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Abstract 

Schema provide a scaffold onto which we can integrate new memories. Previous 

research has investigated the brain activity and connectivity underlying schema-related 

memory formation. However, how schema are represented and reactivated in the brain, 

in order to enhance memory, remains unclear. To address this issue, we used an object-

location spatial schema that was learned over multiple sessions, combined with 

similarity analyses of neural representations to investigate the reactivation of schema 

representations of object-location memories when a new object-scene association is 

learned. In addition, we investigated how this reactivation affects subsequent memory 

performance under different strengths of schema. We found that reactivation of a 

schema representation in the lateral occipital cortex (LOC) during object-scene 

encoding affected subsequent associative memory performance only in the schema-

consistent condition, and increased functional connectivity between the LOC and 

parahippocampal place area. Taken together, our findings provide new insight into how 

schema acts as a scaffold to support the integration of novel information into existing 

cortical networks, and suggest a neural basis for schema-induced rapid cortical learning. 

Keywords: schema; hippocampus; vmPFC; rapid cortical learning; representational 

similarity analysis.  
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Introduction 

Our brains are able to incorporate new information into existing knowledge, 

which allows us to redefine and update our knowledge. For example, a professor might 

struggle to associate a group of students with their names at the very first class. After a 

few classes however, it becomes easier to remember the face-name associations 

because the professor has become familiar with the faces. Correspondingly, studies 

have shown that memory can be facilitated by information that we already know - 

namely, prior knowledge or schemas (van Kesteren et al. 2012; Gilboa and Marlatte 

2017). The face-name associations will be even better remembered if the professor have 

more structural information about the students; for example, some students always sit 

at the same seats, or some students always sit together. This structural knowledge is the 

schema, which has been defined as abstract mental structures/neural networks that 

organize representations of our memories. In this case of building face-name 

associations, it may occur in two steps: First, the related structural memories of the 

students (e.g., seats and related faces) were reactivated; second, new memories were 

formed for the names that are associated with the faces. Although the effect of schema 

on memory encoding in humans is well documented (Gilboa and Marlatte 2017; Alonso 

et al. 2020), one important question remains unanswered: how the reactivation of 

schema representations helps to achieve memory integration and enhancement. 

During schema-related memory formation, the schema support memory by 

providing an organisational framework within which we can encode and store relevant 
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information and efficiently incorporate new information (Bartlett 1932; Alba and 

Hasher 1983). Several previous animal (Tse et al. 2007; Tse et al. 2011; McKenzie et 

al. 2014; Baraduc et al. 2019; Zhou et al. 2021) and human (van Kesteren et al. 2013; 

van Kesteren et al. 2014; Brod et al. 2016; Liu et al. 2017; Bein et al. 2020; Nicolás et 

al. 2021; Tompary and Thompson-Schill 2021; Yousuf et al. 2021; Zheng et al. 2021) 

studies have investigated how schema or prior knowledge influence memory encoding. 

When incoming information can be directly linked to a pre-existing schema, the 

ventromedial prefrontal cortex (vmPFC) appears to be important for memory encoding 

(van Kesteren et al. 2010; van Kesteren et al. 2013; Giuliano et al. 2021). Specifically, 

vmPFC is believed to strengthen or weaken cortico-cortical functional connections (van 

Kesteren et al. 2013; Bein et al. 2020). 

Another core brain region of schema-related processing is the hippocampus. 

However, involvement of the hippocampus during encoding is more complex and 

appears to be not only dependent on the schema-consistency of the new information but 

also on the characteristics of the schema to be encoded within. Animal studies show 

that the hippocampus is active during the encoding of schema-related updates, although 

schema-related memories can quickly become independent of the hippocampus (Tse et 

al. 2007; Baraduc et al. 2019). In human studies, on the one hand, studies have shown 

that hippocampal activity is increased when incoming information is schema-

inconsistent (van Kesteren et al. 2013; Bein et al. 2014). On the other hand, using 

famous faces as schema, another study found that schemas facilitate the formation of 
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associative memory between faces and houses, and this process was related to enhanced 

activity in the hippocampus and its functional connectivity with the vmPFC (Liu et al. 

2017). Similarly, van Kesteren et al. (2018) showed that the hippocampus is involved 

in translating previous spatial knowledge (i.e., a newly learned spatial schema) into new 

goal-directed behaviour. Furthermore, human lesion studies show that learning may 

occur in the absence of intact hippocampal structures if it is related to prior knowledge 

(Skotko et al. 2004; Ryan et al. 2020). In an fMRI study, repeated retrieval of a 

previously learned word list induced decreased hippocampal activity and increased 

cortical activity (Himmer et al. 2019), suggesting that activation of retrieval-induced 

prior representations may support cortical memory integration. Therefore, if the new 

information is encoded within a stable schematic structure, higher vmPFC activity and 

a greater number of cortico-cortical connections would be involved, with hippocampal 

engagement dependent on both the schema-consistency of the new information and the 

schema per se.  

Although there are some exceptions (Brod et al. 2016; Sommer 2017), most 

human imaging studies on memory encoding use real-world schemas. These schemas 

include famous faces (Liu et al. 2017; Liu et al. 2018; Bein et al. 2019; Bein et al. 2020), 

semantically related word pairs (Bein et al. 2014), and congruent scene-object pairs 

(van Kesteren et al. 2013; Webb et al. 2016; Audrain and McAndrews 2022). However, 

due to the varied experiences of each individual, we cannot be sure of their precise 

schema, or how a specific schema reactivates during new learning. To extract the 
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specific schema representation, a schema that has been newly formed through training 

is required. Moreover, compared to univariate analysis, multivariate analysis can better 

address how schema reactivates during the new associative learning, and how a schema 

representation assimilates new information in brain regions.  

In examining schema reactivation, one interesting theory from Bransford (1979) 

suggests that schemas are only effective in facilitating memory if they are activated 

from existing memory traces. Recent studies further show that the way in which 

schemas are expressed influences resultant memory formation (Masís-Obando et al. 

2021; Tompary and Thompson-Schill 2021). At the behavioural level, reactivation of 

prior memories indexed by an individual’s subjective score modulates subsequent 

memory performance (st. Jacques and Schacter, 2013; van Kesteren et al. 2018). At the 

neural level, studies using transitive inference (i.e., studying A-B and B-C, then 

inferring A-C) or narrative stimuli have shown that this reactivation is related to the 

activity of the hippocampus, particularly the anterior hippocampus (Schlichting et al. 

