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1   |   INTRODUCTION

1.1  |  Discriminating value and valence 
encoding

It is widely believed that reinforcement learning is driven 
by the generation of prediction errors immediately follow-
ing feedback on performance. For this reason, the neural 

encoders of prediction errors, sources in the brain that change 
activation proportionally to the prediction error incurred, 
are an important subject of study. Neuropsychological and 
behavioral studies of humans and other animals suggest 
that prediction errors may take a number of forms. One is 
a value prediction error, a quantitative, signed term desig-
nating the degree to which an outcome is better or worse 
than expected. This term underlies most simple model-free 
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Abstract
Event-related potentials that follow feedback in reinforcement learning tasks 
have been proposed to reflect neural encoding of prediction errors. Prior research 
has shown that in the interval of 240–340 ms multiple different prediction error 
encodings appear to co-occur, including a value signal carrying signed quantita-
tive prediction error and a valence signal merely carrying sign. The effects used to 
identify these two encoders, respectively a sign main effect and a sign × size inter-
action, do not reliably discriminate them. A full discrimination is made possible 
by comparing tasks in which the reinforcer available on a given trial is set to be 
either appetitive or aversive against tasks where a trial allows the possibility of ei-
ther. This study presents a meta-analysis of reinforcement learning experiments, 
the majority of which presented the possibility of winning or losing money. Value 
and valence encodings were identified by conventional difference wave method-
ology but additionally by an analysis of their predicted behavior using a Bayesian 
analysis that incorporated nulls into the evidence for each encoder. The results 
suggest that a valence encoding, sensitive only to the available outcomes on the 
trial at hand precedes a later value encoding sensitive to the outcomes available 
in the wider experimental context. The implications of this for modeling compu-
tational processes of reinforcement learning in humans are discussed.
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reinforcement learning models and has been shown in 
single cell studies (Schultz et al.,  1997), fMRI studies 
(O'Doherty et al., 2003), and event-related potentials (ERPs) 
(Glazer et al.,  2018; Holroyd & Coles,  2002; Sambrook & 
Goslin, 2015; San Martin, 2012; Walsh & Anderson, 2012). 
Some ERP studies have also found evidence for a simple 
dichotomous encoding of prediction error valence, that 
is, simply whether outcomes are better or worse than ex-
pected but without regard to how much better or worse 
(Fouragnan et al.,  2017; Pedroni et al.,  2011; Philiastides 
et al., 2010). This may occur in response to feedback which 
is dichotomous by the terms of the experimental design, for 
example, success versus failure, but this encoding may also 
be imposed on feedback that is continuous in the amount 
of reward delivered (Janssen et al., 2016). There is no infor-
mation in this valence encoding that is not already held in 
the value encoding, however, it may serve as a quick, coarse 
evaluation (Philiastides et al., 2010; Tobler et al., 2005) or 
arise because the architecture of learning involves an initial 
streaming by valence (Fouragnan et al., 2017). In addition 
to value and valence reward prediction errors, there is good 
evidence, from single cell, fMRI, and ERP that prediction 
error size is encoded without reference to its sign (Brown 
& Braver,  2005; Matsumoto & Hikosaka,  2009; Talmi 
et al., 2013). This encoding is uninformative with regard to 
whether an outcome is rewarding or punishing. However, 
it may serve to orient an animal to events that carry moti-
vational salience (Bromberg-Martin et al., 2010), either be-
cause they are unexpected or large. Alternatively, unsigned 
prediction errors may play an indirect role in reinforcement 
learning, for example, in determining learning rates (Caze 
& van der Meer, 2013).

The neural encodings underlying these three kinds of 
prediction error have frequently been investigated in ex-
periments using a two-way design manipulating prediction 
error valence and size. The two main effects and interaction 
term in this design have been so widely used as a means of 
isolating activity generated by the three encoders described 
above that it is fair to describe them as “canonical effects”. 
The canonical effect used to show valence is a main effect 
of positive versus negative prediction errors, the canonical 
effect for motivational salience is an effect of large versus 
small prediction errors, and the canonical effect for value is 
an interaction between prediction error sign and size. The 
interaction term indicates value encoding insofar as the ef-
fects on value of increasing prediction error size depend 
critically on the sign of the prediction error: value rises as 
the size of positive prediction errors increases but drops as 
the size of negative prediction errors increases. In 2 × 2 de-
signs the value encoding can be demonstrated by a greater 
difference wave between the large positive and negative 
prediction errors than between the small positive and neg-
ative prediction errors.

ERP studies regularly find both main effects and their 
interaction at frontocentral electrodes in the feedback-
locked waveform. However, not all effects are always 
found, and effect amplitudes and timings are highly in-
consistent across studies. This inconsistency in waveforms 
is compounded by the choice of interval for statistical re-
porting. Neural activity in feedback-locked reinforcement 
learning is typically attributed to a single component, 
variously described as the feedback-related negativ-
ity (Miltner et al., 1997) or the reward positivity (RewP) 
(Proudfit,  2015) lying between P2 and P3 components. 
However, a meta-analysis of this component found that 
the interval in which it was operationalized varied widely 
between 100 and 600 ms postfeedback (Sambrook & 
Goslin, 2015). If all three prediction error encodings are 
present but at slightly different latencies then a literature 
attempting to resolve each of these encoders into a sin-
gle scalp component, but which is inconsistent in when 
that component is measured, will inevitably disagree on 
what that component is encoding. Drawing directly from 
published waveforms rather than reported statistics, 
Sambrook and Goslin's meta-analysis showed all three ef-
fects to be robustly present, and jointly so in the interval 
240–340 ms. This interval was thus chosen as the interval 
of interest for the study described here.

We note that the terms feedback-related negativ-
ity and reward positivity have been used in a number of 
senses since the original coinage of the former by Miltner 
et al.  (1997) Amongst the several thousands of papers on 
the component, the term has been used to refer to the dif-
ference wave of good and bad outcomes or to a negative-
going peak seen in a simple waveforms. It has been used to 
refer to the measured scalp effects and to the presumed un-
derlying neural encoder producing these. It has been used 
to refer to both the valence and value encoders described 
earlier. Its redesignation as the RewP (Proudfit, 2015) was 
intended to capture the belief that the underlying encoder 
activated in response to monetary rewards but not reward 
omission, producing a positive-going voltage deflection at 
the scalp specifically for rewards. Subsequently, however, 
the RewP and feedback-related negativity have been opera-
tionalized as separate components either on the trivial basis 
of the direction in which the good and bad waveforms are 
differenced or substantially on the basis that they are inde-
pendent encoders responding to positive and negative feed-
back, respectively. Because of this ambiguity we avoid using 
either term except when referencing the literature, instead 
referring to valence, motivational salience and value encod-
ers, and prediction error sign, size and sign × size effects.

