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A B S T R A C T   

60 MHz proton NMR spectroscopy was used to analyse extracts from saffron spice and a range of potential 
adulterants and mixtures. Using a simple extraction procedure, good quality spectra were obtained which contain 
peaks from the characteristic metabolites picrocrocin and crocins, fatty acids and kaempferol. The spectra of 
samples from trusted suppliers were used to train one-class classification models by SIMCA, nearest neighbour 
and isolation forest methods. Applying these to spectra of saffron samples purchased from the online market
place, it was found that 7 out of 33 samples were highly anomalous. From comparison with the spectra of known 
mixtures and confirmatory spectral analysis using 600 MHz NMR, it is probable that these contain considerable 
amounts of undisclosed foreign matter.   

1. Introduction 

The culinary spice saffron is produced from the dried stigmas of 
Crocus sativus L. flowers, cultivated in many countries including Iran, 
Spain, Turkey, Morocco, Italy and Greece. Extensively used in the 
preparation of food, saffron is valued for its distinctive colour, flavour 
and taste. These are due to certain secondary metabolites found in the 
plant (Mykhailenko, Kovalyov, Goryacha, Ivanauskas, & Georgiyants, 
2019), notably crocins, a family of water-soluble pigments that 
contribute to the red colour, and picrocrocin, a colourless glycoside 
which is largely responsible for the unique taste. Picrocrocin is a pre
cursor for the monoterpene safranal, a volatile oil responsible for the 
characteristic aroma of saffron. In addition to its culinary use, saffron 
has been used as a dye in the textile and cosmetic industries, and in 
traditional medicine for the treatment of various diseases (Hosseinzadeh 
& Nassiri-Asl, 2013). There is increasing evidence that saffron contains 
clinically useful bioactive components related to the crocins, safranal 
and crocetin (Christodoulou, Kadoglou, Kostomitsopoulos, & Valsami, 
2015; Moshiri, Vahabzadeh, & Hosseinzadeh, 2015). Clinical findings 
suggest that saffron is safe in therapeutic doses (Bostan, Mehri, & Hos
seinzadeh, 2017; Modaghegh, Shahabian, Esmaelli, Rajbai, & Hossein
zadeh, 2008). 

The production of saffron is highly labour-intensive, requiring hand- 
picking of the stigmas (‘strands’ or ‘threads’), three per blossom (see 
Supplementary Fig. 1). Approximately 450,000 are needed to produce 
1 kg of strands, making saffron the most expensive spice in the world. Its 

value further depends on quality aspects relating to the secondary me
tabolites. These are influenced by factors including climate, soil 
composition, drying and storage conditions. The limited production and 
very high market value make saffron vulnerable to fraud. Adulteration 
strategies used by counterfeiters commonly aim to increase the volume 
and weight of the crop (Negi, Pare, & Meenatchi, 2021). Typical bulking 
agents include: a range of mineral substances, various liquids (vegetable 
oil, honey) in which the stigmas are soaked before drying, different parts 
of the saffron plant, and other plant-based materials (Torelli, Marieschi, 
& Bruni, 2014). Other types of fraud aim to boost the perceived quality 
by adding natural or synthetic colourants. 

Considerable effort has been directed towards developing methods 
for verifying the authenticity of saffron (Kumari, Jaiswal, & Tripathy, 
2021). Untargeted methods that can detect a broad spectrum of un
known adulterants are especially sought after, in particular those that 
involve minimal sample preparation and are easily implemented. 
Infrared spectroscopy has been explored for detecting adulteration of 
saffron with various plant-based adulterants (Amirvaresi, Nikounezhad, 
Amirahmadi, Daraei, & Parastar, 2021; Petrakis & Polissiou, 2017) and 
for examining the quality of traded saffron (Ordoudi, Pascual, & Tsi
midou, 2014). An untargeted metabolite fingerprinting method has been 
reported that uses UPLC-MS with multivariate data analysis to distin
guish saffron samples according to their geographic origin (Rubert, 
Lacina, Zachariasova, & Hajslova, 2016). 

