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ABSTRACT

Although humans are considered to be face experts, there is a well-established reliable
variation in the degree to which neurotypical individuals are able to learn and recognise
faces. While many behavioural studies have characterised these differences, studies that
seek to relate the neuronal response to standardised behavioural measures of ability
remain relatively scarce, particularly so for the time-resolved approaches and the early
response to face stimuli. In the present study we make use of a relatively recent meth-
odological advance, multi-variate pattern analysis (MVPA), to decode the time course of the
neural response to faces compared to other object categories (inverted faces, objects).
Importantly, for the first time, we directly relate metrics of this decoding assessed at the
individual level to gold-standard measures of behavioural face processing ability assessed
in an independent task. Thirty-nine participants completed the behavioural Cambridge
Face Memory Test (CFMT), then viewed images of faces and houses (presented upright and
inverted) while their neural activity was measured via electroencephalography. Significant
decoding of both face orientation and face category were observed in all individual par-
ticipants. Decoding of face orientation, a marker of more advanced face processing, was
earlier and stronger in participants with higher levels of face expertise, while decoding of
face category information was earlier but not stronger for individuals with greater face
expertise. Taken together these results provide a marker of significant differences in the
early neuronal response to faces from around 100 ms post stimulus as a function of
behavioural expertise with faces.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).
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Although it is typically taken for granted that humans are all
‘face-experts’ who can accurately and effortlessly identify a
known individual from a brief glance, in fact large and reliable
differences exist in adult face identification ability (recogni-
tion memory as well as matching). A naturally occurring
spectrum of ability ranges from those individuals who report
severe problems in face recognition, termed developmental
prosopagnosics (Duchaine & Nakayama, 2006) through to so-
called super recognisers (Russell, Duchaine, & Nakayama,
2009), with the rest of the population falling between the ex-
tremes of this normally distributed trait (Wilmer, 2017).
Despite keen research interest in the mechanisms underlying
the neurotypical variability, much remains unclear in terms of
understanding the functional mechanisms underlying
strengths and weaknesses in face processing (Ramon, Bobak,
& White, 2019), which could be present in any or indeed all
its levels: from our earliest low-level visual responses,
through to high-level mental representations.

Characterising and classifying stable individual differences
in face identification ability has typically been the reserve of
standardised behavioural approaches. Such work has
confirmed that broader cognition and visual processing abili-
ties (e.g.,, IQ, object cognition, memory, processing speed)
contribute to, but cannot fully account for, outcomes on lab-
based measures such as the Cambridge Face Memory Test
(CFMT, Duchaine & Nakayama, 2006; Gignac,
Shankaralingam, Walker, & Kilpatrick, 2016; Hildebrandt,
Wilhelm, Schmiedek, Herzmann, & Sommer, 2011; Van
Gulick, McGuigin, & Gauthier, 2016; Wilhelm et al., 2010;
Wilmer, Germine, & Nakayama, 2014). Outcomes on these
tasks are influenced by factors like genetics (Shakeshaft &
Plomin, 2015), age (Germine, Duchaine, & Nakayama, 2011),
sex (Herlitz & Lovén, 2013), personality (Bate, Parris, Haslam, &
Kay, 2010; Megreya & Bindemann, 2013) and face experience
(Balas & Saville, 2015; Meissner & Brigham, 2001).

Targeted investigations have also probed the contribution
of face-relevant cognitive mechanisms. For example, signifi-
cant (and to a degree, independent) associations have been
confirmed with holistic processing: the extent to which faces
are encoded as a unified whole, rather than a collection of
features (e.g., DeGutis, Mercado, Wilmer, & Rosenblatt, 2013;
Richler, Cheung, & Gauthier, 2011; Wang, Li, Fang, Tian, & Liu,
2012; but see also Konar, Bennett, & Sekuler, 2010; Verhallen
et al., 2017) and adaptive norm-based processing: encoding
faces as a deviation from a perceptual average at the centre of
face-space (Dennett, McKone, Edwards, & Susilo, 2012;
Engfors, Jeffery, Gignac, & Palermo, 2017; Rhodes, Jeffery,
Taylor, Hayward, & Ewing, 2014).

Given the amount of neuroscientific research that has been
conducted into face perception generally, it is perhaps sur-
prising that relatively few studies have explored the neural
markers associated with stronger vs weaker abilities in the
typical population (see Lander, Bruce, & Bindemann, 2018 for a
recent overview). We do, however, know a great deal about the
distributed neural system specialised for processing different
aspects of faces, including identity (see Gobbini & Haxby, 2007;
Haxby, Hoffman, & Gobbini, 2000). This body of work includes
insights from neuropsychological investigations of clinically
significant identification difficulties (i.e., prosopagnosia)
associated with disruption to this system (Barton, 2008;

Rossion, 2008). Thus, it seems appropriate to also consider
whether differences in neurological structure or processing
might functionally contribute to the variability in face recog-
nition abilities observed in the typical population.

The results of several imaging studies support links be-
tween individual participants’ face processing abilities and
structural features like ventricle-to-brain ratio (Schretlen,
Pearlson, Anthony, & Yates, 2001), cortical thickness in the
FFA (McGugin, Van Gulick, & Gauthier, 2016, 2020; see Meyer,
Garzon, Lovdén, & Hildebrandt, 2019 for further evidence
regarding cortical thickness and general task accuracy/face
specific task accuracy) and regional grey matter volume in the
right ventral anterior lobe (though unexpectedly not right OFA
and FFA, Li et al., 2016). Additionally, functional research with
neurotypical participants has identified ability-related asso-
ciations between activity in the face processing network
(including but not limited to FFA and OFA) and face identity
recognition (e.g., Elbich & Scherf, 2017; Furl, Garrido, Dolan,
Driver, & Duchaine, 2011; Grill-Spector, Knouf, & Kanwisher,
2004; Huang et al., 2014) along with behavioural face inver-
sion effects (Aylward et al., 2005; Passarotti, Smith, DeLano, &
Huang, 2007; Yovel & Kanwisher, 2005).

