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A B S T R A C T   

Low field (60 MHz) 1H NMR spectroscopy was used to analyse a large (n = 410) collection of edible oils, 
including olive and argan, in an authenticity screening scenario. Experimental work was carried out on multiple 
spectrometers at two different laboratories, aiming to explore multivariate model stability and transfer between 
instruments. Three modelling methods were employed: Partial Least Squares Discriminant Analysis, Random 
Forests, and a One Class Classification approach. Clear inter-instrument differences were observed between 
replicated data collections, sufficient to compromise effective transfer of models based on raw data between 
instruments. As mitigations to this issue, various data pre-treatments were investigated: Piecewise Direct 
Standardisation, Standard Normal Variates, and Rank Transformation. Datasets comprised both phase corrected 
and magnitude spectra, and it was found that that the latter spectral form may offer some advantages in the 
context of pattern recognition and classification modelling, particularly when used in combination with the Rank 
Transformation pre-treatment.   

1. Introduction 

With a long history of use by research chemists, high-field NMR 
spectroscopy has been a gold standard in analysis for decades, although 
it is largely beyond the reach of all but high-end labs and large corpo
rations. The arrival of ‘benchtop’ spectrometers in recent years has 
changed this landscape. Based on permanent rather than super
conducting magnets, benchtop instruments work at much lower field 
strengths, typically in the range 40–100 MHz. They do not need any 
cryogens, are less complex to use and have a smaller physical footprint, 
with commensurate reductions in capital and maintenance costs. This 
has made the diagnostic strengths of NMR spectroscopy accessible to a 
far wider range of potential users. 

Within the food sector, benchtop NMR is gaining traction in appli
cations including quality control and authentication. In a recent review, 
van Beek (2021) discusses a range of these, also noting that chemometric 
handling of benchtop NMR data is advantageous. Its transformative 
potential is likewise noted in a review of targeted and untargeted NMR 
spectroscopy for food authenticity applications (Sobolev et al., 2019). 

Several of the studies discussed involve the analysis of oils and fats. This 
compound class is well-suited for analysis by benchtop NMR; indeed, the 
first published application in foods was on distinguishing olive from 
hazelnut oils (Parker, Limer, Watson, Defernez, Williamson, & Kemsley, 
2014). 

There is an extensive literature on authenticating edible oils using 
wider analytical techniques, with recent examples based on mass spec
trometry (Quintanilla-Casas et al., 2021), infrared spectroscopy (Sota- 
Uba, Bamidele, Moulton, Booksh, & Lavine, 2021), chromatography 
(Jimenez-Carvelo, Perez-Castano, Gonzalez-Casado, & Cuadros- 
Rodriguez, 2017), NMR relaxometry (Ancora et al., 2021) and high- 
resolution NMR spectroscopy (Tang, Green, Wang, & Hatzakis, 2021). 
This reflects the economic importance of these products, their vulnera
bility to substitution or adulteration, and the difficulty in detecting such 
compromises. Since edible oils are largely (>95% w/w) composed of 
triglycerides, many of these methods are based on distinguishing the 
composition profile of the fatty acid chains in the product of interest 
from those of potential adulterants, in the presence of considerable 
natural variation. However, most published authenticity studies, using 
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whichever technique, are conducted on a single instrument at one lab
oratory. There are fewer reports of ring trials in which the results from 
different laboratories are compared, as for example in Köppel et al. 
(2020) and Velasco et al. (2021). An equally pertinent issue is the 
transfer of databases and accompanying data analysis to different in
struments (Feundale, Woody, Tan, Myles, Brown, & Ferre, 2002). Such 
considerations need to be addressed in the deployment of a real-world 
analytical method (McVey, McGrath, Haughey, & Elliott, 2021). A 
major effort in setting up authenticity screening is obtaining the requi
site collection of reference samples of known provenance. This is time- 
consuming and expensive, and the resulting data collection is thus a 
valuable resource. Ideally, such a reference database should be valid for 
an extended period of time, remaining useful after instrument refur
bishment, or after transfer to a replacement or additional instrument. 

Whilst NMR spectroscopy is valued for its inherent specificity, 
reproducibility and linear response with absorbing species, inter- 
spectrometer differences exist for a variety of technical and practical 
reasons (Alam, Alam, McIntyre, Volk, Neerathilingam, & Luxon, 2009). 
Even within production tolerances, there can be non-trivial variations in 
magnetic field homogeneity, probe sensitivity, temperature stability, 
shielding and shims that lead to database porting challenges. It is 
acknowledged that modelling conducted on data obtained from one 
spectrometer will not necessarily transfer without adaptation to a new 
setting (Galvan, Bona, Borsato, Danieli, & Killner, 2020). Further, any 
adverse impact will likely be greatest on untargeted chemometric ap
proaches which seek to utilise a wide spectral range. 