2014; Schlichting et al. 2015; Baldassano et al. 2018; van Kesteren et al. 2020; Masís-

Obando et al. 2021). One study further indicates that after associative learning of 

famous and novel face pairs, the neural representation of a novel face becomes similar 

to that of the famous face in inferior frontal gyrus, suggesting the cortical assimilation 

of new information into old memories (Bein et al. 2020). In addition, memory 

reactivation in cortical regions is a central component of computational theories of 

memory (McClelland 2013; McClelland et al. 2020), which hold that reactivation 
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supports the stabilisation of memory over distributed brain networks. Schemas may 

also enhance rapid integration of new information into existing cortical neural networks 

(Hebscher et al. 2019). Thus, we propose that schema reactivation in relevant cortical 

regions (relevant to the specific stimulus material), and the interaction of this 

reactivation with new information, are important for successful schema-related memory 

encoding. 

In sum, the main objective of the study was to to use an experimentally learned 

spatial schema and neural representational similarity analyses in order to determine the 

neural basis of schema representations in new learning and how the representations 

affected subsequent memory. The present study expands on our prior work (Guo and 

Yang 2020), in which participants spent three days in the training session over-learning 

four grids: two schema-consistent (schema-C) grids and two schema-inconsistent 

(schema-IC) grids. Each grid contained a number of object-location trained pair 

associations (PAs) that form a spatial schema. On the schema-C grids, the objects and 

locations of the trained PAs on each grid were repeated consistently across days 1-3, 

while the combinations on the schema-IC grids changed across days. Therefore, the 

objects in the schema-C condition were always presented in a stable context and should 

form a schema, while the objects in the schema-IC condition should not have a stable 

structure (and no or only a weak schema). In the new learning session, the participants 

first retrieved the object-location associations (e.g., schema elements/representations, 

Phase 1), before learning new object-scene associations (Phase 2) in an fMRI scanner 
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(on Day 4). Associative memory was then tested outside the scanner on Day 5. Here 

we also report results from a behavioural pilot experiment, used to explore the schema 

effects in two different memory tests at two different delays. Previous studies (Hennies 

et al. 2016; Bonasia et al. 2018; Guo and Yang 2020; Audrain and McAndrews 2022), 

and results of the behavioural pilot experiment, show that schema effects are strongest 

after a delay. Based on that, a single delayed associative memory test was used in the 

fMRI experiment, which also better matched the trial numbers between remembered 

and forgotten trials in the fMRI analyses. 

In the fMRI univariate analysis, we focused on the vmPFC and hippocampus, 

given the evidence reviewed above that their activations are critical for schema-related 

memory encoding (Preston and Eichenbaum 2013; Gilboa and Marlatte 2017; Robin 

and Moscovitch 2017). In terms of the hippocampus, the anterior portion seems to be 

the most involved in schema-related memory integration (Schlichting et al. 2015; van 

Kesteren et al. 2020; Masís-Obando et al. 2021) and spatial schema processing 

(Audrain and McAndrews, 2022; Guo and Yang, 2020). Furthermore, in the 

multivariate analysis, we focused on stimuli-relevant cortical regions and sought to 

investigate how reactivation of representations of previously-formed schema helps 

memory integration through two steps:  

First, to examine whether object-location retrieval in the same grid contains 

shared representation of grid-based information (i.e. schema information), and whether 

objects presented during associative learning also represent a similar grid-based 
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representation, we compared neural similarity 1) when participants retrieved object–

location memories from the same versus different grids during Phase 1; 2) when they 

learned the new object–scene associations in which the objects were from the same 

versus different grids during Phase 2. The neocortical regions that support lasting 

memory representations include brain areas involved in the original processing of the 

stimulus at the time of encoding (Tulving and Thomson 1973; Nyberg et al. 2000; 

Danker and Anderson 2010). Given that the schema involved visual objects, the ventral 

visual area of the lateral occipital cortex (LOC) was a third region of interest (ROI), 

which was also a main ROI in the multivariate analysis. The LOC is activated by 

pictures of objects with categorical consistency (Eger et al. 2008) and this response 

respects categorical similarity (Bracci and de Beeck 2016). This region also plays an 

important role in object-based schema formation (van der Linden et al. 2017). Therefore, 

we expected the LOC would contain the grid (schema)-based information. 

Second, to investigate how schematic representation (Phase 1) reactivates 

during new associative learning (Phase 2) and affects subsequent memory performance 

(Phase 3), we measured the similarity between object–location memory retrieval and 

associative learning of the same object, as well as its relationship with subsequent 

memory. We postulated that the neural reactivation of prior object-location memory in 

the LOC would enhance subsequent memory under the schema-C condition. A final 

ROI was the parahippocampal place area (PPA), given prior evidence that this region 

is involved in processing spatial layouts (Epstein and Baker 2019). As schemas induce 
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the formation of cortico-cortical connections (van Kesteren et al. 2014; Liu et al. 2017), 

the LOC and PPA might be more strongly connected when an association is 

subsequently remembered in the schema-C condition.  

 

Materials and methods 

Participants 

A total of 49 participants were recruited from the Peking University community 

and were paid for their participation. Of these, 24 were tested in the behavioural pilot 

and the remaining 25 were test with fMRI. The data of the behavioural pilot were 

collected in order to optimize the design of the fMRI study. Therefore, for full 

counterbalancing across schema conditions, 24 participants were recruited for the 

behavioural pilot. However, one of them quit after the 3-day training, leaving 23 with 

data (15 female; mean age = 20.35 years, SD = 1.75). For the fMRI study, we aimed to 

have a similar number of participants. Because one participant had a low response rate 

(70/120) in the scanner, we replaced them, leaving a fully counterbalanced 24 

participants (15 female; mean age = 20.67 years, SD = 2.01) in the final fMRI group. 

All participants were native Chinese speakers and gave written informed consent in 

accordance with procedures and protocols approved by the department Review Board 

of Peking University. 
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Materials 

In our previous study (Guo and Yang, 2020), layouts of object–location PAs 

were used to manipulate schema. The manipulation of schema was similar in this study; 

however, to induce better representations of the objects in the cortical region (i.e., the 

LOC), colour pictures of objects were used instead of grayscale pictures (Figure 1A).  

 

Figure 1. Experimental procedure and behavioural results of the fMRI group. (A). Procedure. 

During the initial three-day training session, two schema-C grids and two schema-IC grids with 

different-coloured backgrounds were trained. During the new learning session, Phases 1 and 2 

took place on Day 4; Phase 1 was an object–location retrieval task involving the trained pair 

associations, while Phase 2 was an object–scene association task where participants were asked 

to imagine the object in the scene vividly and then judge whether this was easy or not easy. 