Electrophysiological (EEG) studies are particularly inter-
esting on this point, because of the degree to which they can
provide detailed information about neural correlates of
perception and cognition as they are occurring. Studying group
and individual profiles of EEG activity allows us to pinpoint
differences that arise at specific (i.e., informative) points in the
processing time course. Such responses are typically explored
via event related potential analysis (ERP) of the averaged
neural response time locked to presentation of a stimulus/
category. This work has identified clear markers of face pro-
cessing expertise later in the component time course, often
linked to face familiarity and face recognition (e.g., N250,
N250R, P300, P600, Belanova, Davis, & Thompson, 2018; Meyer
et al., 2021; Parketny, Towler, & Eimer, 2015; Towler, Fisher, &
Eimer, 2017). Yet there are only sparse reports of an associa-
tion between expertise and the early neural responses to
faces.

There is some debated evidence that the P100 component,
an early positivivity observed in posterior electrode sites,
might be sensitive to face information, showing an increased
amplitude to faces compared to objects or scrambled faces
(Eimer, 1998; Herrmann, Ehlis, Ellgring, & Fallgatter, 2005; Itier
& Taylor, 2004b) and to inverted faces compared to upright
(Colombatto & McCarthy, 2017; Itier & Taylor, 2004a; 2004b;
Minami, Nakajima, Changvisommid, & Nakauchi, 2015). Some
links between face expertise and the P100 component have
been suggested at the group level, with participants with
higher face expertise showing an increased P100 for faces but
not for cars (Turano, Marzi, & Viggiano, 2016). Furthermore, an
association between the P100 amplitude and face memory
ability has been found using structural equation modelling
(SEM, Kaltwasser, Hildebrandt, Recio, Wilhelm, & Sommer,
2014).

While the association between the P100 and face process-
ing remains debated, the N170, a negativity occurring
approximately 170 ms post presentation of a face, is the
component most robustly observed to respond selectively to
faces (see Eimer, 2011 for a review). Generally accepted to be a
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marker of the detection and encoding of perceptual face in-
formation there have been a few limited reports of a link be-
tween the N170 and face expertise. Notably, face identity
recognition accuracy has been moderately linked to N170 la-
tency, via SEM (Herzmann, Kunina, Sommer, & Wilhelm, 2010;
Kaltwasser et al., 2014; Nowparast Rostami, Sommer, Zhou,
Wilhelm, & Hildebrandt, 2017, 2020). Findings regarding the
N170 amplitude have been more mixed, but there is some
evidence linking it to both face and object memory ability
(Nowparast Rostami et al., 2017) and to face memory in men
(Nowparast Rostami, Hildebrandt, & Sommer, 2020). The N170
amplitude was further linked to expertise at the group level
(Turano et al., 2016). Further group level studies suggest in-
direct evidence of a link between the N170 component and
expertise via effects such as the other race effect (Weise,
Kaufmann, & Schweinberger, 2014) or the impact of early
exposure to a larger vs smaller pool of face exemplars, a factor
itself tied to a behavioural expertise measure (Balas & Saville,
2015).

The current study seeks to expand on these findings using
a less restrictive analysis approach (multi-variate pattern
analysis) to explore any association between individual dif-
ferences in face recognition ability (characterized using
behavioural CFMT scores) and participants’ early neural (EEG)
responses to faces. Importantly, in contrast to the traditional
component based framework, multi-variate approaches do
not pre-specify the timing and location of particular effects of
interest, rather they combine information across electrode
sites to detect differences in the pattern of neural response
that may not be obvious when only single electrodes (or
electrode pairs) are considered in isolation. Further, unlike
previous group-level ERP studies, expertise is conceptualized
as a continuous variable within our analysis. This approach
avoids the need to arbitrarily split the sample based on mean/
median values to impose an artificial good vs. bad face pro-
cessors dichotomy. Such an approach (i.e., targeting interin-
dividual differences in the relationship between decoding
metrics and face processing expertise) promises to extend
findings from group-mean studies to more clearly elucidate
neuronal as well as cognitive factors that modulate the highly
variable outcomes observed in this domain (see Rhodes et al,,
2014).

In the present task, participants view upright and inverted
faces, alongside a further comparison category of complex
visual stimuli: upright and inverted houses. Inclusion of these
four stimulus categories in the task permits investigation of
expertise-related differences in selective responding to faces
as an overall category (contrasting upright faces and houses),
and more selectively to the canonical upright configuration of
a face (contrasting upright and inverted faces). Brain behav-
iour links may be revealed in either or both contexts, though
the extent to which face orientation effects index specialist
processing makes the latter a particularly strong candidate for
revealing differences in early neural responses as a function of
ability. Moreover, the extant preliminary evidence for links
between ability and early face-sensitive ERP components in
typical participants (Balas & Saville, 2015) and developmental
prosopagnosics (Towler, Gosling, Duchaine, & Eimer, 2012)
supports differential neural responses to face orientation,
rather than categorization (cf. chairs and houses respectively).

Notably one of the few studies to apply machine learning
classification techniques to tackle this question provided
intriguing evidence of a difference in classification of face
orientation in groups with/without extensive early experience
with a large pool of faces (Balas & Grant, 2016). Here we will
also employ machine learning techniques to further probe the
link between face orientation effects and participants exper-
tise with faces, as directly indexed by a cognitive test of face
memory ability, the CFMT.

1. Methods

This paper follows the same methods and general analysis
pipeline as two recent studies from our team (Farran et al,,
2020; Mares, Ewing, Farran, Smith, & Smith, 2020). No part of
the study procedure or analysis was pre-registered prior to the
research being conducted. The conditions of our ethics
approval do not permit public archiving of anonymised study
data. Readers seeking access to the data should contact the
senior author MLS. Access will be granted to named in-
dividuals in accordance with ethical procedures governing the
reuse of sensitive data.

Specifically, requestors must complete a formal data
sharing agreement and approval must be obtained from the
local ethics committee.

