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Abstract

This study examines the predictive power of oil shocks for the green bond markets. In line with
this aim, we investigated the extent to which oil shocks could be used to accurately make in-
and out-of-sample forecasts for green bond returns. Three striking findings emanated from our
results: First, the three types of oil shock are reliable predictors for green bond indices. Second,
the performances of the predictive models were consistent across the different forecasting
horizons (i.e. H=1 to H=24). Third, our findings were sensitive to classifying the dataset into
pre-COVID and COVID eras. For instance, the results confirmed that the predictive power of
oil shocks declined during the crisis period. We also discuss some policy implications of this
study’s findings.

Keywords: Oil shocks; green bonds; predictive model.
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1. Introduction

Growing concerns over climate change have shifted the attention of policymakers and
investors towards environmentally friendly investments. Consequently, the global issuance of
green investment bonds reached the substantial milestone of a trillion US dollars in 2020, and
it is further anticipated to reach $5 trillion annually by 2025. This means accelerating capital
allocation for sustainable agriculture, clean energy, green transport, resilient infrastructure, and
so on across 62 developed and emerging economies. However. investment in green bonds in
particular has gained significant prominence since its introd icticn in 2007 by the European
Investment Bank (EIB) as part of the transition to become mor : climate-resilient. Since 2015,
green bond issuance has grown considerably from ‘s40.1 pillion to $354.2 billion in 2021,
which was around 37% higher than in 2020. F~r nstance, according to Sustainable Bond
Insight (2021), the European financial market ‘s the leading player with a 48.72% stake in the
global issuance of green bonds, followed . the United States with 35.3%, Japan with 3.41%,
the United Kingdom with 3.03%, Swcer, with 2.02%, Switzerland with 0.45%, Norway with
0.36%, and New Zealand with 0,344, These countries collectively issue around 93% of the
world’s green bonds. This treme.dous growth in green bond issuance is accompanied by an
increasing popularity aronyg nvestors. For example, according to a survey by the Climate
Bond Initiative (2021), 11arket sentiment for green bonds is strengthening, and the green
investment trend is set to accelerate, with it likely reaching the $1 trillion milestone by end of
2022.2 Similarly, a survey by Morgan Stanley (2016) found that 55% of investors were
interested in sustainable investments, with 31% of investors viewing it as a virtuous investment

approach for the future.

2 These statistics are sourced from https://www.climatebonds.net/



https://www.climatebonds.net/

Kilian (2009) identified oil demand and supply shocks using structural VAR on the data
of oil shipping prices and production representing oil demand and supply, respectively. Later,
Kilian and Park (2009) extended this work by examining the effect of different shocks on US
equity market. Their results highlight low variation in equity returns (not greater than 2%)
driven by the residuals in oil prices which are neither related to supply nor associated with the
aggregate demand of oil. However, this framework inherent a weakness that the data used in
SVAR is required to have correlation with the contemporaneous or future oil price changes in
order to identify shocks. For example, according to Kilian (2029), *he identified demand and
supply shocks explain only 4% contemporaneous variatic 1s .2 oil prices from 1986 to 2011.
Remaining variations in oil prices are explained as 1% "y the SVAR whereas 77% by the
residuals as classified by the precautionary demans si.ncks. However, there is no way to
determine if changes in the precautionary den.ai. ¥ <nocks are due to expectations of changes
in demand or by the concerns over s.nol,. For instance, escalating oil prices due to an
increasing probability of supply constra:nt which never happens will not be recognized by the
VAR. Similarly, increasing oil prices M'.e to increase in demand which is not mirrored in high
shipping prices will not be rcflected. Both these changes are recognized as precautionary
demand shocks although the would have different implications for economic output and

aggregate equity returns.

This limitation therefore, required an identification technique relying upon the forward
looking prices of traded assets to avoid such issues. Ready (2018) define demand shocks as
portion of the contemporaneous returns of a global index of oil producing companies which
are orthogonal to the unexpected changes in log values of VIX which is considered as a proxy
of aggregate changes in discount rates of market, driven by the changing attitude towards risk.
Supply shocks are estimated as the portion of contemporaneous changes in oil prices which are

orthogonal to demand shocks along with innovations in VIX. The innovations to VIX (proxy



to risk shocks), supply shocks and demand shocks tend to be orthogonal and account for all
variations in oil prices. This extension by Ready (2018) resulted in almost entire variations in
the oil prices are captured by supply shocks (78%) and demand shocks (21%) due to very low

correlation of VIX with the oil prices.

Since there is limited literature about the connection between oil shocks and green
bonds, it is not clear if oil shocks trigger changes in the GBM and therefore carry useful
information for predicting future returns in the GBM. Thus, exe nining the consequences of oil
shocks (i.e. demand, supply, and risk shocks) to predict gre:n Lnd returns is important for
helping investors to assess the risk and return behaviour ¢ the green bonds market. The goal
of this paper is therefore to investigate the predictabili.y ¢ green bond returns using oil shocks,
which were extracted using the methodology prenased by Ready (2018). Hence, we aimed to
answer the following questions: First, can oil chocks, based on international oil prices, predict
green bond returns? Second, how does this ; redictability vary across different sample markets,
given that international oil shocks m= ha ‘e different impacts on the green bonds of different
countries? Finally, does the predic.obhility vary between the normal and COVID-19 crisis
periods? These testable quection.”, if answered, should help investors in understanding the
behaviour of the GBM i’ ui.> presence of oil shocks, since the effect that the international oil
market has on the world ¢ conomy is undeniable. With such knowledge, investors will be able
to better balance their portfolios of green bonds from different countries. Our results highlight
the significant predictability of green bond returns based on oil market shocks. Both Japanese
and US green bond returns are more accurately forecasted, irrespective of investment horizon
(i.e. H1 to Ha4). On the contrary, a supply shock is not effective for forecasting both in- and
out-of-sample returns for New Zealand’s GBM, whereas it can be used to accurately predict
returns for green bonds in Denmark, Europe, Japan, Norway, Sweden, Switzerland, the UK,

and the US. However, during the COVID-19 crisis period, supply shock weakly forecasts only



the in-sample, extremely long-term (i.e. 24 months) returns of Swedish green bonds, and it fails
to forecast the short- and medium-term returns (i.e. less than a month to less than 12 months).
In contrast, supply shocks only forecast the in-sample returns for Switzerland’s green bond
during the COVID-19 pandemic. The CW statistics highlight that oil shocks do not accurately
forecast both the in- and out-of-sample returns that are specific to Danish and European GBMs
during the COVID-19 period.

The remainder of this paper is presented as follows: Section 2 explains the estimation
techniques, while Section 3 discusses the data source and prel:™inc*y results. Section 4

then explains our findings before Section 5 finally concluces « ur work.

2. Literature review

Investment in the green bond markets  Gr.ivis) has grown in both scope and size over
recent years, with it showing signs of co-.mv,vement with other general asset classes (Pham &
Huynh, 2020) and the energy market (kchoredo, 2018) in particular. For instance, Lee, Lee,
and Li (2020) employed causalit* 1> quantiles and reported significant bidirectional causality
from the oil market to the MSC' green bond index at lower quantiles, indicating that the oil
and green bond markets ’o.ntiy influence each other. In contrast, Dutta, Jana, and Das (2020)
argued that negative (po.itive) variations in the oil market cause a decrease (increase) in the
incentives for green investment. In other work, Pham and Nguyen (2021) reported that the
connection between oil market uncertainty and green bonds is both state-dependent and time-
varying. More specifically, throughout periods of low (high) uncertainty, the oil and green
bond markets are weakly (strongly) linked, indicating that green bonds can be used to hedge
against uncertainty in the oil market. A weak connection between the green bond and oil
markets was also documented by Braga, Semmler, and Grass (2021), who stated that S&P

Green Bonds are less affected by variations in oil prices, which means there are hedging and



diversification opportunities for investors. Similarly, Ferror, Shahzad, and Soriano (2021),
meanwhile, found that the behaviour of the GBM is virtually unaffected by developments in
oil prices. Dutta, Douri, and Noor (2021) also reported similar results in that they found climate
bonds to weakly correlate with crude oil prices, with the hedge ratio switching between positive
and negative states for the climate bond and oil pairing, particularly during the COVID-19
pandemic, indicating reduced risk reduction during the pandemic. More recently, Kanamura
(2021) examined the relationships that S&P green bond indices, MSCI, and Solactive have
with the oil market and reported that S&P green bonds and M< 1 “vere positively associated
with oil prices, whereas Solactive green bond prices sho' veu a negative correlation with oil

prices, similar to the traditional S&P bond index.

The oil market has always received mai~r attention as an economic indicator, thus
highlighting the strong linkage of oil prices w.th other traded assets (i.e. commodities) (Chen
& Rehman, 2021; Mensi et al., 2021), for. an currencies (Liu et al., 2020), Logistic industry
(Maitra et al., 2021) and bonds (K:ng, Ratti & Yoon, 2014). However, oil prices have
experienced significant fluctuatic ns cver the past decades. For example, oil prices reached an
all-time high in June 2008 of $1-9.5 per barrel, but that was followed by a decline of around
70% in January 2009 to %4u.". per barrel. A second major decline in oil prices was observed in
June 2014, when they fe,' from $105.2 per barrel to $33.6 per barrel by January 2016. The
most recent decrease in oil prices started in December 2019 and lasted until April 2020,
resulting in another 67% decline in oil prices (i.e. from $60.1 to $20.1 per barrel). However,
each decline in oil prices is followed by a boom, indicating a significant increase in the demand
for oil in the market. Excessive oil demand or supply can result in changes in oil prices, and
these can be classified as demand shocks (i.e. demand driven) or supply shocks (i.e. supply
driven). We follow the example of Ready (2018) in examining whether oil shocks are instigated

by excessive demand or insufficient supply and whether these two different shocks have a



similar impact on green bond returns because an increase in the oil spot prices due to lower oil
supply or higher oil demand may result in different shocks to the oil market (Kilian, 2008;

Guntner, 2014).