Temporally resolving encoders within the interval of 
240–340 ms would be beneficial on two grounds. First, the 
more precisely each encoder can be operationalized, the 
more accurate future research on that encoder is likely to 
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be. Second, the ordinal sequence of encoders can inform 
hypotheses about how reinforcement learning is imple-
mented in the brain. The present article takes as its starting 
point the proposition that while activity in the underlying 
encoders may overlap in time, the extent of this is likely 
less than that seen in scalp-recorded ERP components 
used to detect those encoders due to component overlap. 
This is particularly likely to be the case with value and va-
lence encoders. Attempting to isolate a valence encoder by 
searching for the temporospatial interval in which there is 
a significant difference between the waveforms associated 
with negative and positive reward prediction errors will 
produce a result contaminated by the value encoder. This 
is because a value signal, consisting in increasingly positive 
voltage from large negative reward prediction errors (RPEs) 
to large positive RPEs will, if subjected to such an analysis, 
very often return a significant effect as the monotonic value 
signal is artificially forced into a step function around the 
point of zero prediction error. That is to say, valence and 
value show collinearity. Equating the valence encoder to the 
prediction error sign main effect will thus overestimate the 
strength of this encoder, overstate the interval in which it is 
active and misrepresent the latency of its peak amplitude. 
More generally, operationalizing the valence encoder sim-
ply in terms of the prediction error sign main effect makes 
it difficult to distinguish it from value encoding.

The present study improves the resolution of the en-
coders by capitalizing on a property of the valence en-
coder that is likely not shown by the value encoder, its 
context dependence (Palminteri & Lebreton,  2021). A 
number of studies of the RewP (e.g., Holroyd et al., 2004; 
Kujawa et al., 2013) have suggested that the value of an 
outcome is framed relative to the alternatives available. 
Thus, the same monetary outcome may be encoded as a 
positive or negative prediction error depending on what 
the alternative was for that trial. A similar effect has been 
shown at the single cell level by Tobler et al. (2005) in a 
study which showed that the greater of two rewards pro-
duced the same increase in activity and the lesser of the 
two produced the same decrease in activity, regardless 
of absolute magnitude. Similar effects have been shown 
in fMRI (Bunzeck et al., 2010; Nieuwenhuis et al., 2005). 
The valence encoder thus appears to be dependent on the 
trial context. This kind of context dependence is a conse-
quence of a ubiquitous wider process of adaptive scaling 
of neurons' predictions of value, based on the distribu-
tion of possible outcomes necessary, a process necessary 
if a set of neurons is to be capable of encoding expected 
value and prediction error over variably profitable circum-
stances. Nevertheless, this scaling appears not to be dic-
tated entirely by the options available on a trial. As noted 
earlier, the difference wave for large positive and negative 
prediction errors is greater than that for small positive 

and negative prediction errors, and importantly this ef-
fect is shown even when trial feedback is dichotomous 
(Sambrook & Goslin, 2015). This implies a value encoder 
that registers the value of outcomes not only with respect 
to that trial's alternatives but possibilities on other trials, 
that is, is context-free. Furthermore, this effect appears to 
be unaffected by whether the range of magnitudes is cued 
in advance of feedback (Sambrook & Goslin, 2015). A par-
simonious interpretation of these effects is that in the in-
terval in which the RewP is typically measured there exists 
a context-dependent valence encoder in which outcomes 
are compared to those available on that trial and a context-
free value encoder in which outcomes are compared to 
those available in the wider experiment.

The present study aimed to resolve these two encod-
ers by a manipulation of alternatives available on a trial. 
To the best of our knowledge this manipulation has not 
been carried out by any individual experiment. Instead, it 
has been incidentally provided in the literature insofar as 
studies using the standard factorial manipulation of pre-
diction error sign and size nevertheless differ with regard 
to whether they have used mixed domain gambles or single 
domain gambles. Here, domain refers to whether outcomes 
are monetary gains or losses, or in the case of primary 
reinforcers, appetitive or aversive stimuli, for example, 
pleasant versus nasty tastes. In mixed domain gamble de-
signs the size of the monetary outcome is fixed on a given 
trial and participants receive feedback on its domain, that 
is, whether they have incurred a gain or a loss. In single 
domain gamble designs, the domain is known in advance 
and feedback reveals whether the outcome is large versus 
small (or delivered vs. omitted). Importantly, in mixed do-
main gambles, losses are always negative prediction errors 
and gains are always positive prediction errors, but in sin-
gle domain gambles small gains are negative prediction 
errors and small losses are positive prediction errors. The 
literature thus provides a natural three-way mixed fac-
torial design (domain × size × gamble) distributed across 
studies that is suitable for meta-analysis. This design is 
capable of discriminating the proposed context-free value 
and context-dependent valence encoders in a way that in-
dividual studies are not.

Figure 1 shows the effects on voltage that are predicted 
by each of these encoders. Note that the independent vari-
able of prediction error sign has been replaced by domain 
in the design. This is because prediction error sign associ-
ated with an outcome is dependent on gamble design, as 
we note above, and cannot therefore serve as an orthogo-
nal independent variable. Domain remains an orthogonal 
variable however, since gains are preferred to losses in all 
cases and can thereby serve to identify a valence encoding. 
Figure 1a,b shows the two encodings of principal interest 
in the study. Importantly, it can be seen in Figure 1a that 
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the domain × size interaction generated by the value en-
coder is unaffected by gamble design, but, in Figure  1b, 
the context-dependent valence encoder generates an in-
teraction only in single domain gambles. A three-way 
domain × size × gamble interaction is thus uniquely in-
dicative of this context-dependent valence encoder. The 
remaining plots in Figure 1 show other encoders that are 
likely to overlap value and valence encoders. A hypothet-
ical context-free valence encoder is modeled in Figure 1c, 
although there is no evidence in the literature for such 
an encoder at present. Its converse, a context-dependent 
value encoder is not shown since this gives the same pre-
dictions as the context-dependent valence encoder under 
the experimental design. This is because feedback is di-
chotomous at the level of the trial and so the continuous 
value signal and the discrete valence signal cannot be 
distinguished. In Figure  1d, a motivational salience en-
coder is shown, for which the predicted effects are again 
the same whether it is context-dependent or context-free. 
Figure 1e models the absence of any prediction error en-
coding since this serves as a null in the analysis to come. 
The predicted effects for specific contrasts of interest used 
in the subsequent analysis are shown in Figure 1f.

