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Abstract

Hypothesis testing is challenging due to the test statistic’s complicated asymptotic distribution

when it is based on a regularised estimator in high dimensions. We propose a robust testing frame-

work for ℓ1-regularised M-estimators to cope with non-Gaussian distributed regression errors, using

the robust approximate message passing algorithm. The proposed framework enjoys an automati-

cally built-in bias correction and is applicable with general convex nondifferentiable loss functions

which also allows inference when the focus is a conditional quantile instead of the mean of the

response. The estimator compares numerically well with the debiased and desparsified approaches

while using the least squares loss function. Use of Huber’s loss function demonstrates that the pro-

posed construction provides stable confidence intervals under different regression error distributions.

Keywords: Approximate message passing algorithm, confidence interval, high-dimensional linear

model, hypothesis testing, ℓ1-regularisation, loss function.

1 Introduction

In a sparse high dimensional linear model of the form Y = Xβ + ε, we wish to perform hypothesis

testing and construct confidence intervals for components of the p-vector β when p grows with the

sample n such that n/p → δ ∈ (0, 1). Rather than using ℓ1-regularised estimation and desparsifying

or debiasing such estimators, we use the approximate message passing algorithm to take the selection

uncertainty into account. This means that we consider the full vector of estimated coefficients and do

not theoretically restrict to an assumed perfectly selected subset of nonzero coefficients.

Our main contribution is a general framework of testing, using ℓ1-regularised M-estimators, which

allows to incorporate a broad group of convex loss functions, e.g., (i) least squares (LS) loss: ρ(z) = z2,

(ii) Huber loss with ρu(z) = z2/2 if |z| ≤ u and ρu(z) = u|z| − u2/2 if |z| > u, (iii) least absolute

deviation (LAD) loss with ρ(z) = |z| and (iv) quantile loss with ρτ (z) = z(τ−I{z ≤ 0}). In particular,

loss functions that provide robustness in case of outliers in the regression errors are included. However,

an investigation about how to use the approximate message passing algorithm for the detection of

outliers in the high-dimensional predictive variables, remains a future research topic. This general

framework distinguishes our approach from the papers based on bias correction for ℓ1-regularized

estimators that deal with a specific loss function or that impose differentiability assumptions on the

loss functions (van de Geer et al., 2014). When taking the least squares loss function, our approach

does not require to use the Karush-Kuhn-Tucker characterisation of the Lasso estimators (Javanmard

and Montanari, 2014; van de Geer et al., 2014).

Instead, our method relies on an asymptotically normal distributed estimator obtained from the

robust approximate message passing (RAMP) algorithm (Donoho et al., 2009; Bayati and Montanari,

2011a; Bradic, 2016; Donoho and Montanari, 2016; Zhou et al., 2020). The estimator in the last step of

the RAMP algorithm is obtained by applying a soft-thresholding function to the estimator that is our

main focus. This estimator from the robust approximate message passing algorithm does not require

additional computations and enjoys by construction the debiasing properties that have earlier been

studied for ℓ1-regularised estimators. The RAMP algorithm assumes the covariates X·1, . . . , X·p to be
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independent Gaussian, which is inherited from the AMP framework (see for example Donoho et al.,

2009; Bayati and Montanari, 2011a). This assumption is also compulsory in the convex Gaussian

mini-max theorem (Gordon, 1985, 1988; Thrampoulidis et al., 2018) in compressed sensing. The

two mentioned approaches provide insight into the asymptotic behaviour of the estimator β̂ under

the i.i.d. assumption. In this paper, we do not deviate far from the AMP framework regarding the

assumptions. Instead, the objective is to provide a simple computational tool for robust testing built

on Bradic (2016); Zhou et al. (2020). To broaden the scope we incorporate a decorrelation step as in

Wang et al. (2016) to adapt the proposed testing procedure to correlated Gaussian designs.

Our simulations show that this estimator compares well to the debiased (Javanmard and Monta-

nari, 2014) and desparsified estimators (van de Geer et al., 2014) in case the least squares loss is used.

For other loss functions our method applies in an equal fashion. We illustrate it for quantile loss and

for the Huber loss function.

It is important to point out that this method provides inference for the full vector of coefficients as

opposed to only working with the selected components. In this sense our results are not comparable

to those obtained by selective inference (e.g., Lee et al., 2016) where a conditioning on the event

of selection takes place and inference is restricted to only the coefficients appearing in the selected

model after regularisation. Our target of inference is different since we are interested in results for the

full vector, zeros included. This work also differs substantially from the earlier results on regularised

estimation (e.g., Zou, 2006) which discusses the properties of the null and nonnull subvectors separately

by selection consistency of the null subvector and the asymptotic normality of the nonnull subvector.

The RAMP approach includes the selection uncertainty via its specific algorithm.

More details about the estimator and the RAMP algorithm is given in Section 2. Its use for

hypothesis testing and the construction of confidence intervals is contained in Section 3. Simulation

results showing its advantageous behaviour are in Section 4 and for a data analysis see Section 5.

Section 6 concludes.

2 Notation, assumptions and estimators

We wish to estimate the parameter vector β = (β1, . . . , βp)
⊤ ∈ Rp in the model Y = Xβ + ε with

a known design matrix X ∈ Rn×p and a response vector Y ∈ Rn. We denote the rows of X by Xi·
corresponding to n independent samples, i = 1, . . . , n; and denote the columns ofX byX·j representing

p predictive variables, j = 1, . . . , p. The covariates with non-zero coefficients are ‘relevant’ to the

response vector. In addition, we assume p > n and denote the number of non-zero coefficients of β by

s.

2.1 Regularised estimators with general loss functions

The parameter vector β is often estimated by solving a minimisation problem combining a loss function

ρ(·) and an ℓ1-regulariser with parameter λ as follows

β̂(λ) = arg min
β∈Rp

{
n∑

i=1

ρ(Yi −X⊤
i· β) + λ∥β∥1

}
. (1)

The most straightforward approach to estimate β̂(λ) is by solving the right-hand-side of (1). Intensive

research has been devoted to this approach with different loss functions ρ, see Tibshirani (1996);

Donoho and Johnstone (1994); Donoho (1995) with the LS loss function; Wang et al. (2007) with the

LAD loss function; Belloni and Chernozhukov (2011) with the quantile loss, etc.

Due to the regularisation, the asymptotic distribution of an estimator of β in high dimensions

becomes complicated and is no longer Gaussian due to the presence of many exact zeros for the uns-

elected components. One popular approach to state asymptotic theory for the regularised estimators
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is using the ‘oracle property’, which states the selection consistency of the subvector of zeros, the non-

selected components, and the asymptotic normality of the estimator of the truly nonzero components

of β, see Zou (2006); Fan and Li (2001); Sun et al. (2020); Bradic et al. (2011). Although the ‘oracle

property’ provides promising asymptotic guarantees, a perfect selection is hard to achieve for finite

samples. In addition, to achieve selection consistency, a so-called ‘beta-min’ assumption requiring

that the magnitude of β is sufficiently large, is often made in the literature (e.g. Bühlmann and Van

De Geer, 2011).

Subsequent inference following selection attracted attention. One way to achieve valid inference

is via sample splitting in which the estimators are obtained from a sample independent of the sample

that is used for inference. Wasserman and Roeder (2009) split the sample in three parts: a first

one-third of the data is used for ℓ1-regularised estimation for a grid of regularization values; a second

one-third of the data determines a suitable regularisation parameter via cross-validation and the third

part of the data uses a least squares estimator for the selected set of variables as determined by the

estimation on the first one-third of the data using the cross-validated regularisation found from the

second data part. Independence between the different parts of the dataset guarantees valid inference.

Rather than a single time splitting the dataset, Meinshausen et al. (2009) split the sample into two

pieces multiple times, and perform aggregated inference using the second subset based on the selected

variables by the first subset. With a large number of such random splits of the data, they show that

asymptotically there is a control of the familywise error rate and the false discovery rate. For datasets

of smaller size, sample splitting has not been attractive. The method in this paper does not need to

split the sample in order to achieve valid inference.

Alternatively, one can approximate β̂(λ) via the approximate message passing (AMP) algorithm

(Donoho et al., 2009; Bayati and Montanari, 2011a; Donoho and Montanari, 2016); this AMP algorithm

and its generalisation is a crucial tool throughout this paper. The importance is that an asymptotic

representation of the mean squared error (MSE) of the regularised estimator (the full vector) can be

obtained, thus effectively taking the selection effects into account. This is in contrast with so-called

oracle approaches that assume perfect selection. Further, the mean squared difference of the AMP

approximation and β̂(λ) converges to 0 almost surely (Bayati and Montanari, 2011b, Theorem 1.8)

when p → ∞ and similar results are obtained for other loss functions (Bradic, 2016; Zhou et al., 2020).

Studies of the asymptotic distribution of the full vector β in high dimensions started with the

settings where p/n ≤ 1 and without regularisation, see El Karoui et al. (2013); Lei et al. (2018);

Donoho and Montanari (2016); El Karoui (2013) studied ℓ2-regularised M-estimators for p/n < ∞
and showed that the M-estimators without regularisation can be seen as a limiting case letting the

tuning parameter of the ℓ2-regularisation be 0, while assuming additionally that the loss function is

strongly convex.

