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Abstract: Robust methods, though ubiquitous in practice, are yet to be
fully understood in the context of regularized estimation and high dimen-
sions. Even simple questions become challenging very quickly. For example,
classical statistical theory identifies equivalence between model-averaged
and composite quantile estimation. However, little to nothing is known
about such equivalence between methods that encourage sparsity. This pa-
per provides a toolbox to further study robustness in these settings and
focuses on prediction. In particular, we study optimally weighted model-
averaged as well as composite l1-regularized estimation. Optimal weights
are determined by minimizing the asymptotic mean squared error. This
approach incorporates the effects of regularization, without the assumption
of perfect selection, as is often used in practice. Such weights are then opti-
mal for prediction quality. Through an extensive simulation study, we show
that no single method systematically outperforms others. We find, however,
that model-averaged and composite quantile estimators often outperform
least-squares methods, even in the case of Gaussian model noise. Real data
application witnesses the method’s practical use through the reconstruction
of compressed audio signals.
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1. Introduction

We investigate the benefits of model-averaged as well as composite estimators
in high-dimensional problems where the underlying goal is superior prediction
quality. Robustness in data analysis with potentially more parameters than sam-
ples is a critical practical question and is of particular interest in constructing
recoveries of compressed images and signals which should have high precision.

Model averaging, often used as a first tool to improve estimation quality,
forms a weighted average of estimators and is here utilized for regularized
sparsity-encouraging estimation in a high-dimensional regression setting. Model
averaging is also well-known in the Bayesian setting [22], though we focus on
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its frequentist version in which a user determines the weights assigned to the
separate estimators [e.g., see 12, 21, 37]. Model averaging enjoys a wide ap-
plication, see, for example, the recent overview paper for model averaging in
ecology by Dormann et al. [15] and for application to hydrology by Höge et al.
[20]. In econometrics, the terminology “forecast combinations” appears [e.g., in
11, 3]; whereas “multimodel inference” is another commonly used term for this
procedure [10].

While the technique is quite thoroughly investigated for low-dimensional
models, far fewer results have been obtained in high dimensions. Ando and
Li [1] consider high-dimensional linear regression. By computing the marginal
correlation between each covariate and the response and forming groups accord-
ing to the obtained values, regularized estimation is avoided. The authors fit a
fixed number of low-dimensional models by the least squares method and sub-
sequently average them. Zhao et al. [38] extend this method to dependent data,
while Ando and Li [2] extend this approach to generalized linear models, again
by only fitting low-dimensional models, this time via maximum likelihood esti-
mation. In these papers, the weights are obtained via cross-validation; see also
Hansen [18] and Hansen and Racine [19] for similar weight finding approaches
in low-dimensional models.

Our setting is different and is theoretically valid (see Theorem 3 below). We
explicitly work with l1-regularized estimators that are averaged, and we do not
rely on the correct low-dimensional representation of the model. When designing
the optimal weights, we explicitly take variable selection effects (of regulariza-
tion itself) into account. Is the dependence among regularized estimators an
impediment or a hidden benefit in obtaining robust predictions, i.e., predictions
that do not change much when the data is changed a little?

A second approach to robustness is through composite estimation. While
model averaging combines estimators after optimization of their respective loss
functions, composite estimation weights the loss functions directly (before op-
timization). For quantile regression in low dimensions, Koenker [29, Theorem
5.2] stated the asymptotic equivalence of model-averaged and composite quan-
tile regression estimators, provided each method uses its own, optimal set of
weights that minimize the asymptotic variance. Hence, with optimal weights,
there is no asymptotic preference between the two methods in low dimensions.
For high-dimensional quantile regression, when one restricts the attention to in-
ference regarding the true nonzero part of the regression coefficient and ignores
the variable selection effect, Bloznelis et al. [7] obtained the same equivalence
for high-dimensional quantile regression using different types of regularizations
(SCAD, lasso, adaptive lasso).

In practice, however, one works with an estimated coefficient vector for which
one is not sure that the regularization has led to the correct selection. There-
fore, incorporating imperfections of variable selection is especially important for
achieving robustness. This is where our approach differs from Bloznelis et al. [7]
or Bradic et al. [9], where an irrepresentable condition (needed for consistent
model or asymptotically perfect selection) has been used to specify weights and
analyze robustness.
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The approximate message passing (AMP) algorithm is crucial in our approach
to take the variable selection into account when studying the estimators’ asymp-
totic mean squared errors. The use of such algorithms has been investigated by
Donoho et al. [13] and Bayati and Montanari [5] for compressed sensing. Donoho
and Montanari [14] explain the use of AMP algorithms for obtaining the vari-
ance of high-dimensional M-estimators for which n/p → δ ∈ (1,∞). Here, n
denotes the sample size and p the number of regression coefficients. However,
the robustness of sparsity encouraging AMP estimators is still largely unknown.

In this paper, we first extend the robust AMP (RAMP) of Bradic [8] to regu-
larized composite estimation. Second, we construct estimators and develop new
theory for the asymptotic mean squared error (AMSE) both for model-averaged
and for composite estimators. Note that model-averaged AMSE required an ex-
tension of AMP theory for a challenging case of dependent estimates. Besides,
we establish new Stein-type risk estimates of the AMSE in both cases.

The new estimates of the AMSE of the model-averaged and composite esti-
mators enable a theoretically justified and data-driven optimal weight choice by
minimizing the estimated AMSE (without relying on perfect variable selection).
The estimated AMSE provides more information regarding the estimators than
merely considering which variables have been selected.

Organization of the paper. First, in Section 2, we detail the model-averaged
and composite estimators in a high-dimensional setup. Next, we explain the
model-averaged robust message passing algorithm in Section 3. The limiting
behavior of the estimators in the algorithm is studied by state evolution param-
eters in Section 4. We obtain the estimators’ asymptotic mean squared error as
well as an estimator of that quantity in Section 5. We showcase the procedure
for high-dimensional regularized quantile regression in Section 6 and present
numerical results in Section 7. Section 8 concludes. All proofs, together with
the assumptions and some technical lemmas, are collected in the Appendix.

2. Model-averaged and composite estimation

We consider a high-dimensional linear model Y = Xβ + ε with Y ∈ Rn, the
design matrix X ∈ Rn×p and the parameter vector β ∈ Rp. The ith row of X is
denoted Xi·, i = 1, . . . , n, the jth column of X is denoted by X·j , j = 1, . . . , p.
We assume the components of ε to be independent and identically distributed
with mean zero, cumulative distribution function Fε and probability density
function fε. We allow for a sparse high-dimensional setup. Denote by s the l0
norm of the parameter vector, s = ‖β‖0, which counts the number of nonzero
components of the vector β. We assume that the ratios n/p → δ ∈ (0, 1) and
n/s → a ∈ (1,∞) when p, n, s tend to ∞.

We consider two types of weighted estimation methods. First, model-averaged
estimation where estimators from different models or estimation methods are
weighted and summed to arrive at a final estimator, see (2). Second, com-
posite estimation where a weighted average of loss functions is minimized;
see (3).
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For model-averaged estimation of the parameter β, define for k = 1, . . . ,K
the regularized estimators

β̂k(λk) = arg min
β∈Rp

{
n∑

i=1

ρk(Yi −Xi·β) + λk‖β‖1

}
, (1)

where ρ1, . . . , ρK are nonnegative convex loss functions and λ = (λ1, . . . , λK)�

is a vector of possibly different nonnegative regularization parameters. For a set
of weights w = (w1, . . . , wK)�, the model-averaged estimator is defined as

β̂MA(λ) =

K∑
k=1

wkβ̂k(λk). (2)

Often one assumes that the weights w1, . . . , wK are all nonnegative and sum to
1, although this is not necessary for the computation of the estimator.

For composite estimation we consider again K loss functions, though only
with a single nonnegative regularization parameter λ, such that the regularized
composite estimator is defined as

β̂C(λ) = arg min
β∈Rp

{
K∑

k=1

n∑
i=1

wkρk(Yi −Xi·β) + λ‖β‖1

}
. (3)

Computationally, composite estimation is harder than model-averaged estima-
tion and requires that all weights are positive to ensure a nonnegative and convex
weighted loss function, even when all ρk are nonnegative and convex. Hence, for
composite estimation it is required that the weight vector w ∈ [0, 1]K such that∑K

k=1 wk = 1.
As a worked-out scenario throughout the paper, we consider quantile loss

functions ρk(·), k = 1, . . . ,K that are defined below. For more information about
quantile regression with i.i.d. errors, see Koenker [29, Sec. 3.2.2]. In this paper,
we assume that the design matrix X does not contain a column of ones; see
assumption (A1) in the Appendix. With τ ∈ (0, 1), the τ -quantile of the response
Y is obtained as Xβ + F−1

ε (τ) = Xβ + uτ .
Figure 1 presents first a single quantile loss function with τ = 0.3,

ρ(x) = (x− uτ )(τ − I{x ≤ uτ}).

For model averaging we specify K different quantile levels and use K different
such quantile loss functions for estimation of β:

ρk(x) = (x− uτk)(τk − I{x ≤ uτk}), k ∈ {1, . . . ,K}.

For composite quantile estimation we assume that the K quantile levels τ1 <
· · · < τK , then also the quantiles of ε are sorted uτ1 < · · · < uτK . Define
uτ0 = −∞ and uτK+1

= ∞.



2556 J. Zhou et al.

Fig 1. Examples of quantile loss functions. Left: τ = 0.3 quantile loss function. Middle:
Composite quantile loss function at quantile levels 0.25, 0.5, 0.75 with equal weights w =
(1/3, 1/3, 1/3)�. Right: Composite quantile loss function at quantile levels 0.25, 0.5, 0.75
with weights w = (0.15, 0.55, 0.3)�.

The middle panel of Figure 1 depicts such a composite quantile loss func-
tion ρC =

∑K
k=1 wkρk for K = 3 quantile levels 0.25, 0.5 and 0.75 with equal

weights w = (1/3, 1/3, 1/3)�. The panel on the right in Figure 1 uses the
same quantile levels but depicts the quantile loss function ρC with weights
w = (0.15, 0.55, 0.3)�.

In general, the composite quantile loss function can be rewritten in the fol-
lowing way,

ρC(x) =

⎧⎪⎪⎨⎪⎪⎩
∑K

k=1 wk(1− τk)(uτk − x), x < uτ1∑K
k=1 wkτk(x− uτk), x ≥ uτK∑�
k=1 wkτk|x− uτk |+

∑K
k=�+1 wk(1− τk)|x− uτk |, x ∈ [uτ� , uτ�+1

)
for 	 = 1, . . . ,K − 1.

(4)
Note that a single quantile loss function can be seen as a particular case of a

composite loss function: take K = 1 and the single weight w1 = 1. Theoretical
results regarding regularized estimation for a single quantile loss function can be
found in Bradic [8]. Henceforth, we concentrate on the example of the composite
case.

One aim of this paper it to investigate the weight choice w by minimizing
the asymptotic mean squared error of the estimators β̂MA(λ) and β̂C(λ).

3. Robust approximate message passing

The idea behind approximate message passing algorithms is to provide an it-
erative procedure that has as its fixed point the estimator of interest; in this
case the minimizer (2) of the regularized loss function in the case of model av-
eraging, and the estimator (3) in the case of composite estimation. Due to a
convergence in the mean square between the solution of the approximate mes-
sage passing algorithm and the estimator (2), respectively (3), the asymptotic
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mean squared error that holds for the solution of the approximate message-
passing algorithm, is also the asymptotic MSE of the other estimator. Studying
effects of regularization while allowing n/p → δ ∈ (0, 1) is challenging. The
AMP provides theoretical advantages in these cases as it enables a complete
and tractable, albeit challenging, structure for obtaining AMSE. This paper is
the first to obtain and use the asymptotic mean square error of the regularized
estimators to optimize the weight choice of both the model-averaged estimator
and the composite estimator. We extend the theory of the RAMP to apply to
the model-averaged estimator; see Theorem 1. Challenges arise with incorpo-
rating dependence into the AMSE expression; see Theorem 2. Theorem 2, in
turn, leads to a new Stein-type estimator of RAMPs asymptotic MSE. While
we focus on the weight choice, the availability of an estimated AMSE may be
used in other contexts, for instance, for the construction of confidence intervals.

3.1. Notation

When the composite loss function ρC =
∑K

k=1 wkρk is used in the RAMP algo-
rithm with tuning parameter α we denote the estimator at iteration number t
by β̂C,(t)(α). When the value of the tuning parameter is clear from the context,

we also denote the RAMP estimator by β̂C,(t).
For constructing the model averaging estimator we denote the separate esti-

mators from the RAMP algorithm using regularity parameters αk, k = 1, . . . ,K
by β̂k,(t)(αk) and the model-averaged estimator is denoted by β̂MA,(t)(α) =∑K

k=1 wkβ̂k,(t)(αk) with α = (α1, . . . , αK)�. When the value of the tuning pa-
rameters is clear from the context, we denote the model averaging RAMP esti-
mator by β̂MA,(t).

A generic estimator, without referring to a specific loss function or construc-
tion, is denoted by β̂(t), using tuning parameter α; the subscript (t) refers to
the iteration number.

3.2. The robust approximate message passing algorithm

We first revise the (robust) approximate message passing algorithm, which con-
sists of three steps iterated until convergence. In comparison with the more
straightforward AMP for the case with a differentiable convex loss function
[13], this procedure for robust high-dimensional parameter estimation [14, 8]
adjusts the residuals to incorporate the valid score directly. While more de-
tails are given in Algorithm 1, which is applied to the different loss functions
ρ1, . . . , ρK and to their weighted sum ρC =

∑K
k=1 wkρk, we here provide the

main outline. The used notation does not explicitly indicate a dependence on
the number of coefficients p to not overcomplicate the formulas.

Donoho and Montanari [14] proposed to use the following proximal mapping
operator to adjust the residuals. With b > 0,

Prox(z, b) = argmin
x∈R

{bρ(x) + 1

2
(x− z)2}
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which minimizes the square loss regularized by the non-differentiable loss, ρ. The
parameter b controls how the proximal operator map points to the minimum of
the non-differentiable loss, where small values correspond to a small movement
towards the minimum of ρ. The fixed point solution of the proximal operator
coincides with the minimum of the loss function ρ. For more information, see
Parikh and Boyd [33].

We continue with the worked out example on quantile regression, see (4). For
	 = 0, . . . ,K, define

h(	) =

�∑
k=1

wkτk −
K∑

k=�+1

wk(1− τk), (5)

where we define a summation sign to be equal to zero in the case where the
upper summation index is smaller than the lower one, that is,

∑b
i=a xi = 0 if

b < a. The proximal operator for the composite quantile case, see (4), is

Prox(z; b) =

{
z − bh(	), z ∈ (uτ� + bh(	), uτ�+1

+ bh(	)), 	 = 0, . . . ,K
uτ� z ∈ [uτ� + bh(	− 1), uτ� + bh(	)], 	 = 1, . . . ,K.

(6)
See Section B.2.1 for the derivation of the algorithm.

We now describe the three steps in more detail.

Step 1: Create adjusted residuals
We use the estimates β̂(t−1) and β̂(t) from iteration steps t − 1 and t to

compute the adjusted residuals

z(t) = Y −Xβ̂(t) + (7)

n−1G(z(t−1); b(t−1))

p∑
j=1

I
{
η
(
β̂(t−1),j +X·jG(z(t−1); b(t−1)); θt−1

)
�= 0

}
,

where the soft-thresholding function η(x; θ) = sign(x)max(|x| − θ, 0) and the
score function G is defined in (11).

In Algorithm 1, see Section 4, we give details on how to set the soft-threshol-
ding parameter θ, which might change in each iteration, and we explain that
a proper choice of θ as a function of the regularity constant λ leads to an
equivalence of the RAMP estimator and the regularized estimator.

