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Edge-Cloud Offloading: Knapsack Potential Game in
5G Multi-Access Edge Computing
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Abstract—In 5G, multi-access edge computing enables the
applications to be offloaded to near-end edge servers for faster
response. According to the 3GPP standards, users in 5G
are separated into many types, e.g., vehicles, AR/VR, IoT
devices, etc. Specifically, the high-priority traffic can preempt
edge resources to guarantee the service quality. However,
even if a traffic is transmitted with low priority, its latency
requirement in 5G is much lower than that in 4G. Too strict
latency requirement and priority-based service make resource
configuration difficult on the edge side. Therefore, we propose
the edge-cloud offloading mechanism, in which each edge server
can offload tasks to back-end cloud server to ensure service
quality of both high- and low-priority traffic. In this paper, we
establish a priority-based queuing system to model the edge-
cloud offloading behaviors. Based on the formulation of our
system model, we propose Knapsack Potential Game (KPG)
to derive an optimal offloading ratio for each edge server
to balance the cost-effectiveness of the overall system. We
demonstrate that KPG has low computational complexity and
outperforms two baseline algorithms. The results indicate that
KPG’s performance is optimal and provides a theoretical guide-
line to operators while designing their edge-cloud offloading
strategies without large-scale implementation.

Index Terms—Multi-Access Edge Computing, QoS, 5G,
Performance Analysis, 3GPP Standards

I. Introduction

W ITH the development of the 5th generation mobile
networks (5G), the cost-effectiveness of deploying

infrastructures for multi-access edge computing (MEC) is
now challenging operators. According to 3rd Generation
Partnership Project (3GPP) 23.203 [1], the priority of
quality of service (QoS) falls into many categories which
include ultra-reliable low latency (URLLC) and enhanced
mobile broadband (eMBB). URLLC is considered as a
high-priority QoS job [2] which is used for smart grids,
auto-driving, remote surgery, etc. On the contrary, eMBB
is regarded as a low-priority QoS job which is used for
Augmented Reality (AR)/ Virtual Reality (VR) media,
Ultra High Definition (UltraHD), 360-degree streaming
video, etc. According to International Telecommunication
Union-Radiocommunication Sector (ITU-R) [3], the re-
quirements on user plane latency are 4 ms for eMBB and
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1 ms for URLLC. With the increase in the requirement of
low-latency applications, MEC operators need to deploy
more edge servers and put them close to users. However,
the benefits brought by current edge servers are limited
due to 5G priority-based transmission mechanism.
In 5G, 3GPP introduces more features on QoS jobs

which makes the resource configuration on the edge side
becomes more challenge than that in 4G. That is, the
service quality of high-priority QoS jobs is guaranteed
but that of low-priority ones is limited. Specifically,
QoS jobs are labeled with a 5G QoS Identifier (5QI),
making QoS jobs scheduled with their priorities during the
transmission. According to 5G new radio (5GNR) [4], [5],
regardless of how many types of QoS jobs are transmitted
at the same time, QoS jobs are sent to the near-end
edge server through a protocol data unit (PDU) session.
Since the scheduling mechanism conducted on edge servers
has not been specified in 3GPP standards, the challenge
is how to schedule the offloading traffic and to also
take different types of QoS jobs into consideration. The
existing scheduling studies fall into two-fold: (1) Priority
scheduling mechanism [6]–[8], and (2) Resource allocation
optimization [9]–[11].

1) Priority scheduling mechanism: The authors in [6]
proposed a priority-based job scheduling policy to
optimize resource allocation in terms of computation
and communication costs. This scheme, however,
runs in a non-preemptive manner, which is difficult
to guarantee the performance of high-priority QoS
jobs. The authors of [7] propose a queuing model
which separates offloaded jobs into different priority
queues. Although multiple queues can execute jobs
in the order of priorities, high-priority jobs still need
to wait for the completion of low-priority ones which
are being served. On the other hand, the authors
in [8] proposed priori offloading mechanism with
joint offloading proportion and transmission (PRO-
MOT) to deal with the scenario that user devices
are covered by multiple edge servers; however, the
scheduling policy conducted in this method only
focuses on choosing an edge server, ignoring the
priority of jobs.

2) Resource allocation optimization: The authors of [9]
combine fog servers as the back-end computing
resource, optimizing resource allocation with game
theory perspectives. However, the jobs discussed
in [9] are the same priority that deviates from the
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requirements of the 5G MEC system. In addition,
the authors of [10] propose a multi-access MEC
servers system that optimizes resource allocation
on both communication and computation. However,
the metric considered in this paper is only energy
consumption, while performance optimization is not
discussed. In [11], the authors provide services for
both edge servers and remote clouds; however, the
authors mainly focus on communication cost, ne-
glecting execution costs and idleness costs.

According to the gap between the current studies and the
requirements of MEC system, we propose the edge-cloud
offloading mechanism, which not only guarantees the QoS
for high-/low-priority QoS jobs but also optimizes the cost-
effectiveness of the overall system.

Specifically, we integrate the PREEMPT_RT [12] into
the offloading mechanism on edge servers, where high-
priority QoS jobs can preempt the computing resource
on edge servers, while low-priority QoS jobs can be
fractionally offloaded to a shared cloud server (SCS). By
this way, the new design not only guarantees the QoS for
high-/low-priority QoS jobs but also controls the resource
allocation for the system. During the design of the edge-
cloud offloading system, we encountered several challenges
that made this work difficult but worthy of study. In the
following statements, we list our major contributions and
introduce them separately:

• Avoid the resource competition on SCS:
The problem of resource allocation on the SCS is
different from that in traditional cloud computing.
Generally, operators will be notified in advance when
there are vast numbers of service requests (e.g.,
concert tickets, homecoming tickets, anniversary pro-
motions, etc.). In 5G, however, the traffic is more
unpredictable. The resource of the SCS should be
appropriately allocated for edge servers based on their
current situation. Therefore, we propose Knapsack
Potential Game (KPG) to address the resource com-
petition problem.

• Estimate the impact of preemption on each edge:
As discussed above, preemption is a key characteristic
in edge-cloud offloading. In this paper, we design a
priority queuing model and take the offloading issue
into consideration. With the priority queuing model,
operators can analyze their offloading strategies in
theoretical guidelines without large-scale implemen-
tation, saving both cost and time.

• Evaluate the cost-effectiveness of the system:
To balance the trade-off between cost and perfor-
mance, we introduce the cost response-time index
(CRI) as the objective function. By adjusting the
performance bias of the CRI, operators can customize
their objective function according to their strategies.

• Determine the number of SCS instances:
The proposed KPG algorithm can calculate the opti-
mal offloading ratios of edges under different numbers
of cloud instances. Moreover, because of the CRI,

the original trade-off problem between the cost and
response time can be transformed into a convex
function, in which we can find the most cost-effective
number of cloud instances.

With the above features, operators can find the optimal
offloading ratio for each edge to avoid the impact of
both preemption and competition. Moreover, the KPG
algorithm can further find the optimal number of SCS
instances to balance the cost-effectiveness of the overall
system. We also propose a system model and conduct a
detailed mathematical analysis. The closed-form solutions
we derived can help operators tune parameters without
real deployment, saving in cost and time.
The rest of this paper is organized as follows. In Sec. II,

we review the related works. In Sec. III and Sec. IV-A, we
present the offloading mechanism and the proposed KPG
algorithm, respectively. The performance evaluation and
experimental results are discussed in Sec. V. Finally, we
summarize this paper in Sec. VI.

