Aminolipids elicit functional trade-offs between competitiveness and bacteriophage attachment in Ruegeria pomeroyi

Stirrup, Rachel, Mausz, Michaela A., Silvano, Eleonora, Murphy, Andrew, Guillonneau, Richard, Quareshy, Mussa, Rihtman, Branko, Ferretjans, Maria Aguilo, He, Ruo, Todd, Jonathan D., Chen, Feng, Scanlan, David J. and Chen, Yin (2022) Aminolipids elicit functional trade-offs between competitiveness and bacteriophage attachment in Ruegeria pomeroyi. The ISME Journal. ISSN 1751-7362

[thumbnail of s41396-022-01346-0]
Preview
PDF (s41396-022-01346-0) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

Lipids play a crucial role in maintaining cell integrity and homeostasis with the surrounding environment. Cosmopolitan marine roseobacter clade (MRC) and SAR11 clade bacteria are unique in that, in addition to glycerophospholipids, they also produce an array of amino acid-containing lipids that are conjugated with beta-hydroxy fatty acids through an amide bond. Two of these aminolipids, the ornithine aminolipid (OL) and the glutamine aminolipid (QL), are synthesized using the O-acetyltransferase OlsA. Here, we demonstrate that OL and QL are present in both the inner and outer membranes of the Gram-negative MRC bacterium Ruegeria pomeroyi DSS-3. In an olsA mutant, loss of these aminolipids is compensated by a concurrent increase in glycerophospholipids. The inability to produce aminolipids caused significant changes in the membrane proteome, with the membrane being less permeable and key nutrient transporters being downregulated while proteins involved in the membrane stress response were upregulated. Indeed, the import of 14C-labelled choline and dimethylsulfoniopropionate, as a proxy for the transport of key marine nutrients across membranes, was significantly impaired in the olsA mutant. Moreover, the olsA mutant was significantly less competitive than the wild type (WT) being unable to compete with the WT strain in co-culture. However, the olsA mutant unable to synthesize these aminolipids is less susceptible to phage attachment. Together, these data reveal a critical role for aminolipids in the ecophysiology of this important clade of marine bacteria and a trade-off between growth and avoidance of bacteriophage attachment.

Item Type: Article
Uncontrolled Keywords: sdg 14 - life below water ,/dk/atira/pure/sustainabledevelopmentgoals/life_below_water
Faculty \ School: Faculty of Science > School of Biological Sciences
Depositing User: LivePure Connector
Date Deposited: 20 Dec 2022 11:31
Last Modified: 26 Dec 2022 01:51
URI: https://ueaeprints.uea.ac.uk/id/eprint/90318
DOI: 10.1038/s41396-022-01346-0

Actions (login required)

View Item View Item