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We show that the second-order, two-time correlation functions for phonons and photons emitted from a
vibronic molecule in a thermal bath result in bunching and antibunching (a purely quantum effect),
respectively. Signatures relating to phonon exchange with the environment are revealed in photon-photon
correlations. We demonstrate that cross-correlation functions have a strong dependence on the order of
detection giving insight into how phonon dynamics influences the emission of light. This work offers new
opportunities to investigate quantum effects in condensed-phase molecular systems.
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Correlation measurements of photon emission provide
powerful tools for demonstrating quantum effects. Among
the most striking examples is the experimental discovery of
antibunching in the photon emission of fluorescing atoms
[1,2], which provided the first direct demonstration of the
quantum properties of light [3]. Antibunching [4] is the
phenomenon whereby the emission of a second photon
immediately after a first is suppressed. The joint probability
of detecting two photons at time t and tþ τ is quantified by
the second-order correlation function [5]. While in classical
emission, this function may have a maximum for τ ¼ 0,
second-order correlations falling off as τ → 0 can appear
only as a purely quantum phenomenon. The second-order
correlation function thus forms a powerful statistical tool
that has been used to study fundamental properties of photon
emission and photon-mediated interactions, for example
bunching and antibunching in transmission through wave-
guides [6] and in emission from plasmonic nanojunctions
[7], pattern formation in photoinduced nucleation [8],
photon-blockade effects [9] in optical cavities [10–14]
(including modified response at strong coupling [15]),
atomic arrays [16,17], as well as superatom behavior in
ensembles of quantum emitters [17,18]. Higher-order cor-
relations can further reveal two-photon blockade [19].
In all of these examples, the correlations are exhibited by

emitted light. However, the usefulness of quantum correla-
tion functions extends beyond the study of photons. Similar
techniques have also been applied to describe phonon
blockade in optomechanical [20,21] and spin-mechanical
[22,23] systems. Intriguingly, second-order cross-correlation

functions between nonidentical particles and quasiparticles
can reveal, for example, photon-magnon blockade in a
ferrimagnetic material coupled to a microcavity [24],
and photon-phonon bunching and antibunching in a qubit-
phonon-plasmon system under strong coupling [25].
In recent years, there has been significant interest in the

nature of electronic and vibrational coherence in condensed-
phase resonance energy transfer in molecular systems
[26,27]. However, its exact nature, whether classical or
quantum, remains controversial [28,29]. This is because
experiments typically used to investigate thismeasure optical
responses resulting from an induced macroscopic polariza-
tion, which is a classical property [30]. Quantum-optical
techniques, such as correlation measurements [31,32], offer
an avenue to investigate genuine quantum effects in molecu-
lar systems directly.
Here, we develop an open quantum system model for a

vibronic molecule driven by a continuous monochromatic
laser field (Fig. 1).We include both vibrational and electronic
degrees of freedom as well as coupling to a thermal
environment. We calculate photon-photon, phonon-phonon,
and photon-phonon correlations during cyclic pumping
while the molecule undergoes vibrational relaxation (VR).
The key result is that signatures relating to phonon exchange
with the environment, which are revealed in phonon-phonon
correlations, can be accessible through the measurement of
photon emission. By examining photon-phonon cross-cor-
relation functions [24,25,32–34], we explain how phonon
dynamics influences the emission of light. Measurements of
such features could help elucidate the impact of vibrational
excitations on the quantum nature of light-matter interaction
processes in systems ranging from subwavelength molecular
arrays [35] to large organic molecules [36].
We consider a model system consisting of a simple

molecule with two electronic levels, each with a set of N
vibrational states, coupled to an infinite ensemble of over-
damped quantum harmonic oscillator modes [37–39].
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Similar models have previously been used to investigate the
role of a vibrational environment on the open quantum
system dynamics of molecules [40,41].
The total Hamiltonian is the formal sum

