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Abstract. Severe stages of diabetes can eventually lead to an eye condi-
tion called diabetic retinopathy. It is one of the leading causes of tempo-
rary visual disability and permanent blindness. There is no cure for this
disease other than a proper treatment in the early stages. Five stages
of diabetic retinopathy are discussed in this paper that need to be de-
tected followed by a proper treatment. Transfer learning is used to detect
the grades of diabetic retinopathy in eye fundus images, without training
from scratch. The Kaggle EyePACS dataset is one of the largest datasets
available publicly for experimentation. In our work, an extensive study
on the Kaggle EyePACS dataset is carried out using pre-trained models
ResNet50 and DenseNet121. The Aptos dataset is also used in compar-
ison with this dataset to examine the performance of the pre-trained
models. Different experiments are performed to analyze the images from
the different classes in the Kaggle EyePACS dataset. This dataset has
significant challenges including image noise, imbalanced classes, and fault
annotations. Our work highlights potential problems within the dataset
and the conflicts between the classes. A clustering technique is used to
get informative images from the normal class to improve the model’s
accuracy to 70%.
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1 Introduction

Diabetic retinopathy (DR) is an eye complication that can be developed in dia-
betes, as high blood sugar levels in diabetes damage the eye’s retina with time.
There are two types of diabetes; Type 1, in which the body does not produce
insulin, and Type 2, in which the body produces insulin but does not know how
to use it [1]. DR is one of the primary causes of the rise in blindness globally.
According to the [1], 422 million adults (aged 20 to 79 years) in 2014 suffered
from Type 2 diabetes. Both Type 1 and Type 2 patients are at potential risk of
having DR. The population increased to 463 million in 2019 and was predicted
to increase to 700 million adults by 2045 [2]. In 2015, there were 2.6 million
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people that were visually disabled because of DR, and it is expected to rise to
3.2 million by 2020 [3], making DR the leading cause of preventable blindness.
The DR is reversible if proper treatment is carried out in the early stages, but
there is no permanent cure for this ailment in the later stages [4].

DR can be categorized into five stages; normal, mild, moderate, severe or non-
proliferative, and proliferative [5]. It progresses slowly through these stages with-
out proper screening and treatment. During DR, different lesions start appearing
gradually in the eye, like microaneurysms in mild DR [6], hemorrhages and ex-
udates in the moderate DR, formation of new blood vessels in non-proliferative
DR, and fragile blood vessels and scar tissues in proliferative DR [5]. These le-
sions slowly distort the retina and further harm the macula. Regular screening
and proper treatment after diagnosis are required to prevent this eye-threatening
disease [7]. Detection of small lesions is difficult in the initial stages, but it can
be very helpful in reducing the risk of severity. The other thing is the correct
diagnosis of all five stages of DR to get proper treatment [8]. Human experts
and ophthalmologists are available to manually diagnose the signs of DR, which
is time-consuming and qualitative. In recent years, much work has been done on
the automated detection of DR with the development of relevant technologies [9].

Deep Learning (DL) is an essential tool for processing medical images for
classification, object detection [10], and localization [11]. It uses Convolutional
Neural Networks (CNNs) to extract features from the images automatically and
then distinguishes between images of different classes [12]. In our work, in-depth
research on the Kaggle EyePACS dataset is performed to analyze the behavior
of the largest available DR dataset. The eye fundus images are first processed
through computer vision using different techniques to improve the quality of
images. Pre-trained models like ResNet50 and DenseNet121 are trained through
transfer learning for multiclass classification to assist human experts in diagnosis.
Aptos dataset is used in comparison with the EyePACS dataset to investigate the
performance of the developed classification models. In this paper, all experiments
are mainly carried out on the Kaggle EyePACS dataset, which has five classes of
diabetic retinopathy, as shown in Fig. 1. During classification, many challenges of
the EyePACS dataset, such as noise, incorrect labeling, and imbalanced classes,
are highlighted. However, this paper focused on the behavior of this dataset,
conflicted classes within the dataset, and the potential steps taken to train the
model and increase its performance.