Averaged datasets and the experimental task’ can be
found at https://researchdata.bbk.ac.uk/id/eprint/205/. The
code underpinning our main analysis is publicly available at
https://github.com/fws252/Mares_etal_Cortex_2022. We
report how we determined our sample size, all data exclu-
sions, all inclusion/exclusion criteria, whether inclusion/
exclusion criteria were established prior to data analysis, all
manipulations, and all measures in the study.

1.1. Participants

A total of 43 participants volunteered to participate in the
study (while no previous power analysis was conducted at the
time, we elected to recruit a similar number of participants as
previous studies, e.g., Balas & Saville, 2015; Balas & Grant,
2016). Participants were included if reporting normal, or cor-
rected to normal vision and were aged between 18 and 40
years of age (criteria decided before data collection). One
person could not be included as they did not agree to complete
the CFMT. Further, to ensure sufficient data quality only those
individuals with at least 30 non-artefact trials per experi-
mental condition in the EEG task were included for analysis,
leaving a final sample of 39 participants (23 females,
M = 26.1 + 5.1 years of age; criteria decided after data collec-
tion). Written informed consent was obtained from all par-
ticipants and this study was approved by the Ethical
Committee of the Department of Psychological Sciences,

2 Only the programming in e-prime and house stimuli used is
made available. Legal copyright restrictions do not permit us to
publicly archive the full set of stimuli used in this experiment.
Readers seeking access to the face stimuli are advised to contact
the senior author MLS. Stimuli will be released upon the re-
questor's agreement to not share the stimuli.
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Birkbeck College, University of London (Reference Number
161756/161757). Participants were compensated for their time
either with a small monetary reimbursement equivalent to
minimum wage or undergraduate Psychology course credit.

1.2. Stimuli

This study used greyscale photographs of six male identities
presented frontally with neutral facial expressions (see
Schyns and Oliva, 1999, for examples of the face stimuli).
Faces were digitally manipulated to share the same hairstyle
and outline. Similar photographs of houses (N = 6) were used
as a control condition. House stimuli were masked with an
oval shape sharing the same outline as the one used for the
faces (see Eimer, 2000a for details and examples of the house
stimuli). Luminance and contrast were controlled across
stimuli using the Shine toolbox (Willenbockel et al., 2010).
Inverted versions of the upright images were created for all
stimuli.

1.3. Procedure

Participants took part in a multi-experiment session lasting
between 90 and 120 min, which included a series of face and
object perception and memory tasks associated with a larger
project.® Participants further completed the CFMT—Austra-
lian* at the end of the session which provides an estimate of
face identity expertise. In this recognition memory task, par-
ticipants are introduced to a series of novel target identities
shown across three different viewpoints, then asked to
discriminate them from 2 other similar-looking foils. As the
task progresses the difficulty increases and it culminates in a
final stage in which visual noise is added to the test stimuli,
making accurate discrimination particularly challenging
(further methodological details are available in McKone et al.,
2011).

The main experimental EEG task required participants to
closely observe a series of face and house images, presented in
both upright and inverted orientations. To maintain interest
and attention, participants were given the explicit task of
“spotting butterflies” that occasionally appeared to the left or
right of fixation on catch trials (20% of trials), using a keyboard
press to indicating its position (left or right). Using Eprime
software (Version 2.0), face and house stimuli were presented
centrally on a grey background (750 ms) followed by a black
fixation cross of randomly varying duration (1650—1850 ms).
Participants completed 60 trials with each category of stimuli,
for a total of 240 trials, that were fully randomised and

3 Participants also completed a second EEG task in which they
viewed images of different individuals varying in gender (male,
female) and facial expression of emotion, and took part in a
behavioural economics style paradigm in which they controlled
their viewing exposure to a range of further different facial
identities (varying in facial expressions of emotion, attractiveness
and gender). Crucially, these additional tasks were always
completed after the present task and therefore could have no
bearing on the reported findings.

* This version of the CEMT task is not publicly available. For
visualization, different versions of the CFMT can be searched in
https://www.testable.org/library.

randomly intermixed with a further 60 trials of butterflies.
Trials were divided into 10 blocks of 30 trials with short breaks
permitted between each block. Responses on these butterfly
catch trials were rapid (Mean RT = 436 ms) and highly accurate
(M = 97%), which supports high levels of engagement with the
explicit behavioural task.

Participants were seated in a comfortable chair in an
electrically shielded and sound-proof room at a distance of
approximately 70 cm from the screen (such that stimuli sub-
tended a visual angle of approximately 4.09° width by 6.13°
height; 176 x 256 pixels).

Of note, prior to participation in the main EEG experiment,
participants completed one face related activity which
comprised a short familiarisation task in which they learned
by name three of the six presented male identities. They then
made a small number of identity categorization decisions on
sub-sampled versions of these faces (216 trials, 72 trials per
face, see Gosselin & Schyns, 2001 for the experimental para-
digm details).” Participants were not informed about potential
face identity familiarity during the EEG task and this was not
highlighted to them, nor was it a focus for the present anal-
ysis. Our goal here was specifically to explore the existence of
an early neural correlate of face processing expertise and as
such our interest was centred around the timing of the most
widely acknowledged first reliable and robust selective neural
response to faces, the N170 component, which typically peaks
170 ms following presentation of a face stimulus over occipito-
temporal brain regions (Rossion & Jacques, 2011). Reliable face
familiarity effects are relatively small in comparison to the
early critical period around the N170 (see Ramon and Gobbini,
2018 for a review), and are typically observed much later,
around 250 ms following face presentation e.g., the N250R
(e.g., Schweinberger, Pickering, Jentzsch, Burton, &
Kaufmann, 2002), a reduced response to repetition of the
same identity, and the N250 (Andrews, Burton,
Schweinberger, & Wiese, 2017; Gosling & Eimer, 2011),
observed when contrasting highly familiar/famous faces to
unfamiliar faces. As such we do not consider the familiarity of
the faces further as an independent variable of study in the
present work. See supplementary materials for confirmatory
results showing the same pattern of findings as reported
below when results are split by the factor of face familiarity.

