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Introduction
Globalisation and knowledge-based economy have stimulated the process of knowl-
edge diffusion in the form of research and development (R&D) collaboration. Knowl-
edge spillovers have been found to be geographically localised (Jaffe et  al. 1993) and 
easier within firms than between (Kogut and Zander 1992). R&D collaboration between 
organisations in different countries could expose the participating parties to more het-
erogeneous resources, knowledge and skill sets. Data from the European Regional Inno-
vation Survey from 1995 to 1997 has shown that manufacturing firms with an intensive 
innovation network are more successful, especially for the very small firms with 
stronger intraregional linkages (Koschatzky and Sternberg 2000). Conducting research 
on cross-border knowledge diffusion is especially meaningful as R&D cooperation and 
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dissemination of innovation have been identified as key indicators in national innova-
tion system (NIS) studies (Chessa et al. 2013; OECD et al. 1999; Chang and Shih 2004). 
In this paper, we focus on identifying regional centres in the cross-border collaborative 
networks as such centrality is associated with higher level of innovation intensity and 
quality. Our proposed identification method is based on the adjusted mutual informa-
tion (AMI) gain by comparing each pair of elective partitions.

However, being a regional centre in a network can have restrictive effects on its pro-
ductivity or performance in some circumstances. Such examples have been well docu-
mented and discussed in the network literature. Bettencourt et al. (2007) and Lobo and 
Strumsky (2008) have found that local interactions alone can lead to lock-in situations 
derived from the recirculation of homogeneous and redundant knowledge. Research-
ers have commented on global pipelines as a fundamental element in dealing with such 
issues because this allows to introduce external new knowledge that can be vital in the 
local innovation processes (Gertler 1995; Owen-Smith and Powell 2004).

In quantitative innovation studies, patent information has been a widely used data 
source in a series of important works (Griliches et al. 1986; Fleming 2001; Jaffe and Tra-
jtenberg 2002; Hall et al. 2005). In the literature of R&D collaboration, researchers have 
been building linkages based on patent co-invention and co-application. In particular, 
the location information of patent inventors and applicants allows for accurate studies 
on cross-regional co-inventionship and talent mobility.

Maraut et al. coonstructed five networks using the OECD REGPAT database (Maraut 
et al. 2008) to explore the R&D integration in the European Union. These include the 
patent co-inventor and publication co-author networks, the patent co-applicant net-
work, the patent citation network and the patent inventor mobility network. Singh’s 
analysis of patents filed to the U.S. Patent and Trademark Office (USPTO) uses patent 
citation data to measure the knowledge flow and builds interpersonal networks between 
inventors. In line with the previous literature like Kogut and Zander (1992), this analy-
sis shows intra-regional and intra-firm knowledge flows are stronger than those across 
regional or firm boundaries (Singh 2005). On the temporal dimension, a study based on 
patents originated from OECD countries and filed through the European Patent Office 
(EPO) found that negative impact of geographical distance and institutional borders on 
R&D collaboration decreased from the end of 1980s till mid-1990s before it started to 
grow (Morescalchi et al. 2015). Further analysis looks into the impact of the quality of 
inter-regional knowledge networks constructed with the REGPAT patent database upon 
the regional research productivity (Sebestyén and Varga 2013). REGPAT is also used in 
combination with the Eurostat database with a focus on the innovation-lagging-behind 
European regions to suggest that having wider inter-regional co-patenting networks 
with closer collaboration with knowledge-intensive regions could help the less innova-
tive regions to close the gap (De Noni et al. 2018).

As we have seen in the aforementioned literature, a rising number of researchers have 
come to recognise the importance of knowledge spillover. The earlier works look into 
various knowledge transmission channels (e.g., citation, collaboration, inventor mobil-
ity, etc.), and the more recent studies began to leverage the power of network methods. 
But still, a relatively smaller body of literature have come up with a method to measure 
the regional R&D network centrality. So far the most common approaches derive from 
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the conventional social network analysis (SNA), such as degree centrality or between-
ness centrality (Wanzenboeck et al. 2014; Wanzenböck et al. 2015). Berge et. al. argued 
that such studies could miss the conceptual problems at the aggregated level of regions 
and lose the information regarding the structure of network relations (Bergé et al. 2017). 
They proposed a new method based on the concept of inter-regional bridging paths 
defined as the indirect connections between two regions via a third region as the bridge.