While returning to settings where p/n > 1 and regularisation is a prevailing solution for esti-

mating β, some alternative options of constructing confidence intervals and hypothesis testing have

been carefully investigated on the Lasso estimator in (1) which is obtained by choosing ρ(·) to be the

least squares loss. Instead of focusing directly on the regularised estimators with complex asymptotic

distribution, the desparsifying (van de Geer et al., 2014) and debiasing (Javanmard and Montanari,

2014) approaches construct estimators based on the Lasso estimators under an i.i.d. Gaussian assump-

tion on the regression error, ε ∼ N(0, σ2
εIn). The desparsification rewrites the Karush–Kuhn–Tucker

(KKT) condition satisfied by the Lasso estimator, while the debiasing estimator is obtained by adding

a term compensating the bias introduced by the ℓ1-regulariser. Although derived through different

approaches under slightly different assumptions, the estimators of interest for inference in van de Geer

et al. (2014); Javanmard and Montanari (2014) follow identical expressions and are denoted by β̂U.

With M being an approximation of the inverse of the sample covariance matrix Σ̂ = X⊤X/n, the

estimator β̂U is defined as

β̂U = β̂LS(λ) +MX⊤(Y −Xβ̂LS(λ))/n. (2)
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However, the methods use different approaches to approximate the matrix M . More specifically,

Javanmard and Montanari (2014) proposed an algorithm to approximate a sparse matrix M ; and

at the same time the algorithm controls the non-Gaussianity, bias and variance of the estimator β̂U.

On the contrary, van de Geer et al. (2014) only requires a suitable approximation of M , which is

estimated by a nodewise Lasso running p times on each X·j , j = 1, . . . , p as the response variable in a

Gaussian regression model with all p − 1 other covariates, thus except for X·j , in the design matrix.

Consequently, inference based on the estimator β̂U uses the asymptotic normality

√
n(β̂U − β) = W + oP (1), W |X ∼ N(0, σ2

εM Σ̂M⊤). (3)

Extensions of this approach include Caner and Kock (2018) on the conservative desparsified Lasso and

Gueuning and Claeskens (2018) on the focused information criterion based on the desparsified Lasso

for a high-dimensional linear model.

Since the least squares loss function is sensitive to non-Gaussian distributed errors, robust loss

functions that deal with outliers in regression errors and error distributions with heavy-tails are pre-

ferred, among which a popular choice is the quantile loss function (Koenker and Bassett, 1978; Koenker,

2005). Debiasing the regularised quantile estimator was investigated in Zhao et al. (2014, 2019); Bradic

and Kolar (2017). Simultaneous confidence intervals are constructed by using a Gaussian multiplier

bootstrap, see also Zhang and Cheng (2017); Dezeure et al. (2017) for bootstrapping the debiased

Lasso. The high dimensional rank score was developed to estimate the sparsity function in Bradic and

Kolar (2017) while uniform confidence bands were constructed based on a Bahadur representation of

the debiased estimator. Our method differs from the literature mentioned above since we do not de-

velop theory applicable for only a specific loss function, and further, our construction does not rely on

bootstrapping, which can be computationally intensive. By our construction, a relatively convenient

switch between loss functions can be realised without a heavy computational burden. However, our

proposed method can only cope with outliers in the regression errors; robust inference when outliers

exist in the predictive variables is beyond the scope of this paper.

2.2 Assumptions

We assume the design matrix X ∈ Rn×p, the error vector ε, and the coefficient vector β to satisfy

Assumptions (A1)-(A5) from Zhou et al. (2020, Appendix A), which we repeat here for completeness.

(A1) A standard Gaussian design: for i = 1, . . . , p and j = 1, . . . , n, the Xij ∼ N(0, 1/n) are indepen-

dent and identically distributed.

(A2) For the p-vector β it holds that for p tending to infinity a sequence of uniform distributions that

is placed on its components converges to a distribution with a bounded (2k − 2)th moment for

k ≥ 2. We denote by B0 a random variable with this limiting distribution function FB0 .

(A3) Loss function ρ such that: (i) the subgradient ∂ρ(x) =
∑3

j=1 vj(x) such that v1 has an absolutely

continuous derivative, v2 is continuous, consisting of piecewise linear parts and is constant outside

a bounded interval, and v3 is a non-decreasing step function. Define v′2(u) = αl and v3(u) = γl
when u ∈ (rl, rl+1] where α0 = αL = 0, −∞ = r0 < r1 < . . . < rL < rL+1 = ∞ and

−∞ = γ0 < γ1 < . . . < γL < γL+1 = ∞. (ii) |∂ρ(u)| is bounded for all u ∈ R. (iii)
∫
ρ(z −

t)dFε(z) has a unique minimum at t = 0. (iv) There exists a value δ > 0 and η > 1 such that

E[{sup|u|≤δ |v′′1(z + u)|}η] is finite.

(A4) For some κ > 1, (i) limp→∞E
f̂β
(B2κ−2

0 ) = EfB0
(B2κ−2

0 ) < ∞; (ii) limp→∞E
f̂ε
(ε2κ−2) =

Efε(ε
2κ−2) < ∞; (iii) limp→∞E

f̂q0
(B2κ−2

0 ) < ∞.
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(A5) ε1, . . . , εn and ε are i.i.d. random variables with mean zero, a finite 2nd moment, cumulative

distribution function Fε and probability density function fε. The Fε has bounded derivatives fε
and ∂fε and fε > 0 in the neighbourhood of r1, . . . , rL in (A3).

In addition, we denote the set of indices of the non-zero components of β by S consisting of s

elements. Its complement is denoted Sc = {1, . . . , p}\S with size p − s. We assume that the ratios

n/p → δ ∈ (0, 1), n/s → a ∈ (1,∞), s/p → ω = P (B0 ̸= 0) when n, p, s → ∞.

Assumption (A1) is a standard assumption on the design matrix used in Bayati and Montanari

(2011a); Donoho et al. (2009); Donoho and Montanari (2016); Bradic (2016). Assumption (A1) is

implicit but critical in the construction. In the limit the Xij ’s are represented by a N(0, 1) distributed

random variable Z (see for example in Eq.(3.46) Bayati and Montanari, 2011a). The variable Z

determines the asymptotic normality of β̃, see the discussion in Section 3.1. Assumption (A2) defines

a random variable B0 with distribution FB0 to which the sequence βj , j = 1, . . . , p converges as n

tends to infinity by assigning 1/p point mass to each component of the vector β. For (A2), see

also Bayati and Montanari (2011a); Bradic (2016). Assumption (A3) is first stated in Bradic (2016)

to incorporate convex possibly non-differentiable loss functions by using the subgradient of the loss

function instead of gradient. In general, Assumption (A3) states that the RAMP algorithm allows

for loss functions of which the subgradient can be decomposed into combinations of three types of

functions on the intervals as specified in Assumption (A3): (1) functions with absolutely continuous

first derivative; (2) piecewise continuous linear functions; (3) non-decreasing step functions. This

assumption is fundamental for deriving a consistent estimator in the RAMP algorithm (Bradic, 2016,

Lemma 3). Further, one can perceive this as a generalized score function, which in the robust statistics

field is used to further study the properties of M-estimators, e.g. Fisher consistency, the influence

function, etc. Examples of loss functions that satisfy (A3) include the Huber loss function (Huber,

2004) which is equivalent to Winsorizing the residuals, quantile loss, absolute value and squared loss

functions, etc. Assumption (A4) is a technical assumption for proving almost sure convergence of a

general function of β̂, see Theorem 2 in Bayati and Montanari (2011a). Assumption (A5) states that

the components of ε are i.i.d. with cumulative distribution function Fε and density function fε, which

is used to determine the intervals in Assumption (A3). Assumption (A4) has been used in Bayati and

Montanari (2011a) and Zhou et al. (2020, Lemma 1) there taking κ = 2.

2.3 The estimator from the robust approximate message passing algorithm

The robust approximate message passing (RAMP) algorithm, see Huang (2020); Bradic (2016) and

Zhou et al. (2020, Section 3.2), is an iterative procedure consisting of three steps. The iteration number

is denoted by t = 1, 2, . . .. The estimator β̂(t) is updated in each iteration t and is denoted by β̂ at

convergence. The difference between the estimator β̂ from the RAMP algorithm at convergence and

the corresponding estimator from regularisation in (1) converges to zero in ℓ2-norm with probability

one. This has been shown in Huang (2020, Theorem 2.2.) for the generalised AMP algorithm with

nonnegative convex loss function, and in Bayati and Montanari (2011b, Theorem 1.8) for the LS loss.

This convergence in ℓ2-norm ensures the validity of using the RAMP algorithm to approximate the

minimizer of (1).