II. Related Work
Recently, extensive studies have been conducted

to investigate cost-effective offloading policies for 5G
MEC [13]–[29]. In general, these studies fall into three
categories: the impact of preemption [19]–[24], shared
resource competition [13], [14], [25]–[29], and offloading
decisions [15]–[18].
(1) Preemption: The authors of [19]–[21] consider ho-

mogeneous jobs in edge-cloud offloading, in which jobs
are treated with the same priority and are balanced
between edges and the cloud for better performance. In
the heterogeneous job case, i.e., jobs with priorities, high-
priority jobs preempt low-priority ones. The authors of [22]
study how to increase the usage of transmission resources
between two QoS jobs of different priorities. The authors
of [23] develop a hybrid detection framework to improve
the accuracy of channel information, where the system
can reduce the obstacles caused by low-priority jobs and
raise the usage of transmission resources. The authors
of [24] propose a noncooperative game based on impatient
secondary users. The main purpose in [24] is to effectively
allocate the transmission resources to low-priority users.
Although the above studies explore the impact of

preemption, they focus mainly on bandwidth resource
allocation in radio access networks and do not guarantee
QoS for low-priority jobs. In this paper our offloading
mechanism is tailored to fit 3GPP R16 MEC and takes
both preemption and QoS for jobs of different priority into
consideration.
(2) Competition: The current studies regarding edge

resource competition fall into two categories: bottom-
up [13], [14], [25] and top-down [26]–[29]. In bottom-up
schemes, edges compete for shared resources at will and are
thus able to make offloading decisions quickly. This non-
consensus decision-making process, however, may cause
congestion and low performance when shared resources
are limited. Hence, many bottom-up schemes leverage
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game theory to address resource competition in user-
edge offloading. The authors of [25] formulate the mul-
tiuser offloading competition problem as a potential game
and show that the game admits the finite improvement
property and always possesses a Nash equilibrium. The
authors of [13] discuss how user equipment (UE) avoids
congestion by selecting offloading objects using game
theory. Later, the same authors [14] prove the existence of
Nash equilibrium in the potential game and discuss how
to optimize the cost-effectiveness of the overall system.

To avoid the nonconsensus decision-making process of
bottom-up schemes, top-down approaches have central-
ized control of the total system knowledge and perform
resource allocation accordingly. The top-down schemes
consolidate system information in the central management
unit (e.g., SMF), and control edges based on the ana-
lyzed results. For example, the authors of [26], [27] use
a nonconvex quadratic program to formulate offloading
problems and utilize three-step sequential processes to
solve the problem of resource allocation. Moreover, the
authors of [28] use a graph-based algorithm to describe the
communication between edges and find the best resource
allocation method through a large number of iterations. In
addition to the rule-based algorithms, the authors of [29]
adopt reinforcement learning to establish a self-learning
mechanism so that the system can automatically control
each device to offload. Although the top-down schemes
achieve better system performance, their complexity is
much higher than that of the bottom-up algorithms,
leading to a long decision-making process. In this paper,
we take advantage of both approaches and propose KPG
algorithm to obtain optimal edge-cloud offloading strate-
gies in (near) real time.

(3) Offloading precision: In 5G MEC, due to the very
large jobs and high operating expenses, slight changes in
offloading behavior have significant impacts on system
performance. Therefore, compared to traditional UE-edge
offloading schemes, edge-cloud offloading strategies are
difficult to design. The authors of [15] consider that the
workload on each edge is too large to integrate entire
jobs as an offloading unit; thus, the proposed offloading
strategy is to make judgments for each job. Later, the
authors of [16]–[18] discuss offloading strategies within
edges (referred to as edge-edge offloading), where the
proposed strategies can find the best offloading target and
determine the offloading ratio for each edge.

The above studies do not consider precision or effi-
ciency. In our proposed mathematical model, we design
a granularity coefficient that allows operators to balance
analytical precision and computational complexity based
on their needs.

III. System Modeling
An overview of the offloading MEC system is illustrated

in Fig. 1, where low-priority QoS jobs in each edge server
can be offloaded to a SCS through the user plane function
(UPF). A policy control function (PCF) then updates
offloading policies according to system information from

Fig. 1: 5G MEC system in 3GPP Release 16 (R16)

Fig. 2: Input–process–output (IPO) model
an application function (AF) and controls edge-side UPFs
through a session management function (SMF). Based
on the offloading policies updated by PCF, each UPF
in the edge side can offload QoS jobs fractionally to
balance the use of shared resources, optimizing the cost-
effectiveness of the overall system. In the edge-cloud
offloading mechanism, we propose the KPG algorithm to
provide a systematic solution. As shown in Fig. 2, our
system model consists of the following components:

• Input Parameters: We integrate system information
with AF, which includes the traffic, system capabil-
ities, performance bias, cost coefficients, number of
edges, and the granularity coefficient.

• System Modeling: By plugging parameters into the
system model, we quantify system behaviors in a
mathematical way. With the system model, we can
test various parameter combinations without actual
operation.

• Performance Metrics: To evaluate system perfor-
mance, we derive closed-form solutions for both re-
sponse time and costs. We also design a comprehen-
sive metric, CRI, which can be customized according
to operators’ needs.

• KPG Algorithm: We design KPG algorithm based on
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Fig. 3: Queueing model of the 5G MEC system

game theory. Its purpose is to find optimal offloading
ratios and the most appropriate number of cloud
instances.

• Outputs: According to the KPG algorithm analyzed
on PCF, SMF can control UPFs with the optimal
offloading ratio set and the number of cloud instances,
balancing the cost-effectiveness of the overall system.

As shown in Fig. 2, the whole mechanism consists of 9
procedures. As the first step, procedure (a), we establish a
mathematical model to formulate system behaviors based
on the given parameters. Next, in procedures (b)-(d), we
calculate system performance with closed-form solutions
in terms of response time, cost, and CRI. In procedure
(e), based on the analysis of the performance metrics, we
then find the optimal solutions for both offloading ratio
set (R∗

n0
) and the number of SCS instances (n0) with the

game theory. In procedures (f) and (g), the iterations of
the KPG algorithm update the performance of each edge
with the change of R∗

n0
and n0. To update the performance

metrics, the procedure goes from (h) to procedure (c),
which forms the iteration: (c), (d), (e), (f), (g), (h), (c),
and so on. Finally, when the CRI of the overall system
reaches the global minimum, the optimal solutions of R∗

n0

and n0 can be obtained. In the following sections, we
discuss the details of each procedure shown in Fig. 2. The
notations are listed in Table I.

As shown in Fig. 3, we consider the 5G MEC system
as queueing models consisting of (1) priority queueing
models forN numbers of edge servers, and (2) anM/M/n0

queueing model for the SCS. In each edge server, the
arrival rate of jobs is divided into λHi and λLi for high-
priority and low-priority jobs, respectively. We model the
capacity limit of edge i (i ∈ {1, 2, ..., N}) as Ki and the
average queue lengths of high- and low-priority jobs as
lHi and lLi, respectively. Furthermore, we consider the
service rate of high- and low-priority jobs as µHi and
µLi, respectively. Each edge offloads jobs to the SCS with
offloading ratio γi. In the SCS, we consider the number
of instances to be n0, with each instance having a service
rate µc. The arrival rate of the SCS is λc, which is the
sum of the low-priority jobs offloaded from the edges.