The effective score function used in Donoho and Montanari [14] is

G̃(z; b) = b · ∂ρ(x)|x=Prox(z;b), with b > 0; (8)

a subgradient is used in case of nondifferentiability. That is, for a value x where
ρ is non-differentiable

∂ρ(x) = {y : ρ(u) ≥ ρ(x) + y(u− x), ∀u}.

Throughout, we use ∂1 as the notation for the partial derivative or partial sub-
gradient of a function with respect to its first argument. Functions (e.g. G̃) are
applied componentwise to vectors.
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For the example on composite quantile regression the subgradient of ρC is
computed as,

∂ρC(x)

{
= h(	), x ∈ (uτ� , uτ�+1

), for 	 = 0, . . . ,K,
∈ [h(	− 1), h(	)], x = uτ� , for 	 = 1, . . . ,K,

(9)

where h(	) is defined in (5). The effective score function for composite quantile
regression, see Section B.2.2, is

G̃(z; b) =

{
bh(	), z ∈ (uτ� + bh(	), uτ�+1

+ bh(	)), 	 = 0, . . . ,K
z − uτ� , z ∈ [uτ� + bh(	− 1), uτ� + bh(	)], 	 = 1, . . . ,K.

(10)

To incorporate the sparsity, Bradic [8], see also Bayati and Montanari [5],
used the rescaled, min regularized effective score function,

G(z; b) = δω−1G̃(z; b) (11)

where ω = P (B0 �= 0), see assumption (A2) in the Appendix, which corresponds
to the limit of s/p, with s = ‖β‖0, the true number of nonzero components, as
p tends to infinity.

Step 2: Use the effective score function to set b
We choose the scalar b(t) such that the empirical average of the effective score

function G(z; b) has slope 1, thus n−1
∑n

i=1 ∂1G(zi,(t); b(t)) = 1. In the case of a
non-differentiable loss function, Bradic [8] proposed to solve ν̂(b(t)) = 1 with

ν̂(b(t)) =
b(t)δ

ω

( 1
n

n∑
i=1

2∑
j=1

∂vj{z(t),i}+
L−1∑
l=1

γl{f̂P (rl+1)− f̂P (rl)}
)
. (12)

Assumption (A3) in the Appendix defines γl, rl and the differentiable func-

tions v1 and v2 [See also Condition (R) of 8], f̂P is the estimated density of
Prox(zi,(t); b(t)) for i = 1, . . . , n.

The derivation of the estimator ν̂(b(t)), see also Section B.2.4, relies on the
limiting behaviour of the system, see Section 4.

For the composite quantile loss, see (4), we clearly see the dependence on
the quantiles. The estimator of ν in (12) uses v1(z) = 0 and v2(z) = z − uτ�

z ∈ [uτ�+bh(	−1), uτ�+bh(	)], 	 = 1, . . . ,K, corresponding to the differentiable
pieces in (10). The step functions v3(z) = bh(	) when z ∈ (uτ� + bh(	), uτ�+1 +
bh(	)), 	 = 0, . . . ,K. Solving for b in the equation ν̂(b) = 1 is equivalent to
solving for b in the following equation,

s

n
= b

[K−1∑
k=0

h(k)fz{uτk+1
+ bh(k)} −

K∑
k=1

h(k)fz{uτk + bh(k)}
]

+Fz{bh(K)} − Fz{bh(0)}, (13)

where Fz is the cumulative distribution function and fz the density function of
the adjusted residuals. In practice, a grid search is performed to approximate



2560 J. Zhou et al.

the solution b̂t. For each b in the grid, we use the empirical cumulative dis-
tribution, that is, F̂z(bh(K)) = n−1

∑n
i=1 I{zi;(t) ≤ bh(K)}. A kernel density

estimator of fz with the Gaussian kernel estimates defined as f̂z{uτk +bh(k)} =
(nh)−1

∑n
i=1 φ{(zi;(t) − uτk − bh(k))/h} with φ being the standard normal den-

sity function. The solution b̂t is taken to be the average of the smallest b in the
grid that makes the righthand side of (13) smaller than s

n and the next value in
the grid.

Step 3: Update the estimator of β
Use the estimated b(t) from the previous step to update the estimate of β to

β̂(t+1) = η(β̃(t); θ(t)), where β̃(t) = β̂(t) +X�G(z(t); b(t)). (14)

The estimator β̃(t), before applying the soft-thresholding function, is of in-
terest too since it can be interpreted as a debiased estimator [25, 26, 36, 27]; a
thorough study of which, however, is beyond the current work.

4. State evolution

Within each iteration step t of the approximate message passing algorithm, state
evolution studies the limiting behaviour of the estimators when the sample size
goes to infinity. We now define the state evolution parameter ζ̄2(t) which is critical
for Algorithm 1. We start by defining the empirical version as follows

ζ̄2emp,(t) =
1

n

n∑
i=1

G(zi,(t); b(t))
2. (15)

This quantity is linked to the state evolution recursion which describes the
limiting behaviour of large systems, see Theorem 2 in Bayati and Montanari [5]
and Lemma 1 in Bradic [8]. It holds that, see Section B.2.3 for details,

lim
n→∞

1

n

n∑
i=1

G
(
zi,(t); b(t)

)2 a.s.
= E[G(ε− σ̄(t)Z; b(t))

2] = ζ̄2(t), (16)

where ζ̄(t) is the state evolution parameter for the large system, Z is a random
variable with standard normal distribution independent of everything else and
σ̄(t) is defined in (18).

Due to the symmetry of Z, the state evolution parameter is formally defined
as

ζ̄2(t) = E[G(ε+ σ̄(t)Z; b(t))
2]. (17)

This definition explicitly features the extra Gaussian component σ̄(t)Z in the
limiting version, with variance

σ̄2
(t) = δ−1E[(η(B0 + ζ̄(t−1)Z; θ(t−1))−B0)

2] (18)
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Algorithm 1: RAMP algorithm for a single loss function with tuning pa-
rameter α

1 Function singleRAMP(α):

Initialization: β̂(0) ← 0 ∈ Rp,
iteration index t ← 0, final iteration tfinal ← 0,
adjusted residuals z(0) ← Y ∈ Rn,

empirical state evolution ζ̄2
(0)

using (15),

tuning parameter of the soft-thresholding function θ(0) = αζ̄(0)
2 while iteration t ≤ T and tolerance tol > εtol do

1. Adjust residuals: adjust the residuals z(t) ∈ Rn:

z(t) ← Y −Xβ̂(t) +
1

n
G(z(t−1); b(t−1))

p∑
j=1

I
{
η
(
β̂j,(t−1) +X�

·jG(z(t−1);

b(t−1)); θ(t−1)

)
�= 0

}
.

2. Effective score:

(a) choose the scalar b(t) satisfying

if G differentiable then 1 = 1
n

∑n
i=1 ∂1G(zi,(t); b(t))

else 1 = ν̂(b(t)), see (12);

(b) update the state evolution parameter ζ̄2
(t)

using (15)

(c) update the tuning parameter θ(t) ← αζ̄(t).

3. Estimation: Update the coefficient estimation

β̃(t) ← β̂(t) +X�G(z(t); b(t)) and β̂(t+1) ← η(β̃(t); θ(t)),

4. Adjust iteration index: t ← t+ 1; tfinal ← t.

5. Calculate tolerance: tol = ‖β̂(t) − β̂(t−1)‖2/p
3 end

4 return β̂ ← β̂(tfinal)
, β̃ ← β̃tfinal ,

the estimated AMSE(β̂;β) for β̂, see Theorems 1 and 2.

with B0 defined in (A2). To connect the theoretical expression of σ̄2
(t) to Algo-

rithm 1, we apply Eq. (3.6) in Bayati and Montanari [5], and Eqs. (7.10) and
(7.19) in Bradic [8]. This leads to

δ−1 lim
p→∞

1

p

p∑
j=1

{η(β̂(t),j +X�
·jG(zi,(t); b(t)); θ(t))− βj}2 a.s.

= σ̄2
(t). (19)

Note that (19) features the debiased estimator from (14).
We now explain the connection between the estimators that explicitly use an

l1-regularization and the corresponding estimators from the RAMP algorithm.
By applying Theorem 2 of [8], we get the immediate connection between the

regularized estimators β̂k(λk) for k = 1, . . . ,K and the corresponding estima-
tors obtained by applying the RAMP algorithm with a suitable choice of its
regularity parameter α. We explain this below. Since the regularized estima-
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tors β̂k(λk) for k = 1, . . . ,K are used for β̂MA(λ), (2), the connection between
the model-averaged estimators from regularization and from application of the
RAMP algorithm, follows immediately from the connections between the K
separate estimators. The composite estimator β̂C(λ), (3), is a special case of a
model-averaged estimator with K = 1, weight equal to one, and loss function
ρC =

∑K
k=1 wkρk.

Denote (ζ̄2, b) as the fixed point solution when the iteration number t → ∞
of the following equations,

ζ̄2(t) = E[G(ε+ ζ̄(t)Z; b(t))
2] = (δ/ω)2E[G̃(ε+ ζ̄(t)Z; b(t))

2] (20)

1 = E[∂1G(ε+ ζ̄(t)Z; b(t))] = (δ/ω)E[∂1G̃(ε+ ζ̄(t)Zk; b(t))]. (21)

Note that (20) is the state evolution recursion for the large system while in
(21) the first equality is the population version of the requirement in step 2
in Algorithm 1 which states that n−1

∑n
i=1 ∂1G(zi,(t); b(t)) = 1. The second

equalities of both (20) and (21) follow by using the definition of G in (11), with

G̃ being defined in (8).
Then, under assumptions (A1)–(A5) (see the Appendix), for the RAMP al-

gorithm with θ = αζ, where the tuning parameter α > 0 (which motivates the
definition of θ(t) = αζ̄(t) in Algorithm 1), and for the l1-optimization with

λ =
αζ

bδ
P (|B0 + ζZ| ≥ αζ), (22)

it follows by Theorem 2 of Bradic [8] that

lim
t→∞

lim
p→∞

1

p

p∑
j=1

{β̂C,j(λ)− β̂C,(t),j(α)}2 = 0 a.s. (23)

The convergence in (23) explicitly connects the two composite estimators:
one estimator uses an explicit l1-regularization as in (3), the other estimator is
obtained via the RAMP algorithm. Similar results can be found in Huang [23,
Theorem 2.2] for a generalized AMP algorithm with non-negative convex loss
function, and in Bayati and Montanari [6, Theorem 1.8] for the AMP algorithm
with least squares loss function.

For the model averaging estimator we use such an equivalence for estima-
tion with each separate loss function ρk, k = 1, . . . ,K. When using explicit
l1-regularization as in (1) with the regularization constants λk matching as in
(22) the values θk = αk ζ̄k, for k = 1, . . . ,K that are used in the RAMP algo-
rithm, again Theorem 2 of Bradic [8] applies. It hence follows that

lim
t→∞

lim
p→∞

1

p

p∑
j=1

{β̂MA,j(λ)− β̂MA,(t),j(α)}2 = 0, a.s.

5. Theoretical contributions

This section contains detailed theoretical developments for the composite as well
as the model-averaged AMP estimators in high-dimensions.
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5.1. Asymptotic mean squared error

We first define the asymptotic mean squared error as

AMSE(β̂(t), β) = lim
p→∞

1

p

p∑
j=1

(β̂(t),j − βj)
2. (24)

Combining (19) and (16), we obtain

AMSE(β̂(t), β) = lim
p→∞

1

p

p∑
j=1

(
η(β̃(t−1),j ; θ(t−1))− βj

)2

a.s.
= E[{η(B0 − ζ̄(t−1)Z; θ(t−1))−B0}2], (25)

which corresponds to Eq. (3.4) in Bradic [8] with β̃(t),j the debiased estimator
in (14).

In Section 4, we defined the empirical state evolution parameter ζ̄2emp,(t), and
we described the connections between the empirical updates in Algorithm 1
and the theoretical state evolution recursion, which connects to the theoretical
expression of the AMSE. While Algorithm 1 and the theoretical state evolution
recursion involve only a single estimator, the model-averaged estimator, on the
other hand, is the weighted sum of K such estimators β̂k, k = 1, . . . ,K, each
obtained by Algorithm 1. Consequently, the estimators β̂k, k = 1, . . . ,K are
correlated.

Lemma 1 extends Theorem 2 in Bayati and Montanari [5] and (3.16) in
Lemma 1(b) in Bayati and Montanari [5] to the almost sure convergence of the
product for any two recursions among K paralleled recursions. All proofs are
contained in Appendix B.2.

Lemma 1. Let the sequences of design matrices {X(p)}, coefficient vectors
{β(p)}, error vectors {ε(p)}, initial condition vectors {q0(p)} be the common
sequences for K recursions satisfying assumptions (A1)–(A4) in the Appendix.
Let {σ̄2

k,(t), ζ̄
2
k,(t)} be defined uniquely by the recursions in (17) and (18). These

are the state evolution parameters for the kth estimation with initialization
σ̄2
k,(0) = limn→∞

1
n

∑n
i=1 q

2
(0),i/δ. Then Lemma 1 in Bayati and Montanari [5]

holds individually for each of the K recursions; additionally, for all pseudo-
Lipschitz functions ψ̃c : R

t+2 → R of order κc for some 1 ≤ κc ≤ κ/2 with κ as
in (A4) and t a natural number larger than or equal to 0,

lim
p→∞

1

p

p∑
j=1

ψ̃c(hk1,(1),j , . . . , hk1,(t+1),j , βj)ψ̃c(hk2,(1),j , . . . , hk2,(t+1),j , βj)
a.s.
=

E[ψ̃c(ζ̄k1,(0)Zk1,(0), . . . , ζ̄k1,(t)Zk1,(t), B0)ψ̃c(ζ̄k2,(0)Zk2,(0), . . . , ζ̄k2,(t)Zk2,(t), B0)]

where (Zk,(0), . . . , Zk,(t)) ∼ N (0, It+1), k = k1, k2, is a (t+1)-dimensional zero-
mean multivariate standard normal vector independent of B0, ε; at iteration
t, (Zk1,(t), Zk2,(t)) is a bivariate standard normal vector with covariance not
necessarily equal to zero.
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Note that Algorithm 1 belongs to the general recursion in Bayati and Mon-
tanari [5], the initial condition takes q(0) = −β and the kth estimator calculated

by Algorithm 1 takes hk,(t+1) = β −X�G(zk,(t); bk,(t))− βk,(t).
We obtain at iteration t, for k1, k2 ∈ {1, . . . ,K},

lim
p→∞

1

p

p∑
j=1

(β̂k1,(t),j − βj)(β̂k2,(t),j − βj)

a.s.
= E

[ 2∏
r=1

{
η(B0 + ζ̄kr,(t−1)Zkr ; θkr,(t−1))−B0

}]
,

where Zk1 and Zk2 are possibly dependent standard normal random variables.

Since the estimators β̂kr , r = 1, 2 use the same design matrix, a correlation
between Zk1 and Zk2 exists (see Corollary 2) and contributes to the correlation

between β̂k1 and β̂k2 . Using Lemma 1, we obtain the theoretical AMSE for the
regularized model-averaged estimator.

