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ABSTRACT
Locating transition states is crucial for investigating transition mechanisms in wide-ranging phenomena, from atomistic to macroscale sys-
tems. Existing methods, however, can struggle in problems with a large number of degrees of freedom, on-the-fly adaptive remeshing and
coarse-graining, and energy landscapes that are locally flat or discontinuous. To resolve these challenges, we introduce a new double-ended
method, the Binary-Image Transition State Search (BITSS). It uses just two states that converge to the transition state, resulting in a fast,
flexible, and memory-efficient method. We also show that it is more robust compared to existing bracketing methods that use only two
states. We demonstrate its versatility by applying BITSS to three very different classes of problems: Lennard-Jones clusters, shell buckling, and
multiphase phase-field models.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0102145

I. INTRODUCTION

Transition states are central to the description of reconfig-
uration mechanisms for systems in chemistry, condensed matter
physics, and engineering. Historically, many computational meth-
ods for locating transition states have grown from an atomistic or
particulate perspective. These have proven to be important tools for
understanding, for example, protein folding,1,2 biological and indus-
trial catalyses,3–5 quantum tunneling,6,7 crystallization,8 and cluster
formation.9,10

More recently, it is increasingly being recognized that transi-
tion states are useful in mesoscale or macroscale systems. Here, the
minimum energy barriers provide important lower bounds to the
energy input required for transitions to occur. This has been used to
understand failure in structural engineering applications,11,12 for the
development of super liquid-repellent surfaces13–15 and investigating
locomotion through complex terrain for robotics.16 Moreover, it is
becoming desirable to tailor elastic deformation transitions to enable
technologies such as advanced deployable structures,17,18 mechani-
cal sensors and actuators,19–22 and energy absorbers23,24 to name but
a few.

Transition state search methods generally fall into two cate-
gories, single- and double-ended methods. Single-ended methods
are initialized at a single state and attempt to climb to a nearby
saddle point. Examples include eigenvector following,25 the dimer
method26–28 and climbing image methods.29,30 Double-ended meth-
ods can be further subdivided into two groups. The first utilize
a chain of states between two minima, which is then minimized
to provide an estimate for the full transition pathway in addition
to the transition state. Examples are the string method29,31 and
doubly nudged elastic band (DNEB).32 These methods require an
appropriate initial interpolation, which can sometimes be challeng-
ing to obtain.33 The second group is bracketing methods, which
involves two states converging to the transition state from either
side. These include the Dewar–Healy–Stewart (DHS) algorithm,34

ridge method,35 the step and slide method,36 and the double-ended
surface walking method.37

A large range of landscapes, however, proves challenging or
impossible to explore via these methods. One key problem arises
from the push toward larger and more complex systems,38–40 result-
ing in the need to develop algorithms that are more computationally
and memory efficient and can incorporate optimization strategies
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such as on-the-fly adaptive remeshing and coarse-graining. These
typically involve changing the resolution or discretization of the sys-
tems to focus the computational time on important regions, such
as using a higher resolution mesh in regions of high stress in finite
element simulations.41 However, chain-of-states methods involve a
coupling between the configurations of each state, and hence, there is
an issue if they have different discretizations and numbers of degrees
of freedom. Meanwhile, single-ended methods can be inefficient
because they are not well suited for identifying specific pathways
and can spend a large amount of time searching for undesired tran-
sition states. Another major challenge in studying complex energy
landscapes relates to the presence of locally flat or discontinuous
regions, such as when considering patchy42–44 and hard-body8,45

interactions in atomistic simulations, systems of polymer chains,46

or collision constraints for macroscopic objects.47 Flat zero-modes
in the landscape pose issues for single-ended search methods and
current bracketing methods that rely only upon local information.
Specialist treatment can sometimes be used such as in the case of
global rotation and translation;48 however, they are thwarted by local
zero-modes. Finally, current methods cannot typically be applied
in the case of discontinuous potentials, or if the gradient is pro-
hibitively expensive to compute, because continuous, differentiable
optimization functions are required.

In this work, we introduce a new double-ended bracketing
method, the Binary-Image Transition State Search (BITSS). Using
a range of different applications, we demonstrate that it success-
fully addresses each of the above challenges. In addition, we show
that BITSS is superior compared with existing bracketing methods,
allowing us to access the transition states when other methods fail.

