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Key Points14

• CMIP6 models show that emergence of anomalous average annual temperatures will oc-15

cur earliest and strongest in tropical low latitudes.16

• Changes to forcings and model responses cause signal-to-noise ratios to increase com-17

pared to CMIP5, with notable exceptions in some highly populated regions.18

• The tropics are disproportionately home to lower-income nations, which are also pro-19

jected to experience higher population growth under the Shared Socio-economic Path-20

ways (SSP).21

Abstract22

The Coupled Model Intercomparison Project Phase 6 (CMIP6) model ensemble projects cli-23

mate change emerging soonest and most strongly at low latitudes, regardless of the emissions24

pathway taken. In terms of signal-to-noise (S/N) ratios of average annual temperatures, these25

models project earlier and stronger emergence under the Shared Socio-economic Pathways26

(SSPs) than the previous generation did under corresponding Representative Concentration27

Pathways (RCPs). Spatial patterns of emergence also change between generations of models;28

under a high emissions scenario, mid-century S/N is lower than previous studies indicated in29

Central Africa, South Asia, and parts of South America, West Africa, East Asia, and West-30

ern Europe, but higher in most other populated areas. We show that these global and re-31

gional changes are caused by a combination of higher effective climate sensitivity (ECS) in the32

CMIP6 ensemble, as well as changes to emissions pathways, component-wise effective radiative33

forcing (ERF), and region-scale climate responses between model generations. We also present34
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the first population-weighted calculation of climate change emergence for the CMIP6 ensem-35

ble, quantifying the number of people exposed to increasing degrees of abnormal temperatures36

now and into the future. Our results confirm the expected inequity of climate change-related37

impacts in the decades between now and the 2050 target for net-zero emissions held by many38

countries. These findings underscore the importance of concurrent investments in both mitiga-39

tion and adaptation.40

1 Introduction41

Achieving net-zero emissions by the mid-2050s is required to limit global warming to less than42

1.5 K (with limited overshoot) (IPCC, 2022), and several countries have set net-zero targets43

for the decade 2041-2050 (Hale et al., 2022). Whether or not substantive action is taken to44

reduce emissions, the climate will continue to change until the point net-zero emissions are45

reached (Allen et al., 2009, Zickfeld et al., 2012, MacDougall et al., 2020). Understanding46

when and how the climate change signal emerges from the noise of natural variation during47

this period is important for assessing the likely impacts of climate change and how to miti-48

gate, prepare for, and adapt to them.49

Signal-to-noise ratio is an established metric for emergence (Hawkins and Sutton, 2012, Frame50

et al., 2017, Hawkins et al., 2020). S/N has commonly been applied to seasonal or longer-term51

average temperatures to assess when and how the impacts of climate change will be experi-52

enced, indicated by the time at which areas exceed S/N thresholds or the magnitude of the53

S/N ratio at a given time (e.g. Mahlstein et al., 2011, Hawkins and Sutton, 2012). This ap-54

proach has also been applied to projections of precipitation, drought, and ocean parameters55

(Giorgi and Bi, 2009, King et al., 2015, Chen et al., 2021 Section 1.4.2.2), and to observa-56

tional data (Mahlstein et al., 2012, Hawkins et al., 2020). Annual average temperature signal-57

to-noise has been found to be strongest in the tropics due to the lower internal variability in58

these regions (Figure S1, Mahlstein et al., 2011, Harrington et al., 2017). Because local ecosys-59

tems are adapted to the lower variability in these regions, the same increase in annual tem-60

peratures can lead to greater impacts (Walther et al., 2002, Williams et al., 2007, Beaumont61

et al., 2011, Mora et al., 2013). We note that emergence occurs much sooner in average an-62

nual temperatures than, say, monthly or daily, due to smaller internal variability as timescales63

lengthen (Harrington, 2021).64

Frame et al., 2017 analysed data from 25 models in the Coupled Model Intercomparison Project,65

phase 5 (CMIP5) alongside population data to assess when the world would be exposed to an-66

nual average temperatures that crossed S/N ratio thresholds (i.e. numbers of standard devi-67

ations from the mean) of 1, 2, and 3, relative to a recent baseline of 1986-2005. The authors68

designated these thresholds “unusual”, “unfamiliar”, and “unknown” climates, respectively.69

They found that the world’s population would be exposed to different climates faster than the70

surface area on average and that the changes would be experienced earlier and more severely71

in lower-income regions. Hawkins et al., 2020 added the designation “inconceivable” for S/N72

values above 5.73

Many updates have been made to the ensemble of global climate models between CMIP5 and74

CMIP6. These include increased resolution, more participating models, and updated param-75

eterisations of sub-gridcell-scale physical processes that more closely align with the latest un-76

derstanding of climate drivers such as radiative transfer, cloud microphysics, aerosol chem-77
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istry, sea ice dynamics, land cover, and stochasticity (Chen et al., 2021 Section 1.5.3.1, Eyring78

et al., 2021 Section 3.8.2). These have led to better agreement with observational datasets and79

reanalyses (Bock et al., 2020). Past warming over the instrumental period is often well simu-80

lated by these models, with the multi-model average being close to the best estimate from ob-81

servations and reanalyses (Arias et al., 2021), although many higher sensitivity models strug-82

gle to simulate aspects of the satellite period and deep-time paleoclimate periods (Bock et al.,83