Of interest in the present work is another untargeted profiling 
approach, nuclear magnetic resonance (NMR) spectroscopy. Various 
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researchers have used high-field (400 MHz and above) NMR for inves
tigating authentication and quality issues in saffron, often in conjunction 
with chemometrics. Reported studies include the detection of adulter
ation with plant-based materials (Musio et al., 2022; Petrakis, Cagliani, 
Polissiou, & Consonni, 2015) and with synthetic dyes (Dowlatabadi 
et al., 2017; Petrakis, Cagliani, Tarantilis, Polissiou, & Consonni, 2017). 
Yilmaz, Nyberg, Molgaard, Asili, and Jaroszewski (2010) sought to 
distinguish authentic Iranian saffron from authentic and adulterated 
samples from other countries. NMR has also been used to examine 
quality and shelf life issues: Ordoudi, Cagliani, Lalou, Naziri, Tsimidou, 
and Consonni (2015) proposed markers for detecting deterioration in 
quality, and Consonni, Ordoudi, Cagliani, Tsiangali, and Tsimidou 
(2016) tracked changes in saffron with storage. 

These studies capitalise on a recognised advantage of high-field NMR 
spectroscopy: its ability to provide wide-ranging information on the 
soluble constituents of a sample prepared without any separation pro
cedure, thereby preserving the original ratios of compounds present 
(Cagliani, Culeddu, Chessa, & Consonni, 2015). Less attractive are the 
capital and running costs of spectrometers that utilise cryogenic super- 
conducting magnets and probes, along with specialist staff to operate 
and maintain the spectrometer. In the present work, we explore the 
potential of 60 MHz ‘benchtop’ proton (1H) NMR spectroscopy for the 
inexpensive, rapid and robust screening of saffron. To the best of our 
knowledge, benchtop NMR has not previously been considered in this 
capacity, although there are reported uses of this emerging technology 
for studying secondary metabolites in extracts from plant material 
(Gunning et al., 2018; Pages, Gerdova, Williamson, Gilard, Martino, & 
Malet-Martino, 2014; Wu et al., 2021). 

In the present work, we acquire 60 MHz benchtop 1H NMR spectra 
from a collection of authentic saffron samples, as well as mixtures with a 
range of potential adulterants. Sample preparation is kept to a mini
mum, with extractions carried out using a low-cost, low-risk solvent, 
with the goal of achieving an analytical protocol suitable for translation 
into commercial settings. For data analysis, we employ one-class clas
sification methods which model only the ‘target’ class (‘authentic’ 
saffron) and use a threshold to accept or reject further items. Such 
methods are intended for use with heavily unbalanced datasets (San
toyo-Ramon, Casilari, & Cano-Garcia, 2021; Seliya, Zadeh, & Khosh
goftaar, 2021). This approach is preferred in the present work, because it 
is difficult to obtain examples of proven fraudulent products in sufficient 
numbers to develop a binary ‘authentic vs adulterated’ classification 
model. Further, the wide range of possible adulterant materials means 
that simulating such samples is challenging; however, we show that for 
selected scenarios, the approach is capable of detecting adulteration at 
useful levels. Finally, using the established protocol, we conduct a sur
vey of further saffron samples procured from suppliers in the interna
tional online marketplace. Our findings strongly suggest that there is an 
ongoing issue with adulteration in the sector. 

2. Materials and methods 

2.1. Samples 

2.1.1. Saffron 
52 retail packs of saffron were purchased at intervals over a period of 

two years from six different UK suppliers (labelled A1 – A6) with most 
from a retailer (A1) recognised for their exemplary supply chain re
sponsibility (Spence & Bourlakis, 2009). All were sold as whole dried 
stigmas, which in practice means a mixture of intact strands as well as 
fragments (see Supplementary Fig. 1(c)). These samples were used as the 
‘authentic’ reference collection. Additionally, saffron bulbs were ob
tained from a UK supplier and cold-house grown locally in Norwich, UK. 
This produced twelve saffron plants from which the stigmas were har
vested and dried, giving approximately 50 mg of dried material. This 
sample was also included in the authentic collection, giving 53 biolog
ically independent samples in total. These are summarised in 

Supplementary Table 1. 
A further 33 packs of saffron, regarded as ‘survey’ samples, were 

purchased from online suppliers. The majority of these were sold as 
whole dried stigmas; three were sold as ground powder. In all cases, the 
product labelling claimed the contents to be wholly comprised of 
saffron. Where sufficient material was available, duplicate analyses 
were carried out, at the time of purchase and after a period in storage. In 
some cases, repeat purchases of the same brand were made at intervals 
over the two-year period of study. These details are given in Supple
mentary Table 2. 