II. BITSS METHOD
The method begins by first initializing the states, x1 and x2, in

the basins of attraction of different local minima, such as the two
blue spots in the 2d potential in Fig. 1(a). These can be set to the
minima, but this is not a necessary requirement. The energies of
these two states are then minimized while constraining their sepa-
ration. This is iteratively reduced to zero, such that, at iteration i,
their separation is

di = (1 − f )di−1, (1)

with d0 taking the value of the separation between the two initial
states. A reduction factor of f = 0.5 is successful for most applica-
tions, but this can be made smaller to ensure that the states do not
slide off the ridge between the two basins of attraction. Different
metrics may be used to compute this distance, although in this work,
we simply use the Euclidean distance,

d(x1, x2) =

√

∑
i
(x1,i − x2,i)2. (2)

To further ensure that neither state is pulled over the ridge, a sec-
ondary constraint enforces equal energies for the two states. Using
this strategy, the two states will meet at the lowest point on the ridge,
the transition state.

FIG. 1. Schematics of the BITSS method on a simple 2D potential with two minima.
The equation for this potential is provided in Appendix C 1. (a) The orange line
shows the trajectories of the two states from the minima (blue) to the transition
states (red) under the BITSS method. The minimum energy pathway is shown by
the dashed line. (b) A snapshot of the BITSS minimization showing the driving
forces on each state due to the energy constraint, FE, and distance constraint, FD,
with E1 < E2 and d(x1, x2) < di . (c) The final configuration of the BITSS method
showing the two states in orange, the transition state in red, and the negative
curvature eigenvector, τ̂.

The two constraints are implemented using energy penalty
terms, which result in driving forces on the two states if the con-
straints are not met, such as in Fig. 1(b). Including these energy
penalty terms gives the total BITSS energy for the pair of states,

EBITSS(x1, x2) = E1 + E2 + κe(E1 − E2)
2
+ κd(d(x1, x2) − di)

2, (3)

where E1 and E2 are the single-state energies and κe and κd
parameterize the strengths of the energy and distance constraints.

In this work, the L-BFGS algorithm is chosen to minimize this
energy, owing to its fast convergence and low memory require-
ment for large numbers of degrees of freedom.49 However, any other
minimization method can be used instead.

To ensure that the transition state is located successfully, the
constraint strengths κd and κe are updated as the algorithm pro-
ceeds using information from the system. These are set such that
the driving forces due to the constraints and single-state energies
are of similar size. This prevents the constraints from dominating
the underlying potential or causing large jumps that make a state
pass over the ridge. This results in the following equations (see the
supplementary material, Note I, for the derivation),

κe =
α

2EB
, (4)

κd = max
⎛
⎜
⎝

√

∣∇E1∣
2
+ ∣∇E2∣

2

2
√

2βdi
,

EB

βd2
i

⎞
⎟
⎠

, (5)

where∇E1 and∇E2 are the gradients of the energies of the two states
and α and β are parameters with recommended values of α = 10 and
β = 0.1. Here, EB is an estimation for the current energy barrier, eval-
uated using the difference between the highest energy along a linear
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interpolation between the two states and the average energy of the
two states. These constraints are initially calculated at the start of
each minimization and regularly recalculated throughout (once per
100 iterations is used in this work).

In practice, when numerically minimizing, the states will jump
about slightly, which can result in large gradients perpendicular to
the optimal movement direction. To reduce this effect, the gradi-
ents used in Eq. (5) are projected in the direction of the separation
between the two states,

∣∇En∣ ≈
∣(x1 − x2) ⋅∇En∣

∣x1 − x2∣
. (6)

In summary, the method involves iteratively performing the
following three steps:

1. Reduce the constrained separation, according to Eq. (1).
2. Minimize the potential of the pair of states, as given by Eq. (3).
3. Recompute the constraint coefficients, κe and κd, at regular

intervals using Eqs. (4) and (5).

This process is completed once a suitable convergence criterion is
reached. This can either be based on the separation between the
states, the size of gradient at the midpoint between them, or the
change in the position of the midpoint.

Using the BITSS approach, the typical trajectories of the states
are demonstrated for a simple 2D potential in Fig. 1(a). Initially, the
lower energy state jumps up to satisfy the equal energy constraint
and then moves to minimize the separation without increasing its
energy. Then, the two states converge directly toward one another,
before being deflected toward the saddle in the ridge. Consequently,
if there are multiple possible pathways between two states, BITSS
will be biased toward identifying those that are more direct or with
lower energy. Furthermore, the final two states are positioned either
side of the transition state in the direction of the negative curvature
eigenvector, τ̂ [Fig. 1(c)]. Hence, BITSS automatically identifies the
“reactive mode” and associated eigenvalue in addition to the transi-
tion state. Once the transition state has been identified, it is possible
to find the full minimum energy pathway by tracing the trajectory of
downhill minimizations from the two final states, which are either
side of the saddle.