Ĥtot ¼ ĤS þ ĤB þ ĤSB þ ĤSF; ð1Þ

which describes the system, the bath, and the system-
bath interaction, as well as the coupling between the
system and the photon field. The molecule is driven
by a continuous, monochromatic laser field EI ¼
E0e½expðiωegt=ℏÞ þ expð−iωegt=ℏÞ�, with polarization e
and frequency ωeg resonant with the fundamental tran-
sition between the ground (jgi) and excited (jei) elec-
tronic levels, such that ĤSF ¼ −μ̂ · EIðr; tÞ. Here,
μ̂ ¼ μegdðjeihgj þ jgihejÞ is the transition dipole moment
of magnitude μeg and direction d, such that ĤSF ¼
E0μege · d½expðiωegt=ℏÞ þ expð−iωegt=ℏÞ�½jeihgj þ jgihej�
[42]. Driving by the laser results in stimulated photon
emission yielding a scattered electric field with positive-
frequency component Êþ

sc ∼ expðiωegt=ℏÞjeihgj [43].
The vibrational degrees of freedom are described by

ĤS ¼ jgiĥghgj þ jeiĥehej: ð2Þ

The nuclear Hamiltonians for the ground and excited
electronic states are, respectively, defined by

ĥg ¼ ℏω0

�
b̂†b̂þ 1

2

�
; ð3Þ

ĥe ¼ ℏðωeg þ λÞ þ ℏω0

 
b̂†b̂ −

ffiffiffiffiffiffi
λ

ω0

s
ðb̂þ b̂†Þ þ 1

2

!
; ð4Þ

where ω0 is the system mode frequency, b̂† and b̂ are
system phonon creation and annihilation operators, corre-
sponding to the vibrational states of the molecule, and λ is
the system reorganization energy [44]. This model is
constructed in a diabatic (D) basis that separates the
vibrational levels from the electronic states, leading to
explicit off-diagonal couplings. As a result, the electronic
excited state, Eq. (4), appears displaced by Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2λω−1

0

p
relative to the electronic ground state [see also Fig. 1(b)].
This displacement accounts for the change in the equilib-
rium geometry of the electronic excited state. Note that an
increase in the system reorganization energy, λ, corre-
sponds to an increased displacement, Δ. The excited
potential also experiences an energy shift ℏωeg correspond-
ing to the fundamental transition.
Instead of working in the diabatic basis, used above for

conceptual clarity in the construction of the Hamiltonian,
one can obtain adiabatic (A) eigenstates, jg; 0i; jg; 1i;…;
je; 0i; je; 1i;… (see Fig. 1), by diagonalizing Ĥtot through a
unitary transformation ĤA

tot ¼ ðÛADÞ†ĤD
totÛ

AD [41,45]. The
presence of the system reorganization energy in Eq. (4)
means that the energy eigenstates (the energy of the adi-
abatic states) are identical to the energies of the vibrational
levels in the diabatic picture, as illustrated in Fig. 1(b).
The adiabatic states correspond directly to the laboratory
observables.
Vibrational relaxation occurs as a result of escape of

system phonons to the environment, modeled as an infinite
ensemble of harmonic oscillator modes. The system-bath
coupling is then described by

ĤB þ ĤSB ¼
X
α

p̂2
α

2mα
þ 1

2
mαω

2
α

�
x̂α −

gαQ̂
2mαω

2
α

�
2

; ð5Þ

FIG. 1. (a) Schematic of the molecule coupled to bath modes and driven by laser field EI , resulting in the scattered field Êsc. Phonon
movement between system and environment indicated by arrows. (b) Diabatic energy levels, with excited state displacement Δ, system
reorganization energy λ, fundamental transition frequency ωeg, and system mode frequency ω0. Corresponding adiabatic levels on the
far right.
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where Q̂ ¼ ðb̂þ b̂†Þ= ffiffiffi
2

p
, and mα, p̂α, and x̂α are the mass,

momentum, and the coordinate of the environmental har-
monic modes, which correspond to bath phonons. The
coupling strength gα of the αth harmonic oscillator is deter-
mined by the spectral density, JðωÞ ¼Pα g