Theorem 1. Assume assumptions (A1)–(A5) in the Appendix. At Algorithm 1’s

iteration step t for the estimator β̂k,(t), for each k = 1, . . . ,K, and for a

weight vector w = (w1, . . . , wK)�, the model-averaged estimator β̂MA,(t) =∑K
k=1 wkβ̂k,(t) has asymptotic mean squared error

AMSE(β̂MA,(t), β) = lim
p→∞

1

p

p∑
j=1

(β̂MA,(t),j − βj)
2

= lim
p→∞

w�Σ0,(t)(p)w
a.s.
= w�Σ(t)w (26)

where Σ0,(t)(p) is a K ×K matrix with (k1, k2)th component

(Σ0,(t))(k1,k2)(p) = p−1

p∑
j=1

(β̂k1,(t),j − βj)(β̂k2,(t),j − βj); (27)

similarly, Σ(t) is a K ×K matrix with the (k1, k2)th component

(Σ(t))(k1,k2) = E
[ 2∏
r=1

{η(B0 + ζ̄kr,(t−1)Zkr ; θkr,(t−1))−B0}
]
.

Since the AMSE expression of the regularized model-averaged estimator is a
quadratic function of the weight vector w, Corollary 1 readily provides the lower
bound of the AMSE as well as the weight vector reaching this lower bound. The
K-vector 1K consists of ones only.

Corollary 1. Constraining the weights to sum to one, the lower bound of
the AMSE at iteration t for the model-averaged estimator as in (26) is equal

to
(
1�
K(Σ(t))

−11K

)−1
. This lower bound is attained for the theoretical optimal

weights wMA =
(
Σ(t)

)−1
1K

(
1�
K(Σ(t))

−11K

)−1
.
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5.2. Estimating optimal weights

The expression of the core matrix Σ(t), which is the limit matrix for n, p →
∞, contains the random variable B0 which satisfies assumption (A2) in the
Appendix. Likewise, Σ0,(t) which is the limit matrix for fixed p while n → ∞,
contains the true coefficient β (see (27)). In practice, neither the true coefficient
vector β nor the random variable B0 is known. To make practical use of the
expressions of the AMSE, we derive an estimator of the matrix Σ0,(t) relying
only on sequences generated in Algorithm 1.

5.2.1. Model-averaged estimator

Before deriving the estimator of the AMSE for the model-averaged estimator,
we first define ζ̄emp,(k1,k2),(t) which is an estimator of the parameter ζ̄(k1,k2),(t),
a quantity similar to the state evolution parameter ζ̄2k,(t), which records the co-

variance between the unbiased sequences β̃k1,(t) and β̃k2,(t) generated in (14) in
Algorithm 1 when p → ∞. Since model-averaged estimators combine estima-
tors constructed from the same data into one weighted average, the correlation
between β̂k1 and β̂k2 is needed to understand the AMSE of the model-averaged
estimator.

Notice that the unbiasedness of the sequence β̃k,(t) follows from the argument

that β̃k,j,(t) converges weakly to B0+ ζ̄k,(t)Zk when p → ∞, while assigning 1/p

point mass to each entry of the vector. Then, β̃k,j,(t)|(B0 = βj) ∼ N(βj , ζ̄
2
k,(t))

for large p, indicating that β̃k,j,(t) centers at βj ensuring the unbiasedness.

Moreover, the vector β̃k,(t) has Gaussian distribution. By applying the soft-

thresholding function η on β̃k,j,(t) in Lemma 4, we avoid the usage of the true
coefficient vector β in Σ0,(t) resulting in a Stein-type risk estimator requiring
only observables from Algorithm 1. A Gaussianity argument has also been used
in Bayati and Montanari [6], Bayati et al. [4], Mousavi et al. [31, 32] to de-
rive a similar Stein-type risk estimator for the Lasso. Details can be found in
Section B.2.8. The bias of the estimator β̂k,(t) is introduced in Algorithm 1 by
applying the soft-thresholding function componentwise to the unbiased sequence
β̃k,(t).

Corollary 2. Assume assumptions (A1)–(A5) in the Appendix. For any k1, k2 =
1, . . . ,K, at iteration t,

lim
p→∞

1

p

p∑
j=1

(β̃k1,(t),j − β)(β̃k2,(t),j − β)
a.s.
= ζ̄k1,(t)ζ̄k2,(t)Cov(Zk1 , Zk2),

where ζ̄k,(t), k = k1, k2 is the state evolution parameter corresponding to β̂k.

Corollary 2 indicates both the existence and a feasible estimation of the
covariance between Zk1 and Zk2 . As an estimator for

ζ̄(k1,k2),(t) = ζ̄k1,(t)ζ̄k2,(t)Cov(Zk1 , Zk2)
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we define

ζ̄emp,(k1,k2),(t) =
1

p− 1

p∑
j=1

(
β̃k1,(t),j −

1

p

p∑
j=1

β̃k1,(t),j

)(
β̃k2,(t),j −

1

p

p∑
j=1

β̃k2,(t),j

)
.

(28)
We now state an unbiased estimator for the matrix Σ0,(t), and a consistent

estimator for the matrix Σ(t) upon convergence of Algorithm 1.

Theorem 2. Assume assumptions (A1)–(A5) in the Appendix, and that the
state evolution parameter in (15) satisfies ζ̄2emp,(t) − ζ̄2emp,(t−1) = o(1). For any
k1, k2 = 1, . . . ,K, define

(Σ̂0)(k1,k2),(t) = −ζ̄emp,(k1,k2),(t−1)

+
1

p

p∑
j=1

2∏
r=1

{
η(β̃kr,(t−1),j ; θkr,(t−1))− β̃kr,(t−1),j

}
+ ζ̄emp,(k1,k2),(t−1) ·

1

p

p∑
j=1

2∑
r=1

I{|β̃kr,(t−1),j | ≥ θkr,(t−1)},

with β̃k1,(t−1), β̃k2,(t−1) in (14) Then, (Σ̂0)(k1,k2),(t) is an unbiased estimator of

component (k1, k2) of the matrix Σ0,(t) at iteration t. Further, (Σ̂0)(k1,k2),(t) is
a consistent estimator of the matrix Σ(t) in Theorem 1.

This new estimator can be compared to the estimator used in Bayati et al. [4,
Def. 2] and Mousavi et al. [32, Eq. (9)] for the case of a single estimator (K = 1).
The proof of Theorem 2, see Section B.2.8 uses Stein’s lemma (see Lemma 4) to
estimate the covariances that appear in the matrix Σ0,(t). The soft-thresholding

function η(·; θ) that appears in the estimator Σ̂0,(t) links the estimator β̂k to

the estimator β̃k. The proof also uses the joint asymptotic normality of the jth
components of the vectors β̃k1 and β̃k2 . The obtained estimator for Σ0,(t) in the
case K > 1 is nontrivial and new to the literature.

Estimated AMSE-optimal weights for the model-averaged estimator are ob-
tained by using the estimator Σ̂0,(t) at the final iteration in Theorem 2. In
combination with the sum-to-one constrained weights this gives the estimated
weights that minimize the estimated AMSE for the model-averaged estimator

ŵMA =
(
Σ̂(t)

)−1
1K

(
1�
K(Σ̂(t))

−11K

)−1
.

When additional constraints such as positivity are needed, the optimal weights
no longer have an explicit formula, but they are straightforward to compute,
see (31).

5.2.2. Composite estimator

The AMSE of a composite estimator can be obtained from Theorem 1 as a
special case, treating the composite loss function as a single loss function with
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weight one, thus ρC =
∑K

k=1 wkρk as in (3). At iteration t,

Σ(t) = E[{η(B0 + ζ̄(t−1)Z; θ(t−1))−B0}]2, and Σ0,(t) = p−1

p∑
j=1

(β̂(t),j − βj)
2.

The matrices Σ(t),Σ0,(t) are now real numbers and coincide with the AMSE of
the estimator in (25). We obtain the corresponding estimator for the AMSE

Σ̂C,0 = ÂMSEC(w) (29)

= −ζ̄2emp(w) +
1

p

p∑
j=1

[{
η(β̃j(w); θ)− β̃j(w)

}2
+ 2ζ̄2emp(w)I{|β̃j(w)| ≥ θ}

]
.

For the single loss function, ρC, the estimator of AMSE in (29) can be com-
pared to the Stein-type estimator that has been obtained in Definition 2 in
Bayati et al. [4] for the AMP algorithm using the least squares loss, which is a
particular case of Algorithm 1.

Finding optimal weights for the composite estimator is complicated. Indeed,
while the model-averaged estimator has an AMSE, which is a quadratic function
in the weights, see (26), the composite estimator and its AMSE depend on the
weights in a highly nonlinear fashion; e.g., observe that the soft-thresholding
function in (29) depends on w.

Therefore, optimization of the estimated AMSE with respect to the weights
proceeds numerically;

wC,1 = argmin
w

ÂMSEC(w).

See Section 6.2 for more details.

5.3. The case of dense (non-sparse) linear models with
n/p → δ ≥ 1: asymptotic variance optimality

Donoho and Montanari [14] and El Karoui et al. [16] showed that the asymptotic
variance of the M-estimators in the case where p, n → ∞ and n/p → δ ∈ [1,∞)
contains an extra Gaussian component. Recently, Lei et al. [30] obtained the
coordinate-wise asymptotic normality of regression M-estimators in the moder-
ate p/n regime for a fixed design matrix. In the sparse high-dimensional linear

model setting where δ ∈ (0, 1), it was shown that the sequence β̃(t) in (14)
follows for the Lasso estimator [4] a similar normal distribution with the vari-
ance containing an extra Gaussian component. The above-mentioned literature
focuses on the asymptotics for a single M-estimator; we extend the asymptotic
result to the model-averaged estimator. In this section, we only characterize the
asymptotic variance of the model-averaged estimator for dense linear models
with n/p → δ ≥ 1, following Donoho and Montanari [14].

Under the dense linear model with n ≥ p, the soft-thresholding function
η(·; θ) is replaced by the identity function and the ratio ω = P (B0 �= 0) = 1.
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Consequently, Algorithm 1 is adjusted to estimate

β̂k = arg min
β∈Rp

{ n∑
i=1

ρk(Yi −Xi·β)
}
,

where β is dense. It is trivial to show that Algorithm 1 still belongs to the
general recursion in Bayati and Montanari [5]. For a single estimator at iteration

t denoted as β̂k,(t), the two state evolution parameters ζ̄2k,(t) and σ̄2
k,(t) coincide

and Theorem 4.1 in Donoho and Montanari [14] holds.

Theorem 3. Assume assumptions (A1)–(A5) in the Appendix. Let n/p → δ ≥
1 when n, p → ∞. For the asymptotic variance of the model-averaged estimator
β̂MA holds that

lim
n,p→∞

1

p

p∑
j=1

Var(β̂MA,j )
a.s
=

K∑
k1=1

K∑
k2=1

Cov(Zk1 , Zk2)

2∏
r=1

{wkrV
1/2(G̃kr ; F̃kr )}

(30)

for differentiable G̃, where V (G̃k;Fk) = (
∫
G̃2

kdFk)/(
∫
∂1G̃kdFk)

2 denotes the

Huber asymptotic variance formula for M-estimators. For non-differentiable G̃,
we replace V in (30) by the consistent estimator V̂ (G̃k;Fk) = (

∫
G̃2

kdFk)/ν̂(bk)
2.

The extra Gaussian component is identified in the convolution of the regression
noise distribution and a Gaussian distribution: F̃k = Fε � N(0, ζ̄2k).

Recall that the componentwise empirical distribution of β̂k(p), when p → ∞,
converges weakly to B0 + ζ̄kZk following Bayati and Montanari [5] and Donoho

and Montanari [14]. Then for large p, while the iteration t → ∞, β̂k(p) ∼
N(β, ζ̄2kIp) [14, 31] with Ip the p×p identity matrix. The (k1, k2)th component of

the empirical variance matrix is denoted by
(
Σemp(p)

)
(k1,k2)

= p−1
∑p

j=1(β̂k1,j−
βj)(β̂k2,j − βj), which is unbiasedly estimated by

(
Σ̂emp(p)

)
(k1,k2)

=

p∑
j=1

(β̂k1,j −
1

p

p∑
j=1

β̂k1,j)(β̂k2,j −
1

p

p∑
j=1

β̂k2,j)/(p− 1).

Note that this estimator coincides with (28) for the special case that n ≥ p and
the soft-thresholding function is replaced by the identity function.

6. Computational details

6.1. Regularized model-averaged quantile estimation

The estimation of the quantile uτk = F−1
ε (τk) follows a two-step procedure.

1. Obtain an initial slope estimate β̂init and calculate the residuals. Example
initial slope estimates are the Lasso or regularized quantile estimation
with a single quantile level.
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2. For k = 1, . . . ,K, estimate the quantile intercepts ûτk by taking the cor-
responding τk × 100% quantile of the residuals from the previous step.

The regularized model-averaged estimator is obtained by averaging over K
paralleled estimators. See Algorithm 2 for the pseudo-code, of which the core is
Algorithm 1; there the effective score function G is that of a single quantile loss
function with K = 1, see also Example 2 in Bradic [8]. In our numerical work,
the upper bound for the number of iteration steps T is set to be 50 in both the
simulation and the data analysis sections. With K = 1, this algorithm applies
to the regularized composite estimator too.

Algorithm 2: RAMP algorithm for K paralleled estimations with tuned
α’s

1 Function KparallelRAMP(K):
2 for k in {1, . . . ,K} do

Initialization: β̂(αk,opt) ← 0 ∈ Rp, β̃k(αk,opt) ← 0 ∈ Rp and

AMSE(β̂k(αk,opt);β) ← 0
3 for α in candidate set A do
4 singleRAMP(α) in Algorithm 1

if AMSE(β̂k(α); β) ≤ AMSE(β̂k(αk,opt);β) then

5 β̂k(αk,opt) ← β̂k(α), β̃k(αk,opt) ← β̃k(α),

AMSE(β̂k(αk,opt);β) ← AMSE(β̂k(α);β)

6 end

7 end

8 end

9 return (β̂1(α1,opt), . . . , β̂K(αK,opt)), (β̃1(α1,opt), . . . , β̃K(αK,opt)), and

(AMSE(β̂1(α1,opt);β), . . . ,AMSE(β̂K(αK,opt);β))

AMSE refers to the estimated version. The β̃ks are recorded for calculating the weights in
Corollary 1.

The tuning parameter α of Algorithm 2 controls the sparsity of the estimators
and requires a tuning procedure to choose it in practice. In Section 7, we consider
the one dimensional Golden-section search algorithm [28] for tuning the value

α in the range [αmin, αmax] that minimize the estimated MSE of β̂ using the
estimator derived in Section 5.2. The upper bound αmax is chosen to be 2.3 for
the simulations and data analysis. The lower bound αmin in the data analysis
follows the lower bound in Proposition 9.2 in Eldar and Kutyniok [17] and is
chosen to be the unique non-negative solution to the equation (1+α2)Φ(−α)−
αφ(α) = δ/2, where φ(x) and Φ(x) denote the p.d.f and c.d.f of the standard
normal distribution respectively. In the simulation study, the lower bound αmin

is chosen to be 1.3 for computational efficiency purposes, since the optimal
tuning parameter for those settings was rarely less than 1.3.

6.2. Optimization of the weights

To obtain the regularized model-averaged quantile estimations with the AMSE-
type weight derived in Corollary 1, we follow the following procedure:
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1. Obtain optimally tuned paralleled regularized quantile estimates, see (14),

(β̂τ1(α1,opt), . . . , β̂τK (αK,opt)), and the additionalK estimates (β̃τ1(α1,opt),

. . . , β̃τK (αK,opt)) from the converged iterations using Algorithm 2.
2. Estimate the AMSE-type optimal weight ŵMA,1 with constraints by

ŵMA,1 = arg min
w≥0,1�

Kw=1
w�Σ̂0w (31)

where the K ×K matrix Σ̂0 is the consistent estimator of Theorem 2.
3. Obtain the regularized model-averaged estimate (2) with the estimated

AMSE-type optimal weight.