Fig. 1: Images of the five classes of the Kaggle EyePACS dataset.
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2 Related Work

Convolutional neural networks get along well with images but need much time
for training [13]. Meanwhile, transfer learning was introduced to achieve better
accuracy in less time. It is used to train a previously trained model on an entirely
different problem by transferring its learning. The model does not need to be
trained from scratch; instead, it learns new data in less time and with reason-
able accuracy. GoogLeNet and AlexNet have been used for transfer learning on
the Messidor dataset [14]. They have done three experiments with two, three,
and four classes to get a test accuracy of 74.5%, 68.8%, and 57.2%, respectively.
They have also hypothesized that low accuracy in four classes is due to noise
and incorrect labeling [14]. In [8], authors have used Inception-v3 for transfer
learning. They have trained their model to do binary classification with a small
dataset and managed to get an accuracy of 90.9% with 3.94% of the loss. Incep-
tion modules are considered to extract differently sized features of input images
in one level of convolution [8]. So, Gulshan et al. have also used Inception-v3 to
train their model on binary classification. The model is trained on 0 and 1 as
one class and 2,3,4 as another class to suggest if the patient needs a referral or
not [15].

While working with the Kaggle EyePACS dataset in [5], authors have used
data preprocessing and some traditional data augmentation techniques. They
have performed two binary classifications; one with healthy (0) and sick (1,2,3,4
classes), and the second with low (0,1) and high (2,3,4 classes). For first classifica-
tion, they have 94.5% sensitivity and 90.2% specificity. For the second, they have
got 98% sensitivity and 94% specificity. For five classes, they have obtained 0.85
of Quadratic Weighted Kappa and 0.74 of F1-score on their test set. In [16], au-
thors have developed a CNN-based system of DR classification using AlexNet,
VGG16, and InceptionNet-V3. They have used the Kaggle EyePACS dataset
and mentioned the problems within this dataset. The images were handpicked
by domain experts to avoid the false labelling of the dataset and achieved a 5-fold
cross-validation with the average classification accuracy of 37.43%, 50.03% and
63.23% on AlexNet, VGG16, and InceptionNet-V3, respectively. In [17], authors
have trained and tested their model on the Kaggle EyePACS dataset. They have
achieved a relatively good accuracy of 70%, but on the skewed dataset with the
majority of images in class 0. In [18], authors have done a predictive analysis
on the Kaggle dataset using transfer learning techniques. It is relatively similar
to our work, in which we will perform an intensive analysis of the eye fundus
images from the Kaggle EyePACS dataset through different experiments using
pre-trained models.

3 Pre-trained Models

Two pre-trained models were mainly used for the majority of experiments;
ResNet50 and DenseNet121. ResNet50 was introduced with the increased net-
work depth to train more and achieve a reasonable accuracy on the images. We
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have achieved 92.1% top-5 accuracy and 3.57% top-5 error on ImageNet vali-
dation dataset. The architecture of the model is updated and combined with
two dense layers for five class classification. DenseNet121 has more depth but
slightly less accuracy than Inception-v3, which is 92.3%, and the top-5 error is
7.83% on ImageNet validation dataset. The DenseNet has dense connections be-
tween layers, fewer parameters, high accuracy, higher computational efficiency,
and memory efficiency. This network advanced the previously developed network
ResNet and improves its performance. Like the identity block of ResNet, this
network uses a ”dense block”. The architecture of the DenseNet121 model is up-
dated, where the base model is combined with the average global pooling layer
and dense layer for five class classification in our DR detection problem.

4 Dataset

The Kaggle dataset EyePACS was sponsored by the California Healthcare Foun-
dation in 2015, where they launched this competition with the support of a
data science team to introduce artificial intelligence in the detection of Diabetic
Retinopathy. The images were provided by EyePACS, which is a free platform
for retinopathy screening. It consists of 88,696 images, which includes 35,126
images that are annotated for training. Labels are given on the scale of 0-4,
which represent the grades of Diabetic Retinopathy. Label 0 shows normal class
which includes 25810 images, Label 1 shows mild symptoms of DR which in-
cludes 2443 images, Label 2 is moderate DR which includes 5292 images, Label
3 shows symptoms of severe DR and has 873 images, and finally Label 4 shows
proliferative DR with 708 images. These grades are given according to the stan-
dards of International Clinical Diabetic Retinopathy severity scale by a single
specialist. The resolution of images is variable and approximately 3000 x 2000
pixels.