The present work reports a 60 MHz benchtop 1H NMR screening 
method for authenticating olive and argan oils originating from 
Morocco, where they are major economic commodities. The develop
ment work was carried out in tandem on multiple spectrometers sited at 
two different laboratories, with the aim of examining the issue of clas
sification model transfer between instruments. Intra- and inter- 
instrument variance is explored, and mitigations to these issues are 
considered, including a spectral transformation which to the best of our 
knowledge has not previously been used in the analysis of NMR spectra. 
Each authentication scenario is modelled as a two-group classification 
problem (‘authentic’ versus ‘non-authentic’) by two disparate multi
variate methods and also as a one-class classification problem. The 
outcomes on various independent, inter-instrument test sets are 
compared, looking for robustness of performance in the presence of 
large systematic variances. 

Conventional practice in NMR spectroscopy is to use the real 
component of the Fourier transformed FID, phase corrected to give a 
frequency-domain absorbance spectrum, as the primary measurement 
on a sample; ideally, this has the appearance of sharp Lorentzian peaks 
rising from a flat baseline. Phase correction may be conducted manually, 
or by using one of a range of automated algorithms; the latter approach 
is most appropriate for high-throughput studies, as it much faster and 
avoids operator subjectivity. The present study also explores the use of 
magnitude spectra. These are obtained from the real and imaginary parts 
of the Fourier-transformed FIDs and thus relate more directly to the 
induced magnetization. Although this represents something of a para
digm shift as far as the NMR community is concerned, the benefits of 
using this spectral form have been recognised (Harrington & Wang, 
2017), and are confirmed in the work presented here. 

2. Materials and methods 

2.1. Samples 

410 edible oils of known provenance were used to develop authen
tication models for screening olive and argan oils. These were provided 
by CNESTEN (Centre National de l’Energie des Sciences et des Tech
niques Nucléaires, Morocco), collected as part of a FAO/IAEA (Food and 
Agriculture Organization of the United Nations, International Atomic 
Energy Agency) Coordinated Research Project ‘Field-deployable 

Analytical Methods to Assess the Authenticity, Safety and Quality of 
Food’ (project code D52040). The eventual aim of the project is to 
develop approaches that can be employed by authorities and regulators 
in developing countries, to promote confidence in the food supply chain 
and help protect their important export commodities. 

The sample types were as follows: olive oil (n = 204), argan oil (n =
120), and mixtures (n = 86) of olive and argan with soya or sunflower 
oil, with the latter two oils in the range 3 – 100% w/w. The olive and 
argan oils were obtained directly from producers, including many 
traditional cooperatives, in various different Moroccan regions. The 
olive oils were collected in 2018 and 2019, whereas the argan oils were 
mostly from 2017 and 2018, with a few dating back to 2016 or earlier. 
The number of samples from each province and the year of collection are 
listed in Supplementary Table 1, along with further details of oil pro
duction and storage. 

An additional 10 oils (6 olive, 4 argan) were provided by CNESTEN 
that, from spectral analysis, were found to be degraded or contaminated. 
These samples were excluded from the developmental work, but their 
spectra were retained as examples of samples compromised other than 
by adulteration with other vegetable oils. 

Two historic spectral collections (‘Archive 1′ and ‘2′) were also used 
in this study to serve as additional inter-instrument test sets. Together 
these comprise almost 200 spectra from various edible oils and mixtures 
(detailed in Supplementary Table 2). 

2.2. Sample batches and spectrometers 

The ‘CNESTEN’ samples were delivered to Oxford Instruments (‘Lab 
1′) in two batches (‘Batch 1′ and ‘Batch 2′). 1H spectra were acquired of 
all samples using ‘Pulsar’ benchtop NMR spectrometers (Oxford In
struments, Abingdon, UK) operating at a frequency of 60 MHz. Two 
instruments from the same hardware series were used, one for each 
batch. 

After spectral acquisition at Lab 1, the samples were transferred to 
Quadram Institute Bioscience (‘Lab 2′), where both batches were ana
lysed using an earlier hardware version of the Pulsar. Details of the 
samples in each batch, dates of spectral analysis, and primary instru
ment settings are given in Table 1. 

Archive 1 spectra were acquired on the same Lab 2 Pulsar as the 

Table 1 
CNESTEN samples.  

