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Enabling Dynamic Autoscaling for NFV in a Non-Standalone
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Abstract—Network function virtualization (NFV) is a novel
concept that enables an architectural transition from dedicated
hardware to orchestrated resource and function management.
As an integral part of the core network, NFV offers a fine-
grained network capability to cellular operators by scaling out or
scaling in network resources in an on-demand manner to meet the
performance requirements. However, designing an autoscaling
algorithm with low operation cost and low latency in non-
standalone networks, where legacy network equipment coexists
with a virtual evolved packet core (EPC), is a challenging task.
In this paper, we propose a dynamic NFV instance autoscaling
algorithm that considers the tradeoff between performance and
operation cost. Furthermore, we develop an analytical framework
to assess the performance of the scheme by modeling the hybrid
network as a queueing system that includes both legacy network
equipment and NFV instances. The virtualized network function
(VNF) instances are powered on or off according to the number
of job requests. Numerical results based on extensive simulations
validate the correctness of the model and the effectiveness of the
algorithm.

Index Terms—EPC, network function virtualization, NFV
instance resource allocation, dynamic autoscaling algorithm,
modeling and analysis

I. INTRODUCTION

In parallel with the recent progress in fifth generation (5G)
new radio (NR) technologies and worldwide 5G deployment,
the 5G system and core network architecture is experiencing a
software- and service-centric transformation. The evolution of
the mobile core network features a transition from dedicated
hardware, which is a common practice in early generations,
to orchestrated resources and functions, which are expected
in 5G [1]. As one of the key technologies in the 5G core
network, network function virtualization (NFV), which enables
decoupling of logical functions from hardware, is transitioning
from concept to reality.

Today, services provided by mobile and wireless networks
are experiencing exponential growth in terms of both traffic
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volume and number of devices as well as the diversity of
service categories. To satisfy these ever-growing requirements,
a traditional solution for service providers is to deploy a
sufficient amount of physical network infrastructure, based
on, e.g., peak-hour traffic. However, this solution suffers
from various shortcomings such as increased capital and
operational expenditure, inflexibility for service provisioning,
and underutilization of resources during non-busy periods.
As a novel approach to solving these problems, the concept
of NFV emerged [2]. NFV enables operators to virtualize
hardware resources and implement network functions through
software. It also allows them to make special-purpose network
equipment toward software solutions, i.e., virtualized network
function (VNF) instances. A VNF instance can run on several
virtual machines (VMs), which can be scaled out or scaled in'
to adjust the VNF’s computing and networking capabilities.
The flexibility provided by NFV allows operators to quickly
roll out new services and manage their network equipment in
a fine-grained and efficient way, minimizing the consumption
of both energy and hardware resources.

Following its successful deployment in various sectors, for
instance, in cloud computing, NFV, which virtualizes the core
network from an evolved packet core (EPC) to a virtual EPC
(vEPC), is expected to be deployed in 5G [3]-[5]. However,
the transition from EPC to VEPC is an evolutionary phase,
featured by the coexistence of equipment from both earlier and
next-generation systems. This is because operators often intend
to keep legacy cellular network equipment in operation as
long as possible to maximize the return on investment (ROI).
For 5G NR deployment, indeed both standalone (in which
5G NR next generation node B (gNB) is directly connected
to the 5G core network) and non-standalone (in which both
long term evolution (LTE)/evolved node B (eNB) and NR/gNB
are connected to the EPC/VEPC) architectures are envisaged.
Although standalone 5G is expected to be deployed, most
operators currently provide both 4G EPC and non-standalone
5G simultaneously, namely 5G deployment option 3 [6]. They
face an immediate need to virtualize EPC. As such, how
to configure and utilize network resources automatically and
efficiently is an imperative task.

A. Motivation

For resource allocation in these networks, there is always
a tradeoff between the number of allocated resources and the
achieved quality of service. With respect to NFV, the operation

IVNF scale-out refers to increasing the number of VNF instances, whereas
VNF scale-in is an action to remove existing VNF instances such that
virtualized hardware resources are released and no longer needed.
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cost is diminished by reducing the number of powered-on
VNF instances. On the other hand, resource underprovisioning
may cause service level agreement (SLA) violations [7].
Accordingly, VNF instance autoscaling, which can decrease
operation costs while satisfying the demand for VNF services,
has emerged as a promising approach. In principle, the NFV
performance is improved by scaling out VNF instances, while
the operation cost is reduced by scaling in VNF instances.
However, it is not a trivial task to design suitable schemes to
allocate VNF instances adaptively while fulfilling the demands
of service requirements.

To facilitate VNF instance autoscaling, it is important to
predict the workload of VMs. In the literature, various methods
for VM load prediction and autoscaling exist, from the moving
average to machine learning-based methods [8]. However,
these studies either ignore the VM setup time or consider
merely the virtualized resource itself without integrating it
with legacy resources. We argue, therefore, that both the VM
setup time and legacy equipment capacity should be considered
for VNF instance autoscaling in 5G networks when coexisting
with 4G systems.

More specifically, although a scale-out request can be ini-
tiated immediately after prediction, a VNF instance may not
be readily available. To start an instance in Microsoft Azure,
for example, the lag time could be 10 minutes or longer,
with this delay varying from time to time [9]. If the lag
time is not taken into consideration, the just-started instance
may be too late to serve the VNF. On the other hand, the
capacity of legacy network equipment may have a significant
impact on autoscaling in these hybrid networks. Assuming
that the capacity of a piece of legacy network equipment
is equal to that of one VNF, scaling out from one VNF
instance to two VNF instances would increase the capacity by
100%. However, if the capacity of a piece of legacy network
equipment is equal to that of 100 VNFs, its capacity grows
by less than 1% when adding one more VNF instance. Cloud-
based autoscaling schemes usually ignore this problem, which
is referred to as a non-constant issue [10].