2020, Kageyama et al., 2021, Otto-Bliesner et al., 2021). CMIP6 models exhibit a wider range84

of effective climate sensitivity (ECS), primarily due to updates in the representation of extrat-85

ropical cloud feedbacks and aerosol interactions (Meehl et al., 2020, Zelinka et al., 2020). Such86

a range of model responses represents the main source of uncertainty for projections of future87

temperatures under high-emissions scenarios, whereas uncertainty in the effects of short-lived88

forcings like aerosols dominate for low-emissions scenarios (Arias et al., 2021). The emissions89

pathways specified for the SSPs for CMIP6 were not intended to reproduce those in the RCPs90

for CMIP5 (O’Neill et al., 2016), though the net radiative forcing is very similar over time in91

corresponding scenarios (Gidden et al., 2019). However, forcing due to individual components92

can be considerably different due to the different emissions pathways of each (see Meinshausen93

et al., 2020 and Figure S2). Considering the changes in greenhouse gas emissions pathways94

between CMIP5 and CMIP6, the CMIP6 scenarios exhibit higher projected CO2 emissions rel-95

ative to their CMIP5 counterparts for most of the century. CH4 emissions are slightly higher96

for SSP1-2.6 and SSP2-4.5, and considerably lower for SSP5-8.5. N2O emissions are generally97

lower for all scenarios, particularly so in SSP5-8.5. The net effect of these changes isn’t imme-98

diately apparent, and will differ from model to model and across timescales.99

Considering aerosol emissions, the CMIP6 ensemble exhibits a greater spread in projected100

emissions across scenarios (Gidden et al., 2019). SO2 emissions are generally lower in SSP1-2.6101

and generally higher in SSP2-4.5 and SSP5-8.5, while black carbon (BC) emissions are gener-102

ally lower in SSP1-2.6, higher in SSP5-8.5, and vary in SSP2-4.5. Aerosols are not well-mixed103

in the atmosphere, and so have regional impacts on temperature. Recent studies have assessed104

the forcing due to aerosols prescribed for CMIP6, taking into account transport (e.g. Lund105

et al., 2019), though directly comparable studies between model generations that account for106

differing model responses are not yet available.107

The CMIP5 model ensemble exhibited systematic biases in their response to climate forc-108

ings, including a warm bias in the Southern Ocean attributed to deficiencies in cloud pro-109

cesses (Hyder et al., 2018). Modelling groups implemented different improvements to address110

biases, such as new planetary boundary layer and convection schemes in the NASA GISS111

model (Stanfield et al., 2015), updated aerosol optical properties and natural emission rates in112

CanESM5 (Swart, Cole, et al., 2019), and including aerosol indirect effects in BCC-CSM (Wu113

et al., 2019). These changes have resulted in improved agreement with observations in aerosol-114

and cloud-related metrics (Cherian and Quaas, 2020), but quantifying overall improvement115

between model generations remains challenging (Szopa et al., 2021 Section 6.4). Models’ re-116

sponses to individual forcing agents can, however, be quantified in terms of effective radiative117

forcing (ERF), a simulation-derived measure of the effect of an agent on the earth’s radiative118

budget.119

Here, we present an analysis of population-based exposure to unusual climates, updating the120

approach used in Frame et al., 2017 with results from CMIP6. The SSPs provide projections121

for country-level population estimates that vary over time and scenario. This level of detail122
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was not available for the RCPs. We show how the climatic and population changes projected123

in the SSPs interact, how analysis using these updated data compares to the findings of earlier124

studies, and what factors cause the observed changes.125

2 Methods126

We obtained monthly average temperature climate model output data from the World Cli-127

mate Research Programme’s CMIP (Phase 6) (Eyring et al., 2016). We selected five scenarios128

from ScenarioMIP (O’Neill et al., 2016) that span the range of future outcomes: SSP1-1.9,129

SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Three of these have corresponding scenarios130

from the previous generation of RCPs: RCP2.6, RCP4.5, and RCP8.5. Other scenarios rep-131

resented by fewer than 15 models were excluded. The first two SSP scenarios (SSP1-1.9 and132

SSP1-2.6) result in global warming of approximately 1.5 and 2.0 K at 2100, respectively, in133

line with Paris Climate Agreement targets. Results for all scenarios plus the historical and134

pre-industrial control (piControl) simulations were available for 37 climate models, with the135

exception of SSP1-1.9, for which only 15 models’ results were available. The CMIP6 models136

used are listed in Table 1.137

For comparison, we analysed results for 29 climate models from the CMIP5 generation that138

used the RCPs (Taylor et al., 2012), listed in Table 2. To assess the statistical significance of139

changes between model ensembles, we applied a two-sided student’s T-test with a 90% thresh-140

old at each gridpoint and adjusted the threshold to account for spatial autocorrelation using141

a False Discovery Rate (FDR) control procedure, following Wilks, 2016. To help diagnose142

the causes of changes between CMIP generations, we also repeated the analysis using the 25143

CMIP6-era models with published ECS within the same range as CMIP5-era models (2.08-144

4.67 K). We selected these 25 models based on ECS values published by Meehl et al., 2020;145

Nijsse et al., 2020; Schlund et al., 2020; and Zelinka et al., 2020. ECS values were not pub-146

lished for three of the 37 models, which we excluded. Fyfe et al., 2021 used two generations147

of the CanESM model to disentangle the effects of changes in the model parameterisation and148

the forcings applied from CMIP5 to CMIP6, finding that the different forcings have signif-149

icant impacts. We similarly disentangled causes for the observed differences by calculating150

signal and noise on three sets of results: CanESM2 run on CMIP5 forcings, CanESM5 run on151

CMIP5 forcings, and CanESM5 run on CMIP6 forcings.152

We processed monthly mean, near-surface (2 m) air temperature data to create continuous153

timeseries from January 1850 to December 2100. We defined noise and signal following Frame154

et al., 2017: noise at each gridpoint is the standard deviation in annual temperatures from the155

last 200 years of each model’s piControl simulation, and signal is degrees Kelvin change from156

a 1986-2005 baseline. We additionally de-trended the piControl data before calculating noise,157

as we found that multiple models exhibited unexpected, statistically significant trends in an-158

nual temperatures, possibly due to insufficient spin-up time in the control simulation (Figure159