Phase 3, which occurred on Day 5, was a memory test in which object–scene memory was 

tested. (B). Behavioural results. The left panel illustrates memory performance for each schema 
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condition during the training session (cycle = c1, c2, c3; day = D1, D2, D3). Error bars represent 

the standard error of the mean (SEM). The right panel illustrates memory performance during 

the new learning session. Box plots display the minimum, first quartile, median, third quartile, 

and maximum (bottom to top) of the data. Points represent individual participants and grey 

lines represent the schema-C to schema-IC trend for each participant.  

 

In the new learning session, for the fMRI group, 120 object–scene pairs were 

used. The 120 objects (see description of training session below) had been learned in 

either the schema-C or schema-IC condition during the training session. The 120 scenes 

were selected from our previous study (Zhan et al. 2018) and divided into four groups 

of 30 scenes. The four groups of scenes had similar levels of familiarity and visual 

complexity (all F < 1, p > 0.7). They were then randomly paired with four groups of 

object pictures. The assignment was counterbalanced across participants and schema 

conditions. Therefore, the associative task included 120 object-scene pairs, 60 of which 

included objects learned in the schema-C condition and 60 of which included objects 

learned in the schema-IC condition. In the following object-cued associative memory 

test, participants were shown an object together with four scenes; of these scenes, one 

had been presented with the object during the encoding phase (target), whereas the other 

three were scenes seen with other objects during encoding (lures). To reduce the 

interference between different grids, the objects paired with lures and the object paired 



 13 

with the target were from the same grid during the training session. The possible 

positions of the target were counterbalanced across trials and participants.  

For the behavioural pilot group, in addition to the 120 scenes above, another 

120 scenes were selected in the same way, and also divided into four groups of 30 

scenes. Tests of both item memory for the scenes and associative memory for the 

object-scene pairing were conducted immediately and 24-hours later. Therefore, half of 

the old scenes and half of the new scenes in each condition were randomly used for the 

item memory tests at each test delay. The corresponding object-scene associative 

memory test was conducted after the item memory test.  

For the schema training session, 120 colour pictures of everyday objects were 

selected from a bank of standardized stimuli (Brodeur et al. 2010) and the internet. In a 

previous study, 25 participants (14 female; mean age = 21.52 years, SD = 2.12) were 

asked to name the objects in question and rate the pictures for their familiarity and 

object agreement (Brodeur et al. 2010; Moreno-Martínez and Montoro 2012). The 

naming accuracy for each object was calculated as the proportion of participants who 

correctly named the object. Rating scores (i.e., familiarity and object agreement) ranged 

from 1 (lowest) to 7 (highest). The final 120 pictures selected for this study were easy 

to name (0.73 ± 0.28) and had high levels of familiarity (5.51 ± 1.11) and object 

agreement (5.93 ± 0.47).  

Similar to our previous study (Guo and Yang, 2020), four grids were used for 

the schema-C and schema-IC conditions and the pictures were divided into four object 
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sets with 30 pictures for each grid. The four object sets were comparable in terms of 

naming accuracy, familiarity, and object agreement (all F < 1, p > 0.8). They were also 

matched for category, colour, and size and assigned to different schema conditions. The 

assignment was counterbalanced across participants. The locations used in this study 

were situated on four 8×8 grids, which differed only in the colours of their backgrounds 

(i.e., red, yellow, blue, and green). Two grids were used for each schema condition. 

Assignment of grid colours to the schema-C and schema-IC conditions was 

counterbalanced over the participants. Then four location sets of 30 locations each were 

created and assigned to different schema conditions. This assignment was also 

counterbalanced across participants. The locations within each pair of location sets 

were selected in such a way that the 60 locations (60 of 64 possible locations excluding 

the locations of the four corners) of a grid were pseudo-randomly assigned in two sets 

of 30 locations, and the locations of each set were distributed evenly over the four 

quadrants of the grid (seven or eight on each quadrant). Then, the 30 objects contained 

in a specific object set were pseudo-randomly assigned to the 30 locations of its 

corresponding location set. This resulted in two schema-C grids and two schema-IC 

grids, with each grid consisting of 30 PAs. On each grid, all 30 PAs were overlearned 

as the trained PAs in the training session (this occurred differently for the schema-C 

and schema-IC conditions; see below).  

The schema-C and schema-IC grids differed in the consistency of the trained 

PAs across the days of the training session. On each schema-C grid, the 30 trained PAs 
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remained unchanged and were consistent from day 1 to day 3. On each schema-IC grid, 

the objects and possible locations of the 30 trained PAs were fixed but the combinations 

between them changed across the training days (although they remained consistent 

within the same day). Therefore, on day 4, half of the objects had a prior stable schema 

structure that could be integrated during the new learning stage, and the other half had 

no such structure.  

  

Procedure 

The experiment was divided into two sessions: a training session and a new 

learning session (Figure 1A). The training session occurred over the first three days. 

During this session, participants were trained to learn four grids of 30 object–location 

PAs. The new learning session was performed on Days 4 and 5. On Day 4, the 

participants retrieved trained PAs and learned 120 scene–object associations (these 

tasks were performed inside the scanner for the fMRI group). In the behavioural pilot 

group, both item memory and scene–object associative memory were tested 

immediately, as well as on Day 5. In the fMRI group, the scene-object associative 

memory was only tested on Day 5, outside of the scanner. 

The first two days of the training session involved three learning-test cycles, 

and the PAs in each grid were learned and tested with feedback once per cycle. This 

procedure was similar to that used in our previous study (Guo and Yang, 2020); 

however, because there were more PAs in each grid in the present study, the grid was 
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presented on the screen for 120 s rather than 90 s at the start of each cycle. The two 

grids for the same schema condition were always trained successively, and their order 

was counterbalanced across the days and participants. 

The procedure for the third day also involved three cycles. To obtain a final 

measure of training performance, the two grids for one of the schema conditions were 

trained again successively at the end of the usual training cycle, followed by a 5 min 

odd/even digit task and retrieval task without feedback (see description of tasks in the 

new learning session). Then, the remaining two grids for the other schema condition 

were trained and tested using the same procedure. The presentation order of the 30 

object cues for each grid was randomized and varied across cycles and days. The order 

of the schema conditions was counterbalanced across cycles, days, and participants. 