2.1.2. Potential adulterants 
Seven materials that have been documented in the literature as 

possible adulterants of saffron were studied in this work. Dried petals of 
arnica (Arnica montana), calendula (Calendula officinalis, ‘pot marigold’) 
and safflower (Carthamus tinctoris), turmeric spice (the ground dried 
rhizome of Curcuma longa), cayenne pepper (ground dried fruits of 
Capsicum annuum) and sandalwood (ground wood of Santalum genus) 
were purchased from online UK retailers. Tartrazine (‘acid yellow 23′) 
analytical standard was purchased from Sigma-Aldrich (Merck Life 
Sciences, Gillingham, UK). 

2.2. Sample preparation and extraction 

2.2.1. Saffron 
For the saffron samples, stigmas were ground in a pestle and mortar, 

and 50 mg of the ground material was placed in 1 mL of deuterated 
dimethyl sulfoxide (DMSO‑d6, 99.9 % D, 0.03 % (v/v) tetramethylsilane 
(TMS), Merck Life Sciences, Gillingham, UK). For the saffron samples 
purchased ready ground, 50 mg of powder was weighed directly into an 
Eppendorf tube and 1 mL of DMSO‑d6 added. After 30 mins steeping at 
laboratory ambient temperature (21 ̊ C), the supernatant was filtered 
through cotton wool into an NMR tube (Aldrich® Colorspec™ dispos
able NMR tubes, diameter 5 mm, size 8in from Merck Life Sciences UK, 
Gillingham, UK). DMSO‑d6 was chosen as it is an effective solvent of the 
metabolites of interest in saffron, giving simultaneous access to both 
lipophilic and hydrophilic compounds (Cagliani et al., 2015). Further, it 
is aprotic, relatively inert and also nontoxic, making it amongst the 
safest of NMR solvents. 

2.2.2. Mixtures of saffron with adulterants 
36 mixture samples were prepared by combining different pro

portions by weight of ground saffron with each adulterant (nominally 
10, 20, 30, 40 and 50 % w/w of adulterant, with additionally the level 
5 % w/w of tartrazine). The dried petals of arnica, calendula and saf
flower were ground in a pestle and mortar before weighing and mixing 
with the ground saffron. Extraction of 50 mg of each ground mixture was 
carried out as described for saffron above. The saffron samples used in 
preparing the mixture series were taken from the authentic collection 
(see Supplementary Table 3 for details). 

2.3. NMR spectral acquisition 

2.3.1. 60 MHz 1H NMR spectroscopy 
60 MHz 1H NMR spectra were acquired from all extracts using a 

Pulsar benchtop spectrometer (Oxford Instruments, Tubney Woods, 
Abingdon, Oxford, UK) running SpinFlow software (Oxford In
struments). The spectrometer magnet is maintained at 37 ̊C which gives 
a temperature inside the probe of ~ 35 ̊C during acquisition. The 90̊
pulse length was 14.4 μs as determined by the machine’s internal cali
bration cycle. For each extract, 256 free induction decays (FIDs) were 
collected using a filter width of 5000 Hz, a scan time of approximately 
6.55 s and recycle (inter-scan) delay of 2.0 s, resulting in a total acqui
sition time of approximately 36 min per extract. These parameters were 
chosen as we have found from previous studies of plant material extracts 
that they represent a good compromise between sample throughput and 
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spectral signal-to-noise. FIDs were zero-filled to give spectra containing 
32,768 data points. The FIDs were Fourier-transformed, co-added and 
phase-corrected using SpinFlow and MNova software packages (Mes
trelab Research, Santiago de Compostela, Spain) to present a single 
frequency-domain spectrum from each extract. The linewidth was 
checked daily using a sealed standard sample of TMS in chloroform-d, 
and shimming carried out as needed to keep the FWHM of the chloro
form peak at ≤ 0.5 Hz. The chemical shift scale in all extract spectra was 
referenced to the DMSO‑d6 peak at 2.5 ppm. 

2.3.2. 600 MHz 1H NMR spectroscopy 
Some selected extracts were also analysed by high-field, high-reso

lution NMR, using a Bruker Avance NEO 600 MHz spectrometer equip
ped with a triple resonance TCI cryoprobe. The console was controlled 
by Topspin 2.0 software. Spectra were recorded at 298 K with 16 FIDs 
co-added for each extract. The chemical shift scale was referenced to the 
DMSO‑d6 peak at 2.5 ppm. 

2.4. Data analysis 

All data analysis was carried out in Matlab (The Mathworks, Cam
bridge, UK) using functions from the associated Statistics and Machine 
Learning Toolbox, and from the publicly available DD-SIMCA Matlab 
tool (Zontov, Rodionova, Kucheryavskiy, & Pomerantsev, 2017). Three 
different one-class classification approaches were employed to model 
the target class (the spectra of the authentic reference collection). These 
were soft independent modelling of class analogy (SIMCA), one-class 
classification using nearest neighbours (OCC-NN), and isolation forests 
(IF). 