S3). The choice of baseline will affect results, with higher S/N ratios for earlier baselines. Our160

choice of a relatively recent baseline aligns with prior work and expresses change relative to161

living memory for a large proportion of the world’s population. We tested sensitivity to this162

choice by alternatively using an earlier baseline of 1961-1990. Signal, noise, and signal-to-noise163

are calculated for each realisation of a given model and emissions scenario before averaging164

across realisations. The global mean surface temperature (GMST) signal (change in annual165

average GMST since this same baseline) against which local data are regressed is smoothed166
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Model
SSP Experiments

ECS Reference
1-1.9 1-2.6 2-4.5 3-7.0 5-8.5

ACCESS-CM2 0 3 3 3 3 4.72 Dix et al., 2019

ACCESS-ESM1-5 0 10 19 10 10 3.87 Ziehn et al., 2019

AWI-CM-1-1-MR 0 1 1 5 1 3.16 Semmler et al., 2019

BCC-CSM2-MR 0 1 1 1 1 3.04 Xin et al., 2019

CAMS-CSM1-0 2 2 2 2 2 2.29 Rong, 2019

CanESM5 50 50 50 50 50 5.62 Swart, Cole, et al., 2019

CAS-ESM2-0 0 2 2 2 2 3.51 Chai, 2020

CESM2 0 3 3 3 3 5.16 Danabasoglu, 2019a

CESM2-WACCM 0 1 5 3 5 4.75 Danabasoglu, 2019b

CMCC-CM2-SR5 0 1 1 1 1 3.52 Lovato and Peano, 2020

CMCC-ESM2 0 1 1 1 1 - Lovato et al., 2021

CNRM-CM6-1 0 6 10 6 6 4.83 Voldoire, 2019a

CNRM-CM6-1-HR 0 1 1 1 1 4.28 Voldoire, 2019b

CNRM-ESM2-1 5 5 10 5 5 4.76 Seferian, 2019

EC-Earth3 10 11 11 11 18 4.30 Consortium (EC-Earth), 2019a

EC-Earth3-Veg 3 7 8 6 8 4.31 Consortium (EC-Earth), 2019b

EC-Earth3-Veg-LR 3 3 3 3 3 - Consortium (EC-Earth), 2020

FGOALS-f3-L 0 1 1 1 1 3.00 Yu, 2019

FGOALS-g3 1 4 4 5 4 2.88 Li, 2019

GFDL-ESM4 1 1 3 1 1 2.60 John et al., 2018

GISS-E2-1-G 6 11 20 18 11 2.72 NASA/GISS, 2020a

GISS-E2-1-H 2 10 10 6 10 3.11 NASA/GISS, 2020b

IITM-ESM 0 1 1 1 1 - Panickal and Narayanasetti, 2020

INM-CM4-8 0 1 1 1 1 1.83 Volodin et al., 2019a

INM-CM5-0 0 1 1 5 1 1.92 Volodin et al., 2019b

IPSL-CM6A-LR 6 6 11 11 6 4.56 Boucher et al., 2019

KACE-1-0-G 0 3 3 3 3 4.48 Byun et al., 2019

MCM-UA-1-0 0 1 1 1 1 3.65 Stouffer, 2019

MIROC-ES2L 4 10 30 10 3 2.68 Tachiiri et al., 2019

MIROC6 1 10 50 3 50 2.61 Shiogama et al., 2019

MPI-ESM1-2-HR 0 2 2 10 2 2.98 Schupfner et al., 2019

MPI-ESM1-2-LR 0 8 10 10 7 3.00 Wieners et al., 2019

MRI-ESM2-0 1 1 10 5 1 3.15 Yukimoto et al., 2019

NorESM2-LM 0 1 3 3 1 2.54 Seland et al., 2019

NorESM2-MM 0 1 2 1 1 2.50 Bentsen et al., 2019

TaiESM1 0 1 1 1 1 4.31 Lee and Liang, 2020

UKESM1-0-LL 5 16 17 16 5 5.34 Good et al., 2019

Table 1: Number of realisations analysed for CMIP6 models. ECS values in bold are within the CMIP5

range of 2.08-4.67 K. Shaded cells indicate models with aerosol optical depth data used in the analysis.

using a fourth-order polynomial fit. We tested sensitivity to this smoothing approach by al-167

ternatively using two other techniques: a 20-year rolling average and a 41-year lowess filter,168

as per Hawkins et al., 2020. We compared results against a global one-eighth degree gridded169

population dataset with projections for each of the SSPs (Jones and O’Neill, 2016, v1.01). For170

the RCPs, we applied the population pathway of the corresponding SSP. Data processing is171

further described in Supplementary Data.172

Following the categorisations in Frame et al., 2017, we assessed exposure to signal-to-noise173

thresholds for different socioeconomic and geographic groupings of countries. These groupings174

are outlined in Table 3. There is some overlap between groupings (e.g. Indonesia is in both175

Association of Southeast Asian Nations and Global Emerging Markets).176
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Model
RCP Experiments