Although the full waveform was analyzed in the forth-
coming meta-analysis, the interval 240–340 ms was des-
ignated an interval of interest based on evidence that 
multiple prediction error encodings are carried in this time 

(Sambrook & Goslin, 2015). Analysis followed two strands. 
In the first strand, t tests were applied at each sample of the 
great grand average waveform (see Methods) to establish 
the presence or absence of four effects. Three of these were 
the canonical effects of domain, size, and domain × size. 
The fourth was the novel domain × size × gamble effect dis-
cussed above. In the second analysis strand, rather than 
pinning the evidence for each encoder to a single canonical 
effect, the full range of predicted effects shown in Figure 1f 
was examined, including predictions of nulls. A Bayesian 
analysis was used to combine these separate analyses. This 
was partly because a Bayesian analysis can provide a mean-
ingful quantification of the probability that a null is true and 
partly because Bayesian tests return simple probabilities 
rather than p-values and these probabilities can be easily 
multiplied to test conjunction hypotheses. As with the first 
analysis strand, mass univariate testing (Bayesian t tests) 
was applied at each sample of the waveform. Additionally, 
Bayesian t tests were applied to factors derived from a tem-
poral principal components analysis (tPCA).

1.2  |  Gain sensitivity of the 
valence encoder

The present study additionally investigated the possibil-
ity that the valence encoder is specifically sensitive to 

F I G U R E  1   Columns show predicted effects on voltage (y axis) of five encoders (a–e) and how these depend on prediction error size (x 
axis, small on the left, large on the right), outcome domain (blue = gain, red = loss), and gamble design (rows 1 and 2). (f) Shows predicted 
effects in simple contrasts, with dark shading indicating an effect is predicted, light shading indicating the null is predicted. The interaction 
contrast takes the form (large gain – large loss) > (small gain – small loss).
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outcomes in the gain domain. In principle, a valence en-
coder tasked with encoding the sign of prediction errors 
should be indifferent as to the domain in which prediction 
errors occur. Omitted or smaller than expected aversive 
events (e.g., monetary losses) should reinforce behavior 
as effectively as obtained or larger than expected appeti-
tive events (e.g., monetary gains). That is to say, prediction 
error valence (better or worse than expected) is orthogo-
nal to outcome domain (appetitive goods, aversive goods) 
and a single valence encoding mechanism should produce 
adaptive behavior in both domains. In the ERP context, 
this implies that a valence encoder operationalized as dif-
ference between better and worse outcomes should be of 
the same amplitude whether this is built from a (no loss – 
loss) waveform or a (gain – no gain) waveform. However, 
in the wider context of behavior it is nevertheless impor-
tant that an animal considers domain in addition to pre-
diction error valence in its assessment of the adaptedness 
of its behavior. An avoided punishment and obtained 
reward may constitute equal sized positive reward pre-
diction errors, but the latter is clearly preferred when esti-
mating the value of the environment at hand (Boureau & 
Dayan, 2011). For adaptive reasons, the valence encoder 
may thus not necessarily observe the formal orthogonality 
of domain and prediction error sign and this may be re-
flected in its associated ERP. Indeed, a number of studies 
have shown greater sensitivity to prediction error sign in 
the gain domain (Kreussel et al., 2012; Kujawa et al., 2013; 
Mushtaq et al.,  2013; Sambrook et al.,  2012). However, 
an alternative possibility is that this effect is an artifact of 
component overlap of a valence encoding and a motiva-
tional salience encoding. In the interval associated with 
the RewP motivational salience appears to be encoded 
by a relative positivity (Sambrook & Goslin, 2015; Talmi 
et al., 2013). This would serve to cancel out the negativ-
ity associated with large losses relative to small ones, 
producing a small or absent RewP in the loss domain. 
Conversely it would increase the positivity of large gains, 
increasing the RewP in the gain domain (Stewardson & 
Sambrook, 2021). This would produce a misleading gain 
sensitivity in the RewP.

The present study finds evidence for this gain sensitiv-
ity and uses moderators to ascertain whether it is likely to 
reflect gain sensitivity in the underlying valence encoder 
or is an artifact of component overlap with a motivational 
salience encoder. The first moderator is whether gain and 
loss trials are grouped together in separate blocks or are 
interleaved. If gain sensitivity is shown in the underlying 
valence encoder then this sensitivity would be expected to 
be greater when the two domains are interleaved within a 
block insofar as information on the domain is presented 
anew on each trial. In contrast, if the apparent gain sensi-
tivity is an artifact of component overlap, this manipulation 

should have no effect. This was the finding of Yu and 
Zhang (2014) in an ERP study on framing effects.

The second moderator is whether feedback cues have 
an arbitrary or nonarbitrary relationship with the rein-
forcer they denote. Nonarbitrary cues are similar to the 
reward or punishment ultimately incurred by the partic-
ipant, such as displaying “+20¢” on a screen to denote 
the delivery of a 20¢ reward or displaying an image of a 
lightning bolt to denote the delivery of an electric shock. 
Arbitrary cues are arbitrarily mapped to rewards and pun-
ishments, such as using one fractal to denote reward and 
another to denote punishment. The capacity for a cue 
to invoke the value of the reinforcer (either primary or 
monetary) appears to be greater when the relationship is 
nonarbitrary. For example in the “money illusion” partic-
ipants are heavily influenced by the face value of money 
presented to them at the point of feedback rather than the 
real value it denotes, for example, if a 5c win is denoted 
by a picture of a $5 bill (Huang & Yu, 2019). In the animal 
context a number of experiments have shown that condi-
tioned stimuli that share sensory properties with primary 
reinforcers elicit more vigorous responses (Domjan, 2005). 
Event potentials respond to the calorific content of foods 
denoted by realistic images and this occurs even when 
this property is not part of the instrumental learning task 
at hand (Toepel et al., 2009) and midbrain dopaminergic 
neuron alerting responses are triggered by stimuli that 
resemble motivationally salient cues (Bromberg-Martin 
et al., 2010). We would thus expect nonarbitrary cues to 
more strongly engage a motivational salience encoder 
than arbitrary ones. If the gain sensitivity of the valence 
encoder increases for nonarbitrary cues this would sug-
gest the effect is merely an artifact of component overlap 
with a motivational salience encoder.