B. Contributions

In this paper, we propose a dynamic autoscaling scheme
to resolve these issues. In the proposed scheme, we consider
that legacy 4G network equipment is always powered on
as a block, while virtualized resources (VNF instances) are
added to or removed from the system dynamically in an on-
demand manner. The approach proposed in this paper offers
network operators guidelines for optimal VNF autoscaling
design systematically based on their management policies.
Briefly, the main contributions of this paper are as follows.

o A dynamic autoscaling scheme for VNF instance alloca-
tion is proposed, in which the cost-performance tradeoff
is quantified as an operation cost metric and a perfor-
mance metric. According to our scheme, a number of
VNF instances are scaled in and out depending on the
number of jobs in the system. The scheme also deals with
how to configure a suitable %k, which is the number of
VNF instances, while considering the cost-performance
tradeoff.
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Fig. 1: Tllustration of an NFV-enabled architecture in 4G/5G.

o To evaluate the performance of the proposed scheme, we
develop an analytical model and derive closed-form ex-
pressions for the performance metrics. The performance
is further validated based on extensive discrete-event
simulations.

o Moreover, we develop a recursive algorithm that reduces
the computational complexity from O(k3 x K?) to O(k x
K), where K is the total capacity of the system.

The remainder of this paper is organized as follows. In
Section II, we briefly introduce the concept of EPC/VEPC
and NFV. Section III reviews the related work and points out
the uniqueness of this work. In Sections IV and V, we first
present the proposed VNF instance autoscaling scheme and
then develop an analytical model to evaluate the performance
of the scheme. Afterwards, the numerical results are illustrated
in Section VI. Finally, Section VII concludes the paper.

II. PRELIMINARIES ON THE EPC/VEPC AND NFV

A cellular network is typically composed of one or multiple
radio access networks (RANs) and a core network (CN), as
shown in Fig. 1 [11]. In this section, we explain briefly the
EPC and vEPC when NFV is deployed.

A. Legacy EPC

In LTE, user equipment (UE) connects to an EPC through
an eNB. The basic functions of an EPC include the serving
gateway (S-GW), packet data network (PDN) gateway (P-
GW), mobility management entity (MME), and policy and
charging rules function (PCRF). For more details about these
functions, refer to [12].
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Fig. 2: Mllustration of a VNF instance expansion procedure
triggered by an NM/EM [13].

B. vEPC

Conceptually, the VEPC can be divided into two main
components: NFV management and orchestration [3], and an
element manager (EM). Both components are parts of the 3rd
generation partnership project (3GPP) management reference
model, which is based on the European telecommunications
standardization institute (ETSI) NFV specification [13].

As shown in Fig. 1, a NFV management and orchestration
component consists of an orchestrator, a VNF manager, and
a virtualized infrastructure manager (VIM). It controls the
life cycles of VNFs and decides whether a VNF should be
scaled in or scaled out. Additionally, it manages both hardware
and software resources to support VNFs. A VNF may have
multiple VNF instances, inside which there are many VMs.

In the vEPC, each network element (NE) in the legacy EPC,
such as the S-GW, P-GW, MME, and PCREF, is virtualized as a
VNE. As shown in Fig. 1, a network manager (NM) provides
end-user functions for the network management of each NE.
An EM is responsible for the management of a set of NMs.

C. VNF Instance Scaling Procedures

A VNF manager allocates resources via two scaling proce-
dures: VNF instance expansion, which is a scale-out procedure
to add resources to a VNF, and VNF instance contraction,
which is a scale-in procedure to release resources from a VNF.
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Fig. 2 illustrates the VNF instance expansion procedure,
with its steps briefly explained below. A similar procedure
applies to VNF instance contraction. Refer to [13] for more
details regarding these two procedures.

e Step 1: An NM/EM (via an NFV orchestrator, NFVO)
sends a capability expansion request to the VNF manager
(see 1(a), 1(b), and 1(c)).

e Step 2: The VNF manager sends a life cycle change
notification to the EM and NFVO, indicating the start
of the scaling operation.

o Steps 3-14: The VNF manager sends a request to the
NFVO for VNF expansion. The NFVO then checks
whether or not enough idle resources are available and,
if yes, sends acknowledgement (ACK)/negative ACK
(NACK) to the VNF manager for VNF expansion.

o Step 15: The EM configures the VNF with application-
specific parameters.

e Step 16: The EM notifies the NM of the newly updated
and configured capacity.

III. RELATED WORK

As presented above, autoscaling enables NFV to scale-out
or scale-in VM resources in an on-demand manner. As such,
the knowledge on the VM load is of vital importance. In the
literature, various approaches have been proposed to predict
the VM load to boot VMs before these VMs, which are
under operation, become overloaded. These approaches can
be categorized into those based on the moving average, in-
cluding the exponential weighted moving average (EMA) [8],
[14], autoregressive moving average (ARMA) [15], [16], and
autoregressive integrated moving average (ARIMA) [17], [18],
those based on machine learning [19], those based on Markov
models [20], [21], and those based on queueing models [22]-
[30]. In the following, we summarize each category briefly.

Moving average based: The basic idea of this category
is that the most recent input data within a moving window
are used to predict the next set of input data. In [8], the
authors proposed an EMA-based scheme to predict CPU load.
Their scheme was implemented in a domain name system
(DNS) server, and the evaluation results showed that the
capacities of the servers were well utilized. [14] introduced a
novel prediction-based dynamic resource allocation algorithm
to scale video transcoding services in a cloud. A two-step
procedure was adopted to predict the load, resulting in a
reduced number of required VMs.

ARMA adds autoregression (AR) to the moving average. A
resource allocation algorithm based on the ARMA model was
reported in [15], where the empirical results showed significant
benefits both to cloud users and service providers. In [16],
the authors developed a load forecasting model based on the
ARMA, which achieved an approximately 6% prediction error
rate and saved up to 44% of hardware resources compared with
a random content-based distribution policy.