2
αð2mαÞ−1×

ωαδðω − ωαÞ. This model for the surrounding environment
is very general and allows in principle even the modeling of
non-Markovian system-bath coupling [40]. Here, however,
we work in the Markovian limit and simplify the environ-
ment to an overdamped Brownian oscillator profile,
JðωÞ ¼ 2ηωΛðω2 þ Λ2Þ−1, with bath reorganization energy
η and dissipation rate Λ. The overdamped spectral density
introduces stochastic, Gaussian fluctuations in the nuclear
dynamics, representative of low frequency intermolecular
modes from the interaction of the molecule with the solvent.
The coupling of the system and bath nuclear coordinates
leads to vibrational dephasing [47,48] and dissipation.
Several different approaches exist for solving the generally
computationally demanding equations of motion resulting
from Eq. (1) and similar open quantum systems
[7,13,31,49–51]. Here, we employ the hierarchical equa-
tions of motion method [52,53] in the overdamped limit
fromRef. [40] to evolve the vibronicmolecule, equivalent to
the Hamiltonian vibration model for a vibronic monomer
in Ref. [41].
The hierarchical equations of motion simulations of the

quantum dynamics allow us to numerically compute the
correlation functions for the emission of photons and
phonons from the molecule. In particular, the correlated
emission of photons and phonons is quantified by the
normalized second-order correlation function

gð2Þc1c2ðt; τÞ ¼
hĉ1ðtÞĉ2ðtþ τÞĉ†2ðtþ τÞĉ†1ðtÞi

hĉ1ðtÞĉ†1ðtÞihĉ2ðtÞĉ†2ðtÞi
: ð6Þ

When the operators are chosen such that ĉ1;2 ¼ â ¼
μegjgihej, the photon annihilation operator, we obtain the

photon-photon correlation function gð2Þaa , which reflects the
joint probability of a photon being emitted at time tþ τ
given that a photon was emitted at time t. By appropriately
choosing ĉ1;2 from the photon and phonon operators â and b̂,
respectively, we can correspondingly construct the phonon-

phonon correlation function gð2Þbb and, notably, the photon-

phonon and phonon-photon cross-correlation functions gð2Þab

and gð2Þba in a manner similar to Refs. [24,25,32–34].
We now employ the correlation functions (6) to probe

quantum effects [54] in the molecular system in its thermal
environment. In particular, we determine the presence of anti-

bunching [4], defined as gð2Þc1c2ðt; τ ¼ 0Þ < gð2Þc1c2ðt; τ > 0Þ.
This implies that the probability of a second emission
event immediately following a first is suppressed. Note
that this definition encompasses not only photon-photon

or phonon-phonon correlation, but is also generalized
[24,25] to include cross-correlations where the two emis-
sion events consist of one photon and one phonon.
Correspondingly, bunching is defined to occur when
the probability of simultaneous emission is enhanced,

gð2Þc1c2ðt; τ ¼ 0Þ > gð2Þc1c2ðt; τ > 0Þ.
In the following, we assume that all emitted photons and

phonons are detected, regardless of scattering directions,
e.g., by imagining the system enclosed by a detector and
use the quantum regression theorem [5,42,55–57] to
compute second-order correlations as

gð2Þc1c2ðt; τÞ ¼
Tr½ĉ†1ĉ1 expðLτÞðĉ2ρ̂ĉ†2Þ�
Trðĉ1ρ̂ĉ†1ÞTrðĉ2ρ̂ĉ†2Þ

; ð7Þ

where ρ̂ ¼ ρ̂ðtÞ is the density matrix at time t and L is the
Liouvillian operator for the time evolution of the system.
The molecule is initially equilibrated with its thermal
environment, in the absence of the driving field, so that
the density matrix of the system is correlated with the bath.
This ensures that the vibrational states of the molecule are
in the correct Boltzmann distribution. The overdamped
hierarchy is then used to evolve the dynamics in the
presence of the driving field over several optical cycles

to find ρ̂ðtÞ. To compute gð2Þc1c2ðt; τÞ, one then takes ĉ2ρ̂ðtÞĉ†2
as the initial state for a subsequent evolution in τ taking care
to preserve continuity of the driving field.
Figures 2(a)–(c) show the two-time photon correlation