It is worth mentioning that ŵMA,1 is a constrained version of wMA attaining the
lower bound of the AMSE in Corollary 1. ŵMA,1 focuses on approximating the
lower bound of the AMSE of the sparse coefficient vector β without assuming
that the nonzero entries are selected perfectly; whereas another type of weight
choice derived in Bradic et al. [9], Bloznelis et al. [7] aims at the lower bound of
the variance of the nonzero part of β by imposing the perfect selection assump-
tion. A numerical comparison of these two types of weight choices is presented
in Section 7.

To equip the regularized composite quantile estimator with the weight mini-
mizing the estimated AMSE, we cannot make use of an analytical solution to the
weight minimization problem. Instead, a numerical search for a better weight
choice in the neighbourhood of an initial weight proposal is employed. The ba-
sic idea is that the estimator β̂C(wC) is treated as a function of the weights.
We propose a collection of candidate weight vectors in the neighborhood of the
weight chosen in the previous step. The weight for β̂C(wC) is updated in each
step by the one having the lowest estimated AMSE, i.e.,

wC,1 = arg min
wcand

ÂMSE(β̂C(αopt;wcand);β).

A more detailed search procedure is as follows.

1. Propose a reasonable initial weight vector wC,init, e.g. the vector of equal

weights; estimate β̂C at the initial weight wC,init and obtain the estimate

of AMSE
(
β̂C(αopt;wC,init);β

)
.

2. Initiate the searching step calculator sD = 0, the candidate optimal weight
wC,1 = wC,init, and the corresponding candidate minimum MSE

AMSE(wC,1) = AMSE
(
β̂C(αopt;wC,init);β

)
estimated by the AMSE estimator in Theorem 2 for K = 1, the collection
of the used weight vectors Vw = {wC,1}.

3. Propose a set of candidate weight vectors Vwcand
. This is to exclude those

recorded in the collection of the used weight vectors Vw. In addition, Vwcand

should be in the neighborhood of the current optimal weight wC,1. Rules
of proposing candidate weight vectors are user-decided; here, we consider
a (K − 1)-dimensional grid search centering at wC,1.
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4. Obtain the regularized composite quantile estimates at all candidate weight
vectors in Vwcand

with Algorithm 2. Update the used weight vector collec-
tion Vw, increase the counter sV = sV + 1, update the candidate optimal
weight wC,1 by the weight with the lowest estimated AMSE in Vw =
{wC,1}, and update the candidate minimum AMSE value AMSE(wC,1).

5. Stop the iteration if the searching step calculator sV > SV or the candidate
weight vector collection Vwcand

= ∅; otherwise repeat steps 3 and 4.

The pseudocode of the search procedure is stated in Algorithm 3.

Algorithm 3: Weight search for regularized composite estimator

1 Function Weight Search:
Initialization: Better weight recorder wC,1 ← wC,init, step calculator sV ← 0,

MSE recorder AMSE(wC,1) ← ÂMSE
(
β̂C(αopt;wC,init);β

)
, and

the collection of the used weight vectors Vw = {wC,1}.
2 while searching step sV ≤ SV or candidate weight collection Vwcand = ∅ do

1. Propose a new Vwcand in the neighbourhood of wC,1. Rules of proposing
candidate weight vectors are user-decided; here, we consider a
(K − 1)-dimensional grid search centering at wC,1.

2. for wcand in Vwcand ∩ V�
w do

Estimate β̂C(αopt;wcand) and ÂMSE
(
β̂C(αopt;wcand);β

)
if ÂMSE

(
β̂C(αopt;wcand);β

)
< AMSE(wC,1) then

wC,1 ← wcand, AMSE(wC,1) ← ÂMSE
(
β̂C(αopt;wcand);β

)
end

end

3. Update sV = sV + 1.

3 end

4 return wC,1, β̂(αopt, wC,1), and ÂMSE(β̂C(αopt;wcand);β)

A possible initial weight vector wC,init is the vector of equal weights or the weight proposed

in Bradic et al. [9]; β̂C is estimated by Algorithm 2, and AMSE(β̂C;β) is estimated by (29).

7. Numerical results

7.1. Simulation study

In this section, we consider the following setup under the high-dimensional linear
model setting.

1. Fix the dimension p = 500, the sample size n = 250, the ratio δ = 0.5. The
number of non-zero components s is taken to be 5 for the high-sparsity
setting and 50 for the medium-sparsity setting; the non-zero part is gen-
erated from the Dirac distribution with a point mass equally distributed
on −1 and 1, or a standard normal distribution.

2. In each repetition, we generate a new dataset by randomly generating
a sensing matrix X, a coefficient vector β, and an error vector ε. The
components of the sensing matrix X are independent and generated from
N(0, 1/250).
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3. As error distributions, we take the standard normalN(0, 1), student-t with
degrees of freedom 3, and the mixture of normal distributions 0.5N(0, 1)+
0.5N(5, 9); errors generated in Step 2 are centered and rescaled to have
standard deviation 0.2.

The objective is to compare the performance of the regularized model-aver-
aged estimator and the composite estimator with different weights, with em-
phasis on the weights where the selection uncertainty is taken into account. The
simulation is repeated to get 500 estimates for each setup. For both the regular-
ized model-averaged and composite quantile estimator, the weights considered
are (1) the estimated AMSE-type weights (i.e. wMA,1 for the model-averaged
quantile estimator and wC,1 for the composite quantile estimator), (2) the esti-
mated weights based on minimising the asymptotic variance of the estimators of
only the active set of coefficients, denoted by wMA,2 [7] and wC,2 [9] where, with
the (k1, k2)th component of A equal to Ak1,k2 = min(τk1 , τk2){1−max(τk1 , τk2)},
Aε = diag(fε(uτ1), . . . , fε(uτK )), and aε = (fε(uτ1), . . . , fε(uτK ))�

wMA,2 = arg min
w,1�

Kw=1,wk≥0

{
w�A−1

ε AA−1
ε w

}
(32)

and
wC,2 = arg min

w,a�
ε w=1,wk≥0

[
w�Aw

]
.

Only considering the variance has been the standard practice so far. (3) Equal
weights 1/K for each component.

The number of quantiles K for both estimators is taken to be 3, with quantile
levels 25%, 50%, 75%.

We present the empirical MSEs of the abovementioned estimators for estima-
tion of three vectors of coefficients. First, we consider the estimator of the sub-
vector of the full coefficient that consists of only the non-zero true coefficients,
we refer to this as the “non-zero part”. Second, we consider the estimator of
the subvector of the coefficients that are truly zero. This is referred to as the
“zero part”. Third, we consider the full vector of estimated coefficients. Note
that some truly zero coefficients might have a non-zero estimate, while some
truly non-zero coefficients might be estimated as zero. For each of these three
vectors, “parts”, we compare the estimated values with the true values to get

MSE(β̂part) =

ppart∑
jpart=1

(β̂jpart − βjpart)
2/ppart

for the appropriate part of the full vectors. Results for the regularized model-
averaged quantile estimator with different weights are presented in Table 1.
We observe that the model-averaged quantile estimator using the weight in
(31) has lower MSEs for estimating the non-zero part of β and for the full
vector β, and this for t3 and the mixture of normally distributed errors in the
high-sparse case where the number of non-zero components s = 5. Using equal
weights leads to a fair performance of the model-averaged quantile estimator,
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especially for estimating the all-zero part of β. The Lasso estimator is considered
as the baseline comparison, which from Table 1 seems to have a competitive
performance, especially in the medium sparsity settings. However, the Lasso
mostly gives over-sparse estimations, which can be observed in the top half of
Table 2 summarizing the averaged true positive (TP) and true negative (TN)
recovery rates which are defined as

TP (TN) =
number of correctly identified as non-zeros (zeros)

number of true non-zeros (zeros)

The Lasso has the highest TN rate consistently and mostly the lowest TP rate.
Further, while increasing the standard deviation of the errors, the Lasso’s overly-
sparse estimation becomes clearer, i.e., Lasso gives sparser estimations and be-
comes all-zeros eventually. The regularized model-averaged estimator with equal
weights mostly has the highest TP rate, except for the medium sparsity settings
where the non-zero part of the true regression coefficient is sampled from a
Dirac distribution at −1 and 1, and the errors are sampled from N(0, 1) or
0.5N(0, 1) + 0.5N(5, 9). The model-averaged estimator with the weight in (31)
has the second-highest TN rate consistently.

Since there is no analytical expression for the selection incorporated weight
of the regularized composite quantile estimator wC,1, the choice of weights can
only be determined numerically by an exhaustive search. To reduce the searching
time of the composite quantile estimator, we set the stopping criterion SV to be
five and only randomly select 4 points in the neighborhood Vwcand

; the tuning
parameter α of the soft-thresholding function is tuned once for the regularized
composite quantile estimator with the weight wC,2, then fixed after that.

Table 3 summarizes the empirical MSEs of the regularized composite quantile
estimator with different weights. Since the tuning parameter, α is selected for
wC,2 and a fixed tuning parameter is used for obtaining the regularized com-
posite quantile estimates with other weights, it is not surprising that using wC,2

leads to lower MSEs in most cases. However, it is worth noticing that using
equal weights, while α is not optimally tuned, leads to the regularized com-
posite quantile estimator’s fair performances. The Lasso estimator consistently
has the lowest empirical MSEs recovering the all-zero parts, through the largest
empirical MSEs recovering the non-zero parts. This is caused by overly sparse
estimations of the Lasso, which is indicated in the bottom half of Table 2. The
regularized composite estimator with locally optimized wC,1 consistently has
the highest TP rate, and second-highest TN rate among all competitors, except
the TN rate for t3 distributed errors and TP rate for 0.5N(0, 1) + 0.5N(5, 9)
distributed errors. At the same time, the non-zero parts of β are generated from
Dirac distribution at −1 and 1.

Tables 3 and 2 illustrate that the regularized composite quantile estimator
mostly improves the performance of regularized single quantile estimator. For
the same simulations settings, we compare the averaged empirical MSEs, true
positive and true negative rates of the regularized composite quantile estimator,
see Table 2, column 7 and 12, and Table 3, column 7, with the single regular-
ized quantile estimator at the median τ = 0.5. For settings where s = 5, the
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Table 1

The mean, over 500 simulation repetitions, of the empirical MSE of the regularized
model-averaged quantile estimator with K = 3 for three error distributions. Empirical MSEs
are calculated for the non-zero parts, all-zero parts, and the full vector of the true coefficient
β. The non-zero part of the true coefficient vector is generated from Dirac distribution with

point mass equally distributed on −1 and 1 (top half), or standard normal distribution
(bottom half). Smaller values of MSE among competitors indicate more accurate

estimations.

fε part MSE(β̂ŵMA,1
) MSE(β̂ŵMA,2

) MSE(β̂ŵMA
eq

) MSE(β̂Lasso)

Non-zero part of β: Dirac distribution at −1 and 1 (∗: ×10−2, †: ×10−3, ‡: ×10−4)

s = 5 Non-zero 0.312 0.299 0.306 0.480

N(0, 1) Zero (‡) 6.812 6.436 5.276 0.526

Full vec (†) 3.790 3.630 3.585 4.854

t3

Non-zero 0.167 0.168 0.182 0.681

Zero (‡) 4.051 3.579 3.041 0.106

Full vec (†) 2.078 2.039 2.121 6.816

0.5N(0, 1)+

Non-zero 0.247 0.355 0.314 0.412

Zero (‡) 4.593 7.516 5.418 0.791

0.5N(5, 9) Full vec (†) 2.920 4.294 3.680 4.207

s = 50 Non-zero 0.487 0.502 0.526 0.376

N(0, 1) Zero (†) 5.498 4.438 3.675 5.710

Full vec (∗) 5.364 5.419 5.590 4.275

t3

Non-zero 0.399 0.427 0.452 0.384

Zero (†) 4.976 3.945 3.412 5.317

Full vec (∗) 4.436 4.630 4.832 4.318

0.5N(0, 1)+

Non-zero 0.504 0.517 0.540 0.371

Zero (†) 5.303 4.386 3.635 5.913

0.5N(5, 9) Full vec (∗) 5.514 5.566 5.724 4.241

Non-zero part of β: N(0,1) (∗: ×10−2, †: ×10−3, ‡: ×10−4)

s = 5 Non-zero 0.206 0.197 0.203 0.378

N(0, 1) Zero (‡) 5.624 5.683 4.439 0.158

Full vec (†) 2.613 2.537 2.465 3.800

t3

Non-zero 0.123 0.126 0.132 0.540

Zero (‡) 3.727 3.153 2.752 0.017

Full vec (†) 1.601 1.574 1.590 5.403

0.5N(0, 1)+

Non-zero 0.159 0.230 0.204 0.313

Zero (‡) 3.788 6.723 4.720 0.348

0.5N(5, 9) Full vec (†) 1.969 2.970 2.511 3.162

s = 50 Non-zero 0.257 0.256 0.265 0.216

N(0, 1) Zero (†) 3.377 2.835 2.401 2.445

Full vec (∗) 2.870 2.819 2.870 2.376

t3

Non-zero 0.201 0.207 0.216 0.244

Zero (†) 2.831 2.275 2.009 1.859

Full vec (∗) 2.264 2.278 2.336 2.611

0.5N(0, 1)+

Non-zero 0.275 0.278 0.285 0.220

Zero (†) 3.571 2.945 2.536 2.530

0.5N(5, 9) Full vec (∗) 3.076 3.049 3.077 2.423
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Non-zero part of β: Dirac distribution at −1 and 1 N(0,1)

fε rate β̂ŵMA,1
β̂ŵMA,2

β̂ŵMA
eq

β̂Lasso β̂0.5 β̂ŵMA,1
β̂ŵMA,2

β̂ŵMA
eq

β̂Lasso β̂0.5

s = 5
N(0, 1)

TP 0.992 0.991 0.993 0.906 0.982 0.677 0.683 0.688 0.419 0.660

TN 0.904 0.903 0.896 0.995 0.940 0.916 0.912 0.907 0.998 0.945

t3
TP 0.999 0.999 0.999 0.663 1.000 0.754 0.762 0.765 0.294 0.739

TN 0.910 0.903 0.896 0.999 0.941 0.913 0.905 0.899 1.000 0.943

0.5N(0, 1)+ TP 0.992 0.984 0.992 0.942 0.820 0.719 0.711 0.724 0.486 0.482

0.5N(5, 9) TN 0.922 0.912 0.906 0.992 0.942 0.927 0.916 0.911 0.997 0.946

s = 50
N(0, 1)

TP 0.836 0.847 0.854 0.889 0.548 0.647 0.658 0.666 0.619 0.600

TN 0.843 0.830 0.823 0.868 0.606 0.843 0.832 0.807 0.883 0.894

t3
TP 0.892 0.899 0.904 0.882 0.453 0.696 0.706 0.715 0.590 0.622

TN 0.833 0.816 0.807 0.873 0.707 0.839 0.822 0.811 0.931 0.842

0.5N(0, 1)+ TP 0.822 0.837 0.843 0.892 0.531 0.633 0.643 0.650 0.621 0.539

0.5N(5, 9) TN 0.845 0.833 0.826 0.864 0.601 0.846 0.834 0.827 0.911 0.834

fε rate β̂ŵC,1
β̂ŵC,2

β̂ŵC
eq

β̂Lasso β̂0.5 β̂ŵC,1
β̂ŵC,2

β̂ŵC
eq

β̂Lasso β̂0.5

s = 5
N(0, 1)