ECS References
2.6 4.5 8.5

BNU-ESM 1 1 1 4.04 Ji et al., 2014

CCSM4 6 6 6 2.94 Meehl et al., 2012

CESM1-CAM5 3 3 3 - Gent et al., 2011

CESM1-WACCM 3 3 3 - Calvo et al., 2012

CNRM-CM5 1 1 5 3.25 Voldoire et al., 2013

CSIRO-Mk3-6-0 10 10 10 4.09 Rotstayn et al., 2012

CanESM2 5 5 5 3.70 Arora et al., 2011

EC-EARTH 2 11 8 - Hazeleger et al., 2012

FGOALS-g2 1 1 1 3.38 Li et al., 2013

FIO-ESM 3 3 3 - Qiao et al., 2013

GFDL-CM3 1 3 1 3.97 Donner et al., 2011

GFDL-ESM2G 1 1 1 2.43
Dunne et al., 2012

GFDL-ESM2M 1 1 1 2.44

GISS-E2-H 3 16 5 2.31
Schmidt et al., 2006

GISS-E2-R 3 17 5 2.12

HadGEM2-AO 1 1 1 - Martin et al., 2011

HadGEM2-ES 4 4 4 4.61 Collins et al., 2011

IPSL-CM5A-LR 4 4 4 4.13
Dufresne et al., 2013

IPSL-CM5A-MR 1 1 1 4.12

MIROC-ESM 1 1 1 4.67
S. Watanabe et al., 2011

MIROC-ESM-CHEM 1 9 1 -

MIROC5 5 5 5 2.72 M. Watanabe et al., 2010

MPI-ESM-LR 3 3 3 3.63
Giorgetta et al., 2013

MPI-ESM-MR 1 3 1 3.46

MRI-CGCM3 1 1 1 2.61 Yukimoto et al., 2012

NorESM1-M 1 1 1 2.80
Iversen et al., 2013

NorESM1-ME 1 1 1 -

bcc-csm1-1 1 1 1 2.83
Wu, 2012

bcc-csm1-1-m 1 1 1 2.89

Table 2: Number of realisations analysed for CMIP5 models. Shaded cells indicate models with aerosol

optical depth data used in the analysis.

Group Full name States Approx. 2010

population

Description

ASEAN Association of Southeast

Asian Nations

10 650,000,000

AOSIS Alliance of Small Island

States

39 61,000,000

GEM Global Emerging

Markets

23 3,700,000,000 Those countries in the G20

that are not in OECD90

LDC Least Developed

Countries

58 1,500,000,000 Countries with 2020

Human Development

Indices lower than India’s

(Conceição, 2020)

OECD90 Organisation for

Economic Co-operation

and Development (1990)

24 1,000,000,000 Member states of the

OECD as of 1990

Table 3: Country groupings

3 Results and Discussion177

3.1 Mid-century signal-to-noise178

Figure 1 depicts the geospatial emergence of temperature signal-to-noise in the mid-twenty-179

first century, 2040-2060 (M21C). The findings are qualitatively similar to previous studies that180 6
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Figure 1: Multi-model signal-to-noise ratios in 2040-2060 average annual temperatures. From left to

right, the columns show the 16th, 50th (median), and 84th percentile results across models, and the

fourth column shows country-averaged S/N (median) in population-weighted cartograms. The rows,

from top to bottom, show results for SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. Since

both S and N have dimensions of K, S/N is dimensionless, but can be expressed as multiples of the

noise (i.e. numbers of standard deviations, σ). Colours correspond to the named S/N ratio thresholds

of 1, 2, 3, and 5, i.e. “unusual”, “unfamiliar”, “unknown”, and “inconceivable” climates.

used earlier model generations (e.g. Mahlstein et al., 2011, Hawkins and Sutton, 2012, Frame181

et al., 2017) in that S/N is most pronounced in low latitudes due in large part to these areas’182

low inter-annual variation (noise) in annual mean temperatures. Despite the greater absolute183

warming near the poles, these regions also exhibit higher noise, resulting in comparatively low184

S/N ratios (e.g. Hawkins et al., 2020). See Figure S1 for noise and signal calculated individ-185

ually. In low and mid-latitudes, both signal and noise are greater over land than the adjacent186

ocean, resulting in less land/sea contrast for S/N than for signal or noise individually. Scenar-187

ios with higher radiative forcing exhibit predictably higher M21C S/N across all regions.188

These results hold qualitatively when signal-to-noise is computed for the warmest monthly av-189

erage temperatures each year instead of annual average (Figure S4), though the magnitude190

is depressed due to higher variation in monthly temperatures, especially over land. Figure S5191

shows equivalent results for CMIP5 models and RCPs, and Figure S6 shows equivalent results192

for the late-twenty-first century period of 2071-2100 used in previous studies. Using the ear-193

lier baseline of 1961-1990 uniformly increases signal across the globe in all scenarios, due to194

the lower GMST at that time (not shown). The results are slightly sensitive to the GMST195
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smoothing technique. Using the alternative 41-year lowess filter approach resulted in faster196

apparent emergence. Global-average M21C S/N is 12% higher for SSP1-1.9 and 4% higher for197

SSP5-8.5 using this approach. However, similar changes apply to the RCPs, and the spatial198

patterns of emergence remain unchanged. We report results using the 4th-order polynomial199

approach throughout.200

The range of results across the ensemble of models is represented in Figure 1 by the columns201

with the 16th, 50th, and 84th percentile results. The 16/50/84th-percentile S/N values are cal-202

culated and displayed at each gridpoint, as opposed to showing all gridpoints for the model203

with 16/50/84th-percentile global-average S/N values. Comparing results across columns in204

Figure 1 thus provides a conservative estimate of model uncertainty. See Figure S7 for the205

percent of gridpoints represented by each model in the 16/50/84th-percentile plots. More sen-206

sitive models are more represented in the 84th-percentile plot and less sensitive models in the207

16th-percentile plot, but most models contribute data to all plots. There is generally a bigger208

difference in S/N between results in adjacent columns than between those in adjacent rows,209

which are representative of scenario uncertainty. While other percentiles and scenarios could210

validly be chosen, this indicates that model uncertainty is comparable to or greater than sce-211

nario uncertainty as of mid-century. Scenario and model uncertainties have been found to be212

equal at around 50 years from outset when calculating global, long-term, mean near-surface213

air temperature for CMIP3 (Hawkins and Sutton, 2009) and CMIP6 (Lehner et al., 2020).214

ss
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26
-rc

p2
6

 Noise  Signal  S/N  S/N (%)

ss
p2

45
-rc

p4
5
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p5

85
-rc

p8
5

0.15 0.10 0.05 0.00 0.05 0.10 0.15
K

1.5 1.0 0.5 0.0 0.5 1.0 1.5
K

1.5 1.0 0.5 0.0 0.5 1.0 1.5 40 20 0 20 40
%

Figure 2: Changes in baseline-period noise (column 1), 2040-2060 average signal (column 2), and S/N

ratio (column 3) from CMIP5 RCP scenarios to corresponding CMIP6 SSPs (multi-ensemble, multi-

model medians, as per Figure 1). Areas are hatched where the change is not statistically significant un-

der a two-sided student’s T-test at the 90% level, adjusted for spatial autocorrelation. No such testing

is applied to the S/N ratio, an inherent measure of significance. Results are multi-model medians for

SSP1-2.6 - RCP2.6 (top row), SSP2-4.5 - RCP4.5 (middle row), and SSP5-8.5 - RCP8.5 (bottom row).

