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ABSTRACT

In this paper we have tackled the prot °m o "long-term air temperature prediction
with eXplainable Artificial Intellige”.cc Xa1) models. Specifically, we have evaluated
the performance of an Artificial Ne vral M etwork (ANN) architecture with sigmoidal
neurons in the hidden layer, tra. - =d by means of an evolutionary algorithm (Evolu-
tionary ANNs, EANNS). Thic .. * [ 1. odel architecture (XAI-EANN) has been applied
to the long-term air tempe. ‘ure j rediction at different sub-regions of the South of
the Iberian Peninsula. In this . se, the average August air temperature has been
predicted from ERAS ™-analysis data variables, obtaining good predictions skills
and explainable mod ‘ls «n =rms of the input climatological variables considered. A
cluster analysis h~. bec.. arst carried out in terms of the average air temperature in
the zone, in <.’ a v.~v that a number of sub-regions with different air temperature
behaviour ' ave I 2en defined. The proposed XAI-EANN model architecture has been
applied to eac” of the defined sub-regions, in order to find significant differences
among ‘hem, which can be explained with the XAI-EANN models obtained. Finally,
a comnreh. "sive comparison against some state-of-the-art techniques has also been
carri:d su° concluding that there are statistically significant differences in terms of
acrura. v i i favour of the proposed X AI-EANN model, which also benefits from being
=n Xr." model.

1. Introduction

Accurate long-term air te’ aperature prediction is of undoubted interest (Nita et al., 2022), with different

important applications in climate (Jacobs et al., 2013; You et al., 2013), energy (Bertini et al., 2010;

Dombayc1 and Golcii, 2009), agriculture (Peng et al., 2017; Smith et al., 2006, 2009) or public medicine

(Williams et al., 2012; Xu et al., 2014), among others. Specifically, the long-term prediction of extreme
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temperatures in summer is important, since it is related to an increase of deaths due to heat stroke, specially
during heat-waves episodes (Khan et al., 2019; Diaz et al., 2002a,b). Also, one of the effects of climate
change is warmer summers (Khan et al., 2019; Pefia-Ortiz et al., 2015), which can be further studied by
predicting average summer months air temperature at a long-term basis.

Different methods can be applied to predict long-term air temperature. In general, the methods presented
in the literature for air temperature prediction can be divided into two categories: (1) weather-based, which
relies on the study of physical phenomena to build a model (for instance, Numerical Weather Models,
NWDMs) (Kendzierski et al., 2018); and (2) time series-based, where both ¢. tistical (Ye et al., 2013; Chen and
Hwang, 2000) or Artificial Intelligence/Machine Learning (AI/ML) n <tho Is are used to analyse historical
temperature data series (Chevalier et al., 2011; Cifuentes et al., 2120; Salcedo-Sanz et al., 2020, 2022b).
There are also hybrid approaches mixing NWMs with ML r._*hod's such as in Ortiz-Garcia et al. (2012).
NWDMs have good prediction skills, specially on short-term preiction they are the state-of-the-art, without
any doubt (Navascués et al., 2013). However, note that v ‘h~.n “he prediction time horizon is long-term, such as
in monthly or seasonal air temperature predictior, . . rical models may have much worse prediction skills,
and ML approaches are meaningful, since they a, able to exploit information in variables which numerical
models are not able to process. Particularlv. . -tificial Neural Networks (ANNSs) offer a highly compelling
alternative in problems related to long-ter n prediction of air temperature, due to their ability to handle
non-linear complex problems provicing 2 robust solution and easy implementation. For example, different
types of ANNs have been successfu.'v applied to different temperature prediction scenarios and countries. In
Chithra et al. (2015), ANNs "re o plied to a problem of monthly mean maximum and minimum temperature
in Chaliyar river basin, Indi. The objective is to evaluate the impact of climate change in the accuracy of
ANNS for long-term temperature prediction. In Ustaoglu et al. (2008), three different types of ANNs were
applied to a problem of daily mean, maximum and minimum temperature time series in Turkey. In Abdel-Aal
and Elhadidy (1995), different ANNs were applied to a problem of daily maximum temperature prediction
in Dhahran, Saudi Arabia. Data from 18 weather parameters were considered as input variables, and the
objective was to predict the maximum temperature on a given day, with different prediction time-horizons
up to 3 days in advance. In De and Debnath (2009), a Multi-Layer Perceptron (MLP) is applied to the
prediction of the maximum air temperature in the summer monsoon season in India. The mean temperature

of previous months in the period of analysis is considered as input for the system.
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Other ML approaches have also been applied to long-term prediction of air temperature. For example,
in Paniagua-Tineo et al. (2011), a Support Vector Regression (SVR) algorithm was applied to a problem of
daily maximum air temperature prediction, with a 24h prediction time-horizon. Input variables including
previous 24h air temperature, precipitation, relative humidity, air pressure and synoptic situation were
considered. Results in different European measurement stations were reported. In Mellit et al. (2013), a least
squares SVR algorithm is applied to the prediction of time series temperature in Saudi Arabia. In Ahmed
et al. (2020), different ML approaches are proposed to develop multi-model ensembles from global climate
models. The objective is to obtain annual prediction of monsoon max . um and minimum temperature,
among other variables, over Pakistan. In Peng et al. (2020), two ML al rorit ims (MLP and Natural Gradient
Boosting, NGBoost) are applied to improve the prediction skille of tie 2-m maximum air temperature,
with a prediction time-horizon with lead times from 1 to 35 <.s. 'n Oettli et al. (2022), a number of ML
algorithms including ANNS, support vector machines, random . rests, gradient boosting or regression trees
are applied to the prediction of surface air temperature t vc mdnths in advance, with input data two months in
advance from SINTEX-F2, a dynamical predictic.. -vs.om. Results in data from Tokyo (Japan) confirmed the
good skill of the prediction. Recently, Deep Lea. ing (DL) algorithms have also been successfully applied
to air temperature prediction problems, e.g. .“arevan and Suykens (2020), where a type of Long Short-
Term Memory (LSTM) network (Transduc ivr, LSTM) is applied to a problem of temperature prediction in
Belgium and the Netherlands.

In the last few years, eXplainau.~ Artificial Intelligence (XAI) (Arrieta et al., 2020) has been acknowl-
edged as a crucial feature 0. A. or ML algorithms, when applied to Science and Engineering problems.
XALI is based on the fact th.*, when developing a ML model to solve a given problem, the consideration
of interpretability is an extremely important additional design driver, specially in some fields in which the
physics of the problem plays a principal role (Tuia et al., 2021). This leads to the development of ML models
in which the interpretation of the system is a primary objective, in such a way that the models provide
either an understanding of the model mechanisms, or the reason why some predictions are obtained (Arrieta
et al., 2020; Tuia et al., 2021). In response to this need, XAl has recently been applied to many different
fields of atmospheric and climate science (Mamalakis et al., 2022b; Kolevatova et al., 2021; Mamalakis
et al., 2022a; Mayer and Barnes, 2021), including problems related to long-term temperature and drought

prediction (Dikshit and Pradhan, 2021; Labe and Barnes, 2022).
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Following this trend, in this paper we consider a problem of long-term air temperature prediction with
XAl techniques. Specifically, we consider the problem of predicting the mean summer temperature of August
from reanalysis predictive variables in the previous month, by applying XAl Evolutionary Artificial Neural
Networks (XAI-EANNSs). We propose the use of an ANN with sigmoidal units as the basis functions in the
hidden layer. The structure of the ANN is optimised by means of evolutionary computation, which facilitates
its dynamic adaptation to the problem addressed and has been demonstrated to be accurate and efficient in
other prediction studies. We show that this kind of XAI method is able to produce excellent prediction results,
with explainable models, which can be interpreted in terms of the input va .~bles considered. We show a case
of application in the Iberian Peninsula, where there have been extren.=ly I ot summers in the last decades,
related to extreme events due to climate change. A first clusterin ste) is applied, in such a way that we
divide the Southern part of the Iberian Peninsula into different .b-. ~gions, each with special characteristics
in terms of air temperature due to the orography and sea clo.=ness. We show how the considered XAl
techniques are able to accurately estimate the average te.njerature of August in the different sub-regions
considered. A comparison with alternative ML t- I 1, es (non-XAl) is carried out to show the accuracy of
the proposed method. In addition, the interpreta.. m of the XAl models obtained in each sub-region allows
a better understanding of the physical process.~ controlling the air temperature in the zone, which is key in
alternative problems related to detection of 'xt:eme events related to temperature, and also in climate change
attribution problems.

The rest of the paper is structurc.! in the following way: next section presents the computational methods
considered, including a hiers cch, ~al clustering to divide the zone under study into different sub-regions and
the XAI-EANNSs considerea. Section 3 presents the experimental setting and evaluation metric of the paper.
Section 4 shows and discusses the results obtained by applying the XAI techniques in the case study of
the Iberian Peninsula. Finally, Section 5 closes the paper by giving some conclusions and remarks on the

research carried out.

