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Abstract

In physical settings such as droplets impacting onto soils, ink-jet printing,

concrete and tarmac, the substrate plays a significant role in altering the

flow. Such droplet impacts can lead to a penetration of fluid into the sub-

strate in an unwanted or uncontrolled manner. Better modelling of the fluid

mechanics during impact is crucial to a better understanding the fate of the

liquid.

During droplet impact onto an impermeable plate the air acts as a cush-

ioning layer. Moments before contact the air layer is thin and its pressure

high. The high pressure deforms the drop’s free surface, forming an air

bubble, which delays the droplet’s impact. Introducing a porous substrate

allows air to enter the substrate and alter the approach to impact. After

impact the liquid splashes along the substrate’s surface as a thin jet. Si-

multaneously, some liquid enters the substrate, slowing down the jet and

increasing its thickness.

In chapters 2 and 3 we derive a mathematical model for an impact with

an air cushioning layer onto an impermeable substrate, considering nor-

mal and oblique impacts with surface tension. Chapter 4 introduces a thin

porous substrate. We couple the influence of the substrate through govern-

ing equations for the air and water, and we solve them numerically. Chapter

5 introduces deeper porous substrates: complex variable methods are used

to couple the substrate behaviour with the gas and liquid governing equa-

tions. Chapter 6 begins to consider the post-impact dynamics. Here, for a
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drop meeting an impermeable substrate, Wagner theory is applied, and we

solve the problem analytically with complex analytical methods. Chapter 7

introduces a porous substrate. We derive a model that couples the substrate

behaviour with the spreading of the droplet and the motion of the jet along

the substrate surface. Chapter 8 contains conclusions and open questions.
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Thesis introduction

1.1 Physical motivation

There are several different scenarios, in natural and industrial settings, that

motivate the research for this thesis. Three examples illustrate these. First,

the impact of raindrops onto soil. The fluid mechanics of absorption and

or splashing of one typical raindrop needs to be modelled to understand

better the proportions of water involved in run-off and entry into the soil.

Both processes contribute to soil erosion. How much water splashes on the

top surface? Mouzai and Bouhadef (2003) discuss soil erosion from droplets

with varying parameters such as diameter, kinetic energy and pressure with

splash distance and the influence this has on the soil. Relationships between

drop diameter and both drop diameter and soil splash indicated that the

diameter of the droplet is an important characteristic.

A second scenario is from the paint-spray industry. Fine droplets of paint

are thrown onto a solid surface in order to coat it. The solid may be smooth

and impermeable, but very often the solid’s surface is far from plane, con-

taining indentations/irregularities, pillars or crevices, whose dimensions are

similar to the droplets’ diameters. The final form of the dried coating may

depend on the mechanics of initial droplet impact and splashing. For ink

jet printing, understanding the impact behaviour is vital in optimising the

printing process: to obtain high-resolution images knowledge of the splash

post-impact, and ways to reduce this splash to allow for more controlled
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12 CHAPTER 1. THESIS INTRODUCTION

distribution of the ink. Moments before impact of a droplet, significant air

cushioning changes the droplet’s free-surface shape and allows a bubble to

form in the droplet.

A third scenario, the freezing of water on an aircraft in flight, can in-

volve liquid-water-coated ice particles initially hitting the metal surface of

the wing. But once ice starts to build up on the wing, the subsequent parti-

cles impact an irregular, icy surface. This presents a complicated geometry

in which to consider impact splashing. What proportion of the water stays

on the wing to freeze? Gent et al. (2000) provide a review of how ice forms

and the subsequent deterioration of aerodynamic performance. Their mod-

elling process begins by looking at droplet trajectories from clouds, focussing

on where and how frequently droplets impact the wing. After this is known,

analysis of how much of this water freezes, and the location of the ice forma-

tions, can be done. It is with this information that the affects of the ice on

the aerodynamic properties of the wing can be studied. Grizen et al. (2020)

discusses engineered textured surfaces which are hydrophobic to delay the

forming of ice. The application was on aluminium which has countless in-

dustrial uses, some of which are materials used in aircraft where icing can

pose serious hazards.

1.2 Literature review

Despite impacts being studied for over a century these flows are not fully

understood, Worthington and Cole (1900) were some of the first to docu-

ment these impacts. Their photographs illustrated the bubble that is formed

centrally below where the emerging column of liquid rebounds from the sur-

face of the liquid. Splashing is a very complicated, multi-phased process

which depends heavily on the surrounding fluids. No corona will form if the

impact happens in a vacuum onto a smooth flat substrate, jets (thin layers

of liquid) will still form on the surface of the substrate; Xu et al. (2005)
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shows this occurrence with high speed photography. In that study different

background air pressures were used, for the lowest pressure, there was very

little splashing compared to higher pressures. Van Dam and Le Clerk (2004)

report an experimental study for the impact of water droplets onto a solid

substrate with emphasis on the splashing and spreading of the fluid. The

radius of the air bubble was shown to have good agreement with previous

numerical models. The spreading rate was found to be larger at later times

which are related to the Weber and Reynolds numbers of the flows. Tan

et al. (2007) used high-speed cameras to capture in great detail droplet im-

pacts and the ice formation that occurred. Droplet generators were used to

simulate water droplets impacting a moving object, in these experiments the

objects were stationary and droplets were fired towards them. It is thought

that ice particles covered with thin layers of water are also an important

aspect. Observations of the impact splashing mechanisms and droplet de-

formations were captured by photography. Lee et al. (2012) use x-ray pho-

tography to capture the progression of the full impact at very small time

intervals, this allowed the bubble formation, spreading and splash to be eas-

ily observed. Li and Thoroddsen (2015) capture the bubble formation as the

droplet is descending. These experimental findings of the free surface shapes

are compared to numerical predictions by Duchemin and Josserand (2011)

in Josserand and Thoroddsen (2016) and show good agreement. During the

later part of the impact (after contact is made) the spreading, jet forma-

tion and rebounding are photographed which can be seen in Bartolo et al.

(2005). Brunet et al. (2009) show droplet impacts onto arrays of pillars and

engineered hydrophobic and hydrophilic surfaces are considered and using

photography stages of the impacts are captured. The images show small

amounts of fluid which have entered the array and the rest of the droplet

spreading across the surface. Hao et al. (2019) and Zhao et al. (2020) show

different examples of jet formation in the early times of an impact, look-
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ing at how to suppress a splash. Josserand and Thoroddsen (2016) present

detailed experimental results for impacts onto both impermeable and more

complicated substrates. Using photography, images for the progression of

the spreading, jet formation and rebounding are captured at very small time

intervals. Marston et al. (2010) uses glass beads to simulate a permeable

powder as a more complicated substrate to observe an impact onto. Some

of the liquid from the droplet impacting this surface was allowed to enter

the matrix of voids between spherical glass beads while the rest spread over

the surface of the beads. An experimental study of droplet impacts with hy-

drophobic concrete is Ramachandran et al. (2015). Photographs show the

evolution of a falling droplet onto the concrete and the subsequent splash

or bounce by the droplet. The behaviour of the droplet was determined

by the velocity and Weber numbers of the incoming droplets, larger Weber

numbers encouraged the droplets to bounce off the surface. Oblique impacts

were considering in this study with the substrate at an angle, this change in

the substrate encouraged the droplets to bounce rather than to spread.

Figure 1.1: Photograph showing the spreading over time of a droplet over

an impermeable substrate for different impact velocities, taken from Li and

Thoroddsen (2015).
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Figure 1.2: Droplet impacting a regular grate illustrating the smaller

droplets produced under the grate from Brunet et al. (2009).

There are many theoretical studies of droplet impacts with an air cush-

ioning layer. Wilson (1991) provides some early work with the model for-

mulation of rigid body impact onto a liquid surface with air cushioning.

Wilson assumes air and liquid are inviscid. They give both numerical and

analytic solutions for the coupled equations, including inertia, which they

derive. Wilson begins by non-dimensionalalising Euler’s equations to sim-

plify them before making some analytic progress by considering asymptotic

solutions assuming very small times. Smith et al. (2003) build on the work

by Wilson and extend the theory. In their study we have a droplet of invis-

cid liquid, approaching a solid wall, with an air layer between them. The air

layer is assumed viscous so this differs from previous work by Wilson. From

the derivations with zero viscosity in the air layer (so the Reynolds number

is much greater than one) the equations in Wilson (1991) are recovered.

Smith et al. (2003) report numerical results for solving the coupled equa-

tions, which are similar to those in the inviscid air layer. Analytical results

close to touchdown are formulated and local solutions of the free-surface and

pressure are given, a high local pressure peak close to touchdown matches
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with the numerical findings. A further extension comes from Purvis and

Smith (2004b): here surface-tension effects and post-impact analysis are

considered. An alternative set of coupled equations, incorporating surface

tension, are derived and solved numerically. The addition of surface ten-

sion alters one of the coupled equations and comes from the discontinuity in

pressure across the air-water interface, this added effect causes a significant

delay in touchdown.

Further work on droplet impacts includes an extension of earlier two-

dimensional work given in Hicks and Purvis (2010) by solving the derived

coupled equations in a three-dimensional geometry, these governing equa-

tions were formulated by non-dimensionalising the three-dimensional Navier-

Stokes equations. The numerical results shown were axi-symmetric (for a

normal impact). Further extension to this three-dimensional model consid-

ered substrates with different topographies and the resulting changes in the

free-surface and pressure plots. In addition to this the bubble size was pre-

dicted. From the numerical results a non-dimensional bubble size could be

found and the scalings undone to obtain a realist prediction for a bubble size.

These radii had good agreement with previous experimental work. Surface

tension is neglected from the study in Hicks and Purvis (2010). Obliqueness

is the inclination, away from the normal, of the velocity vector of the droplet

during its approach towards impact. Obliqueness is included and numerical

solutions for a droplet impacting a moving plate are given as a parameter.

Oblique impacts have one side of the droplet accelerate into impact faster

than the other, so there is no trapped bubble.

Another extension of the simple model given in Hicks and Purvis (2011)

gives solutions for droplets impacting other droplets, and liquid layers with

air cushioning. These models are similar to the previously mentioned papers.

Hicks and Purvis (2011) considers liquid-liquid impacts as opposed to liquid-

solid impacts. There are parameters of liquid layer depth and the ratio of
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the two droplet radii which can vary. Numerical results here show the free-

surface and pressure distribution for various values of these parameters.

Obliqueness and surface tension are neglected in this study.

Concerning the impacts of solids with water layers we have: Korobkin

(1999) where a solid box entering a thin layer of liquid and the liquid flow and

the jets are calculated. Asymptotic methods were used to derive equations

to describe the flow in multiple local regions around the solid body. Further

studies on this subject include Korobkin et al. (2008). They studied a solid

object impacting a thin layer of water on an impermeable substrate. Surface

tension and obliqueness are omitted in this study. Numerical results, as well

as an analytical model for the motion close to touchdown were given. The

key difference between the coupled equations for shallow-water and deep-

water is the deep-water fluid equation involves a global relation between

the free-surface and pressure distribution, however, the shallow-water fluid

equation involves a local relation. Another study that consider impacts

between solid and shallow water layers is Hicks and Smith (2011). In this

study the impact and the rebound of a solid impacting a shallow water layer

is investigated. The solid is coming towards the liquid layer at an oblique

angle and rebounds disturbing the liquid layer. Vanden-Broeck and Smith

(2008) considers a the effect of surface tension between two fluids near a

wall. Periodic and non-period solutions were found for the effects of surface

tension on the approaching fluids.

Very little theoretical study has been made on porous impacts. A study

group report Parker and Nally (2012) investigated a basic model of a droplet

impact with a porous media, by taking the very basic assumption that the

pressure caused by the impact is uniform across the wetted region of impact.

Hicks and Purvis (2015) study the air cushioning of a droplet impacting onto

a porous substrate, with parameters for porosity and depth of the porous

substrate. The porous medium is considered here to be a dense array of
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identical pillars. Pressures across the air and bubble volumes were found to

be lower than an impact onto an impermeable substrate due to air being

able to pass into the substrate.

After the droplet has impacted the substrate a new system needs to be

formulated to govern the spreading of the droplet. This theory was first

studied in the context of ship slamming in Von Karman (1929). Some time

later Wagner modified the system posed by Von Karman in Wagner (1932).

Here Wagner accounted for the displaced liquid (the rising water level) in

the description of the edges of the wetted regions. Water entry problems

have been widely studied in Wilson (1989) and Howison et al. (1991), here

we have the impacts of solids with small deadrise angles into bodies of fluid.

More recently Oliver has revisited the work in Wagner (1932) by formally

deriving the Wagner condition asymptotically in Oliver (2002) by consider-

ing the multiple regions in this problem and matching the solutions in each

region using asymptotic methods. They also extended the theory by consid-

ering second-order corrections in Oliver (2007). Moore (2014) primarily uses

asymptotic methods for formulating and solving the systems for droplet im-

pacts. They extend Wagner theory with an oblique impact and formulates

and solves this problem numerically. Also they consider the impact problem

with air cushioning present and the leading order solution is found.