Based upon principal component analysis (PCA), SIMCA was origi
nally proposed in Wold (1976) and has since become a widely accepted 
method for tackling one-class classification. A recent proposed modifi
cation is data driven SIMCA (DD-SIMCA) which is described in detail by 
Zontov et al. (2017); this has been employed to provide a benchmark 
analysis in the present work. 

OCC-NN are a family of density-based outlier detection algorithms 
(Tang & He, 2017). In its simplest form, OCC-NN examines the local 
neighbourhood of an observation by measuring the distance(s) to its 
nearest neighbour(s) within the target class. If this is higher than some 
threshold value, the observation is rejected as anomalous, otherwise it is 
accepted as a member of the target class. The threshold and number of 
nearest neighbours considered are adjusted to give an acceptable rate of 
type I errors (‘false positives’ or ‘false alarms’, expressed by the 
‘contamination fraction’ hyperparameter). The implementation of OCC- 
NN in the present work additionally employs the ensemble techniques of 
’feature’ (spectral data point) sampling to generate diverse classifiers, 
and aggregation across the ensemble to obtain outcomes. Matlab code 
for carrying out the method is given in Supplementary Fig. 2. 

An IF comprises an ensemble of binary partition trees constructed 
from the target class, each of which is grown until all items occupy a 
separate leaf node (Liu, Ting, & Zhou, 2012). To create diverse trees, 
there is random sampling of both features and observations. The premise 
is that outliers will be isolated sooner than typical observations, with 
shorter paths from root to leaf nodes compared with the average over all 
trees. The comparison threshold value is chosen to give a type I error 
rate consistent with the contamination fraction hyperparameter. 
Because the main aim is isolation of anomalous observations from the 
rest, the size of the target class is not a crucial factor in determining 
outcomes, thus IF is considered to be a suitable approach for small 
datasets. This contrasts with many multivariate methods where large 
numbers of observations are required. In the present work, IF has been 
implemented using the isolation forest algorithm from the Matlab Sta
tistics and Machine Learning Toolbox. 

For all the modelling methods, all hyperparameters were established 
at the training stage, making use of the target class spectra only. In DD- 
SIMCA, resampled k-fold cross-validation was used to select the number 

of PC dimensions to use without overfitting the model, whereas the two 
ensemble approaches inherently involve extensive resampling, cross- 
validation and aggregation, which boost accuracy whilst minimising 
the overfitting risk. 

Once trained, the models were used to make predictions about 
further observations: the mixture and survey sample spectra. As exam
ples of adulterated saffron, the mixture series are true members of the 
‘outlier’ class. Although such samples play no role in training one-class 
models, they can usefully act as test samples for directly comparing 
different models’ performances. (Note that the mixture compositions are 
not intended to represent all possible embodiments of adulterated 
saffron; indeed, comprehensive simulation of the outlier class would be 
an inordinate challenge, and unnecessary in the context of one-class 
classification.) The survey samples were all sold as ‘pure saffron’, so 
the a priori expectation is that they will be accepted as such by one-class 
models at the same rate as the training samples; obtaining more outliers 
than anticipated suggests the presence of compromised samples. 

3. Results and discussion 

3.1. Data exploration 

The 60 MHz 1H NMR spectrum of an extract of an authentic saffron is 
shown in Fig. 1, where it is compared with a spectrum of the same 
sample obtained using 600 MHz 1H NMR. The region containing the 
DMSO‑d6 peaks at 2.5 ppm and the water peak at 3.4 ppm has been 
discarded, because in the 60 MHz spectrum, this can be highly variable 
(see the complete set of authentic saffron 60 MHz spectra given in 
Supplementary Fig. 3). This reflects both the absorption of water by 
DMSO‑d6 and the dehydration state of the samples. From a pattern 
recognition viewpoint, it is preferable to exclude regions with such 
confounding information content. This approach was taken in previ
ously published work on seized controlled substances (Antonides et al., 
2019) which have unknown and/or poorly controlled storage histories. 

Some of the major features are marked, drawing on the compre
hensive high field assignments by Cagliani et al (2015). These include 
several resonances arising from the key metabolites found in saffron. 
Picrocrocin gives rise to large peaks at 1.16, 1.18, 2.10 and 10.05 ppm, 
the latter a singlet from the aldehydic proton of the 2,6,6-trimethyl-1- 
cyclohexene-1-carboxaldehyde moiety. This feature is well resolved at 
both field strengths and occurs in a region of the NMR spectrum that is 
often sparsely populated, making it a useful visual marker for the 
presence of saffron in a sample. 