According to Henriques and Sadorsky (2008), oil price shocks do not have any
significant effect on the returns of alternative energy stocks. However, on the contrary Kumar
et al. (2012) report the presence of positive relationship between oil and alternative energy
prices. According to Sadorsky (2012), stocks of clean energy fi'-ms are less correlated with the
oil market. In terms of relationship between oil and clean ene’ gy -tocks, Managi and Okimoto
(2013) examine and report positive impact on clean energ_’ sto cks following structural breaks
in 2007. In one of the comprehensive work on oil prices ai.1 South American countries, Apergis
and Payne (2015) report that real oil prices ha‘'= a positive effect on the consumption of
renewable energy for eleven south American countries. Later, Reboredo et al. (2017) find weak
relationship between the returns of renev. :ble energy stock and oil in the short-run which
however strengthens in the long-run. Ztin.:g the long-run period, increasing oil prices provides
incentives to the renewable eneryy .vojects whereas decrease in oil prices negatively affects
renewable energy companies. In ~ne of the work examining relationship between oil and US
market, Reboredo and Ugoi.1i (2018) find that changes in the prices of new energy stocks in
US are mostly attributabi» to oil prices changes. These findings are supported by Shah et al.
(2018) that oil price shocks have a positive effect on investments in renewable energy in the

US and Norway whereas little and negative effect in the UK.

According to Kocaarslan and Soytas (2019), fluctuations in dollar affects the
correlation between oil and clean energy prices. Likewise, Pham (2019) record heterogeneous
responses of oil prices on clean energy stocks however, such effects depends on the energy
sectors. Another work by Kyritsis and Serletis (2019) highlight that the renewable energy

stocks exhibit resistance to uncertainty in oil prices. On the contrary, Dutta et al. (2020) find



that oil market volatility has a significant effect on green assets more than the fluctuations in
prices of oil. In terms of diversification between oil and green bonds, Kanamura (2020)
examines dynamic correlation between the prices of green bonds and oil and reports the
presence of positive correlation between these two assets. However, disaggregating oil prices
into supply and demand driven shocks, Zhao (2020) reports positive effect of oil supply shocks

whereas negative effect of oil demand shocks on clean energy stock returns.

Another recent work which examines the connectedness of green bonds market with oil
shocks include Azhgaliyeva et al. (2022). The authors in this wo: < use flow crude oil supply,
flow crude oil demand and speculative demand shocks to € “am ne their impact on the issuance
of corporate green bonds. They report that though t'ie \>suance of corporate green bonds is
positively affected by the oil flow supply and de™and shocks, the impact by these shocks on

the issuance of corporate green bonds is not s.niticant.

3. Methodology

3.1 The Model

As mentioned earlier, the a1 of this study is to investigate the predictive potential of oil

shocks for green bond re wurn. . As such, we specify our predictive model in the form:

T't=d+ﬁSt_1+€t, (1)

where r represents the return on green bonds, calculated as log (kt/kt-1), and K is the green
bonds index, both at the aggregate and disaggregated level, while s is the measure of oil shocks.
Thus, Equation 1 expresses a typical predictive model. Studies have shown that high frequency
data can be susceptible to statistical problems, such as conditional heteroscedasticity,
persistence, and endogeneity effects (Salisu et al., 2019; Isah and Raheem, 2019), and these

can hinder the use of OLS models. However, Westerlund and Narayan (2015), hereinafter



referred to as WN, proposed that accounting for these features requires re-specifying Equation

1 as follows:

e =+ f1Se—1 + P2(Se — ¥Se—1) + &, (2)

where the first term (S;s;_1) represents first order autocorrelation, while the second term,
B.(s: —ys:—1), captures the persistence effect and the resulting endogeneity incorporated in

the parameter. In order to test for persistence, Equation 3 is estimated using OLS:
S =a+ Bs_1 + U, where pu~ N(O =%, (3)

Similarly, the conditional heteroscedasticity effect can be t.stec using the ARCH-LM test. WN
argued that rather than using OLS, the feasible quas: 9eneralized least squares (FQGLYS)
technique is better because it has the ability to e.tract any information embedded in the
conditional heteroscedasticity effect. FQGLS < based on the assumption that the error term in

Equation 1 pursues an autoregressive conu’ ional heteroskedastic (ARCH) structure of 62, =

o+ Z?=1 @;€% 4, such that the resu’ia o2, can be used to weigh the predictive model. (See

the work of Salisu et al. [2019] fr ac:ailed computational descriptions.)

In this study, we go beyonc usnh.J a bivariate predictive model to account for some important
control variables, so *e ~xp.unded Equation 2 to measure oil shocks. The resulting equation

takes the form:

1 =+ B1Se—1 + P2(st —¥Se—1) + f3Us + &, (4)

where U is the measure for oil shocks.

2.2. Forecast Implementation and Evaluation

The model is based on both in- and out-of-sample predictions. The out-of-sample

prediction is structured for short- and long-run horizons. Although there is no conventional rule



for dichotomizing the data over two periods (i.e. in and out of the sample), we follow the
existing literature in using 50% and 75%. The out-of-sample forecasting horizonsare H=1 (1
month), 3 (3 months), 6 (6 months), 12 (12 months), and 24 (24 months).

Model 1 is called a restricted model, and this is also the benchmark model. For completeness,
two forms of the benchmark model are specified, namely autoregressive and historical average.
Model 2 is an unrestricted model. The forecasting evaluation is based on three different
measures, the test of Campbell and Thompson (2008), hereinafter referred to as the CT test;
Theil’s U statistic; and the test of Clark and West (2007), hereir- e, referred to as the CW test.
The literature (Narayan and Gupta, 2015) reveals that Thzil . U statistic is calculated as the
ratio of forecasting error of the unrestricted model to that of the restricted model. A Theil’s U
with a value lower than unity implies that the unrestr.cte model has greater predictive power

than the restricted model.

The out-of-sample R? (OOS_ R) statistic is considered in the CT test. It is computed as OOS_R
=1- Theil’s U statistic {( RMSE, /"M .Z,)}. The RMSE, and RMSE, represent the root mean
square error for models 2 ana *. respectively. A positive CT value indicates that model 2
outperforms model 1 and “‘ice ‘versa for a negative value. However, a shortcoming of the CT
test is its inability to de.monstrate the significance level.> However, the CW test (Clark and
West, 2007) allows checking the significance level of the CT value:*

In order to estimate the CW value, we used the following equation:

ft+k = (St+k - -§1t,t+k)2 - [(St+k - ~§2t,t+k)2 - (-§1t,t+k - -§2t,t+k)2] ) (5)

3 Because of the connection between Clark and West’s (2007) and Campbell and Thompson’s (2008) tests, as well as for better
understanding, we do not present Campbell and Thompson’s (2008) test results. For instance, when the U statistic has a value
less than 1, we mathematically expect that the Campbell and Thompson (2008) test would present a positive value and vice-
versa.

4 Diebold and Mariano’s (1995) test used to be the most commonly employed test until recently, despite it being suitable for
nested models only, whereas the CW test provides better results for nested models.



where the forecast period is denoted by k, and the squared error for the restricted model (i.e.
model 1) is denoted by (S1x — §1t,t+k)2, while (S — 52@”,{)2 is the squared error for the

unrestricted model (i.e. model 2). Next, (SAlt,Hk — SZLH,{)Z is the adjusted squared error due
to the introduction of CW to correct for the noise associated with the larger model’s forecast.
Hence, the average of the sample f,,, is stated as RMSE; — (RMSE, — adj.), where each
term is calculated as follows:

RMSE, = P_1(5t+k - §1t+k)2:

A 2
RMSE, = P7YY(Seyx — Sarar ) " wid

P

Adj. = P71 Y (Syere — €orn)’ 6)

where the number of predictions used to calculate the aveiages is denoted by P.

The term £, is regressed on a constant an:! the resulting t-statistic for a zero coefficient is
used to draw inferences, so we can inv=stigate the relative forecasting performances of models
1and 2. We tested the null hypothes.s (I u) against the alternative hypothesis based on whether
the t-statistic for a one-sided 0.2.0 w>st or a one-sided 0.05 test is greater than +1.286 or +1.645,

respectively.

2.3. Constructing Supnly and Demand Shocks

We follow the example of Ready (2018) in building the oil demand and supply shocks.
The orthogonal demand shocks d,, supply shocks s;, and risk shocks v, are defined for primary

analysis as:

Ap, St 1 1 1
X = [RE™°,Z, = [de|, A= |0 ap, a23] (7)
Svix,t Ut 0 0 as

The detected shocks from the observable factors are mapped by the matrix A, such that:



X, = AZ, (8)

To ensure orthogonality, a,,, a,3, a,; and oy, o4, g, satisfy:

g2 0 0
AT, (A DT=10 ¢ 0], 9)
0 0 o2

where o, g, and o, are the identified shocks’ volatilities, while Xy is the covariance
matrix of the observable X,. This is simply a renormalization of the standard orthogonalization
used to define the structural shocks in an SVAR setting. It <iivla be noted that despite the
volatility shocks being normalised to one, the shocks are corstrained to sum up to the total

change in the price of oil.

4. Data and Preliminary Analysis

Our work employed daily data for .»*ae green bond indices in New Zealand, the United
Kingdom, the United States, Switzer)zna, Norway, Europe, Denmark, Japan, and Sweden. The
returns for all these indices were caic:'lated by taking the natural log of the two adjacent pricing
levels. To construct oil shock~ v.~ followed the example of Ready (2018), who introduced an
innovative technique for ciczsirying changes in oil prices as being supply-driven (i.e. supply
shocks) or demand-drive: (i.e. demand shocks). We defined supply shocks as changes in the
oil price that are orthogonal to the contemporaneous returns of oil-producing firms, with the
forecasted values being categorized as “oil demand shocks”. To construct the series for oil
supply and demand shocks, we used three variables, namely an index of oil-producing
companies, a measure of oil price changes, and a proxy for changes in expected returns. For
the oil-producing companies, we used the World Integrated Oil and Gas Producer Index, which
comprises large, publically traded oil-producing companies that represent the majority of the

global oil industry. Next, the one-month returns on the second-nearest maturity NYMEX Light



Sweet Crude Oil contract were used to identify unexpected changes to oil prices. Innovations
to the VIX index were used to proxy changes in the discount rate. We calculated the VIX index
from the options date, so it provides a measure of the risk-neutral expectation of volatility. The
variance risk premium estimated from the VIX index definitely predicts stock returns,
indicating that it may be a reasonable proxy for changes in risk, as suggested by Bollerslev,
Tauchen, and Zhou (2009). In order to segregate unexpected changes in the VIX, we estimated

the ARMA(1,1), while the residuals from this process were used as innovations &y, x.

Data for all the green bond indices, oil prices, the Wold Integrated Oil and Gas
Producer Index (WIOGPI), and West Texas Intermedicte \., TI) index for the period from

December 2, 2008 to July 11, 2021 were obtained frem tr 2 Thomson Reuters Datastream.

