
l∈R(t(j))

exp(β>X l)
− A(j)kA(j)h

]
; (k, h) = (1, 2, . . . , p)

(4.45)

where A(j)k is given by Equation (4.43).

The Newton-Rapson method starts with a reasonable estimate of β, say

β0, for the solution, and then it successively modifies the estimate until a final

solution of β̂ is obtained.

The first improved estimate of β is:

β̂1 = β0 + [I(β0)]−1U(β0). (4.46)

Then the second improved estimate of β is:

β̂2 = β̂1 + [I(β̂1)]−1U(β̂1). (4.47)

So for the the nth iteration:

β̂n = β̂(n−1) + [I(β̂(n−1))]
−1U(β̂(n−1)). (4.48)

The above procedure is repeated until it converges to |β̂n − β̂(n−1)| < ε, i.e.,

the successive values of the estimated coefficients β̂ differ only by a very small
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number ε. The estimate of the variance of β̂ is obtained as the inverse of the

observed information matrix, i.e.,

v̂ar(β̂) = [I(β̂)]−1. (4.49)

Although the baseline hazard function in the Cox PH model is not speci-

fied, parametrically, it can be estimated once the parameters are estimated from

the partial likelihood function by using the following formula (Breslow, 1974):

ĥ0(t(j)) =
1∑

l∈R(t(j))
exp(β̂

>
X l)

. (4.50)

However, in practice, the estimator of the cumulative baseline hazard function

is widely used as it provides a more stable estimate than the estimated baseline

hazard function (Hosmer et al., 2011). The Breslow’s estimator of the baseline

cumulative hazard function is:

Ĥ0(t) =
∑
t(j)≤t

1∑
l∈R(t(j))

exp(β̂
>
X l)

. (4.51)

When dealing with a large dataset, it is more likely to have ties in events

times. An exact expression for partial likelihood in case of tied failures is derived

by Kalbfleisch and Prentice (2002). The exact partial likelihood of Kalbfleisch

and Prentice involves the permutation of tied failures at particular time points

and hence makes the computation very time consuming. However, several ap-

proximations to the partial likelihood that are obtained by modifying the partial

likelihood for non-tied case have been proposed, for example Breslow (1974) and

Efron (1977).
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Let d(j) individuals fail at time t(j) and D(j) denotes the set of these

individuals who fail at time t(j). Let X(j+) be the sum of the covariate vectors

over d(j) failures at t(j), i.e., X(j+) =
∑

j∈D(j)
X(j). Then the approximate partial

likelihood proposed by Breslow (1974) is

L1(β) =
m∏
j=1

exp(β>X(j+))[∑
l∈R(t(j))

exp(β>X l)
]d(j) . (4.52)

This approximation works well when the number of ties are few in number (Klein

and Moeschberger, 2003).

An alternative approximate partial likelihood suggested by Efron (1977)

is

L2(β) =
m∏
j=1

exp(β>X(j+))∏d(j)
u=1

[∑
l∈R(t(j))

exp(β>X l)− u−1
d(j)

∑
l∈D(j)

exp(β>X l)
] . (4.53)

This likelihood is closer to the exact partial likelihood than Breslow’s likelihood

(Klein and Moeschberger, 2003).

The maximum likelihood estimator of β can be obtained in the same

manner as in the non-tied case, i.e., by using the Newton-Raphson iterative

procedure. The expressions for the score vector and observed information matrix

(as in equations (4.41) and (4.44), respectively) can be obtained using either

Breslow’s or Efron’s partial likelihood. The default partial likelihood used in

most statistical software is Efron’s likelihood (Therneau and Lumley, 2020).

The baseline hazard and cumulative baseline hazard function for the time-
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tied event are estimated by using the Breslow’s estimator as follows:

ĥ0(t(j)) =
1∑

l∈R(t(j))
exp(β̂

>
X l)]

d(j)
, (4.54)

and

Ĥ0(t) =
∑
t(j)≤t

d(j)

[
∑

l∈R(t(j))
exp(β̂

>
X l)]

d(j)
, (4.55)

respectively.

4.4.3 Inference in the Cox model

In the previous section the parameter estimation procedures of the Cox regres-

sion model were discussed. The parameters are estimated by maximizing the

partial likelihood function. Let β̂ = (β̂1, . . . , β̂p)
> denote the (partial) maxi-

mum likelihood estimators of the regression parameters β = (β1, . . . , βp)
>, and

β0 = (β0
1 , . . . , β

0
p)
> be a set of particular values of the regression parameters. In

this subsection, the test procedure for all parameters and a subset of parameters

in the Cox model are discussed.

Global tests

There are three commonly used methods of testing the global (overall) hypothesis

H0 : β = β0 in a regression model, namely the Wald’s test, the likelihood ratio

test and the score test. These tests are also applicable to test the hypotheses

about parameters β of the Cox regression model when parameters are estimated

using partial likelihood function (Klein and Moeschberger, 2006).
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The first test, the Wald’s test, is based on the large sample properties

of the (partial) maximum likelihood estimators of β. For large samples, β̂ is

distributed as a random variable from a p-variate normal distribution with mean

vector β and estimated variance-covariance matrix I(β̂)−1, where I(β̂) is the p×p

information matrix evaluated at β̂. The Wald’s statistic for testing H0 : β = β0

is given by

χ2
W = (β̂ − β0)>I(β̂)(β̂ − β0). (4.56)

Under H0, the Wald’s statistic follows a chi-square distribution with p degrees

of freedom.

The likelihood ratio test uses the statistic

χ2
LR = 2[l(β̂)− l(β0)], (4.57)

where l(β0) denotes the (partial) log-likelihood under H0 and l(β̂) is the (partial)

log-likelihood evaluated at β̂. The likelihood ratio statistic also follows the chi-

square distribution with p degrees of freedom under H0.

The score test is based on the asymptotic distribution of the score vector

U (β) = (U1(β), . . . , Up(β))>, where the kth element Uk(β) is defined in equation

(4.42). For large samples, the score statistic U(β) has approximately a p-variate

normal distribution with mean vector 0, and variance-covariance matrix I(β).

The information matrix I(β) is defined by equation (4.44). The score statistic

for testing H0 : β = β0 is

χ2
SC = U(β0)>I−1(β0)U(β0), (4.58)
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which also follows the chi-square distribution with p degrees of freedom if H0 is

true.

The p-values of the above mentioned test statistics are compared with

the critical values of χ2
p distribution at the pre-specified level of significance to

make decision about the overall hypothesis. The null hypothesis is usually set

as H0 : β = 0 as acceptance of this null hypothesis indicates that the covariates

are not associated with the survival.

Local tests

Sometimes researchers are interested in making inference about a subset of the

parameters rather than the full set of parameters. Suppose the parameters vector

β is partitioned as β = (β1,β2)>, where β1 is a q×1 vector and β2 is a (p−q)×1

vector. Suppose the hypothesis of interest is H0 : β1 = β0
1, where β0

1 is a specific

q×1 vector. The vector β2 consists of nuisance parameters. The above hypothesis

can be tested using the Wald’s test, the likelihood ratio test and the score test.

Suppose the corresponding partitioning of (partial) maximum likelihood

estimators, score vector and the information matrix are β̂ = (β̂1, β̂2)>, U(β) =

(U 1(β),U 2(β))> and

I =

I11 I12

I21 I22

 ,

respectively, where I11 is a q× q matrix, I22 is a (p− q)× (p− q) matrix, I12 is a
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q× (p− q) matrix and I>21 = I12. The inverse of the information matrix can also

be partitioned as

I−1 =

I11 I12

I21 I22

 .

Suppose that β̂2(β0
1) is the (partial) maximum likelihood estimator of β2 ob-

tained by maximizing the likelihood function L(β0
1,β2) with respect to β2.

Then the test statistics for the above mentioned tests for testing H0 :

β1 = β0
1 are:

the Wald’s test:

χ2
W = (β̂1 − β0

1)>[I11(β̂)]−1(β̂1 − β0
1),

the Likelihood ratio test:

χ2
LR = 2[l(β̂)− l{β0

1, β̂2(β0
1)}], and

the score test:

χ2
SC = U 1[β0

1, β̂2(β0
1)]>I11[β0

1, β̂2(β0
1)]U 1[β0

1, β̂2(β0
1)].

When H0 is true, all three statistics have large sample chi-square distribution

with q degrees of freedom.

To test the significance of a particular covariate Xj, i.e., whether individ-

ual covariate is significantly associated with the survival time (H0 : βj = 0), any

of the local tests with q = 1 can be used. Alternatively, a Z- statistic can be

100



computed

Z =
β̂j

ŜE(β̂j)
. (4.59)

where ŜE(β̂j) is the estimated standard error of β̂j. The standard error, ŜE(β̂j),

is the square root of the jth diagonal element of I(β̂). The Z- statistic has

approximately a standard normal distribution, and thus can be used to obtain

the p-value associated with the Z test, and can also be used to obtain a confidence

interval for βj (Hosmer et al., 2011). The 100(1−α)% confidence interval for βj

is

(β̂j − Z(1−α/2)ŜE(β̂j), β̂j + Z(1−α/2)ŜE(β̂j)), (4.60)

where Z(1−α/2) is the upper 100(1 − α/2)th percentile of the standard normal

distribution. In most statistical packages, Z- statistics and associated p-values

are readily implemented.

4.5 Selection of a significant subset of covariates

In clinical research, there could be a large number of possible predictor variables

to be included in the prediction model. However, not all of the considered covari-

ates are related to the outcome and hence analysts must follow an appropriate

strategy to select the best subset of significant covariates. In this section, vari-

ous methods of variable selection with the stopping rules that can be applied in

model development are introduced.

The process of selecting the subset of covariates from a large pool of covari-
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ates compromises between two conflicting objectives (Montgomery et al., 2015):

(i) the model should include as many covariates as possible since inclusion of

additional covariates usually increase the explanatory power of the model, and

(ii) model should have as few covariates as possible because the variance of the

predicted outcome increases with the increase in the number of covariates. Also

models with more covariates require more computing time and computer mem-

ory. According to Montgomery et al. (2015), there are two methods of selecting

the subset of covariates: (i) all possible regressions, and (ii) stepwise regression

methods. There are three versions of stepwise regression methods: forward se-

lection, backward elimination and forward stepwise selection procedures. These

methods can also be used to select covariates in a proportional hazards regression

model (Hosmer et al., 2011). Deciding on whether one subset is better than an-

other is based on a selected information criterion or a ststistical rule (Harrell Jr,

2015), and model with the lowest value of the chosen statistics should be selected

(Hastie et al., 2015; Montgomery et al., 2015).

The Akaike information criterion (AIC) and Bayesian information crite-

rion (BIC) are two most commonly used information criteria (Montgomery et al.,

2015). The AIC and BIC are defined as

AIC = −2log(L) + 2p (4.61)

and

BIC = −2log(L) + plog(m) (4.62)

where log denotes the natural logarithm, L is the partial likelihood of the Cox
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model, p is the number of parameters estimated in the model and m is the

number of uncensored events. The modification to use number of uncensored

observations in the Cox model instead of number of observations was suggested

by Volinsky and Raftery (2000). BIC places a larger penalty for large number of

covariates as the sample size increases and usually select simpler models (Hastie

et al., 2015).

4.5.1 All possible regressions

All possible regressions method fits all the survival models having one covariate,

two covariates, and so on. If there are p covariates, then a total of 2p−1 survival

models needs to be fitted and examined to choose the best model. The AIC

or BIC is to be calculated for each model and the model having minimum AIC

or BIC in a subset model size (models having same number of covariates) is

the best among the subset models. The overall best model is the one that has

minimum AIC or BIC in that subset model size and increasing the model size

decreases AIC or BIC to a negligible amount. The number of models to be fitted

increases rapidly with the increase in the number of covariates and this method is

computationally demanding. Nowadays, the availability of high-speed computers

make the all possible regressions procedure feasible.
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4.5.2 Stepwise regression methods

Stepwise regression procedures use some measure of fit to add a covariate to the

model or delete a covariate from the model. The most widely used stopping rule

is based on the partial likelihood ratio test (Hosmer et al., 2011). There are

some other stopping rules that are based on AIC or BIC (Harrell Jr, 2015). The

forward selection procedure starts with the null model that is the model that

has no covariates and then adds variables one at a time. The first candidate

covariate for entry into the model, Xl, is the one that has the biggest additional

contribution to the null model. If stopping rule is not reached, Xl is entered into

the model and program goes to next step; otherwise it stops and adopt the null

model as the best model. The second candidate covariate for entry is the one

that has the highest additional contribution to the model containing Xl. Suppose

the candidate covariate for entry into the model is Xm. If stopping rule is not

reached, it adopts the model having two covariates Xl and Xm and proceeds to

next step; otherwise it stops and adopts the model containing only one covariate

Xl. The process of adding new candidate covariates to the model continues until

the stopping rule is met or no covariate is remaining to add to the model.

The backward elimination techniques is the opposite process to the for-

ward selection procedure. It starts with the full model, i.e., the model containing

all covariates and deletes covariate one at a time. The first candidate covariate

to be dropped is the one that has the smallest contribution to the model fit.
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If stopping rule is not reached, drop that covariate from the model. Next fit a

new model with the remaining p − 1 covariates and identify the second candi-

date covariate to be removed that contributes the least to the model fit and the

procedure is repeated. The process terminates when no further covariates can

be dropped. The forward stepwise selection procedure is the modified version

of forward selection procedure. At each step, the previously added covariates

are reassessed on whether they should be dropped from the model. All step-

wise regression methods have the unavoidable problem of including unimportant

covariates and excluding important covariates (Hosmer et al., 2011). Backward

elimination has the advantage over other stepwise regression methods in assess-

ment of the joint predictive ability of covariates as the process starts with the

full model (Chowdhury and Turin, 2020).

In this research, backward elimination was carried out to select the best

model. The initial model contains the main effects of all covariates and also their

two-way interaction. The backward selection was performed manually, i.e., the

model with all of the selected variables was fitted first. Then the likelihood ratio

(LR) χ2 test was used to check whether a variable should be dropped from the

model based on the cut-off point of p-value. If any insignificant variable were

found, the model was fitted again after dropping that variable and performing

the same test again. The process continues until all remaining effects are found

to be significant. The widely accepted choice for the significance level of p-value

is 0.05 or 0.10. The range of p-values from 0.15 to 0.20 is also recommended
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(Hosmer Jr et al., 2013). However, choosing a higher cut-off point for p-values

may select some irrelevant covariates (Chowdhury and Turin, 2020).

4.5.3 Assessment of the proportional hazards assumption

The use and interpretation of proportional hazards model is valid when the haz-

ard between subgroups of subjects are are independent of time. A large number

of graphical and numerical procedures for assessing the proportional hazards

assumption have been proposed in the literature (Hosmer et al., 2011). The

graphical methods involve subjectivity in interpretation (Persson, 2002) and are

not informative when a covariate has several levels or is continuous (Xue and

Schifano, 2017). The most popular graphical method for assessing proportional-

ity assumption is the Kaplan-Meier plots. The standard diagnostic procedure of

proportionality assumption is a residuals-based test by Keele (2010), a test based

on the difference between the observed and the fitted response. The common

types of residuals in the Cox model are the Schoenfeld residuals, the martingale

residuals, the deviance residuals, and the score residuals (Keele, 2010). Most

software packages output one or more of these residuals. Among the numeri-

cal tests, the Grambsch and Therneau (1994) test which is based on the scaled

Schoenfeld residuals is relatively easy to conduct and interpret and hence has

been widely used (Persson, 2002; Keele, 2010).

The Schoenfeld residuals are obtained from the first derivative of the par-
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tial log-likelihood function. The first derivative for the kth covariate as specified

in Equation (4.42) is

∂l(β)

∂βk
=

m∑
j=1

(
Xj(k) − Aj(k)

)
(4.63)

where Aj(k) (as mentioned in Equation (4.43)) is the conditional mean of Xk,

over the individuals at risk at time t(j). The estimator of the Schoenfeld residual

for the kth covariate is obtained by substituting the partial likelihood estimator

β̂ in Equation (4.63) and is of the form

r̂i =
m∑
j=1

(
Xj(k) − Âj(k)

)
(4.64)

where Âj(k) is the estimator of the conditional mean of kth covariate for the

individuals who are in risk set at time t(j). Hence the estimated Schoenfeld

residual for the jth subject on the kth covariate is given by

r̂jk = Xj(k) − Âj(k). (4.65)

As the partial likelihood estimators, β̂, are obtained by setting the first

derivatives of the partial log-likelihood function to zero and solving the equa-

tions, hence the sum of these residuals should be zero. The partial likelihood

function only considers the information in complete observations and hence the

Schoenfeld residuals for the censored observations are all zero implying that these

observations are not informative to the model fit and most software packages set

missing values for the Schoenfeld residuals of censored observations.

Grambsch and Therneau (1994) proposed new residuals with greater di-

agnostic power that scale the Schoenfeld residuals. They suggested to use an
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estimator of the variance of the Schoenfeld residuals as a scaling factor. Let

r̂j = (r̂j1, . . . , r̂jk, . . . , r̂jp)
> denote a p× 1 vector of estimated Schoenfeld resid-

uals for the jth subject where r̂jk is missing if the jth observation is censored.

The vector of approximate scaled Schoenfeld residuals for the jth observation as

suggested by Grambsch and Therneau (1994) is

r̂∗j = mv̂ar(β̂)r̂j (4.66)

where m is the number of events in the study.

Let t∗ = (t1, t2, . . . , tm) be the ordered survival time in the ascending or-

der of the event’s occurrence. Grambsch and Therneau (1994) test statistic for

the kth covariate, Tk, is the correlation between the estimated scaled Schoen-

feld residual of the kth covariate and the ordered survival time (Therneau and

Lumley, 2020). This test statistic asymptotically follows a chi-square distribu-

tion with 1 degree of freedom. If Tk is significantly different from zero then the

proportionality of hazards assumption for the kth covariate is violated.

4.6 Model validation

In the previous section, the selection procedures for the best subset of regressors,

and methods of assessing the proportional hazards assumption have been dis-

cussed. In this section, methods that are used to assess the overall performance

of the model are described. The goodness-of-fit of the Cox proportional hazards
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model can be evaluated by the measurement of Royston’s R-square and Harrell’s

concordance.

4.6.1 Royston’s R-square

In multiple regression analysis with continuous outcomes, overall model perfor-

mance is assessed by R2, the coefficient of multiple determination. It measures

the proportion of the variance in the observations that can be explained by the

regression model. The difference between the observed and the fitted outcomes,

the residual, is central to measure R2. The Royston’s R-square can be used to

measure the proportion of explained variation in case of censored survival data

(Royston, 2006). It is the modified version of the measure proposed by O’Quigley

et al. (2005) which itself is a modification of the earlier proposal of Nagelkerke

(1991).

Nagelkerke (1991) generalized the definition of R2 to general regression

models using the maximum likelihood as a criterion of fit. According to Steyer-

berg et al. (2010), this measure is the most commonly used measure of goodness

of fit for generalized linear models. The R2 statistic proposed by Nagelkerke

(1991) is

R2
Na = 1− exp[− 2

n
{l(β̂)− l(0)}] = 1− exp(−χ

2
LR

n
), (4.67)

where n is the sample size, l(β̂) and l(0) denote the (partial) log-likelihood of

the full model and the null model, respectively. The likelihood ratio statistic
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χ2
LR is defined in equation (4.57). As a proportion measure, R2

Na ranges between

0 and 1. The value 0 indicates that the model cannot explain the survival time

at all, and value of 1 indicates that the model perfectly explains the survival

time. This measure is negatively correlated with the proportion of censored

observations and when this proportion tends to 1 the R2
Na tends to 0. Hence,

O’Quigley et al. (2005) suggested to replace the sample size n in equation (4.67)

by the number of uncensored observation, i.e., by the number of events m. The

new statistic proposed by O’Quigley et al. (2005) is

R2
OQ = 1− exp(−χ

2
LR

m
). (4.68)

Like Nagelkerke (1991)’s R2
Na, the new measure, R2

OQ, also ranges from 0 to 1 and

has the same interpretation. The main disadvantage of R2
OQ is that it has mild

upward bias for larger amounts of censoring and hence Royston (2006) modified

R2
OQ to obtain a measure of explained variation. The variance of the linear term

Xβ in the Cox regression is approximated by R2
OQ/(1 − R2

OQ) and the resid-

ual variance is π2/6. Hence the measure of explained variation in proportional

hazards model proposed by Royston (2006) is

R2
R =

R2
OQ/(1−R2

OQ)

π2/6 +R2
OQ/(1−R2

OQ)
=

R2
OQ

R2
OQ + (π2/6)(1−R2

OQ)
. (4.69)

This statistic also ranges from zero to one and has the same interpretation as

the above two measures.
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4.6.2 Harrell’s concordance

The degree of discriminative ability between an observed outcome and predicted

outcome of generalized linear regression models can be assessed by concordance

index and this was proposed by Harrell Jr et al. (1996). It is the most com-

monly used goodness-of-fit measure in generalized linear models (Steyerberg

et al., 2010). Concordance is defined as the probability of agreement between

an observed outcome and predicted outcome of any observation (Therneau and

Atkinson, 2021). The concordance index is defined as the fraction of concordant

pairs. For a survival outcome, the number of concordant pairs is the number

of pairs of subjects where a subject with the lower predicted risk score has the

longer observed survival time. Suppose C is the number of concordant pairs, D

is the number of discordant pairs (subjects with lower risk score have shorter sur-

vival time) and T is the number of subjects that have tied predicted scores (not

necessarily tied with observed survival time). Then the Harrell’s concordance is

defined as (Therneau and Atkinson, 2020)

cH =
C + T/2

C +D + T
. (4.70)

Since C, D and T are positive integers, the concordance statistic cH ranges

between 0 and 1. A concordance value of 1 indicates the perfect agreement and 0

indicates complete disagreement between observed survival times and predicted

scores. For a good-fit model, the concordance value typically lies between 0.6

and 0.7 (Therneau and Lumley, 2019).
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4.7 Frailty Model

The standard Cox model assumes that the subjects with the same value of the

covariates have the same distribution of the survival time in the population, i.e.,

the subjects in the population are homogeneous. This implies that the survival

times are independent and identically distributed observations from a distribu-

tion. The data used in this study comes from a large number of different general

practices. The survival experience of patients from the same practice may be

more similar than of the patients from different practices. The heterogeneity of

survival experience of patients between practices may be due to different provi-

sion of GP and to differences between the participating practice of patient care

(Collett, 2015). This unobserved heterogeneity results from the fact that it is

impossible to include all the covariates in the model that are thought to influence

the disease of interest. This unobserved heterogeneity can be accounted for by

including random effects in the model. In survival analysis, such random effects

are often referred to as frailties and the models that include random effects are

called frailty models. In these models, the frailty usually acts multiplicatively

on the baseline hazard. The models that include an unobserved random effect

to model dependencies of survival experience in clustered data are called shared

frailty models (Balan and Putter, 2020). The random effect represent a char-

acteristic whose values are shared by subjects within a subgroup or cluster. In

shared frailty model, practices with a large value of the random effect will expe-

rience event of interest earlier than the practices with small values of the random
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effect and hence the name frailty (Klein and Moeschberger, 2006).

