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Abstract: Quantile regression is a field with steadily growing importance in statistical modeling. It is a
complementary method to linear regression, since computing a range of conditional quantile functions
provides more accurate modeling of the stochastic relationship among variables, especially in the tails.
We introduce a nonrestrictive and highlyflexible nonparametric quantile regression approach based on C- and
D-vine copulas. Vine copulas allow for separate modeling of marginal distributions and the dependence
structure in the data and can be expressed through a graphical structure consisting of a sequence of linked
trees. Thisway,weobtain a quantile regressionmodel that overcomes typical issuesof quantile regression such
as quantile crossings or collinearity, the need for transformations and interactions of variables. Our approach
incorporates a two-step ahead ordering of variables, by maximizing the conditional log-likelihood of the tree
sequence, while taking into account the next two tree levels. We show that the nonparametric conditional
quantile estimator is consistent. The performance of the proposedmethods is evaluated in both low- and high-
dimensional settings using simulated and real-worlddata. The results support the superior prediction ability of
the proposed models.

Keywords: vine copulas, conditional quantile function, nonparametric pair-copulas

MSC 2020: 62H05, 62G08, 62G05

1 Introduction

As a robust alternative to the ordinary least squares regression, which estimates the conditional mean,
quantile regression [38] focuses on the conditional quantiles. This method has been studied extensively in
statistics, economics, and finance. The pioneer literature by Koenker [35] investigated linear quantile
regression systematically. It presented properties of the estimators including asymptotic normality and
consistency, under various assumptions such as independence of the observations, independent and
identically distributed (i.i.d.) errors with continuous distribution, and predictors having bounded second
moment. Subsequent extensions of linear quantile regression have been intensively studied, see for
example adapting quantile regression in the Bayesian framework [66], for longitudinal data [34], time-
series models [63], high-dimensional models with l1-regularizer [7], nonparametric estimation by kernel
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weighted local linear fitting [65], by additive models [37,20], etc. The theoretical analysis of the above-
mentioned extensions is based on imposing additional assumptions such as samples that are i.i.d. (see for
example Belloni and Chernozhukov [7], Yu and Jones [65]), or that are generated by a known additive
function (see for example Koenker [37,34]). Such assumptions, which guarantee the performance of the
proposed methods for certain data structures, cause concerns in applications due to the uncertainty of the
real-world data structures. Bernard and Czado [8] addressed other potential concerns such as quantile
crossings and model-misspecification, when the dependence structure of the response variables and the
predictors does not follow a Gaussian copula. Flexible models without assuming homoscedasticity, or a
linear relationship between the response and the predictors are of interest. Recent research on dealing with
this issue includes quantile forests [2,42,44] inspired by the earlier work of random forests [9] and modeling
conditional quantiles using copulas (see also Chen et al. [13], Noh et al. [50,51]).

Vine copulas in the context of conditional quantile prediction have been investigated by Kraus and
Czado [41] using drawable vine copulas (D-vines) and by Chang and Joe [11] and, most recently, Zhu et al.
[67] using restricted regular vines (R-vines). The approach of Kraus and Czado [11] is based on first finding
the locally optimal regular vine structure among all predictors and then adding the response to each
selected tree in the vine structure as a leaf, as also followed by Bauer and Czado [5] in the context of
non-Gaussian conditional independence testing. The procedure in Chang and Joe [11] allows for a recursive
determination of the response quantiles, which is restricted through the prespecified dependence structure
among predictors. The latter might not be the one maximizing the conditional response likelihood, which is
the main focus in regression setup. The approach of Kraus and Czado [41] is based on optimizing the
conditional log-likelihood and selecting predictors sequentially until no improvement of the conditional
log-likelihood is achieved. This approach based on the conditional response likelihood is more appropriate
to determine the associated response quantiles. Furthermore, the intensive simulation study in Kraus and
Czado [41] showed the superior performance of the D-vine copulas-based quantile regression compared to
various quantile regression methods, i.e. linear quantile regression [38], boosting additive quantile regres-
sion [35,37,20], nonparametric quantile regression [43], and semiparametric quantile regression [51]. In
parallel to our work, Zhu et al. [67] proposed an extension of this D-vine-based forward regression to a
restricted R-vine forward regression with comparable performance to the D-vine regression. Thus, the
D-vine quantile regression will be our benchmark model.

We extend the method of Kraus and Czado [41] in two ways: (1) our approach is applicable to both
C-vine and D-vine copulas; (2) a two-step ahead construction is introduced, instead of the one-step ahead
construction. Since the two-step ahead construction is the main difference between our method and Kraus
and Czado [41], we further explain the second point in more detail. Our proposed method proceeds by
adding predictors to the model sequentially. However, in contrast to Kraus and Czado [41] with only one
variable ahead, our new approach proposes to look up two variables ahead for selecting the variable to be
added in each step. The general idea of this two-step ahead algorithm is as follows: in each step of the
algorithm, we study combinations of two variables to find the variable, which in combination with the other
improves the conditional log-likelihood the most. Thus, in combination with a forward selection method,
this two-step ahead algorithm allows us to construct nonparametric quantile estimators that improve the
conditional log-likelihood in each step and, most importantly, take possible future improvements into
account. Our method is applicable to both low and high-dimensional data. By construction, quantile
crossings are avoided. All marginal densities and copulas are estimated nonparametrically, allowing
more flexibility than parametric specifications. Kraus and Czado [41] addressed the necessity and possible
benefit of the nonparametric estimation of bivariate copulas in the quantile regression framework. This
construction permits a large variety of dependence structures, resulting in a well-performing conditional
quantile estimator. Moreover, extending to the C-vine copula class, in addition to the D-vine copulas,
provides greater flexibility.

The article is organized as follows. Section 2 introduces the general setup, the concept of C-vine and
D-vine copulas, and the nonparametric approach for estimating copula densities. Section 3 describes the
vine-based approach for quantile regression. The new two-step ahead forward selection algorithms are
described in Section 4. We investigate in Proposition 4.1 the consistency of the conditional quantile
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estimator for given variable orders. The finite sample performance of the vine-based conditional quantile
estimator is evaluated in Section 5 by several quantile-related measurements in various simulation settings.
We apply the newly introduced algorithms to low- and high-dimensional real data in Section 6. In Section 7,
we conclude and discuss possible directions of future research.

2 Theoretical background

Consider the random vector X X X, , d
T

1( )= … with observed values x x x, , d
T

1( )= … , joint distribution and
density function F and f , marginal distribution and density functions FXj and fXj for X j d, 1, ,j = … . Sklar’s
theorem [57] allows us to represent any multivariate distribution in terms of its marginals FXj and a copulaC
encoding thedependence structure. In the continuouscase,C is uniqueand satisfies xF C F x F x, ,X X d1 d1( ) ( ) ( )( )= …

and xf c F x F x f x, ,X X d j
d

X j1 1d j1( ) ( ) ( ) ( )( )[ ]= … ∏

=

, where c is the density function of the copulaC. To characterize

the dependence structure of X , we transform each Xj to a uniform variable Uj by applying the probability

integral transform, i.e. U F X j d, 1, ,j X jj( )≔ = … . Then the random vector U U U, , d
T

1( )= … with observed

values u u, , d
T

1( )… has a copula as a joint distribution denoted as CU U, , d1 …
with associated copula density

functioncU U, , d1 …
.While the catalogue of bivariate parametric copula families is large, this is not true ford 2> .

Therefore, conditioning was applied to construct multivariate copulas using only bivariate copulas as
building blocks. Joe [28] gave the first pair copula construction for d dimensions in terms of distribution
functions, whereas Bedford and Cooke [6] independently developed constructions in terms of densities
together with a graphical building plan, called a regular vine tree structure. It consists of a set of linked trees
T T, , d1 … (edges in tree Tj become nodes in tree Tj 1+

) satisfying a proximity condition, which allows us to
identify all possible constructions. Each edge of the trees is associatedwith a pair copulaC UU U, ;i j D, where D is a

subset of indices not containing i j, . In this case, the set i j,{ } is called the conditioned set, while D is the
conditioning set. A joint density using the class of vine copulas is then the product of all pair copulas
identified by the tree structure evaluated at appropriate conditional distribution functions F XXj D∣

and the

product of the marginal densities f j d, 1, ,Xj = … . A detailed treatment of vine copulas together with estima-
tion methods and model choice approaches are given, for example in the studies of Joe [30] and Czado [17].