Table 1 presents the descriptive statist ¢» Tor the nine green bond indices and the
extracted oil shocks. Panel A of Table 1, m anwhile, highlights that all green bond indices,
other than Switzerland, provided po.itive average daily returns. The highest average daily
returns of 0.009 percent were earneu )y ne European green bonds, followed by the Japanese
and Norwegian green bonds (0.J0C nercent each), whereas the lowest average daily returns of
0.003 percent were observe for the Swedish green bonds. The maximum variance among the
green bond indices v.2s c~er, for Japanese green bonds (0.69 percent), followed by the New
Zealand (0.58 percent) and UK (0.56 percent) bonds, while both the Danish and European
green bond indices both showed the lowest variance (i.e. standard deviation) of 0.35 percent.
Panel B of Table 1 shows that only the supply shocks exhibit positive values, while risk shocks
have a maximum variance of 7.51 percent. Table 1 also presents the stochastic features of our
sampled series. We applied the Augmented Dickey-Fuller (ADF) unit root test to reject the null
hypothesis of a unit root being present for all series. Panel C of Table 1 provides evidence of
endogeneity in the oil supply, oil demand, and risk series. We also witnessed the existence of

serial dependence and conditional heteroscedasticity, regardless of the selected lag order, so



the results validate the decision to use the generalized adjusted OLS for predicting green bond

returns.

Table 1: Preliminary Analysis
Mean Std. Dev Unit Root

Stock Returns Level 1% Diff

Panel A: Descriptive Statistics

Denmark GBs 0.00004 0.0035 | -52.228*** -
Euro GBs 0.00009 0.0035 | -52.195*** -
Japan GBs 0.00008 0.0069 | -58.189*** - N

New Zealand GBs | 0.00005 0.0058 | -61.064*** -

Norway GBs 0.00008 0.0054 | -57.678*** 5

Sweden GBs 0.00003 0.0041 | -59.084*** ‘ -

Switzerland GBs | -0.00005 | 0.0055 | -40.389**” -

UK GBs 0.00005 0.0056 | -54 6)** - -

US GBs 0.00004 0.0052 | -57.353%** -

Panel B: Oil Shock

Supply shocks 0.0006 | 0.027° | -56.334%** -

Demand shocks -0.0007 | 0.0142 | -19.822%** -

Risk shocks -0.0004 | 0..751 |-56.524**=* -

Panel C: AL :ocorrelation and Heteroscedasticity

 (-Stat Q%-Stat ARCH-LM

K=.9 K=20 K=10 K=20 K=10 K=20

Supply shocks 31.65%** | 51.029*** | 2022.0*** | 3043.6*** | 120.3*** | 76.96***

Demand shocks 81.15%** | 111.7*** | 1617.1*** | 2158.1*** | 114.1*** | 72.05***

Risk shocks 20.98*** | 32.64** 183.3*** | 186.5*** | 13.04*** | 6.606***

5. Analysis and Discussion
We started our estimations by using a bias-adjusted measure of oil shocks for a single
factor model, as shown in Table 2. Overall, we found evidence of predictability, irrespective
of the nature of oil shocks (i.e. whether they were due to demand, supply, or risk) for all green

bonds other than the UK’s green bonds. Demand shocks predict all green bond returns, whereas



supply shocks only explain variation in the returns of green bonds in Europe, Switzerland,
Norway, Denmark, Sweden, New Zealand, Japan, and the US. The results are similar for the
case of risk shocks, although the signs (directions) of the coefficients reveal a different story.
The relationship between oil supply and demand (risk) shocks and the green bond returns for
Denmark, Europe, Japan, Switzerland, and the US is positive (negative). Yet again, UK green
bonds behave differently in that they are negatively associated only with demand shocks but
positively associated with both supply and risk shocks. It is worth noting that when demand
and supply shocks are negatively associated with green bond *2>tui.>s, the oil risk maintains a
positive relationship with the same green bonds, and vice Versc In other words, the type of the
oil shock (i.e. demand, supply, or risk) seems to be an imoc-tant consideration when predicting

green bonds returns. Overall, our results reveal an as* mietric relationship between oil shocks

and green bond returns.

Table 2: Predictive Model

Indices Demand shocks ’ Sunnly shocks | Risk shocks
0.0134*** | 0U081*** | -0.0028***
Denmark GBs
(0.004) \ (0.0023) (0.0008)
0.0136 ** 0.0079%** -0.0027***
Euro GBs
(P.2N4L, (0.0023) (0.0008)
DEVRYE 0.0574*** | -0.0246***
Japan GBs
Ww.0074) (0.0043) (0.0015)
-0.0695*** -0.0194*** 0.0093***
New Zealand GBs
(0.0067) (0.0037) (0.0013)
-0.1295*** -0.0477*** 0.0132%**
Norway GBs
(0.0059) (0.0034) (0.0012)
-0.0695*** -0.0196*** 0.0077%**
Sweden GBs
(0.0046) (0.0026) (0.0009)
0.0654*** 0.0219*** -0.0107***
Switzerland GBs
(0.0063) (0.0036) (0.0012)




-0.0123** 0.0016 0.0020
UK GBs
(0.0065) (0.0035) (0.0013)
0.1082*** 0.0346*** -0.0087***
US GBs
(0.0057) (0.0032) (0.0012)
Note: ™, ** and * significance at 1, 5, and 10% respectively. Standard error values are in parenthesis.

The results for in- and out-of-sample forecasting are presented in Tables 3-6.
In particular, Tables 3 and 4 present forecasts with individual oil shocks for the full
sample period (December 2, 2008 to July 11, 2021), whereas v 2 latter tables (5-6)
show the forecast for just the COVID-19 pandemic period ‘De2zmber 2, 2020 to July
11, 2021). We start by presenting the Theil’s U sta.stics in Table 3, with these
highlighting that the in-sample forecasts are very closc for periods less than a month,
and for few cases, horizons of less than three mcrins. This holds regardless of the type
of oil shock being considered. A Theil’s J s atisiic value less than 1 indicates that oil
shocks can accurately predict green bond returns. Table 3 presents further evidence for
the significance of Theil’s U for forccasiing all green bonds based on oil shocks. More
specifically, the Theil’s U stati. tic. are less than 1 for each case, regardless of the type
of oil shock or investment hori-on. Notably, we find that both the Japanese and US
green bonds are mor. ac>irately predicted by all three shocks. The predictability of
these bond markets is yreatest under all horizons, right up to 24 months. We further
note that the predictability is greater under short-term horizons, with the Theil’s U
increasing slightly as the horizon increases. Finally, when comparing between oil
shocks, we find evidence to indicate that demand shocks are more effective for

forecasting GBM returns for both in and out of the sample.



Table 3: Single Predictor: Theil’s U-statistics

Supply Demand
Out- Sample Out- Sample
In-S | H=1 | H=3 | H=6 | H=1 | H=2 | In-S | H=1 | H=3 | H=6 | H=1 | H=2
2 4 2 4

Denmar | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
k GBs 33 34 73 46 55 60 19 19 26 32 36 44
Euro 099 | 0.99 | 099 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
GBs 32 32 36 45 54 59 20 20 28 33 37 45
Japan 094 | 094 | 094 | 095 | 0.95 | 0.95 | 0.86 | 0.86 | 0.86 | 0.87 | 0.87 | 0.87
GBs 87 89 90 05 09 27 94 9 92 01 13 22
New 099 | 099 | 0.99 | 0.99 | 0.99 | 0.99 | 0.98 | (.98 +0.98 0.98 | 0.98 | 0.98
Zealand 87 86 86 88 90 89 42 1, 45 44 44 49
GBs :
Norway | 0.97 | 0.97 [ 0.97 | 0.97 | 0.97 | 0.97 | 2.27 ; 0.97 | 0.97 | 0.97 | 0.97 | 0.97
GBs 46 46 40 53 39 41 53 42 47 33 43 46
Sweden | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0%5c | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96
GBs 75 56 55 67 62 9 19 21 17 55 61 76
Switzerl | 0.98 | 0.98 | 0.98 | 098 | 048 0.8 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97
and GBs | 51 51 54 62 2 | 78 01 01 07 12 17 24
UKGBs | 0.98 | 0.99 | 099 | 0.99 | 099 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98

99 00 03 00 1 Ny 15 54 54 55 52 58 65

(

USGBs | 094 | 094 [ 094 | 0.9+ | 0.94 | 0.94 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85

25 28 27 . o2 32 47 13 13 06 16 19 35

I
“Risk
Out- Sample
In-S | H=1 | H=3 | H=6 | H=1 | H=2
2 4

Denmar | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
k GBs 02 02 08 08 07 10
Euro 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
GBs 03 03 09 09 08 10
Japan 093 | 093 | 0.93 | 0.93 | 0.93 | 0.94
GBs 76 76 75 78 9 08
New 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
Zealand 07 08 07 04 03 10
GBs




Norway | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
GBs 13 12 07 15 18 20

Sweden | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
GBs 05 06 04 15 22 27

Switzerl | 0.97 | 0.97 | 0.97 | 0.98 | 0.97 | 0.98
and GBs | 93 93 98 01 98 03

UKGBs | 0.99 | 099 | 0.99 | 0.99 | 0.99 | 0.99
65 65 65 64 67 65

USGBs | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96
37 36 32 36 43 61

Note: U-statistics less than 1 demonstrate that measures of oil shocks are re.22le predictors of GBM returns.



Next, we report the results for the pairwise measure of prediction performance
evaluation in Table 4. The motivation for this analysis was the potential for extending the
prediction model by again incorporating oil shocks into the estimation model. The CW test
measures the level of statistical significance, with a value above 2.5 indicating statistical
significance at the 5 percent level. Interestingly, the CW statistics are above 2.5 in most cases.
In particular, both demand and risk shocks seem to be more accurate for forecasting the green
bond returns of all sample indices, but the results differ for supply shocks. Supply shocks are
the only factor that fails to predict both in- and out-of-sample rz*mn.> for New Zealand’s green
bonds, while its predictive power is limited for the green Fon.'s of Denmark, Europe, and the
United Kingdom. In contrast, an evaluation based or supnly shocks shows superior results
when forecasting the returns of Japanese, Swedish, ard ~merican green bonds. In other words,
the CW statistics are higher, indicating that suap.:’ <nocks more accurately predict the returns
of green bonds in Japan, Sweden, and he JS, irrespective of the horizon. These findings
resemble the results with demand and 1.~k shocks, with these showing superior prediction for
Japanese, Swedish, and Americar are~" bonds compared to those of Norway and the UK at
both short- and long-term inveotment horizons. More specifically, the estimates for all green
bonds are greater than the th, ~<hold of 2.5, and this persists for both demand shocks and risk
shocks. This predictabin*v 1s also more apparent in the case of Japanese and American green
bonds. Overall, the CW statistics are higher for the Japanese GBM, irrespective of the kind of
oil shock and investment horizon, indicating that oil shocks are more efficient for forecasting
Japanese green bond returns at both short- and long-term investment horizons. Notably, this
observation is not just specific to the CW model—it happens for the Theil’s U model as well

(see Table 3).