In the event that there are intermediate stable states, there
will be a chain of multiple transition states between the two min-
ima. In this case, the equal-energy constraint will not prevent the
states from passing over the lower energy transition states, so BITSS
should converge to the transition state with the highest energy. This
enables the identification of the overall energy barrier, providing
estimates about the overall ease of the transition or the rate for
chemical processes. However, as demonstrated in the supplementary
material, Note II, if multiple transition states have very similar ener-
gies, then a smaller distance reduction factor, f , may be necessary
to ensure that it does indeed converge to the highest transition
state. Furthermore, if all transition states and their pathways are
desired, BITSS can be continually repeated from one of the min-
ima downhill from the located transition state and one of the initial
minima until the initial minima are piecewise connected by a full
pathway.

III. RESULTS AND DISCUSSION
A. Comparison with other bracketing methods

The BITSS potential in Eq. (3) and iterative steps above
offer key advantages over existing bracketing methods that also
use two states to locate the transition state. For instance, in the
ridge method,35 the two images are initially chosen to bracket
the largest energy point on an interpolated path between the
two endpoints. However, this is not guaranteed to be on the
ridge containing the transition state, and specialist methods are
required to avoid high-energy local maxima, or when the initial
path contains multiple candidate maxima. In another example,
the double-ended surface walking method37 requires Gaussian bias
potentials to be added at each iteration to force two dimers to
climb uphill in the landscape. For high numbers of degrees of
freedom and many iterations, this becomes very computationally
expensive.

The two methods most similar to BITSS are the DHS34 and
step and slide36 methods. In the step and slide method, the sepa-
ration between two images is minimized while their energy is fixed
(iteratively increasing the energy up to the transition state). Con-
versely, in the DHS method, the energy of an image is minimized
while the image separation is fixed (iteratively decreasing the sep-
aration and changing the frozen image up to the transition state).
To illustrate how BITSS is superior compared with these methods,
we consider the hooked 2d potential in Fig. 2. For this potential, the
energies of the images ascend higher than that of the transition state,
and consequently, both of these methods fail to converge to the sad-
dle point, regardless of the parameters that are used. The step and
slide method fails in this situation because it always expects that the
energy of the two states is below the saddle point if they have not
converged, so it has no means of descending down the ridge. For
DHS, the images reach a certain point at which one state can pass
over the ridge by minimizing its energy. At this point, DHS will fail
even if the distance is reduced very slowly. In contrast, the BITSS
method is successful for this potential. This is because the combina-
tion of distance and energy constraints allows BITSS to approach
a transition state from both below and above (by sliding down
a ridge).

FIG. 2. Trajectories of the bracketing methods on a hooked potential with a sin-
gle saddle point. The equation for this potential is provided in Appendix C 1. The
minimum energy pathway is shown by the dashed line.
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Furthermore, using both an energy and distance constraint
with BITSS provides improved efficiency over these methods which
each use just one of the constraints. In the case of DHS, fixing
one state in place and optimizing the other means that the amount
that the separation is reduced must be much smaller than BITSS to
ensure that it does not pass over the ridge. Meanwhile, in step and
slide, it is difficult to obtain a reasonable energy increment when the
two states are far from the transition state, leading to a larger than
a necessary number of iterations. In addition, restricting the min-
imization to a constant energy surface can result in a considerably
more complex method, as the states must be constantly projected
back onto this surface.

B. Comparison with chain-of-states methods
In contrast to BITSS, chain-of-states methods do not typically

find transition states directly. Instead, they are designed to find the
full pathway (or an approximation thereof), and a secondary method
can then be used to refine to the transition state. As we will demon-
strate, this strategy is successful for simple, linear pathways, but faces
two key challenges when the pathway is highly non-linear. First, for
such complex pathways, a large number of states are required to suf-
ficiently approximate the minimum energy pathway. The second is
that choosing a suitable initial interpolation can be problematic to
achieve. BITSS can be advantageous in both these regards, as only
two states are evolved, regardless of the pathway complexity, and no
initial interpolation is required.