Oil type Number Numbers delivered in 
each batch: 

Olive 204 Batch 1: 0   
Batch 2: 204 

Argan 120 Batch 1: 43   
Batch 2: 77 

Other (3 – 90 %w/w soya in olive; 3 – 90 
%w/w sunflower in olive; 3 – 90 %w/w 
soya in argan; 3 – 90 %w/w sunflower 
in argan; soya; sunflower) 

86 Batch 1: 38   

Batch 2: 48 
Spectral acquisition dates:     

Lab 1* Lab 2**  
Batch 1 April 2019 June – July 

2019  
Batch 2 September 

2019 
October 2019 – 
January 2020  

*At Lab 1, two different Pulsars from the same hardware series were used to 
analyse the CNESTEN samples, one for each Batch. Primary instrument-specific 
settings optimised during machine setup were the 90◦ pulse width (P90) and 
receiver attenuation (RA). For the spectrometer used in Batch 1 analysis, these 
values were P90 = 10.94 µs, RA = 33 dB, and for that used in Batch 2 analysis, 
P90 = 13.60 µs and RA = 34 dB. 
**At Lab 2, the analysis of all CNESTEN samples was carried out on one Pulsar 
only. This was from an earlier hardware series than those used at Lab 1. For this 
spectrometer, P90 = 13.60 µs and RA = 30 dB. 
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CNESTEN samples, but three years earlier and before a major upgrade to 
the instrument’s shielding. Archive 2 spectra were collected at Lab 2 in 
2013 using a further spectrometer, a first-generation Pulsar. 

2.3. Spectral acquisition 

For all acquisitions, 0.6 ml of sample was pipetted into a standard 
disposable 5 mm NMR tube, with no other preparation step. For each 
spectrum, 32 FIDs were acquired, recording 32,768 data points over a 
5000 Hz window (dwell time = 0.2 ms) with a relaxation delay of 2 s. 
Signal averaging of correlation aligned FIDs was conducted within the 
Spinflow user interface (Oxford Instruments, Abingdon, UK). This does 
not require the presence of a reference compound or frequency lock. The 
total acquisition time was less than 5 min, in line with our requirement 
for a high-throughput analysis. The spectral linewidth was maintained 
between 0.6 and 0.9 Hz, by daily measurement of the chloroform FWHM 
in a sealed standard, and shimming when necessary. 

2.4. Data analysis 

2.4.1. FID post-processing 
All data analysis including FID post-processing was carried out using 

Matlab (The Mathworks Inc, Cambridge, UK) using bespoke scripts and 
built-in functions from the Statistics and Machine Learning Toolbox. 
Following acquisition, the signal-averaged FIDs were post-processed 
using linear back prediction and Fourier transformed into the fre
quency domain. The magnitude spectrum from each sample was 
retained. Phase corrected spectra were also generated using an auto
mated script written in-house. The chemical shift scale was referenced to 
the glyceride peak which is found in all triglyceride spectra at 4.2 ppm. 
All spectra were truncated to the region 0–10.5 ppm, yielding 4267 data 
points per spectrum to pass into the data exploration and modelling. 

2.4.2. Data exploration and authentication models 
Inter-batch and inter-instrument variances were explored in the 

CNESTEN samples using Principal Component Analysis (PCA). This was 
applied to various subsets of phase corrected and magnitude spectra, 
raw and pre-treated with the following methods: piecewise direct 
standardisation (‘PDS’); standard normal variate (‘SNV’) correction; and 
rank transformation (‘RT’). 

Two unrelated multivariate methods, partial least squares discrimi
nant analysis (‘PLSDA’) and random forests (‘RF’), were used to train 
two-group (‘authentic versus ‘non-authentic’) classification models. In 
both approaches, a score is obtained for each item analysed which, along 
with an appropriately chosen threshold, serves as a binary classifier. A 
third, previously disclosed (Gunning et al., 2020) one-class classification 
method was also employed, which obtains a model using the authentic 
class in each case only, accepting or rejecting items via thresholds on an 
ensemble of nearest neighbour distances (‘NN-OCC’). 

All classification modelling was carried out separately for the ‘posi
tive’ classes of olive and argan oils. In each case, the oil type not used as 
the positive class was considered ‘non-authentic’ along with the 
collection of ‘other’ spectra (see Table 1). To develop models, the 
CNESTEN samples were partitioned into training and test sets. Lab 1 
spectra of the training samples only were used in model development. 
Technical details on the implementation of each modelling method are 
given in Supplementary Table 3, including criteria for predictor selec
tion, model optimisation, the cross-validation scheme, and determina
tion of the classifier threshold. Spectra were analysed raw, and after the 
various pre-treatments detailed above. All models were applied to the 
Lab 1 and Lab 2 test set spectra, as well as the Archive collections, and 
the rates of correct classifications compared. 

Sample allocations to the training and test partitions were made 
randomly, subject to the constraints that within each sample type, 
approximately 2/3 were allocated to the training set and the remainder 
to the test set; further, the small number of samples for which spectra 

were not available from both labs were allocated such as to maximise the 
total size of the training and test sets (i.e. samples with a missing Lab 1 
spectrum were placed in the test set, and with a missing Lab 2 spectrum 
in the training set). The entire partitioning and modelling procedures 
were repeated 100 times to enable examination of the robustness of 
classification outcomes with respect to the constitution of the training 
set. 