More generally, the 60 MHz spectrum appears as a broad envelope of 
features that maps onto the much more resolved peaks in the 600 MHz 
spectrum. However, it is important to recognize that notwithstanding 
this lack of peak resolution, the low field benchtop spectra represent the 
same underlying chemical information in overlapped form. Multivariate 
statistical methods are useful for examining this type of information 
content. Principal Component Analysis (PCA) using the covariance 
matrix form was applied to the collection of authentic saffron spectra. 
The spectral regions utilised were as shown in Fig. 1. To reduce spectral 
variability caused by differences in extraction efficiency, the data were 
pre-treated using standard normal variate (SNV) correction. This scales 
each spectrum to have a mean of zero and variance of unity; it is a 
commonly used pre-treatment for mitigating unwanted spectral varia
tion that is multiplicative in nature (Barnes, Dhanoa, & Lister, 1989) and 
has been found effective in the analysis of benchtop NMR spectra 
(Gunning et al., 2022). 

The first 7 PCs accounted for nearly 95 % of the total dataset variance 
(see Supplementary Fig. 4), with the first two alone representing 75 %; 
the scores for these dimensions are plotted against one another in Fig. 2. 
For normally distributed scores, the squared Mahalanobis distances 
from the authentic group centre in this 2-d space are distributed as χ2 

with 2 degrees of freedom. The ellipse marked on the plot corresponds to 
the p = 0.05 critical value. This provides a simple classifier for accepting 
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or rejecting new samples as authentic at the chosen probability level. To 
illustrate, also shown transformed onto the same axes are the scores for 
the extracts of mixtures with potential adulterants. The mixtures with 
calendula are all correctly rejected as inauthentic, as are many of the 
mixtures with arnica, cayenne and safflower, with scores along the 
second PC axis responsible for the discrimination. From examination of 
the PC loading (See Supplementary Fig. 4), this dimension is strongly 
associated with the ratio picrocrocin:fatty acids, in the direction as 
indicated by the arrow. This shows that as the adulterant content in
creases in the mixtures, so the proportion of picrocrocin decreases. 
Notably, the 60 MHz spectra of pure extracts of these particular adul
terants have spectral profiles consistent with predominantly fatty acids. 
These are shown in Fig. 3, along with those of the other potential 
adulterants under study, and a saffron spectrum for comparison. 

In contrast, all of the mixtures adulterated with sandalwood, tar
trazine or turmeric are incorrectly accepted as authentic (type II errors). 

This is despite their 60 MHz spectra differing greatly from that of saffron 
(see Fig. 3). This is because the PCA is performed on the authentic class 
only, and regions in which there is low variance in saffron spectra exert 
relatively little influence on the transformation. For example, one of the 
strongest peaks in the turmeric spectrum is at 7.2 ppm, but this is one of 
the least variable regions in saffron (see Supplementary Fig. 3(b)). This 
applies similarly to the peaks in the tartrazine spectrum between 7.3 and 
8.2 ppm, or in sandalwood between 6.3 and 9.5 ppm. Thus, the presence 
of these adulterants in a sample does not affect their scores on the first 
two PC axes sufficiently to place them outside the authentic class 
boundary. This shows that classification based on a subset of two PC 
scores alone is too simple to detect many kinds of compromised samples. 
The way forward is to increase the number of scores used and/or to 
make use of the remaining variance unexplained by the PC subset; this 
forms the basis of the DD-SIMCA method, discussed in the following 
section. 

Fig. 1. Comparison of 60 MHz (benchtop) and 600 MHz (high field) 1H NMR spectra obtained from an extract of saffron in DMSO‑d6, with annotations of the main 
features identified in the 60 MHz spectrum. The benchtop spectral profile is dominated by resonances attributed to picrocrocin, a major saffron metabolite, the 
structure of which is given in the inset panel. The isolated peak at 10.05 ppm is in a generally uncrowded region of the spectrum and provides a useful indicator of the 
presence of saffron in a sample. 