Here, we compare the speeds of convergence of BITSS with
two widely used approaches for finding transition states that
employ chain-of-states methods: climbing image nudged elastic
band (CINEB)50 and DNEB with hybrid eigenvector following
(DNEB-HEVF).25 The core of these methods involves minimizing
the total energy of a chain of states, connected by elastic springs
to keep them equally spaced along the transition pathway. We fix
the two end-points at the minima, so the number of states that are
minimized is two fewer than the number of states in the chain.
CINEB modifies the method by altering the behavior of the state
with the highest energy. The direction of minimization on this state
is inverted along the pathway direction, effectively converting the
saddle point into a local minimum. Alternatively, DNEB-HEVF
involves first minimizing the chain of states until a convergence
criterion is met, and then performing a hybrid eigenvector follow-
ing from the highest energy state, moving uphill along the smallest
eigenvector of the Hessian until it reaches the transition state. For
completeness, we also combine the hybrid eigenvector following
with BITSS and include the results in the convergence comparison.
Additional implementation details for these methods are included in
Appendix D.

It is also possible to use the string method with a climbing
image29 or eigenvector following;51 although in this case, the results
are expected to be similar to the nudged elastic band methods. We
note that our aim in this section is to observe how the BITSS method
behaves for different systems, rather than providing a comprehen-
sive comparison of the currently available methods, which has been
performed in other works.52,53

Three diverse systems are used for this comparison, exhibiting
a broad range of energy landscapes. The first system is a two-
dimensional, seven-particle cluster, interacting via a Lennard-Jones

FIG. 3. The three systems used for comparison with chain-of-states methods.
These are (a) a Lennard-Jones seven-particle cluster, (b) cylindrical shell buck-
ling, and (c) wetting of a chemically striped surface. The configurations shown
correspond to the two minimum energy states and the transition state, marked by
an asterisk.

pair potential. This is a frequently used test system for studying tran-
sition rates.54,55 Here, the 14 degrees of freedom are the particle
coordinates. The characteristic transition shown in Fig. 3(a) sees a
particle rearrangement between two close-packed clusters.

The second system is an elastic cylindrical shell, modeled by
a triangulated mesh of nodes, which interact via extensional and
angular springs. The 35 400 degrees of freedom are the node coor-
dinates in three-dimensional space. The characteristic transition
in Fig. 3(b) shows the formation of a stable dimple from an ini-
tially unbuckled cylinder. This transition is essential to capture and
predict mechanical failure under strain.11,56

The final system involves a droplet situated on a chem-
ically striped surface with both hydrophilic and hydrophobic
regions. Droplet transitions on patterned surfaces such as this are
vital to understand as powerful bio-inspired liquid manipulation
strategies.57,58 In the example shown in Fig. 3(c), a droplet transi-
tions from two hydrophilic patches to one patch. Here, the system is
represented by a diffuse-interface model, in which the 40 000 degrees
of freedom are the local fluid compositions at each site of the dis-
cretized domain. The pathway for this example is highly non-linear
in the coordinate space because each degree of freedom only varies
when it is at the interface of the droplet. As a result, the initial
pathway for the chain-of-states methods cannot be a simple lin-
ear interpolation. Instead, the position of a semi-circular droplet is
interpolated between the two final positions.

The results for the three systems are shown in Table I. First,
we note that for all three systems, using the hybrid eigenvector fol-
lowing does not significantly improve the speed of BITSS. Indeed,
for buckling and especially wetting, HEVF is detrimental to perfor-
mance. Next, it is interesting to compare each method’s performance
between simple and complex pathways. In contrast to the wetting
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TABLE I. Number of potential gradient calculations required to reach the transition state for the three comparison examples.
The climbing image nudged elastic band (CINEB) and DNEB with hybrid eigenvector following (DNEB-HEVF) methods have
been run for different numbers of images. Convergence is determined to be when the root-mean-square of the gradient at
the estimate for the transition state is less than 10−4. The fields left blank indicate that the method has not converged to the
correct transition state.

DNEB-HEVF CINEB

System BITSS BITSS-HEVF 3 5 10 20 3 5 10 20

LJ-7 148 144 135 138 208 361 30 153 2000 1692
Buckling 12 866 14 446 73 694 7 315 6 242 12 094 ⋅ ⋅ ⋅ 8352 19 360 77 904
Wetting 12 100 17 262 17 840 17 721 20 221 48 286 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

transition’s highly non-linear pathway, the pathways of the LJ-7
rearrangement and the buckling system can be simply tracked fol-
lowing a gradual variation in the order parameters. For LJ-7, this is
the translation of atoms 5 and 6, and for buckling, this is the radial
displacement of the center of the dimple.11 For the simpler pathways,
BITSS is generally slower, but for the complex pathways, BITSS is
faster. Moreover, we see that for the wetting example, CINEB does
not converge to the transition state because the estimated tangent
vector is highly inaccurate due to the non-linearity of the pathway.