For the fMRI group, the new learning session consisted of three phases for each 

condition (schema-C, schema-IC): a retrieval task for the trained PAs (Phase 1, not 

applicable in the behavioural group), an associative learning task focused on object–

scene association (Phase 2), and a memory test for object–scene association (Phase 3). 

Phase 1 involved two runs of the retrieval task, each consisting of 60 trials and lasting 

about 9 min. During the task, the tested grids alternated every five trials. At the 

beginning of every five trials, a coloured grid corresponding to one of the schema-C or 

-IC grids was first shown on the screen for 4 s. For each trial, a randomly selected object 

cue was presented in the centre of the screen for 1 s, then participants moved the cursor 

and pressed the left button of the mouse to select the correct location on the grid within 
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a response period of 3 s. After the selection, the grid turned grey and feedback was no 

longer presented. Before the next trial, a “+” was shown on the screen for 2 s. After the 

five trials were complete, a blank screen appeared for 10 s to reduce neural interference 

between the different grids. The order of the schema conditions was counterbalanced 

across participants. 

The associative encoding task (Phase 2) also involved two runs, each consisting 

of 60 trials and lasting about 9 min. During the object–scene associative task, successive 

objects were from the same grid and alternated between grids every five trials. At the 

beginning of every five trials, a coloured grid corresponding to one of the schema-C or 

-IC grids was first shown on the screen for 4s. For each trial, an object–scene image 

pair was presented for 3s, with the object on the left of the screen, the scene on the right, 

and a “+” in between. Participants were required to look at the object–scene pairs and 

imagine as vividly as possible that the object was in the scene. While the pictures were 

still on the screen, the words “Easy” and “Not easy” appeared at the bottom for 1s; 

participants needed to press one of two buttons to indicate whether it was easy or not 

easy to imagine the object–scene pair in this period. After the five trials were complete, 

a blank screen appeared for 10s to reduce neural interference between the different grids. 

The order of schema conditions was counterbalanced across participants. After the 

associative encoding task, a 10 min structural scan was performed. The total scanning 

time was approximately 1 h.  
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The memory test was performed on day 5; here, the 120 object–scene 

associations that were learned on day 4 were tested. Participants were cued with all 120 

objects again in a pseudo-random order. They were given four scenes for each object; 

one of these had been presented with the object during the encoding (target), whereas 

the other three were scenes seen with other objects during encoding (lures). Participants 

indicated their choice by pressing the appropriate button. Afterwards, they were asked 

to rate their level of confidence in their decision on a scale of 1 (not sure) to 4 (very 

sure). They were given no time limit for their responses but were told to answer as 

quickly and honestly as possible. The testing procedure was similar in the behavioural 

group, except half of the object–scene associations were tested on day 4 and the other 

half were tested on day 5. 

In addition, for the behavioural pilot group, item memory tests were conducted 

immediately and 24-hour later. During the test, the old or new scene was presented at 

the centre of the screen, and the participants made a self-paced judgement of whether 

or not they had seen the scenes during the learning phase. If the scene was judged as 

“old”, the participants were asked to make self-paced remember/know/guess judgement 

(Rajaram 1993; Gardiner et al. 1998). 

 

fMRI data acquisition 

A 3T Siemens Prisma MRI scanner with a 20-channel head coil in the MRI 

Center at Peking University was used to acquire MRI images. In the structural MRI 
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scan, T1-weighted high-resolution MRI volumes were obtained using a 3-dimensional 

magnetization-prepared rapid acquisition gradient echo (MPRAGE) sequence (FOV = 

256 × 256 mm; matrix = 256 × 256; slice thickness = 1 mm, TE/ TR = 2.98/2530 ms, 

flip angle = 7°). High-resolution functional MRI image were obtained using a 

simultaneous multiband EPI sequence (FOV = 224× 224 mm; matrix = 112 × 112, 

resolution = 2 ×2 × 2 mm, TE/ TR = 30/2000 ms, flip angle = 90°). Visual stimuli were 

presented using MATLAB 2014b (MathWorks, Natick, MA, USA) and elements of the 

Psycholotoolbox3 (Brainard and Vision 1997; Pelli 1997; Kleiner et al. 2007), back-

projected to a screen, and viewed with a mirror mounted on the head coil. Responses 

were collected with an MRI-compatible mouse.  

 

fMRI analyses 

      The AFNI software package (Cox 1996) was applied for the fMRI 

preprocessing. The first 6 volumes of the EPI images were removed to allow for scanner 

stabilization. EPIs were corrected for motion (3dvolreg) and slice timing (3dTshift), 

masked to exclude voxels outside the brain (3dautomask), and were smoothed 

(3dmerge) using a 2.0mm Gaussian FWHM kernel. Each run was also despiked to 

further reduce the influence of motion on the data (3dDespike). Functional scans were 

aligned to each subject’s skull-stripped MP-RAGE (align_epi_anat.py). 

      Pre-processed scans were modelled in each subject’s native space. A least-

squares single (LSS) pattern estimation approach (Mumford et al. 2012; Mumford et al. 
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2014), was used to estimate each trial’s activation at every voxel (“beta map”). These 

steps were performed in AFNI using 3dDeconvolve. Six regressors were used to capture 

motion. In the general linear model (GLM), deconvolution of the hemodynamic 

response was done using tent functions spanning a period of 32 s after the onset of the 

first of every five trials, with 17 estimator functions distributed across this time window.  

     As in our previous study (Guo and Yang, 2020), we defined the vmPFC and 

hippocampus anatomically; anatomical masks of each side of the hippocampus were 

created using AFNI’s FS_Desai_PM atlas, which was originally parcellated using 

FreeSurfer (Fischl and Dale 2000). The anterior hippocampus was defined as y > −21 

in Talairach space (Poppenk et al. 2013; Guo and Yang 2020). The vmPFC anatomical 

mask was first defined using the Mackey vmPFC Atlas (Mackey and Petrides 2014), 

then was further defined as the 14m subregion in this mask following Guo and Yang 

(2020). We then defined ROIs for object processing (LOC) and scene processing (PPA). 

The LOC was defined bilaterally using AFNI’s CA_N27_ML atlas, while the PPA was 

defined based on our previous study (Zhan et al. 2018). As all analyses were performed 

in the subjects’ native space, the ROIs were transformed into each participant’s space 

using AFNI’s 3dAllineate program.  