This thesis addresses the fundamental fluid mechanics of impact of droplets

onto porous solids, in mathematical terms. We consider the initial penetra-

tion of fluid into a solid target driven by the large transient liquid pressures

associated with sudden impact. We treat the problems isothermally, so that

freezing, thawing and heat-transfer are all neglected and the droplets are

assumed to be small. The porous media is assumed to be an array of identi-

cal pillars with pores smaller than the droplets. The droplet-impact speeds

are relatively low. These assumptions allow us to treat the liquid flow out-

side and within the porous medium as an incompressible continuum. The
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more complicated compressible air flow is discussed below. The duration of

impact is very short and we treat only the initial stages of impact during

which the contact line moves a distance smaller than the droplet’s diameter,

and while the impact pressures remain high. The brief high pressures are

associated with the liquid flow being inertial. Viscosity plays an important

role in the air layer between the droplet and the solid before impact.

1.3 Thesis structure

Chapters 2,3,4 and 5 concern the presence of an air layer in the pre-impact

stage of dynamics. Later chapters model the post-impact dynamics - the

flow after the liquid drop has made contact with the substrate. In chapter 2

we first set up the basic modelling assumptions which are key to all problems

considered in this thesis. We then move on to consider the specific problem

for the deep-water droplet impacts onto an impermeable substrate, where we

nondimenionalise and derive the governing equations. Then we look at two

additional physical features of the problem: obliqueness and surface tension.

Coupled equations (ODEs with suitable boundary and initial conditions) are

derived and computational results are displayed and discussed. In Chapter

3 we consider impacts of shallow-water layers onto impermeable substrates.

We begin by deriving the coupled equations for the simplest type of substrate

- an impermeable rigid flat plate. We then add obliqueness to the problem

which hasn’t been considered before. Chapter 4 considers another new case

where we introduce a thin porous substrate into the problem. The governing

equations are derived and new results are presented. Chapter 5 explores the

problem where we have thicker layers of the porous media, we use complex

analytical methods to couple the substrate to the air layer and solve the

problem numerically.

Chapter 6 begins to look at the post-impact dynamics. Initially a liter-

ature review is given to outline previous work done in the field. Then we
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consider formulating the problem of an impact with an impermeable sub-

strate. This is solved analytically and results are presented and discussed.

Chapter 7 introduces a porous substrate to this post-impact problem. The

governing equations are formulated and solved numerically. Further analysis

is done looking at the jet region formed along the surface of the substrate.

In Chapter 8 we conclude the thesis and provide more complicated models

for the inclusion of a porous layer in the post-impact analysis covered in

Chapter 7 left as open questions.



2

Cushioning of deep water impact

with an impermeable substrate

2.1 Introduction and literature review

This chapter examines an inviscid body of liquid, bounded by a free surface

approaching a wall or substrate, with another region consisting of a gas, air,

in between. As the distance between the liquid domain and wall decreases,

the free-surface of the water become deformed by the cushioning air layer.

The deformation is caused by rising pressures across the air layer; this rise

in pressure is caused by the narrowing of the air layer between the droplet

and the substrate or wall. This can lead to the trapping of a bubble of

air. Experimental evidence for this comes from Lesser and Field (1983) who

photographed these bubble formations. The air cushioning decelerates the

centre of the droplet, causing the sides of the droplet to touchdown first,

which causes a bubble to be entrapped. A more recent study of bubble

formations comes from Hicks et al. (2012). Solid impermeable rigid discs

were dropped into water such that the circular face of each disc made normal

impact with the initially plane water surface. High speed photography was

used to record the spread of the wetted surface on the discs and hence the

dry region indicated the position of the bubble. Comparisons were made

to theoretical work carried out in Hicks and Purvis (2010) showing good

agreement between experimental and theoretical results.
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Experimental studies on droplets impacting a liquid surface can be seen

in Thoroddsen et al. (2003) and impacts on a solid surface are presented in

Thoroddsen et al. (2005); both papers show examples of entrapped bubbles.

The results from the pre-impact analysis provide the initial conditions for

the post-impact behaviour. The bubble formation and multiple touchdown

positions may potentially add interesting changes to post-impact models.

In all the physical problems described above the common theme is the

influence of the air layer. The modelling of the air layer (and the role of the

air in the porous layer when considering permeable substrates) is important

in understanding the droplet impacts in these physical problems. We define,

for a droplet, the word touchdown to mean the instant when the droplet’s

free surface makes contact with the substrate.

2.1.1 Modelling assumptions

We assume the liquid and air layers are both incompressible Newtonian

fluids, the model can be extended to include compressible air effects, see

Hicks and Purvis (2013) for details. For simplicity we will only consider flows

in two spatial dimensions. The assumptions underlying the derivations made

here carry over readily into both axi-symmetric and fully three-dimensional

geometries. Another significant assumption is that the typical impact speed

is much less than the speed of sound in air (340 ms−1) in these situations.

Hence the Mach number for the air phase has a low value much less than

one (and an even lower Mach number in the water phase, where the sound

speed is about 1500ms−1). Hence the air and water can be treated simply

as two incompressible fluids. Scales for the various quantities follow from

an order of magnitude argument close to impact. For this chapter starred

quantities denote dimensional variables: u∗ is the dimensional velocity of

the fluid, p∗ is the dimensional pressure, ρ∗ is the density of the fluid, ν∗

is the kinematic viscosity of the fluid. The subscript w refers to quantities
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relating to the water and a refers to quantities relating to the air. Every

other subscript is a derivative with respect to the variable denoted by the

subscript. The y∗ axis points vertically upwards, the x∗ axis is horizontal,

the origin lies directly below the centre of the droplet. Let R be the radius of

curvature of the free surface at the point of expected first contact in impact.

U is the relative speed of approach of the droplet, and we assume this is also

the velocity scale for the air. The liquid is incompressible and the gas can

be assumed incompressible due to the low Mach number. Throughout this

thesis we are neglecting gravity.

We begin by non-dimensionalising the two-dimensional, incompressible

form of the Navier-Stokes equations, we apply these equations to both air

and water.

u∗t∗ + (u∗ · ∇)u∗ = −ρ∗−1∇p∗ + ν∗∇2u∗, (2.1)

∇ · u∗ = 0, (2.2)

with the following scales:

(u∗w, p
∗
w, x

∗, y∗, t∗) =

(
Uuw, ρwU

2pw, Rx,Ry,
R

U
t

)
, (2.3)

(u∗a, p
∗
a, x
∗, y∗, t∗) =

(
Uua, ρwU

2pa, Rx,Ry,
R

U
t

)
. (2.4)

Thus we obtain:

U2

R
uwt +

U2

R
(uw · ∇)uw = −U

2ρw
Rρw

∇pw +
Uνw
R2
∇2uw, (2.5)

U2

R
uat +

U2

R
(ua · ∇)ua = −ρwU

2

Rρa
∇pa +

Uνa
R2
∇2uw. (2.6)

Rearranging and defining the water’s Reynolds number to be Re = UR
νw

we

have the governing equations for the water and air layers:

uwt + (uw · ∇)uw = −∇pw +Rew
−1∇2uw, (2.7)

uat + (ua · ∇)ua = −ρw
ρa
∇pa +

νa
νw
Rew

−1∇2ua. (2.8)
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We also have the conservation of mass equations which have identical forms

after substituting in both sets of scales and rearranging:

∇ · ua = 0, ∇ · uw = 0. (2.9)

Our boundary conditions are the kinematic condition and the normal stress

condition:

v∗w = F ∗t + u∗wF
∗
x on y∗ = F ∗, (2.10)

p∗a = p∗w − σ
F ∗x∗x∗(

1 + (F ∗x∗)
2
) on y∗ = F ∗, (2.11)

where the droplet has a lower free surface given by y∗ = F ∗(x∗, t∗). We

are also assuming that the ratios ρa
ρw

and µa
µw

are small, (taking approximate

values at 20oC and one atmosphere of pressure) 1.2 × 10−3 and 1.8 × 10−2

to two significant digits. We are assuming large Reynold number flows so

the ratio νa
νwRew

is very small.

2.2 Equations for the droplet

Consider a droplet of water, falling towards a rigid horizontal surface (at

y∗ = 0) see Figure 2.1. The droplet has a lower free surface given by y∗ =

F ∗(x∗, t∗) ≥ 0. We introduce ε� 1.

In order to have deformation of the free-surface the air pressure needs to

be sufficiently high which doesn’t happen until the air gap is very thin. The

air pressure needs to become large enough to be comparable to the pressure

in the water. As the air layer gets very thin the continuum assumption

breaks down and other effects such as the gas kinetic effects become more

important, see Chubynsky et al. (2020). Close to impact we will take a

more local view and scale our spatial coordinates by ε, the velocity to be

that of the droplet falling and the time scale to be that time taken to fall

the distance of the small air gap hence we apply the following scales to (2.7)
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Figure 2.1: Diagram showing schematic of the problem to be solved, the

origin of the axis is below the centre of the sphere.

and (2.9):

(u∗w, p
∗
w, x

∗, y∗, t∗) =
(
uw,Pwpw, εx, εy, ε2t

)
, (2.12)

the scale for the pressure is unknown and is to be determined. After substi-

tuting in the scales we obtain:

ε−2uwt + ε−1 (uw · ∇)uw = −Pwε−1∇pw +Rew
−1ε−2∇2uw, (2.13)

ε−1∇ · uw = 0. (2.14)

After rearrangement we have non-dimensional field equations (which are

valid in the water droplet):

uwt + ε (uw · ∇)uw = −εPw∇pw +Rew
−1∇2uw, (2.15)

∇ · uw = 0. (2.16)

The Reynolds number is large compared with unity, if we assume our droplet

radius is approximately 0.001 − 0.1m and impact velocity approximately

1− 10ms−1 we have Rew > 103.

This results in the viscous terms being small compared to unity. An

alternative case is to have inviscid water and air, derived by Wilson (1991)
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this happens for Re = O(107). To achieve balance of terms in (2.15), to

have a non-trivial equation we have the pressure scale as Pw = O(ε−1) (so

the pressure is present in the leading order and matches with the air layer).

Taking the leading order O(ε0) terms in (2.15) -(2.16), we have:

uwt = −∇pw, (2.17)

∇ · uw = 0. (2.18)

Separating the components of (2.17) and (2.18), we have three equations:

uwt = −pwx , (2.19)

vwt = −pwy , (2.20)

uwx + vwy = 0. (2.21)

These are the linearised Euler equations. Equations (2.19) - (2.21) also need

to satisfy suitable boundary conditions. First is the kinematic condition on

the free surface (y = F (x, t)) of the droplet. The dimensional version of

this kinematic condition is given in (2.10), after non-dimensionalising and

retaining the leading order terms we have:

vw = Ft on y = 0. (2.22)

The second boundary condition is the linearised normal stress condition,

namely:

pa = pw − σFxx on y = F , (2.23)

where:

σ =
σ∗ε2

RU2ρw
, (2.24)

is the scaled surface tension coefficient (where σ∗ is the surface-tension co-

efficient) note that this is order ε2 and thus is very small. Surface tension

is negligible until we have very large curvatures which occur close to touch-

down after significant deformations by the air layer. If σ = 0 we see that the
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pressure is continuous across the free surface. For the rest of the derivation

we assume the effect of surface tension is negligible as we have shown it is

very small compared to unity. From (2.19) - (2.21) we can see that vwt and

pwx satisfy the Cauchy-Riemann relations, so we can define a complex func-

tion, w(z, t) = pwx + ivwt with z = x + iy and applying Cauchy’s integral

formula we have:

(pwx + ivwt) =
1

2πi

∫ ∞
−∞

pwζ + ivwt
ζ − z

dζ. (2.25)

Taking the imaginary part and evaluating at y = 0 we have z = x and now

we have a singularity at ζ = x which will give us a principal value integral

(PV):

−vwt =
1

π
PV

∫ ∞
−∞

−pwζ
ζ − x

dζ, (2.26)

and finally after the substitution of (2.22) into (2.26) we arrive at:

Ftt =
1

π
PV

∫ ∞
−∞

pwζ
ζ − x

dζ. (2.27)

2.3 Equations for the air layer

Close to impact in the air layer we expect disparate horizontal and vertical

length scales due to needing a thin air gap to create a high pressure and

trigger a deformation. We expect the horizontal scale to be comparable to

the droplet’s scale and a vertical scale an order of magnitude smaller, until

this point the air pressure is not large enough to cause deformation. The

time scale remains the same as with the droplet scale, from the continuity

equation we have disparate velocity scales. We start from equations (2.8)

and (2.9) but now for the air, and we apply the following scales:

(u∗a = (u∗a, v
∗
a), p

∗
a, x
∗, y∗, t∗) =

(
ua = (ε−1ua, va),Papa, εx, ε2y, ε2t

)
, (2.28)
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where Pa is the air scale to be found. Substituting these scaled variables into

(2.12) and (2.13), and looking at each component individually, we obtain:

ε−3uat + ε−3
(
uauax + vauay

)
= −Paρw

ρaε
pax +

νa
νwε3Re

uaxx +
νa

νwε5Re
uayy ,

(2.29)

ε−2vat + ε−2
(
uavax + vavay

)
= −Paρw

ρaε2
pay +

νa
νwε2Re

vaxx +
νa

νwε4Re
vayy ,

(2.30)

ε−2uax + ε−2vay = 0. (2.31)

After rearrangement we have:

ε2uat + ε2
(
uauax + vauay

)
= −Paρwε

4

ρa
pax +

ε2νa
νwRe

uaxx +
νa

νwRe
uayy ,

(2.32)

ε2vat + ε2
(
uavax + vavay

)
= −Paρwε

2

ρa
pay +

νaε
2

νwRe
vaxx +

νa
νwRe

vayy ,

(2.33)

uax + vay = 0. (2.34)

We can see from equation (2.32) we can balance the pressure gradient with

viscous force, uayy . In order to satisfy the dynamic free-surface condition

we must have Pa = Pw hence Pa = O(ε−1), thus to balance the pressure

gradient with the viscous force we must have ρwε3

ρa
= νa

νwRe
, this gives us an

expression for ε, namely:

ε3 =
νaρa

νwρwRe
=

µa
URρw

. (2.35)

The dynamic viscosity and water density are fixed material constants, for ε

to be small, ε < 0.1, then we must have UR > 10−2 m2s−1. Taking leading

order of equations (2.32) - (2.34) we have:

0 = −pax + uayy , (2.36)

−pay = 0, (2.37)

uax + vay = 0, (2.38)
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these are the lubrication equations. The boundary conditions for the air

are a no-slip condition between the air and water phases, and secondly at

the air-water interface the two fluids share the same normal component of

velocity. The third condition is the kinematic condition on the free surface

of the droplet. These conditions are:

u∗w = u∗a, (2.39)

v∗w = v∗a, (2.40)

v∗a = F ∗t∗ + u∗aF
∗
x∗ , (2.41)

on y∗ = F ∗. After applying the appropriate scales and taking the leading

order we have the following boundary conditions for the non-dimensional

problem:

ua = 0, (2.42)

vw = va, (2.43)

va = Ft, (2.44)

on y = F .