Since we are interested in simple copula-based estimation methods for conditional quantiles,
we restrict to two subclasses of the regular vine tree structure, namely, the D- and C-vine structure.
We show later that these structures allow us to express conditional distribution and quantiles in closed
form. In the D-vine tree structure all trees are paths, i.e. all nodes have degree 2≤ . Nodes with degree 1 are
called leaf nodes. A C-vine structure occurs, when all trees are stars with a root node in the centre. The right
and left panels of Figure 1 illustrate a D-vine and a C-vine tree sequence in four dimensions, respectively.

For these sub classes we can easily give the corresponding vine density [17, Chapter 4]. For a D-vine
density we have a permutation s s, , d1 … of d1, ,… such that

f x x c F x x x

F x x x f x

, , , , ,

, , ,

d
j

d

i

d j

U U U U X X X s s s

X X X s s s
k

d
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1
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1
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(1)

while for a C-vine density the following representation holds

f x x c F x x x

F x x x f x

, , , , ,
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(2)
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To determine the needed conditional distribution F XXj D∣
in Eqs. (1) and (2) for appropriate choices of j

and D, the recursion discussed in Joe [28] is available. Using xu F xXj X j Dj D( ∣ )=
∣

for j d1, ,= … we can express

them as compositions of h-functions. These are defined in general as u uh u u C u u; , ;U UU U i j D u U U i j D; , ;i j D j i j D( ∣ ) ( )=
∣

∂

∂

.

Additionally, we made in Eqs. (1) and (2) the simplifying assumption ([17], Section 5.4) that is, the
copula function C UU U, ;i j D does not depend on the specific conditioning value of uD, i.e. uC u u, ;UU U i j D, ;i j D( ) =

C u u,UU U i j, ;i j D( ). The dependence on uD in Eqs. (1) and (2) is completely captured by the arguments of the
pair copulas. This assumption is often made for tractability reasons in higher dimensions (Haff et al. [27]
and Stoeber et al. [58]). It implies further that the h-function satisfies uh u u C u u; ,U UU U i j D u U U i j; , ;i j D j i j D( ∣ ) ( )= =

∣

∂

∂

C u uUU U i j;i j D( ∣ )
∣

and is independent of uD.

2.1 Nonparametric estimators of the copula densities and h-functions

There are many methods to estimate a bivariate copula density cU U,i j nonparametrically. Examples are the
transformation estimator [12], the transformation local likelihood estimator [22], the tapered transformation
estimator [61], the beta kernel estimator [12], and the mirror-reflection estimator [24]. Among the above-
mentioned kernel estimators, the transformation local likelihood estimator [22] was found by Nagler et al.
[47] to have an overall best performance. The estimator is implemented in the R packages kdecopula [45]
and rvinecopulib [49] using Gaussian kernels. We review its construction in Appendix A. To satisfy the
copula definition, it is scaled to have uniform margins.

As mentioned above the simplifying assumption implies that uh u u ;UU U i j D;i j D( ∣ )
∣

is independent of specific

values of uD. Thus, it is sufficient to show how the h-function h C u uU U U U i ji j i j( ∣ )=
∣ ∣

can be estimated nonpar-
ametrically. For this, we use as estimator

C u u c u u uˆ ˆ ˜ , d ˜ ,U U i j

u

U U i j i

0

,i j

i

i j( ∣ ) ( )∫=
∣

where ĉU U,i j is one of the aforementioned nonparametric estimators of the bivariate copula density of U U,i j( )

for which it holds that ĉU U,i j integrates to 1 and has uniform margins.

Figure 1: C-vine tree sequence (left panel) and a D-vine tree sequence (right panel) in four dimensions.
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3 Vine-based quantile regression

In the general regression framework, the predictive ability of a set of variables X X X, , p
T

1( )= … for the
response Y ∈ � is studied. The main interest of vine-based quantile regression is to predict the α 0, 1( )∈

quantile q x x F α x x, , , ,α p Y X X p1 , ,
1

1p1( ) ( ∣ )… = …
∣ …

− of the response variable Y given X by using a copula-based
model of XY , T( ) . As shown in Kraus and Czado [41], this can be expressed as

F α x x F C α F x F x, , , , ,Y X X p Y V U U X X p, ,
1

1
1

, ,
1

1p p p1 1 1( ∣ ) ∣ ( ) ( )( ( ))… = …
∣ …

− −

∣ …

− (3)

where CV U U, , p1∣ …
is the conditional distribution function of V F YY( )= given U F X uj X j jj( )= = for j p1, ,= … ,

with corresponding density cV U U, , p1∣ …
, and CV U U, , , p1 …

denotes the p 1( )+ -dimensional copula associated
with the joint distribution of XY , T( ) . In view of Section 1, we have d p 1= + . An estimate of q x x, ,α p1( )…

can be obtained using estimated marginal quantile functions F̂Y
1−

, F j pˆ , 1, ,X
1

j
= …

−

, and the estimated con-
ditional distribution function ĈV U U, ,

1
p1∣ …

−

giving q x x F C α F x F xˆ , , ˆ ˆ ˆ , ˆα p Y V U U X X p1
1

, ,
1

1p p1 1( ) ∣ ( ) ( )( ( ))… = …

−

∣ …

−

.
In general, CV U U, , , p1 …

can be any p 1( )+ -dimensional multivariate copula, however, for certain vine

structures the corresponding conditional distribution functionCV U U, , p1∣ …
can be obtained in closed form not

requiring numerical integration. For D-vine structures this is possible and has been already used in the
studies of Kraus and Czado [41]. Tepegjozova [59] showed that this is also the case for certain C-vine
structures. More precisely, the copula CV U U, , , p1 …

with D-vine structure allows us to express CV U U, , p1∣ …
in a

closed form if and only if the response V is a leaf node in the first tree of the tree sequence. For a C-vine
structure we need, that the node containing the response variableV in the conditioned set is not a root node
in any tree. Additional flexibility in using such D- and C-vine structures is achieved by allowing for
nonparametric pair-copulas as building blocks.

The order of the predictors within the tree sequences itself is a free parameter with direct impact on the
target functionCV U U, , p1∣ …

and thus, on the corresponding prediction performance of q x x, ,α p1( )… . For this, we
recall the concept of a node order for C- and D-vine copulas introduced in the study by Tepegjozova [59]. A
D-vine copula denoted by D� has order V U U, , , ,D D i ip1( ) ( )= …� � if the responseV is the first node of the first

treeT1 andUik is the (k 1+ )th node ofT1, for k p1, ,= … . A C-vine copula C� has order V U U, , , ,C C i ip1( ) ( )= …� �

ifUi1 is the root node in the first treeT1,U Ui i2 1 is the root node in the second treeT2, andU U U U; , ,i i i ik k k1 1 2…
− −

is the
root node in the kth treeTk for k p3, , 1= … − .