2. Methods: clustering analysis and XAI-EANN techniques

In this section, the hierarchical clustering applied to the zone under study prior to the prediction task is

described. In addition, the architecture of the ANN model considered in this study is detailed, as well as the
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evolutionary algorithm used for optimising the ANN models. The whole proposed methodology, which is

detailed in the following subsections, is graphically summarised in the flowchart of Figure 1.

ERAS5 Reanalysis data

HEAE TSI 480 reanalysis nodes:

Southern part of the Iberian Peninsula (Figure 3): * Spatial resolution: 0.25°.
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Figure 1: Flowchart of the proposed approach for one month in advance prediction of air temperature.

2.1. Hierarchical clustering

As it was aforementioned, the first step of the methodology proposed in this work is the use of a clustering
technique (Saxena et al., 2017). By means of this task, similar data is organised into related or homogeneous
groups without considering specific knowledge of the group definitions. Clustering is usually a preprocessing
task prior to other data mining techniques, such as prediction (Guijo-Rubio et al., 2020a). Thus, in this work,
a clustering analysis is performed on the area under study to identify those zones or sub-regions with similar

behaviour in air temperature. Hence, obtaining robust sub-regions or clusters is of great importance, as the
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subsequent task is to accurately predict the air temperature for a given cluster. It is well known that closer
locations may have similar weather conditions, unless there is a significant geographical feature, such as a
valley in a mountainous area, or, conversely, a mountain range in a valley area. In this way, the prediction
for a specific zone will be far more accurate than using a global prediction model, which is not capable of
exploiting the different behaviours that exist in the whole zone. For instance, the atmospheric conditions in
coastal areas are often very different from those in inland areas. Moreover, it is common for some areas to
suffer the same, or at least similar, effects that other areas have previously suffered. This relationship does
not necessarily have to be due to their geographical proximity, but may b. Hue to their similarity in weather
conditions. Concretely, this work deals with one month in advance prd dicti )n of air temperature, therefore,
sub-regions are identified according to the similarity in air temperat.'re a) d without considering geographical
localisation.

Among the most widely used clustering techniques, the na. ‘tional clustering (Kutbay et al., 2018) and
the hierarchical clustering (Kaufman and Rousseeuw, 2(0Z) stand out, mainly due to the wide variety of
applications to which they have been successfv’., ap,lied. Regarding the partitional clustering, the most
common algorithms are k-means (Niennattraku' and Ratanamahatana, 2007) or k-medoids (Hautamaki
et al., 2008; Vuori and Laaksonen, 2002). G. the other hand, the hierarchical clustering is based on an
agglomerative or a divisive algorithm.

As this work considers the use o™ X.* [ techniques, the hierarchical clustering based on an agglomerative
algorithm is chosen over the other . nproaches for the following reasons: (1) as opposite to the partitional
clustering, it is deterministic 1.e. ‘here is not any random initialisation nor any stochastic step; (2) results are
typically represented using o« lendrogram, which is a tree diagram showing the arrangement of the obtained
clusters, being this a key point, as it facilitates the choice of the optimal number of clusters for the problem
under consideration; (3) the simplicity of this technique is one of its strengths, which makes it very attractive
to experts for analysing, using the dendrogram, the way the clusters are made up; and finally, (4) although
in some cases the time complexity could be greater than desired, it does not become a drawback, as some
preprocessing is carried out to extract information-rich features from the data, significantly reducing the
original data.

As mentioned, these clustering techniques may be time intensive when the dimensionality of the data is

huge. In this sense, instead of applying the hierarchical clustering straightforwardly to the original data, the
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well-known 22 CAnonical Time-series CHaracteristics technique (catch22) (Lubba et al., 2019) is previously
applied as a preprocessing step to reduce the data dimensionality. Specifically, this technique obtains a
reduced set of 22 features, which are able to exhibit strong performance and being minimally redundant.

The set of features obtained as a result of applying the catch22 technique is diverse, including linear and
non-linear autocorrelation, value distributions and outliers, successive differences, fluctuation analysis and
other simple temporal statistics. A detailed list of all these 22 features can be found in (Lubba et al., 2019). In
addition to such 22 features, 3 more are considered: the variance (measure of the dispersion of the data), the
skewness coefficient (measure of the asymmetry of the probability distrit,.tion) and the kurtosis coefficient
(measure of the tailedness of the probability distribution). The reason ‘or a lding these three features to the
previous ones is that they also provide useful information. Therefor ». the original air temperature time series
are transformed into information-rich features vectors of lengt*. 25, _*gnificantly reducing the dimensionality
of the original air temperature time series while avoiding the 1. wmation loss.

Note that the catch22 is applied only to the training sf., ¢ s it is the one used for the clustering stage, and
that the test set is not considered in this clusterir ¢ “ta.>. to avoid including bias in the posterior prediction
task.

After applying the catch22 technique, the ~ierarchical clustering procedure based on an agglomerative
algorithm is carried out. This technique re urs different cluster assignments depending on the number of
clusters chosen. Hence, this decisica 1. not only made according to the dendrogram, but also considering
expert knowledge in the field and .“e objective of maximising the difference in air temperature between

clusters, 1. e. to minimise the inu “-cluster distance and maximise the inter-cluster distance.

2.2. XAI-EANNs

Once the clustering procedure has been conducted, the second step of the proposed methodology
concerns the prediction task, which is performed on each of the clusters (sub-regions) previously obtained.
For this purpose, XAI-EANNSs are considered, which are described next.

ANNSs (Bishop, 1995) are non-linear models which use basis functions to apply non-linear transforma-
tions to input data. Given their features and flexibility, they have been extensively used in a large variety
of classification and regression problems, obtaining excellent performance. Multilayer Perceptron (MLP)
(Bishop, 1995) can be considered the most widely used model of feed-forward ANN, and its fully connected

architecture consists of one input layer, one or more hidden layers and one output layer.
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As mentioned above, this work considers the problem of predicting the mean air temperature of August

one month in advance, which is defined as follows:

D={(xi,yi);i=1,2,...,N}, (1)

where D is the dataset corresponding to the cluster being analysed, x; is the vector of size d that contains
the input variables, y; is the mean air temperature of August, and N st: nds for the number of instances in
the dataset. Given that the variables related to the air temperature of t’«¢ . >maining clusters are considered
as inputs, the size of x;, i.e. d, will depend on the number of cluste s 1. sulting of the clustering analysis.

In this way, an ANN regression model is used to address the , oblem under study. Specifically, the input
layer of the model has d neurons (one for each input variable), ‘vhe eas the output layer has one linear neuron
to predict the mean air temperature of August. Therefor., and without considering the hidden neurons, the

output of the model is formulated as follows:

FOW,B) =By + ) BB(x. W)). 2)
j=1

where B (X, W ;) represents each ba. s function (hidden neuron) that performs the non-linear transformations
on the input vector x* = (x,x, ....x,), being d the size of the vector; BT = (B, B, Bas ..., B,,) are the
weights of the connectiors fi xm b .dden layer to output layer, including 3, as bias; WJT = (Wjg, Wjps - Wjg)
are the weights of the conneci ons from input layer to hidden layer, being w;, the bias; and m is the number
of hidden neurons.

With respect to the hidden neurons, Sigmoidal Unit (SU) (Lippmann, 1989) is considered as the basis
function. SUs represent an additive projection model and can accurately approximate any given continuous
function. In fact, they have obtained excellent results when addressing regression problems (Guijo-Rubio
et al., 2020b; Gémez-Orellana et al., 2022). Following the notation described in Equation (2), SU basis

functions are defined as follows:
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1

d
—(wjo+2,-=1 wjixi)

Bj(x7 Wj) = s .] = 1’ ey m, (3)

1+e

where w;, stands for the bias.
In consequence, the architecture of the Artificial Neural Network regression model defined for this work

is represented in Figure 2.

bias

384

—
Input layer Hidden layer Output layer

Input SU Linear
variabl : neuron neuron

r ‘gure 2: Architecture of the ANN regression model.

The training of ANNs is a complex task due to their convoluted error surface (Yao, 1999), with gradient-
based optimisation algorithms being the most commonly ones used for this task. However, these types
of algorithms are often trapped at local minima. Moreover, most of them use a fixed structure defined
in advance, but it is difficult to know in advance which is the most appropriate structure to tackle a
particular problem, so the optimisation of the architecture is usually based on trial and error. As alternative,
Evolutionary Algorithms (EAs) represent a valuable technique to train ANNs (Ser et al., 2019), not requiring

a fixed architecture. Furthermore, they conduct a global optimisation with the objective of performing a
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more efficient exploration of the search space, trying to escape from local minima, which enables the EA to
discover better performance solutions.
Therefore, an EA is used in this work to optimise both the structure (number of hidden neurons and

connections) and the synaptic weights of the ANN regression model represented in Figure 2.

2.2.1. Evolutionary Algorithms

EAs are search and optimisation metaheuristics that mimic biological evolution to address real-world
problems resolution. Specifically, they apply distinct nature-inspired mechanisms to individuals (population)
to simulate the evolutionary process (i.e. search space exploration). A fitn.<s function enables the EA to
evaluate the performance of the individuals, guiding their optimic~ti.~ chroughout the evolution. Since
the evolutionary process is based on randomly generated decisions, ~aich are used by the mechanisms to
optimise the population, the evolved individual that achieves the « est fitness (final solution found) will vary
according to randomness.