We restate here the part of the RAMP algorithm which is directly linked to the estimators to be

used in this paper. At iteration step t of the algorithm, the estimator β̂(t+1) corresponding to the

ℓ1-regularised M-estimator is updated as follows,

β̂(t+1) = η(β̃(t); θ(t)), where β̃(t) = β̂(t) +X⊤G(z(t); b(t)). (4)

The soft-thresholding function

η(x; θ) = sign(x) ·max(|x| − θ, 0) (5)
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in (4) is applied componentwise to the estimator β̃(t) of major interest. This estimator asymptotically

follows a Gaussian distribution centering at the true regression coefficient vector β, see Section 3, and it

is linked to the debiased/desparsified estimator, see (2) as an example using the LS loss function. The

soft-thresholding function incorporates the ℓ1-regulariser ∥β∥1. The tuning parameter θ(t) is updated

in Step 2 in the RAMP algorithm, which is linked to the tuning parameter λ, for the details see Zhou

et al. (2020, Eq. (2.21)). The rescaled effective score function G is determined by the convex loss

function ρ and is defined in Zhou et al. (2020, Eq. (11)). Step 3 in the RAMP algorithm is given by

(4), which describes the connection between the estimators β̂(t) and β̃(t). The argument z(t) in the

rescaled effective score function is updated in Step 1 in the RAMP algorithm, and the parameter b(t)
is updated in Step 2. Details of the complete RAMP algorithm can be found in Zhou et al. (2020,

Section 3.2) and for a brief overview, see Appendix A.

The properties of the RAMP estimator rely on the independent Gaussian design Assumption (A1)

and violations may cause convergence problems. As a remedy, we incorporate a decorrelation step as

proposed in Wang et al. (2016, Eq.(3)). We briefly state the idea of the decorrelation. We perform

a singular value decomposition of the design matrix X = UDV ⊤. By noticing that
√
pUD−1U⊤ =

{(XX⊤/p)−}1/2 where (·)− denotes the Moore-Penrose pseudo-inverse, the linear model can be rewrit-

ten as

{(XX⊤/p)−}1/2Y =
√
pUV ⊤β + {(XX⊤/p)−}1/2ε. (6)

Then, the new response is Ỹ = {(XX⊤/p)−}1/2Y and the new design matrix is X̃ =
√
pUV ⊤. The

RAMP algorithm is now applied to Ỹ , X̃.

3 Confidence intervals and hypothesis testing

3.1 Componentwise inference

For a component βj with j ∈ {1, . . . , p}, we are interested in testing the null hypothesis

H0,j : βj = β0,j versus Ha,j : βj ̸= β0,j .

Rather than considering the sequence β̂(t), t = 1, 2, . . . as in the previous literature, the main fo-

cus of this project is the sequence β̃(t) in (4), which was proven in Zhou et al. (2020, Section 5.2,

before Corollary 2), to converge weakly to B0 + ζ̄(t)Z(t), n, p → ∞, where B0 is defined in As-

sumption (A2), Z(t) is a standard normally distributed variable independent of the data, ζ̄(t) is

the square-root of the state evolution parameter (see Step 2 in Appendix A), and is estimated by

ζ̄2emp,(t) = n−1
∑n

i=1G(zi,(t); b(t))
2, which is via (4) directly obtainable from the RAMP algorithm. Let

β̃ and ζ̄ denote the estimator β̃(t) and the parameter ζ̄(t) from the RAMP algorithm at convergence.

The estimator β̃(t),j is an asymptotically unbiased estimator for the true coefficient β0,j with common

variance ζ̄(t) for each component with j = 1, . . . , p. Under the null hypothesis, it holds that when

p → ∞,

Tj(β0,j) =
β̃j − β0,j

ζ̄

d→ N(0, 1). (7)

Note that the scaling term
√
n is incorporated in the state evolution parameter ζ̄, see Bayati and

Montanari (2011a, Proof of Lemma 1(b), e.g. the late almost sure convergence on p. 775). For fixed

and large n and p, the asymptotic standard normality holds in an approximate way, Tj(βj) ≈ N(0, 1),

j = 1, . . . , p. By replacing ζ̄ by ζ̄emp, the p-value of the test statistic can be calculated as

Pj = 2{1− Φ(|β̃j − β0,j |/ζ̄emp)}. (8)
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As usual, for a given significance level α, the null hypothesis H0,j is rejected if Pj ≤ α. A confidence

interval of βj with asymptotic confidence level 1− α ∈ (0, 1) can be constructed as

ĈIj(1− α) = [β̃j − Φ−1(1− α/2)ζ̄emp, β̃j +Φ−1(1− α/2)ζ̄emp],

where Φ denotes the standard normal cumulative distribution function.

It is important to point out that the asymptotic normality holds for the full estimated vector β̃, as

opposed to only for the non-zero components under the ‘perfect selection’ (βmin assumption). By our

construction or similar debiasing/desparsifying approaches, the selection uncertainty of the non-zero

components is taken into account.

As a special case we take the least squares loss. In this case the estimator β̃(t) is comparable

to the desparsified estimator in (2) in the following aspects: 1. the estimator β̂U in (2) is obtained

by adding to the Lasso estimator, a term containing a decorrelated design matrix MX⊤/n and the

residual Y −Xβ̂LS(λ). The estimator of focus in this paper, β̃ in (4), is constructed by adding to the

estimator corresponding to the Lasso β̂, a term that contains a standard Gaussian design matrix X⊤

(Zhou et al., 2020, Assumption (A1)), and for least squares loss the adjusted residual G is equivalent

to Y −Xβ̂LS(λ). 2. Both estimators β̂U and β̃ are asymptotically Gaussian distributed.

While comparing our approach to the debiasing/desparsifying approaches, our construction does

not require a numerical approximation of the inverse of the KKT characterisation of the Lasso es-

timator as in van de Geer et al. (2014) or the term that is proportional to the subgradient of the

ℓ1-regulariser as in Javanmard and Montanari (2014), thus it is a convenient numerical construction.

Further, unlike van de Geer et al. (2014); Javanmard and Montanari (2014) assuming i.i.d. Gaussian

distributed errors ε ∼ N(0, σ2
εIn), the RAMP algorithm only imposes moment conditions on ε (Zhou

et al., 2020, Assumption (A5)). The existing research investigating the asymptotic distribution of

estimators in the debiasing/desparsifying framework, mostly either requires the loss functions to be

differentiable, see van de Geer et al. (2014) requiring twice differentiability, or focuses on a prespeci-

fied loss function, see Zhao et al. (2014, 2019); Bradic and Kolar (2017) with quantile loss function;

Javanmard and Montanari (2014); Zhang and Cheng (2017); Dezeure et al. (2017) with least squares

loss function. On the contrary, our approach offers a general framework incorporating a large group

of loss functions without imposing assumptions on differentiability. The construction in this paper is

applicable to a broad class of ℓ1-regularised M-estimators.

3.2 Simultaneous inference

In practice, we are often interested in the simultaneous inference on a subset of the regression co-

efficients {βj , j ∈ S0}, where S0 ⊆ {1, . . . , p} with cardinality s0 = |S0|. By Zhou et al. (2020,

Assumption (A2)), the components of β are independent samples of a random variable B0. Let the

subvector βS0 have an estimator β̃S0 . Then the vector β̃S0 is approximately N(βS0 , ζ̄
2Is0) distributed

where Is0 is an (s0 × s0)-dimensional identity matrix. The confidence region of βS0 with confidence

level 1− α can be constructed as follows,

ĈRS0(1− α) =
{
βS0 ∈ Rs0 : (β̃S0 − βS0)

⊤Is0(β̃S0 − βS0) ≤ ζ̄2emp · qχ2
s0(1− α)

}
,

where qχ2
s0(1 − α) denotes the (1 − α)th quantile of a chi-squared distribution with s0 degrees of

freedom.

To simultaneously test multiple hypotheses H0,j for the subset of coefficients {βj , j ∈ S0}, where
S0 ⊆ {1, . . . , p} the error rate can be controlled by adjusting the p-values (e.g., Holm (1979); Šidák

(1967); Hochberg (1988) procedure, etc.). Since we want to numerically compare our proposed ap-

proach with the desparsifying approach in van de Geer et al. (2014) and the debiasing approach in

Javanmard and Montanari (2014) while taking the loss function ρ(·) to be the least squares loss, we
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follow the choice of van de Geer et al. (2014) and adjust the p-values by the Holm-Bonferroni proce-

dure. For a family of hypotheses {H0,j , j ∈ S0}, S0 ⊆ {1, . . . , p} with a nominal probability of a type

I error α, the adjustment for the ℓ1-regularised M-estimators is as follows: (1) Obtain the p-values Pj

for testing the individual hypothesis H0,j by (8); (2) Sort the p-values in ascending order and denote

the sorted p-values by P[j]; (3) Adjust the significance levels for the individual tests to α/(s0 − [j] + 1);

(4) Reject the null hypothesis H0,[j] if P[j] ≤ α/(s0 − [j] + 1).

4 Simulation study

In this section, we investigate the finite sample performance of the confidence intervals and hypothesis

tests for the ℓ1-regularised M-estimators. Since our approach allows for non-differentiable loss functions

which are less sensitive to non-Gaussian distributed errors, we tested our approach on the quantile

loss at quantile level 0.5, the least squares loss and the Huber loss function. For the LS loss we

consider the ℓ1-regularised least squares estimators. To show that the proposed approach has a stable

and competitive performance, we compare the usage of the estimator from the RAMP algorithm

with competing alternative approaches, namely the desparsifying and the debiasing approaches from

Javanmard and Montanari (2014) and van de Geer et al. (2014).