Now our goal is to find an optimal order of D- or C-vine copula model with regard to a fit measure. This
measure has to allow us to quantify the explanatory power of a model. One such measure is the estimated
conditional copula log-likelihood function as a fit measure. For N i.i.d. observations v v v, , N T1( )( ) ( )

≔ … and

u u u, ,j j j
N T1( )( ) ( )

≔ … , for j p1, ,= … of the random vector V U U, , , p
T

1( )… we fit a C- or D-vine copula with

order V U Uˆ , , , p1( ) ( )= …� � using nonparametric pair copulas. We denote this copula by �̂, then the fitted
conditional log-likelihood can be determined as

v u ucll c v u u

c v u c C v u

u C u u u

ˆ , , , , ln ˆ , ,

ln ˆ , ln ˆ ˆ , ,

, ˆ , , .

p
n

N

V U U
n n

p
n

n

N

V U
n n

j

p

V U U U V U U
n n

j
n

U U U j
n n

j
n

1
1

, , 1

1
, 1

2
, , , , , 1

1 , , 1 1

p

j j j

j j

1

1 1 1 1 1

1 1

( ( )) ( ∣ )

⎡

⎣
⎢ ( ) ( ∣

) ( ∣ )
⎤

⎦
⎥

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

(

)

∑

∑ ∑

… = …

= + …

…

=

∣ …

= =

∣ … ∣ …

−
∣ …

−

− −

−

�

Penalizations for model complexity when parametric pair copulas are used can be added as shown in the
study by Tepegjozova [59]. To define an appropriate penalty in the case of using nonparametric pair copulas
is an open research question (see also Section 7).
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4 Forward selection algorithms

Having a set of p predictors, there are p! different orders that uniquely determine p! C-vines and p! D-vines.
Fitting and comparing all of them are computationally inefficient. Thus, the idea is to have an algorithm
that will sequentially choose the elements of the order, so that at every step the resulting model for the
prediction of the conditional quantiles has the highest conditional log-likelihood. Building upon the idea of
Kraus and Czado [41] for the one-step ahead D-vine regression, we propose an algorithm which allows for
more flexibility and which is less greedy, given the intention to obtain a globally optimal C- or D-vine fit.
The algorithm builds the C- or D-vine step by step, starting with an order consisting of only the response
variable V . Each step adds one of the predictors to the order based on the improvement of the conditional
log-likelihood, while taking into account the possibility of future improvement, i.e. extending our view two
steps ahead in the order. As discussed in Section 2.1, the pair copulas at each step are estimated nonpar-
ametrically in contrast to the parametric approach of Kraus and Czado [41]. We present the implementation
for both C-vine and D-vine-based quantile regression in a single algorithm, in which the user decides
whether to fit a C-vine or D-vine model based on the background knowledge of dependency structures
in the data. Implementation for a large data set is computationally challenging; therefore, randomization is
introduced to guarantee computational efficiency in high dimensions.

4.1 Two-step ahead forward selection algorithm for C- and D-vine-based quantile
regression

Input and data preprocessing: Consider N i.i.d observations y y y, , N1( )( ) ( )
≔ … and x x x, ,j j j

N1( )( ) ( )
≔ … for

j p1, ,= … , from the random vector Y X X, , , p
T

1( )… . The input data are on the x-scale, but in order to fit
bivariate copulas we need to transform it to the u-scale using the probability integral transform. Since the
marginal distributions are unknown we estimate them, i.e. FY and FXj, for j p1, ,= … , are estimated using a
univariate nonparametric kernel density estimator with the R package kde1d [48]. This results in the

pseudo copula data v F yˆ ˆn
Y

n( )( ) ( )
≔ and u F xˆ ˆ ,j

n
X j

n
j( )( ) ( )

≔ for n N j p1, , , 1, ,= … = … . The normalized mar-
ginals (z-scale) are defined as Z Φ Uj j

1( )≔

− for j p1, , ,= … and Z Φ VV
1( )≔

− , where Φ denotes the standard
normal distribution function.

Step 1: To reduce computational complexity, we perform a pre-selection of the predictors based on
Kendall’s τ. This is motivated by the fact that Kendall’s τ is rank-based, therefore, invariant with respect to
monotone transformations of the marginals and can be expressed in terms of pair copulas. Using the

pseudo copula data v u v u n Nˆ, ˆ ˆ , ˆ 1, ,j
n

j
n( ) { ∣ }( ) ( )

= = … , estimates τ̂VUj of the Kendall’s τ values between the

response V , and all possible predictors Uj for j p1, ,= … , are obtained. For a given k p≤ , the k largest

estimates of τ̂VUj∣ ∣ are selected and the corresponding indices q q, , k1 … are identified such that τ̂VUq1
∣ ∣ ≥

τ τ τ τˆ ˆ ˆ ˆVU VU VU VUq qk qk qp2 1
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣≥⋯≥ ≥ ≥⋯≥

+

. The parameter k is a hyper-parameter and therefore, subject to

tuning. To obtain a parsimonious model, we suggest a k corresponding to 5–20% of the total number of
predictors. The k candidate predictors and the corresponding candidate index set of step 1 are defined as
U U, ,q qk1 … and K q q, , k1 1{ }= … , respectively. For all c K1∈ and j p c1, ,{ } { }∈ … ⧹ the candidate two-step
ahead C- or D-vine copulas are defined as the three-dimensional copulas c j,

1
� with order c j,

1( ) =� �

V U U, ,c j( ). The first predictor is added to the order based on the conditional log-likelihood of the candidate

two-step ahead C- or D-vine copulas, c j,
1

� , given as

v u ucll c v u c h v u h u u, ˆ, ˆ , ˆ log ˆ ˆ , ˆ log ˆ ˆ ˆ ˆ , ˆ ˆ ˆ .c j c j
n

N

V U
n

c
n

V U U V U
n

c
n

U U j
n

c
n

,
1

1
, ,c j c c j c( ( )) ( ) ( ∣ ) ( ∣ )( ) ( ) ( ) ( ) ( ) ( )

[ ( )]∑= +

=

∣ ∣ ∣
�

For each candidate predictor Uc, the maximal two-step ahead conditional log-likelihood at step 1, cllc
1, is

defined as v u ucll cll c Kmax , ˆ, ˆ , ˆ ,c j p c c j c j
1

1, , ,
1

1( ( )){ } { }≔ ∀ ∈
∈ … ⧹

� . Finally, based on the maximal two-step ahead
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conditional log-likelihood at step 1, cllc
1, the index t1 is chosen as t cllarg maxc K c1

1
1≔

∈
, and the corresponding

candidate predictor Ut1 is selected as the first predictor added to the order. An illustration of the vine tree
structure of the candidate two-step ahead copulas c j,

1
� , in the case of fitting a D-vine model, with order

V U U, ,D c j c j,
1( ) ( )=� � is given in Figure 2. Finally, the current optimal fit after the first step is the C-vine or

D-vine copula, 1� with order V U, t1 1( ) ( )=� � .
Step r: After r 1− steps, the current optimal fit is the C- or D-vine copula r 1−

� with order r 1( ) =
−

� �

V U U, , ,t tr1 1( )…
−

. At each previous step i, the order of the current optimal fit is sequentially updated with the
predictorUti for i r1, , 1= … − . At the rth step, the next predictor candidate is to be included. To do so, the
set of potential candidates is narrowed based on a partial correlation measure. Defining a partial Kendall’s τ
is not straightforward and requires the notion of a partial copula, which is the average over the conditional
copula given the values of the conditioning values (e.g. see Gijbels and Matterne [23] and references
therein). In addition, the computation in the case of multivariate conditioning is very demanding and still
an open research problem. Therefore, we took a pragmatic view and base our candidate selection on partial
correlation. Due to the assumption of Gaussian margins inherited to the Pearson’s partial correlation,
the estimates are computed on the z-scale. Estimates of the empirical Pearson’s partial correlation,
ρ̂Z Z Z Z, ; , ,V j t tr1 1…

−

, between the normalized response variable V and available predictors Uj for j p1, 2, ,{ }∈ …

t t, , r1 1{ }⧹ …
−

are obtained. Similar to the first step, a set of candidate predictors of size k is selected based on
the largest values of ρ̂Z Z Z Z, ; , ,V j t tr1 1

∣ ∣
…

−

and the corresponding indices q q, , k1 … . The k candidate predictors and

the corresponding candidate index set of step r are defined as U U, ,q qk1 … and the set K q q, ,r k1{ }= … ,
respectively. For all c Kr∈ and j p t t c1, 2, , , , ,r1 1{ } { }∈ … ⧹ …