When we go through the literature on cross-regional R&D collaboration and industry 
growth at a regional level, the NUTS3 level regions are commonly used as an interna-
tional classification (Boschma and Iammarino 2009; Frenken et  al. 2007; Van Stel and 
Nieuwenhuijsen 2004). However, the NUTS3 system cannot be well mapped to the LAU 
(Local Administrative Units) or the postal addresses. As most industry study resources 
available with UK firms come with their addresses, which primarily relies on the UK 
postcode, location identification using the postal data is more efficient.

Our analysis conducts network construction based on the cross-regional co-applicant 
linkages as they represent innovation collaboration between institutions. In terms of 
network centres identification, we take a different approach from the existing literature 
and use clustering comparison measures. Such measures have been traditionally used 
for external validation as well as clustering solutions search (Vinh et  al. 2010). In this 
paper, we propose using clustering comparison in another application: as a way of iden-
tifying central nodes in networks. In the previous analysis (Zhu and Gao 2021), we have 
found that our proposed measure both correlates with and has advantages over the tra-
ditional measure of betweenness centrality as it better differentiates cross-border cen-
tres from local ones and offers a more uniform distribution of values. Our work also 
shows that compared to a simple measure of foreign share, AMI gain is more of a global 
and structural measure and better differentiates the nodes on the top.

In the rest of the paper we will introduce the data and method to measure regional 
industrial growth, followed by an introduction of the adapted AMI gain measure. Then 
we will present the results and conclude the paper with further discussions.

Data and methods
UK Bioscience and health technology sector statistics

The industrial data for this study is from the official collection of annual data on the 
bioscience and health technology sector in the United Kingdom (Office for Life Sciences 
2021), published on the UK Government website. The statistics includes data on active 
firms based in the UK in the life science industry, by sector, segment, type of business 
activities, turnover band and employee band, as well as their address and website infor-
mation. The collection starts from 2011, but varies in the type of data collected from 
year to year. We use the detailed data on firm level which is only available from 2015 to 
2020, and extract the information with consistent definition and available in most of the 
years within this period.1 Table 1 lists out the key parameters from the raw data and the 
brief definition.2

1 Turnover band in 2016 was collected in an alternative metric other than the rest of the years. Therefore, it’s not 
included in this study.
2 We applied manual data harmonisation due to different formats and naming conventions of the raw data in each year.
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PACode is the first one or two alphabetic digits before the first numeric digit in a UK 
postcode, indicating the postal area for the UK Royal Mail delivering purpose. There are 
125 postcode areas in total. We have extracted the PACodes from the firm addresses and 
mapped them to area names by referring to the ONS Postcode Directory (February, 2022) 
(Office for National Statistics 2022). Among the four sectors, the two “Cores” (Biopharma-
ceutical Core and Medical Technology Core) include businesses involved in developing 
and/or producing pharmaceutical or medical technological products, and the other two 
(Biopharmaceutical Service and Supply Chain and Medical Technology Service and Sup-
ply Chain) comprise businesses offering goods and services to the Core businesses (Office 
for Life Sciences 2022). The raw data doesn’t include the exact figures of firms’ turnover or 
employment, but reports them in bands.

Based on the extracted raw data, we calculate the year-to-year industrial growth of each 
postcode area in terms of the number of firms registered there, simply put as Eq. 1, where 
Gtp represents the growth of postcode area p in year t, Ntp the number of postcode area p in 
year t, and N(t−1)p the number of postcode area p in year t − 1. Although not specified in 
the equation, Ntp and Gtp shall be interpreted as general terms as the number and growth of 
firms per sector, revenue band or employee band as applicable.