Unlike the ARMA and ARIMA, which differentiate the
input data, [17] proposed a predictive and elastic cloud band-
width autoscaling scheme considering multiple data centers.
The work of [31] took VM migration overhead into account
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TABLE I: Comparison of related work and ours

Factors [22] [23] [24] [25]1 [26] [271 [28] [29] [30] Ours
Setup time v v v v v v v v
Independent setup time v v v v v v v
Multiple sub-block v v v v v v v
Legacy network capacity v v v v v v

when designing their autoscaling scheme. Furthermore, [32]
dealt with the dynamic workload fluctuation of each VM and
resource conflict handling. Another ARIMA-based workload
prediction scheme was proposed in [18], which uses real traces
of requests to web servers. The results showed that the model
could achieve up to 91% accuracy.

Machine learning-based approaches are becoming popular
for the design of cloud autoscaling algorithms [19], [33]. [33]
implemented a Bayesian network-based cloud autoscaling al-
gorithm. In [19], the authors evaluated three machine learning
approaches, i.e., linear regression, a neural network, and the
support vector machine (SVM). Their results showed that the
SVM-based scheme outperforms the other two.

Markov model-based approaches have also been widely
used in cloud autoscaling algorithms [20], [21]. The authors
of [20] developed CloudScale, an automatic elastic resource
scaling system for multiple cloud service providers, which
reduces the total energy consumption and the workload energy
consumption by 8% — 10% and 39% — 71%, respectively,
with little effect on the application performance. Moreover,
[21] proposed a novel multiple time series approach based
on a hidden Markov model (HMM). The technique well
characterizes the temporal correlations in the discovered VM
clusters to predict variations in workload patterns.

Queueing model-based approaches were studied in [22]-
[30]. In their developed models, the authors considered the
setup time both with [22] and without [23] defections. After
the setup time, all of the cloud servers in a block are assumed
to be active concurrently. However, this is not realistic consid-
ering the inhomogeneity of servers. In [24], this assumption
was relaxed such that, although all servers in a block are
activated at the same time, each server has an independent
setup time. In these three schemes, no individual and dynamic
scale-out or scale-in is enabled. In [25], an enhanced scheme
allowing sub-block activation was developed. This relaxation
was significant, bringing these schemes closer to reality.
Nevertheless, the setup time was ignored in [25] due to the
modeling and analysis complexity. In [26], [29], a queueing
model with setup time was proposed, where each server is shut
down if it has no job to do and is started up if a job awaits.
However, the legacy network capacity was not considered
therein.

In summary, the mechanisms proposed in the aforemen-
tioned studies were targeted at NFV applications in cloud
computing. These mechanisms either ignore the VM setup time
or deal only with virtualized resources without considering
resources from legacy systems. Although [27], [28], [30]
derived optimal properties and presented a precise analysis
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for a queueing model, [28] ignores setup time and [27],
[30] did not consider legacy servers. Therefore, the existing
mechanisms and models are not applicable to non-standalone
5G networks, where eNBs and gNBs coexist. In contrast, a
salient feature of this work is that we regard the buffer size to
be finite, allow a certain number of always-on servers, which
correspond to the legacy network capacity of non-standalone
5G networks, and consider the VM setup time in our model.
In Table I, we give a qualitative comparison regarding various
aspects that have been considered in our model versus the ones
that were considered in a few reference studies.

IV. ENABLING DYNAMIC VNF INSTANCE AUTOSCALING
IN THE VEPC: THE PROPOSED ALGORITHM

In this section, we first present the network scenario and au-
toscaling principle. Then, we propose an autoscaling algorithm
based on the considered network scenario.

A. Network Scenario and Autoscaling Principle

Consider a 5G EPC composed of a vEPC and legacy
EPC, as shown in Fig. 1. The legacy EPC contains network
entities such as the MME and PCREFE, which lie on-site from
early 4G deployment. With the support of the EM and NFV
management and orchestration components, the VEPC, which
consists of a number of VNF instances, offers fine-grained
network capabilities to its collocated legacy network entity in
an on-demand manner.

In our study, the legacy network equipment is considered to
always be on, whereas VNF instances are added (or removed)
according to the number of jobs awaiting in the system. It is
worth mentioning that a VNF instance needs some time to
start its operation upon receiving a request. During this setup
time, the VNF instance consumes a certain amount of power
but cannot provide services.

B. Cost Function-based Autoscaling Design

As mentioned in Subsection I-A, there is a tradeoff be-
tween the number of allocated resources (i.e., VNF instances,
which reflect the operation cost) and network performance.
Accordingly, a design goal when developing an appropriate
autoscaling algorithm for VNF instance allocation is to min-
imize operation costs while providing a satisfactory level of
network performance.

For VNF instance resource allocation, an essential question
to answer is how many VNF instances should be scaled
out or scaled in such that the cost is minimized while the
required level of performance is satisfied. In this study, the
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cost function, denoted by C, is evaluated by two metrics,
i.e., the average response time in the queue per request, W,
and the average cost of VNF instances, S. The cost function-
based resource allocation? can be mathematically formulated
as follows:

minimize C =w W, + w25, .

subject to 0 < W, < W, M
where Wé is the upper bound of W, which can be determined
by a cellular operator according to the service requirements.
The two coefficients w; and wq are the weighting scalars for
W, and S, respectively. Increasing w; (or wo) indicates that an
operator pays more attention to W, (or S). In this study, we do
not suggest any concrete values for w; or wy since such a value
should be determined by the cellular operator when taking its
service and management policies into consideration. Instead,
an algorithm for finding the optimal solution when w; and wy
are specified is introduced in Subsection V-B. The algorithm
returns an optimal number of VNF instances k,,. Then, the
number of VNF instances can be adjusted accordingly.