−
, the candidate two-step ahead C- or D-vine

copulas are defined as the copulas c j
r

,� with order V U U U U, , , , ,c j
r

t t c j, r1 1( ) ( )= …
−

� � . There are k p r( )−

different candidate two-step ahead C- or D-vine copulas c j
r

,� (since we have k candidates for the one-
step ahead extension Uc, and for each, p r 1 1( )− − − two step ahead extensions Uj). Their corresponding
conditional log-likelihood functions are given as

v u u u u

v u u

cll

cll

c C v u u C u u u

c C v u u u

C u u u u

, ˆ, ˆ ˆ , ˆ , ˆ

, ˆ, ˆ ˆ

log ˆ ˆ ˆ ˆ , , ˆ , ˆ ˆ ˆ , , ˆ

log ˆ ˆ ˆ ˆ , , ˆ , ˆ ,

ˆ ˆ ˆ , , ˆ , ˆ .

c j
r

t t c j

r t t

n

N

VU U U V U U
n

t
n

t
n

U U U c
n

t
n

t
n

n

N

VU U U U V U U U
n

t
n

t
n

c
n

U U U U j
n

t
n

t
n

c
n

,

1

1
; , , , , , ,

1
; , , , , , ,

, , ,

r

r

c t tr t tr r c t tr r

j t tr c t tr c r

j t tr c r

1 1

1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

∣ ∣

∣

∣

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ( ))

( ( ))

( ( ) ( ))

( ( )

( ))

∑

∑

…

= …

+ … …

+ …

…

−

=

… ∣ … ∣ …

=

… ∣ …

∣ …

−

−

− − − − −

− − −

− −

�

�

The rth predictor is then added to the order based on the maximal two-step ahead conditional log-like-
lihood at Step r, cllc

r, defined as

Figure 2:V is fixed as the first node ofT1 and the first candidate predictor to be included in the model,Uc (grey), is chosen based
on the conditional log-likelihood of the two-step ahead copula including the predictor Uj (grey filled).
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v u u u ucll cll c Kmax , ˆ, ˆ ˆ , ˆ , ˆ , .c
r

j p t t c
c j
r

t t c j r
1,2, , , , ,

,
r

r
1 1

1 1
{ } { }

( ( ))≔ … ∀ ∈

∈ … ⧹ …
−

−

� (4)

The index tr is chosen as t cllarg maxr c K c
r

r≔
∈

, and the predictor Utr is selected as the rth predictor of the
order. An illustration of the vine tree structure of the candidate two-step ahead copulas c j

r
,� for a D-vine

model with order V U U U U, , , , ,D c j
r

t t c j, r1 1( ) ( )= …
−

� � is given in Figure 3. At this step, the current optimal fit is
the C-vine or D-vine copula r� , with order V U U, ,r t tr1( ) ( )= …� � . The iterative procedure is repeated until
all predictors are included in the order of the C- or D-vine copula model.

4.1.1 Additional variable reduction in higher dimensions

The above search procedure requires calculating p r− conditional log-likelihoods for each candidate
predictor at a given step r. This leads to calculating a total of p r k( )− conditional log-likelihoods, where
k is the number of candidates. For p large, this procedure would cause a heavy computational burden.
Hence, the idea is to reduce the number of conditional log-likelihoods calculated for each candidate
predictor. This is achieved by reducing the size of the set, over which the maximal two-step ahead condi-
tional log-likelihood cllc

r in Eq. (4), is computed. Instead of over the set p t t c1, 2, , , , ,r1 1{ } { }… ⧹ …
−

, the
maximum can be taken over an appropriate subset. This subset can then be chosen either based on the
largest Pearson’s partial correlations in absolute value denoted as ρ̂Z Z Z Z Z, ; , , ,V j t tr c1 1

∣ ∣
…

−

, by random selection, or

a combination of the two. The selection method and the size of reduction are user-decided.

4.2 Consistency of the conditional quantile estimator

The conditional quantile function on the original scale in Eq. (3) requires the inverse of the marginal
distribution function of Y . Following Kraus and Czado [41] and Noh et al. [50], the marginal cumulative
distribution functions FY and F j p, 1,Xj = … , are estimated nonparametrically to reduce the bias caused by
model misspecification. Examples of nonparametric estimators for the marginal distributions FY and FXj, are
the continuous kernel smoothing estimator [52] and the transformed local likelihood estimator in the
univariate case [21]. Using a Gaussian kernel, the above two estimators of the marginal distribution are
uniformly strong consistent. When all inverses of the h-functions are also estimated nonparametrically, we

Figure 3: In step r , the current optimal fit, �r−1 (black), is extended by one more predictor, Uc (grey), to obtain the new current
optimal fit �r (black and grey), based on the conditional log-likelihood of the two-step ahead copula �c j

r
, which also includes

the predictorUj (grey filled) (In the figure, we use the shortened notationUt r1: −1 instead of writingU U,…,t tr1 −1 and we useUt c,r1: −1

instead of U U U,…, ,t t cr1 −1 .).
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establish the consistency of the conditional quantile estimator F̂Y X X, ,
1

p1∣ …

−

in Proposition 4.1 for fixed variable

orders. By showing the uniform consistency, Proposition 4.1 gives an indication of the performance of the

conditional quantile estimator F̂Y X X, ,
1

p1∣ …

−

for fixed variable orders, while combining the consistent estimators

of FY , FXj, and bivariate copula densities. Under the consistency guarantee, the numerical performance of

F̂Y X X, ,
1

p1∣ …

−

investigated by extensive simulation studies is presented in Section 5.

Proposition 4.1. Let the inverse of the marginal distribution functions FY and FXj j p1, ,= … be uniformly
continuous and estimated nonparametrically, and let the inverse of the h-functions expressing the conditional
quantile estimator CV U U, ,

1
p1∣ …

− be uniformly continuous and estimated nonparametrically in the interior of the

support of bivariate copulas, i.e. δ δ δ, 1 , 02[ ]− →
+
.

1. If estimators of the inverse of marginal functions F̂Y
1−

, F̂X
1

j

−

, j p1, ,= … , are uniformly strong consistent on the

support δ δ δ, 1 , 0[ ]− →
+
, and the estimators of the inverse of h-functions composing the conditional

quantile estimator CV U U, ,
1

p1∣ …

− are uniformly strong consistent, then the estimator F α x xˆ , ,Y X X p, ,
1

1p1 ( ∣ )…
∣ …

−

is

also uniformly strong consistent.

2. If estimators of the inverse of marginal functions F̂Y
1−

, F̂X
1

j

−

, j p1, ,= … , are at least weak consistent, and the

estimators of the inverse of h-functions are also at least weak consistent, then the estimator F̂Y X X, ,
1

p1∣ …

−

α x x, , p1( ∣ )… is weak consistent.

For more details about uniform continuous functions see the studies by Bartle and Sherbert ([4] Section
5.4), Kolmogorov and Fomin ([39], p. 109, Def. 1). For a definition of strong uniform consistency or con-
vergence with probability one, see the studies by Ryzin [54], Silverman [56], and Durrett ([19], p. 16), while
for a definition for weak consistency or convergence in probability, see the studies by Durrett ([19], p. 53).
The strong uniform consistency result in Proposition 1 requires additionally that all estimators of F̂Y

1−

, F̂X
1

j

−

,

for j p1,= … , are strong uniformly consistent on a truncated compact interval δ δ δ, 1 , 0[ ]− →
+
. Although

not directly used in the proof of Proposition 4.1 in Appendix B, the truncation is an essential condition for
guaranteeing the strong uniform consistency of all estimators of the inverse of the marginal distributions
(i.e. estimators of quantile functions), see the studies by Cheng [15,14], Van Keilegom and Veraverbeke [60].