For a rigid impermeable substrate we also have a fourth boundary con-

dition on the air flow, a no-slip condition on the substrate at y = 0 namely:

ua = 0 and va = 0 on y = 0. (2.45)

The second equation will change for a flexible, porous or moving substrate.

From (2.37), pa has no dependence on y, so we can integrate (2.36)

directly twice with respect to y, thus giving us in the air layer:

ua(x, y, t) = pax(x, t)
y2

2
+Ay +B, (2.46)

where A = A(x, t) andB = B(x, t) are functions to be determined. Applying

the no-slip condition on the substrate it follows that B = 0. Applying (2.42)
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we find that A(x, t) = −F
2 pax , we now have an expression for ua in terms of

y, the pressure and the free surface, namely:

ua(x, y, t) =
paxy

2
(y − F ) . (2.47)

Differentiating (2.47) with respect to x we obtain an expression for uax .

Substituting this into (2.37) and integrating with respect to y, we obtain an

expression for va:

va(x, y, t) =
paxxy

2

12
(3F − 2y) +

paxFxy
2

4
+ C(x, t), (2.48)

where C(x, t) is another function to be found. After applying the no-slip

condition (2.45) at y = 0, we find that C = 0 thus:

va(x, y, t) =
paxxy

2

12
(3F − 2y) +

paxFxy
2

4
. (2.49)

We now apply condition (2.44) on y = F , to obtain:

Ft =
paxxF

2

12
(3F − 2F ) +

pwxFxF
2

4
, (2.50)

Ft =
1

12

(
paxF

3
)
x
. (2.51)

We have that pa = pw on the interface so their x-derivatives are equal.

To summarise, the coupled equations governing the air layer during droplet

impact are:

Ft =
1

12

(
paxF

3
)
x
, (2.52)

Ftt =
1

π

∫ ∞
−∞

paζ
ζ − x

dζ. (2.53)

We have assumed there is no surface tension present, so from (2.23) pa = pw

at the air-water interface. We can see that the right-hand side of (2.53) is

simply the Hilbert transform of pax. These model equations are valid for all

t. We have initial free surface conditions of:

F (x, t) =
x2

2
− t as t→ −∞, (2.54)

p(x, t)→ 0 as t→ −∞, (2.55)

p(x, t)→ 0 as x→ ±∞. (2.56)
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2.3.1 Additions to model

A term for surface tension can be added by a substitution of (2.23) into

(2.53) giving:

Ftt =
1

π

∫ ∞
−∞

paζ + σFζζζ

ζ − x
dζ. (2.57)

We can also model an oblique impact of the droplet onto the substrate.

By moving in a frame of reference translating horizontally to the left with

the water droplet the flat plate has a constant horizontal velocity, c∗, to

the right. From the non-dimensionalising this is only applicable for very

large angles of obliqueness, for smaller angles, one will see little to no effect

given the difference of orders of magnitude. In order to have this present

at leading order c∗ = O(ε−1). This only alters the no-slip condition for

the horizontal velocity component of the air, (2.45). Starting from (2.46),

however, we have:

ua = c on y = 0, (2.58)

where c =
Uplate
U (Uplate is the plate velocity). This gives us B = c and

A = −
(
c
F + pax

F
2

)
, hence the expression for ua is:

ua =
paxy

2
(y − F ) + c

(
1− y

F

)
. (2.59)

After proceeding the same way as before, we alter (2.51) to:

Ft =
1

12

(
PaxF

3
)
x
− cFx, (2.60)

where c is the scaled velocity of the plate given above.

2.4 Computational results and discussion

The coupled equations (without surface tension) are solved by discretizing

(2.53) using implicit finite differences, third order in time and second order

in space, this provided a good balance between accuracy and runtime, in-

creasing these orders made little change to the results. Let I be the current
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spatial grid point and J be the current time step, δt is the time step, δx is

grid size, so we have:

F (I, J) =
12

35

(
26

3
F (I, J − δt)− 19

2
F (I, J − 2δt) +

14

3
F (I, J − 3δt)

− 11

12
F (I, J − 4δt) +

(δt)2

δx
H
(

1

12
P (I − 2δx, J)

−2

3
P (I − δx, J) +

2

3
P (I + δx, J)− 1

12
P (I + 2δx, J)

))
,

(2.61)

where H is the Hilbert transform. We discretise (2.60) in a similar way:

1

12
F (I, J − 2δt)− 2

3
F (I, J − δt) +

2

3
F (I, J + δt)

− 1

12
F (I, J + 2δt) +

cδt

δx

(
1

12
F (I − 2δx, J)− 2

3
F (I − δx, J)

+
2

3
F (I + δx, J)− 1

12
F (I + 2δx, J)

)
=

δt

12(δx)2

[(
F 3(I − δx, J) + F 3(I, J)

)
(P (I − δx, J)− P (I, J))

−
(
F 3(I, J) + F 3(I + δx, J)

)
(P (I, J)− P (I + δx, J))

]
. (2.62)

In the results a time step δt = 10−3 with 4001 x values are used, with the

boundaries for the computation being at ±xmax, typically we use xmax = 32

this is where the boundary conditions are applied increasing this number has

little affect on the results, this gives the grid size of δx = 0.016. We start our

calculations at t = −12, this is sufficiently far to assume an undisturbed free-

surface, after testing being further away from the substrate no changes were

seen in results. At the new time step we use (2.61) to guess the updated free-

surface shape and use this to update the pressure using (2.62). We iterate

this process until we have convergence. Convergence is achieved when after

substituting in the guess of the free-surface and the updated pressure into

(2.62) we have a relative error of less than 10−4, and this happens in fewer

than 20 iterations. The relative error is the ratio of the absolute error to the
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order of magnitude of separation distance between the free surface and the

substrate, we scale this because a small perturbation closer to touchdown

is more significant than a small perturbation earlier on in the simulation.

However, if surface tension is included this method isn’t as effective unless

the grid is very fine which drastically increases runtime, so an alternative

method is used.

An alternative method is to use truncated Fourier series approximations

for the pressure and free-surface, and again the equations are iterated. We

approximate our functions of free surface position and pressure as Fourier

series approximations with N terms in the series for −xmax ≤ x ≤ xmax and

the same grid size and time step:

f(x, t) =
N∑
n=1

Fn(t) cos

(
nπx

xmax

)
, (2.63)

p(x, t) =
N∑
n=1

Pn(t) cos

(
nπx

xmax

)
, (2.64)

with:

Fn(t) =
1

xmax

∫ xmax

−xmax

f(x, t) cos

(
nπx

xmax

)
dx, (2.65)

Pn(t) =
1

xmax

∫ xmax

−xmax

p(x, t) cos

(
nπx

xmax

)
dx. (2.66)

From discretising (2.57) we have:

Fn(J) =
12

35

(
−(δt)2nπ

xmax
Pn(J) +

26

3
Fn(J − δt)− 19

2
Fn(J − 2δt)

+
14

3
Fn(J − 3δt)− 11

12
Fn(J − 4δt)

)
/

(
1 + σ(δt)2

(
nπ

xmax

)3
)
.

(2.67)

We use this equation to take an initial guess of the updated position of the

free-surface Fourier coefficients then we calculated the free surface position

using these coefficients and substitute this function into (2.62) to update

the pressure. We then iterate until we reach convergence as in the previous
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method. We take enough terms that the coefficients were very small for

the higher order terms in the series. However, this time due to convergence

being harder to achieve, we judge convergence of the solution to have oc-

curred when the relative error is less 10−3, and this happens in fewer than

40 iterations, enough terms are taken in the Fourier series to obtain good

convergence: N = 128 terms were used for the computations. More terms

would yield more accurate results for a much longer run time. Due to the

predicted symmetry of the problem only Cosine terms were used in the se-

ries to reduce the computation time, upon introducing Sine terms the results

were the same, this was verified by looking at the coefficients for the Sine

term which were found to be of order 10−3. For considering obliqueness and

surface tension Sine terms would have to be considered too. Smaller time

steps and grid sizes were tested and results did not change, for less compu-

tational time we used δt = 10−3 and δx = 0.016. Increasing the boundaries

of numerical range of x, had in insignificant influence on the results, so we

used xmax = 32 in all of the results.

The time, t = 0 corresponds to touchdown time in a vacuum. Figure

2.2(a) shows the free-surface and pressure for a droplet at instants before

impact onto an impermeable horizontal plate with zero surface tension, and

the droplet having zero horizontal motion. Touchdown is approached which

does leave a trapped pocket of gas, which can be seen on the free surface

plot. In a vacuum touchdown would occur at t = 0, however, due to air-

cushioning the time to touchdown has been delayed to a non-dimensional

time of approximately t = 7. This approximation of the touchdown time is

obtained from Figure 2.2(b), which shows an almost steady rate of closure

of the gap between the free-surface and the impermeable substrate. The

results I obtained have good agreement with previous work done on these

impacts. Hicks and Purvis (2010) were solving for the full three-dimensional

case, however, from the two-dimensional plots in this study we can draw
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(a) Free-surface and pressures profiles

(b) Separation distance of the droplet to the flat plate

Figure 2.2: Blue lines correspond to times before t = 0, the black line

corresponds to t = 0 and the red lines correspond to times after t = 0.
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direct comparisons. The initial free-surface shape differs by a factor of 2 so

accounting for this the bubble radii are both ∼ 5.2 and ran until around

t = 6. The results in this thesis were ran slightly longer which meant we

could get closer to touchdown which will give rise to higher pressure peaks

in these last time steps. We can compare the pressure in the centre of the

droplet to be ∼ 0.3 in both this thesis and Hicks and Purvis (2010). These

sets of results agree well.

Impacts with surface tension

Figure 2.3 shows the changes in time of the free-surface and the pressure

distribution for a very small value of σ. The profiles and the separation-

distance plot are very similar to that of the case with zero surface tension.

However, with surface tension the droplet doesn’t seem to reach touchdown

for all values of σ > 0. Increasing the surface tension yields profiles that

differ from the case with zero surface tension. We can see that the pressure

peaks are much smaller as well as the free-surface being more reluctant to

touchdown. Comparing the separation distance plots, they are very similar

to approximately t = 0 where for higher surface tension the free-surface

spreads more horizontally which rapidly decreases the gradient on the sep-

aration distance plot.

Changing the surface tension changed the heights and widths of the

trapped bubble of air. When increasing the surface tension, the volume of

the trapped gas pocket (which is calculated by integrating the free-surface

between the two minima) decreases. The volume for σ = 0.05 is almost half

of that for σ = 0.001. Comparing the pocket radius (the distance between

the centre of the droplet and the lowest point of the free-surface) we find

this too decreases as σ increases. The results obtained here can be compared

with Purvis and Smith (2004b) where surface tension was also considered.

The results have good agreement. There is a factor of 2 different in the
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(a) Free-surface and pressures profiles for σ = 0.001

(b) Separation distance for σ = 0.001

Figure 2.3: The evolution of the droplet free-surface, gas film pressure dis-

tribution and separation distance for σ = 0.001.
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(a) Free-surface and pressures profiles for σ = 0.5

(b) Separation distance for σ = 0.5

Figure 2.4: The evolution of the droplet free-surface, gas film pressure dis-

tribution and separation distance for σ = 0.5.
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initial free-surface shapes, with this taken into account we have comparable

bubble radii of ∼ 5 and run until approximately t = 8. Both sets of results

exhibit waves on the freesurface, these are caused by the presence of surface

tension and contribute to the delay of touchdown.