      For all analyses described below, we used the mean beta map for the period 4-

8 s after the onset of each trial, i.e., the mean value of the 3rd and 4th estimated beta 

parameters after the onset of each trial from the output of 3dDeconvolve. These beta 

values were used in conjunction with the ROIs to perform several analyses: 1. to assess 
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the effect of brain activation on subsequent memory, we first performed a univariate 

analysis in the regions of interest. 2. To examine the effects of schema reactivation and 

brain connectivity on memory, we then performed separate representational similarity 

analyses and beta series correlation analyses. In addition, in a trial-based analysis, we 

found that 5 of 120 trials had lower overall memory performance than the performance 

by randomly guessing (i.e., less than 25% of participants (6/24) responded correctly on 

these trials in the final test), we therefore only analysed the remaining 115 trials in all 

the fMRI analyses.  

 

Univariate ROI analysis 

     We mainly utilized multivariate analyses in this study. However, to compare our 

results with those of previous studies that used univariate analysis, we also performed 

univariate ROI analysis. In the univariate analysis, to replicate the results of previous 

studies, we mainly focused on the results in the vmPFC and aHPC. Then, we also 

performed an exploratory univariate analysis in the ROI (LOC) of multivariate analysis 

(see supplementary material). For each ROI, the mean activation of a condition was 

calculated by averaging all the betas (for each trial) across voxels within each ROI and 

across trials within each condition. During the retrieval of trained PAs (phase 1), only 

correct trials were included in the analysis. Because there were too few trials (< 9) for 

at least one condition in three participants, this analysis included only 21 participants. 

Differences between the subject-averaged beta-weights were investigated using paired 
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two-tailed t-tests with a threshold of p < 0.05. A 2  2 repeated-measures ANOVA was 

then performed on the data from associative encoding (Phase 2) with factors of schema 

(schema-C, schema-IC) and memory (remember, forget). This analysis included all 24 

participants.  

 

Representational similarity analysis (RSA) 

      Our main hypothesis asks whether the LOC contains schematic representations, 

and how reactivation of these affects subsequent associative memory. To test this, an 

RSA was conducted on beta maps generated from data in the subjects’ native space. 

Voxel-wise patterns of hemodynamic activity were separately extracted for each 

hemisphere of LOC from the single trial beta maps. First, we wanted to know whether 

LOC carried schema-related information, which was grid-based in our study. To test 

this, we compared the within-grid and across-grid similarity for each ROI. In each phase 

(Phases 1 and 2), within-grid similarity was calculated as the Pearson correlation of the 

betas between an object and ‘all other objects’ in the same grid. To reduce effects of 

temporal autocorrelation, within-grid similarities between trials that were within the set 

of 5 consecutive positions (grids alternated every five trials during both Phase 1 and 

Phase 2) were excluded. Across-grid similarity was calculated as the Pearson 

correlation of the betas between an object and all objects in the other three grids. All 

correlations were Fisher-transformed prior to statistical testing. We then performed a 

paired t-test to compare the mean values of within-grid and across-grid similarity. 
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During the retrieval of trained PAs (phase 1), only correct trials were included in the 

analysis. Because there were too few trials (< 9) for one of the conditions in three 

participants, this analysis included 21 participants. During associative encoding (Phase 

2), only subsequently remembered trials were included in the analysis. This analysis 

included all 24 participants. 

      For the schema reactivation in the LOC, it was calculated as the Pearson 

correlation of the betas between the two phases of object presentation in the retrieval of 

training PAs (Phase 1) and new learning of object–scene associations (Phase 2). Values 

were Fisher-transformed prior to statistical testing. Then, a schema (schema-C, schema-

IC)  memory (remember, forget) ANOVA was performed to test how reactivations of 

schematic information were related to subsequent memory under different schema 

conditions. To explore the potential effects in the ROIs (vmPFC and aHPC) of 

univariate analysis, same representational similarity analyses were then also performed 

in these regions (see supplementary material). 

 

Beta series correlation (BSC) analysis 

      Another hypothesis concerns the connectivity between the LOC and PPA. 

Because we used a trial-based GLM, a beta series correlation (BSC) analysis was 

conducted to measure brain connectivity (Rissman et al. 2004). In this analysis, the 

betas were averaged across voxels within the ROI for each trial. The connectivity 

between two ROIs under can then be quantified by calculating the Pearson correlation 
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coefficient across trials for each condition. Correlation coefficients were Fisher-

transformed prior to statistical testing. Using a paired t-test, we directly compared 

LOC–PPA connectivity for subsequently remembered trials between the two schema 

conditions. 

 

Results 

Behavioural results 

      For the associative memory test, the memory performance was measured by the 

rate of correct trials as well as the rate of high confidence (confidence >= 3) correct 

trials. For the item memory test, the memory performance was measured by hit rate and 

also by splitting it into recollection and familiarity based on the remember/know/guess 

judgement (Yonelinas 2002). The behavioural results are shown in Figure 1B, and 

analysed below. 

Behavioural pilot group 

      For the training phase, consistent with our previous study (Guo and Yang 2020), 

participants showed a significant schema effect in the final test on day 3 (0.90 ± 0.10 

vs. 0.70 ± 0.15; t (22) = 6.22, p < 0.001), suggesting a successful training of schema.  

      During the associative encoding phase of the new learning session, participants 

reported that object–scene pairs were easier to imagine in the schema-C condition than 



 25 

the schema-IC condition (proportion of easy: 0.48 ± 0.10 vs. 0.45 ± 0.11, t (22) = 2.49, 

p = 0.020, Cohen’s d = 0.52).  

      For the hit rate of the item memory test in the new learning session, no 

interaction or main effect of schema was found in the schema  test delay ANOVA (all 

p > 0.23). Further, to explore the schema effects in different test delay, two separate 

paired t-test were performed. Neither immediate test (0.77 ± 0.14 vs. 0.77 ± 0.15, t (22) 

= 0.12, p = 0.904, Cohen’s d = 0.03), nor 24-hour test (0.54 ± 0.20 vs. 0.57 ± 0.15, t 

(22) = 1.12, p = 0.274, Cohen’s d = 0.23), showed significant schema effect. When 

splitting item memory into recollection and familiarity, neither showed a schema effect 

in either of the test delays (all p > 0.39).  

      For the associative memory test, no interaction was shown in the schema  test 

delay ANOVA (F (22) = 1.044, p = 0.318, η² = 0.003), but the main effect of schema 

approached significance (F (22) = 3.922, p = 0.060, η² = 0.018). In order to find best 

delay for fMRI experiment, paired t-test was performed separately at each test delay. 

The results showed a significant schema effect for the test after 24 h (0.65 ± 0.11 vs. 