Fig. 2. First versus second Principal Component 
scores calculated from the collection of authentic 
saffron spectra. The ellipse corresponds to the 
p = 0.05 critical value for the χ2 distribution with 2 
degrees of freedom. 95 % of authentic samples are 
expected to be located within this boundary. Also 
shown transformed into the same PC space are the 
scores for the mixture samples, colour-coded and 
labelled with the %w/w added ‘adulterant’. None of 
the mixtures with sandalwood, tartrazine or turmeric 
are detected by this classification method.   
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3.2. One-class classification 

Three different methods, DD-SIMCA, OCC-NN and IF, were used to 
carry out one-class classification. SIMCA and its many variants have 
been widely used for spectral analysis, including in authenticity studies 
(Horn, Esslinger, Fauhl-Hassek, & Riedl, 2021; Milani, Rossini, Catelani, 
Pezza, Toci, & Pezza, 2020). OCC-NN has also previously been used to 
analyse benchtop NMR data in an authenticity context (Gunning et al., 
2022). There are no reported applications of IF to NMR spectra or food 
authenticity issues, but it is gaining traction as a fast, robust method for 
treated one-class problems in other fields (Alonso-Sarria, Valdivieso- 
Ros, & Gomariz-Castillo, 2019; Song, Aryal, Ting, Liu, & He, 2022). 

As a well-established method, DD-SIMCA was used in the present 
work to provide a benchmark comparator. Making use of the full spec
tral range (excluding the solvent peak regions, as discussed above), a 
DD-SIMCA model was trained using the spectra of the authentic saffron 
extracts, using resampled k-fold cross-validation to determine the 
optimal number of PC dimensions (see Supplementary Fig. 5). This 
model tuning step is important, as SIMCA approaches are known to be 
highly sensitive to the choice of model dimensionality (Davies & Fearn, 
2008). OCC-NN and IF models were likewise trained using the spectra of 
the authentic saffron extracts. Both these methods make use of machine 
learning principles, and as such, the final accept/reject decision for an 
observation is reported as the outcome of a majority vote by an ensemble 
of learners. For both methods, 300 learners were found to give stable 
outcomes (see Supplementary Fig. 6). 

Shown in Fig. 4(a) are the results obtained from applying the one- 
class models to the mixture series spectra. All the adulterant types 
cause the mixtures to be flagged as anomalous at some concentration 
level, which varies with the modelling method and the material. All 
models report mixtures with tartrazine as outliers, even from the lowest 
level investigated of 5 %w/w. Unlike the other adulterants, this is a 
single compound added directly at the sample preparation stage. Mix
tures with calendula are also flagged by DD-SIMCA and OCC-NN at all 
concentrations investigated, although only from 20 %w/w upwards by 
IF. For the remaining materials, the lowest adulterant level detected 
is ≥ 20 %w/w, depending on the substance and modelling method. 
Differing extraction efficiencies are likely responsible for much of the 
variation in outcomes. Notably, turmeric is not consistently detected by 
all methods at levels less than 40 %w/w; this is not as good as achieved 
by Musio et al (2022) who took advantage of the greater sensitivity of 

400 MHz NMR. Indeed, the detection limits demonstrated here are 
clearly insufficient for spotting low level contamination. However, 
fraudulent substitution for economic gain likely involves substantial 
amounts of foreign material, so the approach may yet offer promise for 
broad, untargeted screening. 

Focusing now on differences in the modelling results, Fig. 4(b) pre
sents a confusion matrix for each method. These summarise the out
comes for the mixture series and authentic samples (the latter from the 
training phase validation folds only) and are useful for making a direct 
comparison of model performances on the exact same set of observa
tions. OCC-NN has the best performance overall, with a type I error rate 
(2 out of 53) consistent with the contamination fraction hyper
parameter, and the highest sensitivity (26 out of 36 mixtures correctly 
flagged as outliers; note, though, that the sensitivity value is meaningful 
only for the sample types under consideration, not a potentially much 
wider outlier class). This contrasts with DD-SIMCA and IF, both of which 
flag 3 authentic samples and 25 mixtures as outliers, although close 
examination of Fig. 4(a) and Supplementary Figs. 5 and 6 shows that the 
misclassified samples are not exactly the same by each method. 

These performance differences are likely due to the underlying as
sumptions about the target class structure, which differ considerably 
between methods: DD-SIMCA employs a classical χ2 test to define the 
class boundary; by focussing only on local inter-observation distances, 
OCC-NN allows for an arbitrarily shaped class; and IF makes no as
sumptions about the target class size or shape at all, concerning itself 
only with those observations found to be extremes. However, the per
formance variations overall are not large, and are inevitably somewhat 
exaggerated by the use of hard decision boundaries. The correspondence 
between methods can be explored by making a more nuanced compar
ison; this is illustrated for the mixture samples in Supplementary Fig. 7. 
The agreement between outcomes is also evident from the analysis of the 
survey samples, discussed in the next section. 