In addition, for the offloading ratio (γi, i ∈ I), we take

TABLE I: List of notations
Notation Definition
πn,m The stationary probability for n high-priority jobs and m

low-priority jobs.
λLi The arrival rate of a low-priority job in edge i
λHi The arrival rate of a high-priority job in edge i
lLi The queue length of a low-priority job in edge i
lHi The queue length of a high-priority job in edge i
Ki The capacity of edge i
µLi The service rate of edge i for a low-priority job
µHi The service rate of edge i for a high-priority job
βi The performance bias for setting the offloading ratio of

edge i
βn0 The performance bias for setting the number of instances
cbeta The constant coefficient of the performance bias
γi The offloading ratio of edge i
WHi The response time of a high-priority job
WLei The response time of a low-priority job in edge i
WLi The expected value of the response time for a

low-priority job through edge i
Wn0 The avg. response time of the entire MEC system when

the number of instances is n0

Ci The avg. cost caused by edge i
cel The cost coefficient of low-priority jobs on the edges
ceh The cost coefficient of high-priority jobs on the edges
cb The cost coefficient when an instance is busy
ci The cost coefficient when an instance is idle
Cn0 The avg. cost of the entire MEC system when the number

of instances is n0

n0 The number of instances in the SCS
n∗
0 The optimal number of instances in the SCS

λc The avg. arrival rate in the SCS
µc The service rate of each instance in the SCS
Wc The avg. response time in the SCS
I The set of edges
R The set of offloading ratios
R∗

n0
The best offloading ratio set

G Granularity coefficient: The unit of the offloading ratio
N The number of edges
ϕi Cost response-time index (CRI): the objective function of

edge i
ΦR,n0

The average value of ϕi: the global objective
function of the system when the number of instances is n0

ΨR,n0
The objective function of setting the number of instances
under the best offloading ratio R∗

n0

the impact of precision into consideration. In our system
model, we use the granularity coefficient G (0 < G ≤ 1)
as a unit of the offloading ratio. Specifically, there are
thousands or more QoS flows within a PDU session
between the radio access network and user plane function
(UPF). To balance the workload of edge servers, an
appropriate offloading ratio (γ) is required to control
how many percent of low-priority QoS flows should be
offloaded to the back-end SCS. To control the offloading
traffic precisely, we introduce granularity coefficient (G) to
determine the precision of γ. For example, when G = 0.5,
the offloading ratio γ can be {0, 0.5, 1}, and when
G = 0.05, γ can be {0, 0.05, 0.1, 0.15, …, 1}. If the value of
G cannot divide one evenly, the maximum offloading ratio
is still 1. Given G = 0.3, for example, the offloading ratio
can be {0, 0.3, 0.6, 0.9, 1}. Here, we consider the value
of G as the input and pay more attention to developing a
flexible model that enables operators to analyze offloading
ratios according to their requirements.
According to [12], real-time preemption mechanism

(PREEMPT_RT) can be illustrated as that shown in
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(a) L1 is being served and L2, L3 are waiting in FCFS

(b) H1 enters the system and preempts the service of L1

(c) H2 enters the system during the service of H1

(d) L1 continues serving when H2 finishes

Fig. 4: The process of the PREEMPT_RT on an edge
server

Fig. 4. Specifically, same priority jobs follow first come
first served (FCFS) rule. High-priority jobs can preempt
low-priority jobs. For example, when low-priority job L1

is being served, L2 and L3 must wait for service based
on FCFS. However, as shown in Fig. 4(b), when high-
priority job H1 enters the edge, low-priority job L1 which
is being served will be preempted and inserted back at
the front of the queue. Next, as shown in Fig. 4(c), when
H1 is being served, another high-priority QoS job H2

enters the system. According to FCFS, H2 will queue
after H1 but insert in front of L1 due to its priority.
In addition, the PREEMPT_RT we consider is preempt-
resume mechanism, in which the service of the preempted
jobs continues from the breakpoint rather than restarting
from the beginning. Thus, as shown in Fig. 4(d), when L1

is served again, the service will take the remaining time,
tL1.

IV. Performance Analysis
A. Performance Metrics

In this section, we formulate the edge behavior with a
2D-Markov chain. As shown in Fig. 5, we define πn,m as
the stationary probability for the state of an edge server
with n high-priority jobs and m low-priority jobs. By
solving the balance equations, we can obtain the following
performance metrics, laying the cornerstone for the cost-
effectiveness optimization in Sec. IV-B.

• Response time of high-priority jobs (WHi): Because
of the PREEMPT-RT mechanism, high-priority jobs
can not only preempt the resource on the edge servers
but also not be affected by low-priority jobs. The

Fig. 5: 2D-Markov chain of priority queueing system

service of high-priority jobs follows the FCFS. Thus,
WHi can be easily derived with one dimension Markov
chain.

• Response time of low-priority jobs (WLi): Due to
the offloading mechanism, the response time of low-
priority jobs is defined as the expectation value from
the edges (WLei) and the SCS (Wc).

• Response time of the SCS (Wc): In the 5G MEC
system, the response time of the SCS not only affects
the offloading ratios of the edges but also results in
a trade-off problem with the cost of deployment.

• The cost of an edge (Ci): The cost considered in this
paper consists of the number of jobs served by the
system and the number of instances set up in the
back-end SCS.

• Cost response-time index (CRI): CRI is a comprehen-
sive metric widely used to address cost-effectiveness.
In CRI, two weight factors are introduced, enabling
operators to customize their objective functions based
on their system bias. In this paper, we use CRI to
optimize the system’s cost-effectiveness.

Here, we formally quantify the above performance
metrics. First, we separate the balance equations into
four parts:

(Part 1) m = 0, n = 0: Part 1 indicates that there
are neither high- nor low-priority jobs accessing the edge
server i.

dπt
0,0

dt
= − [λHi + (1− γi)λLi]π

t
0,0 + µHiπ

t
1,0 + µLiπ

t
0,1

(1)

(Part 2) m = 0, n > 0: Part 2 means that only high-
priority jobs are accessing the edge server i.

dπt
n,0

dt
= − [λHi + (1− γi)λLi + µHi]π

t
n,0 + λHiπ

t
n−1,0

+ µHiπ
t
n+1,0 (2)

(Part 3) m > 0, n = 0: Part 3 means that only low-priority
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jobs access the edge server i.
dπt

0,m

dt
= − [λHi + (1− γi)λLi + µLi]π

t
0,m

+ (1− γi)λLiπ
t
0,m−1 + µLiπ

t
0,m+1 + µHiπ

t
1,m (3)

(Part 4) m > 0, n > 0: Part 4 shows that both high- and
low-priority jobs access the edge server i.
dπt

n,m

dt
= − [λHi + (1− γi)λLi + µHi]π

t
n,m + λHiπ

t
n−1,m

+ µHiπ
t
n+1,m + (1− γi)λLiπ

t
n,m−1. (4)

The above probability states should satisfy the normal-
ization condition as follows:

∞∑
n=0

∞∑
m=0

πt
n,m = 1. (5)

Furthermore, in the steady state, the differential terms of
time must be zero:

dπt
0,0

dt
=

dπt
n,0

dt
=

dπt
0,m

dt
=

dπt
n,m

dt
= 0. (6)

According to the PREEMPT_RT scheduling mechanism,
both edges and the SCS impact low-priority jobs. The
expected value of the response time for low-priority job
WLi can be expressed as:

WLi = (1− γi)WLei + γiWc. (7)

Then, we can obtain WLei, the response time of low-
priority jobs served by edge i:

WLei = lLi/[(1− γi)λLi]. (8)

Since high-priority jobs are directly solved at the edge
side, we obtain the average system response time of high-
priority jobs as (9):

WHi = lHi/λHi. (9)

A limited buffer size means that excessive arrival jobs
will be dropped. In this paper, however, we consider the
offloading mechanism when the arrival rate gets close to
the service rate on the edge server, and UPF will offload
an appropriate number of low-priority jobs to the back-
end SCS to reduce the workload of the edge servers.
Thus, for the near-end edge servers, we do not specifically
limit the buffer size because the excessive number of low-
priority jobs will be offloaded to the back-end SCS. On
the other hand, although the back-end SCS can be scaled
dynamically, the cost will be a concern. Therefore, even if
the resource of SCS can be extended, we still treat it as a
server with limited capacity. In this way, we can mitigate
the workload on the near-end edge servers and reduce the
cost of the back-end SCS.

In the following paragraphs, we expound in detail about
the derivations of the closed-form solutions and show the
results of lLi and lHi as below:
(1) The average number of low-priority jobs in edge i
By plugging (1), (2), (3), (4) into (10), we can convert
the 2D-Markov chain to one dimension and separate the

derivations into Part A (n > 0) and Part B (n = 0) as
follows:

Hn(z) =

∞∑
m=0

πn,mzm, z ∈ [−1, 1], (10)

Part A (n > 0): combine (2) and (4) in (10)
0 = − [λHi + (1− γi)λLi + µHi]π

t
n,0z

0 + λHiπ
t
n−1,0z

0

+ µHiπ
t
n+1,0z

0

+

∞∑
m=1

− [λHi + (1− γi)λLi + µHi]π
t
n,mzm

+ λHiπ
t
n−1,mzm + µHiπ

t
n+1,mzm

+ (1− γi)λLiπ
t
n,m−1z

m. (11)
Next, we can reorganize (11) in terms of Hn(z) as follows:
− [λHi + (1− γi)λLi + µHi]Hn(z) =

− [λHi + (1− γi)λLi + µHi]π
t
n,0z

0

+

∞∑
m=1

− [λHi + (1− γi)λLi + µHi]π
t
n,mzm (12)

λHiHn−1(z) = λHiπ
t
n−1,0z

0 +

∞∑
m=1

λHiπ
t
n−1,mzm (13)

µHiHn+1(z) = µHiπ
t
n+1,0z

0 +

∞∑
m=1

µHiπ
t
n+1,mzm (14)

(1− γi)λLi [zHn(z)] =

∞∑
m=1

(1− γi)λLiπ
t
n,m−1z

m. (15)

Finally, through (12), (13), (14), and (15), we can convert
(11) into (16):

0 = µHiHn+1(z)

− [λHi + (1− z) (1− γi)λLi + µHi]Hn(z)

+ λHiHn−1(z). (16)
As quadratic functions, we denote ξ(z) as the roots of
(16):

ξ(z) =
[λHi + (1− z) (1− γi)λLi + µHi]

2µHi

±

√
[λHi + (1− z) (1− γi)λLi + µHi]

2 − 4λHiµHi

2µHi
(17)

Nevertheless, only ”−” one can be selected due to the limit
z ∈ [−1, 1]. We can therefore convert the 2D-Markov chain
to one dimension which follows the rule:

Hn(z) = ξn(z)H0(z), n > 0. (18)

Part B (n = 0): combine (1) and (3) in (10)
0 =

− [λHi + (1− γi)λLi]π
t
0,0z

0 + µHiπ
t
1,0z

0 + µLiπ
t
0,1z

0

+

∞∑
m=1

− [λHi + (1− γi)λLi + µLi]π
t
0,mzm

+ (1− γi)λLiπ
t
0,m−1z

m + µLiπ
t
0,m+1z

m + µHiπ
t
1,mzn

(19)
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To merge the formula according to the same n, we extend
(19) as follows:

0 = − [λHi + (1− γi)λLi + µLi]π
t
0,0z

0 + µLiπ
t
0,0z

0

+ µHiπ
t
1,0z

0 + µLi
1

z
πt
0,1z

1 + µLi
1

z
π0,0z

0 − µLi
1

z
π0,0z

0

+

∞∑
m=1

− [λHi + (1− γi)λLi + µLi]π
t
0,mzm

(1− γi)λLiπ
t
0,m−1z

m + µLiπ
t
0,m+1z

m + µHiπ
t
1,mzn.

(20)

Next, we reorganize (20) in terms of Hn(z) as follows:

− [λHi + (1− γi)λLi + µLi]H0(z) =

− [λHi + (1− γi)λLi + µLi]π
t
0,0z

0

+

∞∑
m=1

− [λHi + (1− γi)λLi + µLi]π
t
0,mzm, (21)

µHiH1(z) = µHiπ
t
1,0z

0 +

∞∑
m=1

µHiπ
t
1,mzn, (22)

λLi [zH0(z)] =

∞∑
m=1

λLiπ
t
0,m−1z

m, (23)

µLi
1

z
H0(z) = µLi

1

z
π0,0z

0 + µLi
1

z
πt
0,1z

1

+

∞∑
m=1

µLi
1

z
πt
0,m+1z

m+1. (24)

Finally, through (21), (22), (23), and (24), we convert (19)
into (25):

0 = −
[
λHi + (1− γi) (1− z)λLi +

(
1− 1

z

)
µLi

]
H0(z)

+ µHiH1(z) +

(
1− 1

z

)
µLiπ

t
0,0, n = 0. (25)

By combining (16) and (25), we can derive H0(z) as
follows:

H0(z)

=
µLi

(
1− 1

z

)
πt
0,0[

µLiξ(z)− λHi − (1− γi) (1− z)λLi +
(
1− 1

z

)
µLi

] .
(26)

With (26), we can calculate the average number of low-
priority jobs in the system by partially differentiating
Hn(z), which is shown as follows:

lLi =

∞∑
n=0

∂Hn(z)

∂z
|z=1 =

( 1
µLi

)[1 + ( µLi

µHi
)(ρHi

ρLi
)]

1− ρHi − ρLi
, (27)

ρHi =
λHi

µHi
, and ρLi =

(1− γi)λLi

µLi
.

(2) The average number of high-priority jobs in edge i
As in (10), we use the z-transform to derive the average

number of high-priority jobs and use (28) as the PGF
corresponding to m low-priority jobs:

Pm(z) =

∞∑
n=0

πn,mzn, z ∈ [−1, 1]. (28)

However, because high-priority jobs are not affected by
jobs with low priority, Pm(z) is the same for m =
{0, 1, 2...}, and the balance equations can be rewritten
as follows:

(λHi + µHi)π
t
n,m = λHiπ

t
n−1,m + µHiπ

t
n+1,m, n > 0.