5 Simulation study

The proposed two-step ahead forward selection algorithms for C- and D-vine-based quantile regression,
from Section 4.1, are implemented in the statistical language R [53]. The D-vine one-step ahead algorithm is
implemented in the R package vinereg [46]. In the simulation study from R [41], it is shown that the D-vine
one-step ahead forward selection algorithm performs better or similar, compared to other state-of-the-art
quantile methods, boosting additive quantile regression [20,36], nonparametric quantile regression [43],
semi-parametric quantile regression [51], and linear quantile regression [38]. Thus, we use the one-step
ahead algorithm as the benchmark competitive method in the simulation study. We set up the following
simulation settings given below. Each setting is replicated for R 100= times. In each simulation replication,
we randomly generate Ntrain samples used for fitting the appropriate nonparametric vine-based quantile

regression models. Additionally, another N Neval
1
2 train= sample for settings (a)–(f) and N Neval train= for

settings (g) and (h) are generated for predicting conditional quantiles from the models. settings (a)–(f)
are designed to test quantile prediction accuracy of nonparametric C- or D-vine quantile regression in cases
where p N≤ ; hence, we set N 1,000train = or 300. settings (g) and (h) test quantile prediction accuracy in
cases where p N> ; hence, we set N 100train = .
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(a) Simulation setting M5 from Kraus and Czado [41]:

Y X X X X σε2 0.5 0.5 1 0.1 ,1 2 3 4
3∣ ∣ ( )( )= − + + − + +

with ε N σ~ 0, 1 , 0.1, 1( ) { }∈ , X X X X N Σ, , , ~ 0,T
1 2 3 4 4( ) ( ), and the i j,( )th component of the covariance

matrix given as Σ 0. 5i j
i j

,( ) =

∣ − ∣.

(b) Y X X, , , T
1 5( )… follows a mixture of two six-dimensional T copulas with degrees of freedom equal to 3

and mixture probabilities 0.3 and 0.7. Association matrices R1, R2 and marginal distributions are
recorded in Table 1.

(c) Linear and heteroscedastic [11]:Y X X X X U U U U ε5 10 ,1 2 3 4 1 2 3 4( ) ( )= + + + + + + + where X X X X, , , T
1 2 3 4( )

N Σ~ 0,4( ), Σ 0. 5i j
I i j

,
{ }

=

≠ , ε N~ 0, 0.54( ), andUj, j 1, , 4= … are obtained from the Xj’s by the probability
integral transform.

(d) Nonlinear and heteroscedastic [11]: Y U U U U U U εe 0.5U U
1 2

1.8
1 2 3 43 4 ( )= + + + + , where U j, 1, , 4j = … are

probability integral transformed from N Σ0,4( ), Σ 0.5i j
I i j

,
{ }

=

≠ , and ε N~ 0, 0.5( ).

(e) R-vine copula [17]: V U U, , , T
1 4( )… follows an R-vine distribution with pair copulas given in Table 2.

(f) D-vine copula [59]: V U U, , , T
1 5( )… follows a D-vine distribution with pair copulas given in Table 3.

(g) Similar to setting (a),

Y X X X X X X σε2 0.5 0.5 1 0.1 , , 0, ,0 ,T
1 2 3 4

3
5 110∣ ∣ ( )( ) ( )( )= − + + − + + … … +

where X X N Σ, , ~ 0,T
1 110 110( ) ( )… with the i j,( )th component of the covariance matrix Σ 0. 5i j

i j
,( ) =

∣ − ∣,
ε N~ 0, 1( ), and σ 0.1, 1{ }∈ .

(h) Similar to (g), βY X X ε, ,1
3

110
3( )= … + , where X X N Σ, , ~ 0,T

A1 10 10( ) ( )… with the i j,( )th component of the

covariance matrix Σ 0. 8A i j
i j

,( ) =

∣ − ∣, X X N Σ, , ~ 0,T
B11 110 100( ) ( )… with Σ 0. 4B i j

i j
,( ) =

∣ − ∣. The first ten entries

Table 1: Association matrices of the multivariate t-copula and marginal distributions for setting (b)

⎛

⎝

⎜

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

⎟

=R

1 0.6 0.5 0.6 0.7 0.1
0.6 1 0.5 0.5 0.5 0.5
0.5 0.5 1 0.5 0.5 0.5
0.6 0.5 0.5 1 0.5 0.5
0.7 0.5 0.5 0.5 1 0.5
0.1 0.5 0.5 0.5 0.5 1

1

⎛

⎝

⎜

⎜

⎜

⎜

⎞

⎠

⎟

⎟

⎟

⎟

=R

1 −0.3 −0.5 −0.4 −0.5 −0.1
−0.3 1 0.5 0.5 0.5 0.5
−0.5 0.5 1 0.5 0.5 0.5
−0.4 0.5 0.5 1 0.5 0.5
−0.5 0.5 0.5 0.5 1 0.5
−0.1 0.5 0.5 0.5 0.5 1

2

Y X1 X2 X3 X4 X5

( )N 0, 1 t4 ( )N 1, 4 t4 ( )N 1, 4 t4

Table 2: Pair copulas of the R-vine CV U U U U, , , ,1 2 3 4, with their family parameter and Kendall’s τ for setting (e)

Tree Edge Conditioned; Conditioning Family Parameter Kendall’s τ

1 1 U U,1 3; Gumbel 3.9 0.74
1 2 U U,2 3; Gauss 0.9 0.71
1 3 V U, 3; Gauss 0.5 0.33
1 4 V U, 4; Clayton 4.8 0.71
2 1 V U, 1; U3 Gumbel(90) 6.5 −0.85
2 2 V U, 2; U3 Gumbel(90) 2.6 −0.62
2 3 U U,3 4; V Gumbel 1.9 0.48
3 1 U U,1 2; V U, 3 Clayton 0.9 0.31
3 2 U U,2 4; V U, 3 Clayton(90) 5.1 −0.72
4 1 U U,1 4; V U U, ,2 3 Gauss 0.2 0.13
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of β are a descending sequence between 2, 1.1( ) with increment of 0.1, respectively, and the rest are
equal to 0. We assume ε N σ~ 0,( ) and σ 0.1, 1{ }∈ .

Since the true regression quantiles are difficult to obtain in most settings, we consider the averaged
check loss [41,40] and the interval score [11,25], instead of the out-of-sample mean averaged square error in
Kraus and Czado [41], to evaluate the performance of the estimation methods. For a chosen α 0, 1( )∈ , the
averaged check loss is defined as

̂

R N
γ Y q XCL 1 1 ˆ ,α

r

R

n

N

α r n α r n
1 eval 1

,
eval

,
eval

eval
⎧

⎨
⎩

{ ( ( ))}
⎫

⎬
⎭

∑ ∑= −

= =

(5)

where γα is the check loss function.
The interval score, for the α1 100%( )− × prediction interval, is defined as

R N
q X q X

α
q X Y I Y q X

α
Y q X I Y q X

IS 1 1 ˆ ˆ

2 ˆ ˆ

2 ˆ ˆ ,

α
r

R

n

N

α r n α r n

α r n r n r n α r n

r n α r n r n α r n

1 eval 1
2 ,

eval
1 2 ,

eval

1 2 ,
eval

,
eval

,
eval

1 2 ,
eval

,
eval

2 ,
eval

,
eval

2 ,
eval

eval⎧

⎨
⎩

⎧

⎨
⎩

( ( ) ( ))

( ( ) ) { ( )}

( ( )) { ( )}
⎫

⎬
⎭

⎫

⎬
⎭

∑ ∑= −

+ − ≤

+ − >

= =

∕ − ∕

− ∕ − ∕

∕ ∕



(6)

and smaller interval scores are better.
For settings (a)–(f), the estimation procedure for the two-step ahead C- or D-vine quantile regression

follows exactly Section 4.1 where the candidate sets at each step include all possible remaining predictors.
The additional variable reduction described in Section 4.1.1 is not applied; thus, we calculate all possible
conditional log-likelihoods in each step. On the contrary, due to computational burden in settings (g) and
(h), we set the number of candidates to be k 5= and the additional variable reduction from Section 4.1.1 is
applied. The chosen subset contains 20% of all possible choices, where 10% are predictors having the
highest Pearson’s partial correlation with the response and the remaining 10% are chosen randomly from
the remaining predictors. Performance of the C- and D-vine two-step ahead quantile regression is compared
with the C- and D-vine one-step ahead quantile regression. The performance of the competitive methods,
evaluated by the averaged check loss at 5, 50, and 95% quantile levels and interval score for the 95%