4.1 Data generating procedure

The simulation settings and data generating procedure are described as follows. We randomly generate

a matrix X and a coefficient vector β, which are used in all replications for the same simulation setting.

We consider a high-sparsity setting with s = 5 and a medium sparsity setting with s = 50. The

response vector Y = Xβ+ε. We consider R = 500 replications for each setting in the simulation. We

showcase three ℓ1-regularised estimators for different purposes: (1) the quantile estimator at quantile

level 0.5 exhibits that the proposed method can construct confidence intervals when the conditional

quantile is of main interest. (2) The least squares estimator aims at comparing our construction with

the competitors (the debiasing and deparsifying approaches) in small sample settings (δ = 0.2) in which

parameter estimation is more challenging. According to Tables 1 and 2, using a Dirac distribution or

N(0, 1) to generate the nonnull components of the true parameter vector β leads to similar conclusions.

Comparing the performance of our construction with alternative approaches is only conducted for ℓ1-

regularised least squares estimators due to three main reasons (i) In practice, the ℓ1-regularised least

squares estimator is the most commonly used estimator for sparse high-dimensional linear models.

Hence, we designed (2) to show that our proposed method has competitive performance compared to

alternatives for the most frequently encountered ℓ1-regularised least squares estimator. (ii) limitation

of available codes of debiased quantile estimators, and (iii) to our best knowledge, there is no literature

on debiasing the Huber’s loss function. (3) Huber’s estimator in small sample settings demonstrates

the proposed method can incorporate robust loss functions. The performance is compared with the

least squares estimator to show that switching to robust loss functions is helpful when outliers exist in

regression errors, and further, the proposed method provides a reasonably convenient switch between

the loss functions. In addition, all three estimators are compared in Table 4, see Section 4.5.

These are the settings for the simulations.

(1) ℓ1-regularised quantile estimator. The components of the matrix X are independent and gen-

erated from N(0, 1/n). The quantile level is 0.5, thus we estimate the median. The subvector of

β consisting of non-zero components is generated from a Dirac distribution with point mass equally

distributed on −1 and 1, or from a N(0, 1). We choose p = 500, n = 250 and δ = 0.5, and n = 100

with δ = 0.2. The considered distributions for ε are the standard normal N(0, 1), student-t with 3

degrees of freedom, and the mixture of normal distributions 0.5N(0, 1) + 0.5N(5, 9). The errors are

centered and rescaled to have standard deviation 0.2 after sampling.
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(2) ℓ1-regularised least squares estimator. We choose p = 500, n = 100 with δ = 0.2, which

is the more challenging setting with the smaller sample size among the two sample sizes in (1).

The nonzero components of the subvector of β are generated from a Dirac distribution with point

mass equally distributed on −1 and 1. The same three error distributions as in (1) are used and

are rescaled to have standard deviation 0.2 after sampling. Notice that the approaches in van de

Geer et al. (2014); Javanmard and Montanari (2014) only require the design matrix X to follow a

multivariate Gaussian distribution N(0,ΣX) with arbitrary covariance matrix ΣX , which is less strict

than assumption (A1). For a fair comparison, we consider two covariance matrix structures. An

independent Gaussian design with (ΣX)i,j = n−1I{i = j} and a correlated Gaussian design with

Toeplitz structure (ΣX)i,j = 0.9|i−j|, i = 1, . . . , n, j = 1, . . . , p.

(3) ℓ1-regularised Huber estimator. Here, we present results for the independent Gaussian design

with (ΣX)i,j = n−1I{i = j} from the settings in (2) since according to Table 3, the general Gaussian

design provides conclusions that are similar to the independent Gaussian design. However, to evaluate

the robustness of the proposed method, we consider the following two mixed normal distributed

errors reflecting outlying observations (Alfons et al., 2013; Khan et al., 2007): (i) (Leverage point)

0.1N(9, 0.2) + 0.9N(−1, 2); (ii) (Clustering) 0.1N(18, 0.01) + 0.9N(−2, 0.2). The parameter of the

Huber loss function is chosen to be 1.5 for setting (i) and 3 for setting (ii).

4.2 Evaluation measures

For the subvector of the full vector β consisting of true zero components and for the complementary

subvector consisting of true nonzero components empirical coverage probabilities are computed by

averaging the coverage of the individual intervals ĈIr,j(1 − α) over all simulation runs r = 1, . . . , R

and over all components of the vector with length denoted by pvec.

ĈPvec(1− α) = (pvecR)−1
pvec∑
j=1

R∑
r=1

I{βj ∈ ĈIr,j(1− α)}.

Since the confidence intervals for each component of βj are constructed using a common variance ζ̄2emp,

we obtain only one averaged length of the confidence intervals

L̂ =
2Φ(1− α/2)

R

R∑
r=1

ζ̄emp,r. (9)

From (9), it is obvious that the averaged length of the confidence interval is determined by the

asymptotic variance of the bias-corrected estimator β̃. The well constructed confidence intervals are

expected to be close to the nominal coverage probabilities, but with short lengths. Since this measure

is closely related to the asymptotic variance of the estimators, we reuse it to evaluate the robustness

of the Huber estimator in Section 4.5.

Two-sided hypothesis testing is done for H0,j : β0,j = 0 for j in the sets S and Sc. To evaluate

the performance of the individual tests at significance level α, we calculate the averaged false positive

(FP) and true positive (TP) rates, with Pr,j the P-value for simulation r, component j,

FP(α) = (p− s)−1
∑
j∈Sc

R∑
r=1

I{Pr,j ≤ α}/R, and TP(α) = s−1
∑
j∈S

R∑
r=1

I{Pr,j ≤ α}/R.

Simultaneous testing is done for {H0,j , j ∈ {1, . . . , p}} including all individual hypotheses. This

test is evaluated by the empirical version of the familywise error rate (FWER) defined as

FWER(α) =
1

R

R∑
r=1

I{at least one H
(r)
0,j is rejected at adjusted α, j ∈ Sc},
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and the rejection percentage (RP) observed in the simulation study is defined as

RP(α) =
1

s

∑
j∈S

{ r∑
r=1

I{H(r)
0,j is rejected at adjusted α}/R

}
.

4.3 Simulation results for the ℓ1-regularised quantile estimator

The quantile loss function is used at quantile level 0.5, thus performing ℓ1-regularised regression for the

median response. The confidence levels are 0.95 and 0.99. Example 95% componentwise confidence

intervals of the subvector consisting of non-zero components of β in different settings are included in

Figure 2 in Appendix B using the random seed number 5. The same data are reused for the normal

QQ-plots of the Tj(βj), j = 1, . . . , p in Figure 3. All plots, as well as p-values of the Shapiro-Wilk

tests (included in the captions of each plot), confirm normality.

The average coverage probabilities ĈPvec(1− α) and averaged lengths of the confidence intervals,

averaging over the components of β are presented in Table 1. We observe that: (1) the subvector

corresponding to zero components of β and the full vector β mostly have average coverage probabilities

close to the nominal values for 0.95 and 0.99; (2) for the subvector consisting of the non-zero part of

β the observed coverage is closer to the nominal value in the high-sparsity setting where s = 5, as

compared to the medium sparsity setting where s = 50; (3) t3 distributed errors have slightly shorter

averaged lengths of the confidence intervals and lower average coverage probabilities for both high and

medium sparsity settings; (4) the average coverage probabilities are closer to the nominal values and

the lengths of confidence intervals get shorter when increasing the sample size n from 100 to 250. This

improvement is especially visible for the medium sparsity settings where s = 50, whereas the coverage

probabilities are already stable in the high sparsity settings where s = 5.

Averaged FP and TP rates for different settings are presented in Table 2. We see that for high-

sparsity settings where s = 5, the FP rates are already close to the nominal significance levels in cases

where the sample size is small, i.e., n = 100. Also, the TP rates remain stable and have no significant

improvement when the sample size n is increased to 250. However, in the medium sparsity settings

where s = 50, the FP and TP rates are largely improved by increasing the sample size from 100 to 250.

Another observation is that the TP rates in settings with t3 distributed errors are mostly the highest

among all three errors for the same sparsity s and the same distribution of non-zero components of β.

For the values of FWER and RP we observe similar patterns as for testing the individual hypothesis.

In the high-sparsity settings where s = 5, values of FWER and RP are already stable when the sample

size is small (n = 100), and are not significantly improved when increasing the sample size to n = 250.

However, the FWERs are larger than the nominal significance level. In the medium sparsity settings

where s = 50, the values of FWER and RP can be improved by increasing the sample size.

4.4 Simulation results for the ℓ1-regularised least squares estimator

We compare the performance of the RAMP-based estimator with the desparsifying approach in van de

Geer et al. (2014) and the debiasing approach in Javanmard and Montanari (2014). Based on the

observations for the quantile estimator, we present comparisons only in settings where n = 100 and

the nonzero components of β follow a Dirac distribution.

