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Abstract

Accurate finite element (FE) models are extremely vital to the analysis of the dynamic charac-

teristics of engineering structures. However, it is challenging for the frequency response function(FRF)-

based model updating method to obtain reliable numerical results as the limited number of FRFs at

the selected peak positions usually leads to an unacceptable or failure of model updating. Moreover,

the increased number of updating coefficients in complex engineering problems generates nonlinear

optimization models with the local solutions by traditional optimization techniques. To tackle these

two issues, a new model updating method is proposed to make full use of FRFs extracted from

measured field data of structures and the improved particle swarm optimization (PSO) technique

for accurately estimating physical parameters of structures. The novelties of this research include:

(1) The signature assurance criterion (SAC)-based FRF is evaluated to eliminate the influence

of limited frequency points on the accuracy of the updated model using the normalized accelera-

tion component; (2) The enhanced PSO algorithm is developed to realize the adaptive selection

of inertia factors for the better diversity by introducing an average value of the fitness function,

and then accurate predictions of updating coefficients within a smaller number of iterations are

achieved using the developed constraint factor. The effectiveness of the proposed method is ver-

ified by mathematical model of a jacket platform. Results show that the proposed method can

accurately obtain the updating coefficients under spatial incomplete condition, and the maximum

error of natural frequencies is 0.779% using the accelerations containing 5% noise. To prove the

robustness of the proposed method, experimental studies of monopile offshore wind turbine are

also conducted and the maximum error of natural frequencies is 1.887% under the consideration of

spatial incompleteness represented by the structural stiffness degradation. Finally, the feasibility

of the proposed method is evaluated by a test of a complex jacket platform, whose variation is
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simulated by weakening the connections of some elements. The maximum error of natural fre-

quencies predicted by the updated model is only 4.831% as compared with experimental results.

Throughout these examples, the extended FRF model updating method provides engineers and

designers with a useful insight into the development of reliable techniques to accurately predict

dynamic responses of offshore structures.

Keywords: Model updating; Frequency response function; Signature assurance criterion;

Normalized acceleration components; Improved particle swarm algorithm;

1. Introduction

Establishing a high-quality FE model is the basis for numerical analysis and performance state

evaluation of offshore structures. However, due to the complexity of offshore structures and in-

fluences of the model order, structural parameter and type, there are still inevitable differences

between the FE model and the actual structure. To reflect the actual operational state of offshore

engineering structures, it is necessary to update and verify the FE model using the tested data.

At present, the common FE model updating methods can be divided into static and dynamic

response-based methods according to types of structural responses ( Mottershead et al., 1993).

The FE model updating methods based on static responses were used to update the structure with

more accurate static test data (such as displacement and strain). These data were measured in

the structural test within the elastic range, to obtain a correct and reliable mathematical model

for static analysis (Sanayei et al., 1997). Considering on the different updating parameters, there

were two classes of methods: the matrix-based and the design parameter-based updating methods

(Friswell et al., 1995). According to the different updating mechanism, the dynamic response-

based FE model updating methods can be divided into two categories: modal parameter-based

and frequency response function (FRF)-based model updating method (Zhang et al., 2023).

The modal parameter-based model updating methods have received extensive attention from

scholars, along with the development of modal parameter identification techniques (Liu, 2011;

Liu et al., 2013; Liu et al., 2016). Li et al. (2008) used the cross-model cross-mode (CMCM)

method to simultaneously update the mass, damping and stiffness matrices of a FE model when
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Nomenclature MaxStep Number of maximum iteration

a1, a2 Coefficients of Rayleigh damping N Number of degrees of freedom

ārp, ārq
Amplitudes of pth and qth element

in the rth acceleration component
R(x)

Objection function of improved

particle swarm algorithm

aj,noise
Noise-contaminated accelerations

at the jth DOF
SAC

Signature assurance criterion

of analytical and measured FRF

C,C∗ Damping matrices of analytical

and measured system
v0,x0

Initial values of velocities and

position for particles

C1, C2

Self-learning and social learning

factors
vlim,xlim

Upper bound of velocities and

position for particles

f1, f2
First-order and second-order

natural frequencies
y, ẏ, ÿ

Displacement, velocity and

acceleration of system

fave
Mean value of the fitness

function
Y(ω)

Fourier transform of

analytical displacement

fg Optimal fitness function value αn, βn
Stiffness and mass variation

coefficient of nth element

fj
Fitness function value in jth

iteration
ωr

The rth natural frequency of

the baseline model

f, f(ω)
Time and Fourier series of

external loading
ω∗ Natural frequencies matrices of

measured model

gbest,Gbest

Local and global of optimal value

for particle
φrp, φrq

Scalar values of rth mode

at the pth and qth element

H(ω),H∗(ω)
FRF of analytical and measured

system
ε The level of noise

K,K∗ Stiffness matrices of analytical

and measured system
δ

Random numbers in a

Gaussian distribution

M,M∗ Mass matrices of analytical

and measured system
δe

Error between the reconstructed

and measured signal
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only a few spatially incomplete complex-valued modes were available. Liu et al. (2014) proposed

an improved modal strain energy method, which can identify the damage of jacket offshore wind

turbines by defining a series of stiffness-updating factors. These factors can be used to calculate the

modal strain energy of the measured structure without the consideration of the FE stiffness matrix.

The above methods need to solve the equation to obtain the updating or damage coefficients of the

structure. It should be noted that the ill-posed problem of solving equations is usually encountered.

With the development of optimization algorithm, modal parameters were used to construct the

relationship between the objective function and the updating parameters. Also and meta heuristic

algorithm were applied to calculate the update coefficients, and overcome the ill-posed problem

of solving equations (Tu et al., 2008; Begambre et al., 2009; Zhang et al., 2021). The objective

function was usually composed of natural frequencies (Majumdar et al., 2012), mode shapes (Ngan

et al., 2019) or their combinations (Bartilson et al., 2020). However, these parameters were not

fully suitable to all types of structures in the model updating process. Results indicated that the

population and iterations need to be increased when the complexity of the structure increases,

leading to the increase the computational cost. Therefore, the computational efficiency of the

algorithm was low, and the algorithm was easy to fall into local optimal solutions.