C. VNF Instance Autoscaling Algorithm

Consider a non-standalone 5G EPC in which there are k
VNF instances that can be switched on or off. We introduce
two actions, up and down, denoted by U; and D;, where ¢ =
1,2,--- , k, respectively, to represent the status change of VNF
instances (the process of selecting an optimal k is detailed in
Section IV-C).

o U;— Switch-on the i-th VNF instance: If the i-th VNF
instance is turned off and the number of requests in the
system increases from U; — 1 to U;, the VNF instance
needs to be powered on to meet the service requirement.
During the setup time, a VNF instance cannot serve any
user request, but it still consumes power (and leads to a
monetary cost).

o D;— Switch-off the i-th VNF instance: If the i-th VNF
instance is in operation and the number of requests in
the system drops from D; + 1 to D;, the VNF instance
is powered off instantaneously.

In Algorithm 1, we present a sketch of the proposed
algorithm for dynamic VNF instance autoscaling.

V. PERFORMANCE ANALYSIS AND COST FUNCTION
OPTIMIZATION

In this section, we first develop a Markov model to evaluate
the performance of the proposed autoscaling scheme. Then,
another algorithm to find an optimal number of VNF instances
is presented. The notations adopted in our analysis are sum-
marized in Table II.

A. Modeling Autoscaling: An M/M/N/K/Setup Queue
As can be observed in Fig. 1, the total capacity of the
studied system is the summed-up capacity from both the vEPC

2Qther types of cost function may apply. An instance of one such function
that includes more parameters can be found in the Appendix.
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Fig. 3: A simplified queueing model for our system.

and legacy EPC. We consider a non-standalone 5G EPC in
which there are k¥ VNF instances that can be switched on or
off. Assume that the capacity of the legacy network entity
is equivalent to ng VNF instances. The total capacity of the
system, N, in terms of the number of VNF instances is then
N = ng + k since k denotes the number of VNF instances
in the vEPC. Based on our autoscaling algorithm, N can be
adjusted adaptively depending on k. Accordingly, we have
ny =ng+1and n; = n;_1 + 1, where i = 1,2,---k and
ng = N. Furthermore, U; = n;, D; = n;_1,i=1,2,--- k.

1) Description of the model: Fig. 3 illustrates a simpli-
fied queueing model developed in our system, which is an
M/M/N/K/Setup queue. For user traffic or a job request
injected into the system, we model traffic at the flow or service
level instead of at the packet level to capture the dynamics
related to the arrival and departure of services such as the flow
duration or number of active flows. As such, it is reasonable
to assume job request arrivals follow a Poisson process with
a rate \. Furthermore, a VNF instance accepts one job at a
time with a service rate p. In the system, there is a finite first-
come-first-served (FCFS) queue for those requests that have
to wait for processing.

In our queueing model, there are N = ng + k servers,
which are divided into two blocks: a fixed block and a dynamic
block. The ny servers in the fixed block, which represent the
capacity of legacy equipment, are always on. The dynamic
block denotes VNF instances in which the k servers are in
either a BUSY, OFF, or SETUP state. The queue has a total
capacity K, i.e., the maximum number of jobs that can be
accommodated in the system is K. In the dynamic block, a
server is turned off immediately if it has no job to serve. Upon
the arrival of a job, an OFF server is turned on if the job is
placed in the buffer. However, a server needs some time to set
up to serve a waiting job. We further assume that the setup
time follows an exponential distribution with a mean value
of 1/a. Let j denote the number of jobs in the system and 4
denote the number of active servers in the dynamic block. The
number of servers in the SETUP state is min(j —n;, N —n;).

2) Steady-state distribution calculation: In the following,
we present a recursive algorithm to calculate the joint sta-
tionary distribution. Let C(¢) and L(t) denote the number of
active servers in the dynamic block and the number of jobs
in the whole system, respectively. It is clear that {X(¢) =
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TABLE II: List of Notations

Notation  Description

A job arrival rate

m service rate for each VNF instance
k the number of VNF instances

k

op the optimal number of VNF instances
« setup rate for each VNF instance
N the total capacity of the system
no the capacity of the legacy network entity
K the maximum number of jobs that can be accommodated
in the system
w average response time per job
Wy average response time in the queue per job
w, the upper bound of W,
Wy the maximum value of W, in the system
S average VNF cost
S the maximum value of S in the system
P, blocking probability
L mean number of jobs in the system
1) the ratio of weighting factors, w1/w2
w1 weighting factor for W,
wa weighting factor for S
w3 weighting factor for P,
W4 weighting factor for W
Ws weighting factor for L

Number of jobs in the system

Number of active servers

M/M/4/7/Setup ng = 2,k = 2

Fig. 4: Tllustration of a state and state transition with N = 4,
ng=2k=2,and K =7.

(C(t), L(t));t > 0} forms a Markov chain in the state space:
S={(i,j1<i<kj=nsni+1,. ... K—1K}

U{(0,5);5=0,1,...., K —1,K}. )

As an example, we configure N = 4, ng = 2, k = 2, and

K = 7. Fig. 4 depicts the states and transitions among the
states under this configuration. Let

miy = Jim P(C(t) =4, L(t) = j),(i,)) €S ()

denote the joint stationary distribution of {X(¢)}. Here, we
derive a recursion to calculate the joint stationary distribution
Tig» (i,5) € S.
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Let us first consider a recursion for mp ; (j = 0,1,..., K).
The balance equations for states with 7 = 0 are as follows:

AT, -1 = Jjpumo 5, for j=0,1,...,n9, (4)
AT0,j—1 + Nopmo,j+1 = (A + nop
+min(j —no, N —no)a)moj,  (5)
for j =ng,no+1,..., K —1,
Ao k-1 = (nop + (N — ng)a)mo i, (6)
leading to

0,5 =b§-0)71'0’j,1, j=12,.... K. @)

The sequence {bgo);j =1,2,...,K} is given as follows:

A
b§0) = J = 1727 -, 1o, (8)
j
and
A
b\ = — o ©
A+ nop + min(j — ng, N — ng)a — nopb; Ly
j=K-1,K-2... ng+1,
where

B _ A
X = .
nop + (N —no)a
Furthermore, it should be noted that 7y ,,, is calculated using

the local balance equation in and out of the set {(0,j);j =
0,1,..., K} as follows:

K
NUTL py = Z min(j, N — ng)am ;. (10)

Jj=n1

Remark. Thus far, we have expressed 7o ; (j = 1,2,...,K)
and 7y p,, in terms of 7o q.