The pseudocode of the EA used in this study is det xii. 1i7. Algorithm 1, which was presented in Martinez-

Estudillo et al. (2008).

Algorithm 1 Evolutionary Algorithm
generate the individuals: initial random porila.’on of ANNs with the structure defined in Equation (2).

repeat
compute the fitness of the individv ...

sort the individuals by their fitness
replace the worst 10% of the poy "lation by a copy of the best 10%
mutate the population:
parametrically to the best *“%
structurally to the remai1 ‘ng * 0%
until stopping criterion is j.. "filled
return the best fitness indivi- ual

Firstly, the EA begins by randomly generating the individuals (initial population of ANNs). Next, the
individuals are optimised by the evolutionary process, which is iterative and involves applying the following
steps: fitness calculation to sort the individuals, replacement of the worst 10% of the individuals by a copy of
the best 10% of them, and mutation of the individuals (parametrically and structurally). Once the stopping
criterion is fulfilled, the evolutionary process finishes and the individual that achieves the best fitness is
selected and returned as the final solution found. The crossover operator is not used because it might be

inefficient when optimising ANNSs (Yao and Liu, 1997).
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As detailed in Algorithm 1, the population of ANNs is mutated in two different ways, which are explained
below. The parametric mutation modifies the synaptic weights of the connections of each individual, and it
is applied by means of Gaussian noise whose variance is gradually lessened as the evolution advances.
Conversely, the objective of the structural mutation is to optimise the structure of each individual (i.e.
its number of both connections and hidden neurons) by means of the following sorts of mutations: add
connection, delete connection, add neuron, delete neuron and neuron fusion. Thus, the structural mutation
enables the EA to avoid being trapped in possible local optima and to maintain a diverse ANN population. In
addition, both the add connection and the delete connection mutations (w..>n applied to connections linking
the input and hidden layers) can be considered as a kind of feature s\ lecti »n, favouring simpler and more
explainable models.

The performance of the individuals is evaluated using the M. ~n " quared Error (MSE), defined as follows:

N

1 A 2
MSE:FE(yi—yi) : C))

where p; is the estimated value of the mcon air temperature of August, in this case, it is equivalent to
f(x;,w,3), which stands for the neural ‘e*w -k output defined in Equation (2), and N is the number of
instances in dataset as described in E~natic 1 (1).

Since the EA maximises the p~rto.mance of the individuals throughout the evolution, the fitness function

used to evaluate them is exprecsel =, a decreasing transformation of the MSE into the range [0, 1]:

1

A= ———.
1+ MSE ®)

Thus, the individuals are optimised by minimising their MSE (i.e. maximising their fitness).

3. Experimental settings and evaluation

This section outlines the experimental design used for conducting the hierarchical clustering and for
training and evaluating the performance of the proposed XAI-EANNSs, in addition to the main state-of-the-art

regression approaches considered for comparison purposes.
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Table 1
Reanalysis variables from the ERA5 Reanalysis model used in this study.

Acronym  Variable description Units
s Volumetric soil water layer 1 [m3 - m~3]
p Mean sea level pressure [Pa]
v v-wind component [m/s]
u u-wind component [m/s]
t Air temperature [Celsius]

3.1. Train and test datasets based on ERAS reanalysis data

As mentioned, this study is focused on predicting the average air te~.. eraure of August in the Southern
part of the Iberian Peninsula. For this, monthly averaged outputs fror. .e ZK A5 Reanalysis model (Hersbach
et al., 2020) are considered, covering the period from 1950 to “021, .e. a total of 72 years. Concretely, 4
reanalysis variables related to the air temperature are identif ~d: ti e volumetric soil water layer 1, the mean
sea level pressure, and the u and v components of the wird. "’hese reanalysis variables are selected as inputs
given they present a great representation of the air tem pexr..ce. In addition to these 4 reanalysis variables, the
air temperature is also considered, which is the variable to be predicted. The description of the 5 reanalysis
variables as well as their acronyms and me.sure unis is detailed in Table 1.

Regarding the area of study, it lies v (tr.~ *ne latitude range from 36.00°N to 38.75°N and longitude
range from 9.50°W to 0.25°E, which co. esponds with the Southern part of the Iberian Peninsula. This
area is represented in Figure 3 by piotting the geographical points corresponding to the location of each of
the reanalysis nodes considerea. As can be checked, the spatial resolution of the reanalysis data is 0.25°.
Note that each reanalysi_ nc 'e i'icludes the data of the 5 reanalysis variables detailed in Table 1, which
describe each of geographics, points of the zone under study. However, from the whole set of reanalysis
nodes (or geographical points), those located on land-surface are selected, given that the goal of this work
is to study the air temperature prediction on land-surface. Therefore, from the original set of 480 reanalysis
nodes considered, 270 are kept.

To build the train and test datasets, the data (i.e. the time series of each of the 5 reanalysis variables
included in each of the 270 reanalysis nodes) is split in such a way that the first 80% of the samples, i.e.
monthly averaged data from the first 57 years, 1950 to 2006, belongs to the train dataset, whereas the

remaining 20% of the samples, i.e. monthly averaged data from the last 15 years, 2007 to 2021, belongs
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Figure 3: Geographical points considere.' from the Southern part of the Iberian Peninsula.

to the test dataset. Hence, given that the (2rip ..al resolution of the data is monthly, the number of patterns
(monthly averaged measurements) foi ~ach uf the reanalysis variables considered is 684 and 180 for the train
and the test datasets, respectively.

Once the train and test da*_.~=ts _.ce built, the clustering stage is performed (as described in Section 2.1),
resulting in k train and & te.* aa.usets (where k is the number of clusters), i.e. the Southern part of the Iberian
Peninsula is divided into k c.usters (sub-regions) to individually perform the prediction task in each of them.
Specifically, each of the k train and each of the k test datasets includes the mean temperature in August
(the variable to be predicted) and three AutoRegressive parts, AR(p), which are described next: the first one
considers the 5 variables included in Table 1 with order p = 1 (i.e. the previous month of the same year,
July); the second one considers the air temperature with order p = 12 (i.e. the air temperature in August of
last year); and the third one considers the air temperature of the centroids of the remaining clusters (not that
of itself) with order p = 1 (i.e. the air temperature of the previous month of the same year, July), hence,

k — 1 variables are obtained from this third AR model, being k the number of clusters. Therefore, to perform
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Table 2
Variables description for the prediction task.

AR model Acronym Variable description Units

t Air temperature in July [Celsius]
s Volumetric soil water layer 1 in July [m3 - m™]
First p Mean sea level pressure in July [Pa]

v v-wind component in July [m/s]

u u-wind component in July [m/s]
Inputs Second la_, Air temperature in August of last year [Celsius]
I, Cluster's 1 centroid air temperature in July  [Celsius]
e, Cluster’s 2 centroid air tempere*ire in July  [Celsius]
Third e, Cluster’s 3 centroid air tempe~=*urc in July  [Celsius]
te Cluster's --- centroid air tem, erati re in July [Celsius]
e, Cluster’s k centroid air te.np rature in July  [Celsius]
Output - t, Air temperature in Au~ust [Celsius]

the prediction task, each of the k train and each of the k tec da.~sets is composed of a total of 6 + k — 1
input variables, and the air temperature in August as tl.> ou put. Table 2 summarises the description of the
variables considered for the prediction task. In “ais sens2, we have chosen some of the most representative
predictive variables for long-term temperature pre..’ ~tion (obtained from ERAS5 Reanalysis) previously used
in different related works (Cifuentes et al.. 220, plus those describing the temperature of the clusters. Note

that the centroid is the most representr... ¢ p sint of the cluster, and it is chosen as the closest geographical

point to the virtual centre of the clu ter (.1e mean of all the points).

3.2. Model training

For the optimisation. 0. the VAI-EANNS proposed in this work, Table 3 shows the considered values for
the most important parame!_.s of the EA.

In order to provide a fair comparison, besides XAI-EANNS, the following state-of-the-art techniques
are also considered: Linear Regression (LinearReg) (Bishop, 2006), Ridge Regression (RidgeReg) (Bishop,
2006), Lasso Regression (LassoReg) (Friedman et al., 2010), ElasticNet (Zou and Hastie, 2005), Support
Vector Regressor (SVR) (Vapnik, 2013), MultiLayer Perceptron (MLP) (Bishop, 1995), Random Forest
(Breiman, 2001) and eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016). As can be seen,

a variety of techniques have been selected, including simple linear regressors and complex ML techniques.
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Table 3

Considered values for the most important parameters of the Evolutionary Algorithm.

Parameter description Value
Maximum number of generations (stopping criterion) 1000
Population size of ANNs 1000
Number of hidden neurons (population initialisation) [1,3]
Maximum number of hidden neurons (evolutionary process) 4

Weights for connections between input and hidden layers (initialisation & mutation) [-1,1]
Weights for connections between hidden and output layers (initialisation & mutation)  [-5,5]

Number of hidden neurons to add or delete (mutation)
Number of connections to add or delete (mutation)

Input variables scale
Output variable scale

[1,4]
[1,7]
[0.1,0.9]
[~10, 10]

Table 4

Considered range of values for tuning the parameters of the state-c:-the-art techniques.