Table 3: Pair copulas of the D-vine CV U U U U U, , , , ,1 2 3 4 5, with their family parameter and Kendall’s τ for setting (f)

Tree Edge Conditioned; Conditioning Family Parameter Kendall’s τ

1 1 V U, 1; Clayton 3.00 0.60
1 2 U U,1 2; Joe 8.77 0.80
1 3 U U,2 3; Gumbel 2.00 0.50
1 4 U U,3 4; Gauss 0.20 0.13
1 5 U U,4 5; Indep. 0.00 0.00
2 1 V U, 2; U1 Gumbel 5.00 0.80
2 2 U U,1 3; U2 Frank 9.44 0.65
2 3 U U,2 4; U3 Joe 2.78 0.49
2 4 U U,3 5; U4 Gauss 0.20 0.13
3 1 V U, 3; U U,1 2 Joe 3.83 0.60
3 2 U U,1 4; U U,2 3 Frank 6.73 0.55
3 3 U U,2 5; U U,3 4 Gauss 0.29 0.19
4 1 V U, 4; U U U, ,1 2 3 Clayton 2.00 0.50
4 2 U U,1 5; U U U, ,2 3 4 Gauss 0.09 0.06
5 1 V U, 5; U U U U, , ,1 2 3 4 Indep. 0.00 0.00
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prediction interval, is recorded in Tables 4 and 5. All densities are estimated nonparametrically for a fair
comparison. Table 4 shows that the C- and D-vine two-step ahead regression models outperform the C- and
D-vine one-step ahead regression models in five out of seven settings, except settings (b) and (e), in which
all models perform quite similar to each other. Again, when comparing regression models within the same
vine copula class, the C-vine two-step ahead regression models outperform the C-vine one-step ahead
models in five out of seven settings. Similarly, the D-vine two-step ahead models outperform the D-vine
one-step ahead models in six out of seven scenarios, except setting (b). In scenarios where there is no
significant improvement through the second step, both one-step and two-step ahead approaches perform
very similar. All of that implies that the two-step ahead vine-based quantile regression greatly improves the
performance of the one-step ahead quantile regression. Table 5 indicates that in the high-dimensional
settings, where the two-step ahead quantile regression was used in combination with the additional vari-
able selection from Section 4.1.1, in three out of four simulation settings, the two-step ahead models
outperform the one-step ahead models. In setting (g), we can see that all models show similar performance.
In setting (g) with standard deviation σ 0.1= , the D-vine one-step ahead model outperforms the other
models, while in setting (g) with σ 1= , the D-vine two-step ahead model shows a better performance. In
setting (h), we see a significant improvement in the two-step ahead models compared to the one-step ahead
models. For both σ 0.1= and σ 1= , the best performing model is the C-vine two-step ahead model. These
results indicate that the newly proposed method improves the accuracy of the one-step ahead quantile

Table 4: Out-of-sample predictionsIS 0.5, ̂CL 0.05, ̂CL 0.5, ̂CL 0.95 for settings (a)–(f) with =N 300train and =N 1,000train

Setting Model IS 0.05 ̂CL 0.05 ̂CL 0.5 ̂CL 0.95
IS 0.05 ̂CL 0.05 ̂CL 0.5 ̂CL 0.95

=N 300train =N 1,000train

(a) D-vine One-step 55.54 0.66 0.16 0.51 55.89 0.67 0.15 0.50
=σ 0.1 D-vine Two-step 43.33 0.47 0.10 0.41 40.74 0.45 0.09 0.37

∗∗ C-vine One-step 53.51 0.64 0.16 0.49 54.52 0.66 0.15 0.49
C-vine Two-step 42.01 0.45 0.10 0.40 40.04 0.44 0.09 0.37

(a) D-vine One-step 154.35 1.63 0.45 1.62 162.12 1.70 0.43 1.66
=σ 1 D-vine Two-step 148.53 1.57 0.45 1.56 156.77 1.63 0.42 1.62

∗∗ C-vine One-step 151.60 1.61 0.45 1.60 160.78 1.68 0.43 1.65
C-vine Two-step 148.41 1.56 0.45 1.56 156.79 1.63 0.42 1.62

(b) D-vine One-step 118.75 1.29 0.42 1.30 125.33 1.37 0.40 1.36
∗ D-vine Two-step 119.10 1.30 0.42 1.30 125.24 1.36 0.40 1.36

C-vine One-step 119.08 1.30 0.41 1.30 125.12 1.36 0.40 1.36
C-vine Two-step 118.90 1.30 0.42 1.30 125.30 1.36 0.40 1.36

(c) D-vine One-step 2908.90 30.54 8.55 30.42 3064.78 31.69 8.15 31.47
∗∗ D-vine Two-step 2853.52 30.21 8.70 29.95 3041.95 31.61 8.20 31.26

C-vine One-step 2859.23 30.24 8.59 29.95 3046.52 31.64 8.18 31.25
C-vine Two-step 2850.10 30.19 8.64 29.84 3042.46 31.62 8.20 31.23

(d) D-vine One-step 86.40 0.92 0.24 0.91 91.11 0.96 0.22 0.95
∗∗ D-vine Two-step 83.54 0.90 0.24 0.88 89.56 0.96 0.22 0.92

C-vine One-step 84.99 0.91 0.24 0.90 90.40 0.96 0.22 0.94
C-vine Two-step 83.33 0.90 0.24 0.87 89.47 0.96 0.22 0.92

(e) D-vine One-step 10.59 0.11 0.03 0.11 10.49 0.11 0.03 0.11
∗ D-vine Two-step 10.32 0.10 0.03 0.11 10.26 0.09 0.02 0.11

C-vine One-step 10.23 0.11 0.03 0.10 10.02 0.10 0.02 0.10
C-vine Two-step 10.35 0.10 0.03 0.11 10.33 0.10 0.02 0.11

(f) D-vine One-step 13.79 0.16 0.04 0.14 13.70 0.16 0.04 0.14
∗∗ D-vine Two-step 8.44 0.09 0.02 0.08 8.28 0.09 0.02 0.08

C-vine One-step 12.62 0.14 0.04 0.13 12.23 0.13 0.04 0.13
C-vine Two-step 9.09 0.10 0.02 0.09 8.93 0.09 0.02 0.08

Lower values, indicating better performance, are highlighted in bold. With ∗∗ we denote the scenarios in which there is an
improvement through the second step and with ∗ we denote scenarios in which the models perform similar.
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regression in high dimensions, even with an attempt to ease the computational complexity of the two-step
ahead model with a low number of candidates, compared to the number of predictors.

The proposed two-step algorithms, as compared to the one-step algorithms, are computationally more
intensive. We present the averaged computation time over R 100= replications on 100 paralleled cores
(Xeon Gold 6140 CPUSs@2.6 GHz) in settings (g) and (h) where p Ntrain> , for the one step ahead and the
two-step ahead approach. The high-dimensional settings have similar computational times since the com-
putational intensity depends on the number of pair copula estimations and the number of candidates,
which are the same for settings (g) and (h). Hence, we only report the averaged computational times for
settings (g) and (h). The average computation time in minutes for the one-step ahead (C- and D-vine)
approach is 83.01, in contrast to 200.28 by the two-step ahead (C- and D-vine) approach. With the variable
reduction from Section 4.1.1, the two-step algorithms double the time consumption of the one-step algo-
rithms in exchange for prediction accuracy.

6 Real data examples

We test the proposed methods on two real data sets, i.e. the Concrete data set from Yeh [64] corresponding
to p N≤ , and the riboflavin data set from Bühlmann and van de Geer [10] corresponding to p N> . For both,
performance of the four competitive algorithms is evaluated by the averaged check loss defined in Eq. (5) at
5, 50, and 95% quantile levels, and the 95% prediction interval score defined in Eq. (6), by randomly
splitting the data set into training and evaluation sets 100 times.