Impacts with obliqueness

We are now considering only oblique impacts (so σ = 0). Figures 2.5-2.7

shows the free-surface and pressure profiles for various values of c, the plate

velocity. For small c the profiles are similar to that of when c = 0, but with

the profile skewed in the direction of travel of the plate. Upon increasing c

the free-surface profiles go from having two minima to only one, we change

from having two local minima to one when c increases through the critical

value ccrit = 1.36, to 3 significant digits, from the numerical results. Touch-

down is achieved for all values of c, only positive values of c were considered,

because negative values would simply produce a mirror image. Comparing

the profiles for increasing values of c in Figure 2.8 we see that the pressure

peak at the position of touchdown increases dramatically and the time to

touchdown decreases as c increases. The separation distances reinforces this

conclusion which results in curves becoming steeper as c increases. We can

compare this situation to a slider bearing problem. The air close to the

substrate is moving horizontally which in turn is moving the minimum of

the free surface horizontally also which is being forced into the low pres-

sure region, the droplet is still falling at a constant velocity this together

allows for an acceleration into touchdown. There are no trapped bubbles

of air for these cases, because there is only one touchdown position. The

results shown here have good agreement to Hicks and Purvis (2010) where

oblique impacts were covered, although this paper was about solving for

the three-dimensional case, a cross-sectional result for oblique impacts was

given and can be compared to the results we have shown here. Hicks and
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(a) Free-surface and pressures profiles for c = 0.2

(b) Separation distance for c = 0.2

Figure 2.5: The evolution of the droplet free-surfaces, gas film pressures and

separation distance for c = 0.2.
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(a) Free-surface and pressures profiles for c = 1.36

(b) Separation distance for c = 1.36

Figure 2.6: The evolution of the droplet free-surfaces, gas film pressures and

separation distance for c = 1.36.
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(a) Free-surface and pressures profiles for c = 5

(b) Separation distance for c = 5

Figure 2.7: The evolution of the droplet free-surfaces, gas film pressures and

separation distance for c = 5.
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Purvis (2010) also shows there is a transition between having two minima

on the free surface to only one with a large pressure peak at the location

of the lowest point of the free surface. The difference between the sets of

results is the direction of the moving substrate being in opposite directions.

As c increases the touchdown times are monotonically decreasing, run-

ning the numerics with c = 50 shows the touchdown time is still decreasing,

there must be a limit on the time however, as all the numerics begin at

t = −12. However, as c increases the touchdown position doesn’t change as

much as the touchdown time, from Figure 2.8(b), the touchdown position,

and the position of the pressure peak, remain almost constant after c = 5

and only vary slightly. We conclude that the touchdown position remains

constant, but the time to touchdown decreases when c is very large.

2.5 Conclusions

In this chapter we have derived and solved equations corresponding to a

droplet impacting an impermeable substrate incorporating the addition of

obliqueness and surface tension. Obliqueness had the effect of increasing

acceleration into touchdown allowing for faster touchdown times, whereas

the addition of surface tension had the opposite effect. This chapter is an

important first step towards the material in the next chapter that includes

shallow water layers.
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(a) Touchdown times as a function of c

(b) Positions of the pressure peaks and the minimum free surface at touchdown as

functions of c

Figure 2.8: The touchdown time, the position of the pressure peak and the

free-surface minimum, plotted as c varies (increments of c being 0.1.) The

vertical line marks the critical value of c.
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Cushioning of a shallow water

layer impact onto an impermeable

substrate

3.1 Introduction

In this chapter we consider the problem of a shallow-water layer covering a

rigid body impacting with an impermeable base. This work follows closely

that done in Korobkin et al. (2008), however, here we are just considering

the case with a single water layer which is covering the surface of a rigid

body. We will consider obliqueness which is a new addition to this model.

3.2 Non-dimensionalisation

Consider a rigid circular body falling towards a rigid horizontal plate. This

body has radius, R, is falling with velocity U (vertically downwards) and

ε � 1 which is the scale for the spatial coordinates as used in the previous

chapter. There is a thin water layer coating the rigid body which has di-

mensional depth h∗ = αh with α = O(1) and h� 1. If we have h� ε then

we will have the previous case covered in Chapter 2. If we have h � ε, for

a very thin film to leading order it is a standard squeeze film problem, with

the water layer having no effect to leading order. Therefore we are going to

consider the case where h and ε are comparable.

45
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Figure 3.1: Diagram showing the scales used in the derivation for the coupled

equations

The scales for the water layer follow from the same reasoning as in Section

2.2, but with an alteration for the time scale changing to the time for the

droplet to fall through the non-dimensional thickness of the air layer (ε2)

with approach velocity being O(1) as it has been scaled out in Section 2.1.1.

Scales for the air layer follow similar reasoning to Section 2.3, with the

differences being the thickness of the air layer and hence the scaling for the

y coordinate and the horizontal velocity component now have dependence

on the non-dimensional thickness of the water layer. As the thickness in

the water layer and the air layer are comparable close to impact, we begin

having already scaled out U and R:

(u∗w, v
∗
w, p

∗
w, x

∗, y∗, t∗) =
(
uw, vw,Pwpw, εx, εy, ε2t

)
, (3.1)

(u∗a, v
∗
a, p
∗
a, x
∗, y∗, t∗) =

(
ε−1ua, va,Papa, εx, ε2y, ε2t

)
, (3.2)

where Pw and Pa are unknown dimensionless constants.



3.3. EQUATION MODELLING SHALLOW WATER FLOW 47

3.3 Equation modelling shallow water flow

We start from equation (2.7) applying scales in (3.1), we obtain for the water

flow:

ε−2uwt + ε−1 (uw · ∇)uw = −Pwε−1∇pw +Re−1ε−2∇2uw, (3.3)

(∇ · uw) = 0, (3.4)

where Re = ρwUR
µw

is the water Reynolds number as defined in Section 2.1.1.

Rearranging (3.3) and (3.4) we obtain:

uwt + ε (uw · ∇)uw = −εPw∇pw +Re−1∇2uw, (3.5)

∇ · uw = 0. (3.6)

Using our assumption that h and ε are comparable close to impact, in order

to keep pressure at leading order we must have balance between the pressure

term and uwt . This requires us to define the pressure scale Pw = ε−1. Taking

the leading order terms (neglecting the viscous forcing terms by imposing

the same condition on the water Reynolds number as in Section 2.2), (3.6)

remains unchanged and (3.5) becomes:

uwt = −∇pw, (3.7)

which is valid in the upper half plane, and we obtain the shallow water

equations. We have the usual conditions on the free-surface for this flow,

namely the kinematic condition, (2.22), and the normal stress condition,

(2.24). The kinematic condition is:

v∗w = F ∗t∗ + u∗wF
∗
x∗ on y∗ = F ∗, (3.8)

where y∗ = F ∗ is the free surface of the shallow water layer. We need to

apply another scale for the shallow water layer. We now re-scale the y∗

coordinate now as y∗ = εȳ(= ε2y) to account for a shallow water layer and

the disparate length scale. Applying this to the vertical component of (3.7)
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simply becomes pwȳ = 0, hence pw = pw(x, t). Integrating the continuity

equation (2.13) with respect to y∗ across the shallow water layer (applying

the kinematic boundary condition and a no-slip condition on the wall of the

body), noting that u∗w is independent of y∗, we obtain:

[v∗w]F
∗

S = αu∗wx∗ , (3.9)

where α is the average depth of the water layer and y = S is the surface

of the solid body, at which we have a no-slip condition. Substituting in the

kinematic condition (3.8) and rearranging we have:

F ∗t∗ − U = αu∗wx∗ − u
∗
wF
∗
x∗ . (3.10)

Applying the scales (3.1) we obtain:

1

ε
Ft − U =

1

ε
αuwx −

ε

ε
uwFx. (3.11)

If we are close to impact then h = O(ε). At leading order, we have:

Ft = αuwx . (3.12)

We differentiate (3.12) with respect to t and substitute the horizontal com-

ponent of (3.7) to obtain:

Ftt = −αpwxx . (3.13)

This differs to (2.27) for the deep-water droplet; this is a local relationship

between the free-surface and the pressure, the other case gives a global

relationship between them.

3.4 Equations for the air

Components of equation (2.8) for the air are scaled using (3.2). This deriva-

tion proceeds in a similar way as for deep water in Section 2.3 but with

different scales. After substitution into equations (2.8) and (2.9) we obtain:
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1

ε3
uat +

1

ε2
(
uauax + vauay

)
= −Paρw

ρaε
pax +

νa
νwε3Re

(
uaxx +

1

ε2
uayy

)
,

(3.14)

1

ε2
vat +

1

ε2
(
uavax + vavay

)
= −Paρw

ρaε2
pay +

νa
νwε2Re

(
vaxx +

1

ε2
vayy

)
,

(3.15)

1

ε2
uax +

1

ε2
vay = 0. (3.16)

After rearrangement we have:

ε2νwRe

νa
uat+

ε2νwRe

νa

(
uauax + vauay

)
= −Paε

4νwReρw
ρaνa

pax +
(
ε2uaxx + uayy

)
, (3.17)

ρa
ρw
vat+

ρa
ρw

(
uavax + vavay

)
= −Papay +

νaρa
ρwνwRe

(
vaxx +

1

ε2
uvyy

)
, (3.18)

uax + vay = 0. (3.19)

From equation (3.17) in order to include the pressure gradient at leading

order we must have Paε
4νwReρw
ρaνa

= 1, so that using the definition for ε (equa-

tion (2.35), we must have Pa = O(ε−1). We need the pressures of the air

and water to match, so we have:

Pw = Pa =
U2ρw
ε

. (3.20)

We now take the leading order of equations (3.17)-(3.19), and we have:

0 = −pax + uayy , (3.21)

−pay = 0, (3.22)

uax + vay = 0. (3.23)

These are the same lubrication equations derived in Section 2.3 with the

same conditions, so the derivation to obtain the relation between the pres-

sure and free-surface is exactly the same. In summary, the coupled equations
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for the impact for shallow water are, from (2.51) and (3.13):

Ft =
1

12

(
paxF

3
)
x
, (3.24)

Ftt = −αpwxx . (3.25)

The parameter α can be removed by altering the scalings. This makes the

coefficient in (3.25), unity. We do this with:

x = α
1
4 x̄,

t = α
1
2 t̄,

F = α
1
2 F̄ ,

p = α−1p̄,

where barred quantities are non-dimensional. The simplified non-dimensional

problem is then parameter-free (after dropping the bars):

Ft =
1

12

(
pxF

3
)
x
, (3.26)

Ftt = −pxx, (3.27)

with incident free-surface shape of:

F (x, t)→ x2

2
− t as t→ −∞ and as x→ ±∞, (3.28)

and p(x, t)→ 0 as x→ ±∞.

3.4.1 Additions to the model

The additions to this model are identical to the previous chapter, and are

derived in the same way as the deep-water case, see Section 2.3.1 for the

derivation. So for oblique impacts we will have (3.26) replaced with:

Ft =
1

12

(
PaxF

3
)
x
− cFx. (3.29)
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We obtain this equation by the same method as in Section 2.2.3, our bound-

ary condition is that the substrate is no longer stationary and instead moves

with a constant horizontal velocity. Here c is the horizontal velocity of the

plate similarly to the previous case c∗ = O(ε−1).

We can also give the equations for the addition of surface tension. We

substitute (2.23) into (3.25) so we have:

Ftt = −α (paxx + σFxxxx) . (3.30)

3.5 Computational results and discussion

The method for solving these coupled equations numerically is exactly the

same as the method used in Chapter 2, with, however, (3.27) being dis-

cretized as follows:

F (I, J) =
12

35

(
26

3
F (I, J − δt)− 19

2
F (I, J − 2δt) +

14

3
F (I, J − 3δt)

− 11

12
F (I, J − 4δt) +

(δt)2

(δx)2

(
− 1

12
P (I − 2δx, J)

+
4

3
P (I − δx, J)− 5

2
P (I, J) +

4

3
P (I + δx, J)− 1

12
P (I + 2δx, J)

)
.

(3.31)

The grid sizes and time steps used are δx = 0.016 and δt = 10−3 respectively.

In the same way we use the pressure from the previous time step to update

the free-surface (3.31) and then we use this to update pressure using (2.62).

In this case we do not have a Hilbert transform in the governing equation so

everything can be solved by discretisation. Typically this method used fewer

iterations per time step, compared to solving with the Hilbert Transform, to

achieve convergence, which is when we have a relative error less than 10−4

after substituting the updated free surface and pressure into (2.62).

Figure 3.2(a) shows free-surface and pressure evolutions for a shallow-

water layer impacting an impermeable plate with zero surface tension and
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(a) Free-surface and pressures profiles with ∆t = 0.5 before t = 0 and ∆t = 0.25

after t = 0.

(b) Separation distance from the droplet interface to the flat plate.