To improve the efficiency and accuracy of the optimization algorithm in calculating the struc-

tural updating parameters, the parameters that are sensitive to the location and extent of structural

damage should be selected to construct the objective function. The model updating methods based

on FRFs have been paid much attention due to several advantages (Jiang et al., 2014) including

1) FRFs are very sensitive to the damping of the structure at the resonance frequency peak, 2) the

errors in the system identification are avoided as no modal analysis is required during the process of

model updating and 3) the updating problem is over-determined due to the availability of FRFs at

different excitation points. Modak et al. (2002) made a detailed comparison of the methods includ-

ing inverse eigensensitivity and the response function for model updating in use of experimental

data. The normal response function method was used to update the stiffness and mass matrices of

the FE model and address the difficulties of updating the complex FRFs (Pradhan et al., 2012).

Lin et al. (2006) updated the damping matrix of the structures using the FRFs to overcome the

problem of complexity arising from measured FRFs and modal data. Lu et al. (2004) proposed

a two-level neural network scheme for FE model updating and sensitivity analysis by a proper
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response configuration. Esfandiari et al. (2009) used the frequency response function (FRF) and

natural frequencies data for FE model updating, and the sensitivity equation normalization and

proper selection of measured frequency points improved the accuracy and convergence in FE model

updating. Arora et al. (2009a and 2009b) proposed a two-step procedure for updating the damp-

ing matrices and structural modifications with the reasonable accuracy and identified the damping

matrix, and the normal frequency response functions (NFRFs) was proposed and tested with the

objective that the damped FE model was able to predict the measured FRFs accurately using the

normal FRFs (Arora et al., 2014). Canbaloğlu et al.(2016) used the pseudo receptance difference

method to predict the linear FRFs from measured nonlinear FRFs, and the inverse eigensensi-

tivity method was employed to update the linear FE model of the nonlinear structure. Hong et

al.(2017) proposed a FRF-based model updating method, the method was formulated as an opti-

mization problem which intended to minimize the difference between analytical and experimental

FRF. However, the FRFs cannot be calculated accurately for the marine structures in service as

it is impossible to achieve each order of modal parameter information. Therefore, errors will be

introduced in the process of identifying the modal data, leading to the low calculation accuracy.

In this paper, a new model updating method based on extended FRFs and global optimization

technique is proposed. Firstly, the complex exponential decomposition method is applied to extract

the first several acceleration components, which are used to calculate the FRFs. Then the signature

assurance criterion (SAC) is evaluated to eliminate the influence of limited frequency points and

construct the objection function representing the first several natural frequencies. Finally, the

updating coefficients are global optimized by the improved particle swarm optimization (PSO).

Throughout three examples including mathematical model of a jacket platform, a physical monopile

wind turbine and experimental tests of an offshore jacket platform, the effectiveness and feasibility

of the proposed method are demonstrated for model updating of practical engineering structures.

2. Preliminaries

2.1. Frequency response function

The vibration equation for a linear multi-degree-of-freedom damped system is expressed as

follows:

Mÿ +Cẏ +Ky = f (1)
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where M, C and K ∈ RN×N are the mass, damping and stiffness matrices of the system, re-

spectively. y, ẏ and ÿ ∈ RN×1 depict the displacement, velocity and acceleration of the system.

f ∈ RN×1 means the external loading, and N represents the number of degrees of freedom of the

system.

Performing the Fourier transform on Eq. (1), the FRF of the system can be written as follows:

H(ω) =
Y(ω)

f(ω)
=

1

−Mω2 + jCω +K
(2)

where Y(ω) and F(ω) are the Fourier transforms of y and f , respectively. ω represents the discrete

frequency point in Hz and j is the imaginary number, i.e. j2 = −1.

Ignoring the damping of system, the acceleration FRF Hpq(ω) representing the relationship

between the load point q and the response point p can be expressed as follows:

Hpq(ω) =

N∑
r=1

−ω2φrpφrq

ω2
r − ω2

(3)

where φrp and φrq are the scalar values of the rth mode at the element p and element q, respectively.

ωr means the rth natural frequency.

2.2. FRF-based objection function

For optimization-driven model updating methods the objection function is usually composed of

design parameters including natural frequencies, mode shapes and the modal assurance criterion.

Usually, these parameters are sensitive to the measurement noise and spatial incompleteness in

practical engineering applications. Based on the frequency response function, the objection function

based on FRF can be expressed as follows:

R(x) =

N∑
p=1

N∑
q=1

|H∗
pq(ω)−Hpq(ω)|

|Hpq(ω)|
(4)

where H∗
pq and Hpq represent the FRFs of the measured and baseline models, respectively. p and

q depict the positions where the response and load are monitored.

3. The proposed model updating method

The governing equation of the measured model can be expressed as follows:

M∗ÿ∗ +C∗ẏ∗ +K∗y∗ = f (5)
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where y∗, ẏ∗ and ÿ∗ ∈ RN×1 are the displacement, velocity and acceleration of the measured

system, respectively. K∗,M∗ and C∗ are the stiffness, mass and damping matrices of the measured

model. To reflect the system change, K∗ and M∗ can be formulated as follows:

K∗ = K+
N∑

n=1

αnKn; M
∗ = M+

N∑
n=1

βnMn (6)

where Kn and Mn are stiffness and mass matrices of the nth element, αn and βn denote the

stiffness and mass variation coefficient of the nth element, respectively.