Technique Parameter description Range of values

RidgeReg Regularisation {1073,1072,...,10%}

LassoRe Regularisation {1073,1072, ..., 103}

€ Maximum number of iterations [1000, 2000, 3000, 4000, 5000]

Regularisation {1073,1072,...,10%}

ElasticNet Maximum number of iterations [1000, 2000, 3000, 4000, 5000]
Ratio of the L1 penalisation *veight [0.10,0.50,0.70,0.90, 0.95,0.99, 1.00]

SVR Kernel width {1073,1072, ..., 103}
Number of hidden neuror= [10,25, 50, 100]

MLP Regularisation {1073,1072, ..., 103}

Random Forest

XGBoost

Initial learning rate
Number of iteraticns

Number of trees .~ thr forest
Maximum deptn f the trees

Maximu' ~ de th ¢ the trees: when all leaves are pure or

contain less “han samples than the minimum

Number of gradient boosted trees
Maximum depth of the trees
Learning rate

Subsample ratio of the training instances for the tree booster

[1073,1074,1073]
[1000, 1500]

[100, 500, 1000]
(3,4,5,6]

[2,5]

[100, 500, 1000]
[4,6,8]
[0.1,0.3,0.5,0.7]
[0.5,0.75,1.00]

The first five techniques are deterministic, thus, they are run once, whereas the remaining three techniques

are non-deterministic, and, hence, they are run 40 times.

The parameter values of these techniques are tuned using a 10-fold cross-validation scheme over the

training set, selecting the best value for each parameter (the one that achieves the lowest MSE) from the

range of values shown in Table 4. Note that the LinearReg technique has no parameters to tune.
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In addition to these state-of-the-art techniques, two models are also considered, namely Persistence
(Salcedo-Sanz et al., 2022a) and Climatology. Both of them are highly used as baseline methods, as they are
simple models achieving, generally, good solutions. The Persistence model predicts the current value to be
equal to the previous observed value. On the other hand, the Climatology model predicts the current value

to be equal to the average of all the previous observed values available.

3.3. Model evaluation
Two different metrics are used to analyse the performance of the models, the Anomaly Correlation
Coefficient (ACC) and the Mean Squared Error (MSE, see Equation (4)*. The ACC measures the correlation

between anomalies of predictions and observed values with the refezcace values. It is defined as follows:

1 N A~
~ Zi=1 \YVi = C) Vi~
ACC = v Zim ) ) . (-1 - ACC<1), 6)

\/% Efil ()A}i - ci)2 : % Z,JL (yi - Ci)

where c¢; is the value of the reference model.

Specifically, two reference models have been :onsidered, as they represent different objectives: the
Persistence and the Climatology. Therefric the ACC results are calculated separately depending on the
reference model used. High correlat'on.> vetween forecasts and observations may be due to seasonal
variations. Hence, the ACC is usc.' to 1emove the reference model predictions from both forecasts and
observations, verifying in this w.v th> anomalies. Note that high ACC values mean that the evaluated model
can better predict the ancma. ‘es v ith respect to the reference model prediction.

As aforementioned, XAI- ZANN, MLP, Random Forest and XGBoost are stochastic techniques. Hence,
their performance is also assessed in terms of stability, computing the Standard Deviation (SD) of the MSE

results obtained in the 40 runs performed.

4. Results

This section firstly introduces the result of the hierarchical clustering procedure. Secondly, regarding the
prediction task and from a quantitative perspective, the performance of the proposed X AI-EANNSs is reported

and compared to the considered state-of-the-art techniques. Then a statistical analysis of the performance
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of the different techniques is presented. Finally, the best model obtained in each cluster is explained and

discussed from a quantitative and qualitative point of view, respectively.

4.1. Clustering

The result of the hierarchical clustering is shown in the dendrogram represented in Figure 4, which
illustrates the arrangement of the clusters obtained using a tree diagram. The vertical axis represents the
distance inter-cluster (the greater the distance the lesser the similarity) and the horizontal axis reports the

cluster assignment to each geographical point analysed.
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Figure 4: Dendrogra’.i . ~rresponding to the hierarchical clustering.

As can be seen, and considering exp. -t knowledge, the selected optimal number of clusters is six, which
are plotted in distinct colour. Henc . the region under study (composed of 270 geographical points) is
divided into six sub-regions clus ers) according to their similarity in mean air temperature. This division is
carried out prior to the predu tion task, which is performed separately in each sub-region. In this way, the
geographical representation of the six sub-regions obtained as a result of the clustering assignment is shown
in Figure 5.

As can be checked, the clusters are clearly differentiated, that is, the points belonging to the same
cluster are geographically located in the same area, and not dispersed. This makes sense, since nearby
locations are expected to have similar air temperature behaviour. However, the points located at latitude
37.00°N and longitude 5.75°W, and at latitude 37.50°N and longitude 3.00°W (belonging to the clusters
3 and 6, respectively) are somewhat distant from the remaining points of their corresponding cluster. This

circumstance could be due to the influence exerted on the air temperature by the orographic characteristics
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Figure 5: Geographical representation of the six clusters (sub-reg, >n<}. The centroid of each cluster is represented
by the point circularly shaded.

of both points compared to other nearby points. . »m.*thing similar occurs in cluster 2, whose points are
mostly concentrated in longitudes 8.00°W to 4..5°W, although some of them are located in longitudes
1.50°W, 0.25°W and 0.00°W. Therefore, both . ~marks also make sense since, and as mentioned above, the
geographical location of each point (i.e 'atii W2 and longitude) has not been used in the clustering procedure,
given that the purpose of the clustering . -as to group the points according to their air temperature behaviour,
not their location. Finally, it is wor.™ of mentioning that cluster 5 only has three points, which highlights
the particular air temperatur : cou. litions of these points in comparison to the remaining ones. Note that the
points circularly shaded reprc zent the centroid of each cluster, that is, the most representative point in terms
of air temperature. As mentioned, the centroid is the closest geographical point to the virtual centre of all
the points belonging to the cluster.

Further visual analysis to evaluate the result of the hierarchical clustering is done in Figure 6, where
the box-plots corresponding to the distributions of the mean air temperature are represented considering the
centroid of each cluster (upper part), or all the points of each cluster (lower part).

As can be observed, the mean air temperature distribution of the centroid of each cluster (upper part) is

practically the same as that of all the points of the cluster (lower part), as expected since the centroid is the
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Figure 6: Box-plots correspor ding :o the mean air temperature considering: (a) the centroid of each cluster, (b)
all the points of each cluste.

most representative point of the cluster. Hence, the differences between the six clusters are discussed next
focusing on the box-plots that consider all the points of each cluster.

Analysing the lower part of Figure 6, it can be appreciated that cluster 5 shows the lowest variability in
temperature (followed by cluster 4), since its mean temperature ranges approximately between 13 °C and
19 °C, in addition to having the lowest maximum mean temperature value and the highest minimum mean
temperature value. The most probable reason for this small variability of temperature in cluster 5 is that

this cluster detects a subregion near Lisbon area, where the temperature variation is further controlled by
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the closeness to the sea and the Tagus river mouth, which makes that area significantly different from the
rest of clusters. On the contrary, cluster 2 represents the hottest region, which has the highest median value
(approximately 17 °C), whereas its maximum mean temperature value exceeds 30 °C and its minimum value
is close to 4 °C. Although clusters 3 and 6 seem to be similar, some differences are observed. For example,
the mean temperature value of quartile 1 is higher in cluster 6 than in cluster 3. In addition, cluster 6 has the
minimum mean temperature value of both clusters, while cluster 3 reaches the maximum value. Regarding
cluster 1, it is noteworthy that it is the only cluster that reaches a minimum mean temperature value below 0
°C, as well as having the lowest median value and being the only cluster . -ith the quartile 1 value below 10
°C. Hence, this cluster groups the coolest geographical points compar. d to :he other sub-regions.
Therefore, it can be said that the region under study has bee. div ded into six sub-regions, which in
terms of air temperature behaviour are heterogeneous among tk_msc'ves and, at the same time, homogeneous
considering the geographical points grouped in each of them. '1.. 't is, each sub-region represents a zone with

a similar air temperature behaviour, but different from h¢ r¢ maining sub-regions.