0.60 ± 0.13, t (22) = 2.62, p = 0.016, Cohen’s d = 0.55; high confidence (confidence >= 

3): 0.65 ± 0.11 vs. 0.64 ± 0.17, t (22) = 1.487, p = 0.151, Cohen’s d = 0.31), but not for 

the immediate test (0.84 ± 0.09 vs. 0.82 ± 0.13, t (22) = 0.766, p = 0.452, Cohen’s d = 

0.16; high confidence (confidence >= 3): 0.38 ± 0.17 vs. 0.34 ± 0.17, t (22) = 1.487, p 

= 0.873, Cohen’s d = 0.03).  
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      Because the pilot showed that schema seem to exert a stronger effect on 

associative than item memory, and for delayed relative to immediate test, we restricted 

the fMRI experiment to a delayed test of associative memory, which also better 

matched the trial numbers between remembered and forgotten trials for fMRI analyses.  

 

fMRI group 

      In the fMRI group, the results also showed a significant schema effect of 

training in the final test on Day 3 (0.90 ± 0.11 vs. 0.65 ± 0.11; t (23) = 6.04, p < 0.001; 

Figure 1B). This schema effect was maintained in the retrieval task during the new 

learning session on Day 4 (0.81 ± 0.14 vs. 0.47 ± 0.22; t (23) = 15.02, p < 0.001).  

      For the easy of imagery judgement in the associative encoding phase of the new 

learning session, any difference between the two schema conditions did not reach 

significance (proportion of easy: 0.52 ± 0.16 vs. 0.53 ± 0.17, t (23) = 0.28, p = 0.784, 

Cohen’s d = 0.06), unlike the behavioural pilot. For the associative memory test, 

although the memory performance was numerally higher in the schema-C condition 

than in the schema-IC condition, no significant difference was found between the two 

schema conditions (0.48 ± 0.13 vs. 0.47 ± 0.12, t (23) = 0.964, p = 0.345, Cohen’s d = 

0.20; high confidence: 0.26 ± 0.18 vs. 0.24 ± 0.14, t (23) = 1.21, p = 0.238, Cohen’s d 

= 0.25; Figure 1B).  

To better clarify behavioural patterns and increase the statistical power, we 

combined the data for the two groups. These results showed a similar trend to that of 
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the behavioural group during associative encoding: there was no significant difference 

in the proportion of easily imagined object–scene pairs between the two conditions 

during memory encoding (proportion of easy: 0.50 ± 0.14 vs. 0.49 ± 0.15, t (23) = 1.37, 

p = 0.183, Cohen’s d = 0.03), but there was a significant schema effect for associative 

memory 24 h later (0.57 ± 0.15 vs. 0.54 ± 0.14, t (46) = 2.66, p = 0.011, Cohen’s d = 

0.39; high confidence: 0.32 ± 0.18 vs. 0.29 ± 0.16, t (46) = 1.93, p = 0.059, Cohen’s d 

= 0.28) .  

 

fMRI results 

Activations in the anterior hippocampus and vmPFC 

      During the retrieval of trained PAs (Phase 1), greater activation for correct trials 

in the schema-C than schema-IC condition was seen in both sides of the vmPFC (left: 

t (20) = 2.86, p = 0.009, Cohen’s d = 0.61; right: t (20) = 3.29, p = 0.003, Cohen’s d = 

0.70; Figure 2A) and in the right aHPC (t (20) = 2.62, p = 0.016, Cohen’s d = 0.56; 

Figure 2A). This was consistent with our previous results reporting schema-related 

activations in the vmPFC and right anterior hippocampus for trained PAs (Guo and 

Yang, 2020). The left anterior hippocampus showed the same trend, but did not reach 

significance (t (20) = 1.39, p = 0.18, Cohen’s d = 0.62). 
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Figure 2. Brain activations of the vmPFC and anterior hippocampus during Phase 1 and Phase 

2. (A) Activations of correct trials in different conditions. (B) Subsequent memory effect 

(Remember vs. Forget) in different conditions. Box plots display the minimum, first quartile, 

median, third quartile, and maximum (bottom to top) of the data. Points represent individual 

participants and grey lines represent the schema-C to schema-IC trend for each participant.  

 

       For associative encoding (Phase 2), the schema  memory ANOVA showed 

the critical significant schema by memory interaction in the left vmPFC (F (1,23) = 

10.922, p = 0.003, η² = 0.32) and both sides of the aHPC (left: F (1,23) = 6.032, p = 
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0.022, η² = 0.21; right: F (1,23) = 6.582, p = 0.017, η² = 0.22). The right vmPFC (F 

(1,23) = 1.53, p = 0.229) showed a similar trend. Further pairwise analysis revealed that 

each of the three regions exhibited a significant subsequent memory effect in the 

schema-C condition (left vmPFC: t (23) = 2.80, p = 0.01, Cohen’s d = 0.57; left aHPC: 

t (23) = 2.08, p = 0.049, Cohen’s d = 0.43; right aHPC: t (23) = 2.51, p = 0.02, Cohen’s 

d = 0.51; Figure 2B) but not in the schema-IC condition. This suggests that activations 

in the vmPFC and anterior hippocampus are vital for new associative encoding in 

schema-related networks. We also performed same analyses of activation in the LOC 

during Phases 1 and 2 (Figure S1). However, no significant effect of schema was 

detected in those regions. 

 

Schema representations 

      During the retrieval of trained PAs (Phase 1), greater within-grid than across-

grid similarity for correct trials was found in the LOC (left: t (20) = 3.79, p = 0.001, 

Cohen’s d = 0.83; right: t (20) = 2.47, p = 0.023, Cohen’s d = 0.54; Figure 3A). This 

was consistent with our hypothesis that the LOC should represent schemas during 

retrieval of trained PAs. Analyses also showed greater within-grid than across-grid 

similarity for correct trials in both sides of the vmPFC (left: t (20) = 2.864, p = 0.016, 

Cohen’s d = 0.58; right: t (20) = 3.00, p = 0.007, Cohen’s d = 0.66; Figure S2), left 

anterior hippocampus (t (20) = 2.72, p = 0.013, Cohen’s d = 0.59; marginally significant 

on the right side: t (20) = 1.92, p = 0.069, Cohen’s d = 0.42; Figure S2). 
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Figure 3. Results of multivariate analysis and connectivity analysis. (A). Within- and across-

grid similarity for left and right LOC in Phases 1 and 2. (B). Effect of pattern reactivation 

(reactivation of patterns learned in phase 1 during phase 2) on subsequent memory (Remember 