As expected, Table 3 shows that the three approaches have superior performance in the inde-

pendent Gaussian settings due to the following two reasons: (1) our approach relies on the RAMP

algorithm assuming the independence between X·j ’s in Assumption (A1); (2) the Lasso estimator

works best when the designs do not contain groups of highly correlated variables. The proposed con-

struction based on the RAMP algorithm has similar coverage probabilities and averaged length of

the confidence intervals as the desparsifying approach. In contrast, the debiasing approach provides

less accurate coverage probabilities, lower than the nominal probability 95% for the subvector βS and
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Table 1: Quantile estimator. The averaged 1−α = 95% and 99% coverage probabilities CPvec(1−α)

and average lengths L of confidence intervals of subvectors of β consisting of true non-zero values,

true zero values and the complete vector, for n = 100, δ = 0.2 and n = 250, δ = 0.5.

n = 100 δ = 0.2 CPvec(0.95) L CPvec(0.99) L
fε s non-zero zero full vector non-zero zero full vector

Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 0.96 0.95 0.95 0.91 0.99 0.99 0.99 1.20

50 0.88 0.94 0.93 2.20 0.97 0.98 0.98 2.90

t3
5 0.94 0.95 0.95 0.86 0.98 0.99 0.99 1.13

50 0.88 0.93 0.93 2.19 0.97 0.98 0.98 2.88

0.5N(0, 1) 5 0.96 0.95 0.95 0.91 0.99 0.99 0.99 1.20

+0.5N(5, 9) 50 0.89 0.95 0.94 2.22 0.97 0.99 0.98 2.92

Subvector of β of nonzeros: N(0,1)

N(0, 1)
5 0.92 0.95 0.95 0.88 0.98 0.99 0.99 1.16

50 0.92 0.94 0.93 2.27 0.98 0.98 0.98 2.99

t3
5 0.94 0.95 0.95 0.83 0.98 0.99 0.99 1.16

50 0.92 0.94 0.93 2.23 0.98 0.98 0.98 2.94

0.5N(0, 1) 5 0.92 0.95 0.95 0.88 0.98 0.99 0.99 1.16

+0.5N(5, 9) 50 0.92 0.94 0.93 2.24 0.98 0.98 0.98 2.95

n = 250 δ = 0.5 CPvec(0.95) L CPvec(0.99) L
fε s non-zero zero full vector non-zero zero full vector

Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 0.93 0.95 0.95 0.90 0.98 0.99 0.99 1.18

50 0.91 0.95 0.95 1.45 0.98 0.99 0.99 1.91

t3
5 0.92 0.94 0.94 0.64 0.97 0.98 0.98 0.84

50 0.91 0.95 0.94 1.36 0.98 0.99 0.99 1.79

0.5N(0, 1) 5 0.94 0.95 0.95 1.16 0.99 0.99 0.99 1.52

+0.5N(5, 9) 50 0.92 0.95 0.95 1.49 0.98 0.99 0.99 1.96

Subvector of β of nonzeros: N(0,1)

N(0, 1)
5 0.93 0.95 0.95 0.89 0.99 0.99 0.99 1.17

50 0.95 0.95 0.95 1.23 0.99 0.99 0.99 1.62

t3
5 0.93 0.94 0.94 0.63 0.98 0.98 0.98 0.83

50 0.95 0.95 0.95 1.04 0.99 0.99 0.99 1.36

0.5N(0, 1) 5 0.94 0.95 0.95 1.16 0.99 0.99 0.99 1.53

+0.5N(5, 9) 50 0.95 0.95 0.95 1.28 0.99 0.99 0.99 1.69

higher than 95% for the subvector βSc related to the components that are zero and for the full vector

β. Additionally, the proposed approach outperforms the desparsifying approach on hypothesis testing;

however, the debiasing approach has the best performance.

For a correlated Gaussian design with a Toeplitz correlation matrix the most surprising observation

is that all three approaches have more accurate coverage probabilities in the medium sparsity settings

where s = 50 than in the high sparsity settings where s = 5. However, the three approaches remain

to have superior performances in high sparsity settings on hypothesis testing, and the RAMP-based

11



Table 2: Quantile estimator. Average FP and TP rates for individual hypothesis testing; as well as

FWER and RP for multiple testing. Rates are calculated for n = 100 (δ = 0.2) and n = 250 (δ = 0.5).

n = 100 δ = 0.2 Significance α = 0.05 Significance α = 0.01

fε s FP TP FWER RP FP TP FWER RP

Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 0.05 0.99 0.10 0.63 0.01 0.96 0.05 0.49

50 0.06 0.28 0.23 0.04 0.02 0.17 0.17 0.03

t3
5 0.05 0.99 0.10 0.70 0.01 0.95 0.03 0.57

50 0.07 0.29 0.26 0.04 0.02 0.18 0.19 0.03

0.5N(0, 1) 5 0.05 0.99 0.10 0.63 0.01 0.97 0.04 0.47

+0.5N(5, 9) 50 0.05 0.27 0.17 0.03 0.02 0.16 0.10 0.02

Subvector of β of nonzeros: N(0,1)

N(0, 1)
5 0.05 0.80 0.10 0.67 0.01 0.76 0.03 0.64

50 0.06 0.28 0.21 0.05 0.02 0.16 0.07 0.03

t3
5 0.05 0.81 0.11 0.69 0.01 0.78 0.02 0.66

50 0.07 0.27 0.22 0.05 0.02 0.16 0.08 0.04

0.5N(0, 1) 5 0.05 0.80 0.11 0.67 0.01 0.76 0.04 0.64

+0.5N(5, 9) 50 0.07 0.28 0.22 0.05 0.02 0.16 0.08 0.04

n = 250 δ = 0.5 Significance α = 0.05 Significance α = 0.01

fε s FP TP FWER RP FP TP FWER RP

Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 0.05 0.99 0.09 0.66 0.01 0.95 0.02 0.53

50 0.05 0.67 0.20 0.13 0.01 0.47 0.07 0.07

t3
5 0.06 1.00 0.20 0.96 0.02 1.00 0.10 0.93

50 0.05 0.73 0.22 0.18 0.01 0.54 0.08 0.12

0.5N(0, 1) 5 0.05 0.91 0.11 0.33 0.01 0.77 0.04 0.25

+0.5N(5, 9) 50 0.05 0.65 0.16 0.12 0.01 0.46 0.06 0.07

Subvector of β of nonzeros: N(0,1)

N(0, 1)
5 0.05 0.81 0.10 0.70 0.01 0.79 0.04 0.66

50 0.05 0.56 0.06 0.27 0.01 0.46 0.02 0.22

t3
5 0.07 0.82 0.21 0.79 0.02 0.81 0.12 0.77

50 0.05 0.68 0.07 0.39 0.01 0.58 0.03 0.34

0.5N(0, 1) 5 0.05 0.79 0.07 0.52 0.01 0.74 0.02 0.44

+0.5N(5, 9) 50 0.05 0.60 0.10 0.28 0.01 0.49 0.03 0.23

approach has the best performance in almost all settings. It is worth noticing that all three approaches

have very high FWER and low PR in the multiple testing scenario, which suggests high error rates

and weakened power in multiple testing for datasets with highly correlated variables.

4.5 Simulation results for the ℓ1-regularised Huber estimator

Although the major focus in this section is the robustness of the RAMP-based Huber estimator in

the presence of outliers, in Table 4 we present a numerical comparison between RAMP-based Huber,
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Table 3: Lasso estimator. The top half table presents the average coverage probabilities CPvec,j(1 −
α), j = 1, . . . , pvec of subvectors of β and average length L(1−α) of confidence intervals for n = 100 (δ =

0.2) for 1 − α = 0.95. The bottom half table presents the average FP and TP rates for individual

hypothesis testing, and FWER and PR for multiple testing. Three approaches constructing the

confidence intervals are: (i) (9) based on the RAMP algorithm (left); (ii) the desparsifying approach

in van de Geer et al. (2014) (middle); (iii) the debiasing approach in Javanmard and Montanari (2014)

(right).
Independent Gaussian Design

n = 100 δ = 0.2 RAMP algorithm Desparsifying Debiasing
CPvec L CPvec L CPvec L

fε s βS βSc β βS βSc β βS βSc β
Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 0.95 0.95 0.95 0.90 0.96 0.96 0.96 0.96 0.82 0.99 0.99 0.83
50 0.86 0.94 0.93 2.10 0.87 0.97 0.96 2.16 0.86 0.99 0.98 2.00

t3
5 0.93 0.95 0.95 0.89 0.95 0.96 0.96 1.00 0.81 0.99 0.99 0.83
50 0.86 0.94 0.93 2.12 0.88 0.97 0.96 2.18 0.86 0.99 0.98 1.99

0.5N(0, 1) 5 0.95 0.95 0.95 0.90 0.95 0.96 0.96 0.94 0.82 0.99 0.99 0.84
+0.5N(5, 9) 50 0.86 0.94 0.93 2.12 0.88 0.97 0.96 2.18 0.86 0.99 0.98 1.99

Correlated Gaussian Design
n = 100 δ = 0.2 RAMP algorithm Desparsifying Debiasing

CPvec L CPvec L CPvec L
fε s βS βSc β βS βSc β βS βSc β

Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 0.84 0.94 0.94 1.69 0.91 0.90 0.90 2.11 0.86 0.99 0.99 1.89
50 0.94 0.94 0.94 2.81 0.94 0.92 0.92 3.44 0.96 0.99 0.98 2.91

t3
5 0.84 0.95 0.94 1.69 0.91 0.90 0.90 2.13 0.86 0.99 0.99 1.87
50 0.94 0.94 0.93 2.79 0.94 0.92 0.92 3.45 0.96 0.99 0.98 2.98