Table 4: Single Predictor: CW statistics

Supply Demand
Out-Sample Out-Sample
In-S | H=1 | H=3 | H=6 | H=1 | H=2 | In-S | H=1 | H=3 | H=6 | H=1 | H=2
2 4 2 4
Denmar | 237 | 204 | 232 | 219 | 237 | 1.99 | 539 | 5.39 | 538 | 5.27 | 535 | 5.24
k GBs 6 9 8 3 6 6 7 7 1 0 8 9
Euro 238 | 238 | 234 | 220 | 2.06 | 2.00 | 5.34 | 534 | 5.20 | 5.22 | 5.31 | 5.33
GBs 8 8 2 7 3 8 0 1 2 6 9 9
Japan 710 | 709 | 7.11 | 710 | 723 | 7.09 | 10.2 | 10.2 | 10.3 | 10.3 | 10.2 | 10.2
GBs 1 2 2 4 5 0 68 7- 03 24 94 84
New T
Zealand 113|107 | 1.17 | 1.16 | 1.14 | 1.09 | 541 | 514 549 | 564 | 570 | 5.50
5 5 2 3 1 4 5 | O 9 7 2 5
GBs |
Norway | 494 | 493 | 505 | 506 | 529 | 544 | *.l% 466 | 483 | 472 | 468 | 4.70
GBs 0 5 0 0 3 6 7 6 5 5 8 1
Sweden 6.43 | 6.47 | 651 | 6.24 | 645 | 675G | 495 | 492 | 499 | 472 | 461 | 4.54
GBs 9 0 0 8 1 & 5 0 1 5 4 6
Switzerl | 473 | 452 | 470 | 464 | 44 447 | 770 | 7.69 | 763 | 7.60 | 7.71 | 7.70
and GBs 7 4 1 2 X 0 2 9 7 6 6 3
UKGBs | 220 | 220 | 218 | 224 | 219 | 214 | 3.21 | 3.22 | 3.24 | 3.31 | 3.19 | 3.04
8 6 3 o 1 2 6 5 0 8 6 4 7
(
USGBs | 574 | 590 | 577 | ».8o | 574 | 589 | 8.83 | 8.83 | 8.90 | 8.91 | 8.92 | 8.80
7 2 6 . ¢ 6 7 0 1 6 1 1 2
1
"Risk
Out-Sample
In-S | H=1 | H=3 | H=6 | H=1 | H=2
2 4
Denmar | 3.39 | 3.39 | 3.24 | 3.15 | 3.09 | 2.94
k GBs 8 8 1 2 5 6
Euro 3.36 | 3.36 | 3.21 | 3.12 | 3.06 | 2.91
GBs 9 9 0 7 7 9
Japan 115|115 | 115 | 115 | 115 | 11.6
GBs 12 18 61 83 86 11
New 535 | 534 | 537 | 5.43 | 550 | 5.49
Zealand
7 2 8 9 7 2
GBs




Norway | 6.19 | 6.19 | 6.34 | 6.20 | 6.38 | 6.54
GBs 0 2 3 1 3 1

Sweden | 9.50 | 9.49 | 9.57 | 9.05 | 9.15 | 9.10
GBs 9 0 3 5 1 0

Switzerl | 6.98 | 6.98 | 6.93 | 6.90 | 6.89 | 6.84
andGBs | 7 3 0 5 0 9

UKGBs | 483 | 483 | 483 | 491 | 485 | 4.76
7 9 1 0 3 7

USGBs | 11.7 | 11.7 | 11.7 | 11.8 | 11.8 | 11.9
0 01 75 19 89 09

Notes: CW measures the level of statistical significance. Values above 2.5 i.ly stat. significance at 5%.



Next, we continued with our forecasting estimation for the sub-period covering the
COVID-19 pandemic. Tables 5-6 present the predictive abilities of the Theil’s U and CW
forecasting models during distressed market conditions. The results from the Theil’s U model
highlight how oil market shocks can efficiently predict green bond returns both in and out of
sample and for all investment horizons. A U statistic less than 1 indicates that oil shocks can
predict GBM returns, so supply shocks predict all GBMs irrespective of investment horizon,
with the exception of the UK GBM during the COVID-19 pandemic. However, the predictive
power of supply shocks differs across investment horizons. In th= si.ort run, the U statistics are
above the threshold of 1, indicating that supply shocks are me*icient for forecasting the UK’s
GBM under a short-term investment horizon (i.e. H=" a..1 H=3). In contrast, supply shocks
present superior results when forecasting the returns >f vonanese and Norwegian green bonds,
suggesting that supply shocks can be used tc 1 ezast green bond returns during distressed
market conditions. Likewise, using dei"ar4 shocks to forecast green bond returns yields
findings that resemble those when usiny supply shocks to forecast green bond returns. We can
also see how demand shocks acc':xat ", predicted green bond returns during the COVID-19
period. This prediction is more abwvious for the Japanese and Norwegian green bonds at both
in- and out-of-sample horizoi.> as well as for the US GBM at out-of-sample horizons. The out-
of-sample findings are 2necific to short- and intermediate-term periods of up to 12 months,
indicating that variations in oil shocks can forecast green bond returns during inefficient market
conditions. Likewise, the risk-based model is also important for forecasting GBMs. Values of
less than 1 show that risk shocks are a good predictor of green bond returns during the COVID-
19 pandemic. When comparing between green bonds, we found that risk shocks are more
crucial in providing accurate forecasts, because the Theil U’s statistics are relatively lower in
cases of the Japanese, New Zealand, and Norwegian green bond markets at both in- and out-

of-sample investment horizons. Overall, we found that all three forecasting models are



relatively efficient at forecasting the returns of Japanese and Norwegian GBMs during the

COVID-19 period.



Table 5: Single Predictor: Theil’s U statistics (COVID-19)

Supply Demand
Out-Sample Out-Sample
In-S | H=1 | H=3 | H=6 | H=1 | H=2 | In-S | H=1 | H=3 | H=6 | H=1 | H=2
2 4 2 4
Denmar | 0.98 | 0.97 | 0.980 | 0.98 | 0.98 | 0.98 | 0.99 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99
k GBs 90 93 6 26 40 51 54 77 81 09 28 42
Euro 0.99 | 0.99 | 0991 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
GBs 12 31 3 15 12 11 67 18 22 23 1 22
Japan 0.95 | 0.95 | 0.956 | 0.95 | 0.95 | 0.95 | 0.90 | 0.90 | 0.90 | 0.89 | 0.89 | 0.90
GBs 87 70 2 10 10 39 98 4. 94 32 59 30
New 0.99 | 0.99 | 0.998 | 0.99 | 0.99 | 0.99 | 0.95 ('.95+0.95 0.95 | 0.95 | 0.95
Zealand 31 80 2 71 62 47 00 G 41 16 45 25
GBs ‘
|

Norway | 0.94 | 0.94 | 0.942 | 0.94 | 0.94 | 0.94 | 2.>3 1 0.80 | 0.81 | 0.81 | 0.82 | 0.83
GBs 65 14 4 28 21 36 78 86 32 74 91 15
Sweden | 0.99 | 0.99 | 0.997 | 099 | 0.99 | 05 | 0.94 | 0.92 | 0.92 | 0.92 | 0.93 | 0.93
GBs 28 63 1 43 32 3 27 63 89 76 53 77
Switzerl | 0.99 | 0.99 | 0.999 | 0.99 | (.99 JFO.;)9 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97
and GBs | 53 97 1 93 O 71 33 66 56 63 70 49
UK GBs | 0.99 | 1.00 | 1.000 | 0.99 | 7.99 | 0.99 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97 | 0.97

73 07 08 9¢ | o4 88 66 90 83 94 83 97
USGBs | 0.99 | 0.99 | 0.998 | 0.9c | 0.99 | 0.99 | 0.91 | 0.87 | 0.87 | 0.88 | 0.89 | 0.90

88 81 1 | 82 82 95 47 50 17 26 08

1
"Risk
Out-Sample
In-S | H=1 | H=3 | H=6 | H=1 | H=2
2 4

Denmar | 0.99 | 0.99 | 0.991 | 0.99 | 0.99 | 0.99
k GBs 30 13 0 30 40 80
Euro 0.99 | 0.99 | 0.993 | 0.99 | 0.99 | 0.99
GBs 33 30 4 32 24 34
Japan 0.95 | 0.93 | 0.939 | 0.94 | 0.94 | 0.95
GBs 68 88 6 26 44 07
New 0.94 | 0.94 | 0.946 | 0.94 | 0.94 | 0.94
Zealand 70 61 6 68 47 31
GBs




Norway | 0.93 | 0.94 | 0.941 | 0.93 | 0.93 | 0.93
GBs 89 16 2 98 99 72

Sweden | 0.96 | 0.96 | 0.968 | 0.96 | 0.96 | 0.96
GBs 35 86 7 32 67 52

Switzerl | 0.98 | 0.98 | 0.985 | 0.98 | 0.98 | 0.98
and GBs | 67 56 2 57 67 65

UKGBs | 098 | 0.97 | 0.977 | 0.98 | 0.98 | 0.98
54 74 4 00 01 16

USGBs | 097 | 0.97 | 0.972 | 0.97 | 0.97 | 0.97
28 31 5 05 12 35

Note: U-statistics less than 1 show that measures of oil shocks are reliable . e Jictor of the GBM.