2   |   METHOD

2.1  |  Inclusion and exclusion criteria

Inclusion and exclusion criteria were as follows. Studies 
had to manipulate outcome domain (appetitive or aver-
sive) and outcome size (large vs. small, or delivery vs. 
omission) in a 2 × 2 design with the frequency of occur-
rence of the four outcomes equal. Domain could be ma-
nipulated either by monetary gain or loss or by primary 
reinforcers (e.g., taste, shock). If more than two levels 
of outcome size were available, the more extreme val-
ues were used. Designs were only included if feedback 
was dichotomous at the level of the trial. Designs had 
to conform to mixed gamble or single domain gambles 
as described in the Introduction. While studies were in-
cluded in which participants were passive with respect 
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to outcomes, if a study included an active condition this 
was used in preference, as prediction error encoding 
is thought to be stronger in such cases (Stewardson & 
Sambrook, 2021; Yeung et al., 2005). In order to main-
tain homogeneity in the meta-analysis studies were 
restricted to those on young healthy adults. Studies 
researching other populations were used if a control 
group of young healthy adults was included. Studies 
were included only if a grand average waveform for each 
of the four conditions was provided at a frontocentral 
electrode (Fz, FCz, Cz, or a frontocentral pool) running 
from −100 to 500 ms.

2.2  |  Search strategies

English language journals and books were searched 
using the following databases: PsycInfo, PsycArticles, 
ERIC, PubMed, and Web of Science. The search was 
conducted in Endnote and the results were compiled 
in Zotero. The search string used was “feedback related 
negativity” OR “feedback negativity” OR “FRN” OR “re-
ward positivity” OR “RewP” OR “feedback error-related 
negativity” OR “feedback error related negativity” OR 
“feedback correct-related negativity” OR “feedback cor-
rect related negativity”, and covered journal titles, ab-
stracts, and keywords. This yielded 1244 studies. Studies 
were then checked for their fit with the inclusion and 
exclusion criteria and the final sample consisted of 36 
studies (20 mixed domain gambles, 16 single domain 
gambles). Of the single domain gamble studies (which 
were the portion of the data set used for moderator anal-
ysis of gain sensitivity of the RewP), nine were blocked 
versus seven interleaved, and nine used nonarbitrary 
cues versus seven using arbitrary cues. Studies are listed 
in Table 1.

2.3  |  Coding procedures

A great grand averaging approach (Sambrook & 
Goslin, 2015) was used to retrieve data from published ar-
ticles. Screenshots of published waveforms were digitized 
with Plot Digitizer software (http://sourc​eforge.net/proje​
cts/plotd​igitizer) by using a mouse to manually lay points 
along the waveform at approximately 5-ms intervals. 
A purpose-written program available at Sambrook and 
Goslin (2015) was used to linearly interpolate data at 1-ms 
intervals in order to provide a consistent set of samples for 
each waveform in the following mass univariate analyses. 
Waveforms were replotted from these extracted data and 
inspected to prevent the introduction of gross errors. The 
process described above thus retrieved the grand average 

data for each condition in each experiment, along with a 
degree of measurement error, estimated to be under 0.1 
uv (Sambrook & Goslin,  2015). Waveforms were then 
differenced to generate the required contrasts shown in 
Figure 1f and used to test for significance of effects over 
studies much as single experiments test for significance of 
effects over participants.

2.4  |  Statistical procedures

2.4.1  |  Identification of encoders by 
canonical effects using conventional statistics

Two complementary analysis strategies were used. The 
first strategy used mass univariate frequentist statistics to 
generate the time course of four effects of interest: domain, 
size, domain × size, and domain × size × gamble. Each 
study provided a simple effect size for each of these effects 
and significance testing of this effect size across studies 
constituted our meta-analytic method. Meta-analysis typi-
cally weights effect sizes by their sample size or standard 
deviation. Because the great grand averaging technique 
directly digitizes the full grand average waveforms rather 
than relying on statistics reported for a specific interval, 
standard deviations were unknown at the majority of time 
points. Weighting was therefore applied using study sam-
ple size and for the purpose of testing this necessitated the 
use of weighted t-tests. The mean effect size over studies 
was calculated from individual study mean differences 
whose sample size was used as a weight. To calculate the 
weighted standard deviation, weights based on study size 
were applied to deviations of each study mean from the 
grand mean (Sambrook & Goslin, 2015).

In order to render it suitable for performing t tests, the 
domain × size × gamble design was broken down into sim-
ple pairwise contrasts. One-sample weighted t tests were 
used to test the effect of domain (gain – loss), size (large – 
small), and domain × size ((large gain – small gain) – (large 
loss – small loss)). A weighted independent samples t test 
was used to test the effect of domain × size × gamble by com-
paring the domain × size effect in single and mixed domain 
gambles. Weighted Student t tests were performed using 
the R package ‘weights’ (Pasek, 2021). Since no weighted 
Welsh t test was available and sample sizes were mod-
erately unequal in the independent samples t test (20 vs. 
16), a Levene's test was used to assess equality of variance 
and was found to be non-significant (p > .05) throughout 
the waveform. As a supplementary analysis, the effects of 
interest were also calculated using unweighted t tests and 
directly from an omnibus 2 × 2 × 2 mixed factorial ANOVA 
(unweighted) since this would typically be used in a three-
way design if weighting were not needed.
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2.4.2  |  Identification of encoders using 
Bayesian t tests

The second analysis strategy used Bayesian one-sample t 
tests (Rouder et al., 2009), again applied at each time point, 
but this time applied to the difference waves correspond-
ing to the six contrasts shown in Figure  1f. These con-
trasts comprise the full set of contrasts that discriminate 

the encoders. One-sample Bayesian t tests were used to 
assess at each time point the extent to which the evidence 
favored the prediction (be that effect or null) shown in 
each cell of Figure  1f. Where an effect was predicted, 
the t test calculated the evidence for this versus the com-
bined alternatives, that is, a null or opposite effect. Where 
a null was predicted the t test established the evidence 
for this against an effect in either direction. T tests were 

T A B L E  1   Studies used in the meta-analysis.