0.5N(0, 1) 5 0.85 0.95 0.94 1.69 0.91 0.90 0.90 2.10 0.86 0.99 0.99 1.87
+0.5N(5, 9) 50 0.95 0.95 0.95 2.85 0.94 0.92 0.92 3.45 0.96 0.99 0.99 2.94

Independent Gaussian Design
n = 100 δ = 0.2 RAMP algorithm Desparsifying Debiasing

fε s FP TP FWER PR FP TP FWER PR FP TP FWER PR
Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 0.05 0.99 0.12 0.65 0.04 0.98 0.07 0.48 0.06 0.99 0.79 0.90
50 0.06 0.28 0.18 0.04 0.03 0.22 0.54 0.02 0.06 0.28 0.94 0.11

t3
5 0.05 0.98 0.12 0.66 0.04 0.97 0.06 0.46 0.06 0.98 0.81 0.88
50 0.06 0.28 0.14 0.04 0.03 0.22 0.51 0.02 0.06 0.28 0.94 0.11

0.5N(0, 1) 5 0.05 0.99 0.11 0.64 0.04 0.99 0.06 0.51 0.06 0.99 0.77 0.90
+0.5N(5, 9) 50 0.05 0.27 0.20 0.04 0.03 0.22 0.53 0.02 0.06 0.28 0.95 0.12

Correlated Gaussian Design
n = 100 δ = 0.2 RAMP algorithm Desparsifying Debiasing

fε s FP TP FWER PR FP TP FWER PR FP TP FWER PR
Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 0.06 0.40 0.62 0.09 0.10 0.40 0.86 0.03 0.06 0.37 0.85 0.09
50 0.06 0.16 0.74 0.01 0.08 0.13 0.88 0.00 0.06 0.12 0.90 0.01

t3
5 0.05 0.40 0.87 0.08 0.10 0.38 0.83 0.04 0.06 0.37 0.85 0.10
50 0.06 0.16 0.74 0.01 0.08 0.12 0.87 0.00 0.06 0.12 0.91 0.01

0.5N(0, 1) 5 0.05 0.40 0.63 0.08 0.10 0.40 0.83 0.04 0.06 0.38 0.83 0.09
+0.5N(5, 9) 50 0.05 0.15 0.72 0.01 0.08 0.13 0.88 0.00 0.06 0.12 0.90 0.01

RAMP-based quantile, and RAMP-based least squares estimators to complement Table 5. Table 4

considers the small sample size settings used before, where p = 500, n = 100 resulting in the ratio

δ = 0.2, the sparsity s = 5, 50, and a correlated Gaussian design as used for Table 3. Further, the

same regression error distributions N(0, 1), t3, 0.5N(0, 1)+0.5N(5, 9) are considered for Table 4. Since

these settings are part of the settings for Table 3 comparing the RAMP-based least squares with the

debiasing and desparsifying approaches, the debiasing and desparsifying approaches are not included
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in Table 4, which now focuses on the performance comparison between the different estimators. We

make the follow observations from Table 4: (1) The values in Table 4 agree with the records for

correlated design matrix in Table 3. (2) The three estimators have a similar performance for all three

error distributions. But for 0.5N(0, 1) + 0.5N(5, 9) distributed errors, when the nonzero components

of β follow a Dirac distribution at -1 and 1 with s = 5, the Huber estimator remain stable whereas

the other two have slightly worse performance. (3) The Huber estimator has a larger variance than

the least-squares estimator, which is reflected in the averaged length of the confidence intervals via

the value ζ̄.

Table 4: Comparing performance of the Huber, the Lasso, and the quantile estimator. The top half

table presents the average coverage probabilities CPvec,j(1− α), j = 1, . . . , pvec of subvectors of β and

the averaged length L(1−α) for n = 100 (δ = 0.2) for 1−α = 0.95. The bottom half table presents the

average FP and TP rates for individual hypothesis testing, and FWER and PR for multiple testing.

Three approaches constructing the confidence intervals are: (i) RAMP algorithm with Huber loss

(left); (ii) RAMP algorithm with least squares loss (middle); (iii) RAMP algorithm with quantile loss

(right).
Correlated Gaussian Design

n = 100 δ = 0.2 Huber Least Squares Quantile
CPvec L CPvec L CPvec L

fε s βS βSc β βS βSc β βS βSc β
Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 0.85 0.95 0.94 1.72 0.85 0.94 0.94 1.72 0.84 0.94 0.94 1.69
50 0.95 0.95 0.95 2.87 0.95 0.94 0.95 2.82 0.95 0.94 0.94 2.82

t3
5 0.85 0.95 0.95 1.78 0.83 0.95 0.94 1.69 0.83 0.95 0.94 1.68
50 0.95 0.94 0.94 2.83 0.95 0.95 0.95 2.83 0.95 0.95 0.95 2.83

0.5N(0, 1) 5 0.85 0.95 0.94 1.72 0.82 0.92 0.92 1.69 0.83 0.92 0.92 1.71
+0.5N(5, 9) 50 0.95 0.95 0.95 2.89 0.96 0.95 0.95 2.89 0.95 0.95 0.95 2.83
n = 100 δ = 0.2 Huber Least Squares Quantile

CPvec L CPvec L CPvec L
fε s βS βSc β βS βSc β βS βSc β

Subvector of β of nonzeros: N(0, 1)

N(0, 1)
5 0.93 0.95 0.95 1.76 0.94 0.95 0.95 1.75 0.94 0.95 0.95 1.77
50 0.89 0.96 0.95 2.92 0.90 0.96 0.95 2.92 0.89 0.95 0.94 2.85

t3
5 0.93 0.95 0.95 1.78 0.93 0.94 0.94 1.78 0.93 0.94 0.94 1.75
50 0.89 0.96 0.95 2.89 0.88 0.96 0.95 2.83 0.89 0.95 0.95 2.85

0.5N(0, 1) 5 0.93 0.95 0.95 1.76 0.94 0.95 0.95 1.75 0.94 0.95 0.95 1.77
+0.5N(5, 9) 50 0.89 0.96 0.95 2.90 0.89 0.96 0.95 2.84 0.89 0.96 0.95 2.88

n = 100 δ = 0.2 Huber Least Squares Quantile
fε s FP TP FWER PR FP TP FWER PR FP TP FWER PR

Subvector of β of nonzeros: Dirac distribution at -1 and 1

N(0, 1)
5 0.05 0.39 0.62 0.08 0.05 0.39 0.62 0.08 0.05 0.39 0.62 0.08
50 0.05 0.15 0.72 0.01 0.06 0.16 0.73 0.01 0.06 0.16 0.74 0.01

t3
5 0.05 0.40 0.63 0.08 0.05 0.41 0.63 0.08 0.05 0.41 0.61 0.09
50 0.06 0.17 0.75 0.01 0.05 0.15 0.74 0.01 0.05 0.16 0.75 0.01

0.5N(0, 1) 5 0.05 0.40 0.64 0.08 0.05 0.40 0.64 0.08 0.05 0.40 0.64 0.08
+0.5N(5, 9) 50 0.05 0.15 0.76 0.01 0.05 0.15 0.77 0.01 0.05 0.16 0.78 0.01
n = 100 δ = 0.2 Huber Least Squares Quantile

fε s FP TP FWER PR FP TP FWER PR FP TP FWER PR
Subvector of β of nonzeros: N(0, 1)

N(0, 1)
5 0.05 0.64 0.27 0.21 0.05 0.63 0.28 0.21 0.05 0.63 0.28 0.21
50 0.04 0.32 0.16 0.07 0.04 0.32 0.19 0.07 0.05 0.34 0.23 0.08

t3
5 0.05 0.63 0.27 0.21 0.06 0.62 0.28 0.22 0.06 0.63 0.27 0.24
50 0.04 0.32 0.15 0.07 0.04 0.32 0.16 0.08 0.05 0.33 0.18 0.08

0.5N(0, 1) 5 0.05 0.64 0.27 0.21 0.05 0.63 0.28 0.21 0.05 0.63 0.28 0.21
+0.5N(5, 9) 50 0.04 0.32 0.17 0.07 0.04 0.32 0.18 0.08 0.04 0.32 0.17 0.07
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Next, we compare the performance of the RAMP-based Huber estimator with the RAMP-based

least squares estimator and the desparsifying approach in van de Geer et al. (2014). Except for the

error distributions the simulation settings are those used for Table 4. We consider two mixed normal

distributions 0.1N(9, 0.2) + 0.9N(−1, 2) and 0.1N(18, 0.01) + 0.9N(−2, 0.2) reflecting situations with

outlying observations as often seen in robust literature (Alfons et al., 2013; Khan et al., 2007). By this

table, we illustrate that using robust estimators instead of the least squares estimator could improve

estimation accuracy when outliers exist in the regression errors. And further, without complicated

derivation when switching between estimators, the proposed method provides a reasonably accurate

and convenient construction of confidence intervals and hypothesis testing. Ideally, robust estimators

should be both accurate (low bias) and efficient (low asymptotic variance) (Huber, 2004; Hampel et al.,