The shared frailty model is an extension of the basic Cox models: mod-

elling data on different levels, i.e., the model is multilevel. In this research,

patients are considered as level 1 units and general practices are level 2 units.

Suppose there are n patients in the study and gth general practice has ng pa-

tients, where g = 1, . . . , G and n = n1 + . . .+ nG. Then the hazard function for

the ith patient (i = 1, . . . , ng) in the gth practice, given the frailty, is (Klein and

Moeschberger, 2006)

hig(t, ug,β,X ig) = h0(t)ugexp(β>X ig), (4.71)

where the random effects ug are assumed to be independent and identically dis-

tributed observations from a distribution having unit mean and unknown vari-

ance σ2
u and this variance needs to be estimated. A popular choice for the

distribution of ug is a gamma distribution as this results in explicit expressions

for marginal likelihoods (Hosmer et al., 2011). A larger value of the variance σ2
u

in the gamma frailty distribution indicates a greater degree of heterogeneity be-

tween practices and a stronger correlation among the patients within a practice.

The inter-practice correlation is measured by Kendall’s τ and is given by

τ =
σ2
u

2 + σ2
u

(4.72)

and σ2
u = 0 indicates independence of the patients of the same practice (Klein

and Moeschberger, 2006). In such case, shared frailty model reduces to the Cox

proportional hazard model specified in Equation (4.33).
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The parameters of the shared frailty Cox model are estimated by maxi-

mizing the partial log-likelihood function. Let the number of events in the gth

general practice be Dg =
∑ng

i=1 dig and Λ0(t) be the baseline cumulative hazard.

Then the partial log-likelihood is given by

l(σ2
u,β) =

G∑
g=1

Dglog(σ2
u)− log[Γ(1/σ2

u)] + log[Γ(1/σ2
u +Dg)]

− (1/σ2
u +Dg)log

[
1 + σ2

u

ng∑
i=1

Λ0(t)exp(β>X ig)

]

+

ng∑
i=1

dig{β>X ig + log[h0(t)]}. (4.73)

The semi-parametric estimates (if h0(t) has no parametric form) of pa-

rameters are obtained by maximizing the partial log-likelihood function using the

Expectation-Maximization (EM) algorithm. The algorithm is used to estimate

β for a set of possible values of unknown parameter σ2
u of gamma frailties. For

each chosen values of σ2
u, the EM algorithm has the following steps (Klein and

Moeschberger, 2006):

1. Obtain an initial estimate of β by fitting the Cox regression model (without

frailty) containing the selected covariates.

2. (E-step) Using the current estimate of β from the Cox regression model,

estimate the expected value of frailty for each cluster, ûg, g = 1, . . . , G

(general practice for this study).

3. (M-step) Update the estimate of β by fitting the Cox frailty model in

Equation (4.71) using the same set of selected variables and estimated
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values of frailty ûg.

4. Repeat steps 2 and 3 until both β̂ and ûg converge.

The entire EM algorithm is repeated for all selected values of σ2
u. The

maximum likelihood estimate of σ2
u is the value from the set which maximizes

Equation (4.73). Like the standard Cox model, the standard errors of the es-

timates of shared frailty model are obtained from the inverse of the observed

information matrix obtained from the partial log-likelihood function (Klein and

Moeschberger, 2006).

Significance test for the regression coefficients can be performed by using

a Wald test (discussed in Subsection 4.4.3) or a modified likelihood ratio test for

shared frailty model that has been suggested by Nielsen et al. (1992). They define

likelihood ratio test statistic as twice the difference of the partial log-likelihood

for full model and the partial log-likelihood after deleting the covariate of interest

for the same value of σ̂2
u. To test whether there is any association between general

practices, the hypotheses of interest are H0 : σ2
u = 0 against H0 : σ2

u 6= 0 and

they can be tested using the likelihood ratio test. The likelihood ratio test for

the shared frailty parameter, σ2
u, has been suggested by Nielsen et al. (1992) and

is given by

χ2
LR = 2[l(σ̂2

u, β̂)− l(0, β̂)], (4.74)

where

l(0, β̂) =
G∑
g=1

ng∑
i=1

dig{β>X ig + log[h0(t)]} −
G∑
g=1

Dg. (4.75)
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This test statistic has a chi-square distribution with one degree of freedom.

4.8 Double-Cox regression model

The Cox proportional hazards regression model is based on the assumption that

the hazard ratios of the covariates are constant over the entire follow-up time.

However, in practice, this assumption is violated in many situations, especially

for large datasets with a long follow-up. To deal with this problem, a number of

conventional techniques, such as stratification, split time model, extended Cox

model for defined time-dependent covariates etc. are usually used. In stratified

Cox model, the variables which do not satisfy the proportional hazard assump-

tion are not included in the model, and instead these variables are controlled

for by stratification. That means that these variables are not adjusted for in

the outcome prediction, and hence there is no way to carry out inferences for

the stratified variables. Applying this method, some important predictors might

remain unobserved. In split time model, the follow-up period is split into a num-

ber of sub-intervals where the proportional hazard assumption is not violated.

That means different constant hazards in different time intervals. However, by

applying this method, one can only estimate the hazard at different time points

but it is not possible to see the hazards changes over time.

In the extended Cox model, a time-dependent covariate is created by

adding a product term of the form X × f(t) involving each time-independent
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covariate and a function of time in the standard Cox regression (Kleinbaum and

Klein, 2012). The function of time could be in various forms depending on the

covariates of interest. One choice is to consider fk(t) = t, for the kth covariate

Xk that do not satisfy the PH assumption (Bellera et al., 2010). This means

that for each covariates Xk (k = 1, . . . , p) in the model as a main effect, there

is a corresponding time-dependent covariate of the form Xk × t. Another choice

for the function fk(t) is to use log(t), so that the corresponding time-dependent

variables will be of the form Xk× log(t). The function of time f(t) could also be

a binary indicator, known as the “heaviside function”, i.e., fk(t) = 1 for t ≥ t0

and fk(t) = 0 for t < t0, where t0 is a specified time point within the study period

(Kleinbaum and Klein, 2012). Thus, the hazard ratio expression obtained from

the extended Cox model for the exposure variables that do not satisfy the PH

assumption provides the time varying hazard.

There is an alternative approach of specifying hazard function that trans-

forms the cumulative baseline hazard function of the study population by adding

an extra Cox regression term for the variables with time-variant coefficients.

This modification allows to estimate both the shape and scale parameters for the

time-varying coefficients, and thereby the model can handle the non-proportional

hazards. In a parametric survival model described in Section 4.2, the baseline

hazard function follows a parametric distribution corresponding to the exponen-

tial, Weibull, Gompertz, or other form. Begun and Kulinskaya (2022) proposed

a Double-Cox regression model in which the unspecified baseline hazard function
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in the Cox model was replaced by the Weibull or Gompertz distribution and an

additional Cox regression term was incorporated to estimate the shape param-

eter for the variables with time-variant coefficients. To apply this model, the

type of the underlying cumulative baseline hazard function of the study popu-

lation is required to be satisfied. The cumulative baseline hazard of this study

population follows the Weibull distribution (Figure B.2). The parameter estima-

tion procedures of the Weibull Double-Cox model are described in the following

subsection.

4.8.1 Weibull-Double-Cox regression model

The Cox proportional hazard model consists of two components, one is the un-

specified baseline hazard function h0(t), and the second part is a non-negative

function of the covariate vector X which is usually takes the form exp (β>X).

In a proportional hazard model under frailty setting, an additional frailty term

is included in the model to take into account the influence of any unobserved

factors, for example general practice that may have an impact on the survival.

If there are G general practice and g-th general practice has ng patients then the

hazard function for the i-th patients in the g-th practice is given by Eq. (4.71).

The frailty term ug in Eq. (4.71) is considered as an additional regression

parameter which is constrained by a penalty function added to the partial log-

likelihood. If the frailty has a gamma distribution, then the model can be written
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exactly as a penalised likelihood (Therneau et al., 2003).

The general form of the baseline Weibull cumulative hazard function is

H0(t) =

(
t

a

)b
; where a is scale parameter, and b is shape parameter. In

Weibull-Double-Cox regression model with shared frailty proposed by Begun

and Kulinskaya (2022), the baseline shape parameter of the Weibull cumula-

tive hazard function b is extended by adding a separate Cox regression term as

b exp(β>shapeX) to estimate the shape parameters for the variables that violated

the PH assumption, where X is the vector of covariates for which the shape pa-

rameter is calculated, and β>shape is the vector of regression coefficients of those

covariates. The cumulative hazard function in the Weibull-Double-Cox model is

expressed by the following function (Begun and Kulinskaya, 2022):

H(t|X) =

(
t

a

)b exp(β>shapeX)
exp(β>scaleX), (4.76)

where exp(β>scaleX) is the Cox regression term of the proportional hazard model,

which includes the scale parameters for all covariates. The term b exp(β>shapeX)

includes the shape parameters only for the variables with time-variant coeffi-

cients. The conditional hazard function in the Weibull-Double-Cox regression

model is

h(t|X) =

(
t

a

)b
exp[(βshape+βscale)

>X)+{exp(β>shapeX)−1} logH0(t)]. (4.77)

Thus the hazard ratio corresponding to two different covariate vectors X
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and X∗ is written as

h(t|X)

h(t|X∗)
= exp {(βshape + βscale)

>(X −X∗)

+ [exp (β>shapeX)− exp(β>shapeX
∗)] logH0(t)}. (4.78)

Given the set of covariate vectors X, the conditional cumulative hazard function

with frailty ug, takes the form:

H̃(t|X, ug) = ugH(t|X) = ug exp(β>scaleX)

(
t

a

)b exp(β>shapeX)
, (4.79)

where a > 0 is the scale parameter and b is the shape parameter for the baseline

cumulative hazard function, ug is the gamma distributed frailty with mean 1 and

variance σ2
u.

The frailty or the random effect in the Weibull-Double-Cox model is esti-

mated on a log scale by defining w = log(ug). Suppose that there are G general

practice and all individuals of the g-th practice share the same frailty ug. The

conditional survival function is given by

S(t|X, ug) = exp(−
∫ t

0

H̃(x|X, ug)dx), (4.80)

and the marginal survival function is given by

S(t|X) = E[S(t|X, ug)] = (1 + σ2H(t|X))−1/σ2

(4.81)
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4.8.2 Parameter estimation in the Weibull-Double-Cox

model

The parameter estimation in the Weibull-Double-Cox model is carried out using

the Expectation-Maximization (EM) algorithm which is an alternative approach

to obtain the maximum likelihood (ML) estimates. The algorithm is used to esti-

mate the vector of the Cox-regression parameters and the parameters of baseline

hazard function. Let, η̃ = (a, b, β>scale, β
>
shape)

> be a set of possible values of un-

known parameter σ2
u. This is an iterative procedure involving the following four

steps (Begun and Kulinskaya, 2022):

1. Obtain an initial estimate of β̂>scale by fitting the Cox regression model

(without frailty) containing the selected covariates. The set of coefficients

associated with the variables that violates the PH assumptions are consid-

ered as β̂>shape.

2. (E-step) Using the current estimate of η̃, estimate the expected value of

frailty for each cluster, ûg, g = 1, 2, . . . , G and its logarithm ŵg.

3. (M-step) Update the estimate of η̃ by fitting the Weibull-Double-Cox frailty

model using the same set of covariates and estimated values of frailty ûg.

4. Repeat step (2) and (3) until convergence is reached.

The entire EM algorithm is repeated for all selected values of σ2
u. The ML

estimate of σ2
u is the value from the set which maximises the marginal likelihood
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function. The standard errors of the estimates are obtained from the inverse

of the observed information matrix obtained from the marginal log-likelihood

finction.

The performance of the Weibull-Double-Cox model is assessed by the

concordance statistic, loglikelihood, and AIC. Details of these measurements were

described in the previous sections. A R program for estimating the parameters of

the Weibull/Gompertz Double-Cox model was developed by Begun et al. (2022)

and published in GitHub .

4.9 Missing data and multiple imputation

Missing data is a common issue in clinical and epidemiological studies. Missing

data can occur for a wide range of reasons such as patients lost for follow-up,

missed medical appointments, failures to send questionnaires, lack of clinical

measurements, and typographical errors of transferring data from paper records

to electronic databases (Pedersen et al., 2017). Individuals with missing data

for a particular risk factor may differ from those with no missing information.

Thus excluding missing data in the analyses could lead to a potential bias in

the estimaton of the parameters. The interpretation of the results could be

significantly affected by the missing data. It can also decrease the power of

detecting the associations between covariates and event times (Carroll et al.,

2020). If missing data are present in studies then researchers should clearly
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report the handing process and the assumptions made (Carroll et al., 2020).

In this section, the types of missing data and techniques of handling them are

explained.

4.9.1 Types of missing data

Missing data was classified into three broad categories depending on the missing-

ness mechanism (Rubin, 1976): missing completely at random (MCAR), missing

at random (MAR), and missing not at random (MNAR). Data are said to be

MCAR if missingness does not depend on the observed data or the missing data

(Carroll et al., 2020). For example, cholesterol measurements may be missing be-

cause of breakdown of an apparatus. The MCAR is very restrictive assumption

and unlikely to occur in many studies (Blankers et al., 2010; Zarnoch et al., 2010).

More often the missingness mechanism may depend only on the observed data,

such missing data are said to be MAR (Jakobsen et al., 2017). For example,

missing cholesterol measurements may be lower than observed values because

younger people are more likely to have missing cholesterol measurements. The

MAR assumption is more realistic than the MCAR assumption for many stud-

ies. If the missingness mechanism depends on both observed and missing data,

the missing data are classified as MNAR (Jakobsen et al., 2017). For example,

cholesterol readings are more likely to be missing in patients who do not receive

the lipid lowering drugs, which may not be recorded in the data. Although there

is no formal test to identify the type of missingness, it may be possible to as-
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sess the association between missingness and other variables. For instance, by

creating a contingency table of the individuals with missing data against those

without, it can be ascertained that the values are missing in a particular group.

This study made use of electronic health data from UK primary care. It

is well established that there is a systematic difference between unobserved and

observed data in UK primary care (Hippisley-Cox et al., 2008; Marston et al.,

2010). Recording of medical, lifestyle, and socio-demographic information is

related to poor health conditions. For example, older and sicker people visit

general practice more frequently than others, and the general practitioners are

more likely to record information about these patients compared to healthier

patients (MacDonald and Morant, 2008). For this research, it was assumed that

participants who had no records of medical conditions or treatments, did not

have the disease or receive the treatment. Thus, there were missing records in

the socio-demographic and lifestyle variables only, i.e., Townsend score, BMI, and

smoking category. However, due to the use of a new definition for hypertension,

which included blood pressure measurement along with the Read codes, missing

values were also generated in hypertension status. The study participants with

and without the complete medical records were compared to each other. There

was a higher proportion of missingness in the younger age group than in the

older age group at study entry in both HRT users and non-users (Table B.4).

Although there was an increased proportion of missingness in the non-users than

the HRT users in BMI, smoking and hypertension in all age groups, the difference
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in missingness between HRT users and non-users decreased with age (Table B.4).

In most clinical and epidemiological studies, missing values are assumed to be

MAR rather than MCAR or MNAR (Pedersen et al., 2017). Based on the pattern

of missingness in the study population and the assessment from the observed

data, it was assumed that data was MAR in this study.

4.9.2 Methods of dealing with missing data

There could be potential bias if missing values are not properly handled in the

analysis (Carroll et al., 2020). To deal with this problem, a number of statis-

tical methods have been developed over time. The most common and simple

approaches are: complete case analysis, missing indicator method, single value

imputation, and sensitivity analysis incorporating the best-case and worst-case

scenarios (Pedersen et al., 2017). Multiple imputation is a relatively new and

widely accepted method when dealing with multilevel missing data. The imple-

mentation of each method to handle missing values with their advantages and

disadvantages are described below.

Complete case analysis

The most popular and most widely used method to handle missing data is the

complete case analysis (listwise or casewise deletion) (Blankers et al., 2010; Ped-

ersen et al., 2017). This is the default method of analysis in most software pack-
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ages (Pedersen et al., 2017). In complete case analysis, individuals with missing

values are excluded from the dataset before analysis. The complete case analysis

assumes MCAR and will lead to biased results for other missingness mechanisms.

Even under MCAR assumption, due to reduced sample size this method will have

a reduced statistical power and hence is not preferential (Blankers et al., 2010).

According to van Buuren (2012), this method produces standard errors that are

correct for the small subset of complete cases, but are often larger for the entire

dataset. However, when dealing with big datasets with a small proportion of

missing information, it is still reasonable to perform the complete case analysis,

because the risk of bias is low and the statistical precision is comparatively good

(Pedersen et al., 2017).

Missing indicator method

The missing indicator method creates a category for the missing observations

(Groenwold et al., 2012; Pedersen et al., 2017). If the covariate with missing

values is categorical, then a “missing” category is assigned for the missing values.

For continuous covariate, missing values are usually set to zero. In the main

analytical (multivariate) model an extra indicator (0/1) variable is added to

indicate the presence (1) and absence (0) of missing values (Groenwold et al.,

2012; Pedersen et al., 2017). The method is popular because it does not exclude

any observations and hence maintains statistical power. However, the method

produces too small standard errors (van Buuren, 2012; Pedersen et al., 2017) and
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can exhibit severe bias when data are MCAR with a large proportion of missing

observations (Greenland and Finkle, 1995).

Single imputation

Substituting missing value with a reasonable guess, such as the mean, median,

or modal value of the observed data is called single imputation (Carroll et al.,

2020). In longitudinal studies, where measurements from each individual are

taken repeatedly over a series of planned time-points, missing values are often

replaced with the last observed value for a given variable from the same subject

(Pedersen et al., 2017). This approach is called the “last observation carried

forward”. An advanced single imputation method, regression based single im-

putation of missing values, imputes missing values with the predicted values of

that covariate obtained by a regression model using the complete cases (Pedersen

et al., 2017). The regression method regresses that covariate on the remaining

covariates of the study. Regression imputation is applicable for both MCAR and

MAR data (Blankers et al., 2010).

The standard errors of the estimates in single imputation are usually likely

to be too small as this method fails to account for the uncertainty of missing

data (Greenland and Finkle, 1995; Sterne et al., 2009; Pedersen et al., 2017). If

the data are not MCAR, mean estimation will produce biased estimate of the

mean (Blankers et al., 2010).

127



Multiple imputation

Multiple imputation (MI) is a widely accepted method to deal with missing data.

It assumes that data is MAR but also can handle MCAR (Pedersen et al., 2017).

This method solves the problem of underestimation or overestimation of stan-

dard errors obtained using other methods of handling missing data discussed

earlier (Pedersen et al., 2017). In this method, missing values are replaced by

plausible imputed values multiple times, creating multiple completed datasets.

The imputed values are drawn from the posterior predictive distribution of the

missing values using an appropriate model (Rubin, 1996; Carroll et al., 2020).

According to Zarnoch et al. (2010), five completed datasets are recommended.

However, Blankers et al. (2010) suggested to generate 3 to 10 completed datasets.

Schafer and Graham (2002) have shown that for a dataset having 50% missing

observations, performing 10 imputations is 95% efficient and concluded that ad-

ditional imputations have little advantage in respect to removing noise from the

estimate itself. The reason for imputing multiple times is to reflect the uncer-

tainty in estimating missing data in one imputation. Across several imputations,

imputed values are a random sample of the missing values and that results in

a valid statistical inference (Rubin, 1987). Multiple imputation yields unbiased

and valid estimates of associations of covariates based on information from the

available data; i.e., providing estimates similar to those calculated from full data.

It affects the estimates of the coefficients for variables with missing data as well

as the remaining variables with no missing data (Pedersen et al., 2017).
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A number of packages are implemented in most statistical software to

do the imputations. In this study, R package “Jomo” was used to impute the

missing values. Jomo can handle joint modelling multilevel multiple imputa-

tion assuming data is multivariate normally distributed. It is a relatively new

package (Quartagno et al., 2019) and becoming increasingly popular because it

guaranteed compatibility for clustered level data based on joint modelling impu-

tation that other packages can not handle. In this study, data is multilevel as

it includes patients (level 1) and general practices (level 2). Jomo can handle

missing data in continuous, binary, or categorical variables. After imputing the

missing data multiple times, each imputed dataset was modelled separately and

the estimated coefficients were pooled by applying Rubin’s rules (Rubin, 1987).

The implementation of multiple imputation consists of the following three stages:

1. Imputation step: Select all exposures (covariates with missing values),

covariates, and outcomes that were considered in the analysis model. Se-

lect auxiliary variables that are associated with the values of the incomplete

variables. Inclusion of auxiliary variables may reduce bias and increase the

precision of the estimates (Pedersen et al., 2017). Then, create multiple

copies (say m datasets) of the selected dataset by replacing missing values

with imputed values that are simulated from an appropriate posterior pre-

dictive distribution, where the individual values may vary between datasets

(Rubin, 1996; Pedersen et al., 2017).

The imputation process for each covariate with missing data depends on
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the measurement scale. Continuous covariates are imputed using a linear

regression and binary covariates are imputed using logistic regression. Co-

variates with more than two categories are imputed with a multimonial

regression. In multiple imputation, rows (individuals) having the same

pattern of missingness are grouped together. If there is only one variable

having missing data, this is called univariate missing data and that variable

is called the target variable. In this type of missing data, continuous target

variable is regressed (linear regression) on the remaining covariate(s) using

the observed data. The imputed value for a row is the predicted value

obtained using corresponding values of the regressor(s) plus random noise

drawn from a normal distribution with zero mean and appropriate stan-

dard deviation. Whereas, logistic regression is used to impute the missing

values for a binary target variable. A target variable with more than two

categories is imputed using a multinomial logistic regression (van Buuren,

2012).

Joint modelling starts with an assumption about the multivariate distri-

bution of the data, the most widely applied is the multivariate normal

distribution (van Buuren, 2012). For a specific missingness pattern, fit a

multivariate linear regression model considering missing covariates as the

responses and the remaining covariate(s) as regressor(s) using the observed

data. Then, for each row in that group obtain the predicted value of the re-

sponses using corresponding values of regressor(s) and replace the missing
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value by the predicted values plus random errors drawn from a multivariate

normal distribution with zero mean and appropriate variance-covariance

matrix (for more details, see Schafer and Graham (2002)). However, the

normality assumption in real data is rarely preserved. Binary or ordinal co-

variates are imputed through latent normal variables in the Jomo package

(Quartagno et al., 2019). Right skewed covariates may be transformed to

a logarithmic scale before imputation and imputed values are transformed

back to the original scale (Schafer and Graham, 2002). A simulation study

conducted by Schafer (1997) showed that imputations based on multivari-

ate normal distribution are robust to non-normal data (van Buuren, 2012).

2. Analysis step: Analyse each of the m completed datasets using the cho-

sen statistical model of interest. This gives the parameter estimates with

corresponding standard errors for each dataset. The estimated coefficients

in each of the imputed datasets could vary because of the uncertainty intro-

duced in the imputation of the missing values (Rubin, 1996; Sterne et al.,

2009; Pedersen et al., 2017)

3. Combination step: The parameter estimates obtained from each com-

pleted dataset are pooled using Rubin’s rules (Rubin, 1987), with the cor-

responding standard errors. The pooling of parameter estimates takes ac-

count of the between variability of the completed datasets while pooling

of standard errors accounts for both the between and within imputation

variations (Marshall et al., 2010). The steps of pooling the estimated pa-
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rameters using Rubin’s rules are described below.