4.2. Models performance

To accurately predict the air temperatre in a w.me-horizon of one month, 6 models are built, one for
each cluster. Thus, each model is specificruly ~one-trained, as clusters represent geographical zones, in such
a way that local information could be ex,.'oited as much as possible. For the sake of clarity, the stochastic
techniques are firstly compared, ex, “essing their results as the mean and Standard Deviation (.S D) of the
40 runs carried out: Meangp. -nec 1ically, the results report the MSE and the ACC (the latter computed
twice, using the Persister ~e a ~d t} e Climatology as reference models, respectively) achieved for the different
clusters considering all the o ints belonging to each cluster, and whose amount of points differs from one
cluster to another as shown in Figure 5. In this way, Table 5 shows the results achieved by the stochastic
techniques: XAI-EANNs, MLP, Random Forest and XGBoost. In terms of MSE, XAI-EANNs achieve
excellent results: best technique for clusters 1, 2 and 6, and second best for clusters 3 and 4, i.e. the proposed
XAI-EANNSs achieve outstanding average results except for cluster 5 (the one with the fewest points), whose
performance is very close to the second best result. In addition, the small .S D values achieved for the XAI-
EANN models demonstrate the stability and robustness of the proposed methodology. On the other hand,
XGBoost also achieves competitive results, being the best for clusters 3, 4 and 5 and the second best for

clusters 1 and 2. The ACC using the Persistence as reference model indicates that XAI-EANNSs achieve
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Table 5
Comparison between the stochastic techniques applied in terms of MSE and ACC (with Persistence and
Climatology) for the different clusters. The results are expressed as their mean and Standard Deviation (SD):
Meangp

MSE

Technique applied Cluster 1 Cluster 2 Cluster 3 Cluster 4  Cluster 5  Cluster 6

XAI-EANNSs 0.69490ss 0.90800ss 1.4285005 1.405,1, 0475005 0.4950 ges
Random Forest 0978005 1.0109005 2.2350021 15120014 04705009 0.675¢011
XGBoost 0. 7970 038 0. 9490 042 1.3690‘097 1 .267(]'074 0.4220.023 0.7330‘045
Technique applied ACC with Persiste (ce

Cluster 1 Cluster 2 Cluster 3 Clustei - Cluster 5 Cluster 6
XAI-EANNSs 0.6890013 07049053 0.6180010 0710000 0.7680003 0.729 037
MLP 0.682) 025 0.696p04 0519000 07 3qyaq  0.774054  0.643( 049
Random Forest 0.6180'001 0.6910.001 0.4080.004 O 710 ,.002 0.7650'005 0. 6600_005
XGBOOSt 063400]3 07040009 05770030 0. /050.017 07940013 06260022

ACC w'th L'imatology
Cluster 1~ Cluster 2 Cluster _  Cluster 4  Cluster 5  Cluster 6

Technique applied

XAI-EANNs 09060005 07119020 0507035 05660020 0.550003 0.8540 02
MLP 0.892)0; 0.663007, (238 100 0.561905; 0.5935015 0.850, 01,
Random Forest  0.865,00; 0.680p0  0.393000s 0.6189002 0.5430008  0-8210.00
XGBoost 0.8910005 0.698,01 0502902 0.614500, 0.568,,,, 0.81000;;

The best results are highlighted in bold, . -hereas the second best are in jtalics.

the best results in 4 out of the 6 clusters, v/h..eas the other two best results are obtained by MLP in the
case of cluster 4 and by XGBoost in *he cu3e of cluster 5. As can be observed, the ACC results computed
using the Persistence as reference moJ'=l are always over 0.6 in the case of XAI-EANNs, which means that
a high correlation is achieved »=tv. ~.n the observed and predicted values when the information provided by
the reference model is cac‘rac:~u. On the other hand, the results achieved by ACC using Climatology are
similar to those achieved b, MSE in what respects to XAI-EANNS: best results in 3 out of the 6 clusters.
Nevertheless, XGBoost, despite being a good technique, only gets the best results in 1 out of the 6 clusters.
In this case, it is worth mentioning that results achieved by X AI-EANNS for clusters 1, 2, and 6 are over 0.7.

Next, with the goal of identifying one best model for each cluster, the deterministic techniques are
compared against the best model obtained by each of the stochastic techniques (i.e. the one that achieves the
lowest MSE of the 40 runs). As well as for the previous Table 5, results are reported considering all the points
belonging to each cluster. In this way, Table 6 shows the results achieved by the deterministic techniques:

LinearReg, SVR and ElasticNet, and the best XAI-EANN, MLP, Random Forest and XGBoost models.
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Furthermore, for comparison purposes, the results achieved in terms of MSE by the two aforementioned
baseline models, the Persistence and the Climatology, are also included in this Table 6. Computing the
corresponding ACC results for these two baseline models is meaningless, since each one is used as the
reference model in their own ACC computation. Concerning the MSE results, it can be observed that the
proposed XAI-EANNS achieve the best results as they obtain excellent results in 5 out of the 6 clusters (for 3
of them is the best technique and the second best in the other 2 groups). The second best technique is XGBoost
as it obtains the best results in 3 out of the 6 clusters. MLP and SVR achieve the second best results in 3 and
1 out of the 6 clusters, respectively. Finally, Persistence and Climatolog, are always outperformed by the
ML techniques, with a few exceptions. A similar behaviour can be obsc “ved cegarding the ACC results using
both Persistence and Climatology as reference models. Except for “lus er 5, XAI-EANNSs achieve the best
results in 5 out of the 6 clusters (3 being the first and 2 being t*.. <e. »nd one) for both reference models. It is
worth mentioning that XGBoost and MLP are the second and .’ rd best techniques, respectively. Moreover,
when it comes to clusters with a high number of point: . tie proposed XAI-EANNSs achieve the best results
(see those for Clusters 1 and 2, with 117 and 49 .. ‘nts, respectively).

Another interesting analysis consists in eval. ting the performance of the models when predicting the
air temperature at a specific point, instead o1 ~onsidering all the points belonging to the cluster. For this
purpose, the performance of the same mode 's ‘ncluded in Table 6 are now compared in Table 7 reporting the
results considering only the most ret ces. ntative point of each cluster, i.e. the centroid. From this Table 7, and
concerning the MSE results, it can . » observed that the proposed XAI-EANNSs achieve the best results in 5
out of the 6 clusters, obtainir g e ~ellent results in comparison with the rest of the techniques: SVR achieves
the best result for the remain. g cluster, whereas MLP, XGBoost and RidgeReg obtain the 3, 2 and 1 second
best results, respectively. A similar performance can be checked regarding the ACC results computed with the
Climatology as reference model, except that the second best results are divided between MLP (4), Random
Forest (1), and XGBoost shared with linear methods (1). Nevertheless, for the ACC computed using the
Persistence, despite XAI-EANNSs achieving excellent results, the number of best results is reduced to 3, and
achieving one second best result. The remaining three best results are for XGBoost, MLP, and SVR.

Additionally, to give a visual comparison of the results shown in Table 7, the air temperature predictions
made by the best and second best techniques for the centroid of each cluster are represented along with the

observed values in Figure 7, for clusters 1 to 3, and in Figure 8, for clusters 4 to 6. The technique achieving the

A. M. Gémez-Orellana et al.: Preprint submitted to Elsevier Page 22 of 40



Table 6
Comparison between the deterministic techniques and the best model obtained by each stochastic technique
applied in terms of MSE and ACC (with Persistence and Climatology) for the different clusters.

MSE

Technique applied Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Persistence 0.997 1.411 1.853 2.696 1.120 1.028
Climatology 3.865 1.821 2.008 1.940 0.602 1.799
LinearReg 0.782 0.892 1.592 1.657 0.721 0.667
RidgeReg 0.776 0.892 1.592 1.642 0.715 0.667
LassoReg 0.793 0911 1.552 1.573 0.645 0.661
ElasticNet 0.793 0.908 1.552 1.573 0.643 0.661
SVR 1.645 1.847 1.347 1.692 0.381 1.570
XAI-EANNs 0.581 0.753 1.229 1.14F 0.389 0.383
MLP 0.704 0.775 1.374 1.2(0 0.579 0.481
Random Forest 0.967 0.997 2.197 Jmgl 0.452 0.653
XGBoost 0.735 0.848 1.176 1.06( 0.358 0.634

ACC with Pe <istence
Technique applied Cluster 1  Cluster 2 Cluster 3 luster 4 Cluster 5 Cluster 6

LinearReg 0.679 0.723 0.621 0.698 0.703 0.632
RidgeReg 0.679 0.723 | 0.700 0.705 0.632
LassoReg 0.676 0.717 002, 0.706 0.724 0.634
ElasticNet 0.676 0.717 0.626 0.706 0.721 0.634
SVR 0.524 0.579 L.621 0.660 0.813 0.361
XAI-EANNs 0.719 0.750 0.670 0.767 0.808 0.797
MLP 0.702 0.744 0.600 0.749 0.789 0.732
Random Forest 0.620 0.093 0.414 0.715 0.774 0.669
XGBoost 0.659 775 0.632 0.781 0.826 0.678

ACC with Climatology
Technique applied Cluster © Cluster 2 Cluster 3 Cluster 4  Cluster 5 Cluster 6

LinearReg C 894 0.720 0.562 0.548 0.542 0.812
RidgeReg 0.8 0.720 0.562 0.549 0.542 0.812
LassoReg 0..22 0.712 0.567 0.554 0.548 0.811
ElasticNet (.892 0.713 0.567 0.554 0.545 0.811
SVR 0.759 0.345 0.574 0.387 0.634 0.426
XAI-EANNs 0.922 0.766 0.639 0.645 0.595 0.892
MLP 0.906 0.760 0.596 0.629 0.597 0.866
Random Forest 0.867 0.684 0.397 0.623 0.548 0.822
XGBoost 0.900 0.732 0.655 0.683 0.647 0.836

The best results are highlighted in bold, whereas the second best are in jtalics.

best results is denoted by means of the superscript !, whereas the second best is denoted using the superscript
2-

From these Figures 7 and 8, it can be seen that the predictions made are highly accurate, as most of the
predictions made by the best technique (generally, XAI-EANNS) are close to the observed values. Also, it

is worthy of mention that predicting the extreme peaks above-average of the time series is a very difficult
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Table 7
Comparison between the deterministic techniques and the best model obtained by each stochastic technique
applied in terms of MSE and ACC (with Persistence and Climatology) for the centroid of each cluster.