Figure 3.2: Free-surface and pressure profiles for shallow-water layer im-

pact with a horizontal impermeable plate and the separation distance as a

function of time.
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having zero horizontal velocity. Touchdown does occur and, similar to the

deep water case, we have a trapped pocket of air. Touchdown is delayed

due to air cushioning however, it is not delayed as much as for deep water,

with touchdown here being approximately t = 0.3. Figure 3.2(b) shows the

separation distance to the plate, which shows a high gradient towards the

end of the motion showing the touchdown happens rapidly when the droplet

is close to the plate, we have a rapid acceleration into touchdown. In contrast

to the deep water case, we can see a higher mean in the pressure distribution

within the air pocket with only small cusps forming close to the touchdown

position. These peaks are lower than for deep water. The cusp behaviour

seen in the pressure happens over a very small time period and only begins

to form over the last of the time steps before touchdown. These results can

be compared with Korobkin et al. (2008), we have good agreement between

the two sets of results, the cusp behaviour in the pressure also matches well.

3.5.1 Shallow water with oblique impacts

This is a topic which has not been studied before in this detail. We obtained

some interesting differences between studying both types of oblique droplet

impacts. Figures 3.3-3.5 shows the free-surface and pressure profiles for

various values of c, the plate velocity. For small c the profiles are similar to

that of when c = 0. Increasing c we go from two free-surface minima to one

minimum with the critical value for shallow water being c ≈ 0.68 which is

close to half what we found in the previous chapter. Touchdown is achieved

for all non-zero values of c. Looking at the separation distance plots, we can

see that the larger the value of c, the quicker touchdown happens and the

steeper the curve. Similar to deep water, we lose the presence of a trapped

pocket of air, due to there being only one touchdown position. The cusps

in the pressure do not appear to happen when obliqueness is included. We

have accelerated touchdown due to the squeeze film becoming a slide bearing
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(a) Free-surface and pressures profiles for c = 0.1

(b) Separation distance for c = 0.1

Figure 3.3: The evolution of the droplet free-surfaces, gas film pressures and

separation distance for c = 0.1.
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(a) Free-surface and pressures profiles for c = 0.68

(b) Separation distance for c = 0.68

Figure 3.4: The evolution of the droplet free-surfaces, gas film pressures and

separation distance for c = 0.68.
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(a) Free-surface and pressures profiles for c = 5

(b) Separation distance for c = 5

Figure 3.5: The evolution of the droplet free-surfaces, gas film pressures and

separation distance for c = 5.
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problem. We now get a high pressure on one side of the air layer which will

accelerate that side into touchdown much faster than the other side. This

acceleration into touchdown doesn’t provide the time for the cusps to form

which only appear to form moments before touchdown in the pressure.

As c increases the touchdown time monotonically decreases (just like

for the deep water case). However, as c increases the touchdown position

does not change as much as the touchdown time, from Figure 3.6(b), the

touchdown position (and position of the pressure peak) remains close to

being constant for c > 5 and only slightly increases. We conclude that the

touchdown position remains close to constant, but the time to touchdown

decreases as c is made very large.

3.6 Conclusions

In this chapter we have derived and solved the situation of a shallow-water

layer covering a solid body impacting with an impermeable substrate. A

system of equations was derived including a new addition of a term corre-

sponding to obliqueness. For small and increasing values of c, the minimum

point of the free surface changes its behaviour during approach to impact.

As c increase the free surface is accelerated downwards by the air flow. With

the obliqueness included, the cusp behaviour in the pressure very close to

touchdown is not observed in our results.
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(a) Touchdown times as a function of c, the star indicates the value for c for which

we go from two minima to one.

(b) Positions of pressure peak and free-surface minimum at touchdown: c-

dependence

Figure 3.6: The touchdown times and the position of the pressure peaks and

the minimum free-surface plotted as the plate velocity c varies (increments

of c being 0.1.) The star marks the critical value of c = 0.68.
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Shallow water layer impact onto a

shallow porous substrate

4.1 Introduction

In comparison to impacts onto impermeable substrates, impacts onto porous

substrates haven’t been considered very much. Hicks and Purvis (2015) have

considered a deep water impact onto textured surfaces and shallow layers

of porous media. Deeper layers of porous media have not been considered.

There are important applications to understanding the mechanism of an

impact with porous media such as hazardous materials in porous media, a

problem posed in Parker and Nally (2012). To extend the problem consid-

ered in the previous chapter we will derive a new system to describe the

impact of a shallow-water layer onto a porous substrate, the substrate al-

lowing air to flow into and out of it. Examples for this situation can be ice

particles with thin layers of water coating it or dry paint with a thin layer

of wet paint coating it impacting such surfaces such as paper, wood, con-

crete and tarmac. We will first non-dimenionalise the governing equations

with suitable scales considering a thin porous layer. We will use the Darcy

equations to model the velocities in the substrate to couple the flow within

the substrate with the air and water equations to close the problem. This

will then be solved numerically. Since we are considering a shallow water

layer impacting onto a porous substrate, the analysis would be very similar

59
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to consider a porous solid impacting a water layer, the differences would be

in the boundary and far field conditions.

4.2 Derivation of coupled equations

Consider a rigid circular body falling towards a thin layer of porous media.

This body has radius, R, is falling with velocity U (vertically downwards)

and ε � 1 which is the scale for the spatial coordinates as used in the

previous chapter. There is a thin water layer coating the rigid body which

has dimensional depth h∗ = αh with α = O(1), with the same justifications

as the previous chapter we are considering the case when h is comparable to

ε. The porous layer has constant isotropic porosity K and depth H. With

the addition of porosity to this model we expect that we will have air driven

into the substrate which will give us overall lower air pressures since the air

can be displaced into the substrate rather than just to the sides. The lower

pressures should also reduce the delay before touchdown.

The scalings for the air and water layers are the same as in Chapter

3, however, due to changes at y = 0 we no longer have an impermeable

substrate. We will need to model the porous substrate to find what effects

it has on the air layer. The air layer will describe what happens to the

deformation of the droplet. For the water and air layers we have:

(u∗w, v
∗
w, p

∗
w, x

∗, y∗, t∗) =
(
uw, vw, ε

−1pw, εx, εy, ε
2t
)
, (4.1)

(u∗a, v
∗
a, p
∗
a, x
∗, y∗, t∗) =

(
ε−1ua, va, ε

−1pa, εx, ε
2y, ε2t

)
. (4.2)

We assumed the porous medium to be isotropic and that the flow is

Darcy flow. From De Wiest (1969) we have the Darcy velocity components

in the horizontal and vertical directions in the medium given by (here we
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Figure 4.1: Diagram showing the scales used in the derivation for the coupled

equations

will use s to indicate substrate variables):

u∗s = −K
µa

∂p∗

∂x∗
, (4.3)

v∗s = −K
µa

∂p∗

∂y∗
, (4.4)

where K is the dimensional permeability of the medium. We also have

boundary conditions at the interface between the medium and the air layer

above it (at y = 0 in our problem), from Beavers and Joseph (1967) we have:

K
1
2

γ

∂u∗a
∂y∗

= u∗a − δu∗s, (4.5)

where γ is the Beavers-Joseph coefficient which depends on the medium’s

pore size and material properties. The parameter δ = 1 corresponds to slip,

and δ = 0 corresponds to no slip on the substrate-air interface. Saffman

(1971) concluded that u∗s = O(K), so for small K this term is negligible and

you can assume a no-slip condition, here we are considering K = O(1) so
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we will proceed with the full condition. We have from Beavers and Joseph

(1967) that:

va = vs on y = 0. (4.6)

We also require a balance of the normal component of stress on the surface

of the substrate:

p∗s(x
∗, 0, t∗) = p∗a(x

∗, t∗). (4.7)

We also have the conservation of mass equation for the substrate given by:

∂us
∂x

+
∂vs
∂y

= 0. (4.8)

We are going to consider a thin porous layer here, where we have disparate

length scales (having a smaller y scale gives us a thin porous layer). If we

have comparable x and y scales we will have the intermediate case where we

will have to solve Laplace’s equation in the substrate to get the condition on

y = 0. Finally if we have a much larger y scale we will have the deep porous

layer case where the influence of the bottom of the substrate on the flow is

negligible. We will require the following scalings for the air flow within the

thin porous substrate:

(u∗s, v
∗
s , p
∗
s, x

∗, y∗, t∗, H∗)

=

(
ε−1Uus, Uvs, ε

−1U2ρwps, εRx, ε
2Ry, ε2

R

U
t, ε2RH

)
, (4.9)

where H is the substrate height (the substrate occupies the region: −H ≤

y ≤ 0).

The equation for the water layer is derived in exactly the same way as

in Section 3.3 and so we adopt equation (3.27). The equation modelling the

gas flow in the air layer follows a different derivation to that in Section 3.4,

however, the start of the derivation is the same. To avoid repetition we will



4.2. DERIVATION OF COUPLED EQUATIONS 63

use equations (3.21)-(3.23) in this derivation. So we have:

0 = −pax + uayy , (4.10)

−pay = 0, (4.11)

uax + vay = 0. (4.12)

To begin the derivation of the influence of the porous layer in the solution

we substitute the scales in (4.9) into the conservation of mass equation (4.8),

and we obtain:

ε−2∂us
∂x

+ ε−2∂vs
∂y

= 0, (4.13)

∂us
∂x

+
∂vs
∂y

= 0. (4.14)

Upon substitution of the scalings into equations (4.3) and (4.4) we have the

Darcy velocity components now as:

us = −ρwUK
εRµa

∂ps
∂x

, (4.15)

vs = −ρwUK
ε3Rµa

∂ps
∂y

. (4.16)

It is worth noting that the limit of K → 0 is an impermeable substrate, and

we exactly recover the problem covered in Chapter 3.

We define the effective permeability, k, to remove the scales from the

Darcy velocity components:

k =
ρwUK

εRµa
, (4.17)

for a water layer of radius 1− 10mm with impact speed of 1− 10ms−1 and

actual substrate permeability of K = 5µm2 we have k ≈ 0.4− 198, with our

focus on values of k ∼ 1, thus we have Darcy velocities now as:

us = −k∂ps
∂x

, (4.18)

vs = − k
ε2
∂ps
∂y

. (4.19)
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At the interface between the air layer and the porous media, the scaled

Beavers-Joseph condition (from equation (4.5)) after rearrangement gives:

k
1
2

γ

∂ua
∂y

= ua − δus, (4.20)

From substitution of (4.18) and (4.19) into (4.14) we find a PDE for

ps(x, y, t):
∂2ps
∂x2

+
1

ε2
∂2ps
∂y2

= 0, (4.21)

which is valid in the substrate. At the bottom of the porous layer vs = 0,

therefore dps
dy = 0 is a boundary condition.

Motivated by the disparate scales in (4.21), and the following approach

of Knox et al. (2015), we solve for the pressure in the substrate by expanding

the pressure in the form as follows:

ps(x, y, t) = pa(x, t) + ε2Ps(x, y, t). (4.22)

The form of (4.22) is to ensure that the leading order pressure term matches

the air layer, we want this so the normal stresses balance (equation (4.7))

and we have a small correction term. Substituting (4.22) into (4.21) we

obtain:
∂2pa
∂x2

+ ε2
∂2Ps
∂x2

+
∂2Ps
∂y2

= 0, (4.23)

at leading order we have:

∂2pa
∂x2

+
∂2Ps
∂y2

= 0. (4.24)

Upon integrating (4.24) with respect to y, and noting that at y = −H (the

impermeable lower boundary of the porous layer) we have a zero-penetration

condition. So from (4.19):

∂Ps
∂y

= −vs
k

= 0 on y = −H, (4.25)

thus (4.24) becomes:
∂Ps
∂y

= −(y +H)
∂2pa
∂x2

. (4.26)
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Using this we can re-write the Darcy velocity components at the top of the

porous layer in terms of the air layer pressure, pa, so at leading order we

have:

us(x, 0, t) = −k∂pa
∂x

, (4.27)

vs(x, 0, t) = kH
∂2pa
∂x2

, (4.28)

which are valid at y = 0. To couple the flows in the air layer and the

substrate, we proceed in a similar way to Section 3.4. We integrate:

0 = −pax + uayy , (4.29)

in the air layer with respect to y twice and apply condition (4.20) and the

kinematic condition on the free surface of the droplet (2.42), we have:

ua =
(y − F )

((
γF + k

1
2

)
y + k

1
2F + 2kγδ

)
2
(
γF + k

1
2

) ∂pa
∂x

. (4.30)

Using (3.23) we can find an expression for va and applying the condition for

the vertical velocity on the free surface (y = F ), (2.44), we have that:

Ft =
1

12

∂

∂x

(
γF 4 + 4k

1
2F 3 + 6kγδF 2

γF + k
1
2

∂pa
∂x

)
+ kh

∂2pa
∂x2

. (4.31)

To summarise, the coupled equations for shallow water impact with a porous

substrate of thickness H and effective permeability k are

Ft =
1

12

∂

∂x

(
γF 4 + 4k

1
2F 3 + 6kγδF 2

γF + k
1
2

∂pa
∂x

)
+ kh

∂2pa
∂x2

, (4.32)

Ftt = −paxx . (4.33)

These coupled equations are valid for (x, t) ∈ R2.