1.4. EEG recording and analysis

EEG recording was conducted using a fitted cap (EASYCAP)
with either 32 (N = 19) or 64 (N = 20) Ag—AgCl electrodes placed
according to the international 10/10 system. The fitted cap
included two electrodes placed laterally to the eyes in order to
measure horizontal eye movements. Furthermore, an elec-
trode was placed below one of the eyes to monitor vertical eye
movements and blinks. Electrode impedance was lowered
below 10 kQ. EEG was acquired at a sampling rate of 500 Hz
and referenced to FCz, with AFz as the ground. Data was
analysed using the Matlab (R2017b) toolbox EEGLAB (Version
13, Delorme & Makeig, 2004). Continuous data was band pass
filtered between .1 and 40 Hz, and epoched around stimulus

> NB. For technical reasons three participants completed only
120 trials (40 per face).
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onset from —200 ms to 500 ms. Epochs were baseline corrected
using the 200 ms previous to stimulus onset. Channels were
selected for interpolation due to noise using EEGLAB auto-
mated criteria (M = 1.9 for participants with caps with 32
channels and M = 5.8 for participants with caps with 64
channels). Catch trials (i.e., those including the butterfly target
images) were removed from all further analysis. The
remaining epochs were then visually inspected to remove
artefacts, namely eye blinks (large deflections observed across
all electrodes, and in the vertical EOG in particular), saccades
(identified using the two horizontal EOG electrodes), muscle
artefacts (high-frequency activity), and large amplitude noise.
A single experienced researcher, naive to participants CFMT
scores completed this pre-processing. Based on visual in-
spection, 16.93% of trials were rejected (SD = 9.46%). Impor-
tantly there was no difference between higher and lower face
ability participants (based on a median split of CFMT scores) in
number of trials (t (36) = .277, p = .783).

1.5.  MVPA analysis

Multi-variate pattern analysis (MVPA) was employed to iden-
tify potential neural correlates of face processing expertise in
a less constrained manner than typical ERP component anal-
ysis, which focuses on only a small number of pre-specified
electrodes, and tightly constrained time-windows
(Grootswagers, Wardle, & Carlson, 2017). Instead MVPA ap-
proaches use machine learning algorithms to combine infor-
mation across a set of electrodes to differentiate the neural
response associated with distinct categories. We reasoned
that such an approach could provide greater scope to detect
expertise driven changes in the neural response to faces
complimenting more traditional analysis.

To this end, we first establish, at the individual level, when
the neural response to the canonical upright presentation of
faces differs significantly from the response to viewing other
complex visual objects (here houses), and from the response to
the same faces presented in an inverted orientation. The
former contrast (faces vs. houses) is commonly used as a
control category to analyse face selectivity (Eimer, 2000b; Itier,
Alain, Sedore, & McIntosh, 2007; Rossion et al., 1999). While the
latter contrast is considered a hallmark of face processing,
both show some behavioural links with face expertise (Busigny
& Rossion, 2010; Rezlescu, Susilo, Wilmer, & Caramazza, 2017;
Russell et al., 2009) and it has a well-known and robust early
neural correlate (Itier et al., 2007; Rossion et al., 1999). In a
second step, we then explore if this timeline of face sensitive
decoding (faces vs. houses, upright vs. inverted faces) is
modulated by an independently established measure of face
processing expertise. More specifically, we set out to establish
if the ability with which a model can predict what stimulus a
participant was viewing (e.g., an upright versus an inverted
face) differs significantly as a function of participants’ face
ability. If it does, then we can infer that the electrophysiolog-
ical data that contains information pertinent to the distinct
representation of these two categories (see Grootswagers etal.,
2017) differs as a function of expertise.

Finally, in order to confirm that any effects of orientation
were specific to faces, we also explored the neural response to

visual objects presented in two orientations (i.e., upright vs.
inverted houses).

MVPA was conducted by training linear support vector
machine (SVM) classifiers on single trial ERPs independently
at each time sample (downsampled to 250 Hz) using a critical
set of posterior electrodes present in all the caps used (01, 02,
P7, P8, P3, P4, Pz, TP9, TP10), for each of the three planned
binary comparisons. As in previous work, these electrodes
were chosen prior to data analysis, given that they provide
coverage of the key occipito-temporal areas critical for the
visual processing of face stimuli (Farran et al., 2020; Mares
et al.,, 2020; Smith & Smith, 2019). Prior to training with SVM,
the activity in each feature in the dataset was normalized to
be within a range of —1 to 1 (Smith & Smith, 2019). The test
data was similarly normalized with the same parameters in
order to optimize the classification performance (Chang & Lin,
2011).

For each of the three comparisons, the classifier was
trained (70% of trials) and tested (30% of trials) in independent
sets of data. Number of trials was equalized across experi-
mental conditions (to the condition with the minimum
number of trials by randomly removing trials from the con-
dition with more trials until matched). The random split of the
data in training (70% of trials) and testing (30% of trials) sets
was repeated 20 times to form 20 cross-validation iterations.
To calculate accuracy, the trained classifier was tested against
the average of all trials per condition in the testing set. This
was done in order to better the signal to noise ratio (Smith &
Smith, 2019; Thomas et al., 2010). To increase the robustness
of this procedure, we further repeated it 100 times (Cauchoix,
Barragan-Jason, Serre, & Barbeau, 2014). A measure of chance
level was calculated by repeating the above procedure on tri-
als with permuted labels (i.e., randomly reassigning the
category label).

At the group level, significant decoding was calculated
independently for each time point. A one-tailed paired t-test
(False Discovery Rate [FDR] corrected) was used to compare
average decoding performance in each key comparison with
our measure of chance level. To limit the number of multiple
comparisons, this analysis was only conducted for the time
samples between 60 and 500 ms only (111 comparisons,
Farran et al., 2020; Mares et al., 2020).