MSE
Technique applied Centroid of Centroid of Centroid of Centroid of Centroid of Centroid of
cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6
Persistence 0.517 1.207 2.964 2.702 1.375 0.919
Climatology 4.225 1.971 2.099 1.879 0.659 1.802
LinearReg 0.460 0.999 1.808 1.654 0.689 0.624
RidgeReg 0.455 0.999 1.808 1.642 0.681 0.624
LassoReg 0.466 1.038 1.753 1.574 0.609 0.620
ElasticNet 0.466 1.031 1.753 1.574 0.596 0.620
SVR 0.887 2.753 1.549 1.317 0.357 1.682
XAI-EANNs 0.303 0.829 1.259 1..27 0.425 0.317
MLP 0.510 0.871 1.343 .05 0.428 0.445
Random Forest 0.786 1.373 2.984 1.6%7 0.464 0.539
XGBoost 0.476 1.076 1.366 1.136 0.399 0.599

ACC with f:‘sistence
Technique applied Centroid of Centroid of Centroid o1 Centroid of Centroid of Centroid of

cluster 1 cluster 2 cluster 5 cluster 4 cluster 5 cluster 6
LinearReg 0.750 0.655 ¢ 439 0.679 0.720 0.598
RidgeReg 0.750 0.655 0.659 0.680 0.722 0.598
LassoReg 0.749 0.647 0.066 0.686 0.742 0.599
ElasticNet 0.749 0.647 0.666 0.686 0.743 0.600
SVR 0.517 0.'63 0.676 0.688 0.837 0.255
XAI-EANNSs 0.766 0.64, 0.739 0.752 0.792 0.814
MLP 0.733 (.6°- 0.723 0.764 0.837 0.725
Random Forest 0.594 0.5 0.394 0.690 0.770 0.677
XGBoost 0.627 0..70 0.710 0.752 0.807 0.636

ACC with Climatology
Technique applied Centroid oo Centroid of Centroid of Centroid of Centroid of Centroid of

cluster : cluster 2 cluster 3 cluster 4 cluster 5 cluster 6
LinearReg C 982 0.675 0.460 0.441 0.568 0.802
RidgeReg J 9oz 0.675 0.460 0.443 0.569 0.802
LassoReg 0.1 82 0.659 0.471 0.447 0.575 0.801
ElasticNet 0.982 0.662 0.471 0.447 0.572 0.801
SVR 0.970 -0.091 0.513 0.406 0.670 0.316
XAI-EANNs 0.988 0.749 0.618 0.548 0.604 0.901
MLP 0.980 0.725 0.596 0.461 0.646 0.857
Random Forest 0.971 0.555 0.137 0.547 0.544 0.839
XGBoost 0.982 0.646 0.583 0.552 0.616 0.833

The best results are highlighted in bold, whereas the second best are in jtalics.

task, as they may be caused due to heat waves that have occurred during a short period of the month of

August. Furthermore, as it can be observed, the predictions are smoother than the observed values given
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Table 8
Comparison between the stochastic techniques applied in terms of the number of connections for the different
clusters. The results are expressed as their mean and Standard Deviation (SD): Meangp

Technique applied # Connections

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
XAI-EANNs 33234 3245, 23.9;, 26.14, 21.54¢ 29.144
MLP 915.0193.3 981.056.3 949.3506.6 993.7 190 5 1000.7 ;75,5 976.955; ¢
. 108 . 100 . 106 . 10° . 10° . 10°
Random Forest 7.2 10%.&106 2.9 10%0.105 2.3 10244.105 1.9 10243.105 1.1 10;.&104 1.4 103_9.105
XGBoost 12:100 . 10-103, . 28-10% o 37-10! 0 90100 . 28-10%

The best results are highlighted in bold, whereas the second best are in i7alics.

that the models have been trained using all the points belonging to ea~h c'aster, i.e. models have not been
specifically trained for each point of the cluster.

Finally, the last part of the analysis of the results is focus.u ~n .he complexity of the models. Note that
complexity does not refer to computational cost, but to how evpl. nable the models are, i.e. the fewer number
of connections, the more simple and explainable the 11wde is. In this sense, Table 8 shows the Meang
number of connections of the models obtained ir ai. 40 s carried out for each stochastic technique in each
of the different clusters. As can be seen, XAI-EA. 'Ns are the simplest stochastic models for all the clusters
(the number of connections ranges from 21 5 1o+ cluster 5 to 33.2 for cluster 1), whereas Random Forest is
the most complex technique. Besides, Tblc O shows the number of connections of the deterministic models
and the best model obtained by eack sto hastic technique applied (i.e. the one that achieved the lowest MSE
of the 40 runs). In this case, linear 1. ndels have no competitors as they always obtain the simplest models.
Nevertheless, beyond linear noa. s, the simplest technique is XAI-EANNSs, which only double the number
of connections of the linear models, or, in the worst case, triple the number of connections of the linear
models. This indicates that even XAI-EANNSs are considered a complex ML technique, they can achieve
outstanding results without considerably increasing their complexity, that is, the proposed XAI-EANNs

allow for developing competitive performance and explainable models.

4.3. Statistical analysis
In this section, a statistical analysis is carried out to derive some conclusions about the results achieved
by the developed models. More specifically, the intention is to determine whether there are significant

differences between such results. For this purpose, the MSE results obtained by the stochastic techniques for
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Figure 7: Graphical representation of the observed air temperature values (purple) and the predictions made by
the best (green) and the second best (orange) techniques for the centroid of clusters 1 (top), 2 (middle) and 3

(bottom). The predictions shown correspond to the whole test dataset of the centroid of each cluster (15 years,
2007 to 2021).
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Figure 8: Graphical representation of the observed air temperature values (purple) and the predictions made by
the best (green) and the second best (orange) techniques for the centroid of clusters 4 (top), 5 (middle) and 6

(bottom). The predictions shown correspond to the whole test dataset of the centroid of each cluster (15 years,
2007 to 2021).
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Table 9
Comparison between the deterministic techniques and the best model obtained by each stochastic technique
applied in terms of the number of connections for the different clusters.

# Connections

Technique applied Cluster 1  Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

LinearReg 12 12 12 12 12 12
RidgeReg 12 12 12 12 12 12
LassoReg 11 10 11 12 12 12
ElasticNet 11 10 11 12 12 12
SVR 49-10* 2.1-10* 14-10* 12-10* 1.8-10° 1.2-10%
XAI-EANNSs 36 31 26 24 23 31
MLP 1061 526 1081 1157 1021 544
Random Forest 83-10° 35-100 1.6-10° 22-17 '4.10* 9.1-10°
XGBoost 9.7-10* 84-10* 28-10* 78-0* 10-10* 28-10*

The best results are highlighted in bold, whereas the secc 1d b st are in italics.

each of the six clusters (results included in Table 5) are analvsed, ind the 40 runs performed are considered
sufficient for statistical testing.

Firstly, the normality of the distributions of the M E -esults is evaluated. To proceed with, the non-
parametric Kolmogérov-Smirnov (Frank, 195") te t (K-S test) of adjustment to a normal distribution is
performed. The p-values obtained, which reoresent .he exact bilateral significance, are greater than a = 0.05
in 23 out of the 24 tests. Hence, the hypru.~sis of normality is accepted. In this way, taking into account
these hypotheses of normality of the se.u, 'es, the ANalysis Of the VAriance (ANOVA) (Fisher, 1925, 1939)
statistical test is used to check the ‘nflucace of two main factors (ANOVA II (Miller, 1997)) in the MSE
results: (1) technique applied (" AI-CANNs, MLP, Random Forest and XGBoost), and (2) cluster under
study. This test, which araly “es t i.e mean variance, establishes whether or not such influence is significant
regarding the average MSE re sults.

In order to perform this test, a linear model based on the best MSE value is proposed to determine the
accuracy of the predictions (i.e. the significance of the influence), defined as follows:

MSE;; =u+T,+C;,+TC;; + €. -
ie{l,2,3,4}, je{l,...,6}, ke {l,...,40},
where p represents the overall mean of the model (fixed influence common to all the populations), T; analyses

the influence on the average MSE for the i-th level of the factor “technique applied”, with levels i = 1 for
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Table 10
Results of the ANOVA Il test

Source Sum of squares DF Mean square F ratio p-value
Corrected model 247288 23 10.752 387.438 < 0.001
Intercept 1063.155 1 1063.155 38311.048 < 0.001
T; 20.025 3 6.675 240.535 < 0.001
C; 205.273 5 41.055  1479.410 < 0.001
TC; 21.990 15 1.466 52.828 < 0.001
Error 25975 936 0.028

Total 1336.417 960

Corrected total 273.262 959

T;: technique applied, C;: cluster under study, TC;;: interactior ~etween both factors,
DF: degrees of Freedom. Significant differences are highlight.u :~ buld.