(1)Gtp =
Ntp − N(t−1)p

N(t−1)p

Table 1 Key parameters extracted from UK Bioscience and Health Technology Statistics raw data

Type of data Parameter name Definition

Location PACode UK postcode area code

region NUTS region based on the postcode

Number of firms Ntotal_2015-2020 annual number of all the biopharma and medical 
technology firms

- by sector NBPCore_2015-2020 Biopharmaceutical Core sector

NBPSvc_2015-2020 Biopharmaceutical Service and Supply Chain sector

NMTCore_2015-2020 Medical Technology Core sector

NMTSvc_2015-2020 Medical Technology Service and Supply Chain sector

- by turnover band Nt1_2015, 2017-2020 0-£49K

Nt2_2015, 2017-2020 £50K-£99K

Nt3_2015, 2017-2020 £100K-£249K

Nt4_2015, 2017-2020 £250K-£499K

Nt5_2015, 2017-2020 £500K-£999K

Nt6_2015, 2017-2020 £1M-£5M

Nt7_2015, 2017-2020 £5M+
- by employment band Ne1_2015-2020 0-4

Ne2_2015-2020 5-9

Ne3_2015-2020 10–19

Ne4_2015-2020 20–49

Ne5_2015-2020 50–99

Ne6_2015-2020 100–249

Ne7_2015-2020 250+
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Tables 2 and 3 list the variable names and definitions. We also calculate the average 
annual numbers of firms and average annual growths, generally denoted as avg_Np 
and avg_Gp

Table 2 Variables and definitions: Annual irm numbers

Variable name Definition

Ntotal Annual number of firms: both biopharma and medical technology field

NBPCore Annual number of firms: Biopharmaceutical Core sector

NMTCore Annual number of firms: Medical Technology Core sector

NBPSvc Annual number of firms: Biopharmaceutical Service and Supply Chain sector

NMTSvc Annual number of firms: Medical Technology Service and Supply Chain sector

Nt1 Annual number of firms: turnover band 0-£49K

Nt2 Annual number of firms: turnover band £50K-£99K

Nt3 Annual number of firms: turnover band £100K-£249K

Nt4 Annual number of firms: turnover band £250K-£499K

Nt5 Annual number of firms: turnover band £500K-£999K

Nt6 Annual number of firms: turnover band £1M-£5M

Nt7 Annual number of firms: turnover band £5M+
Ne1 Annual number of firms: employment band 0-4

Ne2 Annual number of firms: employment band 5-9

Ne3 Annual number of firms: employment band 10-19

Ne4 Annual number of firms: employment band 20-49

Ne5 Annual number of firms: employment band 50-99

Ne6 Annual number of firms: employment band 100-249

Ne7 Annual number of firms: employment band 250+

Table 3 Variables and definitions: Annual firm number growth rates

Variable name Definition

Gtotal Annual growth based on firm numbers: both biopharma and medical technology field

GBPCore Annual growth based on firm numbers: Biopharmaceutical Core sector

GMTCore Annual growth based on firm numbers: Medical Technology Core sector

GBPSvc Annual growth based on firm numbers: Biopharmaceutical Service and Supply Chain sector

GMTSvc Annual growth based on firm numbers: Medical Technology Service and Supply Chain sector

Gt1 Annual growth based on firm numbers: turnover band 0-£49K

Gt2 Annual growth based on firm numbers: turnover band £50K-£99K

Gt3 Annual growth based on firm numbers: turnover band £100K-£249K

Gt4 Annual growth based on firm numbers: turnover band £250K-£499K

Gt5 Annual growth based on firm numbers: turnover band £500K-£999K

Gt6 Annual growth based on firm numbers: turnover band £1M-£5M

Gt7 Annual growth based on firm numbers: turnover band £5M+
Ge1 Annual growth based on firm numbers: employment band 0-4

Ge2 Annual growth based on firm numbers: employment band 5-9

Ge3 Annual growth based on firm numbers: employment band 10-19

Ge4 Annual growth based on firm numbers: employment band 20-49

Ge5 Annual growth based on firm numbers: employment band 50-99

Ge6 Annual growth based on firm numbers: employment band 100-249

Ge7 Annual growth based on firm numbers: employment band 250+
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AMI gain algorithm

The development of the AMI gain method is detailed in our previous work (Zhu 
and Gao 2021). We provide a brief review here: For the constructed network with 
weighted links, we restrict our focus to the largest components and use the Louvain 
method (Blondel et al. 2008) for community detection. In the detected network parti-
tion, we apply clustering comparison method by measuring and comparing the simi-
larity scores of a clustering before and after arbitrarily removing cross-border links 
of a focal node against the default clustering defined by national administrative bor-
ders. The difference between the similarity scores is the AMI gain of the focal node. 
In other words, the more adjusted mutual information the network could gain by hav-
ing a node, the more central the node is.