To analyse significant decoding at the individual partici-
pant level, an individual chance level distribution was
generated by training a further 899 iterations of the classifier
using permuted labels (see also Farran et al., 2020; Mares et al.,
2020). We included a classifier trained with the true labelling
in the chance distribution of each individual, as it is one of the
possible outcomes (Pereira, Mitchell, & Botvinick, 2009),
making a total of 1000 iterations of the classifier. Significant
decoding, established at each timepoint (FDR corrected) was
considered when the average decoding performance obtained
with correct labels was greater than or equal to 95% of the null
distribution (see Pereira et al., 2009; Smith & Muckli, 2010).

As in previous work (Farran et al., 2020; Mares, et al., 2020)
we used four measures to characterise individual level
decoding: 1) peak decoding performance—the maximal posi-
tive peak in the key time window between 100 and 300 ms, and
2) latency; 3) decoding onset—defined as the first time-point
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where significant decoding exceeds chance and baseline
levels and 4) percentage of significant decoding in the ana-
lysed window (60—500 ms).

Pearson correlations (IBM SPSS Statistics 26) analysed the
relationship between each decoding metric and face pro-
cessing expertise for the three key categorisations (upright vs
inverted faces, upright vs inverted houses, and faces vs
houses). To assess the relative strength of the null hypothesis,
we also ran equivalent Bayes correlations (JASP, Version .14).
The Bayes analysis provides a likelihood ratio, with a value of
1 indicating that both null and experimental hypothesis are
equally likely. Values less than 1/3 provide substantial evi-
dence towards the null hypothesis, and values over 3 indicate
substantial support of the experimental hypothesis, with
values in the middle indicating weak or anecdotal evidence
(Dienes, 2014). For completeness and to aid comparison to
existing literature, we also report the correlation between the
size and latency of the traditional face inversion effect
measured on the P100 and N170 ERP components with face
processing expertise.

2. Results
2.1. Face expertise classification

For visualisation purposes participants were separated into
low (N = 19; 10 females; age, 26 + 5.12 yrs; Mean CFMT
score = 67% + 11.81%) and high (N = 19; 12 females; age,
26.21 + 5.26 yrs; Mean CFMT score = 90.07% =+ 3.94%) face
expertise ability groups based on the median split of their
score in the face memory measure, the Cambridge Face
Memory Test (Med = 82; t (21.95) = -8.08, p < .001). Note one
participant was not included in the visualisations as they
recorded a median CFMT score (82).

2.2. Face decoding: group level

Although the primary goal of the present work was to explore
if markers of the early neural response to faces differed as a
function of face processing expertise at the individual level,
we first visualised the results on the artificially dichotomised
group level. We characterise both face orientation decodingi.e.,
classifying the neural pattern as occurring in response to an
upright or an inverted face, and face category decoding i.e.,
classifying the observed neural pattern as occurring in
response to an upright face or a house, as a function of face
processing expertise grouping (Fig. 1 A). Both present a visual
illustration of the time course of decoding accuracy, with
participants grouped as high and low performers on the
measure of face processing expertise (the CFMT). We note that
significant orientation decoding was observed clearly in both
groups, beginning around 80—90 ms after stimulus onset
(88 ms for high, 80 ms for low), with markedly different levels
of decoding, at least initially, which may be indicative of an
enhanced early differentiation in neural response for partici-
pants displaying high face expertise. Similarly, significant

category decoding was observed in both groups from around
90—100 ms (92 ms for high, 96 ms for low) but with little dif-
ference at the group level in decoding magnitude.

2.3. Face decoding: individual level

Rather than rely on observations made at the group level we
formally considered decoding at the individual level and
correlate the 4 markers of decoding profile (peak decoding
magnitude, peak decoding latency, onset of decoding, decod-
ing duration) with individual scores on the CFMT. Impor-
tantly, we observed significant decoding of both face
orientation and face category in all participants in the
considered window (60—500 ms, see Supplementary Figures 1
and 2 for results for plots of the decoding time course for each
individual participant).

There was a clear correlation between peak decoding
magnitude of face orientation and face expertise with an
increased accuracy of decoding for participants with higher
face expertise (r = .51, p = .001, 95% CI [.236 to .714], for
completeness also at the group level using a median split, t
(29.48) = -2.07, p = .047, Cohen's d = .67, see Fig. 1B). This was
supported by the Bayesian correlation analysis with strong
evidence (BFio = 43.74) for the experimental hypothesis.
Importantly this sensitivity to orientation was face specific,
with no significant decoding of house orientation (upright vs.
inverted buildings) observed (see Fig. 1D), ruling out any
simple explanation at the level of pictorial orientation differ-
ences. Given that there was no significant decoding at the
group level we did not proceed to more in-depth analysis. In
marked contrast to face orientation decoding there was no
significant relationship between peak decoding magnitude for
category decoding and face expertise (r = .037, p = .824 95% CI
[-.282 to .348]). Rather, the Bayesian analysis indicated evi-
dence for the null (BF;o = .204).

The same profile of enhanced decoding of face orientation
with greater face expertise was observed when trials were
split as a function of potential face identity familiarity (see
Supplementary Figure 3), ruling out a possible role for this
factor in driving the response. Note that this control analysis
is shown for completeness only and no further statistical
analysis is presented due to lack of power (insufficient trial
numbers).

Furthermore, for both face orientation and face category
decoding we observed evidence that decoding began earlier
for participants showing high expertise (face orientation:
r = —.33, p = .038, 95% CI [-.587 to —.019]; Low CFMT
M = 110.53 + 25.59 ms; High CFMT M = 104.84 + 22.88 ms; face
category: r = —.34, p = .034, 95% CI [-.593 to —.029; Low CFMT
M = 108.84 + 26.08 ms; High CFMT M = 102.32 + 20.76 ms).
However, the Bayes analysis, provides only inconclusive evi-
dence towards the experimental hypothesis in both cases
(face orientation: BF,o = 1.576; face category: BF;o = 1.757).