XAI-EANNS, i = 2 for MLP, i = 3 for Random Forest and i = 4 ‘or “{GBoost; Cj analyses the influence
on the average MSE for the j-th level of the factor “cluster uruc. study”, with levels j = 1, ..., 6 for cluster
= 1,...,6; TC; is an interaction term representing the joinf imv. *ence of the presence of level i of the first
factor (technique) and level j of the second one (clust v, fi1ally, the term ¢; ik is the effect on the MSE of
everything that could not be controlled or of ran”on fac ors. Hence, the variation of the experimental results
undergone by the MSE is explained through the ¢ *ects produced by the four and six different levels of the
two fixed factors (7; and C;, respectively) 2~d v, their interaction (T'C;;). In this way, using the linear model
defined in Equation (7) and the MSE v-"me. ‘ne ANOVA II test is performed, and the results are shown in
Table 10.

From Table 10, significant differ. nces in average MSE are observed both as a function of the technique
applied (T;) and the cluster unacr study (C;), given that their p-values are both less than 0.001 and the
significance level considereu is « = 0.05. Besides, the interaction between both factors (T'C; ) is also
statistically significant. Hence, the null hypothesis that there are not significant differences between the
average MSE values for the four techniques applied is rejected. For the same reason, the null hypothesis
that there are not significant differences between the average MSE values for the six clusters analysed is
rejected. Since there are significant differences in average MSE, the post-hoc HSD Tukey’s (Tukey, 1949)
test is considered to determine whether or not there are significant differences among the distinct levels of
a factor. The objective is to find the level of each factor whose average MSE is significantly better than the

average MSE of the remaining levels.
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Table 11
Results of the HSD Tukey's test for the factor technique applied (T;).

Average MSE

Technique applied Subset 1 Subset 2 Subset 3 p-value
XAI-EANNS 0.9008

XGBoost 0.9230 0.463
Random Forest 1.1468 1.000
MLP 1.2389 1.000

HSD TukeyN=240, a=0.05

Table 12
Results of the HSD Tukey's test for the factor cluster under study (C;).

Average MSE

Cluster Subset 1 Subset 2 Subset 3 Subset 4 tubs:t5  Subset 6 p-value
Cluster 5 0.5239 1.000
Cluster 6 0.6439 1.000
Cluster 1 0.8581 1.000
Cluster 2 29355 1.000
Cluster 4 1.4553 1.000
Cluster 3 1.8475 1.000

HSD Tu keyN=160, a=0.05

On the one hand, the results of the Tukev s *est corresponding to the first factor (technique applied) are
shown in Table 11, where the distinct Ievel. o. such factor are grouped in homogeneous subsets.

As can be observed, the results . hov. that there are no significant differences between the average MSE
values obtained by the XAI-EANNs ~nd XGBoost techniques (i.e. both techniques are grouped in the same
subset), although the average re. ults achieved by XAI-EANNSs are better. However, there are significant
differences in the average va. “es for these two techniques with respect to Random Forest, and also between
the three techniques and MLP. Therefore, it can be concluded that the best results are obtained by the
proposed XAI-EANNSs, whereas the worst results are obtained by MLP.

On the other hand, the results of the Tukey’s test corresponding to the second factor (cluster under study)
are shown in Table 12, grouping in homogeneous subsets the distinct levels of such factor.

As can be seen, the results indicate that there are significant differences between the average MSE values
for all the clusters (i.e. each cluster belongs to a different subset), the prediction in cluster 5 being significantly

the most accurate, whereas the prediction in cluster 3 is significantly the worst.
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4.4. Best models explanation

In the last few years, eXplainable Artificial Intelligence (XAI) has emerged as a novel field, in which both
performance and explainability are given the same importance. Hence, the explanation of the best models
achieved is paramount to its proper understanding and implementation in current processes.

From the previous statistical analysis it was depicted that XAI-EANN models were those achieving
the best results in terms of MSE, as can be observed in Table 11. Furthermore, regarding the number of
connections reported in Table 8, the best XAI-EANN model obtained for each cluster is also the simplest
with respect to the techniques achieving competitive results. Therefore, the ~est XAI-EANN models obtained
for the different clusters are explained next and their mathematical e: nres ions are presented in Table 13.
Note that the * indicates that the variable should be scaled before 1 <ing the model.

As can be seen, each model is composed of the bias (the #..~t w.~m of the model), a different number of
hidden neurons (which are denoted by the letter B) and their cor. *sponding synaptic weights, which indicate
how each hidden neuron contributes to the model pre 1i~tic n. The term IAZ denotes the air temperature of

August predicted by the model, and the function . [ (..\) defines each hidden neuron in such a way that:

o) = - ! ®)

+ e—f(x) ’

where f(x) is the function including “2e bu. s, the input variables and their weights.

Analysing, for example, the t=st model for cluster 1, it can be checked that the bias is —0.49, and the
synaptic weights for the 4 nevron. ¢ 3, to B,) are —8.95, —6.42, 5.72 and 4.22, respectively. Concerning its
first hidden neuron By, t'« bia. i~ —1.52, and the neuron interacts with the input variables r*, t:_l, v*, IZ‘G and
tz by means of the weights *.79, 3.97, —1.10, —0.95 and —0.04, respectively.

As can be observed, each model may have a different number of neurons, depending on the cluster it has
been trained for. Specifically, the best models obtained for clusters 1, 2 and 6 have 4 neurons, whereas for the
remaining clusters 3, 4 and 5 they have 3 neurons. As for the weights of the input variables, the higher the
absolute value of the weight, the greater the importance of the input variable. In addition, a positive weight
means that increments in the input variable result in increments of #7. Conversely, negative weights result in

decrements of 77 as the input variable increases.
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Table 13
Best XAI-EANN models obtained for each cluster.

=—0.49 —8.95B, — 6.42B, + 5.72B; + 4.22B,

g By =0(-1.52+ 479" + 3981, — 1.100* —0.95r; —0.0417)
|4 B, = 6(—2.38 + 4.961* — 3.27p" + 1 24t* + 0.74v* +O68t* —O66u -0.02r7 )
o B3 =0(3.76 - 5.00r; —5.00r; 3. 87:*4 — 3761 — 1.25u% + 0.690% — 0, 32p")
B, =0(5.00 + 4.70tj3 — 4.44r* — 3.73u* — 3.58t2 -1 10t +0. 89t —0.85p* + 0.48s*)
o *=4.04—-15.14B, —7.52B, + 6.77B; + 3.89B,
5 B, =0(—1.83 +5.00r* — 1.86tj3 + 1.02t;j_1 + 0.30tj6 - 0.22tj4 —0.20p*)
|4 B, =o(-1. 03+158t* +105z* + 0.961* — 0.285*)
o B; =0(3.28 — 5001* —5001* —3911* +1621* —0.08p*)
B, =06(093 +4. 96t* -4, 74u +4. llt* + 3. 07t* o 2. 79t* —1Ads —0.750%)
o P*=125-628B,+558B,-433B,
g B = 06(-3.60 + 2.61¢* + 2.23t;“6 + 1.41tj4 +1.06u" +0.647; — \37t:71 + 0.31th)
2 B, = 0(2.56 — 3.86r* —2.351; +0.27r; +0.22u* —0.00.%
By =oc(-1.14+ 1.45f;1 —1.35u* + 1.261:_I + 1.06:;"6 ’\‘23&’;4 + 0.70tj5 + 0.320%)
< 1*=-196+13.19B; —7.95B, — 6.82B;
g B, =06(2.26 — 5.00¢* + 3. 29t* -2 61t* + 0.93n* - 0.58t'cl)
5 B, =06(-3.58 + 3.85s™ + 3. 70t* +3. 27t* 1 27u* - 0.920* + 0.33p*)
B; = 06(—0.94 + 4.86r — 1. 67t +1. 58p -1 9()1 —0.49u* + 0.28s%)
v f*=4.19-920B —7.67B, + 2.07133
ol B, = 6(—1.90 + 3.88* + 1.35u4* — 0.48p *
3 B, =0(0.16 +5.00¢; —3.43v" + - 40r* — 1.671 + 14117 —1.32t7 +0.82r7 —0.57p* —0.43¢7 )
O 6 ] 3 2 -1 4 1
By =0(2.28 = 3.03u* — L.79r7 - L 450" +0.571; )
o 1a=-196+1097B, —9.88B, - 7 9.”, +4.10B,
5 B, =06(—0.02 — 5.00tj4 - 5.“0tj5 -- 4.04th + 3.53v* + 2.69tj3 —1.42¢* + 0.65p* — 0.43u*)
_*g B, = 0(-0.76 + 4.68t" — > 36p — 1.O3tj3 —0.77u*)
O