-Forget). (C). Beta series correlations (brain connectivity) between the LOC and PPA. Points 

represent individual participants and grey lines represent the within- to across-grid similarity 

trend (on A) or schema-C to schema-IC trend (on B and C) of each participant. All the box 

plots display the minimum, first quartile, median, third quartile, and maximum (bottom to top) 

of the data.  
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       For associative encoding (Phase 2), no strong difference was shown between 

within-grid than across-grid similarity for subsequently remembered trials in the LOC 

(left: t (23) = 0.56, p = 0.584, Cohen’s d = 0.11; right: t (23) = 2.14, p = 0.043, Cohen’s 

d = 0.44; Figure 3A). In the exploratory analyses, significant difference was seen in the 

anterior hippocampus (left: t (23) = 2.86, p = 0.010, Cohen’s d = 0.57; right: t (23) = 

2.85, p = 0.009, Cohen’s d = 0.58; Figure S2), but not in the vmPFC (left: t (23) = 1.90, 

p = 0.070, Cohen’s d = 0.39; right: t (23) = 1.95, p = 0.064, Cohen’s d = 0.40; Figure 

S2). Results here suggest that the LOC may not carry general schematic representations 

during associative encoding, but are still possibly associated with successful 

assimilation of new information into such schemas (schema representations were 

clearly shown in the left LOC during Phase 1).  

 

Cortical reactivation of schema representations during new associative learning 

      As our main hypothesis, we tested whether the reactivation of patterns learned 

in phase 1 during phase 2 was related to memory performance. There was a significant 

interaction between schema condition and memory in the left LOC (F (1, 23) = 4.254, 

p = 0.051, η² = 0.16, Figure 3B), but not in the right LOC (F (1,23) = 2.05, p = 0.166). 

Further analysis showed that the interaction was due to a significant subsequent 

memory effect in the schema-C condition but not the schema-IC condition. Next, we 

performed the same analysis using the high-confidence remembered trials. These 

results also showed a significant interaction between schema condition and memory in 
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the left LOC (F (1, 20) = 8.898, p = 0.007, η² = 0.31, Figure 3B), but not in the right 

LOC (F (1,20) = 1.595, p = 0.221, η² = 0.31). The interaction was again due to a 

significant subsequent memory effect in the schema-C but not the schema-IC condition. 

The reactivation results in left LOC were consistent with the last part that the left LOC 

had a greater within-grid than across-grid similarity during Phase 1. These results 

suggest that the reactivation of schematic information in the LOC facilitates the 

successful encoding of associative memory in the schema-C condition. We conducted 

similar analyses on the other ROIs, including the aHPC and vmPFC; however, no 

significant memory effects were detected in these regions (Figure S3). 

 

Connectivity between the LOC and PPA in new associative learning 

      Our second hypothesis was that pattern reactivation could induce the formation 

of direct cortical connections. We tested this hypothesis using beta series correlation 

(BSC). Because reactivation was observed only in the left LOC, we calculated the BSC 

between the left LOC and both sides of the PPA. We selected the remembered trials for 

the two schema conditions. Both left LOC–left PPA connectivity and left LOC–right 

PPA connectivity exhibited greater BSC in the schema-C condition than in the schema-

IC condition (left PPA: t (23) = 2.18, p = 0.040, Cohen’s d = 0.44; right PPA: t (23) = 

2.06, p = 0.050, Cohen’s d = 0.42; Figure 3C). The results suggest that reactivation in 

the LOC might induce a direct LOC–PPA connection. 
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Discussion 

The primary objective of this study was to determine the neural basis of schema 

representations and how the reactivation of schema representations affected subsequent 

memory. Our behavioural pilot showed that a consistent schema improved associative 

memory on a 24-hour delayed test. Though this schema effect on behavioural data did 

not reach significance in the fMRI group, the fMRI data showed clear differences in 

brain activation, multivoxel patterns and trial-wise connectivity between the two 

schema conditions. More specifically, we found that grid-based schematic information 

was represented in the LOC during the retrieval of trained PAs, but was not obvious 

during new associative encoding. However, the reactivation of grid-based 

representations in the LOC had a significant effect on subsequent memory in the 

schema-C condition, and increased LOC–PPA functional connectivity. In addition, 

activations in the vmPFC and anterior hippocampus were associated with successful 

new associative encoding. These results are consistent with our hypothesis that the 

reactivation of schema in the cortex is important for schema-related learning.  

In the current study, we utilized a human analogue of training spatial schema 

first developed in van Buuren and colleagues (2014), which was similar to those used 

in classical rodent studies (Tse et al. 2007; Tse et al. 2011). This allowed us to better 

extract specific grid-based schema representations during the retrieval of training pair 

associations, as well as further measure reactivation and its relation to memory 

performance. Consistent with previous findings (e.g., Tse et al., 2007, 2011; Audrain 
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and McAndrews 2022; Guo and Yang 2020), our univariate analysis showed that the 

vmPFC and anterior hippocampus were involved in schema-related retrieval and new 

associative encoding. The vmPFC is known to be intensively involved in schema 

processing (Tse et al. 2011; Gilboa and Marlatte 2017). The anterior hippocampus has 

also been associated with schema-based memory integration (Schlichting et al. 2014; 

Schlichting et al. 2015; van Kesteren et al. 2018; Masís-Obando et al. 2021), and 

encoding of the overlapping information is associated with increased functional 

coupling between the vmPFC and anterior hippocampus (Zeithamova and Preston 2010; 

Zeithamova et al. 2012). Therefore, our results concerning brain activation further 

confirm that activity in the vmPFC and anterior hippocampus is important in schema-

based associative integration (Audrain and McAndrews 2022; Guo and Yang 2020). 

This is also consistent with the view that the vmPFC and aHPC represent schema and 

gist information respectively (Robin and Moscovitch 2017; Sekeres et al. 2018).  

      Through neural representational similarity analyses, we saw that although the 

LOC carried schematic information (i.e., within > across) mainly in Phase 1, neural 

reactivation across two phases in the LOC affected subsequent memory in the schema-

C condition. This is consistent with the view that cortical regions act as scaffolds to 

assimilate new information. In another study using RSA, famous faces induced 

assimilation of new information into old memories in the inferior frontal gyrus - a 

semantic-related cortical region (Bein et al. 2020). Here, we tested our hypothesis in 

the stimuli representational cortical regions (e.g., the LOC and PPA) related to our 



 35 

schema manipulation. Those results suggest that the involvement of specific cortical 

regions may be connected to the particular schema to be encoded within (van Kesteren 

et al. 2012; McClelland 2013; McClelland et al. 2020), consistent with the theory that 

the expression of memory is accompanied by co-activation of its corresponding neural 

structure and vice-versa (Moscovitch et al. 2016; Sekeres et al. 2018). 