The other dataset we have used is Aptos 2019 (4th Asia Pacific Tele Ophthal-
mology Society Symposium). APTOS includes 5590 images, 3662 for training and
1928 for testing (Kassani et al., 2019). A clinician has rated each image with the
same severity of diabetic retinopathy as in the EyePACS dataset. The number
of images is 1805 in the normal class, 370 in the mild class, 999 in the moder-
ate class, 193 in the severe and 295 in the proliferative class. The resolution of
images is variable.

5 Methodology

In the proposed method, the dataset EyePACS is taken from the Kaggle public
repository. This dataset contains images of different resolutions and grades in an
excel file. A desktop PC with Nvidia Tesla K80 GPU was used to train the five
classes of DR. TensorFlow was used as backend framework.

Data must be preprocessed to remove noise from the dataset and then fed into
the pre-trained model for further training. Some preprocessing techniques were
applied, which are discussed in this section. The Diabetic Retinopathy images
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were cropped to the input size of the model, which varies from model to model.
For ResNet50, we need 224 x 224 which is quite low, but for DenseNet121, we
have changed the input layer of the model to accept the images of custom size
512 x 512.

5.1 Transfer Learning details

Following are the hyper-parameter details used in these transfer learning exper-
iments.

Loss Function Several experiments have been conducted using two different
loss functions. Categorical crossentropy loss is used for multiclass classification,
but it did not perform well on our dataset due to the imbalanced nature of the
dataset or small lesions in the images. The loss function is given below:

Loss = −
n∑

i=1

yi · log(ŷi)

This loss function shows the error between the actual and the predicted output.
yi is the probability for event i, which in total equals 1. n is the number of
predictions in the output list.

Sparse Categorical Focal Loss is an extension to categorical crossentropy
with the weighting factor (1 − ŷi). γ is the focusing factor used to adjust the
rate smoothly. This focal loss works better if the dataset is imbalanced and if
there are small lesions within the classes. In this work, focal loss is used with
gamma equals to 2. The loss function is below:

Loss =

n∑
i=1

(1− ŷi)
γ · yi · log(ŷi)

Early Stopping Early stopping is used to stop training automatically based
on some metric. The metric is usually the validation accuracy or loss that needs
to be achieved for the performance evaluation of the model. When this metric
stops improving after some epochs, it waits until reaches the value of patience.
Patience is the number of epochs without any improvement in the metric. After
these epochs, it automatically terminates the training cycle. It increases the
model’s performance by avoiding overfitting and saving time. The metric used
in this work is validation accuracy and the patience value is 70.

Optimizer and Learning rate An optimizer calculates the change after each
training cycle and updates the model’s weights. It minimizes the loss value to in-
crease the accuracy. We have tested two optimizers, stochastic gradient descent
(SGD) and adam optimizer. SGD is calculated by going through all the training
examples. This optimizer did not work for our work; however, the Adam opti-
mizer works well and converges faster for our problem. It has less computation
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time and needs fewer parameters to tune. The learning rate is set to 0.001, which
is considered the best to train the model.

Model Layers In the base model, the initial layers of the model have not been
trained and frozen to fine-tune the model. Only the last few layers have been
trained to extract informative features from the images. After the base model, the
global average pooling layer is used to down-sample a patch’s features by taking
average values from the feature map. It also reduces the problem of overfitting by
learning invariant features. We have used Softmax as an activation function [19],
which is used to transform the output before calculating loss in the training cycle.
Softmax is used with a dense layer of 5 neurons, and each neuron represents each
class.

5.2 Training using Pre-trained models:

EyePACS dataset is the one with the most number of images, but it has a lot of
noise, imbalanced classes, and false annotations. We will look into the problems
of the Kaggle EyePACS dataset through the conducted experiments.