function, gð2Þaa ðt; τÞ, as a function of the photon-photon
separation time τ for the molecular system defined in
Eq. (1). For this and following simulation results, we assume
(unless otherwise specified) η ¼ 5 cm−1, Λ ¼ 200 cm−1,
ω0 ¼ 500 cm−1, Δ ¼ 1.2 such that λ ≈ 260 cm−1, ωeg ¼
104 cm−1, E0 ¼ 107 NC−1, and T ¼ 298 K. These param-
eters ensure that coupling to the bath is weak, and we are
operating in the Markovian limit. We truncate the number of
vibrational levels at N ¼ 10, which is sufficiently large
for the results to be insensitive to the truncation. These
parameters are comparable to real molecules with electro-
nic and vibrational transition frequencies ∼104 cm−1 and
∼102 cm−1, respectively [58,59]. The weakly coupled
Markovian bath parameters are typical of commonplace
nonpolar solvents [40,41].
As population is initialized to a Boltzmann distribution,

excitation results in a wave packet that moves within the
harmonic potential [60–62]. When the system reorganiza-
tion energy λ ¼ 0, the effect of the monochromatic laser
field is to drive population between the ground vibronic
states and the equivalent excited states (jg; 0i → je; 0i;
jg; 1i → je; 1i;….). The resulting Rabi oscillations are

reflected in gð2Þaa and show in photon antibunching.
However when λ > 0, VR occurs and the excited state
wave packet population becomes different to that of the
ground state. This results in the emergence of a minor
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oscillation in gð2Þaa , at the vibrational mode frequency, which
implies that the experimentally measurable second-order
photon correlation function contains an observable phonon
signature despite the fact that phonons are not directly
detected. This signature appears because of the change in
Franck-Condon overlap (i.e., the overlap integral of the
bound eigenstates of the electronic excited state with
the ground state) [63]. The Franck-Condon overlap of
the fundamental transitions reduces with increasing λ,
increasing the Rabi oscillation period and more population
enters the vibronic je; 0i state via VR.
Increased bath reorganization energy η damps the Rabi

oscillations as phonons dissipate into the bath, leading to
the formation of a steady state [Figs. 2(b) and (c)]. We then

evaluate gð2Þaa ðt; τÞ as a function of τ at a time t after reaching
the steady state, in keeping with common convention.
When no steady state forms [η ¼ 0, Fig. 2(a)], but Rabi-like
oscillations persist indefinitely [64], the choice of t, and

therefore the normalization of gð2Þaa as a function of τ
[cf. Eq. (6)] is not obvious [43,45,65]. We choose t such
that the denominator in Eq. (6) corresponds to its value in
the steady state when η > 0.
Figures 2(d)–(f) show the corresponding phonon-phonon

correlation, gð2Þbb ðτÞ. When λ ¼ η ¼ 0 the population moves
resonantly between the ground and excited states and with

no VR [66], resulting in a constant phonon-phonon gð2Þbb ðτÞ.
Despite the lack of phonon dissipation (η ¼ 0), a prono-
unced oscillation at themode frequency appears for λ > 0 as
the excited state displacement results in a nonstationary
population distribution out of thermal equilibrium. For the

same reason, gð2Þbb ðτÞ also tracks the Rabi oscillation when
λ > 0 and phonon bunching is apparent. Additionally
introducing coupling to the environment bath, η > 0, we

find a rapid decay of gð2Þbb with τ due to the strong dissipation.