TP 0.993 0.991 0.991 0.911 0.982 0.664 0.656 0.657 0.444 0.660

TN 0.946 0.946 0.946 0.994 0.940 0.963 0.963 0.963 0.998 0.945

t3
TP 1.000 1.000 1.000 0.675 1.000 0.740 0.729 0.736 0.303 0.739

TN 0.945 0.944 0.944 0.998 0.941 0.957 0.957 0.956 1.000 0.943

0.5N(0, 1)+ TP 0.990 0.982 0.968 0.939 0.820 0.699 0.650 0.626 0.485 0.482

0.5N(5, 9) TN 0.955 0.953 0.951 0.991 0.942 0.965 0.966 0.967 0.993 0.946

s = 50
N(0, 1)

TP 0.903 0.895 0.891 0.883 0.548 0.669 0.668 0.665 0.613 0.600

TN 0.824 0.823 0.824 0.872 0.606 0.848 0.846 0.846 0.916 0.894

t3
TP 0.939 0.933 0.934 0.871 0.453 0.724 0.722 0.720 0.590 0.622

TN 0.819 0.817 0.820 0.879 0.707 0.835 0.834 0.835 0.929 0.842

0.5N(0, 1)+ TP 0.886 0.881 0.875 0.891 0.531 0.651 0.648 0.642 0.615 0.539

0.5N(5, 9) TN 0.827 0.824 0.825 0.867 0.601 0.855 0.852 0.852 0.914 0.834
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Table 3

The mean, over 500 simulation repetitions, of the empirical MSE of the regularized
composite quantile estimator with K = 3 and the regularized single quantile estimator at
quantile level 0.5 for three error distributions. Empirical MSEs are calculated for the

non-zero parts, all-zero parts, and the full vector of the true coefficient β. The non-zero part
of the true coefficient vector is generated from Dirac distribution with point mass equally
distributed on −1 and 1 (top half), or standard normal distribution (bottom half). Smaller

values of MSE among competitors indicate more accurate estimations.

fε part MSE(β̂ŵC,1
) MSE(β̂ŵC,2

) MSE(β̂ŵC
eq
) MSE(β̂Lasso) MSE(β̂0.5)

Non-zero part of β: Dirac distribution at −1 and 1 (∗: ×10−2, †: ×10−3, ‡: ×10−4)

s = 5 Non-zero 0.226 0.246 0.249 0.479 0.272

N(0, 1) Zero (‡) 6.566 7.119 7.199 0.571 11.641

Full vec (†) 2.906 3.163 3.202 4.847 3.752

t3

Non-zero 0.122 0.135 0.133 0.674 0.142

Zero (‡) 3.782 4.148 4.109 0.112 5.650

Full vec (†) 1.593 1.756 1.740 6.747 1.911

0.5N(0, 1)+

Non-zero 0.184 0.246 0.311 0.420 0.461

Zero (‡) 4.635 6.165 7.353 1.015 20.016

0.5N(5, 9) Full vec (†) 2.301 3.068 3.839 4.303 6.011

s = 50 Non-zero 0.342 0.359 0.367 0.384 0.310

N(0, 1) Zero (†) 8.722 9.273 9.536 5.572 4.368

Full vec (∗) 4.203 4.423 4.524 4.339 4.308

t3

Non-zero 0.280 0.294 0.298 0.398 0.598

Zero (†) 7.026 7.511 7.618 5.159 19.415

Full vec (∗) 3.429 3.617 3.663 4.443 5.709

0.5N(0, 1)+

Non-zero 0.358 0.376 0.385 0.375 0.318

Zero (†) 9.099 9.644 10.007 5.750 4.301

0.5N(5, 9) Full vec (∗) 4.403 4.631 4.751 4.268 4.360

Non-zero part of β: N(0,1) (∗: ×10−2, †: ×10−3, ‡: ×10−4)

s = 5 Non-zero 0.157 0.173 0.175 0.363 0.177

N(0, 1) Zero (‡) 3.782 4.311 4.327 0.220 9.528

Full vec (†) 1.946 2.153 2.178 3.655 2.555

t3

Non-zero 0.099 0.110 0.108 0.527 0.107

Zero (‡) 2.575 2.861 2.826 0.043 5.169

Full vec (†) 1.245 1.382 1.360 5.273 1.492

0.5N(0, 1)+

Non-zero 0.134 0.176 0.212 0.317 0.406

Zero (‡) 2.787 3.772 4.550 0.476 23.379

0.5N(5, 9) Full vec (†) 1.615 2.135 2.568 3.213 4.469

s = 50 Non-zero 0.174 0.182 0.186 0.216 0.230

N(0, 1) Zero (†) 4.925 5.220 5.369 2.299 3.970

Full vec(∗) 2.181 2.289 2.342 2.371 2.571

t3

Non-zero 0.130 0.138 0.139 0.236 0.168

Zero (†) 3.849 4.077 4.152 1.888 2.887

Full vec (∗) 1.645 1.744 1.765 2.531 1.925

0.5N(0, 1)+

Non-zero 0.189 0.198 0.205 0.214 0.236

Zero (†) 5.149 5.507 5.738 2.386 3.984

0.5N(5, 9) Full vec (∗) 2.354 2.476 2.562 2.353 2.776
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composite quantile estimator clearly dominates the single quantile estimator for
all three error distributions. For settings where s = 50, the composite estimator
still mostly outperforms the single quantile estimator, except for the following
cases: (1) the MSE for the non-zero and zero estimated subvector of β in settings
where errors are generated from N(0, 1) and 0.5N(0, 1)+0.5N(5, 9) distribution
and the true non-zero subvector of β is generated from a Dirac distribution; (2)
TN rates in settings where errors are generated from N(0, 1) and t3 distribution
and the true non-zero subvector of β is generated from N(0, 1).

The percentage of converged cases for the model-averaged and composite
estimator, while setting the tolerance εtol to be 10−6 for different error distri-
butions, are included in Table 4, where we define a estimator to have converged
when the needed number of iterations was less than 50.

Table 4

Percentage of converged cases of both regularized model-averaged and composite quantile
estimators with the convergence tolerance εtol = 10−6. The convergence percentage of the

regularized model-averaged estimator is calculated by including only those cases of which all
single quantile component estimates converge in less than 50 iterations.

(%) s = 10 s = 50

fε model-averaged composite model-averaged composite

N(0, 1) 76 90 69 86

t3 78 78 71 82

0.5N(0, 1) + 0.5N(5, 9) 77 86 71 85

Assumption (A1) restricts Algorithm 1 to a special design matrix that does
not allow correlations between the X·j ’s. However, since such correlation might
be present in reality, it is of interest to see if Algorithm 1 is still numerically
robust while Assumption (A1) is relaxed in practice. We consider a similar
simulation setup as used before with p = 500, the sample size n = 250, and
δ = 0.5. The number of non-zero components s is taken to be 5 or 50; the
non-zero components are generated from the Dirac distribution with point mass
equally distributed on −1 or 1, or a standard normal distribution. In each simu-
lation replication, a design matrix is first generated from a multivariate Gaussian
distribution N(0,ΣX), then the components Xij are centered and scaled such
that the components of the rescaled matrix X have sample variance 1/n. Here,
we allow for a Toeplitz covariance matrix ΣX of which its (i, j)th component

(ΣX)i,j = σ
|i−j|
X , i, j = 1, . . . , p. We consider σX = 0, 0.1, 0.3.

To investigate the effect of the correlation on the RAMP algorithm we con-
sider the regularized single quantile estimator at quantile level 0.5. The error
distribution considered is t3. Table 5 records the performance of Algorithm 1
with tolerance εtol = 10−6 for such a correlated design matrix; the performance
is evaluated by the empirical MSEs, the TP and TN rates, and the percentage
of convergence.

We see from Table 5 that parameter estimation using Algorithm 1 remains
accurate and stable when weak correlations such as with σX = 0.1 exist between
the X·j ’s; the accuracy drops when we further increase the correlations as with



2578 J. Zhou et al.

Table 5

The mean, over 500 simulation repetitions, of the empirical MSEs, the true positive (TP),
the true negative (TN), and convergence percentages of the regularized model-averaged

quantile estimators for t3 distributed errors. Empirical MSEs are calculated for the non-zero
parts, all-zero parts, and the full vector of the true coefficient β. The non-zero part of the

true coefficient vector is generated from Dirac distribution with point mass equally
distributed on −1 and 1 (top), or standard normal distribution (bottom).

fε : t3 β̂ŵMA,1
MSE(β̂vec) TP TN Convergence %

Non-zero Zero Full vec

Non-zero part of β: Dirac distribution at −1 and 1 (∗: ×10−2, †: ×10−3, ‡: ×10−4)

σX = 0
s = 5 0.142 5.650 (‡) 1.911 (†) 1.000 0.941 98

s = 50 0.598 19.415 (†) 5.709 (∗) 0.453 0.707 87

σX = 0.1
s = 5 0.143 5.455(‡) 1.969 (†) 1.000 0.944 97

s = 50 0.403 5.170 (†) 4.492 (∗) 0.843 0.881 85

σX = 0.3
s = 5 0.145 5.923(‡) 2.037 (†) 1.000 0.940 87

s = 50 0.461 5.159 (†) 5.074 (∗) 0.793 0.895 41

Non-zero part of β: N(0,1) (∗: ×10−2, †: ×10−3, ‡: ×10−4)

σX = 0
s = 5 0.107 5.169 (‡) 1.492 (†) 0.943 0.482 98

s = 50 0.168 2.887 (†) 1.925 (∗) 0.622 0.842 87

σX = 0.1
s = 5 0.106 4.842 (‡) 1.534 (†) 0.741 0.948 97

s = 50 0.182 2.875 (†) 2.079 (∗) 0.653 0.892 86

σX = 0.3
s = 5 0.109 4.636 (‡) 1.546 (†) 0.738 0.948 87

s = 50 0.198 2.857 (†) 2.236 (∗) 0.638 0.900 47

σX = 0.3; it is worth mentioning that the convergence percentages decrease
when the correlation increases. Further research concerning correlated data is
worth considering.

7.2. Data analysis

We consider the audio wave file of a waveshape from Octave in the R package
signal. The dataset is a list of 3 elements; the audio wave sample is a vector of
17380 entries stored in the element “sound”, the sample rate is 22050 Hz stored
in the element “rate”, and the resolution of the wave file is 16 bits recorded in the
element “bits”. To alleviate the computational burden of the signal compression
and reconstruction, we only consider the signal from the 6145th entry to the
8192th entry of the original sound wave signal.

7.2.1. The preprocessing – discrete wavelet transform

Originated from the compressed sensing problem, the sparse linear model Y =
Xβ + ε describes the image or signal compression. The s-sparse p-dimensional
input signal β is first compressed by a known sensing matrix X ∈ Rn×p with
n < p; the compressed signal vector Xβ ∈ Rn can be corrupted by the noise ε
with εi’s i.i.d. via transmission. Notice that the p-dimensional input signal vec-
tor β is assumed to be s-sparse which is usually unsatisfied by signals expressed
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in the standard basis. To obtain the sparse representation of β in practice, an
intermediate stage of expressing the natural non-sparse vector β∗ in a proper
orthonormal basis Ψ∗ = (ψ∗

1 , . . . , ψ
∗
p) is required. Examples of such an orthonor-

mal basis include the orthonormal wavelet basis, the Fourier basis, and so forth.
To perform the discrete wavelet transform, we use the R package wavethresh.
The collection of the coefficients at all resolution levels is used for further com-
pression.

7.2.2. The artificially corrupted compression

To imitate the compressed sensing process, we process the audio wave signal
vector as follows:

1. Perform the Daubechies’ least asymmetric wavelet transform with 8 van-
ishing moments using the wd function in the R package wavethresh on the
original signal β∗ ∈ R2048 and obtain the corresponding wavelet coefficient
vector β ∈ R2047 with p = 2047.

2. Randomly generate the sensing matrix X with i.i.d components Xij ∼
N(0, 1/n), where n = �δ′p
 and δ′ is the undersampling ratio chosen to be
0.5 here; compress the corresponding wavelet coefficients β by computing
Xβ.

3. Corrupt the compressed wavelet coefficients by the error vector ε with
i.i.d. components εi having p.d.f fε; obtain the artificial observed signal
vector Y = Xβ + ε. Additionally, the standard normal N(0, 1), student-t
with 3 degrees of freedom, and the bimodal mixed normal 0.5N(0, 1) +
0.5N(5, 9) are used as the corruption error distributions; the errors are
sampled according to the distributions first, then centered and rescaled to
have standard deviation 0.03.

In practice, the artificial vector Y and the sensing matrix X are observed. The
accurate recovery of the original wavelet coefficient vector β is of practical in-
terest. To obtain an impression on the performance of the AMSE-type optimal
weight, we generate the sensing matrix X under a fixed seed number, which
is set to be 1 in our case, then generate the error vector ε under various seed
numbers. However, we only present the reconstructions under one seed for each
setting in Section 7.2.3 due to limited space.

7.2.3. Signal recovery

To reconstruct the signal vector β expressed in the wavelet basis from the sensing
matrix X and the observed compressed signal vector Y corrupted by potentially
non-Gaussian distributed error ε, we consider the regularized model-averaged
and the composite quantile estimator weighting over three equally-spaced quan-
tiles (25%, 50%, 75%) using equal weights, the oracle-type weights and the new
AMSE-type weights. The tolerance in the RAMP algorithm is set as εtol = 10−8.
The Lasso estimator is considered as the baseline comparison. Notice that the
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Fig 2. Reconstructed audio signal from using the regularized model-averaged estimator with
the estimated AMSE-type weights in (31), oracle-type optimal weights in (32), and equal
weights. The original audio curve is depicted in black. The Lasso reconstruction is presented
at bottom-right. The error used for corruption follows the mixture of normals distribution
0.5N(0, 1) + 0.5N(5, 9).

regularized estimates β̂MA and β̂C after reconstruction are the representations in
the wavelet domain. To compare the accuracy of the reconstruction, we perform
a back-transform on the estimates and obtain the corresponding signal vectors
β̂∗
MA and β̂∗

C with representations in the natural basis.

Example reconstructions of the audio signal for K = 3 using the regularized
model-averaged estimator equipped with different weights, with the baseline re-
covery from the Lasso represented in the natural basis are presented in Figure 2
for the mixture of normals distributed error, and in Figure 3 for the t3 dis-
tributed error. We observe that the strong signals corresponding to large values
located at the end of the sound signal are well captured by the model-averaged
quantile estimator using different weights for both error distributions. For the
weak signals clustering at the front of the signal, the model-averaged estima-
tors using ŵMA,1 and equal weights outperform the counterpart with ŵMA,2

for 0.5N(0, 1) + 0.5N(5, 9) distributed errors; recovery differences for the weak
signals of the model-averaged estimator using different weights are hardly ob-
servable for the t3 distributed errors. Recovery using the Lasso is competitive
to the model-averaged estimator using wMA,1 for strong signals. However, the
Lasso estimates the signals in an over-sparse way with too many zeros entries;
one can observe the almost flat recovery for the weak signals for both error
distributions.

Bates and Granger [3] provide an alternative weight choice for the model-

averaged estimator obtained by considering only the variances of β̂k’s and ig-
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Fig 3. Reconstructed audio signal using the regularized model-averaged estimator with the
estimated AMSE-type weights in (31), oracle-type optimal weights in (32), and equal weights.
The original audio curve is depicted in black. The Lasso reconstruction is presented at bottom-
right. The error used for corruption is t3 distributed.

noring the covariances. This leads to

ŵMA,3 = arg min
w≥0,1�

Kw=1
w�diag(Σ̂0,(t))w, (33)

where diag(Σ̂0,(t)) denotes the diagonal matrix obtained from Σ̂0,(t) which keeps
the diagonal and has zeros in all off-diagonal entries. Figure 4 contains the
recovery of the audio signal using the model-averaged estimator using this
weight.