The FRF of the engineering structures can be measured directly in the dynamic test. As defined

in Eq. (2), the FRF of the measured model is expressed as follows:

H∗(ω) =
Y∗(ω)

f∗(ω)
(7)

Due to the influence of severe marine-environment and the limitations of sensors, it is difficult

to accurately obtain the FRFs. However, the FRF H∗
pq(ω) of the measured model can be calculated

using the modal superposition method:

H∗
pq(ω) =

N∑
r=1

−ω2φ∗
rpφ

∗
rq

ω∗2
r − ω2

(8)

Where φ∗
rp and φ∗

rq are the scalar values of the rth mode at elements p and q of the measured model,

respectively. ω∗
r is the rth natural frequency of the measured model. Considering the influence of

incomplete space, the Guyan method is used to match the degrees of freedom of FE model and

actual structures. Only the low order modal parameters of the structure can be obtained in the

actual. Combined with the research results (Esfandiari et al., 2009), when calculating the measured

structure frequency response function, the high order modal parameters of the structure is replaced

by the corresponding order modal parameters of the FE model.

H∗
pq(ω) =

m∑
r=1

−ω2φ∗
rpφ

∗
rq

ω∗2
r − ω2

+
N∑

r=m+1

−ω2φrpφrq

ω2
r − ω2

(9)

FRFs of the measured model can be obtained based on the relationship between the mode

shapes and the acceleration components of the structure, which are extracted from the measured

accelerations using the complex exponential method (Li et al., 2022). However, the accuracy of

FRFs will be deteriorated as the modal identifying method introduces the secondary error. The

acceleration FRF of the measured model can be re-written as:

H∗
pq(ω) =

N∑
r=1

−ω2ārpārq
ω∗2
r − ω2

(10)
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where ārp and ārq represent the amplitudes of the pth and the qth elements in the rth normalized

acceleration component, respectively.

To eliminate the effect of improper selection of frequency points on accuracy of updated model,

the signature assurance criterion (SAC) of FRF Hpq for the structure is defined by Eq. (11):

SACpq =
(|H∗t

pq(ω)Hpq(ω)|)2

[H∗t
pq(ω)H

∗
pq(ω)][Hpq(ω)tHpq(ω)]

(11)

where H∗
pq and Hpq are FRFs of the measured and baseline models, respectively, t indicates the

transpose of the matrix. The SACpq is scaler, and the value of SAC range between 0∼1. It is

noted that when SAC is equal to zero, it indicates that two FRFs are independent. When it is 1,

they are completely correlated.

Substituting Eqs. (3) and (10) into Eq. (11), the SACpq can be rewritten as:

SACpq =
[(
∑N

r=1
−ω2ārpārq
ω∗2
r −ω2 )t(

∑N
r=1

(−ω2φrpφrq)
ω2
r−ω2 )]2

[(
∑N

r=1
−ω2ārpārq
ω∗2
r −ω2 )t(

∑N
r=1

−ω2ārpārq
ω∗2
r −ω2 )][(

∑N
r=1

−ω2−φrpφrq

ω2
r−ω2 )t(

∑N
r=1

−ω2−φrpφrq

ω2
r−ω2 )]

(12)

Considering the effect of FRFs on the accuracy of the updated model, the matrix SAC can be

expressed as follows:

SAC =
[H∗t(ω)H(ω)]2

[H∗t(ω)H∗(ω)][Ht(ω)H(ω)]
=

[−ω2M∗ +K∗](−ω2M+K)t

(−ω2M+K)[−ω2M∗ +K∗]t
(13)

where H∗ and H are the matrices of FRFs for the measured and baseline model, respectively.

Employing the eigenvalue-analysis method, the natural frequencies of the measured and baseline

models can be obtained by Eq. (14):

ω∗ =
√
K∗/M∗, ω =

√
K/M (14)

where ω∗ and ω are the matrices of natural frequencies for measured and baseline models, respec-

tively.

Therefore, the objection function can be constructed using the natural frequencies and SAC in

the form of Eq. (15):

R(x) =
|
√
KM−1 −

√
K(I+ α)[M(I+ β)]−1|√

K(I+ α)[M(I+ β)]−1

+

{
I− [−ω2M(I+ β) +K(I+ α)](−ω2M+K)t

(−ω2M+K)[−ω2M(I+ β) +K(I+ α)]t

} (15)

where α, β ∈ RN×1 are the variation coefficients of structural stiffness and mass matrices, respec-

tively.
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It is noted that Eq. (15) can also be formulated as:

R(x) =
|
√
KM−1 −

√
KΛ(MΓ)−1|√

KΛ(MΓ)−1
+

[
I− (−ω2MΓ +KΛ)(−ω2M+K)t

(−ω2M+K)(−ω2MΓ +KΛ)t

]
(16)

where Λ = I+ α and Γ = I+ β.

3.1. Global optimization of the updating coefficients

The optimal updating coefficients α and β of the structure can be obtained using the improved

particle swarm optimization (IPSO) algorithm. The initial parameters of the IPSO algorithm are

set by Eq. (17).

x0 =
{
α0
1, α

0
2, · · · , α0

n, β
0
1 , β

0
2 , · · · , β0

n

}
; MaxStep

v0 =
{
v01, v

0
2, · · · , v02n

}
; xlim = {xl;xu} ; vlim = {vl; vu}

(17)

where x0 and v0 ∈ Rm×2n are the initial values of the updating coefficients and velocities for

particles, respectively. xlim,vlim ∈ R2×2n are the upper bound of the updating coefficients and

velocities for particles. MaxStep is the number of maximum iterations.

Using the acceleration components of the measured model and modal data of the baseline

model, the objection function can be evaluated for the local and global optimum by Eq. (18)

g0 = g0
best; G

0 = G0
best; (18)

where g0,G0 ∈ R1×2n are the local and global optima for the initial particles in the IPSO algorithm.