3. Results and discussion 

3.1. Data exploration 

In high-throughput experiments involving hundreds of spectral ac
quisitions, it is likely that the quality of a small proportion will fall short. 
Examination of individual spectra is important for spotting obviously 
faulty measurements. In the present study, these have variously arisen 
from: insufficient sample to properly fill the NMR tube, trapped air 
bubbles, and loss of shim or other instrumental problems during data 
acquisition; these spectra were excluded from the subsequent data 
exploration and modelling work. Despite these issues, all CNESTEN 
samples were represented in at least one Lab’s data collections, with the 
rejected spectra numbering fewer than 20 at each Lab. 

Visual inspection of the large amounts of data in a high-throughput 
study is a challenge. Overlaid plots of large numbers of spectra are not 
always informative, especially when the differences between samples 
are small and the number of spectra is in the hundreds. This is exem
plified in Fig. 1, where the spectra of olive and argan oils from Batches 
and Labs 1 and 2 are compared in a stacked plot. All are typical 60 MHz 
1H spectra of edible oils with large resonances arising predominantly 
from triglycerides, which make up around 95% of the oil composition. 
Spectral assignments of these features have been made elsewhere 
(Gerdova et al., 2015). The resonances are broad and overlapped in 
comparison with measurements made at higher field strengths. Some 
additional line broadening is caused by the sample viscosity, because the 
oils have been analysed undiluted in keeping with the desire for a high- 
throughput protocol with minimal use of solvents. This follows the 
precedent of a pilot study which demonstrated no analytical advantage 
from working with oils diluted in a solvent (Gunning et al., 2020). 

It is possible to discern systematic differences between oils: for 
example, the internal ratio of the bis-allylic (2.6–3.0 ppm) to glyceride 
(4.2–4.4 ppm) peak areas is greater for argan than olive, consistent with 
the known composition of the two oil types. 

Confounding differences can also be seen. The intensity of Lab 2 data 
is systematically greater than that of Lab 1. This can only be due to 
differences between the spectrometers involved, as the spectra were 
collected from replicate samples, using the same acquisition protocol at 
both sites, and with all FID post-processing carried out using the same 
software suite. Further, within Lab 1 data only, there is an intensity 
difference between Batch 1 and Batch 2; this must be caused by the 
differences between the two spectrometers used, since no equivalent 
batch effect can be seen within the spectra collected on the single in
strument used at Lab 2. However, the Batch 2 spectra of both oil types 
from Lab 2 do exhibit somewhat more variation, most noticeably on 
either side of the large methylene resonance at 1.2 ppm. This may reflect 
some aspect of spectrometer drift during the comparatively longer 
period over which the data were acquired (see Table 1). 

An alternative way of viewing the data is by principal component 
analysis (PCA), which provides an efficient means of exploring large 
collections of spectra. In PCA, the focus is on variance in the dataset, 
making it ideal for examining batch and instrument effects. Scores in the 
first two principal component dimensions are plotted against one 
another in Fig. 1(b). Each data point represents a spectrum in the PCA 
coordinate system, and is coded by oil type, laboratory and batch. The 
instrument and batch effects are clear, appearing in the first PC 
dimension and accounting for almost all the dataset variance. It is 
known that differences between vegetable oils can be detected by 
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benchtop NMR, but in this raw dataset, the batch and instruments dif
ferences are comparatively greater. The increased variability within Lab 
2 Batch 2 data is also evident, appearing as the tail of highly scattered 
points towards the upper right corner of the plot. 

The equivalent figure using the magnitude data is given in the Sup
plementary Fig. 1. Whilst this dataset is also dominated by the batch and 
instrument effects, and the PC variance profile is similar, it is note
worthy that the differences between the two oil types are much more 
clearly visible. The within-group variances are also less, in particular for 
Lab 2 data. This implies that the greater scatter in Fig. 1(b) is a conse
quence of phase correction rather than intrinsic measurement error. This 
is perhaps unsurprising, since universally applicable automated phase 
correction is notoriously difficult to achieve. Manual phase correction is 
also problematic due to operator subjectivity, especially in the case of 
high-throughput datasets. It has been recognised that for pattern 
recognition applications, working with NMR magnitude spectra instead 
of phase corrected may confer an advantage (Harrington & Wang, 2017; 
Williamson, Kemsley, Sutcliffe, & Mewis, 2019). All data analysis in the 
present work was therefore also applied to magnitude spectra. 

3.2. Data pre-treatments 

The adverse impact of systematic inter-instrument variances on 
multivariate modelling is well-recognised in many fields of spectros
copy. As uptake of NMR increases and progressively larger datasets are 
shared across labs, it is apparent that similar issues affect NMR data. The 
transfer of calibration models between different NMR instruments or 
configurations is explored by Alam et al. (2009), who also note that 
variances due to instrumental factors can compete in size with spectral 
changes of interest that occur for example in metabonomic studies. 