2011). The efficiency of β̃ can be evaluated using the averaged length of the confidence intervals L
in (9). To evaluate the accuracy of the biased-corrected estimator β̃, we report the simulated mean

squared error and the mean squared prediction error over R = 500 replications, that is,

MSE(β̃) =
1

R

R∑
r=1

(1
p

p∑
j=1

(β̃r,j − βr,j)
2
)
; MSPE(β̃) =

1

R

R∑
r=1

( 1

n

n∑
i=1

(
Y

(r)
i − (X

(r)
i· )

⊤
β̃
)2)

,

where (Y (r), X(r)), r = 1, . . . , 500 are independent copies of the original dataset (Y,X). In addition,

we report a bias related measure, which is often seen in the robust statistics literature (Huber, 2004;

Hampel et al., 2011) with Ψ(β̃) → 0 suggesting Fisher consistency of the estimator. For the proposed

method,

Ψ(β̃) =
1

R

R∑
r=1

( n∑
i=1

∂ρ
(
Prox(Y

(r)
i − (X

(r)
i· )

⊤
β̃r; b)

))
, (10)

where ∂ρ(z) = 2z for the least squares loss function and ∂ρ(z) = zI{|z| ≤ u}+ (u · sign(z))I{|z| > u}
for the Huber loss. For the desparsifying approach in van de Geer et al. (2014),

Ψ(β̃) =
1

R

R∑
r=1

( n∑
i=1

∂ρ
(
Y

(r)
i − (X

(r)
i· )

⊤
β̃r

))
=

1

R

R∑
r=1

(
2(Y

(r)
i − (X

(r)
i· )

⊤
β̃)

)
. (11)

Table 5: Huber and Lasso estimators. The top half table presents the average coverage probabilities

CPvec,j(1−α), j = 1, . . . , pvec of subvectors of β and the averaged TP and FP rates for n = 100 (δ = 0.2)

for 1−α = 0.95. The bottom half table presents three estimation measurements MSE, MSPE, Ψ, and

the averaged length L(1 − α) of confidence intervals. Three approaches constructing the confidence

intervals are: (i) RAMP algorithm with Huber loss (left); (ii) RAMP algorithm with least squares loss

(middle); (iii) the desparsifying approach in van de Geer et al. (2014) (right).
Subvector of β of nonzeros: Dirac distribution at -1 and 1

n = 100 δ = 0.2 RAMP Huber RAMP LS Desparsifying
CPvec FP TP CPvec FP TP CPvec FP TP

fε s βS βSc β βS βSc β βS βSc β
0.1N(−2, 0.01) 5 0.98 0.95 0.95 0.05 0.05 0.95 0.95 0.95 0.05 0.05 0.96 0.96 0.95 0.05 0.05
+0.9N(18, 0.2) 50 0.93 0.96 0.95 0.04 0.08 0.95 0.95 0.95 0.05 0.05 0.95 0.95 0.95 0.05 0.05
0.1N(−1, 0.2) 5 0.97 0.95 0.95 0.05 0.11 0.95 0.95 0.95 0.05 0.06 0.96 0.96 0.95 0.05 0.06
+0.9N(9, 0.2) 50 0.92 0.96 0.95 0.04 0.11 0.95 0.95 0.95 0.05 0.06 0.93 0.94 0.95 0.05 0.06

fε s MSE MSPE Ψ L MSE MSPE Ψ L MSE MSPE Ψ L
0.1N(−2, 0.01) 5 6.29 67.60 0.30 9.80 35.94 216.17 0.22 23.36 37.48 220.10 2.50 23.65
+0.9N(18, 0.2) 50 6.83 70.37 0.27 10.35 36.21 216.05 0.10 23.43 37.60 218.41 2.31 23.56
0.1N(−1, 0.2) 5 1.77 18.02 0.15 5.19 9.15 54.89 0.11 11.79 9.29 55.82 1.26 11.93
+0.9N(9, 0.2) 50 2.40 21.14 0.13 6.14 9.39 55.45 0.10 11.94 9.74 57.00 1.20 12.11

The performance of the proposed construction using the Huber loss function is compared with the

proposed construction using the least squares loss and the desparsifying approach in van de Geer et al.

(2014). All three constructions have similar averaged coverage rates that are close to the nominal one.

15



The proposed construction using the Huber loss has slightly higher TP rates. However, the Huber

estimator has a dominant superior performance in estimation. The MSEs and MSPEs are much lower

than for the other two methods. The averaged length of the confidence intervals using the Huber

estimator is also much shorter than that of the competitors.

5 Data Application

5.1 Sparse signal recovery

We consider the audio wave signals example used in Zhou et al. (2020, Section 7.2) which is available in

the R (R Core Team, 2022) package signal (signal developers, 2014). The artificial compressed sensing

process involves a wavelet transform of the original audio signal for obtaining a ‘sparse’ representation

of β ∈ R2047. To avoid confusion, this data application is not a typical dataset in statistics. In

statistical analysis, the predictive variables and the response variable are considered as data which

are used to estimate the unknown parameter vector β. However, the main methodology used in this

paper—the approximate message passing algorithm—was initially proposed with an application to

compressed sensing which perceives the signal β as data. We leave this atypical data example here for

suggesting an alternative application in compressed sensing.

The artificial compressed sensing process is as follows. First, the sparse signal β is compressed by a

randomly generated compression matrix X ∈ R1024×2047; components of the matrix Xij are i.i.d. with

a N(0, 1/1024) distribution. Next, the compressed signal Xβ is sent to a receiver; the received signal

Y from transmission is corrupted by error ε. Components of the error vector ε are randomly generated

from either t3 or mixed normal distribution 0.5N(0, 1)+0.5N(5, 9), and are rescaled to have standard

deviation 0.03.

In practice, we are interested in recovering the sparse signal β from the compression matrix X and

the received signal Y . Here, the wavelet audio signal β is known, and is artificially compressed and

corrupted.

We first construct componentwise confidence intervals. For a clearer presentation, we only plot

confidence intervals of the last 20 entries of β, see Figure 1. Normal QQ-plots (not shown) of the

statistics Tj(βj), j = 1, . . . , p confirm normality with a Shapiro-Wilk p-value of 0.460 for t3 distributed

errors and 0.615 for 0.5N(0, 1) + 0.5N(5, 9) distributed errors.
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Figure 1: Audio signal data. The 95% confidence intervals of the last 20 entries of β. True values are

depicted by red dots. Left: t3 errors, right: 0.5N(0, 1) + 0.5N(5, 9) errors.

Next, we consider a multiple testing scenario including individual null hypotheses H0,j : βj = 0

versus two-sided alternative hypotheses Ha,j : βj ̸= 0 for all components of the wavelet coefficient β

of the audio signal fraction. Since most βj ’s are close to zero with countable non-negligible entries,

we set cut-off values by taking the (τ/2)th and (1 − τ/2)th empirical quantile of the βj ’s with τ =
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0.01, 0.05. Our goal is to identify βj ’s with magnitude exceeding the two cut-off values by the multiple

hypothesis test. The nominal significance levels of the test are α = 0.01 and 0.05. We replicate the

artificial compressed sensing process R = 200 times, and evaluate the performance of the simultaneous

hypothesis test by the familywise error rate (FWER) and rejection percentage (RP), see Table 6. We

observe that when setting the level of the cut-off value τ = 0.05 (i.e., select βj ’s whose magnitude

greater than 97.5% or less than 2.5% of βj ’s magnitude), the FWER and RP of the test are both low

for the both α = 0.01 and 0.05. On the contrary, the FWER and RP of the test are both high when the

cut-off level τ = 0.01 (i.e., select βj ’s whose magnitude exceed the range of 99% of βj ’s magnitude).

This observation is not surprising: The cut-off level τ decides if βj ’s are counted as non-negligible

entries; higher cut-off level τ results in less non-negligible entries. When an individual null hypothesis

H0,j is rejected, it can be counted as a Type I error when τ = 0.01, resulting in high FWER, but

counted as a correct rejection when τ = 0.05. This situation happens for βj ’s whose magnitudes are not

high enough to be counted as non-negligible entries when τ = 0.01, but are counted as non-negligible

entries when τ = 0.05. Similarly, when the magnitudes of the βj ’s are low enough for rejecting H0,j

but high enough to exceed the cut-off level 0.05, the Type II error increases resulting in a low RP.

Table 6: Audio signal data. FWER and RP of multiple hypothesis tests at levels 0.05 and 0.01 to

detect variables with magnitude exceeding certain cut-off values which are determined by the (τ/2)th

and (1− τ/2)th quantile of βj ’s.

Cut-off level τ 0.05 0.01

Significance α 0.05 0.01 0.05 0.01

t3
FWER 0.11 0.11 0.93 0.81

RP 0.22 0.20 0.88 0.85

0.5N(0, 1) FWER 0.06 0.00 0.38 0.14

+0.5N(5, 9) RP 0.13 0.11 0.58 0.51

5.2 Toxicity dataset

We consider the toxicity dataset available in the R package robustbase (Maechler et al., 2022).