Table 6 presents some interesting results for the CW evaluation of forecasting
performance during the COVID-19 pandemic. The CW-based estimation models also
incorporate similar oil shocks as regressors. The CW test measures the level of statistical
significance, such that a value above 2.5 indicates statistical significance at the 5 percent level.
We highlight how the CW statistics clearly deviate from the findings based on Theil’s U
presented earlier in Table 5. More specifically, we can observe how supply shocks fail to
forecast both in- and out-of-sample returns across all investmc~t horizons. These results are
specific to the GBMs of Denmark, Europe, New Zealand, the ' IK. and the US. In other words,
supply shocks will not help investors in these countries t) ri.>*amise returns while investing in
green bonds during the COVID-19 pandemic. We cai. alsc see how supply shocks only weakly
forecast the in-sample, extreme-long-term (i.e. F=,4\ returns for the Swedish bond market and
fail to predict the short- and medium-term .c*un .= (i.e. H=1 to H=12). The case of Switzerland
is similar but slightly different, such that sup,.'y shocks only forecast the in-sample returns and
fail to predict the out-of-sample returi. However, supply shocks can be used to accurately
forecast the in- and out-of-sami. '« rewrns for Japanese and Norwegian green bond markets

during distressed market condi. ans.

Similar to supply shc..s. u~m1and shocks also appear inefficient for accurately predicting green
bond returns for both Denmark and Europe during the COVID-19 period. We also see how
demand shocks can help forecast in-sample returns more accurately than the out-of-sample
ones for GBMs in Switzerland and the US. However, the returns are accurately forecasted for
the GBMs of Japan, New Zealand, Norway, Sweden, and the UK during the COVID-19
pandemic. In contrast, risk shocks cannot be used to forecast either the in-sample or out-of-
sample green bond returns in Denmark and the US during the COVID-19 crisis period.

However, the results for the Japanese and Swiss markets are quite interesting, because risk



shocks can be used to accurately forecast in-sample returns, but they only weakly predict the
short-term (i.e. H=1 and H=6) returns for Japanese green bonds and the short- and medium-
term (i.e. H=1 to H=12) returns for the Swiss GBM. In contrast, risk shocks can be used to
correctly forecast the in- and out-of-sample returns of the green bond markets of New Zealand,
Norway, Sweden, and the US. In other words, investors in these countries can use risk shocks
as a tool for predicting green bond returns under distressed market conditions over both the

short and long term.



Table 6: Single Predictor: CW statistics (COVID-19

Supply Demand
Out-Sample Out-Sample
- _ _» | H=1 | H=2 i _ _ _~ | H=1 | H=2

In-S | H=1 | H=3 | H=6 5 4 In-S | H=1 | H=3 | H=6 5 4
Denmar | 1.38 | 1.483 | 1.54 | 151 | 1.59 | 1.47 | 1.33 | 1.13 | 1.16 | 1.06 | 1.01 | 0.74
k GBs 89 1 85 16 28 05 12 40 65 45 50 37
Euro 125 (1229|123 | 121 | 123|123 |0.78|0.78|0.78 | 0.78 | 0.78 | 0.78
GBs 19 0 31 15 51 32 98 99 81 98 97 94
Japan 2.34 | 2365 | 210 | 231 | 2.05 | 2.33 | 3.32 | 293 | 2,95 | 3.07 | 3.10 | 3.09
GBs 89 2 05 43 51 55 03 8’ 03 61 72 73
New J T
Zealand 160 | 1.080 | 0.83 | 0.95 | 0.83 | 1.26 | 481 | . 63 | 3.65 | 3.88 | 4.11 | 451

61 4 18 74 07 80 5 | :2 68 86 22 58
GBs
Norway | 2.66 | 2.487 | 2.26 | 240 | 2.25 | 252 | ©.7s ' 3.36 | 3.42 | 3.74 | 3.86 | 4.25
GBs 82 8 54 64 26 49 ’ 89 23 05 76 62 11
Sweden | 1.94 | 1.630 | 1.10 | 142 | 1.16 | 170 | 421 | 293 | 297 | 3.40 | 3.43 | 3.76
GBs 14 1 41 61 36 T 84 39 47 20 33 25
Switzerl | 1.94 | 0.988 | 0.97 | 0.96 | 0 65+ 1.4 | 319 | 228 | 236 | 245 | 2.55 | 2.79
andGBs | 93 48 49 39 2R 74 64 37 32 62 73 35
UKGBs | 1.56 | 0.899 | 0.57 | 0.79 | 1.60 | 1.04 | 3.14 | 2.68 | 2.70 | 2.63 | 2.82 | 2.85

84 2 89 62 R3 87 3 76 9 70 1 81
USGBs | 041 [ 0.460 | 0.42 | 0.4l | 0.41 | 045 | 2.80 | 2.06 | 2.10 | 2.31 | 2.34 | 2.42

72 9 10 | 21 64 53 06 02 72 36 82 23

1
" Risk
Out-Sample
_ _ _~ | H=1 | H=2

In-S | H=1 | H=3 | H=6 9 4
Denmar | 0.80 | 1.108 | 1.09 | 0.96 | 0.88 | 0.81
k GBs 33 0 43 43 04 48
Euro 0.88 | 0.883 | 0.88 | 0.88 | 0.88 | 0.88
GBs 38 7 34 30 34 13
Japan 291 | 2.456 | 2.47 | 2.73 | 2.83 | 2.81
GBs 24 1 73 13 46 73
;lsz;land 3.88 | 2.859 | 2.83 | 3.05 | 3.19 | 3.38
GBs 59 0 11 21 98 97




Norway | 4.69 | 3.890 | 3.89 | 412 | 4.25 | 4.39
GBs 66 6 65 41 19 20

Sweden | 3.76 | 3.185 | 3.18 | 3.35 | 3.43 | 3.53
GBs 83 4 06 62 18 21

Switzerl | 2.60 | 1.764 | 1.83 | 1.93 | 2.09 | 2.29
andGBs | 4 9 15 52 45 77

UKGBs | 260 | 1.798 | 1.79 | 1.86 | 2.01 | 2.23
4 5 15 34 97 46

USGBs | 3.15 | 3.129 | 3.15 | 3.20 | 3.25 | 3.23
9 3 92 30 56 62

Note: CW measures the level of statistical significance. Values above 2.5 ir, »ly stat. significance at the 5%
level.



Robustness checks

We conducted four of robustness checks. First, since the scope of the study captures different
international markets, it is important to examine the time difference in the predictive model.
As such, we used rolling average of two-day returns; the Theil-U statistics and CW test of this
exercise are presented in Tables 7 and 8. We also checked whether the predictability analysis
on volatility is the same as that of return analysis. These results are presented in Tables 9 and
10. Third, we accounted for some controls variables (inflatior, interest rates, exchange rate,
and industrial production index were used as controls). A se'.tioi of the literature has shown
that augmenting the predictive model with some macroec noric fundamentals improves the
performance of the forecasting model (Salisu et al., 209, Ur Rehman et al., 2022). These
results are presented in Tables 11 and 12. Finally, »= examine the performance of the predictive
model during the Russian-Ukrainian war, wi. se results are presented in Tables 13 and 14.
Summarising the results of these checks, wc show that our hitherto results are robust to the first
two checks. We show that the perforirancz of the model is weak for the Russia-Ukraine war

era.

Tables 7-8 present results of > forecasting models using Theil-U statistics and CW test,
respectively by emplevir.aro ling average of 2-days. We witness similar results like previously
presented in Tables 3-2 fable 3 present coefficients of Theil-U test and the results suggest
significant results for all markets across different horizons. Japanese green bonds market
appears as the only exception, results of which remain insignificant for risk shocks. However,
for both demand and supply driven shocks, the results of forecasting model appear significant.
These results support our earlier findings that all oil related shocks i.e. demand, supply and risk
driven shocks accurately predict the green bonds market. Table 8 present results of CW test
using rolling average of 2-days. Interestingly, the forecasting ability of all the three shocks

improved significantly using 2-days average returns. The coefficient for all the green bond



markets are greater than the threshold of 2.5 suggesting significant results. Unlike our previous
results presented in Table 4, supply shocks effectively predict returns of all green bonds market.
Likewise, the forecasting ability of supply shocks has also increased significantly for the green
bonds issued in Denmark, Europe and the UK. However, the forecasting ability of demand and
risk shocks decreased significant for the green bonds market using rolling average of 2-days.
The results still appear as significant however, strength of the forecasting ability for both

supply and risk shocks decreases.

Predictability analysis on the basis of volatility of green bords 1> presented in Figures 9-10.
Figure 9 present Theil’s U statistics to forecast volatility i.° gre en bonds using three structural
oil shocks. The results are similar to the forecasting alsili * of these disaggregate oil shocks for
green bond returns as presented earlier. The foreca<ting abitity of all the three oil shocks remain
significant across all periods. Such results s:;ow that shift in the moment from returns to
volatility does not affect the forecasting aw. 1ty of oil shocks. Figure 10 presents predictability
analysis using CW statistics for grecn Londs volatility. We witness decreasing forecasting
ability for supply shocks for the yreen bonds market of New Zealand and the UK. The
predictability of Euro GBs &'<o Jeclines as we move from short- towards long-run period.
However, for other rem-ani."g markets, supply shocks predict the volatility of green bonds.
Likewise, demand- and ‘isk-driven shocks successfully forecast volatility in green bonds

market.

Tables 11-12 present estimates of the forecasting models using Theil’s U and CW statistics in
the presence of exchange rate, VIX and CPI as control variables. Results in Table 11 highlights
good forecasting ability of supply, demand and risk shocks for green bonds of all the sampled
countries. Therefore, introducing control variables along with disaggregated oil shocks predicts
green bond yields. Afterwards, Table 12 predicts green bond yields using CW statistics for

which results appear quite interesting. We see that the forecasting ability of supply- and



demand-driven shocks deteriorates significantly using control variables for almost all
countries. The only exception is the green bonds market in Euro for which the forecasting
models works well in case of demand- as well as supply-driven shocks. On the contrary, we

see good predictability analysis for risk shocks where all the coefficients remain significant.

Tables 13-14 present the forecasting ability of disintegrated oil shocks during the Russian-
Ukrainian war period. Results in Table 11 appear quite different from the full sample results
as we witness much evidence of insignificant results during this turbulent period. Supply
shocks highlight no predictive ability for the green bonds mar'.et 1> New Zealand, Norway and
Sweden in the long-run period. Besides these markets, the oreilictive ability of supply shocks
remains significant for the green bonds market of other cuntries. On the other hand, demand
driven shocks highlight better predictive anal«<is for the green bonds markets except
Switzerland (throughout the period) and New "ealand (in the long-run). Table 12 presents CW
statistics which highlight poor ability of ai. «qgregated shocks to forecast green bonds market.
Neither type of oil shock highlights a~.," siy1s of forecasting ability for any green bonds market.
Such results are indicative of the oot that the forecasting ability of oil shocks during the

Russian-Ukrainian war period ap,ears insignificant.