6.1 Concrete data set

The concrete data set was initially used in Yeh [64], and is available at the UCI Machine Learning Repository
[18]. The data set has in total 1,030 samples. Our objective is quantile predictions of the concrete compres-
sive strength, which is a highly nonlinear function of age and ingredients. The predictors are age (AgeDay,
counted in days) and seven physical measurements of the concrete ingredients (given in kg in a m3

mixture): cement (CementComp), blast furnace slag (BlastFur), fly ash (FlyAsh), water (WaterComp), super-
plasticizer, coarse aggregate (CoarseAggre), and fine aggregate (FineAggre). We randomly split the data set
into a training set with 830 samples and an evaluation set with 200 samples; the random splitting is

Table 5: Out-of-sample predictionsIS 0.5, ̂CL 0.05, ̂CL 0.5, ̂CL 0.95 for settings (g)–(h) with =N 100train

Model IS 0.05 ̂CL 0.05 ̂CL 0.5 ̂CL 0.95
IS 0.05 ̂CL 0.05 ̂CL 0.5 ̂CL 0.95

(g), =

∗σ 0. 1 (g), =

∗∗σ 1
D-vine One-step 19.63 0.26 0.25 0.23 53.38 0.69 0.67 0.65
D-vine Two-step 20.48 0.26 0.26 0.25 52.17 0.68 0.65 0.63
C-vine One-step 19.73 0.25 0.25 0.24 53.62 0.69 0.67 0.65
C-vine Two-step 19.79 0.25 0.25 0.25 52.35 0.67 0.65 0.64

(h), =

∗∗σ 0. 1 (h), =

∗∗σ 1
D-vine One-step 558.36 6.92 6.98 7.04 554.18 6.87 6.93 6.99
D-vine Two-step 529.51 6.46 6.62 6.78 531.30 6.64 6.64 6.64
C-vine One-step 514.08 6.05 6.43 6.81 512.96 6.39 6.41 6.44
C-vine Two-step 479.66 5.87 6.00 6.12 483.92 6.05 6.05 6.05

Lower values, indicating better performance, are highlighted in bold. With ∗∗ we denote the scenarios in which there is an
improvement through the second step and with ∗ we denote scenarios in which the models perform similar.
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repeated 100 times. Performance of the proposed C- and D-vine two-step ahead quantile regression, com-
pared to the C- and D-vine one-step ahead quantile regression, is evaluated by several measurements
reported in Table 6 after 100 repetitions of fitting the models. It is not unexpected that the results of the
four algorithms are more distinct than most simulation settings, given the small number of predictors.
However, there is an improvement in the performance of the two-step ahead approach compared to the one-
step ahead approach for both C- and D-vine-based models. Also, the C-vine model seems more appropriate
for modeling the dependency structure in the data set. Finally, out of all models, the C-vine two-step ahead

algorithm is the best performing algorithm in terms of out-of-sample predictions IS 0.5 , ̂CL 0.05, ̂CL 0.5, ̂CL 0.95
on the Concrete data set, as seen in Table 6.

In Figure 4, the marginal effect plots based on the fitted quantiles, from the C-vine two-step model, for
the three most influential predictors are given. The marginal effect of a predictor is its expected impact on
the quantile estimator, where the expectation is taken over all other predictors. This is estimated using all
fitted conditional quantiles and smoothed over the predictors considered.

6.2 Riboflavin data set

The riboflavin data set, available in the R package hdi, aims at quantile predictions of the log-transformed
production rate of Bacillus subtilis using log-transformed expression levels of 4,088 genes. To reduce the
computational burden, we perform a pre-selection of the top 100 genes with the highest variance [10],
resulting in a subset with p 100= log-transformed gene expressions and N 71= samples. Random splitting
of the subset into training set with 61 samples and evaluation set with 10 samples, is repeated for 100 times.
For the C- and D-vine two-step ahead quantile regression the number of candidates is set to k 10= .
Additionally, to further reduce the computational burden the additional variable selection from Section
4.1.1 is applied with the chosen subset containing 25% of all possible choices, where 15% are predictors

Table 6: Concrete data set: out-of-sample predictionsIS 0.5, ̂CL 0.05, ̂CL 0.5, ̂CL 0.95

Model IS 0.05 ̂CL 0.05 ̂CL 0.5 ̂CL 0.95

D-vine One-step 1032.32 10.75 2.76 10.52
D-vine Two-step 987.10 10.54 2.78 9.82
C-vine One-step 976.75 10.65 2.70 9.45
C-vine Two-step 967.00 10.52 2.64 9.45

The best performing model is highlighted in bold.

Figure 4:Marginal effect plots for the three most influential predictors on the concrete compressive strength forα values of 0.05
(red colour), 0.5 (green colour), and 0.95 (blue colour).
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having the highest partial correlation with the log-transformed Bacillus subtilis production rate and the
remaining 10% are chosen randomly from the remaining predictors. Performance of competitive quantile
regression models is reported in Table 7, where we see that the proposed C-vine two-step ahead quantile
regression is the best performing model and outperforms both the D-vine one-step ahead quantile regres-
sion from Kraus and Czado [41] and the C-vine one-step ahead quantile regression to a large extent.
Furthermore, the second best performing method is the D-vine two-step ahead model which, while per-
forming slightly worse than the C-vine two-step ahead model, also significantly outperforms both the
C-vine and D-vine one-step ahead models. Since the predictors entering the C- and D-vine models yield
a descending order of the predictors contributing to maximizing the conditional log-likelihood, the order
indicates the influence of the predictors to the response variable. It is often of practical interest to know
which gene expressions are of the highest importance for prediction. Since we repeat the random splitting
of the subset for R 100= times, the importance of the gene expressions is ranked sequentially by choosing

Table 7: Out-of-sample predictionsIS 0.5, ̂CL 0.05, ̂CL 0.5, ̂CL 0.95

Model IS 0.05 ̂CL 0.05 ̂CL 0.5 ̂CL 0.95

D-vine One-step 33.83 0.44 0.42 0.41
D-vine Two-step 30.57 0.44 0.38 0.33
C-vine One-step 34.52 0.49 0.43 0.38
C-vine Two-step 28.59 0.41 0.36 0.30

The best performing model is highlighted in bold.

Table 8: Ten most influential gene expressions on the conditional quantile function, ranked based on their position in the order

Model/Position 1 2 3 4 5 6 7 8 9 10

D-vine One-step GGT YCIC MTA RPSE YVAK THIK ANSB SPOVB YVZB YQJB
D-vine Two-step MTA RPSE THIK YMFE YCIC sigM PGM YACC YVQF YKPB
C-vine One-step GGT YCIC MTA RPSE HIT BFMBAB PHRC YBAE PGM YHEF
C-vine Two-step MTA RPSE THIK YCIC YURU PGM sigM YACC YKRM ASNB

Figure 5: Marginal effect plots for the ten most influential predictors on the log-transformed Bacillus subtilis production rate
for =α 0.5.
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the one with the highest frequency of each element in the order excluding the gene expressions chosen in
the previous steps. For instance, the most important gene expression is chosen as the one most frequently
ranked first; the second most important gene is chosen as the one most frequently chosen as the second
element in the order, excluding the most important gene selected in the previous step. The top ten most
influential gene expressions using the C- and D-vine one- or two-step ahead models are recorded in Table 8.
Figure 5 shows the marginal effect plots based on the fitted quantiles, from the C-vine two-step model, for
the ten most influential predictors on the log-transformed Bacillus subtilis production rate.

7 Summary and discussion

In this article, we introduce a two-step ahead forward selection algorithm for nonparametric C- and D-vine
copula-based quantile regression. Inclusion of future information, obtained through considering the next
tree in the two-step ahead algorithm, yields a significantly less greedy sequential selection procedure in
comparison to the already existing one-step ahead algorithm for D-vine-based quantile regression in Kraus
and Czado [41]. We extend the vine-based quantile regression framework to include C-vine copulas, pro-
viding an additional choice for the dependence structure. Furthermore, for the first time, nonparametric
bivariate copulas are used to construct vine copula-based quantile regression models. The nonparametric
estimation overcomes the problem of possible family misspecification in the parametric estimation of
bivariate copulas and allows for even more flexibility in dependence estimation. Additionally, under
mild regularity conditions, the nonparametric conditional quantile estimator is shown to be consistent.