The original AMI methodology has been adapted for this study: First, the original 
method is based on NUTS3 level region division, while in this paper it’s been revised 
to map to the UK postcode areas. Second, in this study we combine pharmaceuti-
cals and biotechnology patents together. And third, instead of using all the patents 
with priority dates from 1976, we now focus on two periods: 1976–2014 and 2010–
2014, representing effects of the long-term accumulation of cross-regional innovation 
cooperation heritage and the short-term one, respectively, on the observed period of 
industry growth. Same as the previous work, the patent data we use is still the OECD 
REGPAT database (released in January, 2021) (Maraut et al. 2008).

We now explain the adaption in details. This analysis focuses on the 30 countries 
in Europe, i.e., the EU28 countries except for Cyprus before the Brexit, plus Iceland, 
Norway and Switzerland. For the United Kingdom, we use postcode areas of the pat-
ent applicant addresses as the network nodes. For the other countries, we still follow 
the NUTS3 level regions. The cross-border links between the UK and the other Euro-
pean countries are, therefore, between any UK postcode areas and another country’s 
NUTS3 regions. For each UK postal area, the links with other UK postal areas and 
with other European regions are equally considered. Patents categorised into both 
the biotechnology and pharmaceuticals fields according to the IPC concordance table 
published by the WIPO (WIPO 2019) are used in the dataset to construct a combined 
bio-pharmaceutical co-applicant network. The links are weighted by the accumulated 
number of co-applicant collaboration instances between UK postal areas and NUTS3 
regions over time (i.e., from 1976 to 2014, or from 2010 to 2014). As in the previous 
study, self-loops are considered and weighted.

We denote the network as G = (V ,E) where V is the set of nodes (or vertices) and E 
is the set of links (or edges). To highlight the changes in this study, we further denote 
V = V1 ∪ V2 , where V1 as the set of nodes of UK PACodes, and V2 as the set of nodes 
of the NUTS3 regions in other countries. Despite the different definition of regional 
division, nodes from both subsets are treated the same in network edge construction 
and partitioning.

The definiton of AMI in mathmatical formula is the same as in the previous work 
(Zhu and Gao 2021). Algorithm 1 shows the adapted pseudocode of calculating the 
AMI gain for each node. vi ∈ V represents node i in the network, and evi ,vj ∈ E as the 
edge between node i and node j. The set of node i’s neighbouring (directly connected) 
nodes is denoted as N (vi) . The largest component of the network is denoted as C1 . 
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A cluster containing node i is denoted as Pi , and the cluster after node i has been 
removed is denoted as P−vi.

Results
We now focus on the correlation between the long-term and short-term patent co-appli-
cant network AMI gains (denoted as amigain_1976 and amigain_2010 , respectively) and 
the regional industry status, i.e. the number of firms and their growths in each UK post-
code area. It is noteworthy that although the firms have covered 122 out of all the 125 
PACodes, not all of the areas have patent-producing firms. In fact, from 1976 to 2014, 88 
postal areas have actually generated bio-pharmaceutical patents, and from 2010 to 2014 
only 54.

We first examine the correlations between AMI gains over the longer and shorter peri-
ods and the regional firm quantity growth rates in each year, shown in Fig. 1 (AMI gain 
from 1976 to 2014) and Figure 2 (AMI gain from 2010 to 2014). Figure 1 shows that 2018 
marks a year with overall high correlations followed by a drop in the next year. All the 
growth indicators but the one in biopharmaceutical service and supply chain sector pick 
up in 2020. All the correlations in 2020 are higher than 2016. This uprising trend is more 

Fig. 1 Correlations between AMI Gain (from 1976 to 2014) and Annual Firm Numbers and Growths by Sector
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consistent and stronger in Fig. 2. These two figures show that the correlations with both 
long-term and short-term AMI gains have been increasing in the recent years, and the 
increase is more stable with the short-term AMI gain.

Table 2 shows the pairwise correlation coefficients between AMI gains and the aver-
age firm numbers and growths. It is noticeable that the correlations between the long-
term AMI gain and the number of firms are mostly positive, while the short-term AMI 
gain shows more negative correlations. This indicates that a longer-term heritage of 
cross-regional R&D collaboration is associated with higher firm numbers. Such positive 
correlations are more significant with separate sectors (Medical Technology Core and 
Medical Technology Service), turnover bands (0-£49K,£500K-£999K, £1M-£5M), and 
employment band (5–9).