4.3 Computational results

The numerical method used to solve the coupled equations is the same as

that used in Chapters 2 and 3, with however, (4.32) being discretized as
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follows, let:

A(I + δx, J) = (F (I, J) + F (I + δx, J))

×
(
γ
(
F 3(I, J) + F 3(I + δx, J)

)
+ 4k

1
2
(
F 2(I, J) + F 2(I + δx, j)

)
+6kγδ (F (I, J) + F (I + δx, J))) /

(
γ(F (I, J) + F (I + δx, J)) + 2k

1
2

)
+ 24kh, (4.34)

B(I − δx, J) = (F (I, J) + F (I − δx, J))

×
(
γ
(
F 3(I, J) + F 3(I − δx, J)

)
+ 4k

1
2
(
F 2(I, J) + F 2(I − δx, j)

)
+6kγδ (F (I, J) + F (I − δx, J))) /

(
γ(F (I, J) + F (I − δx, J)) + 2k

1
2

)
+ 24kh. (4.35)

So we have:

1

12
F (I, J − 2δt)− 2

3
F (I, J − δt) +

2

3
F (I, J + δt)− 1

12
F (I, J + 2δt)

=
δt

12(δx)2
[{P (I − δx, J)B(I − δx, J)}

− {P (I, J) (B(I − δx, J) +A(I + δx, J))}

+ {P (I + δx, J)A(I + δx, J)}] . (4.36)

The grid size and time step are the same as those used before, δx = 0.016

and δt = 10−3, after running accuracy checks these values are still appropri-

ate. With the addition of porosity we have a more complicated equation to

discretise but since it only depends on spatial pressure derivatives this just

adds extra terms to the existing non-zero terms in the tridiagonal matrix

for pressure. The algorithm is the same as in Chapters 2 and 3. We use

(3.31) to estimate the free surface position in the new time step then we

use (4.36) to update the pressure. We then iterate this process until we

have convergence, to achieve convergence, which is when we have an error

less than 10−4 after substituting the updated free surface and pressure into

(4.36).
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(a) Contours of the touchdown time as a function of k and h

(b) Contours of bubble radius as a function of k and h

Figure 4.2: The touchdown time and the bubble radius plotted as the per-

meability and layer depth vary (increments 0.1.) Both figures use a time

step of 0.002.
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Figure 4.2 shows how the touchdown times and bubble radii vary as k and

H vary. One immediate observation made from Figure 4.2(a) is that initially

as k and H increase the touchdown time occurs later. This result comes

as a surprise. Comparing with previous similar work in Hicks and Purvis

(2015) shows that for the deep-water case the touchdown time monotonically

decreases as k and H increase. For large k and H the touchdown time

behaves as expected and decreases monotonically. From Figure 4.2(a) we

can see a region for k ≈ 1 and H > 4 where the touchdown time is the most

delayed. Close to k = 0 we have a contour with touchdown time of 0.2,

which matches the results found in Section 3.5 for touchdown time with an

impermeable wall. Figure 4.2(b) shows the bubble radius as a function of

k and H. The trend in the varying radii can be seen from Figure 4.2(b),

for large k and H the radius decreases monotonically. This too can be

compared to Hicks and Purvis (2015) who showed that the bubble radius

monotonically decreased to zero as k and H increase. For large k and H the

results obtained in the present study match with the results of Hicks and

Purvis (2015) found for the deep-water case.

Figure 4.3 shows results from varying the permeability k while keeping

h constant. It is clear from the free-surface plots that the bubble radius

decreases to zero as k increases, for k = 0.25 the radius is approximately

2.7: for k = 2 the radius is approximately 1.2 and for k = 4 there is almost

no bubble formed. The touchdown time increases when k is increased from

k = 0.25 to k = 2 then decreases between k = 2 and k = 4, this is also seen

in the contour plot in Figure 4.2(a). The pressures decrease dramatically

as k increases with the lower pressures the cushioning effect from the air

is much lower for larger k so there is less deformation of the droplet and

a smaller bubble formed. However, the phenomena concerning the increase

in touchdown time needs to be investigated further, and its physical cause

discovered.
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(a) Free-surface and pressures profiles for k = 0.25 and h = 4, touchdown time is

approximately 1.33

(b) Free-surface and pressures profiles for k = 2 and h = 4, touchdown time is

approximately 1.47
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(c) Free-surface and pressures profiles for k = 4 and h = 4, touchdown time is

approximately 0.90

Figure 4.3: Free-surface and pressure profiles for selected values of h with k

fixed.

4.4 Discussion of results

The contour plot shown in Figure 4.2(a) shows some unexpected behaviour

with the touchdown time for varying k and h. To begin to understand what

is happening in this region we will fix h and vary k.

Figure 4.4 shows the separation distance as a function of time for the

values of k and h already considered in Figure 4.3. As we can see, for zero

permeability (which is identical to having an impermeable base) we have a

rapid downwards acceleration of the droplet close to touchdown. Increasing

k a small amount we can still see this acceleration close to touchdown,

however, the acceleration is smaller. For larger k we have behaviour as we

would expect which is the droplet falling at a near constant velocity, as with
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high permeability the air can simply flow into the medium, out of the way of

the incoming droplet, without much resistance. For large k the results are as

one would expect and are less interesting than for small k. Comparing these

findings to deep-water impacts with a porous medium as seen in Hicks and

Purvis (2015), the touchdown time does not have this interesting behaviour

with regions of delayed impact, as seen in the shallow-water case of Figure

4.2(a). With a shallow-water layer we will have less possible deformation

of the freesurface so the deceleration will be more uniform across the entire

freesurface than with the deep-water case where the droplet can deform more

and develop more pronounced minimum points.

Figure 4.4: Separation distance plots for various values of k and fixing h = 4

From the coupled equations we have that the acceleration of the free

surface, Ftt = −pxx, as the rapid acceleration close to touchdown occurs for

small values of k and not large values we return to the plots shown in Figure

4.3 and plot the spatial derivatives of the pressure as well to better see this

acceleration close to touchdown.
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(a) Free surface, pressure and pressure derivative profiles for k = 0 and h = 4
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(b) Free surface, pressure and pressure derivative profiles for k = 0.25 and h = 4
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(c) Free surface, pressure and pressure derivative profiles for k = 2 and h = 4
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(d) Free surface, pressure and pressure derivative profiles for k = 4 and h = 4

Figure 4.5: Free surface, pressure and pressure derivative profiles for various

values of k with h fixed.
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Figure 4.5 shows the distributions for the spatial derivatives px and pxx

and free-surface of shallow-water layer with various values of k (with h fixed).

For the cases where we have two distinct minima, for k = 0 and k = 0.25,

we will consider only the right touchdown position (positive x value) as the

plots we are concerned with are all symmetrical about the y-axis. For k = 0

and k = 0.25 we observe that the minimum free-surface position is slightly

to the left of the minimum position on the pxx plot. This means that the

acceleration of the free-surface is positive and hence is accelerating upwards,

or decelerating in the direction the free-surface is falling. Slightly to the

right of this position we can see that pxx is positive now which means this

part of the free-surface is accelerating downwards and will pass the current

minimum and become the new minimum. This explains the behaviour that

the minimum position on the free-surface appears to move away from the

centre as time progresses. The accelerations for k = 0 are much larger in

magnitude than for k = 0.25, which can be seen in Figures 4.5(a) and (b).

However, the accelerations become very small as k increases to become an

O(1) quantity and for large k are negligible, so the droplet’s velocity remains

close to being constant.

Another result obtained from the derivation of the governing coupled

equations is the vertical air velocity on the substrate-air interface, which is

directly proportional to pxx (equation 4.24). Looking at Figure 4.5 in more

global view, for small k we have that air is entering the substrate under

the centre of the droplet with more air entering close to the touchdown

positions and leaving the substrate outside where the trapped pocket of air

is. For larger k where we observe some similar behaviour, the air enters the

substrate under the centre of the droplet and escapes towards the sides of

the droplet. As the minimum of this droplet is the centre we have more air

entering the substrate here than for small k. As we only have one minimum

on the free-surface for large k this can help to explain the locations of the
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peaks and troughs of the pxx plot as this is related to the air velocity on the

substrate-air interface.

Figure 4.6 shows how the touchdown times vary with k when h is fixed.

An unexpected observation is for each value of h used here, the k value

corresponding to the most delayed touchdown time is approximately half of

the critical value of k for the same h. However, this will be looked into more

precisely with a finer grid size and more values of k and h considered.

An alternative approach to understand the mechanisms at work is to

consider this problem in a different way. Close to touchdown we will use the

numerical results already presented to fix the shape of the free-surface and

approximate it as a polynomial and substitute this back into equation (4.32)

and solve for the pressure distribution. This will approximate the problem

into a squeeze-film flow.

For large k we observe from the numerical result there is not very much

change in the free-surface shape so we will approximate the free-surface as:

F (x, t) =
x2

2
− t, (4.37)

as we assumed this is the shape of the undisturbed droplet when we release

it. As we have fixed the shape of the free-surface we now have a solid body

falling towards a porous medium so one of the coupled model equations is

no longer relevant. However, we still have a relation:

Ft =
1

12

∂

∂x

(
γF 4 + 4k

1
2F 3 + 6kγδF 2

γF + k
1
2

∂pa
∂x

)
+ kh

∂2pa
∂x2

, (4.38)

to satisfy. We proceed by substituting in our approximation for F , and we

integrate with respect to x (we will take γ = δ = 1,) so we have:

−x+ c(t) = px

 1

12

(
x2

2 − t
)4

+ 4k
1
2

(
x2

2 − t
)3

+ 6k
(
x2

2 − t
)2(

x2

2 − t
)

+ k
1
2

+ kh

 .

(4.39)
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(a) Touchdown times for h = 3.5 as a function of k

(b) Touchdown times for h = 4 as a function of k

(c) Touchdown times for h = 4.5 as a function of k

Figure 4.6: Touchdown times as a function of k for various values of fixed

h. The red star indicates the critical value of k where we only have one

minimum point at touchdown.
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Upon rearranging for px(x, t) we have:

px(x, t) =
−x(

1
12

(
x2

2
−t

)4
+4k

1
2

(
x2

2
−t

)3
+6k

(
x2

2
−t

)2(
x2

2
−t

)
+k

1
2

+ kh

) , (4.40)

note we have taken c(t) = 0 as from the numerical results we can see that

px(0, t) = 0.

Using (4.40) we can plot functions p(x, t), px(x, t) and pxx(x, t) and com-

pare with the previous findings.

Figure 4.7 has some strong similarities to the other numerical findings

shown in Figure 4.5(d). Fixing the free-surface with an approximate shape

in the form of a polynomial was only taking into account the shape of the

free surface close to touchdown. So comparisons can only be made with

the last time steps plotted in Figure 4.5(d). The amplitudes of the curves

in Figure 4.7 are slightly larger than in Figure 4.5, this is because we have

a solid body falling towards the substrate, so there can be no deformation

of the free-surface, unlike for the case with a layer of water. The locations

of the peaks and troughs for px and pxx are close to the positions of these

in the numerical results and have very similar amplitudes. There is good

agreement in the shape between these two sets of plots.

For small k we approximate the free-surface shape close to touchdown

as a quartic polynomial:

F (x, t) = 0.03014x4 − 0.3472x2 + 1− t, (4.41)

the coefficients are obtained by approximating the touchdown positions as

x = ±2.4 and F (0, t) = 1. Repeating the same method as for large k we can

also plot the functions p(x, t), px(x, t) and pxx(x, t).

Figure 4.8 shows the results for the pressure pressure distribution when

fixing the free-surface close to touchdown for small k as given in equation

(4.41). We can compare these results to the last time steps in Figure 4.5(b).

We have good agreement between the shapes of the two sets of results.
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(a) Pressure distribution calcu-

lated from fixing the free surface

for large k.

(b) First spatial derivative of the

pressure distribution from fixing

the free surface for large k.

(c) Second spatial derivative of the pres-

sure distribution from fixing the free sur-

face for large k.

Figure 4.7: Plots for the pressure distribution and spatial derivatives from

fixing the free-surface and solving for the pressure for large k, here k = 4

and h = 4 were used.
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(a) Pressure distribution calcu-

lated from fixing the free surface

with small k.

(b) First spatial derivative of the

pressure distribution from fixing

the free surface with small k.

(c) Second spatial derivative of the pres-

sure distribution from fixing the free sur-

face with small k.

Figure 4.8: Plots for the pressure distribution and spatial derivatives from

fixing the free-surface and solving for the pressure for a small k, here k = 0.25

was used with h = 0.
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The amplitudes of the plots, particularly the pressure distribution, are con-

siderably higher. This is due to the fact that we have modelled a solid

non-deformable surface falling towards the substrate. The peaks in the px

and pxx plots are in slightly different locations, compared with the peaks in

Figure 4.8, being further away from the centre of the droplet. There is still

good agreement between the shapes of two sets of plots, with a lower poros-

ity we would expect increased deformation of the free-surface in response to

the higher pressures compared with the higher porosity case where we have

lower air pressures. We can conclude that the pressure distribution shape

depends on the shape of the incoming surface.

Figure 4.9: Plot to compare free-surface accelerations for deep water (blue)

and shallow water (red) droplet impacts to free-surface shape (green).