The original experiment aims at investigating the toxicity of carboxylic acids of 38 samples using 9

molecular descriptors. In the stage of data exploratory, nonlinear correlation between toxicity and

most predictive variables, as well as outliers in the predictive variables are visible in the scatter plots

of the response toxicity against the 9 predictive variables. In addition, we first fit a linear model

by regressing toxicity on the 9 predictive variables. The residual plots including the Residual vs

Fitted, Normal Q-Q plot, Scale-Location, Residual vs Leverage plots suggest that at least observations

28, 34, 38 potentially have outlying regression errors. We construct 36 pairwise interactions of the

9 predictive variables resulting in an expanded dataset with 45 predictive variables and 38 samples.

Since this dataset potentially contains outliers, we consider the proposed testing procedure using both

the Huber and the least squares loss functions. The dataset incorporates the decorrelation procedure

in (6). Further, we compare our construction with the desparsifying method in van de Geer et al.

(2014).

Similarly to Section 5, we consider a multiple testing scenario including individual hypotheses for

all components to be equal to zero at nominal significance level α = 0.05. The significant variables

are included in Table 7. Our method using the Huber loss function with parameter 1.8 identifies 10

predictive variables including 5 main terms pKa, ELUMO, Ecarb, Emet, IR. With the least squares

loss function, our method selects 9 predictive variables including pKa, ELUMO, RM. The method by
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van de Geer et al. (2014) identifies only an interaction term Ecarb:IR on the original expanded dataset;

however, 4 main terms pKa, ELUMO, IR, P and 9 in total are significant by van de Geer et al. (2014)

on the decorrelated dataset. Further, we investigate the bias of the estimators measured by the Fisher

Table 7: Toxicity data. Significant variables by multiple hypothesis tests at nominal significance level

0.05.
Significant variables

RAMP Huber pKa ELUMO Ecarb Emet IR logKow:ELUMO ELUMO:Ts Ecarb:Ts Emet:P RM:IR

RAMP LS pKa ELUMO RM logKow:pKa logKow:P ELUMO:RM ELUMO:IR ELUMO:Ts Emet:Ts -

Desparsify pKa ELUMO IR P logKow:RM pKa:ELUMO ELUMO:Ecarb ELUMO:P Ecarb:Ts -

consistency for which a close-to-zero value suggests low bias. By using (11), the Fisher consistency of

the RAMP-based least squares estimator is approximately equal to −3.66 and that of the deparsifying

estimator is 5.35. Similarly, by (10), the Fisher consistency measure is around 0.09. In addition, we

report the mean absolute prediction error (MAPE) using both the biased regularised estimator β̂ in

(1) and β̃ in (2) and (4) using the following expressions,

MAPE(β̂) =
1

n

n∑
i=1

∣∣Yi −X⊤
i· β̂

∣∣, MAPE(β̃) =
1

n

n∑
i=1

∣∣Yi −X⊤
i· β̃

∣∣.
The MAPE(β̂) for the RAMP-based Huber estimator is 57.63, which outperforms the RAMP-based

least squares estimator for which the MAPE value is 62.73 and the Lasso estimator with MAPE

value 62.44. However, the MAPE(β̃) for the RAMP-based Huber estimator has the least-favorable

value (107.59) compared to the RAMP-based least squares estimator (MAPE value 46.33) and the

desparsified Lasso (MAPE value 43.98).

6 Discussion

The robust approximate message passing algorithm is interesting not only because it yields a mean

squared error value for all components of the ℓ1-regularised estimators and as such makes valid post-

selection inference possible. As we explored in this paper, without additional computational effort the

algorithm also provides an estimator β̃ comparable to the debiased and desparsified lasso estimators

which can be used for hypothesis testing and for the construction of confidence intervals. An additional

bonus is the flexibility in the choice of the loss function. The decorrelation step circumvents the

theoretical requirement of having an uncorrelated design.

While this study has focused on the high-dimensional linear model, it would be interesting to

expand the robust approximate message algorithms and their use for simultaneous inference using an

ℓ1-regularized estimators to other types of distributions and models. In particular, generalised linear

models (GLM) including logistic regression and models for functional data would be of interest for

further theoretical development.

Attempts to exploit the asymptotic prediction ability of the AMP includes Barbier et al. (2019)

for high dimensional GLM with general i.i.d. design in the Bayesian and machine learning framework;

Emami et al. (2020) investigating generalised errors of the GLM with general Gaussian design in

the neutral network framework using the multi-layer AMP algorithm (also see the relevant references

mentioned in this paper in the ‘Approximate Message Passing’ section.) The booming research in the

electrical engineering field mostly focuses on advancing the AMP algorithm itself and discussing the

estimation accuracy. The subsequent investigations including hypothesis testing, information crite-

rion, goodness-of-fit tests, etc., are of interest for statistical research.

Another promising development relying on the asymptotic characterisation of the AMP algorithm, fo-

cuses on high-dimensional logistic regression modeling which is widely used for classification problems.
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Working with the analytical expression of the logistic link function, the papers Sur et al. (2019); Sur

and Candès (2019); Candès et al. (2020); Zhao et al. (2020) have thorough investigations on (1) the

conditions for the existence of the maximum likelihood estimator; (2) the asymptotic distribution of

the likelihood ratio test statistic. In classical statistical theories, various properties such as consistency,

asymptotic normality, etc., are based on the maximum likelihood estimator. The literature mentioned

above on high dimensional logistic regression ignited a possibility of unifying the asymptotic theory in

low- and high-dimensional regression models. Future research could generalise the work in Sur et al.

(2019); Sur and Candès (2019); Zhao et al. (2020) to the exponential family.
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Appendix

A Robust approximate message passing algorithm

For the paper to be self-contained, we briefly revise the main ingredients of this algorithm. See Donoho

and Montanari (2016) for more details. To incorporate non-differentiable loss functions, the proximal

mapping operator with parameter b > 0 is used to adjust the residuals in the algorithm,

Prox(z, b) = argmin
x∈R

{bρ(x) + 1

2
(x− z)2}, b > 0;

and the effective score function G̃(z; b) = b · ∂ρ(x)|x=Prox(z;b), where ∂ρ(x) = {y : ρ(u) ≥ ρ(x) + y(u−
x), ∀u} is the subgradient at non-differentiable points x and the gradient at differentiable points. To
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incorporate the sparsity s, the rescaled effective score function is defined as G(z; b) = δω−1G̃(z; b).

The RAMP algorithm, with a fixed tuning parameter α and iterations indexed by t, starts from

β̂(0) = 0 and updates iteratively using the following three steps:

Step 1 Adjust the residuals:

z(t) = Y −Xβ̂(t) + n−1G(z(t−1); b(t−1))

p∑
j=1

I
{
η
(
β̂(t−1),j +X⊤

j G(z(t−1); b(t−1)); θt−1

)
̸= 0

}
;

I denotes the indicator function, and the soft-thresholding function η is defined in (5).

Step 2 Effective score: choose the scalar b(t) such that the empirical average of the rescaled effective

score function G(z; b) has slope 1; update the tuning parameter θ(t) = αζ̄emp,(t) with a limit

version, when n, p → ∞, denoted by ζ̄2(t) = E[G(ε + σ̄(t)Z; b(t))], with σ̄2
(t) = δ−1E[(η(B0 +

ζ̄(t−1)Z; θ(t−1))−B0)
2], where Z ∼ N(0, 1), for B0 see Assumption (A2), and for ε, see (A5).

Step 3 Estimation: update the estimator of β

β̂(t+1) = η(β̃(t); θ(t)), where β̃(t) = β̂(t) +X⊤G(z(t); b(t)).

Since a bias is introduced by applying the soft-thresholding function η in Step 3, the estimator β̃(t)
which is obtained before applying the thresholding can be interpreted as a debiased estimator. This

estimator is of main interest in this paper.

B Additional simulation results for the ℓ1-regularised quantile esti-

mator

See Figures 2 and 3.
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(a) N(0, 1), s = 5 (b) N(0, 1), s = 50
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( c) t3, s = 5 (d) t3, s = 50
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(e) 0.5N(0, 1) + 0.5N(5, 9), s = 5 (f) 0.5N(0, 1) + 0.5N(5, 9), s = 50
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Figure 2: Quantile estimator. Example 95% confidence intervals plots of non-zero components of β;

the non-zero values are randomly generated from N(0, 1) using the seed number 5. Plots for s = 5

are in the left column and for s = 50 are in the right column. Each row corresponds to plots for one

error distribution, i.e., (a,b) N(0, 1) (c,d) t3, (e,f) 0.5N(0, 1) + 0.5N(5, 9).
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(a) N(0, 1), s = 5, psw = 0.176 (b) N(0, 1), s = 50, psw = 0.799
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(c) t3, s = 5, psw = 0.288 (d) t3, s = 50, psw = 0.977
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(e) mixture, s = 5, psw = 0.654 (f) mixture, s = 50, psw = 0.227
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Figure 3: Quantile estimator. Example QQ-plots of Tj(βj), j = 1, . . . , p; non-zero components of β

are randomly generated from N(0, 1) using the seed number 5. Plots for s = 5 are on the left column

and for s = 50 are on the right column. Each row corresponds to plots for one error distribution, i.e.,

(a,b) N(0, 1), (c,d) t3, (e,f) 0.5N(0, 1) + 0.5N(5, 9). The p-values of the Shapiro-Wilk test (psw) for

each setting are presented at the caption of each plot.
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