The expressions of the velocity v and position x of particles in the j + 1th iteration can be

expressed as follows:

vj+1 = χ× [ω̂ × vj + C1 × rand× (gj
best − xj) + C2 × rand× (Gj

best − xj)] (19)

xj+1 = xj + vj+1 (20)

where C1 and C2 are the self-learning and social learning factors, respectively, i.e. C1 = C2 = 2.

rand denotes the random number between 0 and 1. gj
best and Gj

best ∈ R1×2n denote the local and

global optima of the particles at the jth iteration. m represents the population of particles. The

constrain factor χ and the adaptive inertia factor ω̂ can be further defined by Eqs. (21) and (22).

χ = (cos(π ∗ j/MaxStep) + 2.5)/4 (21)
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ω̂ =


ωmax − (ωmax − ωmin)×

∣∣∣∣ fj−f
′
ave

fg−f ′
ave

∣∣∣∣ ; fj ⩽ f
′
ave

ωmin + (ωmax − ωmin)× 1+cos((j−1)π/(MaxStep−1))
2 ; f

′
ave ≤ fj ⩽ fave

1.5− 1
1+k1·exp(−k2)·∆ ; fj > fave

(22)

where ωmax and ωmin are the maximum and minimum values of the inertia factor, respectively, e.g.

ωmax = 0.9 and ωmin = 0.4, fave represents the mean value of the fitness function, and f
′
ave stores

the better value of fave. fg is the optimal fitness function value and fj is the fitness function value

in the jth iteration. ∆(∆ =
∣∣∣fg − f

′
ave

∣∣∣) is used to evaluate the early convergence of the particle,

k1 = 1.5 and k2 > 0.

In the j + 1th iteration, the local and global optimal value are updated by Eqs. (23) and (24).

gj+1
best =

xj+1; R(xj+1) ⩽ R(gj
best)

gj
best; R(xj+1) > R(gj

best)
(23)

Gj+1
best =

gj+1
best; R(gj+1

best) ⩽ R(Gj
best)

Gj
best; R(gj+1

best) > R(Gj
best)

(24)

When the algorithm satisfies the termination criteria, the global optimal of the updating coef-

ficients is achieved by Eq. (25).

Gbest = {α1, α2, · · · , αn, β1, β2, · · · , βn}

= min

{
|
√
KM−1 −

√
KΛ(MΓ)−1|√

KΛ(MΓ)−1
+

[
I− (−ω2MΓ +KΛ)(−ω2M+K)t

(−ω2M+K)(−ω2MΓ +KΛ)t

]} (25)

where the Gbest is the global optimum after the iterative operation of the improved PSO through

minimizing the objection function for each iteration.

3.2. The process of the proposed method

The flowchart of the proposed method is shown in Fig. 1, and the procedure of the proposed

method for model updating is described as follows:
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Fig. 1: Numerical example of jacket platform structure

Step 1: Using the complex exponential decomposition method, the normalized acceleration

components of the measured model can be obtained, then FRFs of baseline and measured models

can be calculated according to Eqs. (3) and (10).

Step 2: Based on the FRFs of baseline and measured models, SAC is calculated by Eq. (12).

Following that, the objection function formulated by Eq. (15) can be constructed for calculation

of the updating coefficients, given SAC and the natural frequencies.

Step 3: Initializing the parameters of the IPSO algorithm using Eq. (17), the updating coeffi-

cients of structural stiffness and mass can be achieved according to Eqs. (18)∼(25).

4. Numerical example of jacket platform structure

To verify the effectiveness of the proposed method, a numerical study of a jacket platform

shown in Fig. 2, is carried out. The model consists of 46 steel pipe members, including 12 vertical

bracing members with 0.9 m diameter and 0.03 m wall thickness, 22 cross bracing members with

0.6 m diameter and 0.02 m wall thickness, and 12 diagonal bracing members with 0.3 m diameter

and 0.018 m wall thickness. The elevations of the structure from bottom to top are -2.00 m, 3.00

m, and 8.50 m. The top side lengths are 11.00 m, 8.10 m, 11.00 m, and 8.10 m, and the bottom

side lengths are 12.45 m, 9.20 m, 12.45 m, and 9.20 m. The specific details are shown in Table 1.
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Fig. 2: Numerical example of jacket platform structure (a) Number of node (b) Number of element

Table 1: Parameters of the numerical model of the jacket platform

Type of element Diameter (m) Wall thickness (m)

Vertical bracing 0.9 0.03

Cross bracing 0.6 0.02

Diagonal bracing 0.3 0.018

The numerical model of the jacket platform is constructed using MATLAB software, and its

material properties include the modulus of elasticity the modulus of elasticity of 210 Gpa, the

density of 7850 kg/m3, the Poisson’s ratio of 0.3. The model has 43 elements and 26 nodes, each

of node has 3 translational degrees of freedom and 3 rotational degrees of freedom. All degrees of

freedom of the nodes in contact with the ground are full constrained, i.e., Nodes 1 to 4.

To simulate the changes in vibration characteristics of the jacket platform during service, it

is assumed that the stiffness and mass of the red line segment of the model shown in Fig. 2 can
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be changed, and its damping parameters are kept constant. The stiffness degradation coefficients

areα6 = -0.4, α9 = -0.25, α29 = -0.35 and α36 = -0.3, and the mass variation coefficients are β6

= 0.3, β9 = 0.5., β29 = 0.2 and β36 = 0.15. Also, Fluent is used in the analysis and the Jonswap

spectrum (Hasselmann et al., 1973) is applied to simulate the wave surface with a peak period of

5 s and a significant wave height of 0.25 m. The water surface height is 8 m.
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Fig. 3: Time curve of the wave load

The wave load is applied to the jacket platform model in the form of equivalent nodal force, and

the load magnitude of the nodal degrees of freedom above the water surface is 0. The duration of

the load is 10 s, and the sampling time interval is 0.001 s. Taking the degree of freedom of Node 5

as an example, the time curve of the wave load acting on it is shown in Fig. 3. Dynamic responses

of the system are calculated using the Newmark-β method. To demonstrate the performance of the

proposed method, the incomplete accelerations with the measurement noise are used to calculate

the updating coefficients of the system.