3.3. Survey of samples purchased online 

Turning now to the online purchased survey samples, eight of the 33 
unique packs were identified as outliers by all one-class modelling 
methods (Fig. 4(c)). Samples 7, 17 and 30 were repeat purchases from 
brand 7 made at different timepoints spanning nearly two years, sug
gesting a long-term integrity issue with this supplier. Survey samples 3, 
15, 16 and 28 all contained sufficient material for repeat extractions, 

Fig. 3. Spectra of an extract of saffron (uppermost black trace) compared with those of a range of potential adulterants, shown with a vertical offset for clarity. The 
large methylene peak from fatty acids at 1.23 ppm is seen in the extracts from other plant materials and is the dominant feature in arnica, calendula, cayenne and 
safflower. The spectra are shown here after SNV-correction of the region of interest only (i.e., solvent region excised). Extraction efficiency varies markedly with 
substance, and this is responsible for the clear differences in spectral signal-to-noise. 
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which were carried out immediately upon purchase and again after a 
year in storage; in all cases, the spectra from both analyses were flagged 
as anomalous. One of the extracts from a further sample, 24, was found 
anomalous by all methods, but the other only by DD-SIMCA and OCC- 
NN. A further two samples, 21 and 27, were each flagged as anoma
lous by only two of the three methods. All the suspicious samples were 
purchased as whole saffron strands. Nothing unusual was noticed about 
them upon inspection, although the samples from brand 7 were some
what harder to grind and produced noticeably paler extracts than all 
other samples (see Supplementary Fig. 8). 

Visual examination of the spectra found that in many of the suspi
cious cases, the internal ratio of the fatty acid peak at 1.23 ppm to any of 
the characteristic saffron peaks (e.g from picrocrocin at 1.16 & 
1.18 ppm) is significantly higher than for authentic samples. This can be 
discerned in the heatmap of the complete spectral collection of saffron 
(authentic and survey) shown in Fig. 5. Each row corresponds to a 
spectrum, identified by the labels on the right-hand side; the ten 
anomalous samples discussed above are indicated by bold text. Hierar
chical clustering applied to this spectral collection found that the six 
samples with the highest ‘outlier scores’ by one-class modelling (see 
Supplementary Fig. 9), along with sample 21, formed clusters that were 
well-separated from other samples. This correspondence across the 

various data analysis approaches strongly suggests that these seven 
samples are compromised in some way. Further, from the comparison of 
their outlier scores with those of the mixture series (see Supplementary 
Fig. 7), it seems likely that significant amounts of foreign material(s) are 
involved. 

The two extracts from sample 24 formed a small isolated cluster; 
unusually, these had atypically large ratios of the picrocrocin:fatty acids. 
In terms of authenticity, it is not clear what this type of anomalous 
composition might indicate. The remaining suspicious samples, 27 and 
28, are found to cluster together with other survey samples accepted as 
authentic. Along with their outlier scores, which are amongst of the 
lowest of the flagged samples (see Supplementary Fig. 9), this suggests it 
is reasonable to treat these sample as type I errors, which should be 
expected at a rate consistent with the contamination fraction used in the 
model training. 

In the 60 MHz spectra, no obvious unexpected peaks were observed 
for any of the anomalous samples. However, when 600 MHz spectra 
were acquired from these samples, it became clear that they were 
anomalous in more than just the picrocrocin:fatty acid ratio. An illus
trative example is given in Fig. 6 for the spectra from survey sample 3. 
Fig. 6(a) compares the 60 MHz spectra of the duplicate extracts with the 
mean of the authentic saffron spectra. Other than the internal ratio 

Fig. 4. Panel (a) shows the outcomes by each of the modelling methods for the series of mixtures with known amounts of different potential adulterants. Green cells 
indicate samples correctly flagged as outliers; red cells indicate samples incorrectly accepted as authentic. Panel (b) brings in the results from the training phase to 
produce a confusion matrix for each method, which summarises the correct and incorrect classifications for both the authentic and mixture samples. The upper and 
lower percentages in the bottom left cells in each case are respectively the specificity and the type I error rate (true negative and false positive rates); the latter is seen 
to be broadly consistent with the contamination fraction hyperparameter for all methods. Panel (c) shows the outcomes by each modelling method for the survey 
samples. Rows in the table are labelled with the sample code, the brand code in brackets, and the extraction replicate (chronological, run 1 or 2). Samples flagged as 
outliers are indicated by blue cells and bold text sample codes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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difference already noted, the only other hint of a spectral profile dif
ference occurs at ~ 2.2 ppm, although at 60 MHz this is somewhat close 
to the solvent signal to be certain. However, in Fig. 6(b) the 600 MHz 
spectrum of the same survey sample is compared with that of a typical 
authentic saffron; several multiplets can be seen which are not expected 
in saffron, including a possible doublet in the region ~ 2.2 ppm (marked 
‘A’ on the figure). This confirms the presence of an unidentified sub
stance due to probable adulteration of the saffron sample. Establishing 
the identity of these unknown material(s) requires detailed forensic 
analysis and will be the subject of future work. 