For both face orientation and face category decoding the
latency of peak decoding was not associated with face
expertise (face orientation: r = —.19, p = .24, 95% CI [-.479 to
.130], Low CFMT M = 172.00 + 20.69 ms, High CFMT
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Fig. 1 — A. Time course of classification accuracy for face orientation (decoding the neural response to upright
compared to inverted faces) on the left-hand side, and for face categorisation (decoding the neural response to upright
faces compared to upright houses) on the right hand side. For visualisation purposes participants are grouped by
CFMT (%) performance into two groups: above median ability (in blue) and below median ability (in red). Dashed lines
represent chance performance via group level permutation tests. Coloured dots represent points at which group
decoding is significantly greater than chance (p < .05, FDR corrected).
B. Relation of face orientation classification metrics to behavioural face expertise (%) for decoding onset (left), peak
decoding (middle) and decoding sustainability (right).
C. Relation of face categorisation classification metrics to behavioural face expertise (%) for decoding onset.
D. As in A, time course of decoding accuracy for house orientation.
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M = 183.58 + 30.98 ms; face category: r = .012, p = .944, 95% CI
[-.305 to .326], Low CFMT M = 177.05 + 45.70 ms, High CFMT
M = 178.11 + 51.46 ms) which was supported by the Bayesian
analysis with inconclusive or no evidence towards the
experimental hypothesis (face orientation: BF;o = .389, face
category: BFo = .200).

Finally, we observed weak evidence of a pattern of more
sustained orientation decoding (longer lasting across the time
course) for participants with higher face processing ability
(r = 32, p = .045, 95% CI [.008 to .579]; Low CFMT
M = 54.48 + 21.65%; High CFMT M = 66.52 + 18.2%), that was
not present for face category decoding (r = —.131, p = .43 95%
CI [-.429 to .192], Low CFMT M = 73.54 + 15.78%; High CFMT
M = 60.83%.+£19.26%). Bayesian statistics provided inconclu-
sive evidence towards a relation between expertise and sus-
tainability of face orientation decoding (BFi, = 1.383), and
clear evidence towards no relationship with sustainability of
category decoding (BFo = .271).

2.4. ERP effects and expertise

In parallel to the multivariate analysis, we explored the rela-
tionship between face expertise as measured on the CFMT,
with the face inversion effect as measured on the P100 and
N170 components (both amplitude and latency).

Channels for ERP analysis were selected based on the
maximum peak amplitude for the P100 (01/2, P7/8) and N170
components (01/2, P7/8 and TP9/10) from the average of all
conditions over parieto-occipital channels. The ERP face
inversion effect (FIE) was measured at the P100 and N170
components by subtracting the amplitude measured at the
selected electrodes (bilaterally) for inverted faces, from the
amplitude from the same electrodes for upright faces. JASP
(version .16.3) was employed for subsequent statistical
analysis.

2.4.1. P100

Mean amplitude was calculated for the P100 ERP component
in a 20 ms window centered around the latency of the grand
average peak (100 ms). Individual P100 peaks were identified
for latency analysis as the maximum positive peaks occurring
between 70 ms and 180 ms after stimulus onset in each indi-
vidual. One participant was removed from the FIE latency
analysis due to the lack of a peak in the considered window for
inverted faces.

There was a significant correlation between the FIE and
participants face expertise (CFMT scores; r = —.38, p = .016,
95% CI [.076 to .623], BF;o = 3.207, see Fig. 2, panel A). Given the
potential issues of limited variance resulting from using ERP
difference scores (Meyer, Lerner, De Los Reyes, Laird, &
Hajcak, 2017), we also analysed separately the correlations
for the P100 amplitude for upright and inverted faces and the
CFMT (see Fig. 2, panel B and C). In this case there was no
correlation between the P100 amplitude for upright faces and
CFMT scores (r = —.24, p = .149, 95% CI [—.513 .086], BF o = .545),
nor for inverted faces and CFMT scores (r =.04, p = .789, 95% CI
[~.275 .355], BFyo = .206).

Regarding the P100 latency no correlation was found be-
tween the FIE effect on latencies and participants face
expertise (r = —.17, p = .30, 95% CI [-.467 to .156], BF1o = .339).

As before we also show that there is no correlation for the P100
latency for upright faces (CFMT score, r = .104, p = .527, 95% CI
[-.218 .406], BF1o = .242), nor for inverted faces (CFMT scores,
r=.06, p=.731, 95% CI [-.267 .371], BFyo = .214).

Finally, to allow for comparison with past research
(Herrmann et al., 2005), we also analysed the differential face
response compared to houses (by subtracting the amplitude
for upright houses, from the amplitude for upright faces).
There were no significant correlations of this measure on the
P100 amplitude/latency and the CFMT (amplitude, r = —.235,
p = .150, 95% CI [—.512 .087], BF;o = .541; latency: r = .146,
p = .377, 95% CI [-.178 .441], BFy, = .291).°

2.4.2. N170

For the N170 component mean amplitude was calculated in a
40 ms window centred around the average peak (160 ms). N170
peaks were identified for latency analysis as the maximum
negative peak between 150 ms and 240 ms after stimulus
onset. One participant was removed from the FIE latency
analysis, and two from the category difference (upright face-
s—upright houses) latency analysis due to lack of relevant
peaks in the considered window.

There was no correlation between the N170 FIE and par-
ticipants face expertise (CFMT scores; r = .06, p = .734, 95% CI
[-.264 to .365], BF1o = .211) nor between the N170 amplitude
for upright faces and CFMT scores (r = .13, p = .422, 95% CI
[-.191 .430], BF1o = .272), or between inverted faces and CFMT
scores (r = .08, p = .628, 95% CI [—.242 .386], BF 1o = .223).

Similarly, for latencies, a difference between the N170 la-
tency was calculated between upright and inverted faces.
Again, no correlation was found between the N170 FIE effect
on latencies and participants face expertise (r = .06, p = .708,
95% CI [—.262 to .375], BFyo = .216).” As before we also show
that there is no correlation for the N170 latency for upright
faces (CFMT score, r = .05, p = .752, 95% CI [-.271 .367],
BF1p = .212), nor for inverted faces (CFMT scores, r = —.05,
p = .774, 95% CI [—.358 .272], BF;o = .208).