Various techniques have been investigated to mitigate such effects 

(Fonollosa, Fernandez, Gutierrez-Galvez, Huerta, & Marco, 2016). There 
are two main strategies: the first is to map the data acquired on one 
spectrometer onto that from another. The latter instrument is often 
referred to as the ‘primary’ and is generally the spectrometer on which a 
calibration or reference collection was acquired; the former is referred to 
as the ‘secondary’, to which the model is to be transferred. Piecewise 
Direct Standardization (‘PDS’) is a well-established example of this 
approach (Bouveresse & Massart, 1996) and has been employed in the 
present work. 

The second strategy is to attempt to remove unwanted systematic 
variation by various normalisations which may be applied to the whole 
dataset or to spectra individually. In the present work, two such methods 
were employed: standard normal variate (‘SNV’) correction and rank 
transformation (‘RT’). SNV correction, in which the spectral mean is set 
to zero and variance to unity (Barnes, Dhanoa, & Lister, 1989), is used 
widely in the analysis of near-infrared spectra to mitigate unwanted 
variations. Rank transformation is well-known in traditional statistical 
analysis, underlying non-parametric methods such as the Kruskal-Wallis 
test by ranks, which has been reported in the analysis of ‘binned’ NMR 
data from metabolomics studies (Jiang, Wang, Zhang, Feng, Wang, & 
Zhu, 2014). However, to the best of our knowledge, rank transformation 
has never been used as a pre-treatment applied to whole NMR spectra. 

Fig. 2 illustrates the effect of these pre-treatments on a subset of 
spectra from argan oils only, chosen because these are represented in 
good numbers in the collections from both Labs and Batches. SNV and 
RT were applied to the raw data from both Labs. PDS was used to treat 
the spectra from Lab 2 only, calculating the mapping matrix using 12 
‘transfer’ spectra selected from the samples common to both Labs by the 
Kenning-Stone method (Bouveresse & Massart, 1996). In the figure, the 
pre-treated dataset is shown in the first and third columns, for respec
tively the phase corrected and magnitude spectral forms. 

Fig. 1. (a): Stacked plot showing phase corrected spectra of the authentic argan and olive oils Spectra are grouped by oil type, Batch and Lab where acquisition took 
place. The numbers in each group are detailed in Table 1. (b) PC scores plot with symbols coded by the same groups. The clustering in the data by acquisition Lab is 
much greater than that by oil type. Further, within Lab 1 data, the clustering of the argan oils by Batch (black vs red filled circles) is greater than the difference 
between oil type (red filled circles vs magenta stars). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Panels in the second and fourth columns show PC scores plots (first 
versus second PCs) obtained from the adjacent dataset, and display the 
major effect of the pre-treatment. PDS is able to map the Lab 2 spectra 
nearer to Lab 1 data (panels (f) and (h)), although it cannot of course 
also remove the batch effect that exists within Lab 1 data. This would 
require a second, different PDS transform, raising the question of how 
multiple concurrent effects should be addressed. More generally, the 
performance of the PDS approach is heavily dependent on the number 
and nature of the transfer spectra. The method requires analogous 
samples from the two collections needing mapping, and after the event, 
these are not always available. This issue is considered again in the 
analysis of the historic datasets below. 

SNV correction (panels (j) and (l)) mitigates the inter-instrument 
variation substantially but not entirely: clustering according to Lab is 
still seen in the first PC dimension for both spectral forms. In compari
son, RT is more effective, particularly for magnitude data, where only 
the Lab 1 batch effect remains in the second PC dimension (panel (p)). 
Further pairwise scores plots up to the 5th PC dimension are given for 
this data subset in Supplementary Fig. 2, showing that this trans
formation relegates batch and instrument effects to a minor source of 
variance. 

RT produces a dramatic change in the appearance of both phase 

corrected and magnitude data (compare panels (m) and (o) to the 
original, raw spectra of each form in panels (a) and (c)). It also em
phasises differences between the two forms arising from their respective 
characteristics. In magnitude spectra, resonances are spread out across a 
wide frequency range, with the result that the whole spectrum generally 
contains signal as well as noise. In contrast, ideal phase corrected 
spectra, by definition of the phase correction routine, comprise as nar
row as possible absorption bands separated by regions of flat baseline. It 
is the presence of the baseline which causes RT-transformed phase 
corrected spectra to become noisy. In an RT-treated spectrum, every 
data point, including those in the baseline, must take on a new value 
equal to its rank in the data vector. This is clearly undesirable if there are 
large regions of baseline. In contrast, because all the data points in a 
magnitude spectrum contain at least some signal, the ranking process 
remains meaningful throughout. 