Experiment N Site Fig. Gamble Blocking Cue type

Aarts and Pourtois (2012) 60 FCz 3h,l Single Blocked Non-arbitrary
Bell et al. (2016) 36 Pool 5 Mixed Interleaved Arbitrary
Broyd et al. (2012) 38 Pool 3 Single Interleaved Arbitrary
Chen et al. (2017)

Friend condition 14 Fz 2a Mixed Interleaved Non-arbitrary
Stranger condition 14 Fz 2a Mixed Interleaved Non-arbitrary

Chen et al. (2018) 20 FCz 2 Single Blocked Non-arbitrary
Ernst and Steinhauser (2018) 34 FCz 5a Mixed Blocked Arbitrary
Forder and Dyson (2016) 33 Pool 2a Mixed Blocked Arbitrary
Glienke et al. (2015) 20 Fz 4 Mixed Interleaved Arbitrary
HajiHosseini et al. (2012) 26 Fz 2a,c Mixed Interleaved Non-arbitrary
Heydari and Holroyd (2016) 30 FCz 4a,b Single Blocked Arbitrary
Hird et al. (2018) 20 Pool 2 Single Blocked Arbitrary
Holroyd et al. (2006) 23 Fz 2 Mixed Interleaved Non-arbitrary
Kamarajan et al. (2009) 50 FCz 4 Mixed Interleaved Non-arbitrary
Kujawa et al. (2013) 22 Pool 1 Single Interleaved Non-arbitrary
Long et al. (2018) 26 FCz 3a Mixed Interleaved Arbitrary
Luo and Qu (2013)

Low magnitude 18 FCz 3a Mixed Blocked Non-arbitrary
High magnitude 18 FCz 3b Mixed Blocked Non-arbitrary

Mei et al. (2018) 32 Pool 5 Single Blocked Non-arbitrary
Mei et al. (2018) 57 FCz 1 Single Interleaved Arbitrary
Parvaz et al. (2015) 25 FCz 2a Mixed Interleaved Non-arbitrary
Peterburs et al. (2013) 28 FCz 2 Mixed Interleaved Non-arbitrary
Pfabigan et al. (2011) 20 FCz 1 Mixed Interleaved Arbitrary
Pfabigan et al. (2015) 31 Fz 2 Single Interleaved Non-arbitrary
Sambrook et al. (2012) 66 FCz 5 Single Interleaved Arbitrary
Santesso et al. (2012) 29 Fz 2 Single Interleaved Arbitrary
Sato et al. (2005) 18 Fz 1 Mixed Interleaved Arbitrary
Soder and Potts (2018) 50 Pool 2 Single Blocked Non-arbitrary
Talmi et al. (2013) 20 Pool 4 Single Blocked Arbitrary
Watts and Bernat (2018) 132 Pool 4 Single Blocked Non-arbitrary
Wei et al. (2018) 22 FCz 4 Mixed Interleaved Non-arbitrary
Wu and Zhou (2009)

Low expectancy 16 FCz 1 Mixed Interleaved Non-arbitrary
High expectancy 16 FCz 1 Mixed Interleaved Non-arbitrary

Yu and Zhou (2006a) 20 Fz 1 Single Interleaved Non-arbitrary
Yu and Zhou (2006b) 20 Fz 1 Mixed Interleaved Non-arbitrary
Zheng et al. (2017) 36 FCz 6 Single Blocked Non-arbitrary
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8 of 16  |      STEWARDSON and SAMBROOK

performed using the ttestBF function in the R package 
‘BayesFactor’ (Morey & Rouder, 2015). A noninformative 
Jeffreys prior was placed on the variance of the normal 
population, and a Cauchy prior placed on the standard-
ized effect size, scaled to 2/√2. Alternative scalings of 0.5 
and 1 were also run to check the robustness of scaling 
and returned very similar results. The Bayes Factor pro-
duced by each test showed the ratio of the evidence for 
the prediction shown in a given cell in Figure 1f to the 
evidence for the two alternatives. The Bayes Factor was 
converted to a simple probability using a ratio to prob-
ability conversion, that is, probability  =  Bayes Factor/ 
(Bayes Factor + 1). After all cells in Figure 1f had been so 
populated with probabilities, the model evidence for each 
of the five encoders was calculated by the column wise 
product of the six observed probabilities. Finally, these 
compound probabilities were rescaled so that column 
products summed to one, with this achieved by simply di-
viding each compound probability by the sum of the five 
compound probabilities. The resulting scaled value thus 
represented the relative probability of each encoder com-
pared to the others. Unlike analysis strand one, Bayesian 
t tests were not weighted by study sample size due to the 
absence of any agreed method of applying these weights. 
However, a comparison of weighted and unweighted t-
test output for analysis strand one (see Results), suggested 
that for the current data set the effects of weighting were 
small in the interval of interest in any case.

Temporal principal components analysis (tPCA) 
was performed on the six difference waves described in 
Figure 1f using identical means to those used by Sambrook 
and Goslin  (2016) and following published guidelines 
(Dien, 2010; Dien et al., 2005, 2007). The ERP PCA Toolkit 
version 2.89 was used (Dien,  2010). This used each time 
point as a variable and each of the six difference wave con-
trasts in Figure 1f as observations. This yielded 108 obser-
vations (domain, size, and interaction waves from 20 mixed 
gamble designs and from 16 single domain gamble designs). 
A covariance association matrix was used. Factors were 
retained if they explained more variance than a factor ex-
tracted from a null data set, that is, they passed a parallel 
test (Horn, 1965) and were subjected to the Promax rota-
tion algorithm. Factors oscillating around the baseline were 
discarded since these were unlikely to underly ERP compo-
nents shown in the undecomposed data. Factors accounting 
for less than 3% of the data were discarded. For the purposes 
of visualization, factors were reconstructed into voltage de-
nominated waveforms using the product of the factor pat-
tern matrix and the standard deviations (Dien et al., 2003). 
These could then be interpreted in the same manner as the 
original waveforms before they underwent decomposition 
by tPCA. For the identification of encoders, the same pro-
cess of Bayesian t tests as described above was applied but 

instead of sequentially applying testing at each point on the 
waveform testing was applied on the single factor score sup-
plied by the tPCA for each study × contrast observation.