Now, let us consider the general case for m; ; where 1 <7 <
k—1. Lemma 1 demonstrates that for a fixed: =1,2,...,k—
1, m; ; can be expressed in terms of m; j_1 (j = n; + 1,n; +
2,...,K). Asaresult, mj; (j = n; +1,n; +2,...,K) is
expressed in terms of 7; ;.

Lemma 1. We have

)

T =a§-i —|—b§-i)ﬂ'i,j,1, j=n;i+1n;+2,.... K — 1, K,

(1)
where

(@)

Gy Tipa; g+ min(N —n;_1,j —ni_1)am_1;

a; = ) . o (12
A+ min(N —n;, 7 —ni)a+nip — nipb;
; A
o) = o (13)
A+ min(N —ng, 5 — ng)a+ nip — nipab;')
and
, N — n._ o ,
- Womeamir oA,

(N —n)a+np = K (N—nj)a+niu

Proof. The balance equation for state (i, K) is given as

plore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3237698

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2022 7

follows:

(N —ny)a+nip)m k= Ami k-1 + (N —ni—1)omi—1 k.-
(15)

On this basis, Lemma 1 is true for j = K. Assume that

K -1
(16)

Substituting this expression into the next balance equation,

7TZ7J+1—0,]+1+b(+17T1], j=ni+1n;+2,...,

(/\ + min(N — N, ] — ni)oz + ni,u)m,j = )\771',]'_1
+nipm i1 +min(N —n;_1,j — ni—)omi—1g,  (17)
j=K—-1,K-2,...,n;+1,
we obtain
T 5 —a +b T 5—1- (18)
]

Remark. In Corollary 1 below, we show that agl) and b;l)
are positive. Thus, the recursive algorithm is stable because
it mamgaulates only positive numbers. Furthermore, we prove
that b is bounded from above. Although we cannot obtain

an expl1c1t upper bound for a( ), we observe that aﬁ) is not
so large according to numerlc;al experiments. One reason may
be that the coefficient of aﬁl in (19) is less than 1. These
upper bounds are the rationale for the stability of our recursive
algorithm since we deal with numbers that are not too large

so that overflow is avoided.

Corollary 1. The following bound holds.
(@)

0< a;i) - nipa; iy + min(]Y —'ni_‘hj — ni_l)onr?;_m7
nip+min(j — i, N —n;)a
(19)
i A
0<b? < , 20
J nip+ min(j — i, N — n;)a (20)
forj=mi+1,n;+2,...,K;i=1,2,....k—1

Proof. We prove this corollary through mathematical induc-
tion. It is clear that Corollary 1 is true for j = K. Assume
that Corollary 1 is also true for j 4 1, i.e.,

o >0, o< A

41~ < +1<niu—i—min(j—&—l—ni,N—ni)a’
21

forj =n;+1n;+2,..., K-117=12...k—-11I

then follows from the second inequality that nmbﬂl < A\
This result, together with (12) and (13), yields the claimed
bound. O

It should be noted that m;11,,,,, is calculated using the
following local balance equation in and out of the set of states

{(k,j) e S;k=0,1,...,i} 22)
as follows:
K
Mt 1 T4 1 ng = Z min(j —n;, N —n;)am; ;. (23)
Jj=n;+1
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Remark. Until now, we have expressed m; ; (¢ = 0,1,...,k —
1,5 =n4n;+1,...,K) and 7y, in terms of mg .

Next, let us continue with the case in which ¢ = k. The

balance equation for state (k,j) (j = k,k+1,..., K) leads
to Lemma 2.
Lemma 2. The following equation holds.
g = a8, = L+ 2, K, (24)
where
(k) nkuayi)l + (N — Ng_ 1)Ctﬂ'k,1’j
A+ ngp— nkule
j=K-1,K-2,...,n;+1,
A
o} = R (26)
A+ g — g pby
j=K—-1,K—-2,...,n;+1,
and
(k) _ OTk—1,K (k) A
ay = ———, by’ = — 27)
K N K ng

Proof. The global balance equation in state (k, K') is given by

Nt gk = (N — np_1)amg_1, Kk + AT k-1, (28)
leading to

e = ale) + 08w k1. (29)

Assume that 7 ;41 = yi)l + bgglwk ;- Following this

formula, the global balance equation in state (k,j) becomes

()\ —+ Tbk,u)ﬂ'k,j :Aﬂ'k,j_l + Nk T, 5+1

+ (N —ng_1)am,—1 4, (30)
j=nr+1Ln+2,..., K —1,
where 1, ; = a'™ + ¥ 7). | for j = 1 2 K
kj = a; + ; Thk,j—1 tor g =nrg+1l,ng+2,..., K.
O
Corollary 2. The following bound holds.
A
a” >0, o<V < 2 31)
N

j=np+1lng+2,...,K—1.

Proof. This proof is also carried out by using mathematical
induction. It is clear that Corollary 2 is true for j = K. Assume
that Corollary 2 is true for 5 + 1, i.e.,

a'®)

J+1>0

. A
0<p® « 2 32
< (32)

j=npr+1,np,+2,..., K —1.

It follows from the second inequality that nkub < A
Together with (25) and (26), this inequality yields the claimed
bound. O

As a result, we have expressed all the probabilities ; ;
((4,j) € S) in terms of 7y, which are uniquely determined

plore. Restrictions apply.
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by the normalization condition as follows:

Z Ty, = 1.