Experiment on conflict classes: This dataset has two major classes, Class 0
and Class 2, with 25810 and 5292 images, respectively. It was considered better
to train the majority classes initially and analyze the results. We resized our
input images to 224 x 224 for ResNet50 and randomly down-sampled Class 0 to
5292. The highest accuracy in the two classes was 51%, and the accuracy seemed
to be stuck at 50% in the subsequent epochs, which can be seen in Table. 1.

Table 1: Conflicting Classes

Classes Model Epochs Accuracy Class 0 Class 2

Exp 1 0 and 2 ResNet50 120 51% 0.61 0.33

0 and 2 ResNet50 200 50% 0.32 0.61

Exp 2 0 and 1 ResNet50 260 50% 0.26 0.62

0 and 1 ResNet50 280 52% 0.23 0.65

The same experiment was repeated on Class 0 and Class 1; Class 1 is the
next majority class and has 2443 images, so Class 0 was randomly down-sampled
to 2443 images. The model responded similarly to Class 0 and Class 1 as the
accuracy stuck at 51%. We can say that Class 0 (normal) conflicts with class 1
and class 2. There can be two reasons for this conflict: a mixing between these
classes with faults in the annotations, or the model is not good enough to learn
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small lesions in the initial stages of DR. If we combine conflict classes 0, 1, and
2 as one Majority class and 3 and 4 as Minority class, then it achieves good
accuracy, which can be seen in Experiment 3 of Table. 2.

Experiment on Three Classes: As illustrated in Table 2, it is noticeable that
a good accuracy is achieved in Exp 4 and 5. One class is taken from initial grades

Table 2: Experiments on three classes

Classes Model
Resolution
of images

Epochs Accuracy

Exp 3

0, 1 and 2
(Majority),
3 and 4

(Minority)

DenseNet121 224 x 224 80 99.9%

Exp 4 0, 3, and 4 DenseNet121 224 x 224 160 66%

Exp 5 1, 2, and 3 DenseNet121 224 x 224 80 63.5%

Exp 6 1, 3 and 4 DenseNet121 224 x 224 80 69%

like 0, 1, and 2, and the other class from severe classes like 3 and 4. It might
be due to visible lesions in the images. When the model is trained for minority
classes in Exp 6, it can be seen that the DenseNet121 model differentiates well
between classes 1, 3, and 4, minority classes. An accuracy of 69% is achieved in
80 epochs.

Experiment on Five classes: In Exp 7, DenseNet121 is trained to perform
multiclass classification on five classes of DR. The images are resized to a higher
resolution of 512 x 512. The accuracy achieved in five classes, with all the tradi-
tional image preprocessing techniques, is 48%. The F1-score of each class shows
the conflicting nature between classes 0, 1, and 2. In order to defend the abil-
ity of the model to learn the lesions, the Aptos dataset was taken to perform
multiclass classification on five classes. 80% percent of data was taken from each
class for training, and 20% of data was taken for testing. Images were resized
to 380 x 380. Our model successfully learned the classes in experiment 8 and
achieved a test accuracy of 93% on five classes. The images have good quality,
and it is easy to see the small lesions and difference between those classes. Even-
tually, we can hypothesize that our model is good enough to learn small lesions
and differentiate well between five classes. However, this dataset is relatively
small, so we cannot standardize this dataset to build a generalized model for
DR classification.

In experiment 9, only 700 images were taken from each class to train a Sup-
port Vector Machine (SVM). SVM is a non-parametric algorithm implemented
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Table 3: Experiments on five classes

Model Dataset Classes Accuracy F1-score

Exp 7 DenseNet121
EyePACS
dataset

5 48%

Class 0 (0.31)
Class 1 (0.48)
Class 2 (0.29)
Class 3 (0.56)
Class 4 (0.68)

Exp 8 DenseNet121
Aptos
dataset

5 93%

Class 0: 1.00,
Class 1: 0.94,
Class 2: 0.84,
Class 3: 0.95,
Class 4: 0.92

Exp 9
Support vector

machines
EyePACS
dataset

5 52.57%

Class 0: 0.35,
Class 1: 0.35,
Class 2: 0.36,
Class 3: 0.79,
Class 4: 0.79

to give the upper estimation of the model’s accuracy. The F1-score of the 0, 1,
and 2 classes is low, confirming the conflict between these three classes, and our
highest accuracy is 52.57%. The five-class classification accuracy is higher on
SVM than on neural networks. The results of these experiments can be seen in
Table 3.