2.5  |  Estimation of small sample and 
publication bias

The phenomena under study in the present study are un-
likely to have been subject to publication bias. The RewP 
is a robustly elicited component and the primary studies 
used in this meta-analysis studied treatment effects rather 
than the existence of the component itself. None were di-
rectly concerned with the relative timings of encoders. 
Additionally, the great grand average technique enjoys con-
siderable protection from publication bias because it begins 
analysis anew with the full waveform rather than starting 
with statistics based on a time-specific operationalization of 
the component that led to publication. The method's post 
hoc repurposing of data can thus be expected to greatly 
reduce the risk of publication bias. Publication bias was 
assessed by correlating sample size and effect size at each 
point on the great grand average waveform. No significant 
correlation was found in the interval of interest for any of 
the three within-subjects canonical effects (see Figure S1).

2.6  |  Gain sensitivity of the 
valence encoder

For the analysis of gain sensitivity of the valence encod-
ing, the standard RewP operationalization was used, that 
is, better outcome – worse outcome. Since the aim was 
to investigate how this varied between gain and loss do-
mains, only single domain gamble studies could be used. 
Gain sensitivity was operationalized as the difference of 
the RewP in the two domains, that is, (large gain – small 
gain) – (small loss – large loss). The effect of two modera-
tors, blocking and cue type was examined with weighted 
independent samples t tests. Levene's tests performed on 
these moderators showed the assumption of equality of 
variance to be met in the interval of interest.

3   |   RESULTS

3.1  |  Identification of encoders by 
canonical effects using conventional 
statistics

Simple waveforms for the eight cells in the design are 
given in Figure  2. Figure  3 shows t values for effects of 
interest. The size effect, indicating motivational salience 
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      |  9 of 16STEWARDSON and SAMBROOK

encoding is significant from 141 ms to interval end at 
500 ms. Domain and domain × size effects, indicative of 
both value and valence encoders (see Figure  1), are sig-
nificant from 122 ms to interval end and 183–350 ms, re-
spectively, peaking at 329 ms (simple effect size 2.32 uv, 
95% CI [1.47, 3.17]) and 317 ms (simple effect size 1.92 
uv, 95%CI [1.22, 2.63]), respectively. The three-way do-
main × size × gamble effect, uniquely indicative of the 
valence encoder, is significant from 188 to 327, peaking 
at 278 ms, with simple effect size 3.17 uv, 95%CI [1.69, 
4.65]. This interaction respected the form predicted for a 
context-dependent valence encoder (see Figure 1b) with 
a stronger domain × sign interaction in single domain 
gambles than mixed domain gambles (see Figure S2). For 
all effects described above, unweighted t tests produced 
similar effects in the interval of interest (see Figure S3) as 
did an unweighted factorial ANOVA (see Figure S4). As 
a further supplementary test, electrode site (FCz vs. Fz) 
was introduced as an additional factor in the design and 
the interaction of this factor with the others inspected. 
This produced modest three-way interactions of site with 

form × size and with domain × size with these effects being 
greater at FCz (see Figure S5).

3.2  |  Bayesian approach to encoder 
identification

Figure 4a shows the relative probability of each encoder 
based on Bayesian t tests. Prior to 132 ms, evidence favors 
no prediction error encoding. Motivational salience is in-
dicated from 132–189 ms (peak 161 ms, relative probabil-
ity  =  .93), context-dependent valence from 190–276 ms 
(peaks 205 and 250 ms, relative probability = .75 and .71), 
value from 278–342 ms (peak 328 ms, relative probabil-
ity = .93) and motivational salience from 343 ms to inter-
val end at 500 ms (relative probability > .90 from 350 ms 
onwards). Removing motivational salience from the 
model had only small effects: no encoding until 160 ms, 
valence from 161–277 ms, value from 278–366 ms, no en-
coding from 367–487 ms, and context-free valence encod-
ing from 488 to interval end (see Figure S6).

tPCA produced three temporal factors. These are 
shown in Figure 4b. Factor 1 accounted for 39.64% of the 
variance, peaked at 384 ms, and showed very strong evi-
dence (relative probability = .99) of being a motivational 
salience encoder. Factor 2 accounted for 39.57% of the vari-
ance, peaked at 250 ms, and showed moderate evidence of 
being a valence encoder (relative probability = .74). Factor 
3 accounted for 11.00% of the variance, peaked at 302 ms, 
and showed moderate evidence of being a value encoder 
(relative probability = .73). The close agreement in timing 
with effects seen in Figure  4a suggests those effects are 
based on discrete encoders identified by the tPCA.

3.3  |  Gain sensitivity

When valence encoding, using the RewP, was investigated 
separately in the gain and loss domains, strong gain sensi-
tivity was found running from 177–365 ms, with no RewP 
observable in the loss domain (see Figure S7). However, 
experiments in which domain was interleaved produced 
slightly reduced rather than increased gain sensitivity and 
there was no significant effect of blocking on gain sensi-
tivity at any point in the waveform (see Figure S8). These 
results do not support the idea of an intrinsically gain sen-
sitive valence encoder. In contrast, the effect of cue type 
(nonarbitrary vs. arbitrary) on the effect of outcome size 
was shown to be significant in the interval 294–344 ms 
(p < .025 critical t = 2.20, d.f. = 11.06): see Figure S9. These 
results thus support the existence of an overlapping moti-
vational salience encoding giving the false appearance of 
gain sensitive valence encoder.

F I G U R E  2   Simple great grand average waveforms for the 
2 × 2 × 2 design.

F I G U R E  3   Weighted t-values for canonical effects with 
intervals of significance shown. Critical t value (p < .025, two tailed) 
is t(35) = 2.03 for all effects other than the three way interaction for 
which t(19.02) = 2.09.
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10 of 16  |      STEWARDSON and SAMBROOK

4   |   DISCUSSION

The present study attempted to resolve the timing of 
prediction error encoders suspected to be present in the 
feedback-locked frontocentral waveform and used analy-
ses designed to avoid favoring one encoder over another. 
It used a meta-analytic technique that preserved informa-
tion in the full waveform provided by individual studies 
and so removed the danger of encoders showing inflated 
presence due to the original researchers' focus of interest. 
Because the discrimination of value and valence encoders 
was not the focus of any of these papers, the findings are 
unlikely to be subject to publication bias.