For the composite quantile estimator β̂C, we performed the same weight
searching method as for the simulation study. This is, SV = 5 and randomly
select 4 candidate weights in the neighbourhood of the previous value. We se-
lect the tuning parameter α once for the starting weight ŵC,2, it remains un-
changed thereafter. The recovered signals by the composite estimator with dif-
ferent weights are very similar in all cases.

To compare the recovery of the regularized model-averaged and composite
estimator combined with different weights, as well as the Lasso estimator, we
present the mean absolute percentage error (MAPE) in Table 6 where the MAPE
is defined as

MAPE(β̂, β) =
1

p

p∑
j=1

∣∣∣(β̂j − βj

)/
βj

∣∣∣ (34)

Table 7 reports the MSE.
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Fig 4. Reconstructed audio signal using the regularized model-averaged estimator with Bates-
Granger type weight in (33). The original audio curve is depicted in black. The left figure
uses t3 distributed corruption error, while the figure on the right used 0.5N(0, 1)+ 0.5N(5, 9)
distributed corruption error.

Table 6

The MAPE defined in (34) of the audio signal recovered by the regularized model-averaged
and composite estimators with different weights, and the Lasso estimator. The seed number
used to generated the errors for corrupting the compressed signal vector is 37 for both t3

and mixed normal distributed errors.

fε t3 0.5N(0,1) + 0.5 N(5, 9)

est: MA / C west,1 west,2 weq west,3 west,1 west,2 weq west,3

MAQR 3.177 3.339 3.341 3.005 2.934 5.746 3.722 4.152

CQR 2.798 2.730 2.671 – 6.100 6.090 6.462 –

Lasso 1.346 1.536

Table 7

The MSE of the audio signal recovered by the regularized model-averaged and composite
estimators with different weights, and the Lasso estimator. The seed number used to

generated the errors for corrupting the compressed signal vector is 37 for both t3 and mixed
normal distributed errors.

fε t3 0.5N(0,1) + 0.5 N(5, 9)

est: MA / C (×10−4) west,1 west,2 weq west,3 west,1 west,2 weq west,3

MAQR 1.286 1.288 1.274 1.304 2.044 2.417 2.051 2.006

CQR 1.279 1.273 1.271 – 2.363 2.068 2.120 –

Lasso 2.566 2.003

We see that the Lasso has the lowest MAPE for both t3 and mixed nor-
mal distributed errors; at the same time, it estimates the weak signals in an
over-sparse way and is not capable of capturing the weak signals. Comparing
the effect of different weight choices on the regularized model-averaged quantile
estimator with its composite quantile counterpart, we see that the MAPEs of
the composite quantile estimators are relatively stable using different weights.
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The model-averaged estimator with the AMSE-type weight ŵMA,1 has excel-
lent performance compared to the composite estimator, especially for the mixed
normal distributed error. The Bates-Granger weighting provides good results
regarding MAPE for the t3 error case, but not for the mixed normal. Regarding
MSE, it performs well for the mixed normal case but is worst for the t3 errors,
wherein this example the equal weights perform best, although all results are
close. Searching for the selection incorporated weight ŵC,1 for the regularized
composite quantile estimator is computationally infeasible for large p (2047 in
our case). Estimating the regularized model-averaged quantile estimator averag-
ing three quantiles here takes approximately 4 – 5 hours whereas estimating the
regularized composite quantile estimator takes more than 16 hours with only
five steps in a nearby search with four surrounding candidate weights, and the
tuning parameter α tuned only once for the starting weight.

Additionally, we present the estimated weights for both regularized model-
averaged and composite estimators in Table 8. An interesting observation is
made by comparing the estimated weights ŵMA,1 and ŵMA,2 for the mixed nor-
mal distributed error. The weight ŵMA,1 presented here is quite representative;
it assigns weight 0 to the quantile estimate at 50% quantile level suggesting the
final model-averaged estimate is obtained by averaging estimates at 25% and
75% quantile levels. On the contrary, ŵMA,2 assigns the largest weight to the
estimate at a 50% quantile level indicating the most significant contribution to
the final model-averaged estimate.

Table 8

The estimated weights ŵMA,1 and ŵMA,2 for the model-averaged estimator, and ŵC,1 and
ŵC,2 for the composite estimator. The seed number used to generated the errors for

corrupting the compressed signal vector is 37 for both t3 and mixed normal distributed
errors.

fε est: MA / C MAQR CQR

t3
west,1 (0.156, 0.725, 0.119) (0.089, 0.492, 0.419)

west,2 (0.077, 0.650, 0.273) (0.314, 0.267, 0.467)

0.5N(0, 1)+ west,1 (0.548, 0, 0.452) (0.469, 0.495, 0.036)

0.5N(5, 9) west,2 (0.147, 0.843, 0.010) (0.369, 0.345, 0.286)

8. Discussion

This paper is the first to take the selection uncertainty due to regularization into
account when computing the weights used in model-averaged and composite es-
timation. While we have studied both composite estimation and model-averaged
estimation, the flexibility of allowing for parallel computation and a component-
specific choice of regularization, combined with an explicit expression of the op-
timal weights for model averaging, places this method in a preferred position
from a computational point of view.

It would be interesting to investigate whether AMSE expressions for other
types of regularization may be obtained similarly. Going yet one step further
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would be incorporating the effect of data-driven values of the regularization
parameters λ (for composite estimation) and λ1, . . . , λK (for model-averaged
estimation) on the choice of the weights. To further study the weight selection
and the effect of using data-driven weights, one should study the joint distribu-
tion of the estimated weights and the estimators of interest. To simplify such
matters, sample splitting could be used such that the weights are computed on
a hold-out sample and the estimation using those weights proceeds on the rest
of the sample. In this paper, we used the same dataset for estimating both β
and w.

To avoid overly complicated mathematical expressions, we followed earlier
literature in the use of a design matrix where Xij ∼ N(0, 1/n). Other applica-
tions might require studying, for example, fixed designs, which are beyond the
scope of the current paper.

Appendix

Appendix A: Assumptions

(A1) Design: The elements of the design matrix X, that is Xij for i = 1, . . . , p
and j = 1, . . . , n, are independent and identically distributed according to
a N(0, 1/n) which is also called a standard Gaussian design.

(A2) Coefficients: The p-vector β is such that the sequence of uniform distribu-
tions that is placed on its components converges, for p tending to infinity,
to a distribution with a bounded (2k− 2)th moment for k ≥ 2. Denote by
B0 a random variable with this limiting distribution function FB0 .

(A3) Loss function: (i) The subgradient ∂ρ(u) =
∑3

j=1 vj(u) where v1 has an
absolutely continuous derivative, v2 is continuous and consists of piecewise
linear parts and is constant outside a bounded interval, and v3 is a non-
decreasing step function. Denote v′2(u) = αl and v3(u) = γl when u ∈
(rl, rl+1] where α0 = αL = 0, −∞ = r0 < r1 < . . . < rL < rL+1 = ∞ and
−∞ = γ0 < γ1 < . . . < γL < γL+1 = ∞. (ii) The subgradient’s absolute
value |∂ρ(u)| is bounded for all u ∈ R. (iii) h(t) =

∫
ρ(z − t)dFε(z) has a

unique minimum at t = 0. (iv) There exists a δ > 0 and η > 1 such that
E[{sup|u|≤δ |v′′1 (z + u)|}η] is finite.

(A4) We assume that for some κ > 1,

(a) limp→∞ E
̂fβ
(B2κ−2

0 ) = EfB0
(B2κ−2

0 ) < ∞

(b) limp→∞ E
̂fε
(ε2κ−2) = Efε(ε

2κ−2) < ∞

(c) limp→∞ E
̂fq0

(B2κ−2
0 ) < ∞.

(A5) The regression errors ε1, . . . , εn and ε are i.i.d. random variables with mean
zero and finite 2nd moment. Assume ε has cumulative distribution function
Fε and probability density function fε. Let Fε have bounded derivatives
fε and ∂fε; further, let fε > 0 in the neighbourhood of r1, . . . , rL in (A3).



Composite vs model-averaged in high-dimensions 2585

Assumption (A1) has been used by Bayati and Montanari [5], Donoho and Mon-
tanari [14], Bradic [8], assumption (A2) has been used by Bayati and Montanari
[5], Bradic [8]; while assumptions (A3) and (A5) correspond to conditions (R)
and (D) of [8]. Assumption (A4) is used in Lemma 1, in addition to the moment
condition stated in (A2) and (A5). We take κ = 2 for Algorithm 1.

Appendix B: Lemmas and Proofs

B.1. Auxiliary definitions and lemmas

Definition 1 (Pseudo Lipschitz function). A function φ : Rm → R is pseudo-
Lipschitz of order κ ≥ 1, if there exists a constant L > 0, such that ∀x, y ∈ Rm

|φ(x)− φ(y)| ≤ L(1 + ‖x‖κ−1 + ‖y‖κ−1)‖x− y‖.

It follows that if φ is a pseudo-Lipschitz function of order κ, then there exists
a constant L′ such that ∀x ∈ Rm : |φ(x)| ≤ L′(1 + ‖x‖κ).

Lemma 2 (Theorem 1 in Jameson [24]). If xi ≥ 0 where i = 1, . . . , n and p ≥ 1,
then

n∑
i=1

xp
i ≤ (

n∑
i=1

xi)
p ≤ np−1

n∑
i=1

xp
i .

The reversed inequality holds for p ∈ (0, 1)

Lemma 3 (Extrema of quadratic forms in Rao [34]). Let A be a m×m matrix,
B be a m×k matrix, and U be a k-vector. Denote by S− any generalized inverse
of B�A−1B, then

inf
B�X=U

X�AX = U�S−U

where X is a column vector and the infimum is attained at A−1BS−U .

Lemma 4 (Stein’s lemma in Stein [35]). Let X1, X2 jointly Gaussian dis-
tributed. Let g : R → R be absolutely continuous with derivative ∂g and
E|∂g(X1)| < ∞. Then

Cov(g(X1), X2) = Cov(X1, X2)E[∂g(X1)].

Lemma 5 (Lemma 4 in Bayati and Montanari [5]). Let κ ≥ 2 and a se-
quence of vectors {β(p)}p≥0 whose empirical distribution converges weakly to
probability measure fB0 on R with bounded κth moment; additionally, assume
that limp→∞ E

̂fβ
(Bκ

0 ) = EfB0
(Bκ

0 ). Then for any pseudo-Lipschitz function

ψ : R → R of order κ:

lim
p→∞

1

p

p∑
j=1

ψ(βj)
a.s.
= E[ψ(B0)].
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B.2. Proofs

B.2.1. Proof of (6)

Proof. By definition, the proximal mapping operator is the minimizer of the
function bρC(x) + 0.5(x − z)2 which is non-differentiable but subdifferentiable,
with subgradient b ·∂ρC(x)+x− z. Prox(z; b) is the minimizer if and only if 0 ∈
{b·∂ρC(x)|x=Prox(z;b)+Prox(z; b)−z}. We distinguish between intervals where ρC
is differentiable and non-differentiable points. For x ∈ (uτ� , uτ�+1

), 	 = 0, . . . ,K
the function ρC is differentiable. Using the expression of the subgradient in (9),
we obtain 0 = bh(	)+x−z, which is solved for x to get that Prox(z; b) = z−bh(	).
From Prox(z; b) ∈ (uτ� , uτ�+1

) it follows that z ∈ (uτ� + bh(	), uτ�+1
+ bh(	)).

For the non-differentiable points, that is x = uτ� , 	 = 1, . . . ,K, having 0 ∈
{b[h(	− 1), h(	)] + x− z} leads to uτ� = Prox(z; b) ∈ [z − bh(	), z − bh(	− 1)].
This implies that z ∈ [uτ� + bh(	− 1), bτ� + bh(	)].

B.2.2. Proof of (10)

Proof. By definition, G̃(z; b) = b · ∂ρ(x)|x=Prox(z;b), and, see the Proof of (6)
in Section B.2.1, 0 ∈ {b · ∂ρ(x)|x=Prox(z;b) + Prox(z, b) − z}. Without loss of
generality, we show the calculation for the cases where z < uτ1 + bh(0) and
where z ∈ [uτ1 + bh(0), uτ1 + bh(1)].

For z < uτ1 + bh(0) it holds that Prox(z; b) = z − bh(0) < uτ1 , which leads

to ∂ρ(x)|x=Prox(z;b) = h(0). Hence, G̃(z; b) = b · ∂ρ(x)|x=Prox(z;b) = bh(0).
Having z ∈ [uτ1 + bh(0), uτ1 + bh(1)] corresponds to taking the nondifferen-

tiable point uτ1 = Prox(z; b), see the proof of (6). We have ∂ρ(x)|x=Prox(z;b) ∈
[h(0), h(1)]. The subgradient ∂ρC is non-decreasing (Assumption (A3)) and
linear. From (6) the proximal operator is also a linear function. An intuitive

choice for G̃(z; b) = b · ∂ρ(x)|x=Prox(z;b) with z ∈ [uτ1 + bh(0), uτ1 + bh(1)] is

G̃(z; b) = z−bτ1 which keeps the linearity of the composition of the two functions
∂ρ and Prox(·; b).

B.2.3. Proof of (16)

Proof. Theorem 2, Eq. (3.7) of Bayati and Montanari [5] states in our notation
that

lim
n→∞

1

n

n∑
i=1

ψ(εi − z(t),i, εi)
a.s.
= E[ψ(σ̄(t)Z, ε)], (35)

where ψ : R2 → R is any pseudo-Lipschitz function, Z ∼ N(0, 1), σ̄(t) from
(19), and ε as in (A5). Motivated by Eqs. (7.16) and (7.18) in Bradic [8] we take
ψ(d, ε) = {G(ε−d; b(t))}2, with b(t) as in Algorithm 1, step 2. Applying (35) we
obtain that as n → ∞
1

n

n∑
i=1

G(εi− (εi− zi,(t)); b(t))
2 =

1

n

n∑
i=1

G(zi; b(t))
2 a.s.→ E[G(ε− σ̄(t)Z; b(t))

2].
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B.2.4. Estimation of ν(b)

The effective score step in Section 3.2, in cases where G(·; b(t)) is non-differenti-
able, requires a solution b(t) to the equation 1 = ν̂(b(t)) where ν̂(b(t)) is a con-
sistent estimator of a population parameter ν(b(t)) defined as

ν(b(t)) = E[∂1G̃(C(t); b(t))] = b(t)(δ/ω)E(∂[∂ρ{Prox(C(t); b(t))}])

with C(t) = ε− σ̄(t)Z the random variable characterizing the limit distribution
of the adjusted residuals z(t) when p → ∞.

Using Assumption (A3) and Lemma 3 of Bradic [8], ∂ρ can be written as a
sum of three functions of which v1 and v2 are differentiable. For the step function
v3, we use Assumption (A3) on ρ, where γl is the step height on the interval

(rl, rl+1]. Let fC(t)− ˜G(C(t);b)
denote the density of the variable C(t) − G̃(C(t); b)

which is equivalent to Prox(C(t); b). The equivalence is obtained by setting the

derivative of the bρ(x)+ 1
2 (x−C(t))

2 w.r.t. x to zero and evaluate at Prox(C(t); b),
due to the fact that the proximal operator is the minimizer of the function
bρ(x) + 1

2 (x− C(t))
2. Then we arrive at

ων(b(t))

δb(t)
=

2∑
j=1

E[∂vj(C(t))]+

L−1∑
l=1

γl{fC(t)− ˜G(C(t);b(t))
(rl+1)−fC(t)− ˜G(C(t);b)

(rl)}.

The consistent estimator in (12) is obtained by replacing the expectation above
with the empirical mean and replacing the density of the proximal operator
Prox(C(t); b) with its kernel density estimator.