Negative correlation coefficients are observed between AMI gains and most growth 
measures. Indeed, as mentioned in the literature introduction, centrality could have pos-
sible negative effects on node performance. Bianchi et al. (2021) analysed the trade-offs 
of brokerage at a similar scale as ours and found that cities holding a central position 
in the inter-city innovation collaboration networks show higher patenting activity level, 
while being a broker can negatively influence patenting outcomes. Another element for 
consideration is that an area with a well-established industry can naturally present rel-
atively lower growth rates for a given number of new firms. More specifically, a more 
established area over the last 40 years would need to have more newly registered firms to 
achieve the same level of growth of a less established and emerging area.

Here we document the findings without determining any causal links. As the patent 
data used to calculate AMI gains ends at 2014, the rising trend and changing signs of the 
correlations shown in Figure 1 and 2 could indicate that there is a time lag of 2–3 years 
between cross-regional R&D collaboration and its influence on the regional industry.

Furthermore, we would like to highlight the stronger correlations between long-
term AMI gain and the medical technology firm numbers. According to the indus-
try statistics in 2020 (Office for Life Sciences 2022), the Med Tech Core sector is the 
largest in the industry by employment (106,500 total employees, 40% of the industry) 
and number of firms (2,900 in total, 46% of the industry). Its supporting Service and 
Supply Chain sector also contributes significant shares: 63,900 employees and 1,690 
businesses. In fact, approximately 138,100 (52% of the industry total) are employed in 

Fig. 2 Correlations between AMI gain (from 2010 to 2014) and annual firm numbers and growths by sector
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the Med Tech sectors. This could suggest that cross-regional patenting efforts can be 
associated with boosting the regional entrepreneurship and employment. The signifi-
cant positive correlation between long-term AMI gain and number of firms in turno-
ver band 5 and 6 also suggests that an accumulated cross-regional innovation heritage 
can be linked with increasing the number of highly profiting firms in an area.

In Fig. 3, the left panel shows the average number of firms in the entire bioscience 
and health technology industry from 2015 to 2020 of each postcode area plotted on 
the UK map. A region marked with deeper color indicates higher number of firms. 
The right panel shows the average growth from 2016 to 2020 in the similar fashion. 
The illustration shows that areas with the most firms do not necessarily overlap with 
the fast-growing areas. For example, Comhairle nan Eilean Siar and Dumfries. Cam-
bridge is an advanced area with a large number of firms in the field (399), and its sur-
rounding areas show the similar level of growth as it.

Figure 4 shows the long-term (left panel) and short-term (right panel) regional AMI 
gain on the UK map, in which the black areas are the non-patent-producing regions. 
As the color goes keeper, the AMI gain increases. We can see that the short-term 
AMI gain is at a higher level compared to the long-term, with some more outstanding 
areas like Belfast, Newcastle, Glasgow, Dundee, Milton Keynes, Stevenage and Exeter, 
other areas apparently engaging in less cross-regional patenting activities like Aber-
deen, and some areas not having produced any patents during the more recent period 
of 2010–2014 (most of them have a small number of patents even since 1976). Com-
paring Fig. 3 and 4, the long-term areas more active in cross-regional invention col-
laboration overlap with the areas with more firms and higher growths mainly in the 
regions of East Midlands, East of England, London and South East (Table 4).

Fig. 3 UK postcode areas with numbers and growths of firms in the bioscience and health technology 
industry
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Conclusion and future work
R&D collaborations beyond national borders are critical for knowledge spillovers 
at large scale, which is well demonstrated by the recent development of COVID19 
mRNA vaccines at an unprecedented timescale. This paper focuses on the UK’s bio-
science and health technology industry and uses a new government-released industry 
dataset to propose a different perspective into the impact of cross-regional innova-
tion on the industry.

This paper demonstrates a new application of the previously proposed clustering 
comparison approach based on adjusted mutual information. We associate the net-
work method with real-world industry data, and therefore contribute to the literature 
by exploring the relationship with the regional industrial growths with the cross-
region patent collaboration “centralness”. Regional analysis on the level of UK post-
code areas is a relatively untapped field in the literature, and this study contributes to 
filling this gap.