Rubin’s Rule

Suppose that θ̂1, θ̂2, . . . , θ̂m are the estimates of θ from m completed datasets

and V̂1, V̂2, . . . , V̂m, respectively, are their associated estimated variances. As

described by Rubin (1987), the pooled estimate of θ is

θ̂MI =
1

m

m∑
l=1

θ̂l.

The variance of this combined estimate has two parts: average within-imputation

variance and between-imputation variance. The average within-imputation vari-

ance is calculated as

WMI =
1

m

m∑
l=1

V̂l

and the between-imputation variance is defined as

BMI =
1

m− 1

m∑
l=1

(θ̂l − θ̂MI)
2.

The total variance of θ̂MI is estimated as

TMI = WMI + (1 +m−1)BMI

and the square root of TMI is the combined standard error.

To test whether the combined estimate is significantly different from zero,

Rubin (1987) recommended to use t-statistic

t =
θ̂MI√
TMI

.
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The t-statistic follows a t-distribution with v degrees of freedom. The number of

degrees of freedom v is calculated as

v = (m− 1)

[
1 +

WMI

(1 +m−1)BMI

]2

.

A 100(1− α)% confidence interval for the parameter θ is given by

θMI ± tv,1−α/2
√
TMI

where tv,1−α/2 is the upper 100(1 − α/2)th percentile of a t-distribution with v

degrees of freedom.

4.10 Summary

This chapter discussed the statistical procedures for analysing time-to-event data.

The application of parametric and non-parametric models are discussed first,

with the former being used when the underlying distribution of the study pop-

ulation is known and the latter being used when the distribution of the study

population is unknown. The semi-parametric Cox proportional hazards regres-

sion model, which does not require the distribution of the baseline hazards to

estimate the effects of risk factors on the survival, was explained in details.

These included the assumptions required for the Cox model, and for testing the

overall quality of the models as well as the effects of the individual parameters.

A newly developed parametric Double-Cox model that is capable of handling

non-proportionality in Cox regression was introduced. Finally, techniques for
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dealing with missing data using the multilevel multiple imputation method were

described.
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Chapter 5

Characteristics of the study

population

In Chapter 1, the rationale, aims and objectives of HRT study were presented.

Chapter 2 reviewed the findings from the past research on HRT. In Chapter

3, the importance of primary care data in HRT modelling, and patient selec-

tion process from the THIN database were described. Chapter 4 explained the

statistical methodology for survival analysis. This chapter presents the distri-

bution and characteristics of the covariates selected for HRT modelling in the

extracted population. The covariates include a wide range of important medical,

socio-demographic, and lifestyle factors. The prevalence of health and lifestyle

variables in the extracted data are also compared to the prevalence in UK pop-

ulation.
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5.1 HRT prescription by age cohort

The study design and patient selection process of this study were described in

details in Chapter 3. There were 112,354 HRT users who were born on or before

1960, and started HRT for the first time at the age of 46 years or older during

1984−2017, and 245,320 matched non-users in the extracted data file. To exam-

ine the trends and prevalence of first prescription across different age cohorts,

the number and proportion of patients in four different age groups of 46 to 55,

56 to 65, 66 to 75, and 76+ at first date of HRT prescription for the exposed

patients were calculated. Table 5.1 shows the frequencies (%) of the first HRT

prescription in HRT users and their matched (one up to three) non-users by

age group. This table shows that the highest number of first HRT prescriptions

(70.08%) were in ages between 46 to 55 years; i.e., either at peri-menopausal

stage or menopausal transition stage, when most women suffer from menopausal

symptoms. The number of first HRT prescriptions falls rapidly after menopausal

transition period. There were 23.53% first prescriptions issued to the age group

56 to 65, and 5.33% were issued to the age group 66 to 75. Only 1,183 (1.05%)

women were prescribed first HRT at age 76 and over. HRT prescriptions were

probably issued to the oldest age cohort for other reasons, such as osteoporo-

sis treatment (Bromley et al., 2004). The distribution of the HRT users and

non-users by one-to-one match is presented in Table B.3.

To observe the prescribing patterns over time, the frequencies of the first
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Table 5.1: Prevalence of first HRT prescription in exposed group and the distribution

of their matched non-users in the extracted population by age group

Age ranges HRT users (%) Non-users (%) Total (%)

46−55 78743 (70.08%) 159200 (64.89%) 237943 (66.53%)

56−65 26436 (23.53%) 65323 (26.63%) 91759 (25.65%)

66−75 5992 (5.33%) 17431 (7.11%) 23423 (6.55%)

76+ 1183 (1.05%) 3366 (1.37%) 4549 (1.27%)

Grand total 112354 (100%) 245320 (100%) 357674 (100%)

HRT prescriptions by calendar year among the four age groups were also calcu-

lated. Figure 5.1 shows the number of first HRT prescriptions per year in the

extracted data within the four age cohorts. Most women started HRT at age

between 46 to 55, and this trend increased over years with the highest number

(5,574) of first starters in 2000. After 2000, there was a sudden fall in HRT

prescriptions within this age group. This decrease is thought to be caused by the

influence of WHI study published in 2002 (Rossouw et al., 2002), that reported

detrimental effect of HRT. The negative impact of HRT reported by WHI got a

wide media coverage creating panic among HRT users, and compelled physicians

to follow revised guidelines on issuing HRT prescriptions (Cagnacci and Venier,

2019). The use of HRT among other age groups also followed the similar pattern

over time though the peak was much lower within the other groups. The pattern

and prevalence of HRT use within different age groups in this study population

follows a trend similar to that described in Bromley et al. (2004) who conducted
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Figure 5.1: Number of first HRT prescriptions in the extracted population by age

group and per calendar year in the period 1984−2016.

a descriptive study on HRT utilization in UK women using primary care data.

5.2 Distribution of lifestyle and socio-demographic

factors

This section presents the distribution of lifestyle and socio-demographic factors

across the study population. The selected covariates are body mass index, smok-

ing status, and Townsend deprivation index. The distribution of these variables
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Table 5.2: BMI Classification (NICE Obesity Management, 2018)

Classification BMI (kg/m2)

Underweight < 18.5

Healthy weight 18.5−24.9

Overweight 25.0−29.9

Obesity I 30.0−34.9

Obesity II 35.0−39.9

Obesity III > 40

in study population is also compared with UK national statistics.

5.2.1 Body mass index

Body mass index (BMI) is a continuous variable which indicates whether a per-

son’s body weight is healthy or not. It is calculated by the ratio of the weight of

a person to the square of his/her height, and is measured in kg/m2. The mea-

surement was first introduced by a Belgian mathematician Adolphe Quetelet,

and thus BMI is also known as Quetelet index following his name (Diabetes

UK, 2019). For this study, the NICE classification of overweight and obesity

measurement scale presented in Table 5.2 was used to group BMI of the study

population (NICE Obesity Management, 2018).

To calculate the BMI in the study population, the most recent records of

weight and height prior to the study entry date were extracted from the Addi-

tional Health Data (AHD) file in THIN. Then the calculated BMI measurements

were grouped into five categories, namely underweight, healthy weight, over-
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Table 5.3: Distribution of the study population by BMI category at baseline

BMI category HRT users (%) Non-users (%) Total (%)

Underweight 1401 (1.25%) 3090 (1.26%) 4491 (1.26%)

Healthy weight 39322 (35.00%) 64532 (26.30%) 103854 (29.04%)

Overweight 32627 (29.04%) 59615 (24.30%) 92242 (25.79%)

Obese 19622 (17.46%) 47728 (19.46%) 67350 (18.83%)

Missing 19382 (17.25%) 70355 (28.68%) 89737 (25.09%)

Grand total 112354 (100%) 245320 (100%) 357674 (100%)

weight, obese, and missing. All categories of obesity were merged into the obese

group. BMI values which are less than 15 kg/m2 or greater than 50 kg/m2 were

merged into missing category, as these were most likely to happen due to a ty-

pographical error. Table 5.3 shows the BMI distributions for the HRT users and

non-users in the study population.

The proportions of women with a healthy weight and overweight were

higher in the exposed group than the unexposed, accounting for 35.0% and

29.04% for the exposed, 26.3% and 24.3% for the unexposed group, respectively.

On the other hand, there were slightly more obese women in exposed group

(19.46%) than the unexposed (17.46%). There were a very small number of un-

derweight women in both groups and the proportions were nearly the same (HRT

users: 1.25%; non-users: 1.26%), and thereby this group was excluded from the

study. The proportion of missing records was higher in non-users (28.68%) than

in HRT users (17.25%), which is probably due to the less frequent attendance of

the non-users to the GP compared to HRT users.

According to the NHS information centre, in 2008, 32% adult women
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were classified as overweight, and 25% adult women were classified as obese in

the UK (NHS, 2010). There were 31% overweight and 27% obese women in

the UK in 2015 (NHS Digital, 2016). The total percentages of overweight and

obese women in the study population are 34.4% and 25.1% respectively, if the

missing values are excluded. As the prevalence of overweight and obesity in the

UK females are increasing over time (Cancer Research UK, 2019a), and in this

study, the highest number of first HRT prescription were around the year 2000,

the prevalence of overweight and obese females in the UK were noted around that

time. According to a report by Statista (2018), there were 21% obese women in

the UK in 2000. If the missing values are excluded, there were 21.1% of obese

women in the exposed group and 25.14% in the unexposed group in this study

population. Although the prevalence of obesity in HRT users was the same as in

the UK general population, the prevalence of obesity in non-users was 4% higher

in this study. The higher prevalence of obesity in unexposed group could be due

to a larger number of missing entries in that group.

5.2.2 Smoking status

The smoking status information of patients in THIN is recorded in either AHD or

medical (MED) files, and coded by the symbols “N”, “Y”, and “D”; where,“N”

means non-smoker,“Y” represents current smoker, and ”D” stands for ex-smoker.

For this study, the most recent smoking history for both HRT users and matched

non-users before the study entry date were extracted. Table 5.4 shows the pro-
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portion of different smoking categories in the study population at baseline. The

distribution shows that, more than half of the patients in both groups were life-

time non-smokers. The proportions of non-smoking patients in both groups are

nearly the same, accounting for 53.68% in exposed and 52.76% in unexposed.

However, among the exposed group there were slightly more ex-smokers (HRT

users: 16.59%, non-users: 13.07%) and current smokers (HRT users: 20.42%,

non-users: 17.23%). Similar to BMI, there were more missing information on

smoking in non-users than in the HRT users. According to the Office for National

Statistics (ONS), there were 16.5% and 15.3% women smokers in the UK in 2013

and 2015, respectively. The incidence of cigarette smoking among UK women

declines over time (Cancer Research UK, 2019b). This habit also decreases as

women ages (NHS Digital, 2018b). According to another report published by

the Cancer Research UK (2018), there were 27% female smokers between ages

50−59, and 13% above age 60 in Great Britain in 2000. From this report, the

percentage of women smokers aged 50 and over was 20% in 2000. In this study,

the total number of current smokers is 21.33% if the missing values are excluded.

Overall, the smoking patterns in this study population are nearly the same as in

the national statistics.

5.2.3 Deprivation status

Townsend score, also known as the Townsend deprivation index, is a census

based index of material deprivation which is used in the UK as an indicator of a
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Table 5.4: Distribution of the study population by smoking category at baseline

Smoking HRT users (%) non-users (%) Total (%)

Non-smoker 60317 (53.68%) 129441 (52.76%) 189758 (53.05%)

Ex-smoker 18645 (16.59%) 32064 (13.07%) 50709 (14.18%)

Current smoker 22942 (20.42%) 42280 (17.23%) 65222 (18.24%)

Missing 10450 (9.30%) 41535 (16.93%) 51985 (14.53%)

Grand total 112354 (100%) 245320 (100%) 357674 (100%)

person’s deprivation status. It was first introduced by Peter Townsend in 1987

(Townsend, 1987). This measure has been widely used in medical, education and

crime research to establish the relation with people’s social deprivation. Score

calculation is based on a combination of the percentage of following four census

variable indicators for any geographical area given data is available for that area

(UK Data Service, 2019):

• Non-car ownership

• Overcrowded households

• Households not occupying own houses

• Unemployment

These variables are weighted equally in the Townsend score calculation.

The unemployment and overcrowded households indicators are log transformed

to normalise the skewed results from these variables. Then a standard Z scores

is calculated from each of the four indicators. The reason of creating Z scores
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Table 5.5: Distribution of the study population by Townsend quintile at baseline

Townsend score HRT users (%) non-users (%) Total (%)

1 (least deprived) 30847 (27.46%) 61886 (25.23%) 92733(25.92%)

2 24761 (22.04%) 52170 (21.27%) 76931 (21.51%)

3 20546 (18.29%) 45030 (18.36 %) 65576 (18.33%)

4 15157 (13.49%) 35156 (14.33%) 50313 (14.07%)

5 (most deprived) 9253 (8.24%) 21894 (8.92%) 31147 (8.71%)

Missing 11790 (10.49%) 29184 (11.90%) 40974 (11.46%)

Grand total 112354 (100%) 245320 (100%) 357674 (100%)

is to standardise each variable so that the extreme values did not affect the

overall Townsend score too greatly. Finally, the Townsend score is calculated

as a sum of four Z scores. The Z scores are centred around of zero mean, and

hence any areas with a Townsend score above zero are above the mean and

therefore deprived, whereas areas with scores below zero are affluent (Norman

and Darlington-Pollock, 2017). Figure 5.2 provides the steps of Townsend score

calculation. Once the Townsend deprivation scores were calculated they split

into quintiles. The first quintile represent the least deprived group whilst the

fifth quintile represents the most deprived. Table 5.5 provides the distribution

of the Townsend quintile scores among HRT users and non-users in this study.

There were missing values in the Townsend score. However, the percent-

age of missing values in Townsend score was relatively low, and the prevalence of

missingness is similar in both HRT users (10.5%) and non-users (11.9%). This is

plausible because information related to socio-economic status is recorded when

a person is registered with a GP and usually it is not updated further. After ex-
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Figure 5.2: Steps of Townsend score calculation. Figure modified from UK Data

Service (2019)
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cluding the missing data, more than 50% (HRT users: 55.3%, non-users: 52.8%)

of women in the study population lived in less deprived areas (Townsend score 1

and 2), and nearly 23% lived in the more deprived areas (Townsend score 4 and

5). According to UK Data Service (2019) report, in the UK, there were 45% of

population in less deprived areas, and 35% lived in more deprived areas in 2011.

There were no significant changes in Townsend deprivation score in the UK from

2001 to 2011 (UK Data Service, 2019). The higher number of women in this

study lived in the less deprived areas, and the lower number of women lived in

the more deprived areas than in the UK general population. This is probably

due to the fact that more highly educated women were HRT users in the UK

(Hunt et al., 1987; Bromley et al., 2004), and/or that THIN retains records of

more people from the affluent areas (Hippisley-Cox et al., 2008).

5.3 Prevalence of medical conditions at baseline

In Chapter 2, Section 2.5, results from previous studies on the effects of HRT

on different chronic diseases were explained. In this section, the prevalence of

various medical conditions at study entry in the study population are discussed.

The selection of health conditions was based on their importance identified from

literature review, and included hypertension, coronary heart disease, peripheral

vascular/arterial disease, hypercholesterolaemia, osteoporosis, type II diabetes,

oophorectomy and hysterectomy status. The selected medical conditions that
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were recorded prior to the patients’ study entry date were extracted from the

MED file in THIN using corresponding Read codes. The distribution of these

conditions for the HRT users and non-users are calculated for full extracted data

and age sub-groups at first HRT treatment. Patients who did not have a record of

a particular medical condition were assumed not to have the disease, and hence

there were no missing records in the disease variables. Table 5.6 displays the

frequencies and prevalence of the selected health conditions for HRT users and

matched non-users at baseline for full data and age sub-groups. The prevalences

of these medical conditions are also compared with the UK national statistics of

disease prevalence among women.

5.3.1 Hypertension

Hypertension (HT) is a long term medical condition caused by an elevated blood

pressure in the arteries. It is widely known as high blood pressure (BP). HT

is more common among UK men than women (NICE, 2019a). Several factors,

such as diabetes, obesity, lifestyle choices, physical activity level, and ageing also

increase the risk of having high BP. Hypertension is considered to be a major

risk factor for cardiovascular disease in women (Gudmundsdottir et al., 2012).

In England, HT is the third biggest risk factor for premature death and dis-

ability after smoking and diet, and at least half of all strokes, heart attacks,

and coronary heart disease are associated with high BP (Public Health England,

2017). It is also a major risk factor for chronic kidney disease, heart failure,
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Figure 5.3: Prevalence of hypertension by age group at study entry in HRT users

and non-users.

and dementia (Public Health England, 2017). According to the NICE (2019b),

a person is diagnosed with hypertension if their multiple blood pressure readings

are greater than 140/90 mmHg. The upper reading is for the systolic and the

lower for the diastolic blood pressure. The systolic blood pressure (SBP) is the

highest level of pressure inside the blood vessels when heart beats, and the dias-

tolic blood pressure (DBP) is the lowest pressure inside the blood vessels when

heart rests between beats (Blood Pressure UK, 2017). For this study, the latest

records of hypertension among study population before their study entry date

were collected from THIN database using the respective Read codes. The over-

all prevalence of HT in this study was 11.41% at baseline. The prevalence was

nearly the same in the exposed and unexposed groups, accounting for 10.58%

and 11.79%, respectively. The prevalence was also approximately similar within
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each of four age groups, 46−55, 56−65, 66−75, and 76+ (see Figure 5.3). How-

ever, the prevalence of hypertension raised dramatically as age increased in both

HRT users and non-users, with the lowest in 46−55 age group (7.70%) and the

highest in 76+ age group (36.71%). Peri-menopausal women have a lower risk

and incidence of hypertension than men but this advantage gradually disappears

after menopause (Gudmundsdottir et al., 2012). This could be the reason for low

prevalence of HT in the youngest age group (46−55) but the highest prevalence

in the oldest group (76+) at first HRT treatment in the study population. Blak

et al. (2011) compared the THIN prevalence of various chronic medical conditions

to the UK national QOF data (2006/2007) and showed that the prevalence of

hypertension in THIN females was 12.7% and in QOF 12.6%. Which is slightly

higher than the prevalence of HT in this study. The proportions of HT in ex-

posed group were 07.61%, 14.96%, 25.28%, 36.18%, and in unexposed group,

07.74%, 16.36%, 26.81%, 36.90%, respectively among the youngest to the old-

est age groups. In 2003, the prevalences of HT among UK females were 22.8%

in the age group 45−54, 43.2% in 55−64, 63.5% in 65−74, and 75.0% in the

age group 75+, respectively (MacDonald and Morant, 2008). This shows a much

higher prevalence of HT than in this study population. The main reason of lower

prevalence of hypertension in this population compared to the national statistics

is that a number of conditions such as severe heart failure, heart attack, and

other serious heart related diseases were excluded in this study, and it is known

that hypertension is one of the major causes of cardiovascular disease (MacDon-
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ald and Morant, 2008). Furthermore, these prevalences were based on the Read

codes only, and past study showed that using Read codes only in THIN to cal-

culate prevalence underestimates the actual hypertensive prevalence in the UK

(Peng et al., 2016). Thus, a revised definition of hypertension that considered

both SBP and DBP measurements along with diagnosis Read code was used in

this study. This will be thoroughly explained in Chapter 6 Section 6.6.1.

5.3.2 Coronary heart disease

Coronary heart disease (CHD), also known as coronary artery disease is the

most common type of heart problem which is caused by the development of fatty

substances in the blood vessels that circulate blood to and from the heart. The

probability of developing CHD in menopausal women was estimated to be 46%,

and it is also a leading cause of death among postmenopausal women (Grady

et al., 1992). The health implications of having CHD were discussed in Chapter

2, Section 2.5.3. The overall prevalence of CHD in HRT users and non-users in

this study were 2.19% and 2.46%, respectively (see Table 5.6). The prevalence

increased as women aged in both groups similarly except the oldest cohort where

the prevalence was slightly higher in HRT users compared to their matched non-

users. The prevalence was lowest in the 46 − 55 age group (HRT users: 0.82%,

non-users: 0.75%) and highest in the 76+ age group (HRT users: 15.7%, non-

users: 12.7%). The overall prevalence of coronary heart disease in women in

England was 4.0%, and 1.3% in 45 to 54, 3.5% in 55 to 64, 10.0% in 65 to 74,
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and 19.3% in 75+ age group, respectively in 2006 (BHF, 2012). The overall

prevalence of CHD in women of Scotland was 5.2% in 2010 (BHF, 2012). The

prevalence is slightly lower in this study population than the national statistics

probably because of the exclusion of patients with severe heart disease.

5.3.3 Peripheral vascular and artery disease

Peripheral vascular disease (PVD) and peripheral artery disease (PAD) are prob-

lems related to inadequate blood flow in the blood vessels which results in poor

blood flow in the brain, heart, arms, or legs. As a result of PAD/PVD, the legs

and feet are most commonly affected. PAD/PVD also increases the risk of hav-

ing coronary heart disease and stroke (British Heart Foundation, 2017). People

with PAD have a three-fold increased risk of mortality from major cardiovascular

events such as heart attack and stroke compared to those without PAD (Fowkes

et al., 2013). There are four elevating stages of severity of PAD/PVD; Stage I:

asymptomatic, Stage IIa: mild claudication, Stage IIb: moderate to severe clau-

dication, Stage III: ischaemia rest pain, and Stage IV: ulceration or gangrene

(BMJ Best Practice, 2018). The overall prevalence of PVD/PAD in the study

population is 8.39% and it is nearly equal for the HRT users (8.78%) and the

non-users (8.22%).

Figure 5.4 shows the proportion of PAD/PVD in HRT users and non-users

by age group for this study at baseline. The prevalence is slightly higher in the
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Figure 5.4: Prevalence of Peripheral Vascular and Artery disease by four age groups

in HRT users and non-users at study entry. HRT users have a slightly higher prevalence

of PAD/PVD compared to the matched non-users.

HRT users than the non-users across all the age groups. For HRT users, the

prevalences are 7.97%, 9.71%, 13.50%, 17.84, and for non-users 7.06%, 9.31%,

13.06%, 16.96%, respectively in 46−55, 56−65, 66−75, and 76+ age groups. The

prevalence rises gradually with increased age like in many other medical condi-

tions. PAD/PVD is sometimes undiagnosed and may occur as comorbidities with

other diseases such as diabetes and cardiovascular disease. The overall prevalence

of PAD/PVD in UK women is not exactly known. A systemic review comprising

34 studies on PAD prevalence performed by Fowkes et al. (2013) showed that the

mean prevalences of PAD/PVD in women of high income countries are 5.76%,

8.01%, 11.03%, 18.63% in 45−54, 55−64, 65−74, and 75+ age groups respec-

tively in the period from 2000 to 2010. This is relatively close to the prevalence

of PAD/PVD in this study.
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5.3.4 Hypercholesterolaemia

Hypercholesterolaemia is a condition that is characterized by high levels of choles-

terol in the bloodstream. Cholesterol is a fatty substance produced in the body

or obtained from consumption of fatty foods such as meat, fish, and dairy prod-

ucts. The body needs cholesterol to build cell membranes, make certain kinds

of hormones such as progesterone and testosterone, to produce vitamin D, and

bile acid. However, too much cholesterol increases the risk of developing coro-

nary heart disease and other cardiovascular disease. Usually, high blood choles-

terol levels result from a combination of genetic and environmental risk factors.