Table 7: 2-day average Theil U-statistics

Supply Demand
Out-Sample Out-Sample
IS | H=1 | H=3 | H=6 | H=1 | H=2 | In-S | H=1 | H=3 | H=6 | H=1 | H=2
2 | 4 2 | 4

Denmar | 0.91 | o007 0.90 | 090 [ 0.91 [ 0.9 | 0.91 | 091 | 0.86 | 0.98 | 092 | 0.86
KGBs | 32 | 52 | 94 | 49 | 38 | 28 | 40 | 31 | 19 | 45 | 54
Euo | 0.91 | oo, | 0:90 | 090 [ 091 [0.91 | 091 | 091 | 0.86 | 0.86 | 092 | 0.98
GBs 31 | 55 | 91 | 46 | 48 | 24 | 35 | 42 | 67 | 29 | o1
Japan | 0.89 | 89551 | 0.89 | 0.91 | 0.83 | 0.83 | 0.88 | 0.92 | 0.91 | 0.91 | 0.89 | 0.90
GBs 55 | 693 | 33 | 67 | 40 | 71 | 74 | 51 | 04 | 06 | 74 | 05
New ‘o1 |
centand | @9 | 09114 | 092 | 092 | 0.91 | 0.91 | 091 | 091 | 0.89 | 0.90 | 087 | 0.88

13 | 15 | 60 | 53 | 53 | 49 | '9 | 79 | 09 | 96 | 26
GBs

|

Norway | 0.9 | o 07| 0.92 | 091 [ 081 [ 0.9 | A1 | 081 | 0.89 | 0.90 | 086 | 0.90
GBs 01 |~ 04 | 73 | 40 | 40 | 47 | 45 | 97 | 09 | 57 | 27
Sweden | 0.90 | oo—| 093 | 083 [ 0.89 | 0.c? [0.90 | 0.90 | 0.88 | 0.88 | 087 | 0.90
GBs 05 | - 41 | 06 | 41 ' 70 | 97 | 67 | 53 | 61 | 58 | 04
asr‘:‘é'tzer' 0.89 | (go15 | 090 | 0.95 | 1.97 | 0.91 | 091 | 0.92 | 0.90 | 090 | 0.90 | 0.92

0 | 50 | 47 | 8 | 91 | 45 | 50 | 91 | 96 | 93 | 30
GBs
UK 089 | goss | 087 | 0.38 Tﬂ.sg 0.89 | 0.89 | 0.89 | 0.91 | 0.91 | 0.90 | 0.90
GBs 62 | 52 | 13 1 17 | 22 | 64 | 73 | 23 | 16 | 70 | 70
USGBs | 0.90 | 500 | 0-9% | 90 | 0.89 [ 0.89 | 0.88 | 088 | 0.88 | 0.89 | 087 | 0.01

37 | 4= | 77 | 14 | 23 | 84 | 55 | 66 | 03 | 42 | 25

~ Risk
Out-Sample
IS | H=1 | H=3 | H=6 | H=1 | H=2
2 | 4

Denmar | 0.90 0.89 | 0.90 | 0.90 | 0.90
kGBs | 74 | %9932 | 95 | 36 | o1 | 80
Euro | 0.90 0.89 | 0.90 | 0.90 | 0.90
GBs 73 [ 09974 ) 97 | 34 | 88 | 90
Japan | 0.88 | 8898.1 | 0.88 | 0.91 | 0.82 | 0.83
GBs 98 | 818 | 76 | 08 | 87 | 17




New
0.90 091 | 0.92 | 0.90 | 0.90
Zealand 55 0.9056 56 01 95 95
GBs
Norway | 0.90 091 | 0.91 | 0.90 | 0.90
GBs 43 | 0908 s | 15 | 82 | 82
Sweden | 0.89 002 | 0.02 | 0.88 | 0.88
GBs ag | 0898 oo | 46 | 84 | 83
:r‘:‘é'tze” 0.88 | gace | 090 | 094 | 091 | 0.91
54 | 02 | 86 | 30 | 33
GBs
UK 0.89 0.86 | 0.87 | 0.88 | 0.88
GBs 05 | 98996 | 95 | 57 | 60 | 65
US GBs | 0.89 0.90 | 0.00 | 0.88 | 0.88
79 | 98981 g | 19 | 57 | 66

Note: U-statistics less than 1 demonstrate that measures of oil shoc. - are reliable predictors of GBM returns.



Table 8: 2-day average: CW statistics

Supply Demand
Out-Sample Out-Sample
In-S H=1 H=3 | H=6 | H=1 | H=2 | In-S | H=1 | H=3 | H=6 | H=1 | H=2
2 4 2 4

Denmar | 2.99 9 9805 2.96 | 298 | 3.00 | 299 | 299 | 299 | 2.83 | 3.21 | 3.03 | 2.83
k GBs 43 ‘ 82 20 00 64 31 70 02 96 15 77
Euro 2.99 29943 296 | 298 | 299|299 | 299|299 | 283|284 | 3.02| 3.21
GBs 40 ‘ 91 11 91 97 19 55 38 19 61 36
Japan 2.93 | 29364.0 | 292 | 3.00 | 2.73 | 2.74 | 290 | 3.02 | 2.98 | 2.98 | 2.94 | 2.95
GBs 64 000 92 57 48 47 97 L7 53 59 27 26
New N
Zealand 2.98 9 0386 3.02 | 3.03|3.00|300|300|200|294|295 | 288 | 2.89

83 ' 16 63 12 12 00 70 42 41 42 41
GBs
Norway | 2.98 59841 301 (300 (299|299 ' 20y | 299 | 295|295 | 283 | 2.96
GBs 41 ' 80 78 70 70 9/ 85 01 41 86 01
Sweden | 2.95 5 9529 3.06 | 305|293 | 7.23 1298 | 297 | 290 | 290 | 2.87 | 2.95
GBs 29 ' 30 13 16 3 29 30 28 55 19 23
asr‘:‘é'tzer' 292 | ,go0s | 297 | 313 | 302 | 301 | 2.99 | 3.03 | 2.98 | 2.98 | 2.98 | 3.02

17 ' 06 05 o 38 85 30 11 26 17 64
GBs
UK 2.93 29391 286 | 2 89_8_2.92 292 1293|294 | 299|298 | 297 | 2.97
GBs 85 ’ 98 Q¢ 38 56 94 24 13 92 39 39
US GBs | 2.96 2 9637 2.9 ‘ 2971292292291 |290| 290|291 | 2.86 | 2.99

31 ' ) | 63 29 59 30 34 70 93 65 22

1
~  Risk
Out-Sample
In-S H=1 H=3 | H=6 | H=1 | H=2
2 4

Denmar | 2.79 277 | 2.78 | 2.80 | 2.79
k GBs 47 2.7818 03 32 00 66
Euro 2.79 277 | 278 | 2.79 | 2.79
GBs 44 2.7947 12 24 92 97
Japan 2.74 | 27406.4 | 2.73 | 2.80 | 2.55 | 2.56
GBs 06 000 39 53 25 17




New
278 282 | 283 | 2.80 | 2.80
Zealand 91 2.7894 02 39 1 1
GBs
Norway | 2.78 281 | 280 | 2.79 | 2.79
GBs 52 | 2752 | ee | 73| 72 | 72
Sweden | 2.75 285 | 284 | 273 | 2.73
GBs 60 | 2760 | gg | 70 | 62 | 50
:r‘:‘é'tze” 272 |, 1omg | 277 | 292 | 281 | 281
69 | < 26 | 18 | 20 | 29
GBs
UK 274 267 | 269 | 2.72 | 2.73
GBs 26 | 2732 | g5 | 72 | 89 | 06
US GBs | 2.76 279 | 277 | 272 | 2.73
56 | 2791 | g6 | 70 | 80 | 08

Notes: CW measures the level of statistical significance. Values ab. ‘e 2.5 imply stat. significance at 5%.

Table 9: Volatility: Theil’s U-statistics

Supply Demand
Out- Sample N\ Out- Sample

In-S | H=1 [ H=3 [ H=6 [ F'=1 H=2 | In-S | H=1 [ H=3 [ H=6 | H=1 | H=2
2 | 4 2 4
Denmar | 0.73 | 0.73 | 073 | 0.73 | G.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73
k GBs 58 59 87 67 : 4 78 47 47 53 57 60 66
Euro 073 | 073|073 [ 73 I 0731073 |073|073| 073|073 |0.73|0.73
GBs 57 57 60 | 61 73 77 48 48 54 58 61 67
Japan 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.64 | 0.64 | 0.64 | 0.64 | 0.64 | 0.64
GBs 27 29 ol 41 44 57 40 39 39 45 54 61

N

New |
Zealand | 0.73 | 0.73 ' 0.73 | 0.73 | 0.74 | 0.73 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72
GBs 98 97 97 99 00 99 90 91 93 92 92 96
Norway | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72 | 0.72
GBs 19 19 15 24 14 16 24 16 20 10 17 19
Sweden | 0.73 | 0.73 | 073 | 0.73 | 0.73 | 0.73 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71
GBs 15 01 00 09 05 19 25 27 24 52 56 67
Switzerl | 0.72 | 0.72 | 0.72 | 0.73 | 0.73 | 0.73 | 0.71 | 0.71 | 0.71 | 0.71 | 0.71 | 0.72
and GBs | 97 97 99 05 13 17 86 86 90 94 98 03
UKGBs | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.72 | 0.72 | 0.73 | 0.72 | 0.73 | 0.73
33 33 36 33 39 44 99 99 00 98 02 07




USGBs [ 069 [ 0.69 [ 0.69 | 0.69 | 0.69 | 0.69 | 0.63 | 0.63 | 0.63 [ 0.63 [ 0.63 | 0.63
81 | 84 | 83 | 87 | 87 | 98 | 06 | 06 | 01 | 08 | 10 | 22
Risk
Out- Sample
In-S | H=1 [ H=3 [ H=6 | H=1 | H=2
2 4
Denmar | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73
k GBs 35 | 35 | 39 | 39 | 39 | 41
Euro 073073073 ]073]073|0.73
GBs 36 | 36 | 40 | 40 | 39 | 41
Japan 0.69 | 0.69 | 0.69 | 0.69 | 0.69 | 0.69
GBs 45 | 45 | 44 | 47 | 56 | 69
New
Zealand | 0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73
GBs 39 | 39 | 39 | 3 | 36 | 41
Norway | 0.73 [ 0.73 [ 0.73 | 0.73 | 0.73 | 077 |
GBs 43 | 42 | 39 | 44 | 47 | 4
Sweden | 0.73 | 0.73 [ 073 [ 0.73 | C 73_|T73_
GBs 37 | 38 | 36 | 4 | 50 ' 53
|
Switzerl [ 0.72 [ 0.72 [ 072 [ 0.72 | 0.72 [ 0.72
andGBs | 54 | 54 | 58 | 60 | 8 | 61
A& N
UKGBs | 073 [ 0730731 .73 073 | 0.73
8L | 8L | 8L, 8 | 8 | 8l
USGBs [ 071|071 0.,* 071] 071071
39 | 38 | 3. | 38 | 43 | 56

Note: U-statistics less than 1 . >monstrate that measures of oil shocks are reliable predictors of GBM returns.