The fourth column shows changes in S/N as a percentage of CMIP5-era S/N. The regions outlined in

blue in the top left panel are the North Atlantic and Southern Ocean regions discussed throughout.

Figure 2 shows the differences in multi-model median noise and M21C signal and S/N be-215

tween the CMIP6 and CMIP5 ensembles across the globe. Global, area-weighted average changes216

are summarised in Table 4: noise increases by 2.9% in CMIP6 and signal increases by 6.9-217

27% (depending on the scenario), resulting in S/N increases of 2.7-22%. Overall, M21C S/N218
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is higher in the newer generation of models. Table 4 and Figure S8 include the same values219

calculated for the sub-population of 25 CMIP6 models with ECS in the range of CMIP5 mod-220

els.221

CMIP6

Ensemble

Scenario ∆ Noise - K (%) ∆ Signal - K (%) ∆ S/N - σ (%)

All CMIP6

models (37)

SSP126-RCP26

0.0099 (2.9%)

0.23 (27%) 0.44 (22%)

SSP245-RCP45 0.16 (13%) 0.23 (8.6%)

SSP585-RCP85 0.12 (6.9%) 0.075 (2.7%)

ECS in CMIP5

range (25)

SSP126-RCP26

0.012 (4.1%)

0.20 (22%) 0.28 (15%)

SSP245-RCP45 0.13 (10%) 0.058 (3.1%)

SSP585-RCP85 0.069 (3.9%) -0.17 (-3.2%)

Table 4: Global (area-weighted) average changes from CMIP5 to CMIP6 in baseline-period noise and

2040-2060 average signal and S/N ratio. Absolute and percent changes are shown. Each CMIP5 RCP

scenario is paired with its corresponding CMIP6 SSP scenario based on nominal radiative forcing.

Global-average signal and noise values for CMIP5 and CMIP6 are also shown in Figure S1.

The first column of Figure 2 shows that between the CMIP5 RCP scenarios and the corre-222

sponding CMIP6 SSPs, variability increases slightly across much of the globe (most strongly223

in the Northern Atlantic), and decreases in the Southern Ocean. These changes are statis-224

tically significant in a few regions, including the North Atlantic. Over land, this includes a225

decrease in Western Australia and increases in Southern Europe and the northern Middle226

East, Africa just south of the Sahel, and an area near the China-Russia-Mongolia border. On227

a global average basis, variability changes very little, as reported in Table 4.228

The temperature change signal (column 2) increases across almost all the globe for all scenar-229

ios, excepting decreases in South Asia. These changes are more statistically significant in the230

lower emissions scenarios, with very little of the change in signal passing the significance test231

for SSP5-8.5. The M21C S/N ratio (column 3) generally increases from CMIP5 to CMIP6,232

with geographic differences arising from the changes in noise and signal. The changes are233

more heterogeneous under higher emissions scenarios; SSP5-8.5 (and to a lesser extent, SSP2-234

4.5) shows higher S/N in most land areas, but lower S/N in Central and West Africa, Western235

Europe, South and East Asia, and some areas of South America. Many ocean areas also ex-236

hibit decreases in S/N. These patterns of reduced S/N arise in areas with increased noise and237

small (if any) increases in signal.238

3.2 Drivers of differences between model generations239

Figure 2 captures the result of changes to both external forcing and model response. The de-240

pressed signal in the North Atlantic may be due in part to the greater weakening of the At-241

lantic meridional overturning circulation (AMOC) exhibited across the CMIP6 ensemble (Wei-242

jer et al., 2020). Less transport of warm water from low to high latitudes results in a smaller243

temperature increase in the high-latitude North Atlantic. In the Southern Ocean, the CMIP6244

ensemble projects lower noise, increased signal, and a resulting higher S/N ratio compared to245

the CMIP5 ensemble, for all scenarios. However the changes in signal are not statistically sig-246

nificant for most of the region. The Southern Ocean changes may be due to developments in247

cloud process representation, an identified source of the warm bias in this region (Hyder et al.,248

2018), and/or improvements in ocean circulation and surface winds compared to CMIP5, in-249

cluding a weaker Antarctic Circumpolar Current (ACC) (Beadling et al., 2020). CMIP6 mod-250

els, on average, exhibit a more positive shortwave feedback for extratropical clouds (Arias et251
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al., 2021, Zelinka et al., 2020). It is notable that from CMIP5 to CMIP6, in most parts of the252

globe, an increase in noise accompanies an increase in signal, resulting in a smaller increase to253

the S/N ratio.254

The highest magnitude of change in noise is observed in high-latitude oceans, suggesting a255

possible sea-ice influence. We compared available sea ice area data in the piControl period256

for 21 CMIP5 and 30 CMIP6 models. There were changes in both the average amount and257

inter-annual variation of sea ice area, but these were not statistically significant and were not258

consistently correlated with the observed changes in the noise field. We also compared ACC259

strength in both model generations, but did not find any correlation with noise in the South-260

ern Ocean region. One of the main changes between the piControl simulations for CMIP5 and261

CMIP6 is that the latter includes a protocol for volcanic aerosols (Fyfe et al., 2021). We com-262

pared average aerosol optical depths for these two ensembles, as per Figure 3. There were263

changes between model generations, including a slight increase in aerosol variability in the264