Lifestyle choices including diet, physical exercise, and smoking strongly influence

the cholesterol levels in the blood. Gender, age, and health conditions such as

diabetes and obesity also affect the cholesterol levels. A small percentage of

people with high cholesterol have an inherited form of hypercholesterolaemia.

The most common cause of inherited high cholesterol is a condition known as

familial hypercholesterolemia, which results from mutations in the LDLR gene

(US National Library of Medicine, 2019).
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Table 5.6: Baseline prevalence of the selected medical conditions in the study population by age group at study entry and in total. For

each condition, percentages were calculated by taking the ratio of the number of patients with the disease in an age group to the total

size of population in that age group.

Age groups
Hypertension Diabetes (Type II) Osteoporosis

HRT users (%) non-users(%) Total(%) HRT users (%) non-users(%) Total(%) HRT users(%) non-users(%) Total(%)

46−55 5993 (7.61) 12323 (7.74) 18316 (7.70) 972 (1.23) 2757 (1.73) 3729 (1.57) 1224 (01.55) 2269 (1.43) 3493 (01.47)

56−65 3955 (14.96) 10684 (16.36) 14639 (15.95) 572 (2.16) 2325 (3.56) 2897 (3.16) 1221 (04.62) 1934 (02.96) 3155 (03.44)

66−75 1515 (25.28) 4674 (26.81) 6189 (26.42) 199 (3.32) 987 (5.66) 1186 (5.06) 861 (14.37) 1080 (6.20) 1941 (8.29)

76+ 428 (36.18) 1242 (36.90) 1670 (36.71) 76 (6.42) 243 (7.22) 319 (7.01) 323 (27.30) 495 (14.71) 818 (17.98)

Total 11891 (10.58) 28923 (11.79) 40814 (11.41) 1819 (1.62) 6312 (2.57) 8131 (2.27) 3629 (3.23) 5778 (2.36) 9407 (2.63)

Hypercholesterolaemia Oophorectomy CKD(Stage 1-2)

HRT users (%) non-users(%) Total(%) HRT users (%) non-users(%) Total(%) HRT users(%) non-users(%) Total(%)

46−55 660 (0.84) 1219 (0.77) 1879 (0.79) 12676 (16.10) 11256 (7.07) 23932 (10.06) 48 (0.06) 131 (0.08) 179 (0.08)

56−65 566 (2.14) 1379 (2.11) 1945 (2.12) 7515 (28.43) 9731 (14.90) 17246 (18.80) 30 (0.11) 143 (0.22) 173 (0.19)

66−75 203 (3.39) 609 (3.49) 812 (3.47) 1938 (32.34) 2787 (15.90) 4725 (20.17) 31 (0.52) 117(0.67) 148 (0.63)

76+ 44 (3.72) 105 (3.12) 149 (3.28) 344 (29.10) 499 (14.82) 843 (17.19) 47 (3.97) 119 (3.54) 166 (3.65)

Total 1473 (1.31) 3312 (1.35) 4785 (1.34) 22473 (20.00) 24273 (9.89) 46746 (13.07) 156 (0.14) 510 (0.21) 666 (0.19)

PAD/PVD Hysterectomy CHD

HRT users (%) non-users(%) Total(%) HRT users (%) non-users(%) Total(%) HRT users(%) non-users(%) Total(%)

46−55 6275 (7.97) 11240 (7.06) 17515 (7.36) 6679 (8.48) 3006 (1.90) 9685 (4.07) 643 (0.82) 1200 (0.75) 1843 (0.77)

56−65 2567 (9.71) 6079 (9.31) 8646 (9.42) 4365 (16.51) 3530 (5.40) 7895 (8.60) 720 (2.72) 1923 (2.94) 2643 (2.90)

66−75 809 (13.50) 2276 ( 13.06) 3085 (13.17) 1264 (21.10) 1284 (7.37) 2548 (10.88) 469 (7.83) 1349 (7.34) 1818 (7.76)

76+ 211 (17.84) 571 (16.96) 782 (17.19) 222 (18.76) 278 (8.26) 500 (11.00) 186 (15.72) 428 (12.72) 614 (13.50)

Total 9862 (8.78) 20166 (8.22) 30028 (8.39) 12530 (11.15) 8098 (3.30) 20628 (5.77) 2463 (2.19) 6032 (2.46) 8495 (2.38)
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Table 5.7: Interpretation of cholesterol levels. Reproduced from Todkar et al. (2013)

.

Cholesterol type mg/dL mmol/L Interpretation

Total cholesterol < 200 < 5.2 Desirable

200−239 5.2−6.2 Borderline

> 240 > 6.2 high

LDL cholesterol < 100 < 2.6 Most desirable

100−129 2.6−3.3 Good

130−159 3.4−4.1 Borderline

160−189 4.1−4.9 High

> 190 > 4.9 Very high

HDL cholesterol < 40 < 1.0 Undesirable

41−59 1.0−1.5 Borderline

> 60 > 1.55 Good

Cholesterol is produced by the liver and it travels through the blood-

stream in the form of lipoproteins, while cholesterol from food consumption is

stored in the form of triglycerides. There are two forms of lipoproteins, low

density lipoproteins (LDL) and high density lipoproteins (HDL). LDL transport

cholesterol from liver to different tissues while HDL is responsible for the removal

of excess cholesterol from tissues and brings it back to the liver for removal from

the body. LDL is sometimes referred to as bad cholesterol because a high LDL

level leads to fat build up in the arteries. The cholesterol level in the blood

is typically measured in milligrams per deciliter (mg/dL) or in millimoles per

liter (mmol/L). The combination of LDL, HDL, and triglycerides are called to-

tal cholesterol. Table 5.7 presents the diagnostic level of measurements of three

types of cholesterol both in mg/dL and mmol/L with their interpretation.
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The overall percentage of patients with hypercholesterolaemia in this

study was 1.34%, with similar prevalences between HRT users (1.31%) and

non-users (1.35%). The prevalence raised steadily among HRT users from the

youngest to the oldest age cohort, from 0.84% in 46−55 to 3.72% in 76+ age

cohort. The distribution was also similar among non-users but there was a slight

decrease in 76+ group (3.12%) compared to the 66−75 (3.49%) group (Table

5.6). MacDonald and Morant (2008) compared the hypercholesterolaemia preva-

lence data of Health Survey for England (HSE) for 1998 and 2003 to the THIN

data from 1998 to 2006 and found a big difference in prevalence between HSE

and THIN. In 1998, the overall prevalence of hypercholesterolaemia was 7.8% in

THIN women and 68% in HSE. In 2003, the prevalence was 17.7 % in THIN

and 73% in HSE, respectively. According to MacDonald and Morant (2008), the

prevalences of hypercholesterolaemia by age in female THIN patients in 1998

were 13% in 45−54, 20% in 55−64, 21% in 65−74, and 19% in 75+ group, re-

spectively. This is higher than in this study population except the oldest age

group.

5.3.5 Osteoporosis

The nature of osteoporosis and related health hazards were discussed in details in

Chapter 2, Section 2.5.1. The overall prevalence of osteoporosis in this study was

2.6% at study entry. The prevalence was slightly higher in HRT users (3.2%)

than in the matched non-users (2.4%). The prevalence raised greatly in both
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groups as age increased with nearly doubled prevalence in HRT users compared

to the non-users in 66−75 group (HRT users: 14.4%, non-users: 6.2%) and 76+

group (HRT users: 27.3%, non-users: 14.7%). From literature review of HRT,

it is known that HRT is also prescribed for osteoporosis treatment (Bromley

et al., 2004). The high prevalence of osteoporosis among older age group of the

HRT users at baseline could be a reason for HRT prescription. The age specific

prevalence of osteoporosis in UK women is not known. However, it was estimated

that the prevalence of osteoporosis rises in women from 2% at age 50 to more than

25% at 80 years (NICE, 2012). The prevalence of osteoporosis in the UK women

over 50 years of age was 21.8% in 2015 (International Osteoporosis Foundation,

2017). In 2010, the overall prevalence of osteoporosis in women was 2.5% in the

UK (NICE, 2012). The total prevalence of osteoporosis in the study population

was similar to the UK national statistics in 2010.

5.3.6 Type II diabetes

In Chapter 2, Section 2.5.8, the types of diabetes mellitus and previous results

regarding its association with HRT were discussed. Among all types of diabetes,

type II is the most prevalent form, accounting for 90% of all diabetes HRT

users (Whicher et al., 2020). The overall prevalence of Type II diabetes in the

extracted population was 2.27%, accounting for 1.62% in HRT users and 2.57%

in non-users. non-users have slightly higher prevalence of type II diabetes than

HRT users in all age categories and the prevalence increased steadily in both
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groups as women aged (see Table 5.6). The lowest prevalence was in 46−55

age group (HRT users:1.23%, non-users 1.73%), and the highest was in 76+ age

group (HRT users: 6.42%, non-users: 7.22%), respectively. Diabetes prevalence

in the UK women rises both by calendar year and age (Diabetes UK, 2019). The

rate of increase nearly doubled in the latest decade compared to the previous one

(Whicher et al., 2020). The overall prevalence of diabetes in UK women was 1.9%

in 1994 and 4.2% in 2006 (Diabetes UK, 2010). In 2006, diabetes prevalences

were 3.6%, 6.0%, 10.4%, and 10.6% within 45−54, 55−64, 65−74 and 75+ age

groups in women of England (Diabetes UK, 2010). The total prevalence of type

II diabetes in this study population was similar to the 1994 UK statistics.

5.3.7 Oophorectomy and hysterectomy

Oophorectemy and hysterectomy are the surgical procedues of removing the

ovaries and uterus. Oophorectomy is termed as unilateral or bilateral depending

on the removal of one or both ovaries. If the ovaries are removed with fallop-

ian tubes then it is termed as salpingo-oophorectomy. Overall, the proportion

of oophorectomy was nearly double (HRT users: 20%, non-users: 9.89%), and

hysterectomy was nearly four-fold (HRT users: 11.15%, non-users: 3.30%) in the

HRT users compared to non-users in the study population at baseline. Apart

from treating menopausal symptoms, HRT is also widely prescribed for oophorec-

tomised and hysterectomised patients (Bromley et al., 2004), and this could be

the cause of high number of these patients among HRT users in the study pop-

158



ulation. Although these conditions were more prevalent in all age subgroups

of HRT users at baseline, the highest prevalence of oophorectomy (32.3%) and

hysterectomy (21.1%) were found in HRT users in 66−75 age group.

5.3.8 Summary

This chapter presented the distribution and characteristics of the study popula-

tion in respect to a number of important covariates that were considered for this

study. The prevalences of the selected covariates were calculated for full data as

well as for different age categories at first HRT treatment to examine the pattern

of these condition in this study population and also to compare it with the UK

national statistics. It was observed that nearly three-fourths of women took first

HRT at age between 46 to 55 years, i.e either at peri-menopausal or menopausal

transition age. There were more healthy weight and overweight women in HRT

users and more obese women in non-users. The proportion of ex-smokers and

current smokers were slightly higher in HRT users. More than half of the study

population lived in low deprivation areas. At the time of study entry, among

all of the medical conditions considered, hypertension was the most prevalent

in the participants. The prevalence of the majority of the medical conditions

was similar in HRT users and non-users of all age groups at baseline. However,

the prevalence of osteoporosis was greater in HRT users, and in particular, it

was much higher in the older HRT users than the non-users at study entry. The

number of oophorectomised and hysterectomised patients were nearly double and
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four-fold, respectively, in the HRT users compared to the non-users. Addition-

ally, it was observed that the missingness was higher in non-users than in HRT

users.
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Chapter 6

Survival modelling of hormone

replacement therapy

This chapter presents the development of the survival models for hormone re-

placement therapy (HRT). The models estimated the hazards of all-cause mor-

tality associated with the HRT treatment in women adjusting for a wide range

of important risk factors. The covariate selection for HRT models was based

on their importance identified from past research, and expert knowledge within

the team. This chapter starts with a description of the coded covariates used in

the final models. Then it explains the model development procedures in detail.

Finally, the results of HRT models are presented and discussed.
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6.1 Coding of covariates

The design and patient selection process of HRT study were explained in Chapter

3. The descriptive statistics of the study population for the selected covariates

were presented in Chapter 5. Following the initial distribution check, women

who started HRT after the age of 65 and/or born between 1900-1920 with their

matched non-users were excluded due to a very small proportion. Thus, the

data set comprises 105,199 HRT users who were born between 1921 and 1960,

and started the HRT treatment at age 46 to 65 in 1984−2017, and 224,643

matched non-users for model development. The flow diagram 6.1 shows the

selected patients and their status at the end of the study period. These patients

were used in model development.

This section describes the coding/recoding of the covariates that were

adjusted for the final HRT model. Some covariates with similar characteristics

were merged to create a new variable, and covariates with a very low proportion

(<1%) of exposure were excluded from the analysis to improve statistical effi-

ciency of the models. To minimise the possibility of biases in the imputed data,

only socio-demographic and lifestyle variables with low to moderate proportion

of missing values were considered for inclusion. After performing the descriptive

statistics check, the variables that were selected for inclusion in the model were

age at study entry, type of HRT, year of birth, type 2 diabetes, peripheral vascu-

lar/arterial disease (PVD/PAD), hypercholesterolaemia, coronary heart disease
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Figure 6.1: Participants selected for the model development. HRT users were

matched with the non-users by year of birth an general practice.

(CHD), osteoporosis, hypertension and its treatments, oophorectomy, hysterec-

tomy, categorised body mass index (BMI), smoking, and Townsend deprivation

status.

6.1.1 Clinical variables

Hypertension is one of the most important clinical variables as it is strongly

related to the development of other chronic conditions, such as stroke, heart

disease, and cardiovascular diseases (MacDonald and Morant, 2008). To know

the accurate prevalence of hypertension is important for medical research. In
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electronic medical records (EMRs), the diagnosis of hypertension is commonly

under-coded (Peng et al., 2016). In Chapter 5, Subsection 5.3.1, it was showed

that the prevalence of hypertension using Read codes was also much lower in this

study population than in the national statistics. Peng et al. (2016) compared

the prevalence and treatment rate of hypertension in THIN with the numbers

from Health Survey for England (HSE) for adult population in 2011, and found

that, the use of diagnosis Read codes only to identify hypertensive patients un-

derestimates the actual hypertension prevalence in the UK. The use of diagnosis

Read codes results in the prevalence of 14.49% in THIN females whereas the HSE

report showed that there was 28.27% prevalence of hypertension within adult fe-

male population of England in 2011. According to the HSE, if any of the following

conditions are present: SBP ≥ 140 mmHg, DBP ≥ 90 mmHg, or prescription

of anti-hypertensive drugs, then a person should be considered as hypertensive.

The HSE definition was also used in the hypertension survey in Canada and USA

(Joffres et al., 2013). The prevalence of hypertension varied greatly by definition

in THIN. By considering the combination of anti-hypertensive drug prescriptions

and abnormal blood pressure (≥ 140/90 mmHg), Peng et al. (2016) found the

prevalence of 41.71%, which is 13.44% higher than the HSE prevalence. However,

the use of diagnosis Read codes or two abnormal blood pressure records within 2-

year period provided nearly similar (32.81%) prevalence as HSE (28.27%). The

prevalence of hypertension in this study population using different definitions

was also compared with Peng et al. (2016) study (Table B.1).
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Peng et al. (2016) suggested that the diagnosis Read codes or two abnor-

mal blood pressure records within a 2-year period could be used for hypertension

surveillance in THIN in order to validate against the HSE. Serumaga et al. (2011)

defined hypertension using at least two Read codes and MacDonald and Morant

(2008) defined hypertension if any of these conditions were met: a clinical diag-

nosis Read code, high blood pressure recordings (SBP ≥ 140 mmHg or DBP ≥

90 mmHg) or a record of the antihypertensive drug prescription. In this study,

the definition suggested by Peng et al. (2016) was used to classify hypertensive

patients. That is, if a patient was identified as hypertensive either with a Read

code or have had high blood pressure record, then the patient was considered to

have hypertension. Among hypertensive patients, those who were treated with

antihypertensive drugs, were coded as treated hypertension, and those who were

not taking the drugs were coded as untreated hypertension. Patients who were

not hypertensive according to this new definition were also classified as having

treated hypertension if they had records of antihypertensive drug prescription.

Patients who were not identified as hypertensive using the Read codes, and

have not had a high blood pressure record (SBP < 140 mmHg and DBP < 90

mmHg), and did not receive anti-hypertensive drugs were coded as no hyperten-

sion. Patients with missing values in blood pressure records and no diagnosis of

hypertension using Read codes were considered as missing (HRT users: 22.0%,

non-users: 31.7%) and handled by multiple imputation. Thus, in the final model,

three levels of hypertension category were used: (i) no hypertension, (ii) treated
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hypertension, and (iii) untreated hypertension.

The oophorectomy and hysterectomy status was grouped into one vari-

able with four levels; (i) Intact: no history of removal of ovaries and uterus (ii)

Hysterectomy with oophorectomy: hysterectomy and at least one ovary removed,

(iii) Hysterectomy only: hysterectomy but no history of removal of ovaries, and

(iv) Oophorectomy only: no history of hysterectomy, and one or both ovaries

removed. Due to a very small proportion of women in the Hysterectomy only

category, this level was not included in the final analysis.

Other medical variables adjusted in the model of all-cause mortality were

type 2 diabetes, hypercholosterelemea, PAD/PVD, osteoporosis, CHD, and these

were all kept at yes or no level.

6.1.2 Demographic and lifestyle variables

In the survival model, Townsend deprivation score, body mass index, and smok-

ing status were considered to be adjusted for. In the final model, Townsend

deprivation quintile scores 1 and 2 were recoded as low, score 3 as medium,

and score 4 and 5 as high level of deprivation. BMI was initially coded as

healthy weight, overweight and obese and further recoded into two levels: healthy

weight/overweight and obese as there was no significant survival difference found

between healthy weight and overweight women. Smoking status was categorised

at three levels: ex-smoker, current smoker, and non-smoker as recorded in THIN.
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There were missing values in BMI (exposed: 16.5%, unexposed: 28.0%), smoking

(exposed: 9.1%, unexposed: 16.9%), and Townsend deprivation index (exposed:

10.4%, unexposed: 11.8%) and these were estimated by multiple imputation (Ta-

ble B.2). Missingness were higher among non-users than the HRT users in BMI

and smoking status.

Age at study entry were divided into four groups: 46−50, 51−55, 56−60,

and 61−65 years. Year of birth variable was grouped into four decade-long birth

cohorts: 1921− 1930, 1931− 1940, 1941− 1950, and 1951− 1960.

6.2 Participants’ characteristics and follow-up

The baseline characteristics of the study population used for survival modelling

and their follow-up information are presented in Table 6.1. 105,199 HRT users

who were born between 1921-1960 and started HRT at ages between 46 to 65

years in 1984−2017. There were 224,643 age and GP practice matched non-users.

The mean (± SD) age of women at first treatment was 53 (± 5.02) years, and

the mean duration of HRT use was 6.0 (± 4.8) years. Among HRT users, 17,606

(17%) received estrogen-only and 87,593 (83%) received combined therapy.

The total length of study was 32 years, and the average follow-up of was

13.5 (SD ± 6.8) years for the exposed group and 13.2 (SD ± 7.0) years for the

unexposed. During follow-up, 21,751 women died in total, of whom 6,329 (6%)
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Table 6.1: Selected baseline characteristics and follow-up information for the study
participants.

Characteristic

No.(%) of patients2

HRT users Non-users

Estrogen-only Combined HRT Total
(n = 17606) (n = 87593) (n = 105199) (n = 224643) P -value4

Death at follow-up 1110 (6.3) 5219 (6.0) 6329 (6.0) 15422 (7.0) <2.2e-16

Transferred out 5078 (28.8) 24526 (27.9) 29604 (28.1) 61023 (27.2) 7.9e-09

Mean follow-up years (± SD) 13.7 (7.1) 14.0 (6.7) 13.5 (6.8) 13.2 (7.0) –

Age group at HRT
46−50 5035 (28.6) 37219 (42.5) 42254 (40.2) 87108 (38.8) 2.7e-14
51−55 6011 (34.1) 30654 (35.0) 36665 (34.9) 72486 (32.3) <2.2e-16
56−60 4069 (23.1) 13286 (15.2) 17355 (16.5) 40674 (18.1) <2.2e-16
61−65 2491 (14.1) 6434 (7.30) 8925 (8.5) 24375 (10.9) <2.2e-16
Birth cohort
1921−1930 573 (3.3) 1361 (1.6) 1934 (1.8) 5565 (2.5) <2.2e-16
1931−1940 5450 (31.0) 18940 (21.6) 24390 (23.2) 55047 (24.5) <2.2e-16
1941−1950 8438 (47.8) 44453 (50.7) 52891 (50.3) 96142 (42.8) <2.2e-16
1951−1960 3145 (17.9) 22839 (26.1) 25984 (24.7) 67889 (30.2) <2.2e-16
Hypertension
No1 10017 (56.9) 55266 (63.1) 65283 (62.1) 134337 (59.8) <2.2e-16
Treated1 4419 (25.1) 18657 (21.3) 23076 (22.0) 49421 (22.0) <2.2e-16
Untreated1 3170 (18.0) 13670 (15.6) 16840 (16.0) 40885 (18.2) 0.032
Uterine/ovarian status
Intact 6779 (38.5) 78214 (89.3) 84993 (80.8) 203625 (90.6) <2.2e-16
Hysterectomy with Oophorectomy3 9945 (56.5) 1067 (1.2) 11012 (10.5) 6502 (2.9) <2.2e-16
Oophorectomy only 882 (5.0) 8312 (9.5) 9194 (8.7) 14516 (6.5) <2.2e-16

PAD/PVD 1348 (7.7) 7498 (8.6) 8846 (8.4) 17340 (7.7) 8.9e-12
Diabetes Type II 317 (1.8) 1233 (1.4) 1550 (1.5) 5089 (2.3) <2.2e-16
CHD 336 (1.9) 1033 (1.2) 1369 (1.3) 3130 (1.4) <2.2e-16
Osteoporosis 352 (2.0) 2101 (2.4) 2453 (2.3) 4215 (1.9) 0.035
Hypercholesterolaemia 254 (1.4) 972 (1.1) 1226 (1.2) 2605 (1.2) 0.891
Body mass index
Healthy weight/overweight1 13109 (74.5) 69023 (78.8) 82132 (78.1) 161294 (71.8) <2.2e-16
Obese1 4497 (25.5) 18570 (21.2) 23067 (21.9) 63349 (28.2) <2.2e-16
Smoking status
Non-smoker1 10966 (62.3) 50716 (57.9) 61682 (58.6) 141301 (62.9) <2.2e-16
Ex-smoker1 3187 (18.1) 15854 (18.1) 19041 (18.1) 35269 (15.7) <2.2e-16
Current smoker1 3468 (19.7) 21022 (24.0) 24490 (23.3) 48298 (21.5) <2.2e-16
Deprivation status
Low1 9648 (54.8) 47738 (54.5) 57386 (54.5) 117488 (52) <2.2e-163
Medium1 3662 (20.8) 17957 (20.5) 21616(20.5) 46950 (20.9) <2.2e-16
High1 4296 (24.4) 21811 (24.9) 26107 (24.8) 60204 (26.8) <2.2e-16

1The reported prevalence of variables with missing values are the mean of ten imputed datasets. Due to
missingness in systolic and diastolic blood pressure, missing values were generated in hypertension category.