      In regard to the relationship between LOC reactivation and memory, one 

concern may be that both of the trials in this analysis contain the same object 

representation and thus the object representation itself could drive the fMRI pattern 

analysis results as well as the improved memory results. In other words, any kind of 

association with each object should lead to greater pattern similarity across those 

critical trials as well as better memory. Previous studies suggest that the LOC is related 

to categorical clustering (Eger et al. 2008) and the object representations in this region 

are also reactivated more easily to match the previously seen representations when 

object-based schema is consistent (van der Linden et al. 2017). Consistent with those 

literature, the results in this study show that the reactivation in LOC was related to 

subsequent memory only in schema-C condition. The reactivation of same object in 

schema-IC condition did not drive a subsequent memory effect. Therefore, the 

reactivation results are unlikely to be explained by the object representation itself. 

Moreover, it could be that stable representations of schema were formed in the LOC 

after the training in schema-C condition but not in the schema-IC condition, and thus 

helped the integration of new information.  
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      Another concern is that the PAs in the schema-C condition were easier to learn 

during the training than in the schema-IC condition, resulting in more positively reward 

associated with these objects. This might also induce stronger within-grid similarity 

and greater reactivation. We therefore did a control analysis to investigate whether the 

similarity between two grids in the schema-C condition is higher than that in the 

schema-IC condition (Figure S4). There was no evidence that two schema-C grids 

shared higher similarity, which suggests that the schema are specific within each grid, 

at least in our selected ROIs (LOC). To explore this possibility, further studies with a 

similar paradigm could ask participants to rate how rewarding they found each object 

after the training. 

      Cortical reactivations might be influenced by whether novel information is 

consistent, inconsistent, or arbitrary with respect to existing schema. Although we 

manipulated schema as networks of object-location associations, our results were based 

on new arbitrary object-scene associations that were not directly related to the trained 

schemas. Reactivation provokes a state of memory instability that may lead to 

interference and forgetting (Hupbach 2011; Fernández et al. 2016), but it also provides 

an opportunity for memories to interact with one another (Robertson 2012). This allows 

more general aspects of memory to be integrated (Ferreira et al. 2019). Here, 

reactivation may depend on whether or not the encoding occurs in a stable schema 

context. This reactivation of schema could act as a scaffold to assimilate new 

information, even the new information is not directly related to the schema, i.e., 



 37 

‘method of loci’ (Martin Dresler et al. 2017). After three days of training, the 

participants not only formed a schema of object-location networks but also formed the 

schema of objects clustering based on the location information (e.g., the alarm clock is 

always next to the bin and the broom). During new learning, the reactivation could be 

part of the schema; for example, the stable representations of objects clustering such as 

‘clock-bin-broom’ were reactivated automatically, which might explain why the LOC 

didn’t contain general grid-based information (within vs. across) in the new learning. 

In our daily life, the new information is not always totally consistent or inconsistent 

with our prior knowledge. Recent studies also indicate that schema can modulate 

memory for schema-irrelevant information (Webb and Dennis 2020; Cockcroft et al. 

2022). Therefore, even if the new information is not directly related to the schema, a 

stable schema could still provide scaffold-like representations and induce a different 

route to encode/incorporate new information.  

      Regarding the classical theory of systems consolidation, recent findings suggest 

that independent cortical memory representations can emerge rapidly (Cowansage et al. 

2014; Kitamura et al. 2017; Brodt et al. 2018). These early cortical engrams, however, 

are ‘silenced’ shortly after learning (Kitamura et al. 2017). In human studies, cortical 

representations emerge after the repeated retrieval of prior material (Brodt et al. 2018; 

Himmer et al. 2019). Repeated retrieval may help develop cortical engrams, which is 

similar to a schema manipulation in that it also requires multiple training/retrieval. In 

addition, Bein and colleagues (2020) also showed that semantic schema could induce 
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assimilation in the semantic-related cortical region. Along with our results showing 

cortical reactivation and connectivity during encoding and their relations to memory 

performance after 24 h, these findings suggest that on the one hand, regardless of 

whether there is parallel encoding of new information into both hippocampus and 

prefrontal cortex (Tse et al. 2007; 2011), schema or prior knowledge may also induce 

rapid learning directly in stimulus-relevant cortical regions (Hebscher et al. 2019). On 

the other hand, the vmPFC has been shown to be involved in the integration and 

updating of reactivated memory traces (Preston and Eichenbaum 2013; Gilboa and 

Marlatte 2017; Sommer 2017; Hebscher et al. 2019). In our study, activation of the 

vmPFC was also associated with subsequent associative memory. Thus, it could also 

be that the vmPFC meditated the schema-related cortical learning. In any case, our 

study provides novel evidence of stimulus-relevant cortical learning in addition to the 

vmPFC and hippocampus during schema-related memory formation. 

      This cortical learning may further require sleep in order to be consolidated 

(Himmer et al. 2019; de Sousa et al. 2019), which is consistent with our results showing 

that fMRI effects during encoding were related to memory 24 hour later. Neuroimaging 

studies have shown that the durability of memories is associated with the brain 

activity/representation during encoding (e.g., Sneve et al. 2015; Wagner et al. 2016; 

Wagner et al. 2019; Wagner et al. 2021; Ness et al. 2022). Therefore, in the schema-

related memory formation, while schema might strengthen mnemonic representations 

at initial encoding, their effects are enhanced during subsequent consolidation (Lewis 
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and Durrant 2011; Hennies et al. 2016), as also suggested by van Kesteren et al (2012). 

The neural changes during encoding may further underlie the neural mechanisms of 

schema-related fast memory consolidation (Fernández and Morris 2018).  

      In conclusion, we found that activations in the vmPFC and anterior 

hippocampus were important for new schema-related integration. Further, object-based 

clustering of schematic information could be represented in the LOC in the retrieval of 

schema training information, but not in new associative encoding. However, the 

reactivation of representations in the LOC played a role in new associative encoding 

only in the schema-C condition, which may increase LOC–PPA cortical connectivity. 

Taken together, our findings shed further light on how schema reactivation in cortical 

regions supports the integration of novel information into existing memory networks, 

as a potential neural mechanism for schema-induced rapid learning.  
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