North Atlantic and a slight decrease in the Southern Ocean, but these were not found to be265

statistically significant. The differences in noise, then, are likely driven more by the differing266

responses to aerosols and other forcing agents between the model generations.267

Table 4 and Figure S8 show model inter-generational changes considering just the sub-population268

of 25 CMIP6 models with ECS in the same range as CMIP5 models. Comparing these results269

to the earlier ones shows the changes due primarily to differences in the emissions pathways (if270

we assume that model parameterisation differences manifest as changes in ECS). In the sub-271

population, noise changes similarly to the full ensemble, and the temperature change signal272

still increases for all scenarios. On a global-average basis, noise increases by 4.1% in CMIP6273

and signal increases by 3.9-22% (depending on the scenario), resulting in S/N changes of -3.2274

to +15%. Figure S1 shows separate plots of noise and signal. These results show that the in-275

creases in temperature for the CMIP6 ensemble are due to both increased ECS and changes to276

the emissions pathways. This agrees with single-model and reduced complexity model studies277

that have isolated the difference due to emissions pathways (Wyser et al., 2020, Nicholls et al.,278

2020, Fyfe et al., 2021). For changes in S/N ratios, forcing differences are more significant for279

the lower-emissions scenarios. For the high emissions scenario, global-average S/N even de-280

creases slightly (see Table 4).281

We repeated signal and noise calculations on results from two generations of the CanESM282

model run on both generations’ emissions to disentangle forcing and model response influ-283

ences. For signal, forcing changes account for 44%, 54%, and 38% of the model inter-generational284

differences on a global average basis in SSP1-2.6, 2-4.5, and 5-8.5, respectively. The differences285

in noise are generally less significant (see Figure 2), but on a global-average basis, forcing dif-286

ferences account for 88% of change. In the regions of greatest change in noise, however, (the287

North Atlantic and Southern Ocean regions), changes in model response account for 105 and288

103% of the difference in noise, respectively. While these results are just from one modelling289

centre, they illustrate that changes to both applied forcings and model parameterisation are290

significant between CMIP5 and CMIP6.291

In order to control for global model response and so assess regional differences, we compared292

noise, signal, and signal-to-noise ratios across model generations at global warming levels (GWL)293

of 1.5, 2.0, 2.5, and 3.0 K (see Figures S9, S10). We compared average temperatures for the294

20 years preceding the year at which the backwards-looking 20-year rolling average crosses295

each GWL, averaging across all scenarios for which this occurs. The spatial patterns of S/N296
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across GWLs closely match those across emissions scenarios, with emergence strongest in low297

latitudes (Figure S9). Comparing S/N between model generations at the same GWLs largely298

controls for signal, so the spatial patterns in changes to the signal-to-noise ratio are domi-299

nated by the changes in the noise field (Figure S10).300

RCP2.6 (14 models) SSP1-2.6 (28 models) Difference (CMIP6-CMIP5)

RCP4.5 (14 models) SSP2-4.5 (27 models)

RCP8.5 (14 models) SSP5-8.5 (28 models)

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
aerosol optical depth at 550 nm

0.10 0.05 0.00 0.05 0.10

Figure 3: 2040-2060 average aerosol optical depths at 550 nm for CMIP5 models, CMIP6 models, and

the difference between these. Areas are hatched where the change is not statistically significant under

a two-sided student’s T-test at the 90% level, adjusted for spatial autocorrelation. Results are multi-

model medians for SSP1-2.6 - RCP2.6 (top row), SSP2-4.5 - RCP4.5 (middle row), and SSP5-8.5 -

RCP8.5 (bottom row).

Aerosol emissions have regional impacts on surface temperature due to their short atmospheric301

residence time. There remains considerable uncertainty in the magnitude of aerosol forcing,302

which has a significant impact on modelled global temperature (Dittus et al., 2020). While303

different aerosol species have different direct and indirect effects on net radiation balance,304

aerosols in aggregate lower insolation, so one would expect greater aerosol concentrations to305

cause lower temperatures, all else being equal (Zelinka et al., 2014, Smith et al., 2020, Szopa306

et al., 2021 Section 6.4). To assess the impacts of changes in aerosol forcing between model307

generations, we calculated geospatial differences in M21C-average ambient aerosol optical308

depth at 550 nm as a proxy for aerosol concentration. Figure 3 shows the multi-model me-309

dian results for the two model generations. Note that only a subset of models used in the tem-310

perature analysis had optical depth data available (see Tables 1 and 2). Noting this limita-311

tion, there are notable consistencies between the aerosol and temperature fields. Compared312

to CMIP5, CMIP6 models exhibit statistically significant increases in aerosol optical depth313

above regions in South and East Asia, South America, and south-western Africa, particularly314

in the moderate and high emissions scenarios. These changes are due to changes in both the315

prescribed aerosol emissions and the models’ handling of aerosols (e.g. circulation, deposition,316
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chemistry, etc.). The slight decreases in signal and more pronounced decreases in signal-to-317

noise in South Asia shown in Figure 2 correlate well with the aerosol pattern. The significant318

aerosol increases in South America and East Asia correspond less well with changes in signal-319

to-noise. In North and Central Africa, while the changes in aerosol optical depth are not sta-320

tistically significant, they do correspond well with the observed changes in signal-to-noise. It321

is reasonable to conclude that changes in aerosol loading are responsible for a significant part322

of the regional differences in signal-to-noise ratios between model generations.323

The changes in the greenhouse gas (GHG) and aerosols emissions pathways between model324

generations have competing effects and differ between scenarios (e.g. higher CO2 and lower325

CH4 under SSP5-8.5 compared to RCP8.5, versus comparable emissions of both under SSP1-326