Figure 4.9 shows a comparison between the accelerations of the free

surface for the deep- and shallow-water cases alongside the approximated
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free surface shape for a small value of the permeability. The acceleration for

the deep-water case was approximated by substitution of the approximated

free surface shape into (4.32) to obtain px then this was further substituted

into (2.53) to obtain an approximation for the acceleration of the free surface.

Similarities between the two cases are the locations for the peaks of the

acceleration. However the interesting difference comes from the magnitude

of this peak, it is approximately twice are large for the shallow-water layer

impact meaning the acceleration into touchdown is much larger for this

case. The deceleration for deep-water droplet under the formed bubble is

approximately twice as large. The greater deceleration of the deep-water

droplet and the larger acceleration of the shallow-water layer both support

the previous numerical findings that the shallow-water layers touchdown

much faster than the water droplets for small permeability.

4.5 Conclusions

In this chapter derivation of a model for a shallow-water layer impact onto

a thin porous surface was given. There were similarities between the two

derivations which were largely the lubrication equation for the air-flow. The

difference lies in the relationship between the pressure and the second time-

derivative of the free-surface, with the deep-water case having a global re-

lationship, and the shallow-water case having a local relationship. This

difference can be seen in the computational results. The deep-water case

had the maximum pressure under the lowest point on the free-surface. But

the shallow-water case had small cusps under the lowest points of the free-

surface. The maximum pressure occurred under the centre of the droplet.

The coupled equations for shallow-water layer impacts onto porous sub-

strate were also derived. Similarities in the equations are the local rela-

tionship between the second time-derivative of the free-surface position and

the pressure distribution. The difference in the coupled equations lies in



84 CHAPTER 4. IMPACT ONTO SHALLOW POROUS SUBSTRATE

the coupled air flow in the porous medium and air layer. The main result

shown was the touchdown times for varying permeability and porous layer

depth. These differ from the results for deep-water droplet impact onto a

porous medium. They show that the touchdown time initially increases and

later decreases. Plots for selected values of permeability and layer depth

supported this finding. The radii of the bubbles were investigated and their

dependence on varying permeability and layer depth were as expected. The

radii monotonically decrease to zero, with the other plots given also sup-

porting this.
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Impact with thicker porous layers

5.1 Introduction

In this chapter we extend the model covered in the previous chapter and

look at different depths of porous media. This new model will incorporate

porous layer depths where the horizontal and vertical length scales are com-

parable and also an infinite depth layer. A system which couples the air and

water equations and the air flow in the substrate will be derived and solved

numerically.

5.2 Derivation of governing equations

In the previous chapter a shallow porous layer was considered, the depth of

the porous layer was an order of magnitude smaller than the width. However,

for the intermediate depth porous layer the length scales are comparable,

and with this we do not need to assume the velocities in the substrate are

disparate. With this change we can write the scalings for the water, air and

the substrate as:

(u∗w, v
∗
w, p

∗
w, x

∗, y∗, t∗) =
(
uw, vw, ε

−1pw, εx, εy, ε
2t
)
, (5.1)

(u∗a, v
∗
a, p
∗
a, x
∗, y∗, t∗) =

(
ε−1ua, va, ε

−1pa, εx, ε
2y, ε2t

)
, (5.2)

(u∗s, v
∗
s , p
∗
s, x
∗, y∗, t∗, H∗) =

(
us, vs, ε

−1ps, εx, εy, ε
2t, ε2H

)
. (5.3)

85
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The derivation for the equation for the liquid is the same as in Section 3.3,

so again we adopt equation (3.27). The derivation for the air layer is almost

unchanged, however, we will have a slightly different boundary condition

from the Beavers-Joseph condition in equation (4.5): the horizontal velocity

scale is now the same size as the vertical velocity scale. Upon applying the

scales, the air-substrate boundary condition becomes:

k
1
2

γ

∂ua
∂y

= ua, (5.4)

the δ term disappears as it is now small compared to the dominant terms in

(5.4), thus we have:

ua =
(F − y)

((
γF + k

1
2

)
y + k

1
2F
)

2
(
γF + k

1
2

) ∂pa
∂x

for 0 < y < F (x, t). (5.5)

From the conservation of mass equation and by substituting in the Darcy

velocities (4.3) and (4.4) we can see that the substrate pressure has to satisfy

Laplace’s equation with the boundary conditions: the pressure and vertical

air velocities have to be continuous on the air-substrate interface and zero

normal velocity component on the impermeable base of the medium, thus

we have:

∇2ps(x, y, t) = 0, (5.6)

ps(x, 0, t) = pa(x, t), (5.7)

vs(x, 0, t) = va(x, 0, t), (5.8)

vs(x,−H, t) = 0. (5.9)

Proceeding from equation (5.5) in the same way as before, however, we

note the vertical air velocity on the surface of the substrate is vs(x, 0, t) =

V (x, t), so we have the equation from the air layer:

Ft =
1

12

∂

∂x

(
γF 4 + 4k

1
2F 3

γF + k
1
2

∂pa
∂x

)
+ V. (5.10)
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This is coupled to equation (3.27), however, we now have a dependence on

the vertical air velocity on the surface of the substrate, in order to calculate

this we must first solve for the substrate pressure using (5.6)-(5.9), which

yields a more complicated coupled system of equations compared with the

previous cases. In summary, the coupled system for a shallow-water layer

impact onto an intermediate depth porous layer with porosity k and depth

H is:

Ft =
1

12

∂

∂x

(
γF 4 + 4k

1
2F 3

γF + k
1
2

∂pa
∂x

)
+ V, (5.11)

Ftt = −paxx , (5.12)

∇2ps(x, y, t) = 0, (5.13)

ps(x, 0, t) = pa(x, t), (5.14)

dps
dy

= 0 on y = −H, (5.15)

ps → 0 as |x| → ∞. (5.16)

5.3 Solving in the substrate

We use an image system to solve Laplace’s equation in the substrate. We are

solving it in a rectangular region of depth H, with zero normal component of

velocity on the base (vs = 0) of the substrate and air pressure equal on the

air-substrate interface. We reflect this system in the base of the substrate

and use Cauchy’s integral formula to solve. Let ẑ = x+ iy and we introduce

a complex analytic function w(ẑ, t) given by:

w(ẑ, t) = kpsx(ẑ, t) + ivs(ẑ, t), (5.17)

as kpsx add vs satisfy the Cauchy Riemann equations. By Cauchy’s integral

formula with the contour defined as the perimeter of this rectangular area

we have:

w(ẑ, t) =
1

2πi

∮
Γ

w(ẑ, t)

z − ẑ
dz, (5.18)
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(a) The field point, ẑ, is not on the contour

(b) The field point, ẑ, is on the contour on the real axis at ẑ = x

Figure 5.1: Diagrams showing the contour of integration, Γ, around the

porous layer and its reflection in y = −H depending on where our point

lies.

This is assuming the integrals at x = ±∞ give zero contribution, as we

extend infinitely in the horizontal direction the integrand tends to zero.

Here we have different forms of this contour integral depending on whether

our point ẑ lies on the contour or not. If our point does not lie on the

contour we have:

w(ẑ, t) =
1

2πi

(∫ −∞
∞

w

x− ẑ
dx+

∫ ∞
−∞

w

x− 2Hi− ẑ
dx

)
. (5.19)
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If ẑ = x then we have to deform the contour around this point. In

(5.18) the factor 1
2 changes to 1, accommodating the contribution from the

semicircular indentation described above in figure 5.1, we have a principal

value integral from taking the limit of the radius of this indentation to zero.

For more in depth detail please see Carrier, Krook and Pearson (2005).

We take Im(ẑ) = 0 as we are interested in the solution on y = 0, this

also means we can substitute the substrate pressure with the air pressure

since this is one of the conditions we imposed at the air-substrate interface.

So we have:

kpsx + iv =
1

iπ

(
P.V.

∫ −∞
∞

kpax + iv

x− x̂
dx+

∫ ∞
−∞

kpax − iv
x− 2Hi− x̂

dx

)
(5.20)

=
1

iπ

(
P.V.

∫ −∞
∞

kpax + iv

x− x̂
dx

+

∫ ∞
−∞

(kpax − iv)(x− x̂+ 2Hi)

(x− x̂)2 + 4H2
dx

)
. (5.21)

Here we choose to take the imaginary part to obtain an expression for the

air velocity on the surface of the substrate as a function of pressure. An

equivalent expression comes from taking the real part, leaving an expression

for the unknown pressure, but this is of less use in the solution. So we have

the following integral equation for v(x, t):

v =
1

π

(
P.V.

∫ −∞
∞

−kpax
x− x̂

dx+

∫ ∞
−∞

−kpax(x− x̂)− 2Hv

(x− x̂)2 + 4H2
dx

)
. (5.22)

The first integral in (5.22) is simply a Hilbert transform.

5.3.1 Air velocity components

We have an explicit form for the horizontal component of the air velocity

(4.30) taking γ = 1 and δ = 0. From (5.4) we have the only term with δ

dependence is far smaller so we ignore it here. We have γ = 1 to allow slip

on the substrate-air interface, we have:

ua =
(y − F )

((
F + k

1
2

)
y + k

1
2F
)

2
(
F + k

1
2

) ∂pa
∂x

, (5.23)
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for the horizontal velocity component we have to use the conservation of

mass equation. We so have:

va =

∫ y

0

∂ua
∂x

dy, (5.24)

and after substituting in the horizontal velocity component we have:

va =2Fx(2F + k
1
2 )−2(

1

2
F 2y2 − 1

3
Fy3 − 1

3
k

1
2 y3 + F 2k

1
2 y)px

− (2F + k
1
2 )−1(FFxy

2 − 1

3
Fxy

3 − 1

3
k

1
2 y3 + 2FFxk

1
2 y)px

− (2F + k
1
2 )−1(

1

2
F 2y2 − 1

3
Fy3 − 1

3
k

1
2 y3 + F 2k

1
2 y)pxx.

(5.25)

5.4 Numerical results

The typical method involving discretisation for solving this system of equa-

tions that has been used for most previous cases works poorly here. The

computer run time using the same grid sizes is considerably longer here (over

24 hours per set of parameters) and was not practical to produce all results.

A Fast Fourier Transform (FFT) method for solving this system was used

which has run times comparable to previous systems.

The discrete Fourier expansions of the functions pa, F and vs are given

by:

pa(x, t) =
N∑
n=1

Pn(t)e
inπx
L , (5.26)

F (x, t) =
x2

2
− t+

N∑
n=1

Fn(t)e
inπx
L , (5.27)

vs(x, t) =
N∑
n=1

Vn(t)e
inπx
L . (5.28)

From (5.22) we have that:

vs(x, 0, t) =
1

π

P.V. ∫ ∞
−∞

k ∂pa(ζ,t)
∂ζ

ζ − x
dζ −

∫ ∞
−∞

k(ζ − x)∂pa(ζ,t)
∂ζ

(ζ − x)2 + 4H2
dζ

−
∫ ∞
−∞

2Hvs(ζ, t)

(ζ − x)2 + 4H2
dζ

)
, (5.29)
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with the help of Gradshteyn and Ryzhik (2000) we substitute in the Fourier

expansions (5.26)-(5.28) and can explicitly write down Vn in terms of Pn:

Vn = −k|n|π
L

Pn +
k|n|π
L

e
−2H|n|π

L Pn − e
−2H|n|π

L Vn (5.30)(
1 + e

−2H|n|π
L

)
Vn =

(
−k|n|π

L
+
k|n|π
L

e
−2H|n|π

L

)
Pn. (5.31)

We used N = 2001 terms of the series, with the Fourier transform of

the functions taken, the coefficients for the pressure, free surface and air-

substrate vertical velocity component could be expressed in terms of each

other. At each time step we calculate the series of Pn from the functions

from the previous time step then use the relation (5.12) to update Fn:

Fntt = −n
2π2

L2
Pn, (5.32)

we discretise Fntt to have an expression for the coefficients of the current-

time step free surface. We use these to update Vn, to which we use the

relationship described in (5.11) to update the pressure and check the error.

We iterate this process until we have convergence, a relative error less than

(< 10−4).

Figure 5.2 shows the impermeable case run with this alternative code to

solve the system. The major difference between using this method and the

discretisation method is resolving the cusps formed in the spatial distribution

of pressure, moments before touchdown. Running the Fourier transform

code with a large number of outputs just before touchdown does show these

cusps forming. Figures 5.3 - 5.5 show various profiles exploring some of

the parameter space. One interesting observation comes from looking at the

touchdown times across each of the situations compared to the impermeable

case. In all cases we have a more delayed touchdown with a porous layer

present. We would expect a less delayed touchdown due to the air able to

enter the layer giving lower air pressures and deforming the droplet less.

Changing H has less influence on touchdown time compared to changing k
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Figure 5.2: Fast Fourier transform method ran on an impermeable substrate

with k = 1 the touchdown time was close to t = 1.2 with k = 0.1 touchdown

time was close to t = 0.7 and with k = 0 touchdown was around t = 0.37

(t = 0 represents touchdown time in a vacuum).