Table 10: Volatility: CW statistics

Supply Demand
Out-Sample Out-Sample
In-S | H=1 | H=3 [ H=6 | H=1 | H=2 | In-S | H=1 | H=3 | H=6 | H=1 | H=2
2 4 2 4
Denma | 2.63 | 2.27 | 258 | 243 | 2.63 | 2.21 | 5.99 | 599 | 597 | 5.84 | 5.94 | 5.82
rkGBs | 74 | 44 | 41 | 42 | 74 | 56 | 07 | 07 | 29 | 97 | 74 | 64
Euro | 2.65 | 2.65 | 259 | 2.44 | 228 | 2.22 | 592 | 592 | 5.77 | 5.80 | 5.90 | 5.92
GBs 07 07 96 98 99 89 74 85 42 09 41 63
Japan | 7.88 | 7.87 | 789 | 7.88 | 791 | 7.86 | 11.3 | 11.4 | 11.4 | 11.4 | 11.4 | 114
GBs 21 21 43 54 99 99 975 | 04. | 363 | 596 | 263 | 152
N 1
Z:;’;’an 125 | 119 | 1.30 | 1.29 | 1.26 | 1.21 | 6.01 | 6.4 | 6.10 | 6.26 | 6.32 | 6.11
99 33 09 09 65 43 07 N 39 82 92 06
d GBs
Norwa | 548 | 5.47 | 5.60 | 561 | 5.87 | 6.04 | £..3 | 517 | 5.36 | 5.24 | 5.20 | 5.21
y GBs 34 79 55 66 52 51 23 93 69 48 37 81
Swede | 7.14 | 7.18 | 7.22 | 6.93 | 7.16 | 6.75 | 550 | 5.46 | 554 | 5.24 | 5.12 | 5.04
n GBs 73 17 61 53 06 60 01 12 00 48 15 61
z"r‘]’('jtzer 525 | 502 | 521 | 515 | 5./6 | 496 | 8.54 | 854 | 8.47 | 8.44 | 8.56 | 855
81 | 16 | 81 | 26 | 25 | 17 | 92 | 59 | 71 | 27 | 48 | 03
GBs |
UK 245 | 244 | 242 | 248 | 243 | 238 | 356 | 357 | 3.60 | 3.68 | 3.54 | 3.38
GBs 09 87 31 64 | 31 21 87 42 53 08 53 22
us 6.37 | 655 | 6.41 ! 6.4 | 6.37 | 6.54 | 9.80 | 9.80 | 9.88 | 9.89 | 9.90 | 9.77
GBs 92 | 12 | 14! 2 | 81 | 57 | 13| 24 | 57 | 12| 23 | 02
© Risk
Out-Sample
In-S | H=1 | H=3 | H=6 | H=1 | H=2
2 4
Denma | 3.77 | 3.77 | 3.59 | 349 | 3.43 | 3.27
rkGBs | 18 | 18 | 75 | 87 | 55 | 01
Euro | 3.73 | 3.73 | 356 | 3.47 | 3.40 | 3.24
GBs 96 96 31 10 44 01
Japan | 12.7 | 127 | 128 | 12.8 | 128 | 12.8
GBs 783 | 850 | 327 | 571 | 605 | 882




gg;’;’an 594 | 592 | 596 | 6.03 | 6.11 | 6.09
CoB. | 63| 9% | 9% | 73 | 28 | 61
Norwa | 6.87 | 6.87 | 7.04 | 6.88 | 7.08 | 7.26
yGBs | 09 | 31 | 07 | 31 | 51 | 05
Swede | 407 | 407 | 388 | 3.78 | 3.71 | 353
nGBs | 76 | 76 | 92 | 24 | 40 | 52
Switzer

o 775 | 7.75 | 769 | 7.66 | 7.64 | 7.60
oBs 56 | 11 | 23 | 46 | 79 | 24
UK 536 | 537 | 536 | 545 | 538 | 529
GBs 91 | 13 | 24 | o1 | 68 | 14
US 365 | 365 | 367 | 369 | 3.71 | 3.72
GBs 63 | 66 | 97 | 34 | 53 | 16

Notes: CW measures the level of statistical significance. Values ab. ‘e 2.5 imply stat. significance at 5%.

Table 11: Control Variables: Theil’s U statistics C VID-19)

Supply Demand
Out-Sample Out-Sample
In-S | H=1 | H=3 | H=6 | 4=1 | H=2 | In-S | H=1 | H=3 | H=6 | H=1 | H=2
2|4 2 | 4
(
Denmar | 0.82 | 0.81 | 0.81 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82
k GBs 42 61 72 ol 00 09 95 31 34 58 73 85
.

Euro 0.90 | 0.90 | 090 | 790 | 0.90 | 090 | 0.90 | 090 | 0.90 | 0.90 | 0.90 | 0.90
GBs 11 28 12 14 11 10 61 16 20 21 09 20
Japan 0.81 O.dJ._T .01 | 080]080] 080077 076|077 |075]075] 0.76
GBs 25 10 | 03 59 59 84 10 63 07 69 92 53
New
Zealand | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.79 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76 | 0.76
GBs 45 84 86 77 70 58 00 14 33 13 36 20
Norway | 0.84 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84 | 0.74 | 0.72 | 0.72 | 0.72 | 0.74 | 0.74
GBs 51 05 14 18 12 25 80 20 61 98 03 24
Sweden | 0.82 | 0.83 | 0.83 | 0.82 | 0.82 | 0.82 | 0.78 | 0.77 | 0.77 | 0.77 | 0.77 | 0.78
GBs 73 03 09 86 77 76 56 19 41 30 94 14
Switzerl | 0.82 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81
and GBs | 94 31 26 28 28 09 11 38 30 36 42 24
UKGBs | 083 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81 | 0.81

11 39 34 32 28 23 38 58 53 62 53 64




USGBs | 083 [0.83 ] 083 [083[083[083[076[072]072]073]0.74]0.75
23 | 18 | 18 | 17 | 18 | 18 | 63 | 89 | 92 | 48 | 38 | 07
Risk
Out-Sample
In-S | H=1 | H=3 [ H=6 [ H=1 | H=2
2 4
Denmar | 0.79 | 0.78 | 0.79 | 0.79 | 0.79 | 0.79
k GBs 76 | 98 | 08 | 24 | 35 | 44
Euro 0.83 | 0.84 | 0.84 | 0.84 | 0.84 | 0.83
GBs 29 | 16 | 01 | 03 | 00 | 99
Japan 0.84 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84
GBs 84 | 69 | 62 | 16 | 16 | 42
New
Zealand | 0.87 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88
GBs 88 | 32 | 34 | 24 | 16 | 03
Norway | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 087 |
GBs 76 | 31 | 40 | 43 | 37 | 50
Sweden | 0.87 | 0.88 | 0.88 | 0.87 | C 87_|ﬁa7_
GBs 86 | 17 | 24 | 99 | 89 ' 88
|
Switzerl | 0.88 | 0.88 | 0.88 | 0.88 | 0.03 | 0.88
andGBs | 08 | 47 | 42 | 43 | a4 | 24
A& N
UKGBs | 0.88 | 0.88 | 0.88 | .88 | 0.88 | 0.88
26 | 56 | 50 | 48 | 44 | 39
USGBs | 0.88 | 0.88 | 0.c? | 0.88 | 0.88 | 0.88
39 | 33 I 3. | 32 | 34 | 34

Note: U-statistics less than 1 s~ow that measures of oil shocks are reliable predictor of the GBM




Table 12: Control Variable: CW statistics (COVID-19)

Supply Demand
Out-Sample Out-Sample
In-S | H=1 | H=3 | H=6 | H=1 | H=2 | In-S | H=1 | H=3 | H=6 | H=1 | H=2
2 4 2 4
Denmar | 2.47 | 244 | 245 | 2.45 246 | 248 | 246 | 247 | 247 | 248 | 2.48
k GBs 26 83 16 64 | 246 | 27 85 93 02 74 19 55
Euro 270 | 270 | 270 | 270 | 270 | 270 | 2,71 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70
GBs 33 84 36 42 33 3 83 48 6 63 27 6
Japan 243 | 243 | 243 | 241 | 241 | 242 | 231 | 229 | 231 | 2.27 | 2.27 | 2.29
GBs 75 3 09 77 77 52 3 8. 21 07 76 59
New
Zealand | 2.38 | 2.39 | 2.39 | 239 | 2.39 | 2.38 2.2 228 | 228 | 229 | 2.28
GBs 35 52 58 31 1 74 | 2281 & 99 39 08 6
|

Norway | 2.53 | 252 | 252 | 252 | 252 | 252 | 204 | 216 | 2.17 | 2.18 | 2.22 | 2.22
GBs 53 15 42 54 36 75 4 6 83 94 09 72
Sweden | 248 | 249 | 249 | 248 | 248 | 24C | 235 | 231 | 232 | 231 | 233 | 2.34
GBs 19 09 27 58 31 © 68 57 23 9 82 42
Switzerl | 248 | 249 | 249 | 249 | 2 /9 2.9 | 243 | 244 | 243 | 244 | 2.44 | 2.43
and GBs | 82 93 78 84 o' | 27 33 14 9 08 26 72
UKGBs | 249 | 250 | 250 | 249 | 749 | 249 | 244 | 244 | 244 | 244 | 244 | 2.44

33 17 02 96 | 84 69 14 74 59 86 59 92

(

USGBs | 249 | 249 [ 249 | Z.av | 249 | 2.49 | 229 | 2.18 | 2.18 | 2.20 | 2.23 | 2.25

69 54 54 = 54 54 89 67 76 44 14 21

1
" Risk
N Out-Sample
In-S | H=1 | H=3 | H=6 | H=1 | H=2
2 4

Denmar | 2.63 | 2.61 | 261 | 2.62 | 2.62 | 2.62
k GBs 74 15 50 02 40 69
Euro 2.88 | 2.88 | 2.88 | 2.88 | 2.88 | 2.88
GBs 35 90 38 45 35 32
Japan 2.60 | 259 | 259 | 257 | 257 | 2.58
GBs 00 52 30 89 89 69
New
Zealand | 254 | 255 | 255 | 255 | 255 | 2.54
GBs 24 49 55 26 04 66




Norway | 2.70 | 2.68 | 2.69 | 2.69 | 2.69 | 2.69
GBs 43 96 25 38 18 60

Sweden | 2.64 | 2.65 | 2.65 | 2.65 | 2.64 | 2.64
GBs 74 70 89 15 86 83

Switzerl | 2.65 | 2.66 | 2.66 | 2.66 | 2.66 | 2.65
and GBs | 41 59 43 50 50 89

UK GBs | 2.65 | 2.66 | 2.66 | 2.66 | 2.66 | 2.66
95 85 69 62 50 34

USGBs | 2.66 | 2.66 | 2.66 | 2.66 | 2.66 | 2.66
34 18 18 14 18 18

Note: CW measures the level of statistical significance. Values above 2.5 ir. »ly stat. significance at the 5%
level.