Rank transformation may offer an advantage from the perspective of 
visualisation, as has been recognised in other disciplines (Comins & 
Hussey, 2015). By swapping out intensity information for an integer 
rank, the maximum possible internal intensity ratio of any pair of fea
tures is fixed by the number of data points in the spectrum. Large peaks 
that are similar across the dataset are relatively suppressed in size, and 
smaller regions of dissimilarity are substantially amplified. This is 

Fig. 2. In the grid of panels, the first and third columns show overlaid plots of respectively the phase corrected and magnitude spectra from argan oils only, pre- 
treated as indicated. Panels in the second and fourth columns show the first versus second PC scores plots from the neighbouring pre-treated datasets. The first 
PC score is plotted on the horizontal axis in each case, and the second on the vertical. 
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helpful for spotting small changes in the spectrum, such as the presence 
of a contaminant. Even a very small, unexpected peak is enough to 
disrupt the ranking order of spectral data points, not just at the peak 
position, but also at other locations in the spectrum of similar intensity. 
A compelling example of this in practice is given in Fig. 3, where the 
spectra of the 10 contaminated oils are compared with Lab 1 data, in raw 
phase corrected and RT-transformed magnitude forms. 

3.3. Classification modelling 

There are many challenges in modelling authentication scenarios 
connected to sample availability. Most straightforward is to define the 
problem as two-class classification (‘authentic’ versus ‘non-authentic’). 
In this framework, plentiful samples are needed of both types. The 
authentic class must be large enough to capture expected variation, 
which can be considerable in the case of natural products. Further, real- 
world examples of fake or fraudulent non-authentic samples are often 
unavailable, so to model this class, simulated ‘adulterated’ samples need 
to be employed. 

Alternatively, a one-class classification (OCC) approach can be used, 
in which model parameters are obtained from the positive class only, 
eliminating (at least mathematically) the need for abundant non- 
authentic samples. This is conceptually a more apposite approach for 
scenarios in which the authentic class is clearly defined but the non- 
authentic is open-ended, and in certain situations it may be the only 
way to proceed. Of course, in the absence of any non-authentic samples, 
it is impossible to estimate the false positive rates; and if these are 
available, it is often found that two-group approaches out-perform OCC 
in terms of classification success rates. 

In the present study, there are two authentic classes of interest, as 
well as a disparate collection of mixtures used to simulate non-authentic 
samples. It was decided to treat the two authentication issues indepen
dently, developing separate classification models for the two ‘positive 
classes’, authentic olive and argan. 

Three unrelated modelling methods were employed. These were 

partial least squares discriminant analysis (‘PLSDA’) and random forest 
(‘RF’) classification, both of which were implemented as two-class 
classification models; and a one-class classification method adapted 
for authentication scenarios based on nearest neighbour distances (‘NN- 
OCC’). 

In common with most modelling methods, there are variations in 
how these methods can be implemented. In this study, PLSDA is used as 
a whole-spectrum method in common with many other reported appli
cations of partial least squares regression (Boknaes, Jensen, Andersen, & 
Martens, 2002; Indahl, Sahni, Kirkhus, & Naes, 1999; Lindberg, Persson, 
& Wold, 1983). The RF method uses the original algorithm as proposed 
by Breiman (2001). In both these methods, the output for each item 
analysed is a score, which is used along with a threshold to ascribe it to 
either the positive or negative class. The NN-OCC method measures the 
multivariate distances of each positive class spectrum from the other 
authentic items, and uses a kernel density function to obtain an upper 
threshold for the nearest neighbour distance. Acceptance into the posi
tive class is decided by pooling the outcomes made using an ensemble of 
different distance metrics. Further technical details of all the methods 
are given in the Supplementary Table 3. 

All three approaches were used to obtain olive and argan oil 
authentication models from the CNESTEN sample collection. Phase 
corrected and magnitude datasets were analysed raw, as well as with 
PDS, SNV, and RT pre-treatments. Partitioning into training and test sets 
was carried out as detailed in the Materials and Methods section, and 
Lab 1 spectra from training samples only were used in model develop
ment. The established models were applied to each of the test sets (Lab 1, 
Lab 2, Archive 1 and Archive 2). The complete procedure was carried 
out 100 times using different randomly-generated partitions. 

The results for the Lab 1 and Lab 2 test sets for the olive oil 
authentication models are shown respectively in Fig. 4(a) and (b) as 
heatmaps indicating the true positive rates (TPRs) and true negative 
rates (TNRs) obtained from the 100 repartitions. Comparison of the 
outcomes from these two test sets directly informs on the ability of 
models to transfer to a new instrument, since these contain spectra from 

Fig. 3. Panel (a) shows the complete collection of phase corrected Lab 1 spectra (black traces) and the 10 contaminated samples (red traces), offset for clarity. It is 
difficult to see the contaminant peaks in a full spectral view like this, even with the offset. Panel (b) shows rank-transformed magnitude data from the same sample 
collection with the same colour-coding. The additional peaks from the contaminants have been amplified by the rank-transformation and are impossible to overlook. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the same samples (with some very minor differences due to missing 
samples/spectra, see Materials and Methods). 