(i,9)€S

(33)

Remark. In summary, we are able to calculate all probabilities
7,5 ((i,7) € S) in the following order. First, we set 7 ¢ = 1.
We then calculate all the probabilities 7o ; (j = 1,2,..., K)
using (7). Next, 7 p, is calculated using (10). After that, we
apply Lemma 1 and (23) repeatedly for ¢« = 1,2,...,k — 1.
At this point, 7; ; (with ¢ = 0,1,...,k — 1) and 7 ,, are
obtained. Furthermore, we use Lemma 2 to obtain 7y ; for
j=nk+1,n,+2,..., K. Finally, we divide all 7; ; ((i, ) €
S) by > ijyes Tij to obtain the stationary distribution.

3) Per}ormance analysis: Based on the obtained steady-
state probabilities, we perform the following performance
analysis. Let L denote the mean number of jobs in the system.
We have:

ngf

= 2 md= ) o DD SETREY
(i,)€S =0 j=n,
Following Little’s law, W is expressed as follows:
w_ Bl Xm0+ Ym0 X, T 35)
A1—P) A1 = mik)
Therefore, we obtain
1
Wyg=W — —. (36)
7
Denote by P, the blocking probability. It is clear that
k
=) mix. (37)
i=0

Furthermore, the mean number of VNF instances is given
by

S = Z 5 (

(4,)€S

-—no —i—ZZw”mm

=0 j=n,

nzvN ni)a

(38)

where the first term is the number of VNF instances that are
already active and the second term is the mean number of
VNF instances in the SETUP state.

4) Summary of the derivation: In this subsection, we have
developed a mathematical model and derived closed-form
expressions for the two metrics W, and S, which are the
main components of the cost function (1). The expressions for
W, and S are shown in (36) and (38), respectively. Based on
these closed-form expressions, one can further find an optimal
7 € {k,no, p, K, a} to balance the cost function C, given that
the other parameters and A\ are known since W, and S are
functions of those parameters. We formulate this optimization
problem as follows:

arg min C=wWg+wS,
i (39
subject to 0 < W, < W, .

5) Cost function optimization: Based on the analysis pre-
sented above, we are able to find the local maximum or
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Algorithm 1: Selecting the optimal %
input

A W no, o K

S: The maximum values of S.

W 4: The maximum values of W, per job.

0: The ratio of the weighting factors, w1l/w2.
output: k,: The optimal number of VNF instances.

1 Initialize k as O;
2 for k < 0 to K —ng do

3 /% Calculate all probabilities m;;j,
where (i,7) €S */

4 set N =ng + k;

5 Initialize probability mp,0 = 1;

6 for j < 1to K do

7 /% Get mo,; (j=1,2,...,K) */

8 Calculate 7o ; (A, g, no, v, N) using (7)

9 end

10 Calculate 71 ,,, using (10);

11 for i < 0 to k do

12 /% Get m; (1=0,1,...,k) */

13 Calculate 7; ; using Lemma 1 and (23)

14 end

15 for j < nip+1to K do

16 /*x Get mr; (J=ne+lneg+2,...,K) */

17 Calculate 7, ; using Lemma 2

18 end

19 Obtain S = S(k,no, K, N, m; ;) using (38), where

(i,5) € S;

20 Update S’ = S/8S;

21 Obtain W, = Wo(\, p, k, no, K, m; ;) using (35) and
(36), where (i,7) € S,

2 Update W, = Wy /W ;

23 if S'/W, < & then

24 | k=k+1;

25 else

26 | return kop = k;
27 end

28 end

minimum of the cost function at point 7 when the derivative
of C, C’ = 0. In addition, C' at point 7 has the local minimum
if the second-order derivation C” > 0. The optimal 7 can then
be obtained.

In the next subsection, we apply 7 = k as an example to
demonstrate how the derived metrics can be used to determine
the optimal k£ and the number of VNF instances based on their
weighting factors. Keep in mind however that we can also set
T as another parameter, such as ng, u, K, or o, and apply the
same algorithm to be introduced in the next subsection to these
parameters.

Moreover, other performance metrics, such as P,, W, and
L, which are expressed in (37), (35), and (34), may also be
included to define another cost function, e.g., the variant of the
cost function presented in the Appendix. In general, the model
and derivations presented in this subsection and the Appendix
are generic and can be extended to other types or numbers of
metrics.

It is also worth mentioning that we have solved a problem
for a system with ng + Zfzo(K —n;) = O(k x K) unknown
variables. In contrast to the computational complexity of a
conventional method, which is O(k® x K?3), the computational
complexity of our recursive algorithm is merely O(k x K).

plore. Restrictions apply.
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Furthermore, our algorithm is numerically stable since it
manipulates only positive numbers.

B. Algorithm for Optimal VNF Instance Allocation

Based on the analytical framework presented above, one
can quickly estimate the operation costs and find a suitable
configuration for achieving optimal system performance. This
approach saves time and reduces costs for an operator without
the need for real-life deployment.

In this subsection, we propose an algorithm, Algorithm 1,
which is designed to determine the optimal value of &k
considering the weighting factors. Let us continue with the
cost function defined in (1), which is the weighted sum
of two metrics, W, and S. Instead of specifying concrete
values for the two weighting factors wy and wj, we define
another scalar, § = wq /w7, which is the ratio between ws
and w;. With different values of J, the interest of a service
provider is reflected. For instance, configuring § < 1 implies
that achieving a short response time is more important than
reducing the cost of VNF instances.