B.2.5. Proof of Lemma 1

Since this proof is based on the general recursion and Lemma 1 in Bayati and
Montanari [5], we first restate the general recursion to which Algorithm 1 belongs
with slight changes in the notations. Given the noise ε ∈ Rn and the coefficient
vector β ∈ Rp, the general recursion is defined

h(t+1) = X�m(t) − ξ1,(t)q(t), m(t) = g1,t(d(t), ε)

d(t) = Xq(t) − ξ2,(t)m(t−1), q(t) = g2,(t)(h(t), β)

where ξ1,(t) =n−1
∑n

i=1 ∂1g1,(t)(d(t),i, εi), ξ2,(t) =(δp)−1
∑p

j=1 ∂1g2,(t)(h(t),j , βj).
Further, to connect the general recursion to Algorithm 1, we also state the exact
form of h(t+1),m(t), d(t), q(t) taken in Algorithm 1. Lemma 1 in Bradic [8] states

that Algorithm 1 takes h(t+1) = β−X�G(z(t); b(t))−β(t), q(t) = β(t)−β, from
(7) z(t) = ε − d(t), which defines d(t), m(t) = −G(z(t); b(t)) with the functions
g1,(t)(x1, x2) = −G(x2 − x1; b(t)), and g2,(t)(x1) = η(β − x1; θ)− β. To proceed
with the proof of Lemma 1, we first recall the technique used for proving Lemma
1 in Bayati and Montanari [5], which uses induction on the iteration t. To not
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fully repeat the long proof and all notations we only give details about where
our proof differs from theirs.

1. B(0): show properties (3.15), (3.17), (3.19), (3.21), (3.23) and (3.23) of
Bayati and Montanari [5] which are related to the vectors b(0) and m(0), by
conditioning on the σ-algebra D(0),(0) generated by {β, ε, q(0)}; obtain the
σ-algebra D(1),(0) by adding b(0) and m(0) to the set S(0),(0) = {β, ε, q(0)}.

2. H1: show that the properties (3.14), (3.16), (3.18), (3.20), (3.22), (3.24)
and (3.25), which are related to the vectors h(1) and q(1), hold by condi-
tioning on the σ-algebra D(1),(0); obtain the σ-algebra D(1),(1) by adding
h(1) and m(1) to the set S(1),(0) = {β, ε, q(0), d(0),m(0)}

3. B(t): Similar to B(0); the proof is conditioning on the σ-algebra D(t),(t) for
the set containing β, ε, q(0) and all previous obtained vectors; obtain the
new σ-algebra D(t+1),(t) by adding b(t+1) and m(t+1) to the set.

4. H(t+1): Similar to H(1); conditioning on the σ-algebra D(t+1),(t) for the set
containing β, ε, q(0) and all previous obtained vectors.

Assuming Lemma 1 in Bayati and Montanari [5] holds for all K estimators

β̂k, k = 1, . . . ,K in (2), we add an additional step considering the correlations
between the estimators. The main technique is conditioning on the σ-algebra
generated by ∪K

k=1Sk,(1),(0) and ∪K
k=1Sk,(t+1),(t), where Sk,(1),(0) and Sk,(t+1),(t)

are the sets described in step 2 and 4 above for the kth estimator. The proof
is similar to that of (3.16) in Lemma 1(b) of Bayati and Montanari [5], with
different mathematical techniques in order to adjust the original proof from a
single sequence of iterations to K paralleled sequences of iterations.

Proof. Idea of the construction: The construction of B(0), H(0), B(t+1) and
H(t+1) depends on the space D(t+1),(t) which is the space generated by the
true coefficient β, the noise ε, the initial condition q(0), and the subsequent
terms generated from Algorithm 1. The proof by induction is similar to the
proof of Lemma 1(b) in Bayati and Montanari [5]. We prove that H(1) holds
and if B(r),H(s) holds for all r ≤ t and s ≤ t, then H(t+1) holds. Let ok,(t)(1)
denote a vector in Rt for the kth estimator such that all of its entries converge
to 0 almost surely for p → ∞.

Step 2 from Bayati and Montanari [5]: H(1): We know from Eq. (3.35) in

Bayati and Montanari [5] that for each k and a Gaussian matrix X̃k with the
same distribution as the design matrix X, see also Bayati and Montanari [5]
Lemma 2 (1),

hk,(1)|Dk,(1),(0)

d
= (X̃k)

�mk,(0) + ok,(1)(1)qk,(0).

Let ak,j = ([(X̃k)
�mk,(0)]j + o1,k(1)qk,(0),j , βj) and ck,j = ([(X̃k)

�mk,(0)]j , βj)
where k = k1, k2. We first show that for any two k1, k2 ∈ {1, . . . ,K}.

lim
p→∞

1

p

p∑
j=1

[
ψ̃c(ak1,j)ψ̃c(ak2,j)− ψ̃c(ck1,j)ψ̃c(ck2,j)

]
= 0. (36)
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Since ψ̃c is κc order pseudo-Lipschitz, hence we have

|ψ̃c(ak,j)− ψ̃c(ck,j)| ≤ L{1 + max(‖ak,j‖κc−1, ‖ck,j‖κc−1)}|q0k,j |o1,k(1);
|ψ̃c(ak,j)| ≤ L′(1 + ‖ak,j‖κc), |ψ̃c(ck,j)| ≤ L′′(1 + ‖ck,j‖κc);

meanwhile, from the proof in H0 in Lemma 1 in Bayati and Montanari [5], we
have for an arbitrary κc order pseudo-Lipschitz function ψ̃c

lim
p→∞

1

p

p∑
j=1

|ψ̃c(ak,j)− ψ̃c(ck,j)| = 0. (37)

Notice that

|ψ̃c(ak1,j)ψ̃c(ak2,j)− ψ̃c(ck1,j)ψ̃c(ck2,j)|
= |ψ̃c(ak1,j)ψ̃c(ak2,j)− ψ̃c(ak2,j)ψ̃c(ck1,j) + ψ̃c(ak2,j)ψ̃c(ck1,j)

− ψ̃c(ck1,j)ψ̃c(ck2,j)|
≤ |ψ̃c(ak2,j)||ψ̃c(ak1,j)− ψ̃c(ck1,j)|+ |ψ̃c(ck1,j)||ψ̃c(ak2,j)− ψ̃c(ck2,j)|.

Then we have

1

p

p∑
j=1

|ψ̃c(ak1,j)ψ̃c(ak2,j)− ψ̃c(ck1,j)ψ̃c(ck2,j)|

≤ 1

p

p∑
j=1

|ψ̃c(ak2,j)||ψ̃c(ak1,j)− ψ̃c(ck1,j)|+ |ψ̃c(ck1,j)||ψ̃c(ak2,j)− ψ̃c(ck2,j)|

≤max
j

|ψ̃c(ak2,j)| ·
1

p

p∑
j=1

|ψ̃c(ak1,j)− ψ̃c(ck1,j)|

+max
j

|ψ̃c(ck1,j)| ·
1

p

p∑
j=1

|ψ̃c(ak2,j)− ψ̃c(ck2,j)|

≤ L′
2{1 + max

j
(‖ak2,j‖κc)}1

p

p∑
j=1

|ψ̃c(ak1,j)− ψ̃c(ck1,j)|

+ L′′
1{1 + max

j
(‖ck1,j‖κc)}1

p

p∑
j=1

|ψ̃c(ak2,j)− ψ̃c(ck2,j)|. (38)

By (37), for k = k1, k2, p
−1

∑p
j=1 |ψ̃c(ak,j) − ψ̃c(ck,j)| tends to 0 as p → +∞.

The remaining two factors are finite almost surely: [(X̃k)�mk,(0)]j is a Gaussian
random variable which is finite almost surely; β0,j is finite almost surely since
its limiting distribution has bounded moments up to (2κ − 2) by assumption
(A2). Hence, for any pairs k1, k2 ∈ {1, . . . ,K} (36) holds.

From here, we consider h̃k,(1)|Dk,(1),(0)

d
= (X̃k)

�mk,(0) of which the compo-

nents have the same distribution as ‖mk,(0)‖Zk/
√
n for Zk ∼ N(0, 1). Condi-

tioning on Dk1,(1),(0) and Dk2,(1),(0), we use the strong law of large numbers for



2590 J. Zhou et al.

triangular arrays in Theorem 3 of Bayati and Montanari [5] to obtain that

lim
p→∞

1

p

p∑
j=1

{ 2∏
r=1

ψ̃c(h̃kr,(1),j , βj)− E(X̃k1
,X̃k2

)[

2∏
r=1

ψ̃c(h̃kr,(1),j , βj)]
}

a.s.
= 0. (39)

We first prove (39). For k1 �= k2, we show that the condition in Theorem 3
of Bayati and Montanari [5] holds. To simplify the notation, we denote the
independent copies of the matrices X̃k1 , X̃k2 to beXk1 , Xk2 . We take the random
variables in the triangular array to be

ψ̃c(h̃k1,(1),j , βj)ψ̃c(h̃k2,(1),j , βj)− E(X̃k1
,X̃k2

)[ψ̃c(h̃k1,(1),j , βj)ψ̃c(h̃k2,(1),j , βj)]

(40)
and let 0 < ρ < 1 then

1

p

p∑
j=1

E
∣∣∣ 2∏
r=1

ψ̃c(h̃kr,(1),j , βj)− E(X̃k1
,X̃k2

)[

2∏
r=1

ψ̃c(h̃kr,(1),j , βj)]
∣∣∣2+ρ

=
1

p

p∑
j=1

E(Xk1
,Xk2

,X̃k1
,X̃k2

)

[∣∣∣ψ̃c([X
�
k1
mk1,(0)]j , βj)ψ̃c([X

�
k2
mk2,(0)]j , βj)

− ψ̃c([X̃
�
k1
mk1,(0)]j , βj)ψ̃c([X̃

�
k2
mk2,(0)]j , βj)

∣∣∣2+ρ]
=

1

p

p∑
j=1

E
[∣∣∣ψ̃c([X

�
k1
mk1,(0)]j , βj)ψ̃c([X

�
k2
mk2,(0)]j , βj)

− ψ̃c([X
�
k1
mk1,(0)]j , βj)ψ̃c([X̃

�
k2
mk2,(0)]j , βj)

+ ψ̃c([X
�
k1
mk1,(0)]j , βj)ψ̃c([X̃

�
k2
mk2,(0)]j , βj)

− ψ̃c([X̃
�
k1
mk1,(0)]j , βj)ψ̃c([X̃

�
k2
mk2,(0)]j , βj)

∣∣∣2+ρ]
≤ 1

p

p∑
j=1

E
[∣∣∣ψ̃c([X

�
k1
mk1,(0)]j , βj)ψ̃c([X

�
k2
mk2,(0)]j , βj)

− ψ̃c([X
�
k1
mk1,(0)]j , βj)ψ̃c([X̃

�
k2
mk2,(0)]j , βj)

∣∣∣2+ρ

+
1

p

p∑
j=1

E
∣∣∣ψ̃c([X

�
k1
mk1,(0)]j , βj)ψ̃c([X̃

�
k2
mk2,(0)]j , βj)

− ψ̃c([X̃
�
k1
mk1,(0)]j , βj)ψ̃c([X̃

�
k2
mk2,(0)]j , βj)

∣∣∣2+ρ]
≤ 1

p

p∑
j=1

E
[∣∣∣ψ̃c([X

�
k1
mk1,(0)]j , βj)

∣∣∣2+ρ

×
∣∣∣ψ̃c([X

�
k2
mk2,(0)]j , βj)− ψ̃c([X̃

�
k2
mk2,(0)]j , βj)

∣∣∣2+ρ]
+

1

p

p∑
j=1

E
[∣∣∣ψ̃c([X̃

�
k2
mk2,(0)]j , βj)

∣∣∣2+ρ
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×
∣∣∣ψ̃c([X

�
k1
mk1,(0)]j , βj)− ψ̃c([X̃

�
k1
mk1,(0)]j , βj)

∣∣∣2+ρ]
≤ 1

p

p∑
j=1

E
[∣∣∣L′

(
1 + |[X�

k1
mk1,(0)]j |κc + |βj |κc

)∣∣∣2+ρ

×
∣∣∣ψ̃c([X

�
k2
mk2,(0)]j , βj)− ψ̃c([X̃

�
k2
mk2,(0)]j , βj)

∣∣∣2+ρ]
+

1

p

p∑
j=1

E
[∣∣∣L′

(
1 + |[X̃�

k2
mk2,(0)]j |κc + |βj |κc

)∣∣∣2+ρ

×
∣∣∣ψ̃c([X

�
k1
mk1,(0)]j , βj)− ψ̃c([X̃

�
k1
mk1,(0)]j , βj)

∣∣∣2+ρ]
≤ max

j=1,...,p
E
[∣∣∣L′

(
1 + |[X�

k1
mk1,(0)]j |κc + |βj |κc

)∣∣∣2+ρ]
× 1

p

p∑
j=1

E
[∣∣∣ψ̃c([X

�
k2
mk2,(0)]j , βj)− ψ̃c([(X̃k2)

�mk2,(0)]j , βj)
∣∣∣2+ρ]

+ max
j=1,...,p

E
[∣∣∣L′

(
1 + |[X̃�

k2
mk2,(0)]j |κc + |βj |κc

)∣∣∣2+ρ]
× 1

p

p∑
j=1

E
[∣∣∣ψ̃c([X

�
k1
mk1,(0)]j , βj)− ψ̃c([X̃

�
k1
mk1,(0)]j , βj)

∣∣∣2+ρ]
.

For the first term in the last inequality above, we see that the expectation
E[|L′(1 + |[X̃�

k2
mk2,(0)]j |κc + |βj |κc)|2+ρ] is bounded by some constant, since

the expectation is with respect to the matrices Xk1 , Xk2 , X̃k1 , X̃k2 of which the
components are Gaussian distributed with mean 0 and variance 1/n; the rest
terms are bounded by a constant; the moments of Gaussian distributed r.v. are
all finite. Let us denote the upper bound of this expectation by L′′, then the
first term of the inequality above is bounded by

L′′ 1

p

p∑
j=1

E
[∣∣∣ψ̃c([X

�
k2
mk2,(0)]j , βj)− ψ̃c([X̃

�
k2
mk2,(0)]j , βj)

∣∣∣2+ρ]
,

which can be shown to be bounded by cpρ/2 following a similar argument as
in Lemma 1(b) in Bayati and Montanari [5]. The second term similarly can be
shown to be bounded by c′pρ/2. Hence the variable defined in (40) satisfies the
condition in Theorem 3 in Bayati and Montanari [5]; thus the a.s. convergence
holds.

In the special case where k1 = k2, we show that the square of ψc is still
pseudo-Lipschitz of order 2κc ≤ κ, then the almost sure convergence hold by
directly applying the result in Lemma 1 in Bayati and Montanari [5].

To simplify the notation, we use ψ to denote any pseudo-Lipschitz function
here. For any pairs x, y ∈ Rm, we have

|ψ2(x)− ψ2(y)|
≤ |ψ(x) + ψ(y)||ψ(x)− ψ(y)| ≤ (|ψ(x)|+ |ψ(y)|)|ψ(x)− ψ(y)|
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≤ L′(1 + ‖x‖κ + 1 + ‖y‖κ) · L(1 + ‖x‖κ−1 + ‖y‖κ−1)‖x− y‖
≤ LL′′(1 + ‖x‖κ + ‖y‖κ)(1 + ‖x‖κ−1 + ‖y‖κ−1)‖x− y‖
≤ LL′′(1 + ‖x‖+ ‖y‖)2κ−1‖x− y‖
≤ LL′′3κ−1(1 + ‖x‖2κ−1 + ‖y‖κ−1)‖x− y‖.