By =0(=2.07+5.00r5 - 0.63t* = 0.81¢% +0.29¢* —0.002¢* )
By =0(0.52+ 173" - 101r5 — 07365 +0.69r" — 0.33u")

To highlight the most sio ificant variables, those with a high absolute value of the weight with respect
to the input variables of the same neuron are shown in bold. For instance, regarding the first neuron B, of
the model for cluster 1, the input variables ¢* and tZ_] are the most important with respect to the remaining
input variables of that neuron. Furthermore, both variables have a positive weight meaning that increments
in either one increase the predicted value of 7. In general, the input variables related to air temperature (1,
t:‘;_l, tjlmé) have a highest importance across the 6 clusters. Nevertheless, the remaining input variables (u*,
v*, s* and p*) also play a crucial role in accurately predicting the air temperature. Therefore, it can be said

that the relative importance of the input variables depends on each cluster.
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4.5. Discussion

In this section we will discuss in detail the results obtained, particularising the explanation for a cluster,
in this case cluster 1, which has been used previously to illustrate the explanation of the XAI-EANN model
obtained. Besides, the remaining clusters are also interpreted. As can be seen in Table 13, the XAI-EANN

model for long-term air temperature prediction in cluster 1 is the following:
" =-049 —8.95B, — 6.42B, + 5.72B; + 4.22B,, (©)]
where:

By =0(-1.52+4.79t" +3.98t; — 1.100* - 0.95¢; —

- 0.0417), (10)
B, =6(-2.38 + 4.96r* — 3.27p" + 1.24tj6 +0.74, -

+0.687; —0.66u* —0.021; ),
B; =0(3.76 —5.00t; —5.00:; —3.87¢, - 4.76t"—

2 Cs Cy

—1.254" + 0.690" — 0.32p"),

B, =0(5.00 +4.70% — 444" - 7.0 —3.581% —

— 11067 +0.89r" = 0.05p" + 0.485%).

It is of course a highly non line. r model, but it is interpretable (explainable). As can be seen, the most
important neuron is B; with a negative weight of —8.95. A closer analysis of this neuron shows that it
mainly takes into account air temperature variables * and t:_l, and with a smaller importance wind and
other clusters temperatures v*, tjb and t:f}. Note that in this case, the greater t* and tz_l the higher B, and
therefore the lower t: (cluster 1 air temperature, target), and the greater v*, IZ‘G and tz, the lower B, and
therefore the greater #7. This can be interpreted as follows: the years in which July average air temperature
in cluster 1 (#*) tends to be high, the August air temperature in cluster 1 tends to be lower. Similarly, the
August air temperature of one year tends to be lower if the August air temperature in the last year was high.

Regarding the other variables, which affect to a lesser extent to cluster 1 air temperature prediction, it seems
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that if v-wind, air temperature in cluster 3 and air temperature in cluster 6 are high in July, the air temperature
in cluster 1 in August tends to be also high.

Neuron B, takes into account the importance of other variables such as pressure and also average air
temperature in cluster 1, in addition to other variables less important to the prediction. In this case, the
analysis of the model indicates again that the larger the average air temperature in July, the lower in cluster
1, and the higher the pressure in July, the larger the air temperature of cluster 1. Other variables such as
v-wind speed, temperatures of neighbour clusters and air temperature of August last year have an inverse
effect in cluster 1 August air temperature. The results in this neuron are ¢ sistent to that of neuron B, .

Regarding the neuron Bj, note that the most important predictive variz bles included in this neuron are
related to air temperature. In this case, the larger tjjz, tjs , tc*4 and r* in‘uly, he lower the August air temperature
of cluster 1.

Finally, neuron B, relies on four main variables: tjs, t*, w “wly) and tz_l (August air temperature last
year), with an inverse relation with August air temper tr.e in cluster 1, i.e., the larger these variables, the
lower August air temperature in cluster 1.

We can summarise this prediction model fo. August air temperature prediction in cluster 1 from July
variables as follows: in general, when the July . verage air temperature in cluster 1 is high in July, the August
air temperature in cluster 1 tends to be lowcr. '{igh pressures in July promote higher temperatures in cluster
1. In general, high August air temp .ra.-ve in the last year is associated with lower August air temperature
next year, and a high air temperatu, ~ in July in neighbour clusters (3 and 6) implies a high air temperature
in August in cluster 1. Winc co..>ponents in July have direct or inverse effect in August air temperature in
cluster 1, depending on the 1. uron considered. In general, a high zonal component u-wind is associated with
lower temperatures, whereas the v-wind component effect depends on the neuron where it is involved, so it
is not clear the real effect of the variable v-wind in the general behaviour of the model. There are other less
important variables which serve to adjust the model, which analysis may be important to complement the
principal variables discussed.

The analysis of the rest of the clusters is very similar to that of cluster 1, with some peculiarities and
specific variables (see Table 13 for detail on the best models obtained for each cluster). For example, note
that cluster 2 model is very similar to cluster 1. There are again 4 neurons in cluster 2, with coefficients

pretty similar to that of cluster 1. Note, for example, that neuron B1 in cluster 2 also involves ¢* and 77 g
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in such a way that the greater * and tZ_. the higher B;, and the lower is the air temperature in August. In
general, a high value of #* in July is associated with a lower value of air temperature in August. This pattern
is common and consistent in the models for all the clusters in the region. In a similar line, it is possible
to see that, in the models for all sub-regions, a high value of persistence t:_] (August air temperature last
year) is also associated with a low value of the target for the present year. Wind components variables are
also involved in many models, for the zonal component u*, it is consistent that increasing values of u* in
July are associated with a lower air temperature in August, whereas increasing values of v* in July seem
to be related to increasing air temperature in August for all the sub-regic .~ considered. Pressure variable is
usually associated with increasing of August temperatures when high | ress ires occur in July, as in cluster 1
and cluster 6. However, note that in cluster 3, this pattern is differen anc here high values of pressure in July
are associated with lower temperatures in August, though the _~e.Zcient of p* in cluster 3 is lower than in
the other two sub-regions where this variable is involved. The 1 st of important variables for the prediction
in all the models are mainly related to temperatures i:' ¢ r sub-regions, which help the ANN obtain an

accurate prediction of August air temperature fo~ ."! ti.~> sub-regions considered.

5. Conclusions

In this paper we have proposed the use « f ¢ Xplainable Artificial Intelligence (XAI) models in a problem
of long-term air temperature predict:o.. The XAI model is obtained from the output of an Artificial Neural
Network (ANN) with sigmoidal n. trous, optimised by means of an evolutionary algorithm (EA), known
as XAI-EANNSs. The propos-.a . ~ewod has been applied to a specific problem of long-term air temperature
prediction (average air temy, “rature in August) from ERAS reanalysis (Hersbach et al., 2020) data in July. A
cluster analysis has been first carried out in terms of the average air temperature in the zone under study (the
Southern part of the Iberian Peninsula), so different sub-regions are obtained and analysed with the proposed
approach. The proposed XAI-EANN approach has shown to be a very good method for this problem of
long-term air temperature prediction, obtaining accurate prediction of air temperature for all sub-regions,
with explainable models. The results obtained by the XAI-EANN approach achieves statistically significant
differences against several state-of-the-art machine learning techniques, such as Multi-Layer Perceptron

(MLP), Random Forest or eXtreme Gradient Boosting (XGBoost). Furthermore, note that, not only does
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the proposed XAI-EANN model obtain the best results in terms of mean squared error, but also benefits
from being a XAl technique, which is one of the main interest of this work.

In all the models obtained for the sub-regions considered, the average air temperature in July seemed
to have a positive effect over the air temperature of August, consistent in all models obtained for all the
sub-regions. The same effect occurred with the persistence variable: high values of August air temperature
for last year, seemed to be associated with lower values for the August air temperature of the next year.
In general, wind components have a different effect in the models obtained: whereas increasing values of
u-wind component in July seemed to be associated with lower values of .. *gust air temperature, the v-wind
component seemed to have a contrary effect in the models, the high t th'. v-wind in July, the higher the
air temperature in August, which may be associated with hot wi 'ds ¢oming from Africa. Finally, in the
majority of the models, increasing values of pressure in July 7. as.ociated with increasing temperatures in
August, as expected, though in some of the models for specin. sub-regions (cluster 4, South-West of the
Iberian Peninsula and Atlantic coast of Portugal), hig1 wressure values in July are associated with lower
temperatures in August. Finally, the models obf...;ea "vere fine tuned using different July air temperature
variables from other sub-regions, which means a ‘lear inter-connection or relationship among sub-regions,
as expected.

As future research lines, we propose the exiension of these XAl models to other climatological variables
of interest or different topics such is ind speed for renewable energy studies. The application of XAI
models in attribution problems cou.¥ aiso be explored, by running the models over different datasets, with
and without forcing by anthrc pog “nic factors, and comparing the final models obtained in each case. Also, the
application of long-term pre.'iction of extreme temperature values in summer (heatwaves) is another future
research line to be explored. It is an extremely difficult problem due to the scarce number of such events
in the reanalysis period, which limits the application of Machine Learning or Deep Learning algorithms. In
this topic, the application of XAI methods can also be of importance in order to characterise the drivers of

heatwaves.
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