2All values are reported as No. (%) except the mean follow-up time
3Hysterectomy and at least one ovary removed

4P -values are obtained from a χ2-test.
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were HRT users, and 15,422 (7%) non-users. There were 44 deaths per 10,000

years of follow-up in HRT users compared to 63 deaths in non-users. 29,604

(28%) users and 61,023 (27%) non-users were lost to follow-up.

The model development process was performed in two steps: (i) complete

case analysis: the model was fitted for complete data, i.e., by taking out the

patients with missing records and their matched counterparts, and (ii) full data

analysis: by considering all patients and using the imputed values for participants

with missing data. For both complete case and full data analyses, same statis-

tical methods were implemented. In the next section, the model development

procedures for HRT study are explained in details.

6.3 Model development

A Cox proportional hazards regression model was initially fitted to estimate the

effect of estrogen-only and combined HRT on the hazards of all-cause mortal-

ity in women who started treatment first time at age between 46 and 65 years.

The outcome variable was time to death from any cause in years; that is, from

the date of study entry to the date of death. The model was initially fitted

with the following predictors: age group at study entry, birth cohort, type of

HRT, PAD/PVD, hypertension and its treatments, hypercholesterolaemia, os-

teoporosis, CHD, type 2 diabetes, oophorectomy and hysterectomy status, BMI

category, smoking and deprivation status. Second order interactions included
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HRT with all other predictors, and all of the selected medical conditions with

lifestyle variables. Interactions of BMI and smoking with deprivation status, and

BMI with smoking status were also included. Missing values in the covariates

were estimated by joint modelling multilevel multiple imputation which was de-

scribed in Chapter 4 in details. The imputation process included all selected

variables in their original form and the survival time. There were two levels in

the imputation model, patient and practice level, to adjust for the correlation be-

tween patients from the same GP practice. The estimation had a burn-in-length

of 100 iterations, that means the value of each 100th iteration was registered,

and there were 1000 iterations in total resulting in 10 imputed datasets. The

distributions of the variables with missing values in the complete and imputed

data were similar (Table B.5).

Each imputed dataset contained records of all patients with the imputed

missing values and was modelled separately. Backward elimination technique was

applied to select the variables at 5% significance level for the main exposures, and

1% significance level for the interaction effects. The variable selection process by

backward elimination was described in Chaper 4 Subsection 4.5.2 in detail. The

contribution of the covariates in explaining the variation of the hazard in the

Cox regression model was assessed by ANOVA (analysis of variance). Grambsch

and Therneau’s test (Grambsch and Therneau, 1994) was performed to check

the non-proportionality of hazards at 5% level of significance and was found to

be significant for the variables age group and birth cohort (Table B.7). This test
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is based on the correlation between scaled Schoenfeld residuals of the coefficients

and log of survival time. Schoenfeld residuals are calculated as the predictors’

value for the individual who got the event minus its expected value assuming that

the hypothesis of the model holds, and thereby there is a separate residual for

each individual for each covariates (Bellera et al., 2010). The non-proportionality

was also verified by plotting the residuals of the time-variant coefficient β(t)

against survival time (Figure B.1). A smooth plot of the Schoenfeld residuals is

used to directly visualise the log hazard ratio over time.

To handle the non-proportionality, Weibull-Double-Cox regression model

was used. This model is capable of estimating both the shape for the time-variant

covariates that violated the PH assumption and the scale parameter. Weibull-

Double-Cox model replaces the unspecified baseline hazards function in the Cox

regression model by a Weibull baseline hazard function and incorporates an ad-

ditional Cox-regression term with the shape. Both scale and shape parameters

contributed to the estimation of the hazards for the time-variant variables. The

Weibull-Double-Cox model was chosen because the underlying baseline hazards

of the study population fitted well with the Weibull distribution (Figure B.2).

General practice was included in the model as a random effect or frailty to ac-

count for the unobserved heterogeneity of patients across practices. The details

of parameter estimation using this model were described in Chapter 4.

A subgroup analyses was also performed based on the age at HRT initi-

ation categorised into 5-year intervals to investigate the impact of age at HRT
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initiation on the hazards of all-cause mortality. Four separate age subgroup

models were fitted for age groups 46−50, 51−55, 56−60, and 61−65 years. The

Weibull-Double-Cox model were fitted for subgroup analyses as the PH assump-

tion was also violated in all subgroup models. For each subgroup model, both

complete case and full case (imputed data) analysis were performed, and the

same sets of explanatory variables and their interactions were adjusted for.

Results from the models on ten imputed datasets were pooled by Rubin’s

rules describe in Chapter 4. The goodness-of-fit of the models was evaluated

by the concordance statistic, loglikelihood, and AIC (Table B.8). All analyses

were performed in the statistical software R (version 3.6.1), using the package

‘survival’, ‘MASS’,‘ucminf’, ‘rms’, and ‘hmisc’. R package ‘jomo’ was used for

joint modelling multiple imputation, and package ‘sql’ was used for re-matching

data for complete case analysis. Both complete and full case models for all ages

included the following significant scale parameters: age category at study entry,

birth cohort, type of HRT, type 2 diabetes, coronary heart disease, hypertension

and its treatments, oophorectomy and hysterectomy status, body mass index,

smoking, and deprivation status, and the following significant shape parameters:

age category at study entry and birth cohorts. There were two significant scale

interaction parameters: BMI with smoking and type 2 diabetes with smoking.

All explanatory variables and their significant interactions in the model for all

ages were also significant in the majority of age subgroup models. There were

no significant interactions of HRT with any other covariates in the full case or
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subgroup models, meaning that the survival effect of HRT on the risks of all-cause

mortality were the same across all sub populations.

In the next section, pooled results for full data (all age combined) and age-

subgroup models are discussed. Results from the complete case analyses (without

missing data) for all models will be presented in the Appendix B, Figure B.4 -

B.8.

6.4 Results of the survival modelling

Results of the final survival models developed for the full dataset and for age

subgroups are displayed in forest plots. The adjusted and unadjusted effects of

HRT on the hazards of all-cause mortality for the full data and for four age sub-

groups at first treatment are presented in Figure 6.2. Results related to surgery,

medical conditions, and other treatments are presented in Figures 6.3 and 6.4,

respectively. The estimated hazard ratios for all other significant covariates and

their interactions for the full data and for subgroup analyses are presented in

Appendix B, Figures B.3−B.8.

The adjusted hazard ratios of all-cause mortality associated with HRT

were time invariant. Overall, the hazard of death was lower in combined HRT

users compared to non-users, and there was no significant impact of estrogen

only formulation on mortality. Combined HRT reduced the hazard of all-cause
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mortality by 9% (HR, 0.91; 95% CI, 0.88 - 0.94) in women of age between 46 and

65 years at the time of first HRT treatment compared to the non-users of the

same age. The hazard ratio (95% CI) of estrogen only HRT users was 0.99 (0.93

- 1.07). In age subgroup analyses, it was found that combined HRT reduced the

risks of death by 13%, 12%, and 8% in women who received first treatment at

age 51 to 55 (HR, 0.87; 95% CI, 0.82 - 0.92), 56 to 60 (0.88; 0.82 - 0.93), and

61 to 65 (0.92; 0.85 - 0.98), respectively. The effect of combined HRT was not

statistically significant in women who started treatment between 46 and 50 years

(0.98; 0.92 - 1.04). There was also no significant impact of estrogen-only HRT

on mortality in all subgroups (Figure 6.2).

Both oophorectomy and hysterectomy were associated with improved sur-

vival prospects. Compared with the intact group, women who have had hysterec-

tomy with oophorectomy had the overall mortality reduction of 24% (HR 0.76;

95% CI, 0.71 - 0.81), and in age subgroups, the highest reduction was in the

oldest (61-65) age cohort (0.72; 0.64 - 0.81) and the lowest was in the youngest

(46-50) age cohort (0.81; 0.65 - 0.99) at first treatment. In the full model, women

who have had oophorectomy only had the hazard of mortality of 0.86 (95% CI,

0.82 - 0.91), and in the age subgroups, the hazards in the youngest to oldest

age cohorts were 0.94 (0.82 -1.08), 0.78 (0.70 - 0.86), 0.83 (0.76 - 0.92), and 0.93

(0.85 - 1.03), respectively compared to the intact group. Due to a very small

number of hysterectomised women who have not had oophorectomy (< 0.1%),

this group was excluded from the analysis.
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Figure 6.2: Unadjusted and adjusted hazard ratios of all-cause mortality associated

with the use of HRT by age at first treatment. The age categories included patients

who started HRT at that age and their matched non-users. The hazard ratios (95%

confidence intervals) were adjusted for age at first HRT, birth cohorts, type of HRT,

oophorectomy/hysterectomy status, type II diabetes, coronary heart disease (CHD),

hypertension and its treatments, deprivation status, body mass index, and smoking

status. General practice was also included in the model as frailty.
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Figure 6.3: The adjusted hazard ratios of all-cause mortality associated with a history
of oophorectomy and hysterectomy. The age categories included patients who started
HRT at that age and their matched non-users. The hazard ratios (95% confidence
interval) were adjusted for age at first HRT, birth cohort, type of HRT, type II diabetes,
coronary heart disease (CHD), hypertension and its treatments, deprivation status,
body mass index, and smoking status. General practice was also included in the
model as frailty.
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There were increased hazards of mortality in women with both treated

and untreated hypertension. Overall, the hazard ratios of death from all-cause

in the treated and untreated hypertensive women were 1.51 (95% CI, 1.43 - 1.59),

and 1.31 (1.24 - 1.38), respectively compared to women without hypertension. In

the age subgroup models, these findings did not differ much both in the treated

and untreated groups (Figure 6.4). Patients who have had coronary heart disease

(CHD) also had increased risks of mortality. Overall, women with CHD had 1.5

times higher hazard of death than women without the condition (HR, 1.52; 95%

CI, 1.41 - 1.64). Similar to hypertension the hazards of CHD did not vary much

in age subgroups (Appendix B Figures B.4 - B.8).

Survival also significantly differed by patients’ socioeconomic status. The

hazards of all-cause death were greatest in women with high level of deprivation,

and the risks was greater in women at medium level of deprivation compared

to those at low deprivation. Overall, women who lived in highly deprived areas

faced 42% increased hazards (HR, 1.42; 95% CI, 1.38 - 1.47) of death compared

to the women in low deprivation areas. In the age subgroups, the hazards in high

deprivation area were greatest in the youngest age cohort (1.53; 1.42 - 1.64) and

lowest in the oldest age cohort (1.30; 1.20 - 1.36) at first treatment. In women

at medium level of deprivation, the hazard of death in the full data was 1.17

(1.13 - 1.21), and in age subgroups the lowest hazard was in 51-55 age group

and highest was in 61-65 age group, respectively compared to the group with low

deprived (Figure B.3).
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Figure 6.4: The adjusted hazards of all-cause mortality associated with hyperten-
sion and its treatments. Patients who were treated with anti-hypertensive drugs were
included in the treated hypertension group. The hazard ratios (95% confidence inter-
val) were adjusted for age at first HRT, birth cohort, type of HRT, type II diabetes,
coronary heart disease (CHD), oophorectomy/hysterectomy status, body mass index,
deprivation status, and smoking status. General practice was also included in the
model as frailty.
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The interaction of BMI and smoking had the most considerable impact

on the survival (Appendix B Figures B.4 - B.8). The hazard ratios of all-cause

mortality in current smokers compared to non-smokers were higher in healthy-

weight/overweight women than in obese women in all age cohorts. In ex-smokers

compared to non-smokers, the risk was higher in obese women compared to the

healthyweight/overweight women. In the full model, an extra interaction was

found between smoking and type 2 diabetes, where the hazard in current smoker

compared to non-smoker was 3.28 times higher (3.28; 2.42 - 3.64) in diabetic

patients compared to non-diabetics. In ex-smokers, compared to non-smokers,

there were 2.14 times increased risk of death in diabetic women than in non-

diabetic.

As the hazards of mortality by birth cohort were time-variant, both shape

and scale parameters were estimated for this risk factor. The estimated scale

parameter “a” and shape parameter “b” in the Weibull baseline hazard function

with the scale and shape parameters of each birth cohort contributed to the

time-varying hazards for the four birth cohorts. In Figure 6.5, the cumulative

hazards of all-cause mortality in full data by age group at study entry and HRT

type for women born in four different birth cohorts are plotted. In each birth

cohort, women who were on the combined HRT had reduced hazards of mortality,

and oestrogen-only HRT had increased hazards of mortality in comparison to

the non-users. However, the effect of estrogen-only HRT was found statistically

insignificant in the adjusted model. Comparing the hazards in four birth cohorts,
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Figure 6.5: Cumulative hazard plots of all-cause mortality for four age sub-groups
of 46-50, 51-55, 56-60, and 61-65, respectively, at first HRT treatment by HRT type in
four birth cohorts.

it was found that longevity increased in women born in the later birth cohorts

compared to women who took HRT at the same age and of same type but were

born in the earlier birth cohorts.

Finally, there was significant heterogeneity among patients by general

practice. The variance of the frailty was 0.16 (95%CI, 0.12 - 0.17) with standard

error of 0.004 in the full data and it ranged from 0.11 (0.002) to 0.16 (0.005) in

the age subgroup models.

In age subgroup analyses, the variables that contributed the most to the

survival differences were type of HRT, oophorectomy/hysterectomy, and depri-
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vation status, and the variables that contributed the least to the variation of the

survival were hypertension and its treatments, and coronary heart disease.

6.5 Model performance

The concordance between the estimated hazards of all-cause mortality and pa-

tient’s survival time in model for full data (all ages) was 0.68 (standard error,

0.002), and for the full subgroup models, its values range from 0.76 (0.005) in

46−50 age group to 0.81 (0.004) in 61−65 groups, indicating a good-fit (Therneau

and Atkinson, 2020). The loglikelihoods were higher in the imputed models than

in the complete case models meaning that the imputed models are more robust.

See Table B.8 for all results.

The survival models that included only HRT (unadjusted models) esti-

mated lower hazards of mortality than the adjusted models (Figure 6.2). Unad-

justed models also had the lower loglikelihood compared to the adjusted model.

The difference in the estimated hazards between the unadjusted and adjusted

models, and the corresponding model performance demonstrate the importance

of adjusting for important confounders when estimating the effects of medical

conditions or treatments. The fact that loglikelihood in full case models is lower

than in the complete case model indicates that importance of considering more

data to obtain a robust model.
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Chapter 7

Morbidity analyses at follow-up

This chapter presents the analyses of some chronic medical conditions that the

study population developed after study entry. Non-parametric survival analy-

sis techniques were used to estimate the probabilities of diagnosis of a medical

condition at follow-up for both HRT users and matched non-users. The preva-

lence of various medical conditions at follow-up were calculated and presented

for both groups. The unadjusted Cox proportional hazard models were fitted to

estimate the hazards of developing a number of chronic medical conditions for

four age groups by first HRT treatment. Section 7.1 of this chapter describes the

prevalence of selected medical conditions for HRT users and non-users at follow-

up, and Section 7.2 presents the Kaplan-Meier analysis of some of the selected

chronic conditions. Results from the age group-wise unadjusted Cox PH models

are described in Section 7.3.
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7.1 Incidence of medical conditions

The records of diagnosis of some chronic medical conditions, namely dementia,

osteoporosis, hypertension, hypercholesterolaemia, CHD, PAD/PVD, heart fail-

ure, type II diabetes, oophorectomy, hysterectomy, myocardial infarction (heart

attack), and breast cancer among study participants after study entry were iden-

tified using the corresponding clinical Read codes. The incidence of these con-

ditions at follow-up was calculated for HRT users and non-users, and by type of

HRT, separately. Among the study participants, those who had the above men-

tioned conditions at baseline were excluded to obtain the incidence of the disease

after study entry. However, this does not apply to breast cancer, dementia, and

chronic heart disease as the study population were free from these conditions at

study entry.

Table 7.1 presents the incidence of the selected medical conditions that pa-

tients were diagnosed with during follow-up period. Hypertension (HRT users,

40.7%, non-users, 37.8%) was the most common condition developed for both

HRT users and non-users, with almost 11% higher incidence in estrogen-only

(48.8%) users compared to non-users (37.8%). Peripheral vascular disease (HRT

users, 23.8%, non-users, 19.3%) was the second most prevalent condition at

follow-up for both groups, around 5% higher in estrogen-only HRT users than

in non-users. Osteoporosis (HRT users, 14.3%, non-users, 13.8%) was the next

most common condition in HRT users and non-users with nearly equal rate of
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Table 7.1: Incidence of selected medical conditions that the study population

developed at follow-up by HRT status.

Medical conditions

No.(%) of patientsa

HRT users Non-users

Estrogen-only Combined HRT Total
(n = 17606) (n = 87593) (n = 105199) (n = 224643) P -valueb

Hypertension 4893 (48.8) 21701 (39.3) 26594 (40.7) 50866 (37.8) 2.2e-16

PVD/PADc 3912 (24.1) 19041 (23.8) 22953 (23.8) 39931 (19.3) 2.2e-16

Osteoporosis 2605 (15.1) 12102 (14.2) 14707 (14.3) 30396 (13.8) 8.3e-06

CKDd 1957 (11.1) 7649 (8.7) 9606 (9.2) 19665 (8.8) 2.2e-16

Diabetes Type II 1454 (8.4) 5739 (6.7) 7193 (7.0) 17030 (7.8) 2.2e-16

Hypercholesterolaemia 1418 (8.2) 6491 (7.5) 7909 (7.6) 13563 (6.1) 2.2e-16

CHDe 1227 (7.1) 4582 (5.3) 5809 (5.6) 10327 (4.7) 2.2e-16

Breast cancer 723 (4.1) 4172 (4.7) 4895 (4.6) 6243 (2.8) 2.2e-16

Oophorectomy 890 (16.7) 18146 (23.4) 19036 (23.0) 23812 (12.0) 2.2e-16

Hysterectomy 586 (9.3) 6893 (8.0) 7479 (8.1) 8308 (3.8) 2.2e-16

Dementia 516 (2.9) 2222 (2.5) 2738 (2.6) 5042 (2.3) 1.8e-11

Heart failure 433 (2.4) 1714 (2.0) 2147 (2.0) 5100 (2.3) 3.2e-08

Myocardial infarction 390 (2.2) 1803 (2.1) 2193 (2.1) 4427 (2.0) 4.0e-02

aAll values are reported as No. (%), percentages were calculated by the number of conditions patients
developed at follow-up over the number of patients who did not have that condition at baseline.
bP -values are obtained from a χ2- test.
cPeripheral vascular or arterial disease dChronic kidney disease e Coronary heart disease
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diagnosis in both groups. Both estrogen-only and combined HRT users had com-

paratively more oophorectomies than the non-users at follow-up. The proportion

was nearly 5% higher in estrogen-only, and doubled in combined HRT users than

in non-users. There were also more hysterectomies in both estrogen-only and

combined HRT users compared to non-users but the proportion is much lower

than that of ooporectomised women in all groups. There was slightly higher

proportion of CHD events recorded in estrogen-only HRT users compared to the

non-users. Although the proportion of diagnosis of breast cancer (HRT users,

4.6%, non-users, 2.8%) was much lower than other conditions such as, hyperten-

sion, PAD/PVD, and osteoporosis at follow-up, the HRT users were diagnosed

with more breast cancer than the non-users, 1.3% higher in estrogen-only and

nearly 2% higher in combined HRT users. The incidence of dementia, heart fail-

ure, and myocardial infarction was comparatively low in both groups at follow-up

with similar percentages of diagnoses across all groups.

The incidence of the majority of the selected medical conditions was

slightly higher in HRT users than in non-users group at follow-up. However,

it should be taken into account that there were more missing records in non-

users than in HRT users (Table B.2). The higher proportions of diagnosis of the

selected medical conditions among HRT users during follow-up could be because

the HRT users received the HRT treatment and for that reason they visited the

GP practice more frequently than the non-users, and hence their health status

was checked and updated more often than in the non-user group.
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7.2 Non-parametric survival analyses

The Kaplan-Meier (KM) survival analyses of selected chronic medical conditions

were conducted to estimate the probabilities of development of the conditions

for the estrogen-only, combined HRT, and non-users groups during follow-up.

The non-parametric Kaplan-Meier survival analysis procedures were described

in Chapter 4 Section 4.3 in details. Figure 7.1 presents the Kaplan-Meier esti-

mates of the time-to-diagnosis of six chronic medical conditions, such as, Type

II diabetes, osteoporosis, dementia, breast cancer, CHD, and heart failure at

follow-up.

The Kaplan-Meier curves show that, the probability of diagnosis of Type

II diabetes was lower in combined HRT users than both in non-users and in

estrogen-only users over the entire study follow-up period, and estrogen-only

users developed slightly more Type II diabetes compared to non-users after

around 10 years of follow-up. Until 10 years of follow-up, there were no differ-

ences in heart failure diagnosis among the three groups. However, after 10 years,

the probability was lower in combined HRT users than in other two groups. Both

estrogen-only and combined HRT users were diagnosed with more breast can-

cer compared to the non-users over the entire follow-up, and after seven years

of follow-up, the proportion started to increase slightly for the combined HRT

users. While the proportions of diagnosis of coronary heart disease were nearly

the same in combined HRT and non-users, estrogen-only HRT HRT users devel-
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Figure 7.1: Kaplan-Meier survival plots for time to diagnosis of medical conditions

in estrogen-only, combined HRT, and non-users at follow-up.
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oped relatively higher CHD than the other two groups. A very small increase in

CHD events was observed also in combined HRT users compared to the non-users

after 13 years of follow-up.

Although there was higher proportions of osteoporosis diagnosis in all

groups over time at follow-up, after 10 years combined HRT HRT users had

slightly less osteoporosis than the other two groups. The probability of dementia

diagnosis remained very low until 15 years of follow-up, but after that there

was rapid increase in the diagnosis in all groups, with slightly more diagnosis in

estrogen-only HRT users between 18 to 24 years of follow-up.

7.3 Univariate morbidity models of selected med-

ical condition

This section presents results from the unadjusted Cox proportional hazard mod-

els that were fitted to estimate the hazards of development of selected chronic

medical condition at follow-up for HRT users compared to non-users by age

group at study entry. Each univariate model was fitted with shared frailty at

general practice, and the outcome was time from study entry to diagnosis of

that particular medical condition. The full dataset that was used to develop the

survival models in Chapter 6 was used to fit each univariate model. The unad-

justed hazards were estimated for four age groups at HRT initiation compared
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Figure 7.2: Unadjusted hazard ratios and 95% confidence intervals of the conditions

diagnosed at follow up for the exposed group compared to unexposed group for age

category 46-50, 51-55, 56-60, and 61-65 years at study entry.

to the matched non-users of the same age group. In addition, the hazards of

breast cancer development after starting HRT were estimated for estrogen-only

and combined HRT separately for four different age groups to investigate the

impact of these two types of HRT in more details.