For situations where memory is limited, it is important to mini-
mize the number of images used. However, efficiently finding the TS
is challenging for both CINEB and DNEB-HEVF if too few images
are used, as observed for the cylindrical buckling with three images.
BITSS, on the other hand, converges using only two images.

C. Adaptive discretization
Adaptive remeshing and coarse-graining are widely used tech-

niques that we can utilize to further increase the efficiency of BITSS.
These techniques cause issues for most existing double-ended meth-
ods because the coupled states may end up with different degrees
of freedom. However, in BITSS, the only direct coupling is in the
distance measure, d(x1, x2), which is relatively easy to adapt. Here,
we demonstrate the use of adaptive remeshing by considering two
separate issues.

First, we show in Fig. 4(a) that BITSS is able to handle the
discretization adapting, and the number of degrees of freedom
changing, as the method runs. For this, we use the cylindrical buck-
ling example with the resolution increasing from 40 to 100 triangles
around the cylinder, corresponding to an increase from 1760 to
11 000 degrees of freedom. This demonstrates that BITSS is able to
converge to the transition state so long as the remeshing is not so
significant as to shift a state into the basin of attraction of the other
minimum.

In the second test, shown in Fig. 4(b), we demonstrate the use
of different meshes for the two states in the striped wetting example.
In this case, the distance measure is adapted by interpolating one
state onto the other mesh and computing the Euclidean distance.
However, for some applications, a simpler measure may be suffi-
cient, such as the difference between average values of the system.
Using this approach, BITSS is able to closely approach the transition
state. The precision of this convergence is now limited by the transi-
tion state energy differing slightly on each grid, but this effect will be
reduced when using an adaptive method or a higher resolution.

D. Complex landscapes
The final challenges we will address are those related to com-

plex landscapes that prove challenging for previous algorithms. The
first is the presence of flat regions in the landscape. Figure 5(a) shows
BITSS applied to a 2D landscape with two such regions (i and ii)
that are flat in the x-direction. We see BITSS is able to successfully
converge past these flat regions, even with one very close to the tran-
sition state (ii). In these regions, there are no driving forces due
to the potential and the energy constraint, which use purely local
information about the gradient. However, the distance constraint
continues to pull the states together, preventing them from getting
stuck. When only a single state has a zero-gradient mode then the
other is likely to slide down the potential slightly (iii), but the two

FIG. 4. Demonstration of BITSS addressing the challenges associated with adap-
tive remeshing. (a) Snapshots of the BITSS method for the buckling of a cylinder
with a changing mesh. The radial displacement relative to the unbuckled cylinder
is shown, as well as the underlying triangular mesh. (b) Snapshots for the striped
wetting example with different resolutions for the two states. Each grid cell denotes
50 × 50 lattice nodes. The zoomed axis shows the difference in the fluid interface
between the two final states, as well as the approximated transition state (solid
black line). This is compared with the transition state found using a high resolution
(dashed line).
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FIG. 5. Demonstration of BITSS applied to flat and discontinuous potentials. (a)
Energy profile of the BITSS pathway on a 2D potential with flat regions. Blue and
red dots denote the minima and transition states, respectively. Points of interest
are labeled by i–iii (see text). Top inset: A zoomed in view around the transition
state. Bottom inset: The pathway taken, with the edges of the flat regions marked
by dashed lines. (b) The discontinuous hard-core pair potential used in the seven-
particle cluster (orange). The standard Lennard-Jones potential is also shown in
gray. (c) Disconnectivity graphs of the energy landscapes for the seven-particle
cluster with the two potentials. The two graphs are offset for visibility.

states still remain either side of the dividing ridge, and hence, the
result is unaffected.

An additional consideration is the case where the potential
energy surface is flat at the top of the pathway. There are two
possibilities here, one is that the potential is flat in a direction per-
pendicular to the tangent of the pathway, such that the ridge is
level. In this case, BITSS is unaffected, and it will be able to con-
verge to some point along the ridge. An example of this is the
free global rotation and translation of the Lennard-Jones cluster
in Fig. 3(a). The other possibility is that the flat mode is in the
direction of the pathway. In this case, there is no single transition
state along the pathway, but instead a region. BITSS would be ill
suited in this situation because the equal-energy constraint would
not prevent the images from passing over the saddle and falling to a
minimum.