2.6 and RCP2.6). Methods to aggregate these effects rely on singular measures of ERF for327

each forcing agent (e.g. Meinshausen et al., 2020), though it has been shown that these differ328

by model (Zelinka et al., 2014, Smith et al., 2020, Zelinka et al., 2020).329

Considering aerosol forcing, Zelinka et al., 2014 estimated ERF due to year-2000 aerosol emis-330

sions compared to pre-industrial in the CMIP5 ensemble, while Smith et al., 2020 performed331

the equivalent analysis for the CMIP6 ensemble (albeit with more models and 2014-level emis-332

sions). Both studies calculated ERF in terms of shortwave and longwave aerosol-radiation in-333

teractions and aerosol-cloud interactions. Comparing the two, net aerosol ERF is less negative334

in the CMIP6 ensemble: -1.01±0.23 Wm−2 versus -1.17±0.30 Wm−2 (± 1σ). This is due pri-335

marily to less negative shortwave aerosol-cloud interactions, in line with Zelinka et al., 2020.336

While a less negative aerosol ERF could contribute to the greater warming we identified in337

the CMIP6 ensemble, these studies are not directly comparable. 2014-prescribed black carbon338

and sulfur emissions were 25% higher and 2.5% lower, respectively, than the 2000-prescribed339

emissions (Moss et al., 2010, Riahi et al., 2017, Gidden et al., 2019). New experiments that di-340

rectly compare ERF for CMIP5 and CMIP6 models would assist in diagnosing the drivers of341

model inter-generational differences.342

The increase in annual average temperature signal from CMIP5 to CMIP6 shown in Figure 2343

and Table 4 is also consistent with findings from Zelinka et al., 2020. There, authors applied a344

radiative kernel technique to calculate ECS and ERF due to a doubling of CO2 in the CMIP5345

and CMIP6 ensembles and decomposed the feedbacks to diagnose the factors influencing the346

changes between generations. They found that ECS increased in both mean and variance,347

while ERF increased slightly in mean and decreased slightly in variance. The increase in ECS348

was due primarily to stronger positive feedbacks in extra-tropical low clouds. Based on this349

alone, we should expect a warmer globe in the CMIP6 ensemble at the same concentration of350

CO2, which aligns with our results.351

3.3 Population exposure352

Figure 4 integrates S/N across the globe but adds the dimension of time to show when differ-353

ent proportions of the globe’s land area (left column) and population (middle column) cross354

different S/N thresholds. Also shown is global population over time under each of the five sce-355

narios. Under a moderate emissions scenario (SSP2-4.5), most models agree, nearly half of356

the population (48%) will be experiencing “unknown” (S/N>3) annual mean temperatures by357

2050, with more than 90% of people over the “unfamiliar” threshold of S/N>2. The fraction358

of the population exposed to an unknown climate at 2050 varies from 10% under SSP1-1.9 to359

87% under SSP5-8.5, again emphasising the significant influence of emissions pathway on the360
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Figure 4: Crossing of average annual temperature S/N thresholds of 1, 2, 3, and 5 over time, shown

as a proportion of Earth’s land area (left column) and population (middle column). Median results

are shown as solid lines, and the ranges between the 16th and 84th percentile results are shown as the

shaded regions. Median results for corresponding CMIP5 RCPs are shown as dashed lines, and the

global population over time is shown as a dotted grey line. The right column compares S/N emergence

by area and population by plotting the median results against each other. Results for 2022, 2030, and

2050 are shown as dots, and the 1:1 line is shown in black.
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projected mid-century climate.361

As the historical data under CMIP6 extend only to the end of 2014, the values shown for 2022362

are projections. The multi-model median projections are that 52-95% of the global population363

is currently experiencing an unusual climate (S/N>1) as of 2022, depending on the scenario.364

Some (1.2-17%) are already experiencing an unfamiliar climate (S/N>2) by this scale. This365

is compared to a recent baseline of 1986-2005, which emphasises the rapidity of change that366

we’re experiencing. (Using an earlier baseline of 1961-1990 gives higher S/N values, with 87-367

99% of the population already experiencing S/N>1 and 11-22% with S/N>2, not shown.) A368

version of Figure 4 with the higher emissions scenarios extended to 2100 is included as Sup-369

plementary Figure S11. The results shown in Figure 4 are not very sensitive to the GMST370

smoothing technique until mid-century. However, when emissions turn net-negative in the371

lower-emissions scenarios, the choice of technique does affect exposure calculations.372

Comparing scenarios, it appears that the high emissions scenarios have lower associated uncer-373

tainty. This is in part an artefact of the threshold selection; under a higher emissions scenario,374

these thresholds are passed earlier in time, and all models agree that the lower thresholds are375

passed before 2050. The lower emissions scenarios, in contrast, pass the thresholds later and376

have S/N peaks that are close to the threshold values. A similar absolute spread between sce-377

narios at 2050 thus appears as a greater uncertainty for the low emissions scenarios. This il-378

lustrates an important point: we can have more confidence that a high emissions future will379

lead to “inconceivable” climates than that low emissions future will prevent “unknown” ones.380

This highlights the importance of investing concurrently in both mitigation and adaptation.381

The right column of Figure 4 compares S/N emergence by area and population. Most sce-382

narios show that temperatures will rise for the global population faster than for overall land383

area, shown by S/N threshold exceedances falling mostly below the 1:1 line. That is, average384

annual temperatures will change faster in areas where people live than where they don’t, in385

agreement with Frame et al., 2017. Increased temperature change where people live compared386

to the global average is more often explored in terms of the land-sea contrast (e.g. Joshi et387

al., 2013), so it is noteworthy that this holds when only comparing to overall land area. This388

trend is most pronounced for SSP5-8.5 and least pronounced for SSP3-7.0, with the difference389

mainly due to population projections; under SSP3-7.0, the Global Emerging Markets (GEM)390

grouping of countries exhibits continued growth through the century, unlike in the other sce-391

narios. The Least Developed Countries (LDC) grouping is the other major driver of global392

population; its population grows under all scenarios.393

Comparing the results to the corresponding RCPs from CMIP5, Figure 4 shows that SSP1-394