6 Discussion

In this section, the challenges in the Kaggle EyePACS datasets are highlighted
and discussed. It has a lot of noise and wrong labeling; however, it is the most
used dataset due to its large size. Different image preprocessing techniques have
been used to improve noise and increase the quality of images. Data augmenta-
tion is implemented during training time to balance the classes of this dataset.
Although, the accuracy did not improve as expected. Two pre-trained models,
ResNet50 and DenseNet121, were chosen because of their valuable contributions
in the medical field to perform multiclass classification. During the training, it
was noticed that the model successfully recognized mild classes (0, 1, and 2)
from severe classes (3 and 4). However, it did not perform well in differentiating
the mild classes (0, 1, and 2) because of the negligible difference between those
images. Moreover, class 0 is the shared class that conflicts with both class 1 and
class 2, which is why the accuracy got stuck at 50% for these classes. Class 0 is
the normal grade class, which holds 70% of the images from the training dataset.
So, it can be considered that class 0 has a higher chance of having junk data
that requires to be separated.
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We have also applied a k-means clustering on class 0 to distribute it into 3
clusters. The purpose of clustering is to separate the informative images from
the junk images into one cluster. Each cluster is then investigated with the rest
of the classes to see if there is any one cluster that improves the accuracy of
the model. After the K-means clustering, the pre-trained model DenseNet121 is
used to extract features from all the images of class 0 divided into three clusters.
These three clusters are considered as class 0 and then trained one by one with
other classes 1, 2, 3, and 4. 10-fold cross-validation is performed to estimate the
model on small training data better.

Fig. 2: Images from three different clusters.

The model’s accuracy increases to 70% on five-class classification when trained
on 180 epochs. Our model successfully detects the mild stages of DR, especially
class 1 with the small lesion (microaneurysms) of diabetic retinopathy with an
F1-score of 0.67. In addition, the detection for the severe stages of DR is also
improved with a comparatively better F1-score. The accuracy on the other two
clusters is relatively low, which is 42%.

In Fig. 2, we can see some random images from the three clusters 1, 2, and
3. Our model performed well on cluster 2 with 70% accuracy on five classes. It
can be seen in Table 4 that the model did well in classifying the four severity
classes (1, 2, 3, and 4).

7 Conclusion and Future Work

In this paper, we have done a detailed predictive analysis of the Kaggle Eye-
PACS dataset. This dataset is important because it is the largest publicly avail-
able dataset with five classes. However, this dataset has many challenges like
poor quality, imbalanced classes, and incorrect labeling. In our analysis, we have
highlighted the drawbacks of this dataset through different experiments using
transfer learning. ResNet50 and DenseNet121 were used as the deep learning
models to perform five-class classification. The dataset has three conflict classes,
considered to be incorrect-labeled or confused classes; normal, mild, and moder-
ate classes with very few initial symptoms, which is why it is hard to distinguish
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Table 4: K-means clustering on Class 0

Cluster Classes Accuracy Model Epochs F1-score

Exp 10 Cluster 1 5 42% DenseNet121 180

Class 0: 0.01,
Class 1: 0.46,
Class 2: 0.22,
Class 3: 0.44,
Class 4: 0.62

Cluster 2 5 70% DenseNet121 180

Class 0: 0.13,
Class 1: 0.67,
Class 2: 0.73,
Class 3: 0.85,
Class 4: 0.88

Cluster 3 5 42% DenseNet121 180

Class 0: 0.07,
Class 1: 0.48,
Class 2: 0.31,
Class 3: 0.41,
Class 4: 0.57

between them. The Aptos dataset is also used to perform multiclass classifica-
tion and compared to the EyePACS dataset. However, this dataset is small and
insufficient to build a generalized model for DR classification. In future work, it
is essential to generate new images for the stages of DR to make a new large
dataset that will be good enough to be utilized in real life to help experts in
diagnosing Diabetic Retinopathy.
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