Finally, we investigate the application of BITSS to systems
with undefined gradients, such as when the landscape is discontin-
uous. To account for this, the equations for the coefficients must
be adapted to not depend upon the gradients, and a gradient-free
minimizer (simulated annealing) is used. These changes are detailed
in Appendix A. This has been tested using a seven-particle cluster
with a hard-core Lennard-Jones pair-potential, shown in Fig. 5(b),
which results in a discontinuous landscape. Using the gradient-free
approach, BITSS is able to successfully find the transition states,
allowing us to plot the disconnectivity graph of the system, shown
in Fig. 5(c). Compared with the results for the standard Lennard-
Jones cluster, the energies of the minima are largely unchanged,
but the energies of the transition states are found to be slightly

higher. This indicates that the particles in the Lennard-Jones cluster
cut the corner slightly as they transition, whereas this is not possi-
ble using the discontinuous potential, resulting in higher energies.
Despite this gradient-free method being feasible, it is worth noting
that a gradient-based approach is significantly more efficient, and so
should be preferred if possible.

IV. CONCLUSION
Overall, we have developed the Binary-Image Transition State

Search (BITSS) algorithm for the efficient location of transition
states in traditionally challenging landscapes. This has distinct
advantages for complex pathways owing to the lack of a required
initial pathway estimate, as well as the identification of the tran-
sition state that provides the overall energy barrier in multi-step
pathways. From the speed analysis, we find that the combination
of chain-of-states methods with single-ended transition state search
methods provides good performance for near-linear pathways, such
as for the Lennard-Jones cluster and cylindrical buckling examples
considered here. However, for highly complex and non-linear path-
ways, as exhibited by the striped wetting example, BITSS is superior.
Indeed, the demonstrated speed and memory-efficiency will be key
as we move toward studying larger and more complex systems using
BITSS.

A second source of efficiency in the BITSS method comes from
the ability to adaptively change the degrees of freedom as the algo-
rithm proceeds. We demonstrated how transition states could be
found by both increasing the resolution upon convergence, and cou-
pling systems with different discretizations. The ease of coupling two
copies of a system and adaptive remeshing, now leads to the possi-
bility of incorporating BITSS into existing open-source optimization
methods, such as surface evolver59 or finite element methods,60 to
provide important energy barrier functionality.

Finally, we showed how BITSS can be used to survey discon-
tinuous energy landscapes, demonstrated for a system of attractive
hard-core particles. This opens up possibilities for studying a broad
range of systems previously out of reach of conventional land-
scape methods, but where transition information is valuable. These
include systems with very short range interactions, such as in col-
loidal clusters, or hard contact forces, such as in the folding of elastic
materials, or locomotion and environmental interaction in robotics.

The distance metric between the two BITSS images is inter-
esting to analyze further. One question that emerges is whether
transition states can be located by coupling two images through
a small number of collective properties, rather than the total dis-
tance between all degrees of freedom in the system. A second
question concerns landscapes with multiple competing pathways
between states. In such cases, it may be possible to access transition
states different from the most direct one by using a biased distance
metric. A further investigation that is now open to pursue is when
discontinuities in the landscape occur at “stationary points” (now
properly referred to as critical points). In this case, a transition state
can no longer be defined by its Hessian eigenvalues, but instead is
more broadly defined as a region of locally minimal energy that
separates two basins of attraction to minima. Overall, it will be inter-
esting to explore how BITSS enables access to even more challenging
landscapes, and those not yet amenable to traditional landscape
exploration techniques.
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SUPPLEMENTARY MATERIAL

See the supplementary material for derivations of the expres-
sions of the constraint coefficients in Eqs. (4) and (5) and the
demonstration of the BITSS method applied to a path with multiple
transition states.
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APPENDIX A: BITSS: CHANGES FOR UNDEFINED
GRADIENTS

A couple of alterations to the method must be made to account
for situations where the gradients are unknown. First, the calculation
of κd in Eq. (5) must be adapted to avoid the use of gradients. This
can be done by simply removing the first term and just using the sec-
ond term in the equation. Secondly, L-BFGS can no longer be used
because it requires knowledge of the gradients. We must instead use
a minimizer that does not require a differentiable optimization func-
tion, for which we use simulated annealing.61 This has a chance of
randomly jumping one state over the dividing barrier, but we can
reduce this probability by limiting the initial temperature and max-
imum random displacement. We typically employ T0 = EB/10, and
dmax = d(x1, x2)/100.