Looking first at Fig. 4(a), which summarizes the results from model 
applications to the Lab 1 test set, it is seen that the outcomes by PLSDA 
and RF are very similar. Classification success rates are nearly perfect 
across the board by either method or pre-treatment, including none. This 
indicates that benchtop NMR can readily distinguish olive oil from other 
oil types including mixtures. Further, the specificity of NMR resonances 
leads to model coefficients that can be understood chemically. This is 
best illustrated in the whole spectrum PLSDA method, where the 
regression coefficients clearly map onto spectral features in the original 
assigned spectrum (see as an example Supplementary Fig. 3). This 
confirms that the discrimination between the authentic and non- 
authentic classes is based upon chemical information present in the 
NMR spectra. 

From the constitution of the non-authentic samples that are mis- 
classified, the detection limit for the adulterants under study is better 
than 10% w/w (see Supplementary Fig. 4). This is in agreement with 
multiple published studies demonstrating the potential of benchtop 
NMR for authenticating edible oils (Kim, Lee, Kwon, Chun, Ahn, & Kim, 
2018; Riegel, 2015; Wang, Wang, Hou, & Nie, 2020; Zhu, Wang, & Chen, 
2017). Rather than a limitation of benchtop NMR, this detection limit 

reflects the overlap in the naturally variable triglyceride compositions of 
different oil types. 

The results for the NN-OCC method are somewhat different. With 
SNV or RT pre-treatment, and even no pre-treatment, it can achieve 
similar success rates to PLSDA and RF, but only from magnitude spectra. 
When using phase corrected data, the method struggles to reject non- 
authentic items. This is not altogether unexpected, since the approach 
was developed and optimised for magnitude data. It includes the use of 
Spearman’s correlation coefficient which essentially measures distances 
between rank-transformed spectra, and as already discussed, RT is not 
an appropriate transformation for phase corrected data with large 
amounts of empty baseline. 

Fig. 4(b) also shows a heatmap of TPRs and TNRs, but now for the 
outcomes from application of Lab 1 models to the Lab 2 test set. For 
PLSDA and RF, models trained on raw Lab 1 data are unable to transfer 
to raw Lab 2 spectra, with both methods yielding TPRs or TNRs closer to 
0 than 1, or highly unstable outcomes with respect to the training/test 
partitioning (see the top row of blocks in the heatmap). This is clear 
evidence that the inter-instrument differences disrupt the transferability 
of these models to Lab 2. Notably, the NN-OCC method remains able to 
function reasonably well on magnitude data, yielding similar success 
rates to the Lab 1 test set. This hints at a greater robustness of this 

Fig. 4. Results from the olive oil authentication models calculated from Lab 1 training data, expressed as heatmaps showing all true positive rates (TPRs) and true 
negative rates (TNRs) from the 100 repartitions of the CNESTEN samples. The success rates from all repartitions are represented by small squares, colour-coded 
according to the scale on the right-hand side of the panels, and arranged into 10 × 10 blocks. Each column of blocks corresponds to a different combination of 
the modelling approach and spectral form used. Each row of blocks corresponds to a different data pre-treatment. The mean TPR and TNR is indicated by the value in 
the centre of each block. Panel (a) shows the results from application to the Lab 1 test set repartitions. Because this always comprises data from the same instrument 
that the model was trained with, PDS has not been applied. Panel (b) shows the results from application to the Lab 2 test set repartitions. Note that the same sample 
repartitions were used for both panels, thus the outcomes are directly comparable. It is clear that application of the Lab 1 models to Lab 2 data leads to a decline in 
classification performance by all combinations of pre-treatment/spectral form/method, ranging from small to substantial. 
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approach in the face of instrument effects, likely due to the nature of the 
distance metrics utilised. Pre-treatment improves the outcomes for the 
two-group methods. The effects are somewhat variable, but overall, RF 
outperforms PLSDA, reaching TPRs and TNRs > 0.95 for the combina
tion of SNV or RT pre-treatment and magnitude data. 

The analogous heatmaps for the argan oil model are given in Sup
plementary Fig. 5. Panel (a) again represents outcomes under the ideal 
circumstance in which test partition spectra were acquired on the same 
instrument (Lab 1) as those used in model development. A generally 
similar pattern of outcomes is obtained as for olive, although with 
slightly more differentiation between the efficacies of the various 
spectral form/pre-treatment/method combinations. This may indicate 
that olive oil is more distinct from the non-authentic oils under 
consideration than argan, making it an easier classification problem. It 
could also indicate that additional systematic effects are making the 
argan class harder to model: recall that Figs. 1 and 2 revealed an 
appreciable batch difference within the Lab 1 argan oil data. In contrast, 
no such differences affected the olive oil spectra, since the sample 

delivery schedule meant that these were represented in Batch 2 only. 
Supplementary Fig. 5(b) shows the inter-instrument outcomes from 
application of the Lab 1 argan models to Lab 2 data. Likewise, these are 
somewhat less successful than their analogues for olive shown in Fig. 4 
(b). Most importantly, only the use of magnitude data can yield 
reasonably stable and acceptable outcomes, with TPRs and TNRs > 0.9. 
A summary of the mis-classified items is given in Supplementary Fig. 6. 