4.1. Model updating using the incomplete accelerations

It is challenging to arrange sensors on the jacket platform below the water surface due to

the environmental conditions, and accurately obtain the responses regarding structural rotations.

13



Therefore, the influence of spatial incompleteness needs to be considered in the model updating

study of marine engineering structures. To simulate the effects of spatial incompleteness conditions

in actual marine structures, it is assumed that only the acceleration responses of Nodes 13-26 in

the X, Y and Z translational can be obtained. The measured acceleration response are decomposed

and reconstructed using the complex exponential decomposition method. Taking the degrees of

freedom of Nodes 13, 15, 17 and 19 as an example, and the results are shown in Fig. 4.
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Fig. 4: Reconstructed acceleration signals of jacket platform

It is noted that the reconstruction results completely agree with the theoretical values from

Fig. 4, verifying the effectiveness of the proposed method. To quantify the computational accu-

racy of the complex exponential decomposition method, the error between the reconstructed and

theoretical signal is calculated, and the formula can be written as follows:

δe(t) = ar(t)− am(t) (26)

where ar(t) and am(t) represent the reconstructed and theoretical acceleration, respectively.
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Fig. 5: Error curve between the reconstructed and theoretical signal

The error curve between the reconstructed and theoretical signal is shown in Fig. 5 and it can

be observed that the maximum errors of 4 nodes are 3.701×10−5, 3.862×10−5, 1.454×10−5 and

3.334×10−5, respectively. This indicates the effectiveness of proposed method for decomposing

and reconstructing signal. The acceleration components corresponding to the first three natural

frequencies of the structure are extracted from results by the complex exponential component

method. Again, taking the degrees of freedom of Nodes 13, 15, 17 and 19 as an example, and

the time curves of acceleration components of the structure are shown in Fig. 6. The structural

acceleration components and frequency response function can be further obtained using the am-

plitudes at different times and Eq. (10), respectively. In Fig. 7, H11,H12,H13 and H14 are shown

for numerical jacket platform model. It can be observed that the difference of frequency response

functions between the baseline and the measured model is noticeably large.
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Fig. 6: Time curve of the first three acceleration components
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Fig. 7: Frequency response function of numerical jacket platform model

The first three modal parameters of the jacket platform during the service time can be numer-
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ically obtained. To select the appropriate frequency range of frequency response functions for the

calculation of updating coefficients, the different frequency range is determined according to the

structural acceleration spectrum. Taking Node 13 as an example, the detailed frequency range is

shown in Fig. 8.

Fig. 8: Division of frequency range

To weaken the influence of the frequency range selection on the updating results, the SAC

for adjacent degrees of freedom at different frequency ranges is calculated and its result is shown

in Fig. 9. It can be observed that the average SAC values of the Ranges 6 and 8 are smaller,

indicating that the FRF of these two frequency ranges are more sensitive to the variation of

structural characteristics. To reduce the computational cost of updating coefficients, the range 6

is chosen to calculate the matrices of SAC in the numerical jacket platform model. In the Fig. 10,

SAC values of the complete and incomplete FRFs are provided, respectively. Total 90 parameters

are included in the incomplete FRF, while the complete FRF has more parameters. As the gap

between the baseline model and the measured structure can not be highlighted, the structural

complete FRF is applied in the following analysis.
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Fig. 9: Division of frequency range for numerical jacket platform model

Fig. 10: SAC of :(a) Complete FRF; (b) Incomplete FRF

The jacket platform is modeled with 46 elements and there are 92 updating coefficients to be

calculated in the updating process of the structural stiffness and mass. The incomplete FRFs can

only provide 87 SACs, which are insufficient to construct the objective function. According to the

calculation process described in Section 3.2, the objective function is constructed by applying the

SACs of the complete FRFs shown in Fig. 10(a) and the first three natural frequencies by Eq. (16).

The population and generation in the improved particle swarm algorithm are defined as 1000 and

100, respectively. The fitness function curve and the updating coefficients are shown in Fig. 11 and

Fig. 12, respectively.

18



0 20 40 60 80 100
Iteration

0

20

40

60

80

100

V
al

ue
 o

f 
fi

tn
es

s 
fu

nc
tio

n

Fig. 11: Convergence curve of fitness function

(a) Stiffness

5 10 15 20 25 30 35 40 45
Number of element

-0.4

-0.2

0

U
pd

at
in

g 
co

ef
fi

ci
en

t

Theoretical value Calculated value

(b) Mass

5 10 15 20 25 30 35 40 45
Number of element

0

0.2

0.4

U
pd

at
in

g 
co

ef
fi

ci
en

t

Fig. 12: Result of updating coefficients

Based on the convergence curve in Fig. 11, it can be noted that the improved particle swarm

algorithm converges to the global optimal value after about 20 cycles, which verifies the effectiveness

of the improved particle swarm algorithm. As compared with the theoretical values, the calculated

coefficients shown in Fig. 12 demonstrate a good accuracy. To further evaluate the agreement

between the updated model and the actual structure, the natural frequencies of the updated model

in Table 2 are calculated using the eigenvalue-method. It is concluded that the maximum error of

the first three natural frequencies is 0.249%, which meets the requirement of the model updating

accuracy and verifies the correctness of the proposed method.
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Table 2: The natural frequencies of updated numerical jacket platform model

n Theoretical value Baseline model Error(%) Updated model Error(%)

1 6.421 6.737 4.921 6.405 0.249

2 6.928 7.055 1.833 6.920 0.115

3 15.664 16.671 6.428 15.647 0.109

4.2. Model updating using the noise-contaminated accelerations

To investigate the effect of the measurement noise, a series of random numbers are added to

the acceleration signals to represent the noise:

aj,noise = aj(1 + δε) (27)

where aj is the acceleration at jth DOF of the structure; δ is a random numbers in a Gaussian

distribution with a mean value of 0 and a standard deviation of 1; and ε indicates the noise level,

which is defined in the set (0.5%, 1%, 5%).