(29)
λHiπ

t
0,m = µHiπ

t
1,m. (30)

By plugging (29) into (28), we obtain the following
equation:
∞∑

n=1

πt
n+1,mzn = (ρHi + 1)

∞∑
n=1

πt
n,mzn − ρHi

∞∑
n=1

πt
n−1,mzn

, ρHi =
λHi

µHi
, (31)

which can be presented in terms of Pm(z):
1

z

[
Pm(z)− π1,m(z)z1 − π0,m

]
= (ρHi + 1)[Pm(z)− π0,m]

− (ρHi)[zPm(z)]. (32)

From (32), we can further derive Pm(z) as:

Pm(z) =
π0,m

1− ρHiz
, (33)

in which we find that π0,m = (1 − ρHi) with the feature
of the PGF (Pm(1) = 1). We can therefore obtain πn,m =
(1 − ρHi)ρ

n
Hi by inserting π0,m back into (29) and (30).

Finally, we can find the mean number of high-priority jobs
as follows:

lHi =

∞∑
n=0

n× πn,m =
ρHi

1− ρHi
. (34)

On the other hand, we test multiple queuing models to
quantify the behaviors of the SCS; however, the behavior
does not differ substantially between each probability
distribution. To describe the behavior of the SCS, we
therefore adopt a classic queueing model, i.e., M/M/n0,
where the average response time (Wc) is shown in (35).

Wc =

1
(1−ρc)(n0µc)

1 + (1− ρc)[
n0!

(n0ρc)n0
][
∑n0−1

k=0
(n0ρc)k

k! ]
+

1

µc
, (35)

ρc =
λc

n0µc
, λc =

N∑
i=1

γi × λLi.

In this paper, we quantify the cost with the number
of tasks and instances. Specifically, we consider the tasks
on the edge side as high and low priorities and denote
their cost coefficients as ceh and cel, respectively. For the
SCS, we denote cb as the cost coefficient of instances in
busy state, ci for that in idle state, and (nb, ni) for the
numbers of instances in busy and idle states, respectively.
The proportion of the cost coefficients can be tuned by
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operators based on their needs. In the objective function
CRI (Sec. IV-A1), both the cost and response time are
normalized. In this way, operators can determine the cost
coefficients without constraints. Finally, we use Ci to
represent the costs arising from edge i ∈ I, which is derived
as follows:

Ci = cehλHi + cel(1− γi)λLi + (cbnb + cini)γiλLi. (36)

To quantify the cost-effectiveness, we introduce CRI [30],
which is a comprehensive metric of both cost and response
time. In CRI, we consider the bias weighting factors (βresp

and βcost), which can enable operators to balance CRI
between cost and performance based on their needs. In this
section, we formulate the analysis of CRI for the offloading
ratio set (R = {γi, i ∈ I}) and number of instances (n0)
in Sec. IV-A1 and Sec. IV-A2, respectively. We prove
the convexity of the CRI in Sec. IV-B and evaluate the
performance based on CRI in Sec. V.
1) CRI for the offloading ratio set (ΦR,n0

): To analyze
the best offloading ratio for each edge, we first specify CRI
value of edge i with ϕi:

ϕi = βresp ×Norm{WLi}+ βcost ×Norm{Ci}, (37)

where

Norm{WLi} = WLi/WLi_max, WLi_max = (WLi|γi = 0),

Norm{Ci} = Ci/Ci_max, Ci_max = (Ci|γi = 1).

WLi_max is the response time when γi = 0, which means
that edge i does not offload low-priority jobs to SCS.
Conversely, Ci_max is the cost when γi = 1, which
indicates that the edge i totally offloads its low-priority
jobs to the SCS. In addition, we design bias weighting
factors (βresp and βcost) as (38):

βresp =
1

cbeta × (1− βi)
, βcost =

1

cbeta × βi
. (38)

Operators can simultaneously adjust both βresp and βcost

by changing the performance bias 0 < βi < 1 and making
the magnitude uniform with the constant cbeta. The ad-
vantage of (38) is that it turns (37) into a convex function
in terms of βi, such that operators can specify CRI for
each edge according to its cost-effective requirements. By
multiplying the bias weights, we can formulate CRI for
each edge and denote the objective function of the overall
system as ΦR,n0 . As shown in (39), the major challenge
of this paper is to find the best offloading ratio set (R∗

n0
)

that can reach the minimum point of (39):

argmin
R={γi, i∈I}

(ΦR,n0
=

1

N

N∑
i=1

ϕi). (39)

2) CRI for the number of instances (Ψn0
): To analyze

the most appropriate number of instances for the SCS,
we specify CRI value in terms of the normalized response
time and cost:

Ψn0 = β
′

resp ×Norm{Wn0}+ β
′

cost ×Norm{Cn0}. (40)

Algorithm 1: Knapsack Potential Game (KPG)
Input: from edges:

{λLi, λHi, µLi, µHi, βi, cel, ceh|i ∈ I};
from cloud: {n0, µc, cb, ci}; others: {N,G}

Output: Offloading ratio set
R∗

n0
= {r∗1 , r∗2 , ..., r∗i |i ∈ I}

1 Let MEC to be a vector of the Edge set;
2 Let SCS to be a Cloud set;
3 Let edge_list to be a vector of integers;

/* Initialize */
4 MEC.reserve(N); edge_list.reserve(N);
5 for i (0 to N − 1) do
6 Let E to be an Edge set;
7 E←{λLi, λHi, µLi, µHi, 0, 0, 0, cel, ceh, cb, ci, 1, 0, βi}

MEC.push_back(E);
8 edge_list.push_back(i);
9 end

10 SCS ← {n0, µc, 0, 0}
Bagging(MEC,SCS, edge_list) ; // Algorithm 2

11 return offloading ratio set
R∗

n0
= (MEC[i].γ | i ∈ I);

Different from (37), both the normalized response time
and cost considered here are the average values of the
overall system:

Norm{Wn0
} = Wn0

/Wn0_max,Wn0_max = (Wn0
|n0 = 0),

Norm{Cn0
} = Cn0

/Cn0_max, Cn0_max = (Cn0
|n0 = max),

where

Wn0
=

1

N

N∑
i=1

WLi
, Cn0

=
1

N

N∑
i=1

Ci. (41)

To increase the flexibility of the analysis, we specifically
design additional bias weighting factors (β′

resp and β
′

cost)
according to (42), where βn0

is different from βi in
(38). βi allows operators to set a different performance
bias for each edge, whereas βn0

enables operators to set
the performance bias when they need to determine the
number of instances on the SCS. By tuning βn0 , operators
can simultaneously control both bias weighting factors
according to their requirements:

β
′

resp =
1

cbeta × (1− βn0
)
, β

′

cost =
1

cbeta × βn0

. (42)

Based on the analysis of the optimal offloading ratio
set (R∗

n0
) for each n0, we can find the optimal number of

instances (n∗
0) to minimize (43):

argmin
n0

(ΨR,n0
). (43)