Finally, as for the P100, for completeness we analysed the
differential face category response (cf. houses) in an explor-
atory manner. No significant relationship with CFMT scores
was observed for amplitude (r = .075, p = .65, 95% CI [-.246
.382], BF1o = .220) nor latency (r = —.03, p = .876, 95% CI [-.348
.300], BF0 = .207).

¢ The same pattern was observed when using only the typical
01 and 02 channels, with a significant correlation between the
FIE as measured with the P100 amplitude and face expertise
(CFMT, r = .42, p = .008) in the absence of any other significant
effect in this component (r < —.265, p > .102).

7’ To confirm these findings we ran the same analysis for the
right hemisphere only. Similarly, the FIE was not associated with
face expertise for amplitude (CFMT scores; r = .07, p = .68, 95% CI
[-.253 to .376], BF1o = .216) nor latency (CFMT scores; r = .13,p =.
448, 95% CI [-.201 to .429], BF; = .267). Further, when looking only
at electrode P7 and P8 FIE was not associated with face expertise
for amplitude (CFMT scores; r = .09, p = .57, 95% CI [-.229 to .397],
BF0 = .233) nor latency (CFMT scores; r = .027, p = .869, 95% CI
[-.291 to .340], BFyo = .202).

8 The same pattern of results is observed for the key compo-
nent N170 when analysing only the more standard P7 and P8 (r <.
119, p > .472).
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Fig. 2 — Relation of the P100 amplitude for the FIE (A; amplitude for upright faces-amplitude for inverted faces), upright faces
(B), and inverted faces (C) with behavioural face expertise score (%).

3. Discussion

The current study set out to explore if the early neural
response to faces differs as a function of typical variability in
the level of face expertise, as measured by the Cambridge Face
Memory Test. Using multi-variate pattern analysis, at the in-
dividual level, we observe a clear association between face
expertise and the extent to which face orientation informa-
tion could be decoded from the ongoing neural response
(decoding upright compared to inverted faces). Notably this
relationship was specific to faces and face orientation, no such
decoding was possible for a control object category (upright
and inverted houses) indicating that the decoding was not
simply that of pictorial orientation cues. Furthermore, no such
relationship was observed between the behavioural face
expertise measure and the decoding of faces as an object
category (decoding upright faces compared to upright houses).

An increased magnitude of decoding of face orientation in
participants with high face expertise indicates a greater dif-
ference in the pattern of neural response to upright compared
to inverted faces in these participants. It is tempting to
interpret this as suggestive of an enhanced neural represen-
tation of the upright face configuration in face experts, but
unlike traditional analysis approaches where the absolute
magnitude of neural response can be visualised and compared
across conditions and groups, due to the nature of the
decoding approach this is not possible. One could equally
conclude that it is in fact a poorer representation of inverted
faces in participants with low face expertise that drives this
difference.

Moderate links were also observed between the onset of
significant decoding both of faces as an object category (up-
right faces compared to houses) and the canonical orientation
of faces (upright faces compared to inverted) with face
expertise as measured via the CFMT. These findings are sug-
gestive of an earlier activation of face specific neuronal

populations in face experts. Differences in onset were small
(~6 ms on average between low and high ability groupings),
with both face orientation and face category decoding signif-
icantly different from chance from around 100 ms post stim-
ulus onset.

While the timing of peak multivariate decoding is more in
line with the N170 component, itis in fact earlier in the decoding
timeline that parallel results were found in the complementary
ERP analysis. Here, analysis of the P100 component provides
further support for an early neural link between the differential
response to upright and inverted faces and face expertise, i.e.,
larger face inversion effects as measured by the amplitude of the
P100 component were directly associated with increased face
expertise score. This association is in line with extant literature
suggesting that the P100 is sensitive to face orientation
(Colombatto & McCarthy, 2017; Iter & Taylor, 2004a; 2004b;
Minami et al., 2015). Further, early significant decoding of the
neural response to faces as an object category (cf. houses) is in
line past findings indicating face category effects over the P100
(Eimer, 1998; Herrmann et al., 2005; Itier & Taylor, 2004b) in
addition to the more typical low-level stimulus properties
modulating this early neural response.

Unlike the multivariate analysis, with the standard ERP
approach, one can observe the neural response to upright and
inverted faces separately. Despite no significant association of
the response to either category alone with expertise, the
pattern of results provides a tentative indication that it is in
the response to upright faces where the variation is greatest
with respect to face expertise score, appearing to fall as
expertise increases, whereas the response to inverted faces
remains more stable.

We note, however, that the current P100 results are
partially at odds with previous literature where an increased
P100 amplitude to upright faces has been associated with
better face processing ability (Kaltwasser et al., 2014; Turano
et al., 2016). The variability in the response encompased by
this component to face information and expertise (including
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studies where no effect is found in the P100 component, e. g.
Herzmann et al., 2010) suggests the need for further targeted
investigation to understand the mechanisms driving the dif-
ferential response.

It is interesting to note the absence of any relationship
between decoding or ERP difference measures and expertise
grouping for the comparison of upright faces and houses. This
suggests an effect that is specific to the expert face mecha-
nisms involved in the face inversion effect. Previous accounts
have suggested that the neural correlates of the FIE may be
driven by a violation of expectations generated through a
lifetime of experience with upright faces (Allen-Davidian
et al.,, 2021; Brodski, Paasch, Helbling, & Wibral, 2015). Devel-
opmental findings seem to support this account, with children
improving their memory ability with upright faces between 8-
9 years and 12—13 years, a timeframe where children start to
show a clear shift in their N170 FIE (Itier & Taylor, 2004c).
While children between 6 and 10 show an increased N170
amplitude for upright faces compared to inverted, this pattern
shifts around 10—11 years of age to the typical N170 FIE with
increased amplitudes for inverted faces from 12 years of age
onwards (Taylor, Batty, & Itier, 2004). This pattern would be
compatible with an experience based development of face
expectations, and the notion that an increase in the N170 for
inverted faces reflects an increase in prediction error, associ-
ated with the violation of expectations. Stronger support for
this account is given by findings in adults where the N170 face
inversion effect increases with multiple violations of viewer's
expectations (e.g., orientation, illumination from above or
gravitational pull; Allen-Davidian et al., 2021). In line with this
account, participants with increased face expertise, might be
able to construct stronger expectations for upright faces, and
thus be more sensitive to violation of expectations in inverted
faces as translated in their neural responses.