In keeping with previous work (Foti et al.,  2011; 
Sambrook & Goslin, 2016; Zheng et al., 2015) the present 
study found an interval of reward prediction error activity 

lying between two intervals of unsigned prediction error 
activity. Importantly, it resolved reward prediction error 
activity in the interval 240–340 ms into an earlier valence 
encoding and a later value encoding. The three-way inter-
action of domain, size, and gamble, uniquely diagnostic of 
the valence encoder, suggested the valence encoder peaks 
at 278 ms, a finding corroborated by tPCA. This is followed 
by a value encoder characterized by a domain × size inter-
action that occurs regardless of gamble design, that is, 
which shows no three-way interaction.

The present study adds to a number of studies that have 
attempted to isolate a categorical valence encoding from a 
later quantitative encoding of prediction error. An addi-
tional finding in the present study is that the apparently 
stronger encoding of valence in the gain domain is likely 
a consequence of component overlap with a motivational 

F I G U R E  4   (a) Relative probability of each encoder based on Bayesian t tests performed on difference waves described in Figure 1f. (b) 
Principal components derived from difference waves described in Figure 1f.
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      |  11 of 16STEWARDSON and SAMBROOK

salience component, suggesting there is no need to posit 
separate valence encoders for gain and loss domains.

Because value encoding, a representation of signed 
prediction error, necessarily carries within it an encoding 
of valence, the presence of a separate, earlier, valence-
only encoding suggests this may serve to initiate separate 
learning processes in response to positive and negative 
reward prediction errors. Separate learning by predic-
tion error sign is not predicted in traditional models of 
reinforcement learning (O'Doherty et al., 2007; Sutton & 
Barto,  1998). Furthermore, while learning mechanisms 
underlying approach and avoidance behavior may bene-
fit from functional separation, the adaptive consequences 
of approach or avoidance are based on the valence of the 
prospective outcome, what we term its domain, rather the 
valence of recent prediction errors. Nevertheless there is 
behavioral evidence that people's reinforcement learning 
differs in response to positive and negative prediction er-
rors (Frank et al., 2005) and that there is a genetic basis 
for this (Frank et al.,  2004; Frank & Hutchison,  2009). 
Differences in learning rates (Gershman, 2015; Palminteri 
et al., 2017) have been proposed to underlie these effects, 
and theoretical models (e.g., Caze & van der Meer, 2013) 
have suggested an adaptive basis for separate learning 
rates for positive and negative prediction errors. The pres-
ent findings are consistent with an initial registration 
of valence followed by that of signed prediction error to 
which different learning rates can be applied depending 
on the concurrent valence signal.

An alternative possibility is that there is a more marked 
functional separation of positive and negative prediction 
errors by anatomical structure or neurotransmitter (e.g., 
Daw et al., 2002) and that the learning processes associ-
ated with one or other sign of prediction error are simply 
less detectable at the scalp, for example, due to dipole ori-
entation. Under this account the valence signal shown in 
the present study and elsewhere may not reflect a learn-
ing signal at all, but rather result from earlier general 
processes associated with motivational events, common 
to both better and worse than expected outcomes but de-
tected at the scalp for one or other prediction error sign. 
Which prediction error sign this might be cannot be re-
liably identified by an analysis of simple effects in a 2 × 2 
domain × size design due to the likely interference of com-
ponents associated with motivational salience or unsigned 
prediction error (see Sambrook & Goslin, 2016, Figure 1). 
However, a number of studies (Foti et al., 2011; Sambrook 
& Goslin, 2016; Zheng et al., 2015) have found that scalp 
activity in the interval associated with the RewP correlates 
with parametrically varied positive but not negative pre-
diction error.

A methodological feature of this study was the char-
acterization of the waveform in terms of the relative 

evidence for each of a set of encoders of interest. The 
strength of this approach is that all expected effects and 
all expected nulls predicted by an encoder are tested for 
and contribute to the overall evidence. Bayesian rather 
than frequentist statistics were used. This was partly 
since these are capable of quantifying the evidence for 
the null but partly because they generate raw probabili-
ties rather than p-values which can then be assimilated 
into an overall evidence term by simply multiplying them 
together. Since the resulting products are very small, in-
terpretation requires them to be scaled relative to each 
other, producing relative evidence. Such relative evidence 
has some undesirable consequences. The method tacitly 
assumes only one encoder is active at a given time. If two 
encoders are simultaneously active, the evidence assigned 
to one will be down-weighted to the extent that evidence 
for another is present. Thus, an encoder that is growing 
in strength will nevertheless appear to be waning if an-
other encoder is growing in strength faster. The method 
may thus be prone to misattributing the true peak of an 
encoder based on a seemingly unwarranted comparison 
to another encoder's activity. As noted earlier however, ig-
noring the fact of component overlap and independently 
assigning peaks to encoders based on canonical effects is 
equally prone to mislocating peaks when encoders share 
those canonical effects. Because both methods are com-
promised by component overlap but are compromised in 
different ways they are best used in concert. This is exem-
plified by the comparison of Figures 3 and 4a. Figure 3, 
which implements the canonical effects method, shows 
the domain × size effect to be largely nested within the do-
main effect. This might be taken to imply a shorter value 
encoding within a longer valence encoding, and this nest-
ing was also shown in an earlier meta-analysis (Sambrook 
& Goslin, 2015) by similar means. However, since the do-
main main effect is produced in all cases by both encod-
ers, but the domain × size interaction is not always present 
(see Figure 1a,b), a shorter, nested interval would neces-
sarily be expected for the interaction and this nesting is 
thus an artifact of the method. In Figure 4a, the estimated 
latency for the peak of the value encoder lies outside that 
for the valence encoding. This also reflects an artifact of 
the method, namely that the two encodings cannot be co-
incident. In short, the canonical effects approach will tend 
to underestimate the gap between two encoders' activity 
and the relative probability approach will tend to over-
estimate it. There is evidence of this in the present data. 
The relative probability method places valence and value 
peaks at 206 ms and 328 ms while canonical effects places 
them much closer at 329 and 317 ms. Additionally, in the 
case of the valence encoder, the present study provides an 
alternative canonical effect in the form of the three-way 
interaction which should be unaffected by component 
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12 of 16  |      STEWARDSON and SAMBROOK

overlap. This positions the valence effect at an intermedi-
ate 278 ms, supporting the predicted effects of component 
overlap described above. tPCA, also potentially capable of 
resolving component overlap, positions the valence en-
coding at 245 ms and the value encoding at 302 ms, thus 
also lying between the estimates made by the methods 
prone to component overlap.