B. Knapsack Potential Game (KPG): The Proposed Al-
gorithm to Find R∗

n0

We propose the KPG algorithm to analyze the opti-
mal offloading ratio for edges and achieve optimal cost-
effectiveness for the 5G MEC system. In the KPG algo-
rithm, we combine the knapsack problem and potential
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Algorithm 2: Bagging
Input: MEC, SCS, edge_list
Output: Integer /* 1 : Complete */

1 Set ϕnow, ϕnext, ϕdiff , Φbefore, Φafter to 0;
2 while 1 do
3 /* Find most value edge */;
4 move← 0;
5 ϕdiff ← 0;
6 for i (0 to edge_list.size()− 1) do
7 j ← edge_list[i];
8 ϕnow ← {(37) | γi = MEC[j].γ};
9 ϕnext ← {(37) | γi = MEC[j].γ +G};

10 if {(45) | △ϕ = ϕnext−ϕnow}>ϕdiff then
11 move← j;
12 ϕdiff ← {(45) | △ϕ = ϕnext−ϕnow};
13 else if {(45) | △ϕ = ϕnext−ϕnow}≤0 then
14 /* Pruning */;
15 edge_list.erase(edge_list.begin() + i);
16 end
17 end
18 /* Update global phi */;
19 Φbefore ← (39);
20 MEC[move].γ←(MEC[move].γ +G);
21 Φafter ← (39);
22 if Φafter ≥ Φbefore then
23 /* Last one should not be counted */;
24 MEC[move].γ←(MEC[move].γ −G);
25 return 1;
26 end
27 end

game to improve efficiency and performance, respectively.
Further, we consider the following factors:

1) Knapsack Problem:
Knapsack problem [31] is a well-known NP-complete
problem. To find the maximum-weight composition
of the items within a size-limited bag, the greedy
method is a common approach to solve the problem.
Specifically, we need to put items into the knap-
sack in the order of cost-effectiveness. Therefore, a
straightforward way is to calculate the weight/size
of each item and put the items into the knapsack
according to the sorted result. However, this method
is not suitable to solve the problem of edge-cloud
offloading. In the edge-cloud offloading problem,
we treat low-priority QoS flows as the items, the
response time as the weight, and the capacity of the
SCS as the knapsack. We try to appropriately offload
low-priority jobs to the back-end SCS to optimize
system response time. However, a fully loaded back-
end SCS will cause system performance degradation.
Thus, the knapsack problem still needs an objective
function to balance the resource allocation of the
SCS among the edge servers.

2) Potential Game:
In traditional game theory, multiple players are in

a game, and each player gets benefits according to
their choices. Different from the traditional game
theory, however, a potential game has a global
objective function, which can be fell into many
kinds of potential games (e.g., exact potential game,
weight potential game, ordinal potential game, best
response potential game). In KPG, we refer to the
best response potential game (BRPG) [32] because
the actions made by each player in BRPG must be
the best choice for the overall system. Nevertheless,
the efficiency of the BRPG will be another concern
because BRPG needs to calculate the objective
function for each player’s action. To this end, we
design the KPG to obtain the same performance as
BRPG but improve efficiency. For further verifica-
tion, please refer to Sec. V.

3) Queuing model:
In the optimization process, we need to calculate the
results for a large number of parameter settings. A
queuing model is indispensable to compute the result
for each set of parameters quickly. For example, if
there are N edge servers and each of them has 10
offloading selections (s.e., 0.1, 0.2, ..., 1), there will be
10N different results. To this end, the major purpose
of the KPG algorithm is to prune out the irrational
settings, and the queuing model is to calculate the
results for the sets that KPG needs.

In Algorithm 1, we denote the parameters used on
the edges and SCS as the sets Edge: {λL, λH , µL,
µH , ϕ, WL, C, cel, ceh, cb, ci, γ, β}, Edge ⊂ MEC
and Cloud: {n0, µc, λc,Wc}, respectively. Then, KPG is
designed based on the best response potential game
(BRPG) [32], where all players’ decisions are the best
response to the overall system. As shown in Algorithm 1,
we consider each Edge i ∈ I as a player in the game, and
formulize players’ behaviours as the fractional knapsack
problem (FKP) [31]. That is, a player’s strategy is either
to maintain the current status or to increase the offloading
ratio. As each player may leave the game at any time, we
use edge_list to record the players that remain in the
game. After the initialization, Algorithm 2 is called to
calculate and return the optimized offloading ratios.
In Function 2, we use (37) to denote the current self-

benefit of a player as ϕnow and denote the corresponding
self-benefit as ϕnext when a player selects the strategy
increase. In addition, we use (39) to represent the utility
of the overall system as Φ and separate it into Φbefore and
Φafter to observe the impact on system performance when
a player adjusts their strategy. In the following paragraphs,
we list the major challenges of the optimization of edge-
cloud offloading and give details regarding how to use the
iterations of KPG to find the best offloading ratio with
the time complexity of O(N2).
1) High dependency in edges: In the 5G MEC system,

the edges are highly related. Even a slight adjustment
of the offloading ratio of one edge will have a significant
impact on system performance. In our proposed KPG,
when a player (edge) changes strategy (remains/increases
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the offloading ratio), the utilities (37) of all players are
affected. Therefore, to ensure that the iterative process
is always being optimized, in each iteration, only the
most effective edge is allowed to increase the offloading
ratio by a unit (G). However, the accuracy requirement
constrains the analysis duration. Here, we design a pruning
mechanism to improve the efficiency of KPG analysis.
Because the utility obtained by increasing the offloading
ratio decreases as SCS utilization increases, the trend of
(37) is a convex function in terms of the offloading ratio.
Thus, Function 2 can remove an edge when it has no
incentive to increase its offloading ratio (−△ϕi ≤ 0). By
pruning redundant players in the game, we can accelerate
the analysis without affecting the results.

2) How to find the most effective edge: As mentioned
above, due to the high dependency, the system should
find the most effective edge to raise the overall system
utility in each iteration. However, the self-benefit of each
edge continues to change during KPG iterations, so the
most effective edge is not always the same. To address
this problem, BRPG can find the most effective edge by
comparing the change in overall system utility (as shown
in (44)). However, even if BRPG guarantees that the edge
it selected is the most effective, the time complexity will
be increased substantially. To address this problem, we
reference the solution of FKP [31], which increases edges’
offloading ratios in a cost-effective manner. As shown in
(45), FKP needs to calculate only the change in (37) rather
than that in (39) because the solutions of (44) and (45)
will be the same (i = i′). In Function 2, we use the variable
move to record the most effective edge and increase its
offloading ratio by a unit (G). In the following paragraph,
we offer more details regarding the equivalence (i = i′)
between (44) and (45):

argmax
i∈I

(S = − △Φ

△γi × λLi
), (44)

argmax
i′∈I

(s = − △ϕi′

△γi′ × λLi′
). (45)