As shown in the algorithm diagram, there is a set of input
parameters in Algorithm 1, i.e., S, Wy, 6, A, no, o, N,
and K, where S and W, denote the maximum values of S
and W, in the system. The output of the algorithm is the
obtained optimal value of %, i.e., k,p. To calculate k,,, we
initially set k£ to O and allow k to grow dynamically, bounded
by K —ng. Note that S and W, are the constraints given by the
service provider. As k starts from 0, the ratio of S'/W/, where
S" = S/S and W) = W, /W, increases in every iteration
accordingly. The algorithm continues the iteration procedure
until it finds the lowest k value for k.

Fig. 5 presents a graphical plot of S and W, to demonstrate
how k,,, is obtained based on different system configurations.
The three dashed black lines represent different weighting
factors, i.e., 6 = 2/5,1,5/3. The results based on two values
of ng are reported in this figure, i.e., ng = 60 and ng = 100.
Each point in the blue solid curve depicts the corresponding
values for a pair S and W, and the whole curve indicates
the obtained values for S and W, based on different k values
when ng = 60. Similarly, the brown solid curve represents the
results when ny = 100. The intersections of these dotted lines
and the solid curves are then the obtained optimal values of k
with respect to the configured parameters. Take the brown solid
curve, i.e., ng = 100, as an example; the obtained optimal
values of k are 44, 24, and 11 for 6 = 5/3,0 = 1,and § = 2/5,
respectively. Note however that Fig. 5 is used for illustration
purposes only. A service provider may apply Algorithm 1 to
other system configurations and obtain an optimal value of &
based on the scenario of interest.

VI. NUMERICAL RESULTS

To validate the mathematical model and evaluate the perfor-
mance of the proposed autoscaling algorithm, we performed
extensive simulations using ns-2, version 2.35. The obtained
numerical results are illustrated in this section.

For the network configurations in our simulations, we adopt
the results measured from real-life working systems, e.g., A
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Wy, average response time in queue per job

Fig. 5: Selection of the optimal k for a given ¢.

based on Facebook data center traffic [34], u based on the
base service rate of an Amazon EC2 VM [35], and « based on
the average VM startup time [36]. Unless otherwise stated, the
default values for our parameter configurations are as follows:
ng = 110, 0 = 1, a = 0.005, K = 250, and A = 50 ~
250. For each simulation run, 15 ~ 750 million job requests
are generated during a simulation time of 300,000 seconds.
The simulation results illustrated in the figures below represent
the mean values from multiple simulation runs with a 95%
confidence level.

A. Model Validation

Figs. 6-7 illustrate both the simulation and analytical results
with respect to the obtained average VNF cost, S, and the
average response time in a queue per job, W, respectively.
In these figures, the lines denote the analytical results, and
the points represent the simulation results. It is evident that
the analytical and simulation results coincide with each other.
Thus, the preciseness of the analytical model is validated. In
the rest of this section, we demonstrate the effects of \, k, K,
ng, and o on system performance in terms of S and Wj.

B. Effect of the Arrival Rate, A

Figs. 6(a)-6(d) illustrate the effect of the arrival rate A on
the VNF instance cost S. In the beginning, when there are few
jobs in the system, the cost, .S, is 0 because when A < ngpu, the
incoming jobs are handled solely by the legacy equipment and
no VNF instances are turned on. As traffic load A increases
to (ng + k)p, much more VNF instances need to be turned
on. Accordingly, the cost grows sharply. Later on, it increases
smoothly, and when A > (ng+k)u, S stops growing, as it has
reached an upper bound despite the continuing growth of A.
This occurs because when all the available & VNF instances
are turned on, S is bounded as the cost of the k¥ VNF instances.

Figs. 7(a)-7(d) reveal the effect of A on W,. The trend of
these curves can generally be divided into three phases®: an
ascent phase, a descent phase, and a saturation phase. In the
first phase, W, grows sharply because of the setup time of

3In Figs. 7(b) and 7(d), only two phases are displayed due to the range of
. Given a larger ), all three phases would be visible.

plore. Restrictions apply.
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Fig. 6: Effects on the NFV instance cost, S, of four different parameters.

VNFs. Specifically, when A < nopu, Wy, is almost O since all
jobs are handled by the legacy equipment. As A approaches
nop, and when it is larger than ngu, the autoscaling algorithm
switches on VNFs. Accordingly, W, increases until the full
capacity of the system has been reached. In the second phase,
W, starts to descend since the switched-on VNFs are in full
operation after the setup time. In the third phase, however, W,
increases again and then saturates at another bound. The reason
for this increase is that when A > (ng + k), the system is not
able to handle incoming jobs. In the end, the curves become
saturated because the system capacity is full, unable to handle
more jobs. Consequently, the value of W, is constrained by
K.

C. Effect of the Number of VNF Instances, k

Fig. 6(a) reveals the effect of £ on S with four different
values of k. For all these four curves, the trend is the same
as discussed in the above subsection. With a greater k, a
larger gap between the initial cost and the cost upper bound is
observed because a larger k£ means that more VNF instances
can be allocated to handle incoming job requests, leading to
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a higher cost. Based on its budget, an operator may configure
a suitable value for k based on (38).

Fig. 7(a) illustrates the effect of k on W,. With four different
values of k, the curves show the same trend as discussed in
Section VI-B. Furthermore, the length of the second phase
increases with k. This is because configuring a larger value for
k gives the system higher capability to handle a larger volume
of job requests. Accordingly, it increases the time required for
the system capacity to reach its upper bound.

D. Effect of the VNF Setup Rate, o

Recall that « is the setup rate of VNFs. To obtain a
different setup rate, one can adjust the number or/and volume
of resources for VNFs (e.g., CPU, memory). Fig. 6(b) shows
the effect of o on S, reflected by the slope of these curves.
A larger « leads to a smoother slope, but o does not have
an effect at the beginning and the end of the curves. The
reasons are as follows. A larger « indicates a shorter VNF
setup time. Moreover, a shorter VNF setup time allows the
VNF to be switched on to full operation faster so that the
system is more efficient than the one with a longer VNF setup
time. However, when the system is only purely operated by

plore. Restrictions apply.
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Fig. 7: Effects on the response time per request, W, of four different parameters.

the legacy equipment or is already saturated with all & VNF
instances in full operation, o does not play a role.