Since κ ≥ 1, ‖x‖, ‖y‖ ≥ 0, the last two inequalities are obtained by applying
the first and second inequality in Lemma 2, respectively. Hence, the square of
any arbitrary pseudo-Lipschitz function of order κ is still pseudo-Lipschitz with
order 2κ. This proves (39).

Using Lemma 5 for v = β and

ψ(βj) = E(X̃k1
,X̃k2

)ψ̃c(h̃k1,(1),j , βj)ψ̃c(h̃k2,(1),j , βj),

the following convergence holds

lim
p→∞

1

p

p∑
j=1

E(X̃k1
,X̃k2

)

[
ψ̃c(h̃k1,(1),j , βj)ψ̃c(h̃k2,(1),j , βj)

]
a.s.
= EB0

[
E(Zk1,(0),Zk2,(0))

[ 2∏
r=1

ψ̃c(‖
mkr,(0)√

n
‖Zkr,(0), B0)

]]
a.s.
= E

[ 2∏
r=1

ψ̃c(ζ̄kr,(0)Zkr,(0), B0)
]
.

Step 4 from Bayati and Montanari [5]: Ht+1: Following the first expression
in the proof of Lemma 1(b) in step 4 in Bayati and Montanari [5], for any index
k = 1, . . . ,K

ψ̃c(hk,(1),j , . . . , hk,(t+1),j , βj)|Dk,(t+1),(t)

d
=

ψ̃c

(
hk,(1),j , . . . , hk,(t),j ,

[t−1∑
r=0

αrhk,(r+1)+(X̃k)
�mk,(t)+Q̃k,(t+1)ok,(t+1)(1)

]
j
, βj

)
.

The columns of Q̃k,(t+1) form an orthogonal basis for the column space of
Qk,(t+1) = [qk,(0) . . . qk,(t)]. Define the matrix Mk,(t) = [mk,(0) . . .mk,(t−1)], the

vector (mk,(t))‖ =
∑t−1

r=0 δrmk,(r) as the projection of mk,(t) on the column space
of Mk,(t) and the vector (mk,(t))⊥ = mk,(t) − (mk,(t))‖. Similar to the proof in

H1, we first show that the error term Q̃k,(t+1)ok,(t+1)(1) can be dropped. Let
ak,j =(
hk,(1),j , . . . , hk,(t),j ,

[ t−1∑
r=0

δrhk,(r+1)+(X̃k)
�(mk,(t))⊥+Q̃k′,(t+1)ok,(t+1)(1)

]
j
, βj

)
and ck,j =

(
hk,(1),j , . . . , hk,(t),j ,

[∑t−1
r=0 δrhk,(r+1) + (X̃k)

�(mk,(t))⊥
]
j
, βj

)
.

To show that the left hand-side of (38) is finite for the new ak,j and ck,j , it
suffices to show that both maxj(‖ak2,j‖κc) and maxj(‖ck1,j‖κc) are finite almost



Composite vs model-averaged in high-dimensions 2593

surely. By Lemma 2, we obtain the following inequality

max
j

(‖ak2,j‖κc) = max
j

(
C(

t∑
r=0

|hk2,(r+1),j |κc + |βj |κc)
)

≤ C
( t∑

r=0

max
j

|hk2,(r+1),j |κc +max
j

|βj |κc

)
for some constant C. The finiteness of maxj |βj |κc has been discussed in H1;
maxj |hk2,(r+1),j | is finite almost surely since Lemma 1 in Bayati and Montanari

[5] states that for a higher order l = k− 1, lim
∑

p→∞ p−1
∑p

j=1(hk2,(t+1),j)
2l <

∞. The almost-sure finiteness of maxj |hk2,(r+1),j | follows by a simple contra-
diction: assume P (maxj |hk2,(r+1),j | = ∞) = P (|hk2,(r+1),jmax

| = ∞) > 0, then

P
(
sup
p′≥p

1

p′

p′∑
j=1

(hk2,(t+1),j)
2l < ∞

)
= P

(
sup
p′≥p

p′ − 1

p′
{ 1

p′ − 1

∑
j �=jmax

(hk2,(t+1),j)
2l}+ 1

p′
(hk2,(t+1),jmax

)2l <∞
)
< 1.

The above equation contradicts the result in Lemma 1(e) in Bayati and Monta-
nari [5]. Follow similar arguments, we have maxj(‖ck1,j‖κc) finite almost surely.
Now we consider the random variable

Ãk,j = ψ̃c

(
hk,(1),j , . . . , hk,(t),j ,[ t−1∑

r=0

δrhk,(r+1) + (X̃k)
�(mk,(t))⊥ + Q̃k,(t+1)ok,(t+1)(1)

]
j
, βj

)
.

Following arguments as in H1, it is easy to show that

lim
p→∞

1

p

p∑
j=1

[
Ãk1,jÃk2,j − E(X̃k1

,X̃k2
)Ãk1,jÃk2,j

]
a.s.
= 0. (41)

By Lemma 5 and arguments as in the proof of Lemma 1 (b) in Bayati and
Montanari [5],

lim
p→∞

1

p

p∑
j=1

ψ̃c

(
hk1,(1),j , . . . , hk1,(t),j ,

[t−1∑
r=0

δk1,(r)hk1,(r+1)+(X̃k1)
�(mk1,(t))⊥

]
j
, βj

)

× ψ̃c

(
hk2,(1),j , . . . , hk2,(t),j ,

[ t−1∑
r=0

δk2,(r)hk2,(r+1) +(X̃k2)
�(mk2,(t))⊥

]
j
, βj

)
a.s.
= EB0E(Zk1,(0),...,Zk1,(t),Zk2,(0),...,Zk2,(t))[ 2∏

r=1

ψ̃c

(
ζ̄kr,(0)Zkr,(0), . . . , ζ̄kr,(t)Zkr,(t), B0

)]
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= E

[ 2∏
r=1

ψ̃c

(
ζ̄kr,(0)Zkr,(0), . . . , ζ̄kr,(t)Zkr,(t), B0

)]
.

B.2.6. Proof of Corollary 2

Proof. The almost sure convergence holds by choosing ψ̃c(y(0), . . . , y(t), βj) =

ψc(y(t), βj) =
(
βj − y(t)

)
− βj in Lemma 1.

B.2.7. Proof of Theorem 1

Proof. By Lemma 1 and choosing ψ̃c(y(0), . . . , y(t), βj) = ψc(y(t), βj) = η(βj −
y(t); θ(t))− βj which is a pseudo-Lipschitz function of order κc = 1 the conver-
gence in (26) is obtained.

B.2.8. Proof of Theorem 2

Proof. Theorem 2 in Bayati and Montanari [5] showed that when assigning 1/p

point mass to each entry of the vector, β̃k,j,(t−1)(p) converges weakly to B0 +
ζ̄k,(t−1)Zk for p → ∞ where Zk ∼ N(0, 1) and B0 has p.d.f. fB0 . When p is large,

β̃k,(t−1) | (B0 = β) ≈ N(β, ζ̄2k,(t−1)Ip); the normality comes from Zk ∼ N(0, 1).

Similar results for the Lasso estimator can be found in Bayati et al. [4] and

Donoho and Montanari [14]. The normality of β̃k,(t−1) ensures that the Stein’s
unbiased risk estimate is applicable for constructing the AMSE estimator.

Next, consider any pair (k1, k2) with k1, k2 ∈ {1, . . . ,K} at iteration t − 1.

The conditional normality holds for β̃kr,(t−1) (r = 1, 2). Each component of the

estimator β̃kr,(t−1) is independent of the remaining entries. Hence, the depen-

dence between β̃k1,(t−1) and β̃k2,(t−1) comes from the entry-wise dependence of

the two variables. In other words, there is only dependence between β̃k1,(t−1),j1

and β̃k2,(t−1),j2 when j1 = j2. The covariance between the two estimators is

ζ̄(k1,k2),(t−1) = Cov(β̃k1,(t−1), β̃k2,(t−1)).

Meanwhile, since ζ̄2emp,(t) = ζ̄2emp,(t−1) + o(1) by assumption, θkr,(t) = αζ̄kr,(t)

where α is fixed for the different iterations, we obtain

lim
p→∞

1

p

p∑
j=1

|β̂kr,(t),j − β̂kr,(t−1),j |

a.s
= E

∣∣∣η(B0 + ζ̄kr,(t)Zkr,(t),j ; θkr,(t))− η(B0 + ζ̄kr,(t−1)Zkr,(t−1),j ; θkr,(t−1))
∣∣∣

= E
∣∣∣η(B0 + ζ̄kr,(t)Zkr,(t),j ; θkr,(t))− η(B0 + ζ̄kr,(t)Zkr,(t−1),j ; θkr,(t)) + o(1)

∣∣∣
= 0.
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The almost sure convergence holds by Lemma 1(b) [5]. The next equality holds
by ζ̄2(t) = ζ̄2(t−1) + o(1) and the definition of θkr,(t). The last equality holds be-
cause both Zkr,(t−1),j and Zkr,(t),j are standard Gaussian distributed. Thus,

β̂kr,(t),j − β̂kr,(t−1),j |(B0 = βj) converges to 0 almost surely.

Further, by (14), β̂kr,(t−1),j−β̃kr,(t−1),j
d
= ζ̄kr,(t−1)Zk,j where Zkr,j ∼ N(0, 1).

Then, β̂kr,(t),j − β̃kr,(t−1),j = (β̂kr,(t),j − β̂kr,(t−1),j)+ (β̂kr,(t−1),j − β̃kr,(t−1),j)
d
=

ζ̄kr,(t−1)Zk,j , where β̂kr,(t),j = η(β̃kr,(t−1),j ; θkr,(t−1)), by Slutsky’s theorem.

This suggests that β̂kr,(t),j − β̃kr,(t−1),j converges in distribution to ζ̄kr,(t−1)Zk,j

which is Gaussian distributed. Next, Stein’s lemma stated in Lemma 4 [35] is

applied. Notice that β̂kr,(t),j − β̃kr,(t−1),j and β̃k2,(t−1),j − βj are jointly Gaus-

sian distributed; further, the univariate function g : x →
(
η(x; θ) − x

)
satisfies

the condition in Lemma 4 [35]. We apply Lemma 4 to the jointly Gaussian

distributed pairs β̂kr,(t),j − β̃kr,(t−1),j and β̃k2,(t−1),j − βj , j = 1, . . . , p with
the univariate function g. We denote by Aj , conditioning on (B0 = βj) and

β̃kr,(t−1),−j , r = 1, 2. It holds that

E
[
{η(β̃k1,(t−1),j ; θk1,(t−1))− β̃k1,(t−1),j}(β̃k2,(t−1),j − βj)|Aj

]
= Cov

(
η(β̃k1,(t−1),j ; θk1,(t−1))− β̃k1,(t−1),j , β̃k2,(t−1),j |Aj

)
= Cov(β̃k1,(t−1),j , β̃k2,(t−1),j |Aj)E[∂1η(β̃k1,(t−1),j ; θk1,(t−1))− 1|Aj ].

Below we condition everywhere on B which denotes the event that B0,j = βj

for j = 1, . . . , p where B0,j are independent copies of B0. Taking expectation

w.r.t. β̃kr,(t−1),−j , we obtain for the whole vector,

E
[
{η(β̃k1,(t−1); θk1,(t−1))− β̃k1,(t−1)}(β̃k2,(t−1) − β)|B

]
= ζ̄(k1,k2),(t−1)E[∂1η(β̃k1,(t−1); θk1,(t−1))− 1p|B]

E
[
{η(β̃k1,(t−1); θk1,(t−1))− β̃k1,(t−1)}(β̃k2,(t−1) − β)|B

]
= ζ̄(k1,k2),(t−1)E[∂1η(β̃k2,(t−1); θk2,(t−1))− 1p|B].

Next, we show the construction of the estimator for (Σ0)(k1,k2),(t) at iteration t.

The product-sign notation
∏2

r=1 vr = v�1 v2.

E[(β̂k1,(t) − β)�(β̂k2,(t) − β)|B] = E
[ 2∏
r=1

{η(β̃kr,(t−1); θkr,(t−1))− β}|B
]

= E
[ 2∏
r=1

{η(β̃kr,(t−1); θkr,(t−1))− β̃kr,(t−1)}|B
]
+ E

[ 2∏
r=1

(β̃kr,(t−1) − β)|B
]

+ E
[
{η(β̃k1,(t−1); θk1,(t−1))− β̃k1,(t−1)}�(β̃k2,(t−1) − β)|B

]
+ E

[
(β̃k1,(t−1) − β)�{η(β̃k2,(t−1); θk2,(t−1))− β̃k2,(t−1)}|B

]



2596 J. Zhou et al.

= E
[ 2∏
r=1

{η(β̃kr,(t−1); θkr,(t−1))− β̃kr,(t−1)}|B
]
+ ζ̄(k1,k2),(t−1)

+ ζ̄(k1,k2),(t−1)

2∑
r=1

E
[
∂1η(β̃kr,(t−1); θkr,(t−1))− 1p|B

]
= −ζ̄(k1,k2),(t−1) + E

[ 2∏
r=1

{η(β̃kr,(t−1); θkr,(t−1))− β̃kr,(t−1)}|B
]

+ ζ̄(k1,k2),(t−1)

2∑
r=1

E
[
∂1η(β̃kr,(t−1); θkr,(t−1))|B

]
.

Replacing the expectations and the covariance ζ̄(k1,k2),(t−1) with their corre-
sponding empirical versions leads to the unbiased estimator of (Σ0)(k1,k2),(t),

(Σ̂0,(t)(p))(k1,k2) = −ζ̄emp,(k1,k2),(t−1)

+
1

p

p∑
j=1

2∏
r=1

{η(β̃kr,(t−1),j ; θkr,(t−1))− β̃kr,(t−1),j}

+
ζ̄emp,(k1,k2),(t−1)

p

p∑
j=1

2∑
r=1

I{|β̃kr,(t−1),j | ≥ θkr,(t−1)}.

The consistency of the estimator (Σ̂0,(t)(p))(k1,k2) follows since

lim
p→∞

(Σ̂0,(t)(p))(k1,k2) = lim
p→∞

(Σ0,(t)(p))(k1,k2) = (Σ(t))(k1,k2)

holds with probability one for for all k1, k2 = 1, . . . ,K. The first equality fol-
lows by the unbiasedness of (Σ̂0,(t)(p))(k1,k2) for (Σ0,(t)(p))(k1,k2), and the sec-
ond equality holds by Lemma 1. The proof is completed by realizing the above
equality shows almost sure convergence which indicates convergence in proba-
bility.

B.2.9. Proof of Theorem 3

Proof. Under the assumption that n > p, the model-averaged estimator is
asymptotically unbiased. Hence

AMSE(β̂MA, β) = lim
n,p→∞

1

p

p∑
j=1

Var(β̂MA,j )
a.s.
= w�Σ(∞)w, (42)

where Σ(∞) is a K ×K matrix with (k1, k2)th component

Σ(k1,k2) = E
[
{I(B0 + ζ̄k1Zk1)−B0}{I(B0 + ζ̄k2Zk2)−B0}

]
= Cov

(
ζ̄k1Zk1 , ζ̄k2Zk2

)
= Cov(Zk1 , Zk2)ζ̄k1 ζ̄k2 . (43)
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Combining (20) and (21), we obtain that

ζ̄k = δ{E[G̃(ε+ ζ̄kZk; bk)
2]}1/2

= {E[G̃(ε+ ζ̄kZk; bk)
2]}1/2{E[∂1G̃(ε+ ζ̄kZk; bk)]}−1. (44)

The expressions of the asymptotic variance of the model-averaged estimator in
Theorem 3 hold by combining (42), (43), and (44).
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