For (44), we denote the values of the edges i′ and j′ as
Si′ and Sj′ , respectively. Similarly, in (45), si′ and sj′

denote the values of edges i′ and j′, respectively. Here, we
assume that i′ is the solution of (45); that is, si′ is the
largest value in all sk, k ∈ I. As aforementioned discussion,
when i′ is the solution of (45), it must be the solution of
(44), which means that Si′ is also the largest value in all
Sk, k ∈ I. Here, we use the other edge j′ to conduct the
proof in contradiction, where we assume that sj′ < si′ but
Sj′ > Si′ . We can confirm the equivalence between (44)
and (45) by proving the irrationality of edge j′.
Proof: Since the forms of Si′ and Sj′ are fractions,

we can discuss sj′ < si′ in terms of two cases:
{|△ϕj′ | = |△ϕi′ |, △γj′λLj′ >△ γi′λLi′} and {△γj′λLj′ =△
γi′λLi′ , |△ϕj′ | < |△ϕi′ |}. According to (39) and Func-
tion 2, when an edge is allowed to increase the offloading
ratio by a unit (1/G), the objective functions of the other
edges will increase due to the growth in the SCS response
time (wc). Here, we denote the sum of the increases in

the objective functions by edge i′ as △Φī′ and that by
edge j′ as △Φj̄′ so that the change in the global objective
function caused by edges i′ and j′ can be represented as
△Φi′ =△ Φī′ +△ϕi′ and △Φj′ =△ Φj̄′ +△ϕj′ , respectively.
In addition, because the iteration will not terminate
until △Φ ≥ 0, the values of △Φi′ , △ϕi′ , △Φj′ and △ϕj′

should be negative, but those of △Φī′ and △Φj̄′ must
be positive during the iterations. Therefore, in the first
case, i.e., {|△ϕj′ | = |△ϕi′ |, △γj′λLj′ >△ γi′λLi′} , △Φj̄′

will be larger than △Φī′ , which causes the result of (44)
to be Sj′ < Si′ because (−△Φj′) < (−△Φi′) with the
denominators △γj′λLj′ >△ γi′λLi′ . For the other case, i.e.,
{△γj′λLj′ =△ γi′λLi′ , |△ϕj′ | < |△ϕi′ |}, even though △Φj̄′

is equal to △Φj̄′ , |△ϕj′ | < |△ϕi′ | will also cause the result
of (44) to be Sj′ < Si′ because (−△Φj′) < (−△Φi′) with
the same denominators (△γj′λLj′ =△ γi′λLi′). Finally, by
proving the irrationality of edge j′ with the above two
cases, we can confirm the equivalence between (44) and
(45), which means that when edge i′ is the solution of
(45), it must be the solution of (44) as well.
3) When to break the iteration: Unlike the solution of

FKP, we do not entirely fill the SCS at the end of the
iteration. Excessive use of the SCS will not only increase
costs but also degrade system performance. Therefore, we
use BRPG where the players tend to maximize/minimize
a global objective function. As shown in (37), when the
offloading ratio increases, the CRI of each edge is a
differentiable convex function. Being the sum of (37), the
trend of (39) must also be a convex distribution with
increasing SCS utilization. When (39) reaches the global
minimum, it is not only an optimal result but also the best
time to terminate KPG algorithm. Therefore, as shown at
the end of Function 2, we use Φbefore and Φafter to check
whether the utility of the overall system has reached the
global minimum.
To prove that the offloading ratio analyzed by KPG

is the optimal solution, we denote R∗ = {γ∗
i , i ∈ I} as

the output of our proposed KPG and denote γ∗
i as the

offloading ratio of the edge i ∈ I. We assume that the final
global objective function is Φ∗ and that an edge j ∈ I can
further optimize this result by increasing its offloading
ratio γj . We do not discuss the impact of γj because we
already proved that the global objective function must be
strictly reduced during the iterations. Here, we prove R∗

is the optimal solution by proving the irrationality of edge
j.
Proof: Before the end of the iteration, we assume that

the most cost-effective edge is k and that its value in (45)
is sk. The offloading ratio is rk. When edge k increases
its offloading ratio by a unit (1/G), the global objective
function stops decreasing (△Φ > 0) and the iteration
generates the analyzed results (R∗). Please note that the
final offloading ratio of edge k still remains at rk, which
is shown at the end of Function 2. Here, we consider an
edge j, the value of which in (45) is sj and its offloading
ratio is rj . Based on the above assumption, sj < sk,
but edge j can cause the global objective function to
undergo further optimization (△Φ < 0). To compare edges
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j and k, we denote their global objective functions as
△Φj =△ Φj̄ +△ ϕj and △Φk =△ Φk̄ +△ ϕk, where △Φj̄

and △Φk̄ are the sums of the objective functions of other
edges impacted by edges j and k, respectively. Since sj
and sk are fractions, they can be compared in terms of the
following two cases: {|△ϕj | = |△ϕk|, △γjλLj >△ γkλLk}
and {△γjλLj =△ γkλLk, |△ϕj | < |△ϕk|}. For the first
case, because we know that |△ϕj | = |△ϕk| and △Φk > 0,
the value of △Φk̄ must be larger than those of △ϕk and
△ϕj . However, since △γjλLj >△ γkλLk, △Φj̄ must be
larger than △Φk̄, which results in △Φj >△ Φk > 0.
For the other case, we know △γjλLj =△ γkλLk; hence,
△Φj must be larger than △Φk because △Φj̄ =△ Φk̄ but
|△ϕj̄ | < |△ϕk̄|. According to the results of the above two
cases, we thereby prove that our solution R∗ is the optimal
solution with the irrationality of edge j.
4) Time complexity of the proposed KPG: To calculate

the time complexity of our proposed KPG, we find the
iterations in the functions and take the worst case into
consideration. In Algorithm 1, a set of edges is initiated
in a for loop, and the time complexity of this step is
O(N). Next, in the function of Bagging, a dual-layered
iteration calculates an optimal offloading ratio set (R∗

n0
).

For the outside iteration, when the capability of the SCS
is extremely close to infinity, the worst-case of the time
complexity appears because the best offloading ratios set is
[1,1,...,1], as a result of which each edge should go forward
1 + 1/G steps. Thus, the worst case has N × [1 + (1/G)]
iterations. On the other hand, for the inner iteration,
searching for the most effective edge to increase the
offloading ratio should takeN steps, resulting in the worst-
case number of iterations of the Bagging function being
N2 × [1 + (1/G)]. Adding the steps of the initialization
together with the Bagging function, the total number of
iterations of our proposed KPG algorithm can be up to
N + N2 × [1 + (1/G)], and the time complexity of our
proposed KPG is therefore O(N2). On the other hand,
the time complexity of FKP is Nlog(N). In the edge-cloud
offloading mechanism, the time complexity of FKP is the
same with KPG. Specifically, in each iteration, the cost-
effective rate of each edge is changed as an edge adjusts its
offloading ratio. FKP needs to find the most cost-effective
edge again in each iteration. Thus, the time complexity
of FKP in edge-cloud offloading scenario is O(N2) rather
than O(NlogN). Similarly, the time complexity of BRPG
is O(N3); the maximum steps of the offloading ratio are
N [1 + (1/G)]; and the time complexity of each step in
BRPG is O(N2). Specifically, to guarantee the correctness
of each step, BRPG calculates results for each edge as it
increases the offloading ratio in units. In doing so, each
edge takes O(N), while N edges take O(N2). Thus, the
overall iterations of BRPG are up to N2 ×N [1 + (1/G)],
and the time complexity of BRPG is O(N3).

V. Performance Evaluation

In this section, we first evaluate the performance of
KPG with two baseline algorithms:

1) FKP is typically solved by a greedy algorithm that
can be formulated as an extensive form game [33]
where players (edges) tend to put their chips (low-
priority jobs) into the knapsack (SCS) selfishly.
Compared with our proposed KPG algorithm, FKP
does not pursue the global objective function but
continue execution until no players want to change
their decision. That is, the result of FKP is the pure
Nash equilibrium, of which the process is fast but
the performance is not always optimal.