Figure 7.2 presents unadjusted hazard ratios and 95% confidence intervals

of the selected medical conditions by age-group. In all age groups, the hazards
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of developing peripheral vascular disease (PVD) were 15−23% higher in HRT

users with the similar hazards in age groups 51-55 and 56-60 years, and a little

higher in 46-50 and 61-65 age groups. The hazards of developing osteoporosis

were mixed, with a somewhat increased risk in the youngest age cohort (46-50),

and somewhat reduced hazards in 51-55 and 56-60 age group, but in the oldest

age group (61-65) there was no significant benefit or risk. In all age groups,

there were reduced risks of developing type II diabetes in HRT users with 20%

reduction in 51-55 and 56-60 age group, 18% in 61-65, and 6% in 46-60 years age

group.

In each age group, the unadjusted hazards of developing breast cancer

at follow-up were more than 1.5 times higher in HRT users than in non-users,

and these hazards were somewhat increased as age increased at starting HRT

treatment. In all age group, the risks of developing dementia were 14−34%

higher in HRT users compared to non-users, where the youngest age group at

HRT initiation had the highest hazard and 51-55 group age at first HRT had the

lowest hazard.

HRT users had reduced risks of heart failure compared to the non-users at

follow-up and this risk decreased with increased age at HRT initiation except for

the youngest cohort, where risk was not significant. There were 40% higher risks

of myocardial infarction in the youngest age group, and 16% reduction in the

age group 56-60, but the other two groups showed non-significant hazards. All

HRT users had higher risks of transient ischaemic attack (TIA) with the highest
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risks (47%) in the youngest age group at first HRT treatment.

Table 7.2 presents the age group-wise unadjusted hazard ratios and con-

fidence intervals of breast cancer development at follow-up for estrogen-only and

combined HRT users compared to non-users, and Figure 7.3 shows the corre-

sponding forest plot. Several studies showed the increased risks of breast cancer

associated with combined HRT and our unadjusted analysis agrees with these

studies. While there were an increased risks of breast cancer in both estrogen-

only and combined HRT users compared to non-users, the risks were higher in

combined HRT users than in estrogen-only users except for the youngest age

group. The risks did not increase much with increased age at starting HRT for

estrogen-only users, but the risks increased significantly in combined HRT users

who started HRT at older age. For age 46-50 at first treatment, the risks were

the same for both types of HRT users, but for 61-65 age group, combined HRT

users had 2-fold higher risks.

7.4 Concluding remarks

This chapter presented the descriptive analysis of various chronic medical condi-

tions that the HRT users and non-users developed at follow-up. The incidence of

these diseases was estimated for both groups and non-parametric survival anal-

yses were conducted to estimate the probability of diagnosis of the condition for

estrogen-only and combined HRT group, and also for the unexposed group, over
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Table 7.2: Unadjusted hazard ratios and 95% confidence intervals of breast cancer

development at follow up for estrogen-only and combined HRT

Age group Estrogen only Combined HR

at first HRT HR (95% CI) HR (95% CI)

46−50 1.56 (1.46−1.68) 1.56 (1.41−1.72)

51−55 1.58 (1.48−1.69) 1.81 (1.57−2.09)

56−60 1.59 (1.46−1.73) 2.02 (1.59−2.55)

61−65 1.61 (1.44−1.81) 2.10 (1.48−2.96)

Figure 7.3: Forest plots of unadjusted hazard ratios and their 95% confidence inter-

vals for breast cancer development at follow-up in estrogen-only and combined HRT

users compared to non-users.
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time. Unadjusted Cox proportional hazard models with frailty estimated the

hazards of diagnosis of these conditions at follow-up for HRT users compared to

non-users by age group at HRT initiation. Unadjusted models were fitted for

each medical condition due to time limitation. The incidence of most medical

conditions at follow-up was somewhat higher among HRT users compared to the

non-users. This could be due to a higher missingness in non-users, as the HRT

users may have visited their GP more frequently than the non-users, allowing

their health status to be checked and updated more regularly.
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Chapter 8

Survival model for estimating

residual life expectancy

This chapter presents a model which is developed for calculating women’s life

expectancy at postmenopausal ages. First, the meaning of life expectancy and

its importance in various sectors are described briefly. Then, the model imple-

mentation process and results from the model are presented. Next, the methods

for calculating patients’ residual life expectancy using the model parameters are

explained. Finally, some scenario-based estimates of life expectancy of patients

at various ages are presented.
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8.1 Life expectancy

Life expectancy is a statistical estimate of the average time a person is expected to

survive. More broadly, it is the average number of years of life that one can expect

to live at a particular age. Life expectancy ideally depends on a person’s birth

year, current age, and several other factors including socio-demographic status,

lifestyle choices, and health, and it does not always remain stable. Actuaries and

insurance industry constantly deal with life expectancy to calculate the annuity

or insurance premiums for their clients, and therefore identifying the potential

trajectories of life expectancy is crucial for them, as well as it is important to

the government for resource planning and distribution.

In Chapter 1, the significance of estimating accurate longevity prospects

in different sectors including the actuaries, pension providers, and government,

was briefly described. Actuaries and demographers usually use life tables to

calculate life expectancy. A life table which is also known as mortality table

or actuarial table shows the probability of survival of a person at a particular

age while considering their lifestyle choices, medical history, and several other

factors. There are two types of life tables used in actuarial science: period life

tables and cohort life tables. The period life table depicts the mortality rates of

a population over a specified time period. A cohort life table, on the other hand,

is used to represent the overall mortality rates of a specific group of population

over their entire lifetime. Figure 8.1 shows the period and cohort life expectancy
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Figure 8.1: Period and Cohort life expectancy at birth by sex for England and Wales,

1841 to 2018.

projections at birth in England and Wales for males and females from 1841 to

2018.

Typically, epidemiologists measure the effect of risk factors on individ-

ual mortality as hazard ratios, whereas actuaries term this as force of mortality.

However, hazard ratios or the force of mortality need to be translated in or-

der to calculate life expectancy. In general, lower hazards mean increased life

expectancy, and higher hazards mean decreased life expectancy. Hazard ratios
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(HRs) estimated from the Cox regression model are the most commonly used

measurement to assess the covariate effects in studies that examine time-to-event

outcomes such as survival. However, when proportional hazard assumption in the

Cox model is violated, HR is no longer a reliable measurement. Previous studies

calculated life expectancy by taking the mean survival difference between two

time points, such as at study entry and at the end of follow up, in the case of non-

proportional hazards (Royston and Parmar, 2011; Trinquart et al., 2016). More

recent studies showed that including an assumption of a parametric distribution

of the survival in the study population gives better results when calculating life

expectancy (Dehbi et al., 2017; Kulinskaya et al., 2020). Kulinskaya et al. (2020)

estimated the changes in individual and period life expectancy due to medical

advances and health interventions by translating the hazard ratios from Cox re-

gression model combined with the Weibull or Gompertz baseline distribution.

Begun et al. (2019) showed that the use of parametric (Weibull or Gompertz)

Double-Cox model provides flexible tools to handle the non-proportionality by

allowing for the estimation of the hazards of the covariates that violate the PH

assumption. Because of medical advancements and improvements in healthcare

and treatments, it is now more common in survival studies with long follow-up

that the hazards for many potential risk factors are no longer constant. Thus,

calculating life expectancy using methodology from Begun et al. (2019) model

fitted to primary care data may provide a more accurate projection of future life

expectancy.
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In this study, a Weibull-Double-Cox model based on the survival distri-

bution of the selected study population was fitted, and the results from this

model were used to estimate women’s residual life expectancy (RLE) at various

postmenopausal ages. In the next section, the model implementation process

is explained first. Following that, the methods for calculating RLE from the

estimated model parameters, and the calculated results are presented.

8.2 Model implementation

The study population selected to develop the survival model of HRT for all ages

was considered for the development of a survival model for calculating life ex-

pectancy. However, a new survival model was implemented as the survival model

developed to estimate the hazards of all-cause mortality associated with HRT in

Chapter 6 was not suitable for calculating life expectancy. This is because the

age at study entry was considered as a categorical variable in the previous sur-

vival models. Past research also suggested that age needs to be included as a

continuous variable to calculate life expectancy, because the risk of mortality in-

creases monotonically with age, and age is independently associated with overall

survival (Liu et al., 2019). Moreover, the age-subgroup analyses of HRT and

all-cause mortality in this research found decreased survival with increased age

at first HRT treatment.

The study population included patients who had started combined or
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estrogen-only HRT between the ages of 46 and 65, and their matched non-users.

In full data, there were 105,199 HRT users who started HRT within this age

in 1984−2017, and 224,643 matched non-users. A total of 21,751 (case:6,329,

control:15,422) deaths were recorded during follow-up. The characteristics of

the study population were described in the previous chapters.

Both complete case and full data analysis were performed for the model

development. For full data analysis, ten imputed datasets were used and the

estimated parameters were pooled using Rubin’s rules. The final models in-

cluded the following significant covariates: age at study entry (continuous), birth

cohort (1921-1930, 1931-1940, 1941-1950, 1951-1960), hypertension (yes, no),

oophorectomy and hysterectomy status (intact, hysterectomy with oophorec-

tomy, oophorectomy only), coronary heart disease (yes, no), deprivation status

(low, medium, high) and the following significant interactions: BMI (healthy-

weight/overweight, obese) and smoking (non-, ex-, current smoker) and type 2

diabetes (yes, no) and smoking (non-, ex-, current smoker). The significant co-

variates and their interactions were initially selected from the Cox proportional

hazards model at 5% level of significance for the main exposures, and 1% level of

significance for the interaction effects. Patients’ survival time was the time from

first HRT prescription (for non-users, time from study entry) to death from any

cause in years.

The violation of PH assumptions in the Cox model was found for the birth

cohort only, which was confirmed by the Grambsch and Therneau’s test (Gramb-
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sch and Therneau, 1994). As the participants’ survival follows the Weibull dis-

tribution (Figure B.2), the Weibull-Double-Cox model with frailty at general

practice level was then fitted to estimate the shape and scale parameters for the

respective covariates. The pooled results from the imputed models are presented

in Table 8.1.

Hazard ratios for HRT treatments were constant throughout the follow-

up, meaning that the survival chances did not differ for patients with the same

treatment status. The hazard of mortality in the study population increased 1.11

times (95% CI, 1.10−1.12) with each year of age increase. Compared to patients

who lived with low level of deprivation, the hazard of mortality was higher in both

medium and high levels of deprivation. Compared to healthyweight/overweight

(H/O) and non-smoker (NS) women, the hazards of death were highest in obese

and current smoker (CS) women. Similarly, patients who had type 2 diabetes

(DM2) and were CS had the greatest hazard compared to patients who were

non diabetic and NS. The variance of the frailty in the model was 0.098 (95%CI,

0.076−0.127), indicating that the survival prospects varied greatly depending

on the general practice. Finally, the concordance of the model was 0.68 with a

standard error of 0.002, indicating that the model provides good fit to the data.

The methods for calculating residual life expectancy from estimated model

parameters are described in the following section. Some scenario-based average

life expectancies at different postmenopausal ages are presented at the end of

next section.
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Table 8.1: Parameter estimates from the Weibull-Double-Cox model on imputed data

Variables Estimate 95% CI P-value

Weibull Scale (a) 79.89 71.27-89.56 0

Weibull Shape (b) 3.25 3.03-3.50 0

Birth cohort (shape)

1931-1940 0.88 0.82-0.95 0.0023

1941-1950 0.79 0.73-0.86 0

1951-1960 0.71 0.64-0.79 0

Birth cohort (scale)

1931-1940 0.57 0.42-0.58 0.0005

1941-1950 0.38 0.28-0.51 0

1951-1960 0.27 0.18-0.39 0

Age (scale) 1.11 1.10-1.12 0

HRT treatment (scale)

Combined HRT 0.89 0.88-0.97 0.0117

Estrogen-only 1.11 0.95-1.21 0.2286

Deprivation status (scale)

High 1.46 1.38-1.55 0

Medium 1.22 1.14-1.31 0

Uterine/ovarian status (scale)

Hysterectomy with oophorectomy 0.76 0.68-0.85 0

oophorectomy only 0.87 0.80-0.95 0.0018

Hypertension (scale)

Yes 1.45 1.38-1.53 0

CHD (scale)

Yes 1.61 1.43-1.79 0

BMI & smoking (scale)

H/O & CS 2.13 1.99-2.27 0

H/O & ES 1.43 1.31-1.56 0

Obese & NS 1.31 1.21-1.42 0

Obese & CS 2.19 2.03-2.37 0

Obese & ES 1.64 1.49-1.80 0

DM2 & smoking (scale)

No & CS 1.44 1.35-1.54 0

No & ES 1.08 0.99-1.16 0.0661

Yes & NS 3.10 2.72-3.54 0

Yes & CS 3.28 2.84-3.78 0

Yes & ES 2.14 1.78-2.57 0

σ2 0.098 0.076-0.127

Concordance (se) 0.68 (0.002)

Loglik -122734.3

AIC 245629.5

201



8.3 Calculation of residual life expectancy

If S(t) represents the survival function, then in general, the life expectancy e(z)

for an individual at age z is calculated using the following formula:

e(z) =

∫∞
z
S(t) dt

S(z)
. (8.1)

Survival function in the Weibull-Double-Cox model is defined by the fol-

lowing formula (Begun and Kulinskaya, 2022):

S(t|a, b,β>shape,β>scale, σ2)

= E[S(t|a, b,β>shape,β>scale, σ2, ug)]

= (1 + σ2H(t|a, b,β>shape,β>scale))
−1/σ2

(8.2)

where ug is the gamma distributed frailty with mean 1 and variance σ2, and the

hazard function in the above expression is defined by:

H(t|a, b,β>shape,β>scale, ug) =

(
t

a

)b exp(β>shapeug)
exp(β>scaleug), (8.3)

where t is the time length from the treatment/diagnosis, a and b are the scale

and shape parameters of the Weibull baseline hazard function, β>shape and β>scale

are the estimates for shape and scale parameters in the Cox regression terms in

the model.

Then, the residual life expectancy (RLE) for an individual at age z for

Weibull-Double-Cox model estimates takes the following form:

RLE = e(z) =

∫∞
z
S(t|a, b,β>shape,β>scale, σ2, ug) dt

S(z)
. (8.4)
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To calculate RLE based on the variables included in the Weibull-Double-

Cox model, all different combinations of possible values of the covariates were

generated, and there were 15,452 combinations in total. This allowed to calcu-

late life expectancy for any possible combination of factors that applies to an

individual. Using the Weibull-Double-Cox model parameter estimates, a R pro-

gram was developed by Ilyas Bakbergenuly (2021) for calculating LE. This was

used to calculate life expectancy for women at postmenopausal ages. Table 8.2

presents the estimated average life expectancy for estrogen-only, combined, and

non-users of HRT, and the ratio and difference of RLEs between HRT users and

non-users at age 55 and 65, based on their birth cohort and deprivation status.

Table 8.3 presents the average life expectany of women by HRT treatment status

at age 55, based on their birth cohort, BMI and smoking status.

On average, combined HRT users starting HRT at age 55 had nearly 2

years longer (combined HRT: 9.30 years, non-users: 7.37 years) LE than non-

users in the 1921-1930 birth cohort residing in low deprivation level areas, and

this difference was reduced by nearly 6 months for women born in the same

birth cohort but living in high deprivation areas. Compared to women from the

1921-1930 birth cohort with low deprivation, for women from the 1951-1960 birth

cohort with low deprivation, this difference in life expectancy at age 55 increased

by nearly 6 years, and it reduced to 4.6 years for women with high deprivation.

However, age 65 at HRT initiation, the difference in life expectancy was reduced

to less than one year on average for the 1921-1930 birth cohort and nearly two
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Table 8.2: Average residual life expectancy for women starting HRT at age 55 and

65 by birth cohort and deprivation status. Other factors included at the same levels

were uterine/ovarian status, hypertension, CHD, and interaction of BMI and type 2

diabetes with smoking

Birth Cohort Deprivation Age LEa
1 LEb

2 LEc
3 LED∗13 LED∗∗23 LER∗∗∗13 LER∗∗∗∗23

1921-1930 Low 55 7.03 9.30 7.37 -0.34 1.93 0.95 1.26

1921-1930 Medium 55 6.31 8.29 6.58 -0.27 1.71 0.96 1.26

1921-1930 High 55 5.55 7.26 5.81 -0.26 1.45 0.95 1.25

1931-1940 Low 55 10.66 14.22 11.20 -0.54 3.02 0.95 1.27

1931-1940 Medium 55 9.46 12.63 9.95 -0.49 2.68 0.95 1.27

1931-1940 High 55 8.30 11.03 8.72 -0.42 2.31 0.95 1.26

1941-1950 Low 55 14.82 19.86 15.58 -0.76 4.28 0.95 1.27

1941-1950 Medium 55 13.14 17.65 13.83 -0.69 3.82 0.95 1.28

1941-1950 High 55 11.45 15.34 12.04 -0.59 3.30 0.95 1.27

1951-1960 Low 55 20.18 27.16 21.24 -1.06 5.92 0.95 1.28

1951-1960 Medium 55 18.76 24.78 19.68 -0.92 5.10 0.95 1.26

1951-1960 High 55 15.51 20.90 16.32 -0.81 4.58 0.95 1.28

1921-1930 Low 65 3.56 4.33 3.68 -0.12 0.65 0.97 1.18

1921-1930 Medium 65 3.34 3.97 3.43 -0.09 0.54 0.97 1.16

1921-1930 High 65 3.10 3.64 3.17 -0.07 0.47 0.98 1.15

1931-1940 Low 65 5.10 6.42 5.28 -0.18 1.14 0.97 1.21

1931-1940 Medium 65 4.68 5.81 4.83 -0.15 0.98 0.97 1.20

1931-1940 High 65 4.25 5.21 4.39 -0.14 0.82 0.97 1.19

1941-1950 Low 65 6.90 8.93 7.20 -0.30 1.73 0.96 1.24

1941-1950 Medium 65 6.26 8.02 6.51 -0.25 1.51 0.96 1.23

1941-1950 High 65 5.62 7.10 5.84 -0.22 1.26 0.96 1.22

1951-1960 Low 65 9.28 12.24 9.72 -0.44 2.52 0.95 1.26

1951-1960 Medium 65 8.34 10.91 8.73 -0.39 2.18 0.95 1.26

1951-1960 High 65 6.39 8.78 6.75 -0.36 2.03 0.96 1.24

aAverage RLE of estrogen-only HRT users, bAverage RLE of combined HRT users, cAverage RLE of

HRT non-users, ∗Average RLE difference of estrogen-only HRT users and non-users, ∗∗Average RLE

difference of combined HRT users and non-users, ∗∗∗Average RLE ratio of estrogen-only HRT and

non-users, ∗∗∗∗Average RLE ratio of combined HRT users and non-users
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years for women from the 1951-1960 birth cohort, reflecting that the benefits of

HRT diminish at older starting age. Although estrogen-only HRT users seemed

to have a little shorter life expectancy than the non-users, the hazard ratio for

estrogen-only HRT was not significantly different (HR, 1.11, 95% CI, 0.95-1.21,

p-value = 0.23) from the non-users meaning that there was no real difference.

Combined HRT users who started HRT at age 55 had 2.4 years longer life

expectancy on average than non-users for the 1921-1930 cohort with no DM2

and NS, and nearly 1 year longer life expectancy than non-users among women

born in the same birth cohort with DM2 and CS. In the 1951-1960 birth cohort,

this difference in life expectancy increased to 7.37 years for women on combined

HRT with no DM2 and NS and 3.29 years for women with DM2 and CS.

The estimation of RLE in this study suggest that in women born in 1921-

1930, 1931-1940, 1941-1950, and 1951-1960 birth cohorts, and living with low

deprivation, no DM2 and non-smokers, a combined HRT user can expect to live

an average of 2, 3-4, 4-5, and 6-7 years longer than the non-users if they start HRT

at age 55, and nearly 1.5, 2, 3, and 4.5 years longer if they start HRT at age 55 but

live in high deprivation area, or have DM2, and are current smokers. Between

1921-1930 and 1951-1960, the average life expectancy of women increased by

up to 13 years for estrogen-only and non-users of HRT, but up to 18 years for

combined HRT users at starting age 55.
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Table 8.3: Average residual life expectancy for women starting HRT at age 55 by

birth cohort and interaction of type 2 diabetes (DM2) and smoking status. Other

factors included at the same levels were deprivation status, uterine/ovarian status,

hypertension, CHD, and interaction of BMI with smoking

Birth Cohort DM2 & Smoking Age LEa
1 LEb

2 LEc
3 LED∗13 LED∗∗23 LER∗∗∗13 LER∗∗∗∗23

1921-1930 No & NS 55 8.68 11.56 9.12 -0.44 2.44 0.95 1.27

1921-1930 No & CS 55 6.81 9.04 7.15 -0.34 1.89 0.96 1.26

1921-1930 No & ES 55 8.20 10.92 8.61 -0.41 2.31 0.95 1.27

1921-1930 Yes & NS 55 4.32 5.55 4.50 -0.18 1.05 0.96 1.23

1921-1930 Yes & CS 55 4.20 5.38 4.37 -0.17 1.01 0.96 1.23

1921-1930 Yes & ES 55 5.32 6.97 5.57 -0.25 1.40 0.96 1.25

1931-1940 No & NS 55 13.29 17.77 13.98 -0.69 3.79 0.95 1.27

1931-1940 No & CS 55 10.36 13.85 10.88 -0.52 2.97 0.95 1.27

1931-1940 No & ES 55 12.54 16.78 13.19 -0.65 3.59 0.95 1.27

1931-1940 Yes & NS 55 6.32 8.33 6.62 -0.30 1.71 0.95 1.26

1931-1940 Yes & CS 55 6.13 8.05 6.41 -0.28 1.64 0.96 1.26

1931-1940 Yes & ES 55 7.97 10.61 8.36 -0.39 2.25 0.95 1.27

1941-1950 No & NS 55 18.57 24.87 19.53 -0.96 5.34 0.95 1.27

1941-1950 No & CS 55 14.39 19.35 15.15 -0.76 4.20 0.95 1.28

1941-1950 No & ES 55 17.49 23.47 18.41 -0.92 5.06 0.95 1.27

1941-1950 Yes & NS 55 8.62 11.49 9.10 -0.48 2.39 0.95 1.27

1941-1950 Yes & CS 55 8.34 11.10 8.75 -0.41 2.35 0.95 1.27

1941-1950 Yes & ES 55 10.97 14.75 11.56 -0.59 3.19 0.95 1.27

1951-1960 No & NS 55 25.38 34.08 26.71 -1.33 7.37 0.95 1.28

1951-1960 No & CS 55 19.61 26.46 20.65 -1.04 5.81 0.95 1.28

1951-1960 No & ES 55 23.90 32.15 25.17 -1.27 6.98 0.95 1.28

1951-1960 Yes & NS 55 11.57 15.58 12.17 -0.60 3.41 0.95 1.28

1951-1960 Yes & CS 55 11.17 15.04 11.75 -0.58 3.29 0.95 1.28

1951-1960 Yes & ES 55 14.87 20.10 15.66 -0.79 4.44 0.95 1.28

aAverage RLE of estrogen-only HRT users, bAverage RLE of combined HRT users, cAverage RLE of

HRT non-users, ∗Average RLE difference of estrogen-only HRT users and non-users, ∗∗Average RLE

difference of combined HRT users and non-users, ∗∗∗Average RLE ratio of estrogen-only HRT and

non-users, ∗∗∗∗Average RLE ratio of combined HRT users and non-users
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8.4 Conclusion

This chapter presented the calculations and results on the residual life expectancy

of women of postmenopausal age as estimated by fitting a newly developed

Weibull-Double-Cox survival model. The model implementation process was

outlined, and the method for calculating life expectancy using the model param-

eters was explained. At the end, some scenario-based life expectancies from the

model based on various characteristics at different postmenopausal ages are pre-

sented and explained. This study found that, on average, women’s residual life

expectancy increased by up to 13 years for estrogen-only and non-users, and up

to 18 years for combined HRT users between the birth cohorts of 1921-1930 and

1951-1960. This study also found that the difference in residual life expectancy

for women on combined HRT at 55 was from 2 to 6 years longer than non-users

across the four birth cohorts, but if starting HRT at age 65 this difference was

from less than 1 year to 2.5 years. There were no noticeable differences in life

expectancy between estrogen-only HRT users and their non-users for all birth

cohorts.
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Chapter 9

Discussion

This study investigated the long-term effects of hormone replacement therapy on

the survival of women in the United Kingdom by developing survival models using

electronically recorded primary care data from The Health Improvement Network

Database. This chapter discusses these newly developed survival models, with an

emphasis on their validity and usability in clinical and actuarial practise. First,

the main findings of this research are summarised, and the contributions to the

current clinical evidence are discussed. Then the strengths and limitations of

this study are addressed. Next, the implications of this research in medical care

and treatment are provided. Finally, the overall conclusions of this thesis are

given.
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9.1 Main findings

For this research, the electronic medical records of 105,199 healthy HRT users

who initiated HRT at ages 46 to 65 between 1984 and 2017 and 224,643 matched

healthy non-userss were selected from THIN database. This large population

based matched cohort study estimated the long-term adjusted effects of HRT on

the hazards of overall and age-specific all-cause mortality by developing five sur-

vival models. This study also estimated the hazards of developing various chronic

medical conditions after starting HRT, and developed a model for calculating life

expectancy of women after menopause.