4. Conclusions 

Using a simple extraction procedure, samples of saffron can be suc
cessfully analysed using 60 MHz benchtop NMR, yielding spectra with 
clear features attributable to the characteristic secondary metabolites of 

picrocrocin and crocins. The sample preparation method is low-cost, 
low-risk and suitable for routine use as an authenticity screen. Spectra 
were obtained from a collection of saffron samples from trusted UK 
suppliers, along with serial mixtures of some of these samples with 
known possible adulterants of saffron; these were used to demonstrate 
the potential of the screening method to detect foreign substances. 

To provide an objective means of detecting anomalous samples, one- 
class modelling was carried out using three algorithmically very 
different approaches, DD-SIMCA, OCC-NN and IF. The ensemble 
methods offer the advantages of a straightforward training phase with 
inherent protection against overfitting and only one main hyper
parameter, the contamination fraction, which sets the type I error rate. 
Models were trained on the saffron samples from trusted suppliers, 
which formed a well-behaved target class. The performance of all ap
proaches was found to be very similar, with OCC-NN giving the best 
sensitivity and specificity, although only by a small margin. All models 

Fig. 5. The main panel shows a heatmap of the complete spectral collection of saffron samples (authentic and survey). To aid interpretation, the mean spectrum of 
just the authentic saffron collection is shown in the panel below. A hierarchical cluster tree (correlation distances, unweighted average distance) was calculated from 
the spectra and is shown on the right-hand side. Labels in bold face indicate those samples found anomalous by one class modelling. 
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were able to flag as anomalous the serial mixtures, at concentration 
levels that varied with the adulterant substance. Tartrazine had the 
lowest detection limit of 5 %w/w, whereas some of the dried plant 
materials needed 30 %w/w to be flagged as suspicious. These detection 
limits are well above contamination levels, but arguably are typical of 
fraudulent substitution for economic gain. 

Using the same approach, a survey was conducted of 33 packs of 
saffron purchased from the international online marketplace from 26 
individual brands. Seven of the packs were found to be anomalous by 
application of the one-class models, corroborated by hierarchical cluster 
analysis; these are believed to be compositionally compromised in some 
way. Since the benchtop NMR method is not sensitive enough to detect 
very low levels of adulteration, it is likely that these samples contain 
quite high levels of foreign material, beyond what might be commen
surate with adventitious contamination. From sampling theory, we es
timate the prevalence of fraud in the sector to be between 12 and 35 % 
(see Supplementary Fig. 10), similar to the rate found in the study by 
Torelli et al (2014). Notably, three of the survey samples were repeat 
purchases of a single brand made years apart. This suggests ongoing, 
deliberate fraud by a bad actor in the supply chain rather than an iso
lated incident. 

Examination of the 60 MHz NMR spectra showed that most samples 
flagged as suspicious had unusual internal ratios of the picrocrocin:fatty 

acid peaks. This was confirmed by 600 MHz NMR analysis, which also 
revealed additional peaks in the spectrum not expected in authentic 
saffron. Determining the exact nature of the adulterant(s) is beyond the 
scope of the present study and will be the subject of future investigation. 
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Fig. 6. Spectra from survey sample 3 acquired (a) at 60 MHz field strength, where duplicate analyses are compared with the mean authentic saffron spectrum +/- the 
standard deviation to indicate variation across the collection; and (b) at 600 MHz field strength, where the comparison is with a typical spectrum from the authentic 
collection. In both cases, the most obvious difference is in the ratio of the picrocrocin peak at 1.18 ppm to the neighbouring fatty acid peak at 1.23 pm; this is 
always > 1 for authentic saffron. It is substantially lower in the survey sample, indicating proportionally a much lower picrocrocin content. In the 600 MHz spectrum, 
additional unexplained peaks and multiplets are also seen, e.g. as marked at A, B, C, D and E. 
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