In the present study, the main association between expert
face processing and early neural response was observed in
relation to face orientation, both in the decoding of the neural
signal and the P100 amplitude. The behavioural face inversion
effect has a longstanding history (Yin, 1969) and is often
considered a hallmark of expert face processing, alongside
e.g., the composite face effect (Farah, Wilson, Drain, & Tanaka,
1998) in highlighting specialised processes for (upright) faces
(Valentine, 1988). In interpreting the current findings, it is
worth considering the functionality likely to be driving this
difference in decoding. Distinct profiles of neural responses to
upright vs inverted faces could reflect quantitative and/or
qualitative differences in the underlying processes. ERP the-
orists are divided on whether observed signal enhancement
for inverted (cf. upright) faces is best understood as a reflec-
tion of the relatively increased difficulty of processing the
non-canonical view (i.e., the same mechanisms utilized in
both cases), or additional processing resources are recruited
for inverted stimuli (e.g., object-general encoding systems),
which complement those used for upright faces (see Sadeh &
Yovel, 2010 for discussion). Here, although the selective links
observed between orientation effects and face recognition
ability make it tempting to conclude that our findings high-
light the importance of finely-tuned face-selective neurons for
expertise, our MVPA and ERP results are actually consistent
with either of these possibilities. It is interesting to note that

relatively attenuated face inversion effects have also been
reported in ERP studies with individuals with developmental
prosopagnosia (e.g., Towler et al., 2012). There, researchers
remain similarly agnostic regarding whether the reduced
differentiation of neural activity associated with upright and
inverted faces reflects quantitative or qualitative differences
in the encoding of upright vs inverted faces in this clinically
impaired group (Towler et al., 2017).

Here we chose to use the Cambridge Face Memory Test as a
measure of face expertise in our participants. This behavioural
task, with a considerable cognitive and memory demand, is not
the most likely candidate to correlate directly with early neural
responses that are driven largely by early perceptual processing
(e.g., see discussion by Xu, Liu-Shuang, Rossion, & Tanaka,
2017). That there is such a clear association speaks to the
importance of considering the earlier, likely more perceptual
aspects, of face processing when trying to understand typical
variability in face-expertise. Further, as highlighted by Rossion
and colleagues (Rossion, Retter, & Liu-Shuang, 2020) it is
important to keep in mind that face processing at the behav-
ioural level and the neural response to faces are comprised of a
myriad of different factors and neither reflects a “true” baseline
marker of face processing per se. In all instances the particulars
of the task employed will necessarily drive differences in the
extent to which different mechanisms are employed. Here, we
choose to use an explicit task unrelated to face processing
(detection of butterflies on discarded catch trials) while
recording brain response to images of faces and houses. The
absence of a specific concurrent face-related behavioral task is
important to the extent that it removes any potential biases
driven by associated differences in performance/strategy that
our differentially skilled participants might have. Future studies
could explore how explicit face processing tasks, which tap into
different aspects of face processing (e.g., tasks with perceptual
vs. a memory component) modify these associations. A poten-
tial limitation of the current study is the use of the standard
version of the CFMT to index participants’ face expertise. This
measure is likely to have a more limited range of scores
compared to the harder, extended form of the task that is being
used increasingly in individual differences research (Russell
et al., 2009). Indeed, we observed very high performance on
this task in several subjects (Fig. 1), which might have somewhat
constrained our ability to identify associations with the targeted
neural markers.

A clear strength of the current analysis approach is in the
use of machine learning tools, complimenting traditional ERP
approaches, to tease apart differences in the measured neural
response. In particular, using a multi-variate pattern classifi-
cation algorithm which inputs data from across a wide region
of the scalp (here all occipital and parietal channels) neces-
sarily permits a more diffuse pattern of response to be eval-
uated and contrasted between conditions. Where traditional
ERP analysis tend to be restricted to a small subset of elec-
trodes (in some cases only one or two per hemisphere) and
around the peak of the component of interest, MVPA uses
information from across the electrodes at each time sample.
Importantly, rather than rely on overall group statistics to
highlight when classification is possible at greater than
chance levels as is often the case with such classifier ap-
proaches (e.g., Barragan-jason, Cauchoix, & Barbeau, 2015), we
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extended our approach to classify the response at the indi-
vidual participant level. It is noteworthy that such classifica-
tion was possible in each and every participant tested,
allowing us to draw out clear metrics of classification (peak
decoding accuracy, latency of onset of significant decoding,
latency of peak decoding and overall decoding across our
epoch of interest) and apply standard inferential statistical
approaches alongside Bayesian analysis to directly compare
performance in a continuous manner. This represents a clear
extension of previous applications of pattern classification to
dynamic brain signals and to this topic in particular (e.g., Balas
& Grant, 2016) providing a considerably more nuanced ac-
count of the topic under investigation. Such an approach
where we explore decoding at the individual rather than
group level is especially important in studies such as ours,
where there is no established principled means to separate
participants into dichotomous groups (a CFMT score may be
considered to be high in one study and low in another based
simply on the specifics of the sample).

In conclusion, we show that differentiation of the early
neural response to upright and inverted faces is significantly
associated with an independent explicit behavioural measure
of face processing ability. Compared to individuals who
perform less well on the behavioural task, individuals who
perform better exhibit a pattern of neural response to upright
faces that is significantly more distinct from their response to
inverted faces, as evidenced both by MVPA and by more
traditional ERP analyses. Further this classification of upright
faces (vs. inverted faces or objects) begins earlier in the pro-
cessing time course for individuals with better scores on the
behavioural task. As results continue to emerge of clear indi-
vidual differences in the behavioural and neural response to
faces within the typical population it is becoming clear that
researchers must consider this natural variation in cognitive
and neuro-cognitive models of face processing.
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