The acceleration signals of the structure at nodes 13, 15, 17 and 19 under different noise

conditions are shown in Fig. 13. Based on the calculation process in Section 3.2, the structural

acceleration responses are decomposed and reconstructed using the complex exponential decompo-

sition method. The reconstructed acceleration signals containing 5% noise at those nodes along the

translational direction are provided in Fig. 14. The error between the reconstructed and theoretical

value can be calculated by Eq.(26), and the maximum errors of different nodes are 8.521×10−3,

7.201×10−3, 1.112×10−2 and 1.125×10−2, respectively. It can be concluded that the reconstructed

results well agree with the original signals, indicating that the complex exponential decomposition

method can accurately achieve the decomposition and reconstruction of the acceleration responses

and also demonstrate the effectiveness of the proposed method with the denoising capability.
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Fig. 13: Time curve of the acceleration signals under different noise
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Fig. 14: Reconstructed acceleration signals under 5% noise
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Fig. 15: FRF of jacket platform under different noise

Fig. 16: SACs of jacket platform under different noise

The complete FRFs of the jacket platform under different level noise conditions are calculated
22



according to Eq. (10). Results labelled as H11,H12,H13 and H14 are shown in Fig. 15. It is

worth noting that the amplitude of the FRF does not change with the increase of the noise level,

indicating that the FRF is not sensitive to noise. Using the data of range 6, the SACs of complete

FRFs are shown in Fig. 16. The maximum values of SAC are 0.984, 0.984 and 0.979, which

enable the construction of the objection function for the optimal updating coefficients of offshore

structures using the improved particle swarm optimization technique.The fitness function and

updating coefficients under different levels of noise conditions are shown in Fig. 17 and Fig. 18,

respectively.
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Fig. 18: Updating coefficients of jacket platform under different levels of noise

To further evaluate the degree of matching between the updated model and the actual struc-

ture, the natural frequencies updated model are calculated, and the results are listed in Table
23



3. According to the data in the Table 3, it can be observed that the maximum error of natural

frequencies between the updated model and the theoretical value is 0.779%, indicating that the

proposed model updating method in this paper has better robustness and accuracy considering the

effect of spatial incompleteness and noise.

Table 3: The natural frequencies of updated model under different noise levels

n Theoretical value 0.5% noise Error(%) 1% noise Error(%) 5% noise Error(%)

1 6.421 6.403 0.280 6.402 0.296 6.380 0.639

2 6.928 6.912 0.231 6.907 0.303 6.906 0.318

3 15.664 15.631 0.211 15.631 0.211 15.542 0.779

5. Experimental study on monopile wind turbine

To verify the performance of the proposed method in practical engineering applications, an

experimental study of a monopile wind turbine model is carried out in the Vibration Laboratory

at the Ocean University of China. The model is fully fixed on the vibration platform in the

experiment, while the harmonic load is applied on the top of the model using the eccentric rotating

device. Seven accelerometers and two displacement sensors are mounted on the model to measure

the acceleration and displacement responses, respectively.

5.1. Experiment setup

The model consists of four parts: the foundation, connecting flange, tower and the nacelle. The

foundation is made from circular steel tubes with a height of 900 mm, a wall thickness of 2.2 mm

and an out diameter of 96 mm. The diameter of flange is 196 mm, which is connected by 12 bolts.

The tower is composed of variable cross-section steel tubes with the height of 1200 mm, a wall

thickness of 2.2 mm, and a diameter in range of 50 to 90 mm from top to bottom. The nacelle is

made from light composite materials. The elastic modulus of the steel tube is 210 GPa with the

density is 7850 kg/m3 and the Poisson’s ratio of 0.3.
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Fig. 19: The diagram of the experiment for monopile wind turbine

The eccentric rotation device is installed at a distance of 20 mm from the top of the model, and

its mass is 1.98 kg. Also, a sinusoidale loading of 10.285 N with a period of 0.176 s is applied on the

model and this load is simulated by the spinning device with a rotational speed of 340 rpm. The

seven accelerometers are positioned at the distance of 50 mm, 500 mm, 850 mm, 950 mm, 1300

mm, 1700 mm and 2050 mm measured from the top of the model are labelled as Sensor1∼Sensor7.

The positions of laser displacement sensors (Sensor8 and Sensor9) correspond to the X and Y

directions of the Sensor1. The acceleration and displacement signals are recorded by the CRONOS

CRFX-400 with a sampling frequency of 200 Hz , and the diagram of the experiment is shown in

Fig. 19.

5.2. Description of the baseline model

The monopile wind turbine is modelled with two-node beam elements using MATLAB to match

the degrees of freedom between the FE model and the measured structure. The lengths of each

cell from top to bottom are 100 mm, 400 mm, 350 mm, 100 mm, 350 mm, 450 mm and 350 mm,

respectively. To simplify the calculation of the subsequent updating coefficients, the modeling
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process does not consider the effect of the boundary conditions at the connection between the

tower and the foundation. Also, the stiffness degradation at the connection is represented by

the discounted equivalent stiffness of the element. It is assumed that only the mass and stiffness

matrices of the wind turbine need to be updated. Using the eigenvalue-analysis method, the first

two mode shapes of the FE model are shown in Fig. 20, and the corresponding first two natural

frequencies are 9.222 Hz and 42.334 Hz, respectively.
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Fig. 20: Modal shape of the wind turbine model

5.3. Load and working condition settings

To simulate the stiffness degradation of the flange in the experiment, four cases are considered

by removing different numbers of bolts shown in Table 4. The diagram of bolts at the flange in the

four cases is shown in Fig. 21. As the accurate damping characteristics of complex structures can

hardly predicted in practical engineering, it is assumed that the damping of the structure keeps

constant, and only the mass and stiffness of the structure need to be updated. The damping matrix

is usually calculated using the Rayleigh damping model(Craig and Kurdila, 2006), which can be

expressed as follows:

C = a1M+ a2K (28)a1

a2

 =
4πξ

f1 + f2

 f1f2

1/4π2

 (29)

where a1 and a2 are coefficients of Rayleigh damping; f1 and f2 are the first-order and second-order

natural frequencies of the structure, respectively. ξ is the damping ratio with a value of 0.02 in

this paper.
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Fig. 21: Number of bolts under different working conditions

Table 4: The natural frequencies of monopile wind turbine model under different working conditions

Case Number of bolts Bolt No.
Natural frequencies (Hz)

1st 2nd

Intact N/A N/A 8.349 41.280

1 2 1,7 7.995 39.664

2 4 1,3,7,9 7.824 36.987

3 6 1,3,5,7,9,11 5.866 29.421

5.4. Model updating results under different working conditions

It should be noted that added masses of accelerometers and the eccentric rotation device signif-

icantly impact the dynamic characteristics of the monopile wind turbine. To obtain accurate FE

model in different cases, the initial FE model of the intact structure needs to be updated before

the stiffness degradation of the flange. The complex exponential decomposition method is applied

to decompose and reconstruct the measured vibration response signal.
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Fig. 22: Reconstructed accelerations of Sensor 1
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Fig. 23: Reconstructed displacements of (a) Sensor 8; (b)

Sensor 9

Taking the Sensor 1, 8 and 9 as an example, it can be observed that the reconstructed sig-

nals are in good agreement with the measured data shown in Figs. 22 and 23. The maximum

errors between the reconstructed and measured value are 4.333×10−2, 1.454×10−2, 3.518×10−5

and 2.241×10−5, respectively, demonstrating the correctness of complex exponential decomposi-

tion method for decomposing and reconstructing signal. Taking the translational degree of freedom

along the X-direction of the intact structure as an example, results of the first two acceleration

components at different times shown in Fig. 24, indicating the variation of structural characteris-

tics.
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Fig. 24: The acceleration components of intact monopile wind turbine model at different moments
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Since the first two modal parameter of the wind turbine structure can be accurately obtained

during the test, to weaken the influence of selection of frequency range on the calculation of

the updating coefficients. The spectrum curve measured at Sensor 1 in the different ranges of

frequencies are shown in Fig. 25. Based on the first two acceleration components of the measured

model, the SACs of FRFs are calculated using Eq. (12). In Fig. 26, the SACs in the second frequency

Range 2 are small as compared with the results in other ranges, indicating that the FRFs in this

frequency band are more sensitive to the structural vibration characteristics. Therefore, the FRFs

in the second frequency range are selected for the next calculation of updating coefficients.

Fig. 25: Division of frequency range for wind turbine model
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Fig. 26: Division of frequency range for wind turbine model
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Fig. 27: The SAC of monopile wind turbine model under different cases

Results of the SAC matrix of the complete FRF under different cases are shown in Fig. 27. It

can be observed that the maximum SACs in four models are 0.0360, 0.0031, 0.0120 and 0.0096,

respectively. As compared with results shown in Fig. 26, the maximum SACs of complete FRF for

Range 2 are smaller than the results from other ranges. Employing Eq. (15), the objective function

is constructed in a function of SAC and the first two natural frequencies. The updating coefficients

of the monopile wind turbine model are calculated using Eqs. (18)∼(25) with the population of

2000 and number of iterations of 100 for the IPSO algorithm, respectively. As shown in Fig. 28,

the degree of the stiffness degradation increases as the removed number of bolts at the flange

is increased. To evaluate the matching degree between the updated model and the measured

structure, the eigenvalue-analysis method is applied to calculate the natural frequencies of the
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updated model. It can be observed in Table 5 that the maximum error of the first two natural

frequencies is 1.887% in four cases, indicating that the proposed method can accurately calculate

the updating coefficients of the monopile wind turbine, and demonstrate the applicability of the

proposed method for marine engineering structures.
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Fig. 28: Number of bolts under different working conditions

Table 5: Natural frequencies of monopile wind turbine model under different working conditions

Case Mode Measured(Hz)
Baseline

model(Hz)

Relative

error(%)

Proposed

method(Hz)

Relative

error(%)

Intact
1st 8.349 9.222 10.456 8.430 0.970

2nd 41.280 42.334 2.553 40.501 1.887

1
1st 7.995 9.222 15.347 8.115 1.501

2nd 39.664 42.334 6.732 39.598 -0.166

2
1st 7.824 9.222 17.868 7.901 0.984

2nd 37.987 42.334 11.443 38.606 1.630

3
1st 6.269 9.222 47.105 6.383 1.786

2nd 29.421 42.334 43.890 28.989 1.778
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6. Experiment of an offshore jacket platform

To verify the performance of the proposed method for complex offshore structures, an experi-

mental study of a jacket platform is carried out in the Vibration Laboratory at the Ocean University

of China. The model is fixed on the ground in the experiment and the shock excitation by a force

hammer is applied on the top of the structure.

6.1. Experiment setup

The model is a four-legged, five-layered jacket platform with height of 2200 mm shown in

Fig. 29. The parameters of structural elements are listed in Table 6. The twenty accelerometers,

which are labelled as Sensor1∼ Sensor20 (OTES-3A-0002) from the top to bottom of the jacket

platform, are placed on the top surface of each floor to measure the acceleration response. The

acceleration signals are recorded by the CRONOS PL-DCB8 with a sampling frequency of 200 Hz.

Fig. 29: The diagram of the jacket platform for (a) the experiment; (b) the FE model
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Table 6: Dimension of components of of jacket platform

Element type Sectional dimension

Vertical braces 22 mm×2.2 mm

Lateral braces 19 mm×1.2 mm

Diagonal braces 16 mm×1.2 mm

First deck 1200 mm×500 mm×3 mm

Second deck 600 mm×500 mm×3 mm

Third deck 1000 mm×500mm×3 mm

6.2. Description of the baseline model

The FE model of the jacket platform is constructed using MATLAB. Each lever is meshed by

two-node three-dimensional beam elements. Thus, the model has totally 36 nodes and 83 lever

elements. To facilitate the analysis, the steel plates modelled as lumped masses are applied on the

nodes. The diagram of FE model for the jacket platform is shown in Fig. 29 (b). It is assumed

that only the mass and stiffness matrices of the system need to be updated. Using the eigenvalue-

analysis method, the first three mode shapes of the FE model are shown in Fig. 30, and the

corresponding first three natural frequencies are 9.231 Hz, 12.350 Hz and 18.892 Hz, respectively.