APPENDIX B: ADAPTIVE DISCRETISATION TEST
DETAILS

Here we provide the details for the interpolations and map-
ping involved in the two examples demonstrating the feasibility of
using an adaptive discretization method. For the cylindrical buckling
example with a changing mesh, the resolution is refined each time

the separation between the two states has halved, and is performed
at the end of each iteration of the BITSS method. This involves
the number of triangles around the circumference of the cylin-
der increasing along the sequence: 40→ 60→ 80→ 100; with the
number of degrees of freedom increasing by 1760→ 3960→ 7040
→ 11 000. The positions of the nodes on the new grid, {ni}, are
determined by linear interpolation from the previous grid {pi},
using the positions of the unbuckled meshes, {n′i} and {p′i}. For
each node of the new grid, n′i, the triangle that contains it is
first identified, which we will denote {p′1, p′2, p′3}, and the barycen-
tric coordinates of the point are computed, {λ1, λ2, λ3}. The new
position is then given by ni = λ1p1 + λ2p2 + λ3p3.

In the wetting example with different resolutions for the two
states, the distance is obtained by first mapping the phase field from
the higher resolution grid, {ϕk,l∣k, l ∈ {0, 1, . . . , 399}}, to the low res-
olution grid, {ϕ′i,j∣i, j ∈ {0, 1, . . . , 199}}. Because a square grid is used
with a resolution ratio of two, the mapping involves averaging each
2 × 2 block to a single point:

ϕ′i,j =
1
4
(ϕ2i,2j + ϕ2i+1,2j + ϕ2i,2j+1 + ϕ2i+1,2j+1). (B1)

Then, the separation from the other state, {ϕ̃i,j}, is computed using
the two-norm,

d =
¿
Á
ÁÀ∑

i,j
(ϕ′i,j − ϕ̃ i,j)

2
. (B2)

Finally, the gradient of the distance with respect to each point must
be mapped back to the higher-resolution grid, which is done by
assigning a quarter of each component back to its the original four
points:

∂d
∂ϕk,l

=
∂ϕ′i,j
∂ϕk,l

∂d
∂ϕ′i,j

=
1
4

∂d
∂ϕ′i,j

=
1
4

ϕ′i,j − ϕ̃i,j

d
, (B3)

where k ∈ {2i, 2i + 1} and l ∈ {2j, 2j + 1}.

APPENDIX C: ENERGY AND GRADIENT EXPRESSIONS
FOR THE EXAMPLE SYSTEMS
1. 2D potentials

The 2D potentials in Figs. 1 and 2 use a sum of Gaussian poten-
tials, Eq. (C1), the parameters for which are provided in Tables II
and III,

E(x, y) =∑
i

ai exp(−
(x − bx,i)

2

cx,i
−
(y − by,i)

2

cy,i
). (C1)

TABLE II. Parameters for the Gaussians to produce the potential used in Fig. 1.

a bx by cx cy

−3 −1.4 0 1 1
−2 1.4 0 1 1
−1 0.07 1 1 1
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TABLE III. Parameters for the Gaussians to produce the potential used in Fig. 2.

a bx by cx cy

−1 0 0 10 10
1 0 0 1 1
5 2 0 1 0.1
−1 1 1 0.1 0.1
−1 1 −1 0.1 0.1

0.01 0 0 1 1
0.5 −2 0 1 1

2. Particle cluster system
In the particle cluster example system, the Lennard-Jones

potential is used for the interaction between each pair of particles.
Therefore, the potential and its gradient for each pair of particles are

E = 4ϵ[(
σ
r
)

12
− (

σ
r
)

6
], (C2)

∂E
∂x1
= −

∂E
∂x2
=

24ϵ(x2 − x1)

r2 [2(
σ
r
)

12
− (

σ
r
)

6
], (C3)

where x1 and x2 are the positions of the two particles, r is their
separation, ϵ is the interaction strength, and σ is the particle radius.

3. Cylindrical buckling system
A 2D triangular mesh is used to model the cylindrical buck-

ling system, with the ends of the cylinder fixed in place to apply an
axial compression of 0.14%. The energy of the system is evaluated
by treating all bonds in the mesh as an elastic spring to obtain the
stretching energy, and all pairs of adjacent triangles to be connected
by elastic hinges, providing the bending energy. Their expressions
are given by

E =∑
i

kS
i (ri − r0

i )
2
+∑

j
kB

j [1 + cos(θj − θ0
j )]. (C4)

The first term is the stretching energy, where ri is the length, r0
i is the

equilibrium length, and kS
i is the stretching rigidity of bond i. The

second term provides the bending energy, where θj is the dihedral
angle, θ0

j is the equilibrium angle, and kB
j is the bending rigidity of

hinge j.
The gradient of the energy can be obtained by individually con-

sidering the stretching and bending energies of a single bond and
hinge. For simplicity, we will ignore the index for the bond and
hinge. Using the variables shown in the schematic in Fig. 6, the gra-
dient of the stretching energy of the bond between x2 and x3 is given
by

∂ES

∂x2
= −

∂ES

∂x3
= 2kS

(r − r0
)(x2 − x3). (C5)

The gradients of the bending energy of the hinge are

∂EB

∂x1
= kB sin(θ − θ0

)
n̂a

ha
, (C6)

FIG. 6. Schematic of the bar and hinge model showing the relevant parameters
for a single hinge element. hi and n̂i denote the height and unit normal of each
triangle, respectively.