It should also be noted that while the relative proba-
bility method is prone to forcing the estimated latencies 
of encoders apart it will do this in a direction that should 
respect their true underlying ordinal sequencing. With 
respect to the current study, while the true latency of va-
lence and value encoders may be unresolved, there is clear 
evidence that valence encoding precedes value encoding. 
This informs our understanding of how these encoders in-
teract. For example, valence encoding may serve as a pre-
liminary “streaming” of feedback as has been suggested 
by Fouragnan et al. (2017), dispensing with the need for 
later value encoding. Additionally, this ordering suggests 
that valence encoding is not achieved by a dichotomiza-
tion of an earlier value encoding.

Some limitations of the study must be noted. One is 
the restriction of analysis to frontocentral electrodes and 
the absence of data from parietal sites. Reward predic-
tion errors appear to produce a separate parietal compo-
nent in the temporospatial interval associated with the 
P3 (Stewardson & Sambrook, 2020) and the effects of this 
encoder are likely felt at the frontocentral site. This will re-
sult in some mischaracterization of encoders which might 
have been resolvable with spatial information and a tem-
porospatial principal components analysis. Nevertheless, 
insofar as much research published on the RewP is based 
on analysis only of a single frontocentral electrode, this 
meta-analysis provides appropriate intervals for opera-
tionalizing components restricted to that site. Another 
potential limitation lies in the absence of any time-
frequency decomposition. For example, HajiHosseini and 
Holroyd (2015) found a valence encoding in the beta fre-
quency band in the later interval of 350–500 ms.

The meta-analysis was restricted to studies in which 
feedback was dichotomous at the level of the trial. Given 
the relative scarcity of studies that present three or more 
discrete outcomes, or provide feedback on a continuous 
scale, this was necessary to produce a sufficiently homog-
enous data set. Nevertheless, studies with dichotomized 
feedback allow for multiple interpretations. While the ev-
idence presented here is consistent with the existence of a 
valence encoding, there are other possibilities. One is that 
feedback is binarized but not around the value of zero pre-
diction error. Hajcak et al. (2006), for example, proposed 
that in a four-outcome task, the RewP classifies all but the 
best outcome as equally bad, and a number of authors 
have suggested that neutral outcomes are categorized 

with bad outcomes (Holroyd et al.,  2006; Toyomaki & 
Murohashi, 2005). Another possibility is that rather than 
valence encoding, the component observed here reflects 
error monitoring (Gehring & Willoughby,  2002) or goal 
congruency (Fromer et al., 2019). In support for the pres-
ent interpretation however, Janssen et al.  (2016) found 
strong evidence for valence encoding even when feedback 
was continuous. Nevertheless, demonstrating the same 
pattern of effects shown here using non dichotomized 
feedback would strongly support the case we have made.

5   |   CONCLUSIONS

Separating neural encoding of prediction error valence 
from prediction error value is possible in experimental 
designs that manipulate prediction error sign and size. 
However, a simple analysis (termed here a canonical ef-
fect) of whether outcomes are better or worse than ex-
pected does not isolate valence encoding because value 
encoding is also sensitive to this outcome. In contrast, a 
Bayesian analysis of specific contrasts in the design, in-
cluding those that predict a null can separate valence and 
value encodings. Additionally, gamble design, a property 
typically held constant within a given experiment be-
comes a variable over studies allowing meta-analysis to 
isolate prediction error valence encoding by means of a 
three-way interaction of domain, size, and gamble. The 
present study employs all these methods as well as tempo-
ral principal components analysis to separate valence and 
value encodings showing the former to occur somewhat 
earlier. Further analyses suggest the valence encoder is 
not preferentially sensitive to the valence of outcomes in 
the gain rather than loss domain implying it may serve a 
general-purpose role in reinforcement learning.
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Figure S1. Pearson correlation of sample size and raw 
effect size, i.e., voltage of difference waves. Raw effect 
sizes were calculated as follows: domain = gain – loss; size 
= large – small; domain × size = (large gain – large loss) – 
(small gain – small loss). Raw effect sizes were used since 
standardised effect sizes were not extractable from grand 
average waveforms in the original studies. Critical r (one-
tailed) = .28, N = 36.
Figure S2. Domain × size interaction in single domain 
gambles and mixed gambles. Interaction formulated as 
(large gain – large loss) – (small gain – small loss).
Figure S3 Unweighted t-values for canonical effects 
(counterpart to Figure 3).
Figure S4. F values for canonical effects taken from an 
omnibus three-way factorial ANOVA (counterpart of t 
values in Figure S3). Critical value of F1,34 = 4.12 (α = .05, 
one-tailed).
Figure S5. F values for canonical effects taken from an 
omnibus four-way factorial ANOVA (Figure  S4 plus site 
factor). Only significant effects involving the site term are 
shown. Critical value of F1,25 = 4.24 (α = .05, one-tailed).
Figure S6. Relative probability of each encoder with 
motivational salience excluded.
Figure S7. Gain-specific valence encoding in the reward 
positivity as shown by increased amplitude of the reward 
positivity (better outcome - worse outcome) in gain 

domain than loss domain. Lines show averages weighted 
by study sample size, shading indicates two weighted 
standard errors of the mean. Only single domain gamble 
experiments used (N = 16).
Figure S8. Gain-specific valence encoding in the reward 
positivity operationalised as the amplitude difference of the 
reward for gain and loss domains, i.e. (better gain outcome 
– worse gain outcome) – (better loss outcome – worse loss 
outcome). This is shown separately for experiments where 
domain is blocked (N = 9) and unblocked (N = 7). Lines 
show averages weighted by study sample size, shading 
indicates two weighted standard errors of the mean.
Figure S9. Size effect (large – small), indexing motivational 
salience, in experiments using concrete (N  =  9) and 
abstract (N  =  7) stimuli. Lines show averages weighted 
by study sample size, shading indicates two weighted 
standard errors of the mean.
Data S1. Supplementary data
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