The extensive simulation study, including several different settings and data sets with different dimen-
sions, strengths of dependence, and tail dependencies, shows that the two-step ahead algorithm outper-
forms the one-step ahead algorithm in most scenarios. The results for the Concrete and Riboflavin data sets
are especially interesting, as the C-vine two-step ahead algorithm has a significant improvement compared
to the other algorithms. These findings provide strong evidence for the need of modeling the dependence
structure following a C-vine copula. In addition, the two-step ahead algorithm allows controlling the
computational intensity independently of the data dimensions through the number of candidate predictors
and the additional variable selection discussed in Section 5. Thus, fitting vine-based quantile regression
models in high dimensions becomes feasible. As seen in several simulation settings, there is a significant
gain by introducing additional dependence structures other than the D-vine-based quantile regression. A
further research area is developing similar forward selection algorithms for R-vine tree structures while
optimizing the conditional log-likelihood.

At each step of the vine building stage, we compare equal-sized models with the same number of
variables. The conditional log-likelihood is suited for such a comparison. Other questions might come in
handy, such as choosing between C-vine, D-vine, or R-vine information criteria. When maximum likelihood
estimation is employed at all stages, the selection criteria of Akaike (AIC) [1], the Bayesian information
criterion (BIC) [55], and the focused information criterion (FIC) [16] might be used immediately. Ko et al.
[33] studied FIC and AIC specifically for the selection of parametric copulas. The copula information
criterion in the spirit of the Akaike information criterion by Gronneberg and Hjort [26] can be used for
selection among copula models with empirically estimated margins, while Ko and Hjort [32] studied such a
criterion for parametric copula models. We plan a deeper investigation of the use of information criteria for
nonparametrically estimated copulas and for vines in particular. Such a study is beyond the scope of this
article but could be interesting to study stopping criteria too for building vines.

Nonparametrically estimated vines are offering considerable flexibility. Their parametric counterparts,
on the other hand, are enjoying simplicity. An interesting route for further research is to combine para-
metric and nonparametric components in the construction of the vines in an efficient way to bring the most
benefit, which should be made tangible through some criteria such that guidance can be provided about
which components should be modelled nonparametrically and which others are best modelled parame-
trically. For some types of models, such choice between a parametric and a nonparametric model has been
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investigated by Jullum and Hjort [31] via the focused information criterion. This and alternative methods
taking the effective degrees of freedom into account are worth further investigating for vine copula models.
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Appendix

A Construction of the transformation local likelihood estimator of
the copula density

Let the N 2× transformed sample matrix be

D S T, ,( )= (A.1)

where the transformed samples D S Φ U T Φ U n N, , 1, ,n n i
n

n j
n1 1( ( ) ( ))( ) ( )

= = = = …

− − , and Φ denotes the
cumulative distribution function of a standard Gaussian distribution. The logarithm of the density fS T, of
the transformed samples S T n N, , 1, ,n n( ) = … is approximated locally by a bivariate polynomial expansion
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To get the local polynomial approximation, we need a kernel function K with 2 2× bandwidth matrix BN .
For some pairs s tˇ, ˇ( ) close to s t,( ), f s tlog ˇ, ˇST ( ) is assumed to be well approximated, locally, by for instance a
polynomial with m 1= (log-linear)

P s s t t a s t a s t s s a s t t tˇ , ˇ , , ˇ , ˇ ,a 1,0 1,1 1,21( ) ( ) ( )( ) ( )( )− − = + − + −

or m 2= (log-quadratic)
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The coefficient vector of the polynomial expansion Pam is denoted by a s t,m( ), where a s t a s t, , ,1 1,0( ) ( ( )=

a s t a s t, , ,1,1 1,2( ) ( )) for the log-linear approximation and a s t a s t a s t, , , , ,2 2,0 2,5( ) ( ( ) ( ))= … for the log-quad-
ratic. The estimated coefficient vector a s t˜ ,m( ) is obtained by a maximization problem in Eq. (A.3)
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While it is well known that kernel estimators suffer from the curse of dimensionality, in the vine
construction only two-dimensional functions need to be estimated, this thus avoids problems with high-
dimensionality. We next explain as in the study by Geenens et al. [22] how a bandwidth selection is
obtained. Consider the principal component decomposition for the N 2× sample matrix D S T,( )= in Eq.
(A.1), such that the N 2× matrix Q R,( ) follows

Q R WD, ,T T( ) = (A.4)

where each row ofW is an eigenvector of D DT . We obtain an estimator of fST through the density estimator
of fQR, which can be estimated based on a diagonal bandwidth matrix h hdiag ,Q R

2 2( ). Selecting the band-
widths hQ uses samples Q n N, 1, ,n = … as
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where f p˜ 1, 2Q
p

( )
( )

= are the local polynomial estimators for fQ, and f̃Q n
p
( )

( )

−

is the “leave-one-out” version of
f̃Q

p( )
computed by leaving out Qn. The procedure of selecting hR is similar. The bandwidth matrix for the

bivariate copula density is then given by B K W h h Wdiag ,N N
p

Q R
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=

− − , where KN
p( ) takes N 1 45∕ to ensure an

asymptotic optimal bandwidth order for the local log-quadratic case (p 2= ), see the study by Geenens et al.
([22], Section 4) for details. Selection for the k-nearest-neighbour-type bandwidth is similar. The k-nearest-
neighbour bandwidths denoted as hQ′ and hR′ are obtained by restricting the minimization in Eq. (A.5) in the
interval 0, 1( ), i.e.,
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Estimating fQR at any q r,( ) is obtained by using its k K h NN
p

Q
( )

= ⋅ ′ ⋅ nearest neighbours where KN
p( ) takes

N 4 45− / for p 2= . The R package rvinecopulib only implemented the bandwidth in Eq. (A.5) for the quad-
ratic case with p 2= .

B Proof of Proposition 4.1

Proof.We first show statement 1. By Eq. (3), the estimator F α x x F C α u uˆ , , ˆ ˆ ˆ , , ˆY X X p Y V U U p, ,
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where u F x j pˆ ˆ , 1, ,j j j( )= = … denote variables on the u-scale. To avoid heavy notation, N referring to
the sample size will be omitted here. Then [56,62], to show the uniformly strong consistency of
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To improve the readability and simplify the notation in the proof, we first introduce some shorthand
notations. Define
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and the two differences D D DC C C,1 ,3= − and D D DF C C,3 ,4= − .
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Denote the event A D εsupα F
1
4∣ ∣= ≤ , P A 1( ) = holds by the uniform strong consistency of the estimator of

FY
1− . Next, we show that the conditional probability in Eq. (A.6) is equal to 1.
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This conditional probability is equal to 1, since the first and second supremum are less than or equal to
ε1

4 by conditioning on A and due to the uniform consistency of F̂Y
1−

. The last supremum is less than or
equal to ε1

4 by Bartle and Joichi ([3], Thm. 2) on almost uniform convergence, applied to the continuous
inverse distribution function FY

1− , and taking the measurable space to be the probability space. First,
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− , which can be argued similar to Eq. (A.6)
using the uniform consistency and continuity of the inverse of the h-functions. Next, Eq. (A.6) states
P D D εsup 1α C C,1 ,4( ∣ ∣ )− ≤ = . We conclude that F C α u uˆ ˆ ˆ , , ˆY V U U p

1
, ,

1
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is uniformly strong consistent.
To prove the weak consistency in 2, by [62,56], we only need to show P D D ε 1C C,1 ,4(∣ ∣ )− ≤ → . Using the

same technique as in Eq. (A.6) and a similar argument for proving statement 2 of Proposition 4.1 with
Theorem 2 on convergence in measure in [3], the weak consistency can be obtained. □
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