2) BRPG is a cooperation-based algorithm, where play-
ers (edges) tend to maximize the utility of the overall
system. BRPG checks the global objective function
(44) based on the change in the strategy on each
edge to obtain the optimal results. As discussed in
Sec. IV-B3, although BRPG can find the optimal
solution, checking the global objective function for
each strategy increases the computational complex-
ity significantly.

We conduct extensive simulations using ns-2 2.35 [34]
with Ubuntu 18.04, 2 GB RAM, and i7 4770K CPU.
According to AWS EC2 [35], the number of instances that
a user can rent is up to 20 instances in each region. Since
AWS divides its entire service region into 25 regions, the
total number of instances that a user can use is up to 500.
In addition, according to the rules of Microsoft Azure [36],
each user can rent up to 800 instances. To evaluate the
performance of KPG, we consider 10MEC systems, each of
which has the number of edges N = 50 and the number of
SCS instances n0 = 4. In addition, to test the stability and
reliability of the proposed KPG, the arrival rates of low-
and high-priority jobs (λLi, λHi) are randomly assigned
in the range [10 : 200] for each MEC system. The service
rates of the edge server and SCS follow an exponential
distribution with the mean value µLi = µHi = µc = 200.
In this way, we can observe that the behaviors of the
system are from light to fully-loaded. Besides, according
to the pricing policy of AWS EC2 [35], if the performance
of an instance is two times better than that of another
instance, the cost of the powerful instance will be two
times than that of the general one. Thus, we consider the
proportion of the costs between an edge and an SCS for
about 1:4 (cel = ceh = 0.1, cb = 0.4, ci = 0.2) because the
instances of an SCS is four and that of an edge is one in
our experimental case.
(1) Impact of preemption: Our experimental results

demonstrate that KPG has near-optimal performance in
terms of CRI and execution time. CRI not only reflects
the cost-effectiveness of the system but also represents
the improvement compared with the worst case (CRI=
1). Therefore, in Fig. 6(a), we observe that the CRI
decreases more obviously as the arrival rate of high-
priority jobs increases. Specifically, as shown in Fig. 6(c)
and Fig. 6(d), although both the response time and
cost increase when the arrival rate of high-priority jobs
increases, the improvement compared to the worst case is
more significant. The worst cases discussed in Fig. 6(c)
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(a) CRI (b) Execution time

(c) Response time optimization (d) Cost optimization

Fig. 6: The impact of preemption: comparison of CRI, execution time, response time, and the cost of FKP, BRPG,
and KPG in the worst case.

and Fig. 6(d) are None-Offloading and Fully-Offloading,
respectively. For the response time, FKP, BRPG and
KPG can improve upon that of the None-Offloading case
by approximately 22%, 27.9% and 27.9%, respectively.
For the cost, FKP, BRPG and KPG can improve upon
that of the Fully-Offloading case by approximately 77.4%,
80.3% and 80.3%, respectively. Compared with FKP and
BRPG on CRI, as shown in Fig. 6(a), our proposed KPG
improves upon the result of FKP by approximately 8.5%
and achieves 99.9% similarity with BRPG. On the other
hand, for the execution time which is shown in Fig. 6(b),
our proposed KPG improves upon the result of BRPG by
approximately 93.5% and achieves similarity with FKP of
approximately 83%.

(2) Impact of the performance bias: We are interested
in the impact of the performance bias on the system.
Fig. 7(a) and Fig. 7(b) depict the impact on CRI and
the execution time, respectively. The average CRI has
a convex distribution, which demonstrates that we can
notify operators when their strategies are too extreme.
Nevertheless, we do not intervene in the determination
of the performance bias. We regard βi, i ∈ I as the
input to our mathematical model and analyze the optimal
offloading ratios based on the operator requirements. As
mentioned in (37), the objective function in this paper
consists of the response time and cost which are shown
in Fig. 7(c) and Fig. 7(d), respectively. Specifically, when
the performance bias β < 0.5, operators tend to cut costs

and reduce the use of SCS; hence, little difference in
the response time and cost results are observed among
the three algorithms. However, when performance bias
β ≥ 0.5, operators tend to enhance service quality and
increase offloading to SCS, which decreases the response
time but increases costs. The results show that our
proposed KPG is 99.9% similar to BRPG in terms of
the average CRI, and that of FKP will deviate from
the optimal solution by approximately 6.8%. For BRPG,
however, even though the optimal result is achieved, the
execution time is longer than that of the proposed KPG
by approximately 94.86%.

(3) Impact of the offloading precision: Our results show
that KPG has near-optimal performance with respect to
the average CRI and execution time regardless of the
Granularity (G). Specifically, as shown in Fig. 8(a) and
Fig. 8(b), when G = 1, the decision mechanism is binary,
with entire jobs either completely solved at the edges
or fully offloaded to SCS. When the Granularity(G)
decreases, the results of the average CRI improve but the
execution time increases slightly. However, even though
an increase in precision can improve the performance,
convergence eventually occurs. In this paper, we pay more
attention to developing a flexible analytical model for
operators. We do not intervene in the determination of
the precision. Compared with the binary decision, with
the unit of the offloading ratio in the G = 1/8 case
(min(△γ) = 0.125), the average CRI of KPG improves
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(a) CRI (b) Execution time

(c) Response time optimization (d) Cost optimization

Fig. 7: The impact of performance bias: comparison of CRI, execution time, response time, and cost between FKP,
BRPG, and KPG.

(a) CRI (b) Execution time

Fig. 8: The impact of precision requirement: comparison of CRI and execution time between FKP, BRPG, and KPG.

by approximately 22.7%, and the execution time needed
increases from 2.46 ms to 13.72 ms. On the other hand,
comparing our proposed KPG with FKP and BRPG in
terms of CRI, our proposed KPG can achieve 99.9%
similarity with BRPG and improves upon FKP by approx-
imately 7%. Conversely, our proposed KPG can improve
the execution time for BRPG by approximately 93.9% and
that for FKP by approximately 7.6%.

VI. Conclusions
In this paper, we first study the impacts of the newly

defined QoS priority on the offloading strategies in 5G
MEC systems. Based on our investigation, we note new
challenges (preemption, competition, and precision) due
to the new standards in 3GPP R16. To address these

challenges, we model the system and its performance
metrics through comprehensive analytical models. Based
on the models, we design KPG algorithm to find the
optimal offloading ratios to balance the trade-off between
cost and system performance. We demonstrate through
extensive simulations that KPG has low computational
complexity and outperforms FKP and BRPG in terms
of several performance metrics. The results show that
the performance of KPG is close to the optimal solution
and that KPG can help operators design their offloading
strategies in 5G MEC without large-scale deployment.
As for the future work, we will mainly focus on three

topics. Firstly, we plan to further study the resource com-
petition problem for multi-leveled QoS flows. Secondly,
we will explore more system structures (e.g., clustering,
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decentralization, layering, etc.) to increase the efficiency
of the offloading mechanism. Thirdly, we will introduce
more optimal algorithm to enhance system performance
in terms of the cost and efficiency.
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