∂EB

∂x2
= −kB sin(θ − θ0

)[
n̂a

ha
+

n̂a + n̂b

r
], (C7)

∂EB

∂x3
= −kB sin(θ − θ0

)[
n̂b

hb
+

n̂a + n̂b

r
], (C8)

∂EB

∂x4
= kB sin(θ − θ0

)
n̂b

hb
. (C9)

4. Striped wetting system
This is modeled on a 200 × 200 2D grid (and 400 × 400 in

Sec. III C) using a phase-field model,14 which has an order para-
meter, ϕ(r), representing the phase of the liquid (ϕ = −1 for gas,
ϕ = 1 for liquid). The energy functional has four separate terms,

E[ϕ] = EB
[ϕ] + EI

[ϕ] + ES
[ϕ] + EV

[ϕ]. (C10)

The first term, EB, uses a double well potential to set values of ϕ = ±1
in the bulk. The second term then provides the interfacial energy
between the liquid and gas by imposing an energy penalty to gra-
dients in ϕ. ES is the solid–liquid interaction energy, which sets
the contact angles of the hydrophilic and hydrophobic regions to
60○ and 110○, respectively. Finally, EV constrains the volume of the
liquid drop by penalizing any variation from the target volume.

These four sections of the phase-field model are obtained using
the following equations:

EB
[ϕ] =∑

i

1
ϵ
(

ϕi
4

4
−

ϕi
2

2
+

1
4
)ΔV , (C11)

EI
[ϕ] =∑

i

ϵ
2
∣∇ϕi∣

2ΔV , (C12)

ES
[ϕ] =∑

j

√
2 cos θj(

ϕj
3

6
−

ϕj

2
−

1
3
)ΔS, (C13)
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EV
[ϕ] = kV[∑

i

ϕi + 1
2

ΔV − V0]

2

, (C14)

where the index i includes all of the nodes, while j represents the
nodes along the solid surface. ΔV and ΔS are, respectively, the
volume and solid surface areas contained by each individual node.
ϵ is the liquid–gas interface width (set to 2.5 lattice units), θj is
the contact-angle with the solid surface, and V0 is the constrained
volume of the liquid drop. The strength of the volume constraint is
parameterized by kV for which we use a value of 104. The gradients
of these terms are given by

∂EB

∂ϕi
=

1
ϵ
(ϕi

3
− ϕi)ΔV , (C15)

∂EI

∂ϕi
=

ϵ
2
[
∂∣∇ϕi∣

2

∂ϕi
+∑

k

∂∣∇ϕk∣
2

∂ϕi
]ΔV , (C16)

∂ES

∂ϕj
=
√

2 cos θj(
ϕj

2

2
−

1
2
)ΔS, (C17)

∂EV

∂ϕi
= kV[∑

i′

ϕi′ + 1
2

ΔV − V0]ΔV , (C18)

where index k denotes neighboring nodes at which the evaluation of
the gradient uses ϕi.

APPENDIX D: IMPLEMENTATION DETAILS
FOR THE CINEB, DNEB-HEVF, AND BITSS-HEVF
METHODS

The spring constants used to connect the states in the CINEB
and DNEB methods are system dependent. They are chosen such
that they keep the states equidistant without overwhelming the
gradients arising from the potential energy landscapes under con-
sideration. We employ 10−1 for the Lennard-Jones particle cluster,
10−2 for the cylindrical buckling example, and 10−6 for the striped
wetting system.

When the hybrid eigenvector following is combined with BITSS
or DNEB, we need to set out criteria to determine when the double-
ended method has sufficiently converged, at which point the hybrid
eigenvector following method begins. For BITSS, the criterion is
when the average of the two states changes by less than a tenth of
the reduction in the separation given by Eq. (1) during a BITSS step.
For DNEB, the root-mean-square of the total energy gradient of
the chain of states is used with a convergence criterion of 10−3 for
the particle cluster and cylindrical buckling systems, and 10−5 for
the striped wetting. We employ the hybrid eigenvector following the
method implemented in the program OPTIM.62
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