9.2 Models for HRT and mortality

This study investigated the overall and age-specific hazards of all-cause mortality

in women born between 1921 and 1960 who started HRT at ages 46 to 65 between

1984 and 2017. After adjusting for important risk factors, this study found that,

estrogen-only HRT was not associated with significantly increased or decreased

hazards of all-cause mortality at any age, but combined HRT was associated with

an overall decreased risk of death from all causes. Age-specific mortality analysis

found that combined HRT users who started treatment between the ages of 51

and 55 had the greatest reduction in the hazards of death, and starting combined

HRT at an older age diminishes the survival benefit.
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Only a few previous studies on HRT and the risks of all-cause mortality as-

sessed the effects of estrogen-only and combined HRT separately (Manson et al.,

2017; Stram et al., 2011). Results of this study agree in respect to estrogen-only

HRT effects with the Manson et al. (2017) findings from the WHI trial, and in

respect to combined HRT with Stram et al. (2011) report. There were, however,

some significant discrepancies when comparing this study to these two investi-

gations. WHI was a randomized non-users trial of 13,816 postmenopausal HRT

users versus placebo, and Stram et al. (2011) used survey data of a prospective

cohort from California Teachers Study. The average age of women taking HRT in

both studies was around 63 years, which was more than a decade away from the

menopausal transition age. Furthermore, WHI investigated only one single dose

of oral estrogen and progesterone, whereas participants in this study received a

variety of doses and preparations of oral and transdermal HRT.

Other mortality studies reported varied results on the total impact of HRT

on all-cause mortality (Ettinger et al., 1996; Hunt et al., 1987; Grodstein et al.,

1997; Salpeter et al., 2009; Folsom et al., 1995; Malek et al., 2019). Results from

this study on combined HRT agree with Hunt et al. (1987), Ettinger et al. (1996),

Grodstein et al. (1997), and Salpeter et al. (2009) who also found a decreased

risk of death from all-cause in HRT users ranging from 27% to 46%. However,

compared to the prior studies, this study found less reduction (9%) of hazards

of death from all-causes. There were several possible factors that may have

caused this difference. Firstly, this study estimated the hazards using large-scale
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primary care data, whereas most other studies relied on survey or register data

with a smaller number of participants. Secondly, this study analysed the effect of

combined and estrogen-only HRT on all-cause mortality separately, while most

other studies estimated the total impact of HRT. Other possible explanations

for the lower reduction in hazards in this study compared to others include

the absence of age-matched non-userss in the majority of observational studies.

Some of these studies were criticised for introducing bias by selecting healthy

HRT users compared to non-users. In this study, both HRT userss and non-

userss were the same age and had similar health characteristics at baseline. In

addition, this study estimated hazards of all-cause mortality by adjusting for

a wide range of important risk factors, while most other studies only adjusted

for demographical and/or lifestyle factors. However, compared to the adjusted

analysis, the unadjusted analysis of this study found a greater reduction in the

hazards of all-cause mortality in both types of HRT users (combined HRT: 21%,

estrogen-only: 13%). Thus, a new finding is that the reduction in hazards of

all-cause mortality associated with combined HRT in the general population is

lower than previously estimated.

There were no significant interactions between the type of HRT or age at

HRT initiation with other morbidities or lifestyle factors such as hypertension or

smoking, meaning that the effect of HRT on the hazards of death from all-causes

was consistent across different groups. Women who had both oophorectomy and

hysterectomy had significantly improved survival prospects. This study found
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a significant interaction between BMI and smoking, where obesity and current

status of smoking associated with the greatest hazard of death compared to

healthyweight/overweight and non-smoker women. Furthermore, results of this

study agree with the findings of Drever and Whitehead (1995) regarding signif-

icant survival variation in the UK due to the level of deprivation. Finally, this

study found significant variation in the survival of patients by general practice.

9.3 Models for HRT and morbidity

This study investigated the impact of HRT on the hazards of developing some life

threatening medical conditions at follow-up by fitting univariate survival models

for each condition and estimating the probability of developing these medical

conditions using KM survival analysis. This study found that women who took

estrogen-only HRT had significantly higher risks of developing hypertension, and

slightly higher risks of coronary heart disease, stroke, dementia, and breast cancer

than non-users. Women who were on combined HRT had lower risk of devel-

oping type 2 diabetes, heart failure, and osteoporosis, but an increased risk of

developing breast cancer. Moreover, age-specific analysis showed that starting

combined HRT at an older age further increased the risks of developing breast

cancer. Results from this study partly agree with the latest review on the effect

of HRT by the National Institute of Health and Care Excellence (NICE) (NICE,

2021). According to the current NICE guidelines, the benefits of HRT include
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the prevention of osteoporotic fractures, colorectal cancer, and cardiovascular

disease, while the risks include a slight increase in CHD and thromboembolic

events. The current NICE guidelines also state that estrogen-only HRT is asso-

ciated with little or no change in the risk of breast cancer and combined HRT is

associated with an increased risk of breast cancer.

9.4 Life expectancy in HRT users

This study investigated the life expectancy of women at postmenopausal ages

based on various important risk factors. A Weibull-Double-Cox model was im-

plemented as it enabled to calculate the life expectancy considering the variables

with both time-variant and time-invariant hazards. This study showed that the

average survival increased by up to 18 years for combined HRT users, and up

to 13 years for estrogen-only and non-users from the oldest birth cohort to the

youngest at age 55. This study also indicates that the average difference in life

expectancy between combined HRT users and non-users at 55 years was 2 to 6

years across four birth cohorts, and at age 65 the difference was only 1 to 2.5

years. Starting HRT at the age of 55, the highest difference in life expectancy

found between combined HRT and non-users was 6 years in the 1951-1960 co-

hort with low deprivation, and the lowest difference was 1 year in the 1921-1930

cohort with type 2 diabetes and current smoking status.
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9.5 Research strengths and limitations

This research made use of electronic primary care records from The Health Im-

provement Network Database that are broadly representative of the UK general

population when adjusted for demographics and deprivation (Blak et al., 2011;

MacDonald and Morant, 2008). Due to the availability of information on all pre-

scribed drugs in primary care records, a large number of anonymised HRT users

were able to be selected for this study. Because of the matched cohort study de-

sign and the exclusion of the selected medical conditions from both HRT userss

and non-userss, this study was able to estimate more precisely the effects of HRT

on the survival of healthy users compared to healthy non-users. The availability

of a wide range of information in primary care records, including comorbidities,

treatment history, lifestyle factors, and demographics, allowed this study to ad-

just for a large number of important confounders and test their interactions. This

meant that the survival variations could be investigated in greater depth, mak-

ing the results more generalisable to the larger population. The use of multiple

imputation techniques to replicate missing records allowed nearly all extracted

patients to be included in the analyses. Using a Weibull Double-Cox model, this

study was able to estimate hazards for time-varying covariates. In addition, the

random effect included in the survival model accounted for the dependence of

patients from the same general practice. Finally, this study spanned 32 years,

with an average patient follow-up for almost 14 years. Because of the long study

period, changes in the hazards of various risk factors, as well as more deaths,
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could be observed, and life expectancy could be more accurately estimated.

The study participants selected for this study received a great variety of

HRT formulations and doses, so these were not differentiated in the analyses.

Although many potential risk factors were adjusted for, there could be residual

confounding due to a number of other risk factors, such as age at menarche (first

menstruation) and menopause, parity (number of children born), diet, and phys-

ical activity. These covariates were not adjusted for in the models because they

were not systematically recorded in the database. To avoid immortality bias,

the duration of HRT use was not considered in the analyses because prolonged

use may be confounded with longer survival. Despite the fact that THIN is

broadly representative of the UK general population, due to high regional clus-

tering in THIN (Kontopantelis et al., 2018), further research might be needed

to validate the results using data from other large UK primary care databases.

More missingness in the non-userss than in the HRT userss in the lifestyle and

socio-demographic variables could lead to bias in the imputed data. The more

missing records in non-userss and a higher proportion of diagnosis of the selected

medical conditions among HRT users compared to non-users for the majority of

conditions could be explained by the fact that HRT users visited the practise

more frequently than non-users as they were receiving treatment, so their health

status was checked and updated more frequently. This could be a potential

limitation of the morbidity analyses of this study.
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9.6 Research implications

The key findings of this research suggests that the long-term hazards of all-cause

mortality associated with combined HRT are lower, and estrogen-only HRT was

not associated with any significant changes. This study was based on a large

sample of healthy women who were registered with UK general practises and

were followed up for many years. As a result, this research is more generalisable

and strengthens the emerging consensus that the benefits of long-term HRT

outweigh the harms for the vast majority of women. This information may help

women in making decisions about whether or not to use HRT, as well as help

clinicians in making decisions about prescribing HRT.

Current clinical guidelines from the National Institute of Health and Care

Excellence in the UK recommend administering combined HRT to symptomatic

women with a uterus, and estrogen-only HRT to women without a uterus after

discussing its benefits and risks with them (NICE, 2021). The latest NICE guide-

lines state that HRT prevents osteoporotic fractures, colorectal cancer, and car-

diovascular disease if the treatment starts before the age of sixty, while the risks

include slight increase of CHD, stroke, and venous thromboembolism. However,

NICE has not released any guidance on all-cause mortality yet. In this study,

combined HRT users had lower risks of type 2 diabetes, heart failure, and osteo-

porosis, and estrogen-only users had higher risk of developing hypertension and

CHD events than the non-users at follow-up. Although current NICE guidelines
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state that estrogen-only HRT has little or no effect on the risk of breast cancer

and that combined HRT can increase the risk, this study found an increased risk

of breast cancer for both types of HRT. Nevertheless, this study did not observe

an increased mortality risks among HRT users. This could be because women are

more likely to die from cardiovascular disease, osteoporosis, and dementia than

from breast cancer (Climént-Palmer and Spiegelhalter, 2019), and so benefits

in these conditions will outweigh the risks associated with rarer conditions. It

is, therefore, important to disseminate a balanced information on the potential

benefits and risks of HRT and not to overestimate the possible risks, to allow

women and their doctors to make an informed choice.

Other findings of this study indicate that the hazards of death for hy-

pertensive women are higher in both the treated and untreated groups, and the

hazard ratios the same with increasing age. This research suggest that women

who had both oophorectomy and hysterectomy had considerably better chance

of survival. The findings of this study also suggest that the survival varies greatly

depending on the level of deprivation, and being obese and smoker makes survival

chances worse. Additionally, the findings of this research will assist clinicians

when treating patients.

The model for calculating life expectancy can help actuaries in setting

annuity pricing and insurance premiums, as well as women in making decisions

about health management and retirement planning. This model was transformed

into an online calculator, which is accessible through the shiny app (Njabulo
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Ncube, 2021). There is also an R package available in GitHub (Ilyas Bakber-

genuly, 2021) named “mylongevity”. Both this app and the R package allow to

estimate the life expectancy based on the given characteristics and thereby could

be used by physicians, actuaries and individuals.

9.7 Further research

The main focus of this study was to investigate the impact of long-term HRT on

the overall survival of women patients in the UK. However, it is also important to

conduct thorough investigation of the long term impact of HRT on other health

conditions and mortality from those conditions using primary care data. Due to

the limited time of this study, it was not possible to fit an adjusted model for each

of the medical conditions separately and this was left for further investigation.

Although this study found an overall reduction in hazards of death from all-

causes in combined HRT users compared to non-users, and also varying reduced

hazards in combined HRT users of age groups 51 to 55, 56 to 60, and 61 to 65,

starting combined HRT at an age between 46 to 50 showed no significant benefit.

Therefore, further investigation is needed to fully understand the reason behind

this.
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9.8 Conclusions

The primary goals of this research were to investigate how estrogen-only and

combined hormone replacement therapy impacted the hazards of overall and

age-specific all-cause mortality in postmenopausal women using a large scale

primary care data from UK general practices.

This study compared the hazards of all-cause mortality in women on

estrogen-only and combined HRT at starting ages between 46 to 65 in 1984-

2017 with age and general practice matched non-users and found that combined

HRT was associated with a reduced risk of mortality from all causes during a long

follow-up, but estrogen-only HRT had no impact. Compared to previous studies,

this study found less reduction in hazards in mortality, which is probably due to

the absence of matched non-users, small sample sizes, and little adjustment of

other confounders in some prior studies. This study filled several gaps in past

research and was the first of its kind to use large primary care data to investigate

the hazards of all-cause mortality associated with HRT, thereby to strengthen

the evidence that the long-term benefits of HRT outweigh the risks.

The findings of this study were published in the peer-reviewed medical

journal BJOG: An International Journal of Obstetrics and Gynaecology (Akter

et al., 2022). These findings may help women and their doctors in making deci-

sions about HRT use. However, each woman should make an informed decision

about the potential risks and benefits, considering her own clinical condition,
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concerns and expectations.
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Appendix A

Literature review of HRT on

mortality and morbidity

The major HRT studies that were conducted in the past, and their results are

described in Chapter 2. In this appendix, the research summary, data, and find-

ings of various published papers on HRT which were considered for literature

review are tabulated. The designs and settings, study period, sample size, sta-

tistical methods used to estimate the results, and the outcomes are presented in

the table in chronological order.
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Table A.1: Past research publications on Hormone Replacement Therapy

Lead author Design and setting Study Sample Statistical Results

(year published) period size method

Hunt et al. Women ages 45 – 54 were 1974 – 1983 4,544 Logistic Overall mortality was

(1987) recruited at 21 specialist regression significantly lower than the

menopause clinics around national mortality rates

Britain to monitor mortality (Relative Risk (RR) =0.58;

and cancer incidence. 95% Confidence Interval (CI),

Past medical history, height, 0.49-0.70) among HRT users

weight, blood pressure, marital apart from the ovarian cancer

status, occupation and (RR=1.43; 95% Cl, 0.62 – 2.82).

smoking with a detailed HRT

history was documented at

the start of the study.

Colditz et al. US women of ages 30 – 55 1976 – 1982 121,700 Cox proportional Bilateral oophorectomy increases

(1987) years were recruited to hazards model the risk of CHD.

determine the effects of HRT

on CHD.

Stampfer et al. A cohort of female registered 1976-1986 48,470 Cox proportional Current estrogen use was associated

(1991) nurses in the US completed hazards model with a reduction in the incidence

a set of mailed questionnaire of CHD as well as mortality

about estrogen use and were from CVD, but it was not

followed up for 10 years with associated with any change in the

two years periodic resurvey risk of stroke. The overall HR of

Prior history of cardiovascular CHD in women currently

Continued on next page

243



Table A.1 – Continued from previous page
Lead author Design and setting Study Sample Statistical Results

(year published) period size method

disease and cancer were taking estrogen was 0.56 and

excluded at baseline. 95% CI, 0.40 – 0.80.

Paganini-Hill and A prospective cohort 1981 – 1993 8,877 Univariate and The risk of Alzheimer’s disease and

Henderson (1994) study of residents of (3760 multivariate related dementia was less in

Leisure World Laguna died) regression estrogen users relative to nonusers

Hills, a retirement techniques (odds ratios (OR)= 0.69, 95% CI,

community in Southern 0.46 – 1.03). The risk decreased

California was conducted significantly with increasing estrogen

by mailed questionnaires dose and with increasing duration

to evaluate the estrogen of estrogen use.

deficiency and risk of

AD in women.

Folsom et al. The Iowa Women’s 1986 – 1991 41,070 Cox proportional The multivariate adjusted HR

(1995) Health Study was hazards of current hormone users compared to

performed by mailed regression non-users are: total mortality (HR

questionnaires. model = 0.78, 95% CI, 0.65 – 0.94),

CHD (HR = 0.74, 95% CI, 0.48 – 1.12),

endometrial cancer (HR = 4.3, 95% CI,

2.7 – 6.9), breast cancer (HR = 1.23,

95% CI, 0.99 – 1.55), colon cancer

(HR = 0.72, 95% CI, 0.46 – 1.12),

hip fracture (HR = 0.53, 95% CI,

Continued on next page
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Lead author Design and setting Study Sample Statistical Results

(year published) period size method

0.31 – 0.91).

Paganini-Hill and A prospective cohort 1981 – 1995 8,877 Cox proportional The risk of AD and related dementia

Henderson (1996) study of residents of (3760 hazards was significantly reduced in estrogen

Leisure World Laguna died) model users compared with non-users (HR =

Hills, was conducted by 0.65, 95% CI, 0.49 – 0.88). The risk

mailed questionnaires decreased significantly with both

to evaluate the effects of increasing doses (P = 0.01) and

different estrogen and increasing duration (P = 0.01) in

preparation, varying women taking oral CEE.

doses of estrogen, and

duration of estrogen

replacement therapy on

the risk of developing AD.

Ettinger et al. Cohort of women born 1969-1973 1,110 Cox- For death from any cause, the age-

(1996) between 1900 and 1915 proportional adjusted HR = 0.54 and associated

was selected to compare hazards 95% CI = 0.38 – 0.76 in estrogen users

all-cause and cause- model compared to non-users.

specific mortality rates due to

long-term use of ERT.

Kawas et al. A prospective study of 16 years 472 Cox- The HR for AD in ERT users

(1997) ERT and the risk of of proportional compared to nonusers was 0.46 (95%

developing Alzheimers follow-up hazards CI, 0.209 – 0.997) after adjusting for

disease in the Baltimore model education.

Longitudinal Study of

Continued on next page
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Lead author Design and setting Study Sample Statistical Results

(year published) period size method

Aging categorized women

into oral and transdermal

ERT users.

Grodstein The Nurses Health Study, 1976 – 1992 121,700 Logistic Current hormone users had a lower

et al. (1997) where female registered regression risk of death (OR = 0.63, 95% CI =

USA nurses of ages 30 – 55 0.56 – 0.70) than lifetime non-users.

completed a set of mailed Survival benefit decreases with longer

questionnaires including duration (> 10) of use.

information on menopause,

CVD, and cancer.

Sourander et Women born between 1987 – 1995 7,944 Cox proportional Current ERT did not increase the

al. (1998) 1923 and 1930 in Turku, women hazards risk of breast cancer (HR = 0.57, 95%

Finland, were invited to contrib- model Cl, 0.27 – 1.20) compared to non-users.

participate in a uted to

mammography 53,305

screening with person-

questionnaires including years

the use of hormone follow-

therapy. up

Baldereschi The Italian Longitudinal Not 2,816 Cox Proportional ERT is associated with a reduced

et al. (1998) Study of aging, a known hazards prevalence of AD (HR = 0.28, 95%

population based, model CI, 0.08 – 0.98) after adjusting for

multicentre survey age, education, age at menarche,

examined the association age at menopause, smoking and

Continued on next page
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Lead author Design and setting Study Sample Statistical Results

(year published) period size method

of ERT and AD in the alcohol habits, body weight at the

postmenopausal women age of 50 years, and the number of

of age 65 – 84 years children.

Mulnard et A randomized, double- 1995 – 1999 120 Linear ERT did not show disease

al. (2000) blind, placebo non-userled and progression nor did it improve

clinical trial to examine logistic global, cognitive, or functional

the effects of ERT on treatment regression outcomes in women with mild to

of mild to moderate AD. model moderate AD.

Hedblad et An urban cohort of 1983 – 1992 5,721 Kaplan-Meier Women using HRT had a

al. (2002) peri/postmenopausal lower incidence of myocardial

women of median age infraction (MI).

55.4 in Sweden was

followed up for nine

years.

Lacey et al. A cohort study of former 1979 – 1998 44,241 Poisson 329 women developed ovarian cancer

(2002) participants in the Breast regression during follow-up. Time dependent

Cancer Detection model analysis adjusted for age, menopause type,

Demonstration Project, a oral contraceptive use, ever use of

nationwide breast cancer estrogen-only was significantly associated

screening programme at with ovarian cancer (RR = 1.6; 95% Cl,

twenty-nine US clinical 1.2 – 2.0). Increasing duration of

centres. The average age estrogen-only use was significantly

of women was 56.6 years. associated with ovarian cancer.

Continued on next page
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Incidence of ovarian cancer

was the main outcome

measure.

Hodis et al. A double blinded, placebo 1995 – 2000 226 ANOVA In older postmenopausal women with

(2003) non-userled trial on women and established coronary-artherosclerosis,

with mean age 63.5 and chi-square estrogen-only or combined HRT

at least one coronary-artery test had no significant effect on the

lesion. Participants were progression of atherosclerosis.

randomly assigned to

either non-user group,

estrogen-only (17β -

estradiol), or estrogen-

progestin group (17β -

estradiol and

medroxyprogesterone

acetate).