Both the gð2Þaa and gð2Þbb , by definition, have no dependence
on the order of detection events since τ separates the
detection of identical particles. In both cases there is a

single source of vibrational character. For the gð2Þaa this is
indirect, from the strong dependence of photons on the

vibrational populations, while for gð2Þbb this is from direct

measurement of the phonon number. In both cases, vibra-
tional character is observed as oscillations at the vibrational
mode frequency ω0.
We can understand the appearance of phonon signatures

in the photon correlations from the cross-correlation

functions gð2Þab ðτÞ and gð2Þba ðτÞ (Fig. 3), where the order of
detection does matter. Specifically, the second detection
event determines the dominant character of the cross-

correlation function as a function of τ. In gð2Þab , the phonon
detection is second, and we observe the primary behavior of
the phonon correlation [cf. Figs. 2(d)–(f)] with photon
correlation-function characteristics superimposed. The first
detection event can be thought of as an instantaneous
measurement of photon number and contains no vibrational
information. The second detection event—the phonon—
occurs a time τ later, during which vibrational transitions
may occur. However, because the fast phonon signatures
are very small with respect to the electronic contributions
their impact on the excited-state adiabatic population is
minimal, i.e., there is no significant minor oscillation [45].
Consequently, neither detection event incurs vibrational
character. Figures 3(a)–(c) also show phonon bunching,
i.e., a photon detection is likely to be immediately followed
by another phonon, reflecting the nonequilibrium popula-
tion distribution following photon emission.
By contrast, the phonon-photon correlation function

gð2Þba ðτÞ [Figs. 3(d)–(f)] corresponds to the observation of
a phonon followed by a photon. Since the photon detection

is second, characteristics of gð2Þaa [Figs. 2(a)–(c)] dominate,
with phonon characteristics superimposed. The first detec-
tion event—the phonon—is an instantaneous measurement
of phonon number and thus has intrinsic vibrational
character at the molecule mode frequency. However, the
second detection event—the photon—also introduces addi-
tional vibrational character due to vibrational transitions
occurring between the detections. Consequently, there are

two sources of vibrational character in gð2Þba : (1) intrinsically
from the first detection event, and (2) from phonon effects
during the optical cycles leading to the photon emission.
For λ ¼ 0, gð2Þba ðτÞ remains at a small, nonzero constant

value regardless of the bath coupling. However, increasing

FIG. 2. (a)–(c) gð2Þaa ðτÞ photon-photon correlation function; (d)–(f) gð2Þbb ðτÞ phonon-phonon correlation function, scanning over bath (η)
and system (λ) reorganization energies.
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the system reorganization energy introduces strong oscil-
lations and the correlation function may drop below the
λ ¼ 0 value. This is explained by a large proportion of the
wave packet population undergoing vibrational transitions.
This effect persists for small τ even with strong bath
dissipation, but it is destroyed for later τ by the influence

of the environment. Note that similar to gð2Þaa ðτÞ, gð2Þba ðτÞ
exhibits antibunchinglike behavior, i.e., a photon is less
likely to be emitted directly after a phonon. This is because
photon emission at ωeg from higher vibrational levels is
increasingly suppressed for larger λ due to decreasing
Franck-Condon overlap. This means that phonon emission
tends to inhibit subsequent photon emission when τ ≈ 0.
Dynamical impact of lattice phonons on quantum-dot

emitters embedded in a solid-state system was recently
theoretically and experimentally shown to result in a
characteristic signature in the photon spectrum [67].
System phonons are not defined in the quantum-dot model,
but are integral to molecules and the proximate source of
the signatures predicted here. Our results suggest that
measurements of two-photon correlations could explicitly
elucidate differences in the impact of system phonons and
the phonon environment.
In conclusion, we have demonstrated theoretically pho-

ton antibunching in the fluorescence of a vibronic molecule
under continuous laser drive and a thermal environment
and that the photon-photon correlations exhibit signatures
of the phonon interaction with the bath, suggesting that
these are experimentally directly measurable. These appear
as oscillations at the system-mode frequency on top of
slower modulations associated with the electronic Rabi-like
oscillations. Theoretically also considering phonon detec-
tion and photon-phonon cross-correlation functions, we
have shown how vibrational contributions are understood
as arising either directly, through phonon detection, or
indirectly, through photon detection subsequent to phonon
emission. As such, the order of particle detection can
dramatically impact the behavior of the correlation func-
tions, which could in principle be exploited to investigate
the phonon impact on photon emission. More immediately,
these correlation functions present an opportunity to
investigate phonon dynamics indirectly using existing

quantum-optical techniques to understand the impact on
quantum versus classical processes in molecular systems.
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