We present two key findings through this study. One, an increase is observed in the 
correlations between both long-term and short-term AMI gains and annual growth 
rates of firm numbers in UK’s bioscience and health technology sectors from 2016 
to 2020, and the increase is more consistent with the short-term AMI gain. Two, in 
terms of the correlation with average regional firm numbers from 2016 to 2020, the 
long-term AMI gain shows more positive and higher significance than the short-term 
AMI gain. In the meantime, we also observe and discuss the negative correlation 
between regional AMI gains and the industrial growth rates. This adds to the litera-
ture of potential trade-offs of centrality in a network.

Given that most of the nodes in the patent co-application network are foreign 
regions outside of the UK, it is likely that the links with overseas businesses play a big-
ger role in the AMI gain. The patent dataset ends by 2014, before the 2016 referendum 

Fig. 4 UK postcode areas with AMI gains in the pharmaceuticals and biotechnology sectors
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on the UK’s EU membership, let alone the actual withdrawal process later. This paper 
has not differentiated the domestic collaborations from the foreign ties, which is 
worth exploring in future work to provide insights on the potential impact of Brexit 
on the biopharma and medical technology sectors in the UK.

The authors of this paper are not specialised in UK regional policies and initiatives 
in the relevant industry. There are, undoubtedly, other not insignificant factors in the 

Table 4 Pairwise correlation between AMI gains and the average number of firms and the average 
growths

*p < 0.05 . For each pairwise correlation, the first value is the correlation coefficient and the value below is the number of 
observations. The average growth by turnout band is based on the growth in year 2018–2020 only

Average numbers amigain_1976 amigain_2010 Average Growths amigain_1976 amigain_2010

avg_Ntotal 0.1559 −0.0439 avg_Gtotal −0.0857 −0.2189

88 54 88 54

avg_NBPCore 0.0579 −0.2621* avg_GBPCore 0.0616 −0.0951

81 53 81 53

avg_NMTCore 0.1838* 0.0807 avg_GMTCore −0.0915 −0.2790*

88 54 88 54

avg_NBPSvc 0.0804 −0.1039 avg_GBPSvc −0.0012 −0.0753

87 54 87 54

avg_NMTSvc 0.2453* 0.0555 avg_GMTSvc −0.0588 −0.1979

87 54 87 54

avg_Nt1 0.2002* −0.0221 avg_Gt1 −0.0649 −0.0716

88 54 88 54

avg_Nt2 0.1341 −0.0580 avg_Gt2 −0.0384 0.1431

86 54 86 54

avg_Nt3 0.1545 −0.0422 avg_Gt3 0.0757 0.0307

86 54 86 54

avg_Nt4 0.1590 −0.0684 avg_Gt4 −0.1662 0.0399

87 54 87 54

avg_Nt5 0.1795* 0.0713 avg_Gt5 −0.1063 −0.1869

87 54 87 54

avg_Nt6 0.1836* −0.0127 avg_Gt6 0.0193 0.0215

87 54 87 54

avg_Nt7 0.0611 −0.1220 avg_Gt7 0.0500 −0.1919

88 54 88 54

avg_Ne1 0.1602 −0.0690 avg_Ge1 −0.0011 −0.0631

88 54 88 54

avg_Ne2 0.2173* −0.0205 avg_Ge2 −0.2739* −0.3216*

87 54 87 54

avg_Ne3 0.1723 0.0807 avg_Ge3 −0.1780* −0.1761

87 54 87 54

avg_Ne4 0.1159 −0.0614 avg_Ge4 −0.1567 −0.2451*

86 54 86 54

avg_Ne5 0.1029 −0.1241 avg_Ge5 −0.0489 −0.2505*

83 52 83 52

avg_Ne6 0.0764 −0.0381 avg_Ge6 −0.1560 0.0059

83 52 83 52

avg_Ne7 0.0643 −0.1740 avg_Ge7 0.1187 0.1953

78 52 78 52



Page 12 of 13Gao and Zhu  Applied Network Science            (2022) 7:77 

regional industrial growth, such as public and private investments, entrepreneurship 
stimulus, talents movements, etc. Challenge of obtaining such data results in a major 
limitation of this study. We look forward to completing the work and exploring more of 
the trade-off effects if a more thorough dataset becomes available.

Appendix
Appendix  1: List of UK postcode areas and the name of areas and regions. See Addi-
tional file 1: Appendix 1.csv.
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