Beral et al. A breast screening 1996 – 2001 1,084,110 Cox proportional HRT users at recruitment were

(2003) programme conducted by person- hazards regression more likely to develop breast cancer

NHS invites all women year model than never users (HR = 1.66;

in the UK of ages follow- 95% CI, 1.58 – 1.75, P < 0.0001)

50 – 64 years for routine up and die from it (HR = 1.22;

screening together with 95% CI, 1.00 – 1.48, P = 0.05).

postal questionnaire about The risk was significantly increased for

use of HRT. The questionnaires women receiving HRT preparation

Continued on next page
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are asked to be returned before containing oestrogen-progestogen

screening. (HR = 2.00; 95% CI, 1.88 – 2.12,

P < 0.0001).

Margolis et A randomised, double- 1993 – 2001 15,641 Cox proportional Combined therapy reduces the

al. (2004) blinded WHI trial on hazards regression incidence of diabetes, possibly

postmenopausal women model mediated by a decrease in

of ages 50 to 79 with insulin resistance unrelated to body size.

intact uterus were The cumulative incidence of treated

recruited to examine the diabetes was 3.5% in the HRT

incidence of diabetes groups and 4.2% in the placebo

among HRT user. group (HR = 0.79, 95% Cl, 0.67 – 0.93,

P = 0.004).

Paganini-Hill Cohort study of residents 1981 – 2003 122,203 Cox proportional Older women undergoing estrogen

et al. (2006) of a California retirement person- hazards regression therapy treatment had significantly

community was years of model increased longevity (HR = 0.91;

performed by a postal follow- 95% CI, 0.87 – 0.96). Hazards of death

health survey including up were lowest among long-term (≥ 15 years)

details on HRT use. users (HR = 0.83; 95% CI, 0.74 – 0.93

for 15 – 19 years) and (HR = 0.87; 95%

CI, 0.80 – 0.94 for 20+ years). Lower

dose users (0.625 mg) had a slightly

better survival rate than higher dose

users (HR = 0.84; 95% CI, 0.78 – 0.91 vs

Continued on next page
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HR = 0.91; 95% CI, 0.83 – 0.97).

Schuetz et al. The Breast Unit of the 1990 – 1999 1,072 Cox proportional The use of HRT before the diagnosis of

(2007) Department of Gynecology hazards regression breast cancer results in more favourable

and Obstetrics at the model, primary tumours, with a lower incidence

University Hospital of Kaplan- of recurrences and a better overall

Heidelberg recruited Meier survival rate. 5-year survival was 92%

patients with breast (HR = 0.37; 95% Cl, 0.24 – 0.57).

cancer aged 45-70 years.

MacGregoret A meta-analysis of 103 1950 – 2007 1,436 Hierarchical There is an increased longevity in

al. (2007) studies considered the effects Bayesian younger postmenopausal women taking

of menopause and hormone random- hormone therapy compared to those

replacement therapy effects who are not taking the therapy.

on headache and migraine. model

Gast et al. Data from Dutch and 1997 – 2007 91,310 Cox proportional After multivariate adjustment, HRT

(2011) Swedish women of age pearson- hazards regression use was not associated with the risk of

46 – 64 years who are free years model CHD among women with or without

from CHD, stroke, intense VMS.

venous thrombosis/

pulmonary embolism or

cancer at baseline.

Information on HRT,

vasomotor symptoms (VMS)

Continued on next page
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and potential

confounders were collected

by questionnaires.

Hunter et al. Cross-sectional study 2001 – 2008 10,418 Binary Women who had taken HT in the past

(2011) contributed by the UK logistic and discontinued the treatment were

collaborative trial of regression more likely to have hot flashes and night

Ovarian Cancer Screening sweats.

(UKCTOCS) cohort.

Women without

oophorectomy and aged

54 – 65 years completed

a follow-up

questionnaire.

Schierbeck Randomised, open label 1990 – 1993 2,016 Cox proportional Early initiation and prolonged HRT

et al. (2012) trial of healthy Danish hazards significantly reduces the risk of the

women aged between model combined endpoint of mortality,

45 – 58 myocardial infraction or heart failure

and followed up to and does not result in an increased risk of

death, CVD breast cancer or stroke.

and cancer.

Anderson et Hysterectomised women 1993 – 1998 10,739 Cox proportional The use of oestrogen was associated

al. (2012) of ages 50-79 years were regression with lower incidence of invasive breast

selected from the WHI model cancer (151 HRT users, 0.27% per year)

randomised, double- compared with placebo (199 HRT users,

Continued on next page
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blinded, placebo- 0.35% per year); (HR 0.77, 95% CI

non-userled trial at 40 US 0.62 – 0.95: P = 0.02) after a median of 5.9

clinical centres to years of follow-up.

examine the effect of

oestrogen (0.625 mg) on

invasive breast cancer

incidence, tumour

characteristics, and

mortality.

Manson et Two WHI hormone 1993 – 1998 27,347 Cox proportional The number of CHD HRT users were 196 for

al. (2013) therapy trials (estrogen-only hazards regression combined vs 159 for placebo (HR =

vs. placebo and combined model 1.18, 95% CI, 0.95 – 1.45), and 206 vs 155

HRT vs. placebo) were for invasive breast cancer (HR = 1.24,

used to find out the 95% CI, 1.01 – 1.53). For CEE alone,

health outcomes in younger women (aged 50 – 59) had

Intervention and more favourable results for all-cause

extended post-stopping mortality and myocardial infraction.

Phases. Intervention

lasted a median of 5.6

years in combined HRT

trial and 7.2 years in estrogen-only

trial with 13 years of

cumulative follow-up

until September 30, 2010.

Continued on next page
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Boardman et A meta-analysis of 19 Not 40,410 Results show no evidence that hormone

al. (2015) RCTs to assess the effects known therapy provides any protective effects

of oral HRT for the against death from any cause, death

prevention of from cardiovascular disease, non-fatal

cardiovascular disease in heart attack or angina, either in

postmenopausal women healthy women or women with

to ascertain differential pre-existing heart disease.

effects between

use in primary or

secondary prevention

Imtiaz et al. A prospective study 1989 – 2009 8,195 Cox proportional Postmenopausal estrogen use was not

(2017) from the Kuopio hazards associated with the risk of AD in register-

Osteoporosis Risk Factor model based or self-reported data (HR = 0.92,

and Prevention study 95% CI, 0.68 - 1.2, and HR = 0.99, 95%

cohort in Finland CI, 0.75 - 1.3, respectively). Long-term

to explore the self-reported postmenopausal HRT was

association between associated with reduced AD risk

postmenopausal HRT and (HR = 0.53, 95% CI, 0.31 - 0.91).

AD. Self-administered

questionnaires were sent

to all women aged 47 – 56

years in every 5th year,

starting from 1989.

Register-based

Continued on next page
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information on HRT

prescriptions was

available since 1995.

Manson et WHI trial on 1993 – 1998 27,347 Cox proportional During the cumulative 18 years follow-

al. (2017) postmenopausal women (7,489 hazards up, all-cause mortality was 27.1% in the

of age 50 to 79 were used died) model HRT group and vs 27.6%

to examine the total and in the placebo group (HR = 0.99, 95%

cause specific cumulative CI, 0.94 – 1.03). The use of combined

mortality, including HRT for a median of 5.6 years or

during the intervention estrogen-only for a median of

and extended 7.2 years was not associated with the

postintervention follow- risks of all-cause, cardiovascular, or

up up to December 31, cancer mortality.

2014.
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Table B.1: The prevalence of hypertension using alternative definitions in this study population and the Peng et al. (2016)1 study.

46−55 56−65 66+ Total Peng et al. (2016)

Definition HRT user non-user HRT user non-user HRT user non-user HRT user non-user

Diagnosis Read code 7.62 7.75 15.02 16.41 27.07 28.50 10.58 11.79 14.49

High blood pressure 19.65 21.26 32.95 37.89 49.74 53.20 24.72 28.55 32.47

Antihypertensive drug 17.38 14.04 24.73 22.75 43.24 41.57 20.73 18.66 31.86

Diagnosis Read code or antihypertensive drug 18.72 15.60 27.19 25.86 46.32 44.83 22.45 20.78 32.17

Diagnosis Read code or high BP 24.93 27.29 42.87 50.00 64.16 68.39 31.69 37.00 32.81

High BP or antihypertensive drug 35.76 35.41 52.60 57.34 76.59 79.76 42.37 45.78 41.71

Diagnosis Read code or high BP or antihypertensive drug 36.68 36.62 54.25 59.88 78.32 81.62 43.51 46.84 41.75

1Peng et al. (2016) compared the prevalence of hypertension in THIN with the Health Survey England (HSE) using different definitions. In this table the

prevalences calculated by Peng et al. (2016) from THIN are compared with the prevalence in the extracted study population.
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Table B.2: Proportion (%) of missingness in BMI, smoking, Townsend deprivation

score, and hypertension status for HRT users and non-users in full data.

HRT users Non-users Total

Covariates Oestrogen-only Combined Total

(17606) (87593) (105199) (224643) (329842)

BMI 3356(19.1) 14016(16.0) 17372(16.5) 62629(28.0) 80001(24.3)

Smoking 2111(12.0) 7422(8.5) 9533(9.1) 37909(16.9) 47442(14.4)

Deprivation 1828(10.4) 9093(10.3) 10921(10.4) 26604(11.8) 37525(11.4)

Hypertension1 4629(26.3) 18463(21.1) 23092(22.0) 71201 (31.7) 94293(28.6)

1Missing values were generated in hypertension category due to missingness in systolic and

diastolic blood pressure records.

Table B.3: Distribution of the HRT users and non-users by one to one match

Age group HRT users (%) Non-users (%)

46−55 27507 (81.30) 27507 (81.30)

56−65 6030 (17.82) 6030 (17.82)

66−75 271 (0.80) 271 (0.80)

75+ 24 (0.07) 24 (0.07)

Total 33832 (100) 33832 (100)
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Table B.4: Proportion (%) of missingness in BMI, smoking, Townsend deprivation

score, and hypertension status for HRT users and non-users in full data by age at study

entry.

HRT users Non-users Total

Covariates Oestrogen-only Combined Total

(17606) (87593) (105199) (224643) (329842)

BMI

46-50 1195(6.8) 4555(5.2) 5750(5.4) 21480(9.6) 27217(8.3)

51-55 949(5.4) 4117(4.7) 5066(4.8) 17662(7.9) 22743(6.9)

56-60 738(4.2) 3416(3.9) 4154(3.9) 13008(5.8) 17144(5.2)

61-65 474(2.7) 1928(2.2) 2402(2.3) 10479(4.7) 12897(3.9)

Smoking

46-50 810(4.6) 2715(3.1) 3525(3.4) 13723(6.1) 17248(5.2)

51-55 668(3.8) 2257(2.6) 2925(2.8) 10538(4.7) 13463(4.1)

56-60 439(2.5) 1576(1.8) 2015(2.0) 7413(3.3) 9428(2.8)

61-65 194(1.1) 874(1.0) 1068(1.0) 6240(2.8) 7308(2.2)

Deprivation

46-50 651(3.7) 3085(3.5) 3736(3.6) 9485(4.0) 13221(4.0)

51-55 546(3.1) 2658(3.0) 3204(3.0) 7938(3.4) 11142(3.3)

56-60 456(2.6) 2376(2.7) 2832(2.7) 6635(2.9) 9467(2.8)

61-65 175(1.0) 974(1.1) 1149(1.1) 2546(1.1) 3695(1.1)

Hypertension1

46-50 1531(8.7) 6300(7.2) 7831(7.4) 23809(10.6) 31640(9.6)

51-55 1285(7.3) 5689(6.5) 6974(6.6) 19542(8.7) 26516(8.1)

56-60 1038(5.9) 3761(4.3) 4799(4.5) 14824(6.4) 19623(6.0)

61-65 775(4.4) 2713(3.1) 3506(3.3) 13026(5.9) 16532(5.1)

1Missing values were generated in hypertension category due to missingness in systolic and

diastolic blood pressure records.
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Table B.5: Distribution1 of the covariates with missing values in the complete data and imputed data.

Complete data2 Imputed data3

(108255) (329842)

Oestrogen-only Combined Non-user Oestrogen-only Combined Non-user

(6539) (36296) (65420) (17606) (87593) (224643)

Hypertension

No 3523(53.9) 22552(62.1) 37904(57.9) 10021(56.9) 55267(63.1) 134276(59.8)

Treated 1785(27.3) 8031(22.1) 15182(23.2) 4416(25.1) 18658(21.3) 49329(22.0)

Untreated 1231(18.8) 5713(15.7) 12334(18.9) 3169(18.0) 13668(15.6) 41038(18.3)

Deprivation

Low 3646(55.8) 20001(55.1) 35326(54.0) 9648(54.8) 52057(54.5) 127761(52.3)

Medium 1327(20.3) 7388(20.4) 13457(20.6) 3662(20.8) 19574(20.5) 51088(20.9)

High 1566(23.9) 8907(24.5) 16637(25.4) 4078(24.4) 23811(24.9) 65596(26.8)

Smoking

Non-smoker 4150(63.5) 21058(58.0) 41858(64.0) 10968(62.3) 55378(57.9) 152996(62.9)

Ex-smoker 1218(18.6) 6892(19.0) 10714(16.4) 3186(18.1) 17317(18.1) 38079(15.7)

Current smoker 1171(17.9) 8346(23.0) 12848(19.6) 3468(19.7) 22914(24.0) 52240(21.5)

Body mass index

Healthy weight/overweight 4734(72.4) 28371(78.2) 46299(70.8) 14170 (74.5) 74740(78.8) 172613 (71.8)

Obese 1805(27.6) 7925(21.8) 19121(29.2) 4840 (25.5) 20067(21.2) 67826(28.2)

1Values are reported as number (%)
2Patients with the complete records only
3The reported prevalences is the mean of ten imputed datasets.
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Table B.6: Selected baseline characteristics of the study population by age subgroup at HRT initiation

Characteristics 46-50 51-55 56-60 61-65

Oestrogen-only Combined Non-users Oestrogen-only Combined Non-users Oestrogen-only Combined Non-users Oestrogen-only Combined Non-users

Hypertension

No 3399(67.5) 25831(69.4) 60144(69.1) 3531(58.7) 19144(62.5) 43364(59.8) 2060(50.6) 7257(54.6) 20212(49.7) 1079(43.3) 2993(46.5) 10530(43.2)

Treated 932(18.5) 6804(18.3) 14539(16.7) 1387(23.1) 6539(21.3) 15592(21.5) 1208(29.7) 3411(25.7) 11052(27.2) 855(34.3) 1998(31.1) 8055(33.1)

Untreated 704(14.0) 4584(12.3) 12425(14.3) 1093(18.2) 4971(16.2) 13530(18.7) 801(19.7) 2618(19.7) 9410(23.1) 557(22.4) 1443(22.4) 5790(23.8)

Uterine/ovarian status

Intact 2231(44.3) 34623(93.0) 83158(95.5) 2233(37.2) 27112(88.5) 65141(89.9) 1412(34.7) 11165(84.0) 34928(85.9) 903(36.3) 5314(82.6) 20398(83.7)

Hysterectomy with oophorectomy 2579(51.2) 286(0.8) 870(1.0) 3451(57.4) 359(1.2) 2119(3.0) 2460(60.5) 254(2.0) 1974(4.9) 1455(58.4) 168(2.6) 1539(6.3)

Oophorectomy only 225(4.5) 2310(6.2) 3080(3.5) 327(5.4) 3183(10.4) 5226(7.2) 197(4.8) 1867(14.1) 3772(9.3) 133(5.3) 952(14.8) 2438(10.0)

PAD/PVD 317(6.3) 2270(6.1) 5139(5.9) 390 (6.7) 1992 (6.5) 4494(6.2) 317 (7.8) 1009(7.6) 2969(7.3) 241(9.7) 611(9.5) 2242(9.2)

Diabetes Type II 66(1.3) 361(1.0) 1158(1.3) 98(1.6) 451(1.5) 1604(2.2) 85(2.1) 260(2.0) 1300(3.2) 68(2.7) 161(2.5) 1027(4.2)

CHD 31(0.6) 223(0.6) 445(0.5) 91(1.5) 306(1.0) 762(1.1) 117(2.9) 275(2.1) 919(2.3) 97(3.9) 229(3.6) 1004(4.1)

Osteoporosis 65(1.3) 409(1.1) 784(0.9) 80(1.5) 429(1.4) 942(1.3) 98(2.9) 79(3.2) 358(2.7) 107(4.3) 302(4.7) 658 (2.9)

Hypercholesterolaemia 372(7.4) 2619(7.0) 4299(5.0) 464(7.7) 2258(7.4) 4468(6.2) 365(9.0) 1060(8.0) 3025(7.4) 217(8.7) 554(8.6) 1771(7.3)

Body mass index

Healthy weight/overweight 3714(73.7) 29193(78.4) 63101(72.4) 4420(73.5) 24045(78.4) 51277(70.7) 3045(74.8) 10621(79.9) 28979(71.3) 1926(77.3) 5160(80.0) 17533(71.9)

Obese 1321(26.2) 8026(21.5) 24007(27.5) 1591(26.5) 6609(21.5) 21209(29.3) 1024(25.2) 2665(20.1) 11695(28.7) 565(22.7) 1274(19.8) 6842(28.1)

Smoking status

Non-smoker 2953(58.6) 20360(54.7) 55149(63.3) 3736(62.1) 18185(59.3) 45164(62.3) 2621(64.4) 8121(61.1) 25405(62.5) 1657(66.5) 3986(61.9) 15538(63.7)

Ex-smoker 828(16.4) 6179(16.6) 12291(14.1) 1032(17.2) 5682(18.5) 11488(15.8) 788(19.4) 2639(19.8) 6862(16.9) 510(20.5) 1383(21.5) 4507(18.5)

Current smoker 1254(24.9) 10680(28.7) 19668(22.6) 1243(20.7) 6787(22.1) 15834(21.8) 660(16.2) 2526(19.0) 8407(20.7) 324(13.0) 1065(16.5) 4330(17.7)

Deprivation status

Low 2766(55.0) 20129(54.1) 46550(53.4) 3331(55.4) 16901(55.1) 37981(52.4) 2202(54.1) 7334(55.2) 20809(51.2) 1373(55.1) 3490(54.2) 12275(50.4)

Medium 989(19.6) 7461(20.1) 17679(20.3) 1257(20.9) 6241(20.4) 15055(20.8) 839(20.6) 2717(20.5) 8462(20.8) 506(20.3) 1307(20.3) 5198(21.3)

High 1280(25.4) 9629(25.8) 22879(26.3) 1423(23.7) 7512(24.5) 19450(26.8) 1028(25.3) 3235(24.3) 11403(28.0) 612(24.6) 1637(25.4) 6902(28.3)
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Table B.7: Results of the Grambsch and Therneau test in the Cox PH model. A
significant P-value (< 0.05) is an indication of the violation of PH assumption.

Variable Rho Chi-square P-value

HRT treatment
No (Ref)
Combined HRT -0.002697 0.07441 0.78513
Estrogen-only -0.000159 0.00075 0.97817

Age group at study entry
46-50 (Ref)
51-55 -0.031085 10.05726 0.00152
56-60 -0.027581 7.98915 0.00471
61-65 -0.040494 17.26878 0.00003

Birth cohort
1921-1930 (Ref)
1931-1940 -0.026251 7.13106 0.00757
1941-1950 -0.046838 22.71298 <0.00001
1951-1960 -0.042161 18.07075 0.00002

Hypertension
No (Ref)
Treated -0.014381 2.17870 0.13993
Untreated -0.000269 0.00075 0.97817

Uterine/ovarian status
Intact (Ref)
Hyeterectomy with oophorectomy -0.008301 0.71952 0.3963
Oophorectomy only -0.001018 0.01070 0.9175

Diabetes Type II
No (Ref)
Yes -0.006143 0.37215 0.35913

Body mass index
Healthyweight/overweight (Ref)
Obese -0.004197 0.110294 0.73980

Smoking status
Non-smoker (Ref)
Ex-smoker -0.002385 0.285390 0.51398
Current-smoker -0.005167 0.710294 0.83980

Deprivation status
Low (Ref)
Medium -0.004281 0.188900 0.66383
High -0.007716 0.615187 0.73980

Global NA 103.6045 < 0.00001
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Figure B.1: Scaled Schoenfeld residual plots of the coefficients against event time
for four birth cohorts. The smoothed red curve in each plot is an estimate of the
regression coefficient in log hazard scale for the birth cohort over time. Non-linear
curves (non-zero slopes) are the indication of the violation of proportional hazards
assumptions.
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Figure B.2: The estimated baseline cumulative hazard function of the study popu-
lation and cumulative hazards fitted using different parametric distributions. Weibull
distribution fits well to the underlying baseline hazards.
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Figure B.3: The adjusted hazard ratios of all-cause mortality associated with de-
privation status in full data (all ages) and four age subgroups at first HRT prescrip-
tion. The hazards ratios (95% confidence interval) were adjusted for age at first HRT,
birth cohort, type of HRT, type II diabetes, coronary heart disease (CHD), oophorec-
tomy/hysterectomy status, body mass index, hypertension and its treatments, and
smoking status. General practice was also included in the model as frailty.
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Figure B.4: The adjusted hazard ratios of all-cause mortality associated with HRT
type, hypertension and its treatments, oophorectomy/hysterectomy status, deprivation
status, coronary heart disease, and interaction of BMI and smoking in complete and
full HRT user model for all ages (46-65).
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Figure B.5: The adjusted hazard ratios of all-cause mortality associated with hy-
pertension and its treatments, oophorectomy/hysterectomy status, deprivation status,
coronary heart disease, and interaction of BMI and smoking in complete and full HRT
user model for age 46 to 50 at first treatment.
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Figure B.6: The adjusted hazard ratios of all-cause mortality associated with hy-
pertension and its treatments, oophorectomy/hysterectomy status, deprivation status,
coronary heart disease, and interaction of BMI and smoking in complete and full HRT
user model for age 51 to 55 at first treatment.
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Figure B.7: The adjusted hazard ratios of all-cause mortality associated with hy-
pertension and its treatments, oophorectomy/hysterectomy status, deprivation status,
coronary heart disease, and interaction of BMI and smoking in complete and full HRT
user model for age 56 to 60 at first treatment.
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Figure B.8: The adjusted hazard ratios of all-cause mortality associated with hy-
pertension and its treatments, oophorectomy/hysterectomy status, deprivation status,
coronary heart disease, and interaction of BMI and smoking in complete and full HRT
user model for age 61 to 65 at first treatment.

269



Table B.8: Model performance statistics for complete records and imputed data in survival models for all ages and age subgroups at

first HRT treatment.

Concordance (SE) Logliklihood AIC

Age group1 Complete HRT user Imputed data Complete HRT user Imputed data Complete HRT user Imputed data

All age 0.66 (0.004) 0.68 (0.002) -37462.5 -122833.3 74989.0 245730.6

46-50 0.75 (0.009) 0.76 (0.005) -9202.3 -30861.3 18448.6 61766.2

51-55 0.75 (0.008) 0.76 (0.004) -10144.7 -36342.3 20333.5 72728.6

56-60 0.73 (0.008) 0.77 (0.004) -9096.5 -29284.2 18236.9 58612.5

61-65 0.79 (0.008) 0.81 (0.005) -8849.7 -25221.5 17739.4 50487.0

1The age groups included HRT users who received HRT treatment at that age and non-users matched on age and general practice.
Patients with incomplete medical records had missing observations at least in one of the following covariates: BMI, smoking,

Townsend deprivation score, and hypertension status.
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