The full complement of olive authentication models was also applied 
to the two Archive test sets. The PDS pre-treatment requires a small set 
of transfer spectra obtained on each instrument from which to calculate 
the mapping matrix. Since both archives dated back several years and 
the spectrometers concerned have been respectively refurbished 
(Archive 1) and decommissioned (Archive 2), it was impossible to 
collect any further spectra. The workaround used was to randomly select 
a number of spectra covering the same oil types present in the training 
set (with the exception of argan oil, which was not represented in either 
of the archived collections). 

The outcomes from these test sets are summarised in Fig. 5, together 

Fig. 5. Stacked bar charts showing the TPR and TNR for each of the method/pre-treatment/spectral form combinations. Each row of panels corresponds to one of the 
four inter-instrument test sets (respectively, Lab 2 (olive model); Lab 2 (argan model); Archive 1 and Archive 2 (both olive model). The two columns of panels 
correspond respectively to the phase corrected and magnitude spectral forms. Within each panel, the stacked bars are grouped by method as indicated on the 
horizontal axis, and coloured by pre-treatment as shown in the legend. 
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with those from the other inter-instrument test sets discussed above (Lab 
2, olive and argan) for ease of comparison. From this figure, it can be 
concluded that using raw data when transferring between instruments 
will likely fail. The most reliable combination of pre-treatment and 
spectral form is RT applied to magnitude data, which gives acceptable 
outcomes for all modelling methods and test sets (with the sole excep
tion of NN-OCC and Archive 2). SNV and PDS are less consistently 
effective, although good outcomes can be obtained, most often in 
combination with the RF method. An alternative presentation of this 
summary of results is given in Supplementary Table 4. 

4. Conclusions 

Benchtop NMR is well-suited to analysis by chemometric methods 
that draw on information from across whole spectral profiles. This is 
contrast to high field NMR, where the focus of data analysis is generally 
on integrals of well-resolved peaks. As in other high-throughput spec
troscopy methods, unwanted systematic variances can occur in bench
top data from a variety of sources. Within spectra collected even from a 
single spectrometer, there may be incremental or step changes over time 
that cause batching effects. Inter-instrument differences may be greater 
still and impact on the transfer of databases and accompanying che
mometric models to different spectrometers. Some of these systematic 
effects may only come to light with hindsight. 

For chemometric models developed on one machine to reliably work 
on another, some form of spectral pre-treatment is needed. In this work, 
three conceptually different multivariate approaches were employed to 
model authentication scenarios for olive and argan oils. These were used 
in conjunction with three different data pre-treatments: PDS, SNV and 
RT. The first two are established spectral normalisation methods; the 
latter is not well-known in conjunction with spectral data. Without pre- 
treatment, models developed using data from one instrument have un
predictable, and likely poor, generalisation ability to new spectrometers. 
All the pre-treatment types considered improved outcomes, although 
not always sufficiently to allow effective transfer of the models between 
instruments. 

The use of magnitude as well as phase corrected data was also 
examined. The magnitude spectral form is a direct representation of the 
NMR measurement which avoids any artefacts arising from phase 
correction. Magnitude data do not have the conventional appearance of 
a baseline with peaks; however, trading a visually familiar spectral form 
for greater spectral reproducibility offers clear benefits for chemometric 
modelling, producing effective multivariate models that are compara
tively more robust to instrument differences. If mitigating batch or 
instrumental effects is important, then serious consideration should be 
given to working not only with phase corrected spectra but also with 
magnitude data. 

It was found that the combination of RT applied to magnitude data 
offers particular advantage. Rank transformed spectra are visually very 
different from their raw counterparts, but nevertheless retain and indeed 
augment spectral features. The large dynamic range in peak intensities 
usual in NMR is thus much compressed. This property makes RT un
suitable for data with large amounts of baseline, but ideally suited to 
magnitude spectra where the signal rather than just noise is present 
across a wide frequency range. In particular, small peaks from con
taminants, which are easily overlooked in typical phase corrected views, 
are amplified to become much more noticeable, making it a useful 
approach for data inspection. Finally, multivariate models developed 
from rank transformed magnitude data appear the most likely to remain 
effective when transferred to different spectrometers, particularly in 
conjunction with the RF or NN-OCC modelling methods. 
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