2.6 and SSP2-4.5 project more rapid emergence of unusual to unknown climatic conditions by395

land area than do the previous generation of RCPs, while SSP5-8.5 is broadly comparable.396

Both RCP4.5 and RCP8.5 show more rapid emergence by population than their correspond-397

ing SSPs for lower thresholds. This is due to the different spatial pattern of emergence; these398

two RCPs project stronger and more rapid emergence of unknown annual temperatures in the399

heavily populated regions of South Asia, West/Central Africa, and parts of Western Europe,400

as shown in Figure 2.401

Figure 5 shows S/N values and the proportion of global population exceeding them as of M21C,402

broken into the five groupings from Table 3. Using S/N in annual average temperatures as a403

proxy for climate change impacts, this figure illustrates the disparity in impacts between dif-404
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Figure 5: The proportion of population exposed to various levels of 2040-2060 average S/N for annual

average temperature. Results are shown across five groupings of countries (defined in Table 3: ASEAN,

AOSIS, GEM, LDC, and OECD90. Results for each of five SSPs are distinguished by colour, and re-

sults for corresponding CMIP5 RCPs are shown as dashed lines. Unusual, unfamiliar, unknown, and

inconceivable annual temperatures are indicated by the background shading. The geographic distribu-

tion of the groupings is shown bottom right, with countries in more than one grouping coloured by the

first alphabetically.

ferent socioeconomic and geographic groups. The position of each curve along the x-axis in-405

dicates the degree of impacts experienced, and the slope of the curve is a measure of the uni-406

formity of impacts across the group. From this we can see that the Organisation for Economic407

Co-operation and Development (1990) (OECD90) grouping has both the lowest impacts and408
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the most equally distributed impacts across its population.409

Considering just the two low-emissions scenarios, SSP1-1.9 and SSP1-2.6 (which are consistent410

with temperature rises of 1.5 K and 2.0 K, respectively) gives an indication of the difference411

in impacts between two aspirational warming levels. The impacts for the OECD90 grouping412

at 2.0 K are comparable to those for the Least Developed Countries (LDC) grouping at 1.5 K,413

and lower than those for the Association of Southeast Asian Nations (ASEAN) and Alliance414

of Small Island States (AOSIS) groupings at 1.5 K (see Supplementary Figure S12).415

These findings agree with earlier studies in finding that climate change impacts are expected416

to be unequally distributed, with less developed countries and those with higher projected417

population growth rates experiencing greater changes than developed ones, on average (Frame418

et al., 2017, Harrington et al., 2017, Harrington and Otto, 2018, King and Harrington, 2018,419

Frame et al., 2019). The grouping with the most unusual M21C climate is AOSIS, closely fol-420

lowed by ASEAN. Both groupings are characterised by relatively small land masses, proximity421

to the equator, and having many states located in the maritime continent, with climates dom-422

inated by the surrounded ocean. The ocean’s thermal inertia contributes to this region having423

generally lower noise (and so higher S/N) than, say equatorial Africa or South America (see424

Figure S1). The small island nations are also particularly vulnerable to rising sea levels (Hooi-425

jer and Vernimmen, 2021). The risk of compounding impacts is thus particularly acute for426

these states.427

4 Conclusions428

We analysed the emergence of unknown annual average temperatures due to climate change429

projected by the SSPs of CMIP6. The results showed expected patterns of stronger and ear-430

lier emergence under higher emissions scenarios, with the emergence pattern strongest in the431

tropics. All scenarios project that a significant proportion of the world’s population was al-432

ready experiencing “unusual” (S/N>1) annual temperatures as of 2022, and most models433

agree that around half of the globe will be experiencing “unknown” annual temperatures (S/N>3)434

by 2050 under the moderate emissions scenario of SSP2-4.5. Inter-model uncertainty suggests435

we can have more confidence that a high emissions future will lead to an “unknown” climate436

by mid-century than that a low emissions future will prevent this.437

In general, CMIP6 shows earlier and stronger emergence of anomalous annual mean temper-438

atures (higher S/N ratios) than the corresponding scenarios from CMIP5, though there are439

notable decreases at the regional level. CMIP6 models exhibit lower S/N in Central Africa440

and South Asia under all scenarios, and the higher emissions scenarios also show lower S/N441

over parts of South America, West Africa, Western Europe, and East Asia. These regional de-442

creases in densely populated areas mean than population-based emergence is actually slightly443

weaker and later under SSP5-8.5 than it was under RCP8.5. Noise increases in most areas, ac-444

companying increases in the signal. Differences in S/N between generations arise from changes445

in both model responses and applied forcing, with the newer models using emissions pathways446

of the SSPs and the older using RCPs. To separate the effect of the higher mean and range of447

ECS in CMIP6 models, we repeated the analysis for a subset of models with ECS in the same448

range as that of CMIP5. We found that the increase in temperature is not due solely to in-449

creased model sensitivity. Other factors that explain some of the observed differences include450

changes to aerosol optical depths (particularly for Central Africa and South Asia), different451
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GHG emissions, changes in the ERF of models to radiative forcing agents, and large-scale cli-452

mate responses such as Southern Ocean cloud behaviour and weakening of the AMOC. None453

of these causes alone accounts for all the observed differences, and quantifying their relative454

influence is the task for targetted experiments, coordinated across modelling groups.455

We also incorporated nation-scale, dynamic population datasets aligned with emissions path-456

ways to assess exposure to climate change. We found that unusual annual temperatures emerge457

earlier in areas where people live than where they don’t, and that the nations least equipped458

to adapt to climate change will be disproportionately affected, regardless of the emissions459

pathway taken. That this conclusion holds despite more granular projections demonstrates460

that earlier findings were likely not a result of oversimplification or overly broad assumptions461

about future population distributions.462
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