Fig. 7(b) illustrates the effect of o on W, which is also
reflected by the slope of these curves. Similarly, a larger
« leads to a smoother slope. Moreover, o determines the
maximum value of W,. The reason is that a shorter setup
time enables the VNF to handle jobs faster.

E. Effect of the System Capacity, K

Fig. 6(c) and Fig. 7(c) depict the effects of K on S and
W,, respectively. As can be observed in Fig. 6(c), K has little
effect on S. This is because S is mainly determined by k. For
k = 50, the change in K from K = 250 to K = 550 is a
result of an increased value of ng, which does not contribute
to S.

On the other hand, K has a significant impact on W,. As
shown in Fig. 7(c), different K values lead to very large gaps
among these curves. These curves also have three phases, as
explained in Subsection VI-B. Furthermore, a larger K leads
to a longer W,. This is evident from our analysis expressed
in (35) and (36).
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F. Effect of the Legacy Equipment Capacity, ng

Fig. 6(d) and Fig. 7(d) illustrate the effects of ng on S
and W, respectively. As can be observed, all these curves
have an initial value of O for S and W,. As X increases,
this value continues for a period until A reaches a certain
threshold. The value of n decides the length of this period,
after which the curves start to grow. This threshold indicates
the system capacity limit within which the legacy equipment
can handle ongoing jobs. When A\ exceeds the capacity of
the legacy equipment, both S and W, start to increase since
VNF instances need to be switched on. With a larger amount
of legacy equipment ng, the cost caused by activating VNF
instances is lower and the response time is shorter.

Further Discussions Overall, Figs. 6-7 demonstrate not
only the correctness of our analytical model but also the effects
of A\, k, K, p, ng, and a on the performance metrics S
and W,. Although a service time of 1/u is assumed to be
exponentially distributed in the results presented above, the
proposed analytical model can be easily extended to a service
time with a deterministic, normal, uniform, Erlang, or Gamma
distribution. In [37], we report more simulation results based

plore. Restrictions apply.
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on various service time distributions. As such, our analytical
framework enjoys wider applicability in various scenarios.

G. Relationship between C and k

Finally, we present how to obtain an optimal k value under
various configurations based on Algorithm 1. Figs. 8(a) and
8(b) illustrate the analytical and simulation results for two
metrics, i.e., cost function C' and response time IW,, both
shown along the y-axis. The curve and dots in blue or red
correspond to C, as specified in (39), or the average response
time W, respectively, for a given X value, whereas the x-axis
indicates the number of VNF instances, k.

Let us first take a look at the red dotted line in Fig. 8(a).
It is shown that W, decreases monotonically as k increases.
As discussed earlier, increasing k& will make arriving jobs
experience a shorter waiting time and better quality of service.
Specifically, we observe that W, first declines sharply, and
then, at a point (around k = 28), it starts to descend gradually.
At the same point, however, the cost function C' shown in blue
starts to grow sharply, leading to a higher cost. Therefore,
for this given arrival rate, i.e., A = 130 (job/s), the optimal
value of k is obtained as 28. By applying this optimal k,
the corresponding W, value is 1.17 s (see the green dotted
straight line). If a cellular operator defines a latency level
greater than 1.17 s as an SLA violation, i.e., Wé in (39) is set
to be greater than 1.17 s, we can just set k as 28 to balance
C' and fulfill the latency requirement. Otherwise, we can use
the green dotted line to find the £ value that corresponds to
the latency level lower than the requirement defined by the
operator. In this case, although the obtained C' value is not the
minimum one, k is still the optimal value that can satisfy the
latency requirement. Similarly, one can find another example
in Fig. 8(b) where an optimal k value for A = 170 can be
found in the same way.

Final comment: In this subsection, we have demonstrated
how a latency requirement can be met by identifying the
optimal k value through (39). Note, however, that the same
method applies to other parameters as well, such as n,, u, K,
and « in 7. To do so, one can simply consider the parameter
of interest and apply it to (39) or (41).

VII. CONCLUSIONS

In this paper, we proposed a dynamic autoscaling algorithm
that addresses the tradeoff between performance and operation
cost for VNF instance allocation for NFV in non-standalone
5G networks. We developed an analytical model to evaluate
the performance of the proposed scheme and investigated the
system performance in terms of the average job response
time and operation cost. Through extensive simulations, we
demonstrated the preciseness of the model as well as the
effectiveness of the algorithm. The scheme developed in this
paper fills a research gap by taking both the VNF setup
time and legacy equipment capacity into consideration for
VNF resource allocation. In addition, we proposed a novel
recursive algorithm that reduces the computational complexity
significantly. Our study provides a reference for 5G cellular
operators to bound their operation cost with a manageable job
response time in a systematic manner.
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APPENDIX
A VARIANT OF THE COST FUNCTION

As mentioned in Footnote 2, other types of cost functions
may be defined to reflect the interests of an operator. For
example, if the operator also cares about the job blocking
probability P, mean waiting time in the system W, and mean
number of jobs in the system L, the cost function C' in (1)
can be redefined as:

C= w1Wq + w9 S + w3 Py + wyW + wsL, 40)

where ws, wy, and ws are the weighting factors for P,, W,
and L, respectively. Similarly, since closed-form expressions
of these metrics have already been derived in (36), (38), (37),
(35), and (34), one can easily find the local minimum when
C’" =1 and C” > 0 are satisfied.

Based on (40), (39) can be expressed as

arg min
T

subject to 0 < W, < Wé ,

C= leq + weS + w3 Py + wsW + ws L,

(41)
where 7 € {k,ng, u, K, a}.
Note again that this model can easily be extended to include
a larger number of parameters.
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