Table 13: Russia-Ukraine war: Theil U statistics

Supply Demand Risk
Out-of-Sample Out-of-Sample Out-of-Sample
H=1 | H=2 | H=3 H=1 | H=2 | H=3 H=1 | H=2 | H=3
In-S 0 0 0 In-S 0 0 0 In-S 0 0 0
Denmar | 0.99 | 099 | 0.98 | 0.99 | 1.00 | 0.99 | 0.99 | 0.99 | 0.943 | 1.07 | 1.01 | 0.94
k GBs 81 35 94 40 0 88 77 9 4 32 05 59
Euro 099 | 099 | 098 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.944 | 0.94 | 1.00 | 1.07
GBs 80 81 97 37 97 99 73 85 6 73 87 12
Japan 0.97 {0978 | 0.97 | 1.00 | 0.91 | 0.91 | 0.96 | 1.0 | 0.995 | 0.99 | 0.98 | 0.98
GBs 88 8 64 19 16 49 99 8o 1 53 09 42
New —
Zealand 099 | 0.99 | 1.00 | 1.01 | 1.00 | 1.00 | 1.00 = 1.00 | 0.981 | 0.98 | 0.96 | 0.96
61 62 72 21 04 04 00 0’ 4 47 14 47
GBs |
Norway | 0.99 | 0.99 | 1.00 | 1.00 | 0.99 | 0.99 | 99 | 0.99 | 0.983 | 0.98 | 0.94 | 0.98
GBs 47 47 60 26 90 90 9% 95 36 47 62 67
Sweden | 0.98 [ 0.98 | 1.02 | 1.01 | 0.97 | n.3™ ITO.99 0.99 | 0.967 | 0.96 | 0.95 | 0.98
GBs 43 43 10 71 72 71 43 10 6 85 73 41
]
Switzerl | 0.97 | 0.97 | 0.99 | 1.04 | 1.2 | 1.00 | 0.99 | 1.01 | 0.993 | 0.99 | 0.99 | 1.00
and GBs | 39 42 02 35 | 43 46 95 10 7 42 39 88
UKGBs | 097 | 0.97 | 095 | 0.9¢ | "9/ | 0.97 | 0.97 | 0.98 | 0.997 | 0.99 | 0.99 | 0.99
95 97 66 R | 16 52 98 08 1 64 13 13
USGBs | 0.98 | 0.98 | 0.99 ; 0.29 | 0.97 | 0.97 | 0.97 | 0.96 | 0.969 | 0.97 | 0.95 | 0.99
77 79 95 | 71 43 53 10 78 0 31 55 74
_L
Table 14: Russia-Ukrain2: C V statistics
Sugnly Demand Risk
Out-of-Sample Out-of-Sample Out-of-Sample
H=1 | H=2 | H=3 H=1 | H=2 | H=3 H=1 | H=2 | H=3
In-S 0 0 0 In-S 0 0 0 In-S 0 0 0
Denmar | 0.37 | 0.37 | 1.28 | 0.94 | 1.60 | 0.20 | 1.06 | 1.57 | 0.19 | 0.18 | 0.56 | 0.40
k GBs 81 69 55 46 06 84 51 27 81 00 39 35
Euro 038 | 038 | 1.26 | 0.92 | 1.61 | 1.58 | 1.09 | 0.22 | 0.27 | 0.25 | 0.61 | 0.45
GBs 46 29 11 16 32 21 44 05 06 16 08 12
Japan 131|130 | 149 | 057 | 0.76 | 0.76 | 1.47 | 1.70 | 2.75 | 2.74 | 2.15 | 0.98
GBs 03 99 84 11 29 05 55 60 85 70 64 27




;lg;l;land 053 | 053|038 | 063|148 | 135|225 | 229 | 0.10 | 0.09 | 0.04 | 0.02
69 68 70 98 19 79 96 18 25 88 98 04
GBs
Norway | 0.78 | 0.79 | 0.62 | 0.17 | 1.22 | 1.20 | 1.82 | 1.26 | 0.69 | 0.70 | 0.17 | 0.52
GBs 99 31 92 26 63 05 47 16 41 70 74 50
Sweden | 1.02 | 1.02 | 0.05 | 024 | 1.71 | 169 | 183 | 165 | 1.32 | 1.32 | 1.01 | 1.20
GBs 79 82 97 32 58 76 96 92 54 76 17 5
Switzerl | 1.41 | 1.41 | 1.37 | 0.37 | 0.78 | 0.74 | 094 | 0.39 | 0.37 | 0.36 | 0.60 | 0.06
and GBs | 90 42 43 33 80 89 81 48 29 19 74 47
UKGBs | 1.33 | 1.33 | 203 | 203 | 044 | 050 | 093 | 1.16 | 1.67 | 1.66 | 1.68 | 1.69
2 43 83 00 03 75 33 20 79 85 70 37
USGBs | 1.08 | 1.08 | 0.77 | 1.08 | 1.38 | 1.30 | 1.82 | 1.1 | .36 | 1.35 | 1.63 | 1.89
83 69 52 68 89 71 48 22 63 30 38 69

(i




6. Conclusion

The development of GBMs has garnered significant attention from investors,
policymakers, and scholars in recent years, mainly due to the growing global awareness and
concern about climate change. Among the vast selection of existing literature, when examining
the role of green investment in portfolio strategies, Zerbib (2019) and Bachelet, Becchetti, and
Manfredonia (2019) have posited that investors pay a premium for green bonds. Such a finding
is supported by the increasing level of investment in green bonds by investors in both developed
and developing countries (Banga, 2019; Tu, Rasoulinezhad & Sarker, 2020). However,
whether green bonds outperform other asset classes is a gr.es:*on that has yet to be answered,
but some underlying factors can certainly play an imno.*ant role in determining returns for
green investments, with these mainly including va’ing economic conditions and the
performance of traditional bond and equity mark. s i’1 comparison to their energy counterparts.
Given the importance of oil to the worlc eccaomy, its significance cannot be ignored for any
kind of investment, both conventic.al and more recently financialised asset classes.
Consequently, to build upon the exizting literature, we examined the role of different oil
shocks, (i.e. demand, supply, cd nJk), following the example of Ready (2018), in predicting
green bond returns for a wiade ~rray of GBMs including those in Denmark, Europe, Switzerland,
New Zealand, Swecer., yapan, Norway, the UK, and the US for a period spanning from
December 2, 2008 to July 11, 2021. As a diagnostic test, we employed the adjusted OLS
estimator that was introduced by Westerlund et al. (2012, 2015) to avoid serious problems
related to persistence, endogeneity, and heteroscedasticity.

We found some interesting results, which are summarized as follows: First, we found
support for predictability irrespective of the particular oil-related shock for all green bond
indices except the UK GBM. More specifically, demand shocks only fail to predict green bond

returns in the case of the UK, yet they can be used to accurately forecast all the other considered



green bond markets. Second, Theil’s U statistic is relatively more significant for forecasting
green bond returns across all investment horizons (i.e. H=1 to H=24) when considering supply,
demand, and risk shocks. Third, green bond returns in Japan and the US are more accurately
predicted by all three shocks. Fourth, the CW statistics highlight that supply shock is the only
predictor that fails to forecast the in- and out-of-sample returns for the New Zealand GBM.
However, the results for the COVID-19 crisis period appear to be heterogeneous. The measure
based on Theil’s U shows that only oil supply shocks fail to help forecast both the in- and out-
of-sample returns for UK green bonds during the COVID-19 rznaemic. Furthermore, the CW
statistics indicate that all three oil shocks fail to predict bc.n 1.>- and out-of-sample returns for
the specific green bond indices of Denmark and Eur~ne ‘uring COVID-19, suggesting that
these oil shocks are not helpful for forecasting futi've ¢*een bond returns during distressed

market conditions.

Our findings carry several implic.’«ons for practitioners and investors. Green bond
returns seem to be significantly prelictahle when considering oil market shocks, and this
should surely be useful for investoic In helping them to rebalance their portfolios and gain
maximal returns from their in.esuments in the GBM. In addition, this predictability is relatively
strong across multiple invesiment horizons in the cases of the Japanese and American GBMs,
so this revelation may be « ppealing to both short-term (i.e. less than six months) and long-term
(i.e. up to 24 months) investors in these markets. To put it bluntly, monitoring the variation in
the oil market can help investors to beat the markets and gain additional returns from trading
in GBMs. Finally, our findings about the variation in predictability during the COVID-19 crisis
period also have implications for investors looking to reshape their investment strategies. In
this way, investors can overweight or underweight their investments in GBMs according to
forecasts based on oil market shocks. Any change in market conditions could then prompt

investors to shift their investments and rebalance their portfolios. We also provide future



direction to our work by sampling international green bonds to consider the effect of

heterogeneity across different markets.
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Highlights

We examine the the predictive power of oil shocks for the green bond markets.

We investigated the extent to which oil shocks could be used to accurately make in- and out-
of-sample forecasts for green bond returns.

The three types of oil shock are reliable predictors for green bond indices.

The performances of the predictive models were consistent across the different forecasting
horizons.

Our findings were sensitive to classifying the dataset into pre-COVID and COVID eras.

The results confirmed that the predictive power of oil shocks declined during the crisis period