Fig. 30: The mode shape of jacket platform model: (a) 1st (b) 2nd (c) 3rd
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6.3. Loads and the working condition

To simulate the variation of structural stiffness in the experiment, the different cross-sectional

areas of the replacement are considered in four cases shown in Table 7. An impulse excitation by

a hammer is applied to excite the free vibration signal. It is noted that the first three natural

frequencies of the model decrease as the number of replacements is increased.

Table 7: The natural frequencies of jacket platform model under different working conditions

Case
Number of

replacements
Replacement No.

Natural frequencies (Hz)

1st 2nd 3rd

Intact N/A N/A 8.643 11.778 15.969

A 1 61 8.467 11.531 15.815

B 3 30,34,61 8.217 11.453 15.759

C 5 25,30,34,44,61 7.951 11.215 15.576

6.4. Discussions

To obtain the accurate FE results of the intact structure as a benchmark solution, the complex

exponential method is applied to decompose and reconstruct the acceleration response shown in

Fig. 31. The maximum errors between reconstructed and measured acceleration are 2.012×10−2,

3.703×10−2, 6.199×10−3, 1.914×10−2, 4.661×10−2, 8.653×10−2, 6.122×10−2 and 6.497×10−3, re-

spectively. It can be concluded that reconstruction results of acceleration responses are in good

agreement with measurement values.
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Fig. 31: Acceleration response signals under different cases

The complete FRFs of the jacket platform can be calculated by Eq. (10), and the results of

H11,H12,H13 and H14 are shown in Fig. 32. It should be noted that the FRFs in different cases

greatly differ from the baseline model. To mitigate the influence of the improper selection of FRFs

on the accuracy of the updating coefficients, the frequency range is determined by the SAC values.

In Fig. 33, the detailed results in the different frequency ranges in Case Intact are provided.
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Fig. 32: Acceleration response signals under different cases

36



Fig. 33: Division of frequency range for physical jacket platform model
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Fig. 34: Division of frequency range for physical jacket platform model

The SACs of adjacent degree of the physical jacket platform are shown in Fig. 34. One can see

from Fig. 34 that the results for frequency range 8 are smaller, indicating that FRFs of the FE

model in this frequency range are less correlated with the actual structure. Therefore, the FRFs of

frequency range 8 are selected in this test to calculate the SACs of complete FRFS, and the results

are shown in Fig. 35. It can be observed that the maximum SACs in four cases are 0.587, 0.629,

0.553 and 0.010, indicating that the difference of FRFs between the measured and baseline models

are large.
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(a) Intact (b) Case A

(c) Case B (d) Case C

Fig. 35: The SAC of jacket platform model before model updating under different cases

Fig. 36: The updating coefficients of jacket platform model: (a) stiffness (b) mass
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Table 8: Natural frequencies and MACs of jacket platform model under different working conditions

Case Mode Measured(Hz)
Baseline

model(Hz)

Relative

error(%)

Proposed

method(Hz)

Relative

error(%)

Intact
1st 8.643 9.231 6.803 8.780 1.585

2nd 10.998 12.350 4.857 10.704 2.673

3rd 15.969 18.892 18.304 16.591 3.895

A
1st 8.467 9.231 9.023 8.590 1.453

2nd 10.731 12.350 7.103 10.467 -2.460

3rd 15.815 18.892 19.456 16.187 2.352

B
1st 8.217 9.231 12.340 8.188 -0.353

2nd 10.453 12.350 7.832 9.948 4.831

3rd 15.759 18.892 19.881 15.149 3.871

C
1st 7.951 9.231 16.099 7.864 -1.094

2nd 10.115 12.350 10.120 9.703 -4.073

3rd 15.576 18.892 21.289 16.064 3.133

The optimal updating coefficients of the jacket platform are achieved using the IPSO algorithm

with the population of 5000 and generation of 100. The updating coefficients of the model in

four cases are shown in Fig. 36. To evaluate the consistency between the updated model and the

physical structure, the eigenvalue-analysis is carried out to calculate the natural frequencies of the

updated model. It can be observed in Table 8 that the maximum errors of the first three natural

frequencies in four cases are 3.895%, -2.460%, 4.831% and -4.073%, demonstrating the effectiveness

and accuracy of the proposed method applicable for complex marine structures.

7. Conclusions

In the paper, a model updating method based on the normalized acceleration components

has been proposed using the extended frequency response functions and global optimization tech-

nique.The effectiveness and robustness of the method has been demonstrated throughout three

examples. In the numerical example of a jacket platform, the remarkable consistency between the

updated and theoretical models has been achieved under the effect of 5% noise. To solve a practical
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problem in the area of marine engineering, the proposed method can accurately calculate the up-

dating coefficients of the monopile wind turbine with the maximum error of the natural frequency

is 1.887% under different cases. In the experimental tests of the offshore jacket platform, results

have indicated that the proposed method has a good capacity to accurately update the model

under the influence of the spatial incompleteness.

However, the slightly low computational efficiency and large amount of computer resources of

the proposed method have been observed. Also, the developed method can only resolve problems

associated with the model updating of linear structures. Furthermore, future work including the

model updating considering the effects of the environmental conditions, measurement noise, non-

linear and spatial incompleteness will be carried out to enhance the existing method applicable to

various marine engineering structures. In summary, the proposed method has provided a useful

insight into the development of effective and robust techniques for model updating of complex

structures in marine engineering.
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