This change in touchdown time was investigated further. Figure 5.6

shows a comparison between the separation distances of some cases as a

function of time. As discussed in Chapter 3 we have a rapid acceleration

into touchdown for the impermeable case. This acceleration is deceased
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Figure 5.3: Free surface, pressure and substrate exit velocity profiles for

k = 0.1 and H = 0.1, touchdown time is at t = 0.7
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Figure 5.4: Free surface, pressure and substrate exit velocity profiles for

k = 0.1 and H = 1, touchdown time is at t = 0.7

with the introduction of this porous layer the higher the porosity the less

this acceleration is and so touchdown time is delayed compared with the

impermeable case. To try and understand why this acceleration is reduced

we look at the air velocity components.

Figure 5.7 shows the air velocity component profiles taken at a constant

y = 0.1. We can immediately see that most of the air flow in and out of the

substrate happens around the touchdown position with near zero flow away

from this position. We can see this large vertical jet of air which is very
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Figure 5.5: Free surface, pressure and substrate exit velocity profiles for

k = 1 and H = 0.1, touchdown time is at t = 1.2

slightly on the outside of the bubble of air formed between the two minima

of the free surface. One potential mechanism for this delayed touchdown is

that due to this very large air current the free-surface cannot as easily go

down as there is the large pressure in the bubble formed on the inside and

this large jet on the outside of the bubble. With both of these effects it

would take longer for the droplet to touchdown.

Comparing this to a higher porosity we have figure 5.8. Here we have

k = 1, with the higher porosity we have lower pressures, lower vertical and
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(a) Separation distances as a function of time

(b) Closer comparison of separation distances near touchdown

Figure 5.6: The separation distances show the acceleration of the droplet

into touchdown.



5.4. NUMERICAL RESULTS 97

Figure 5.7: Profiles showing free surface shape, pressure, both air velocity

components and substrate air velocity at a fixed elevation of y = 0.1 for

k = 0.1 and H = 0.1.

horizontal air velocities. However, we have higher vertical velocities at the

surface of the substrate. This larger velocity just under the minima of the

free surface explains the delay in touchdown time. With k = 1 we had

a touchdown time of t = 0.7 with k = 1 we have touchdown time of 1.2.

The larger vertical velocity at the surface of the substrate will reduce the

acceleration into touchdown the minima has which will delay touchdown.
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Figure 5.8: Profiles showing free surface shape, pressure, both air velocity

components and substrate air velocity at a fixed elevation of y = 0.1 for

k = 1 and H = 0.1.

5.5 Infinitely deep porous layer

To investigate the infinitely deep case we can take the limit of H → ∞ in

(5.22) to obtain the effect of the substrate on the air. The second integral
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tends to zero leaving just the Hilbert transform:

v =
k

π
P.V.

∫ ∞
−∞

pax
x− x̂

dx. (5.33)

With this simpler relation we have an explicit relation between the vertical

air velocity on the substrate-air interface and the air pressure so we do not

have to solve anything in the substrate. The system we have is:

Ft =
1

12

∂

∂x

(
γF 4 + 4k

1
2F 3

γF + k
1
2

∂pa
∂x

)
+
k

π
P.V.

∫ ∞
−∞

pax
x− x̂

dx, (5.34)

Ftt = −paxx . (5.35)

The numerical method used to solve the coupled equations is the same as

that used in Chapters 2, 3 and 4, with however, (5.34) being discretized as

follows, let:

A(I + δx, J) = (F (I, J) + F (I + δx, J))

×
γ
(
F 3(I, J) + F 3(I + δx, J)

)
+ 4k

1
2

(
F 2(I, J) + F 2(I + δx, j)

)
γ(F (I, J) + F (I + δx, J)) + 2k

1
2

,

B(I − δx, J) = (F (I, J) + F (I − δx, J))

×
γ
(
F 3(I, J) + F 3(I − δx, J)

)
+ 4k

1
2

(
F 2(I, J) + F 2(I − δx, j)

)
γ(F (I, J) + F (I − δx, J)) + 2k

1
2

,

So we have:

1

12
F (I, J − 2δt)− 2

3
F (I, J − δt) +

2

3
F (I, J + δt)− 1

12
F (I, J + 2δt)

+ kδtH
(

1

12
P (I − 2δx, J)− 2

3
P (I − δx, J) +

2

3
P (I + δx, J)

− 1

12
P (I + 2δx, J)

)
=

δt

12(δx)2
[{P (I − δx, J)B(I − δx, J)}

− {P (I, J) (B(I − δx, J) +A(I + δx, J))}

+ {P (I + δx, J)A(I + δx, J)}] . (5.36)
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This system is solved using the discretisation method described in the previ-

ous chapters. We use (3.31) to guess the updated free surface position then

use (5.36) to update the pressure. We continue to iterate until we reach

convergence in the lubrication equation. There was some numerical diffi-

culty exploring the parameter space for some values of k the code suffered

breakdowns before getting as close to touchdown as in the previous cases,

the iteration procedure became unstable for the FFT method. Figure 5.9

shows the profiles with an infinite depth layer. We have a lot of similarities

between finite depth and infinite depth profiles. Almost all flow into the

substrate happens around the touchdown position. The delay in touchdown

time is much less than with the finite depth porous layer, here we have

the touchdown time around t = 0.44. This is likely due to the vertical air

jets being less significant and the pressure under the droplet is overall lower

allowing for a faster touchdown.

5.6 Conclusions

In this chapter new models for the impact of a shallow water layer onto both

a thicker and infinite depth porous layers were given. For the intermediate

depth layers we observed that changing the porosity had more effect on

the flow than changing the depth of the layer. Surprisingly, we found that

there are circumstances in which increasing the porosity can actually further

delay the time until touchdown is achieved as the air leaving the substrate

interacts with the minima of the incoming free surface. With an infinite

depth layer we had faster touchdown for the same value of k. The squeezing

of the air layer during the descent of the drop forced air into the substrate.

It also displaced some of the substrate air, and exit as narrow vertical jets,

one either side of the central bubble.
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Figure 5.9: Infinite depth profiles for k = 0.1 with touchdown time at t =

0.44.



102 CHAPTER 5. IMPACT WITH THICKER POROUS LAYERS



6

Post-impact dynamics of an impact

with an impermeable substrate

6.1 Literature review

The pre-impact model in the previous work in this thesis breaks down upon

contact with the substrate due to obtaining pressures which are tending to

infinity as the gap between the droplet and the substrate tends to zero. We

need an alternative model for describing the dynamics of post-impact.

Impacts between solids and liquids have been studied a great deal. Early

on the dynamics of an alighting seaplane were studied by Von Karman (1929)

whose study assumed deep water for the impact of the floats onto the water

surface. There was no account of the increased elevation of the waterline

due to the water displaced by the descending body. Wagner (1932) had a

modified system to that of Von Karman, which accounted for the displaced

fluid. Here displaced fluid was accounted for in the description of the edges

of the wetted region. Matching the solution in the liquid domain with the ex-

panding size of the plate’s wetted region was crucial to solving this problem.

At the edges of the wetted region the position of the free surface is matched

to the turnover point on the body. This is known as the Wagner condition,

and closes the set of model equations. The theory contains some difficul-

ties, owing to a singularity in the predicted pressure at the air-water-body

contact point.

103
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Further progress with water-entry problems was made by Wilson (1989)

and Howison et al. (1991). These studies looked at impacts of solid bodies

into liquids with small deadrise angles, i.e. the tangent of the approaching

body’s surface is at a small angle to the horizontal undisturbed liquid free-

surface. This assumption allowed the problem to be simplified by looking at

small times after impact allowing explicit solutions to be calculated. In these

papers the models for impact were derived and then solved numerically, to

produce plots for the free surface deformations.

Many studies have been reported for droplet impacts with liquid surfaces

such as Purvis and Smith (2005), Howison et al. (2005), Hicks and Purvis

(2011) and Purvis and Smith (2004a). The evolution of the droplet’s free

surface is explored analytically for small times with jetting regions forming

and peaks in the pressure close to the boundaries of the contact region.

Further analysis into the work of Wagner has been reported in Oliver

(2002) and Oliver (2007). Oliver (2002) considers further solid-liquid im-

pacts. Specifically they treat a body hitting a water layer, however, this is

equivalent to looking at a droplet impacting the solid by changing the frame

of reference. Oliver formally derived the Wagner condition by carefully

asymptotically matching the solution in the various regions in the problem

(outer, inner and jetting regions). Oliver (2007) extended Wagner theory

further by looking at second-order corrections to help resolve the jetting

regions.

Some experimental works look closely at jet formation during impacts.

Hao et al. (2019) and Zhao et al. (2020) show different examples of jet for-

mation in the early times of an impact, looking at how to suppress a splash.

Bartolo et al. (2005) present detailed experimental results for impacts onto

both impermeable and more complicated substrates. Using photography,

images for the progression of the spreading, jet formation and rebounding

are captured at very small time intervals. A study more relevant to perme-
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able substrates is Marston et al. (2010): glass beads were used to simulate a

permeable powder. Some of the liquid from the droplet impacting this sur-

face was allowed to enter the matrix of voids between spherical glass beads,

simulating flow in a porous medium. The impact with these surfaces was

found to be comparable to an impact with an hydrophobic surface.

Moore (2014) goes into great detail about various models of droplet

impacts, primarily using asymptotic methods for formulating and solving

the systems. They have a focus on Wagner theory in the early chapters

of his thesis before making additions to this classic model before moving

away from this theory. They extend Wagner theory with an oblique impact

and formulates and solves this problem numerically. Also they consider the

impact problem with air cushioning present and the leading order solution is

found. Lastly they look at a systematic way to derive models for the splash

jets by taking advantage of small parameters in his model.

Looking more into droplet impacts onto complex substrates we have

Negus et al. (2020) who investigate droplet impact onto a plate which is

supported by a spring, and thus allowed to move and oscillate. The problem

is formulated analytically by looking at the outer and inner regions and

matching them together by coupling the droplet impact with a deceleration

affect from the spring. Direct numerical simulations are used to verify the

results found analytically. Henman et al. (2021) considered droplet impacts

onto deformable surfaces such as viscoelastic solids and flexible substrates.

The flow in the air layer was coupled to the deformation of the free surfaces

of the droplet and the deformation of the substrate. These surfaces results

in lower pressures compared to an impact with an impermeable case and

more consistent sizes of entrapped bubbles. Impacts onto rough surfaces

have been considered in Elliott and Smith (2015). A supercooled droplet

impacts a rough surface, which allows ice to form and spread as the droplet

is spreading along the surface. Roughness is defined by a smooth peak on
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an otherwise flat surface. Different behaviour of the spreading of ice was

observed for different values of roughness.

Pegg, Purvis and Korobkin (2018) considered a droplet impact onto an

elastic plate. Analytical methods were used to formulate the problem with

a different boundary condition to this thesis on the contact region of the

droplet with the substrate which was solved numerically.

European study group with industry report, Parker and Nally (2012)

covered a similar problem of considering the post-impact dynamics of a

droplet impacting a permeable substrate. A simple approximation for the

fluid entering the substrate was used here. Diffusion of the liquid was con-

sidered for it to spread through the substrate at long times and evaporation

was looked into as a means of the volume of fluid to exit the substrate.

In this chapter we will derive the governing equations for the post-impact

behaviour for a droplet impacting an impermeable substrate. This is an

important step before we extend this model in the following chapter to

model impacts more complex substrates.

6.2 Formulation of governing equations

The rest of this chapter is about impact on an impermeable plate, and it

contains a mathematical technique which is extended to a porous medium,

treated in Chapter 7. We now consider a droplet impact with a flat plate

in two dimensions. The starred variables are physical variables and have

S.I. units, and we rescale them below. We choose for simplicity a stationary

spherical droplet, with radius R, and an approaching flat plate approaching

at velocity V , the plate at y∗ = 0 at the time of initial impact, t∗ = 0.

After impact starts at t∗ = 0, Wagner Theory is used to describe the impact

behaviour. We have the y∗ axis increasing vertically into the fluid with

x∗ = 0 being a line of symmetry for the problem. The liquid free-surface

is given by y∗ = η∗(x∗, t∗), we are only interested in the impact region, the



6.2. FORMULATION OF GOVERNING EQUATIONS 107

lower half of the droplet. The free surface deforms from the start of impact

onwards in time. We will have an interface between the wetted and dry

regions of the substrate. We define the point as the turnover point. These

points should be symmetric for a plate which only has a vertical velocity

component and a symmetric drop. The turnover points on the plate at

x∗ = ±d(t) on y∗ = t∗V (this form due to the plate moving vertically) in

which d(t) grows from d = 0 at t∗ = 0, as time progresses. We expect if the

drop is initially stationary then the disturbance of the free surface tends to

zero as we pass into the far field.

We are working with an inviscid case due to a high Reynolds number so

we can formulate a problem in terms of the velocity potential of the flow,

φ∗(x∗, y∗, t∗). In the derivation below, we keep the substrate boundary con-

dition general to allow easy extension into more complex substrate behaviour

(for example porosity). Let v∗(x∗, y∗, t∗, k∗, p∗l , p
∗
s) encapsulate this general

behaviour taking into account the substrate, where k∗ is the permeability

of the substrate and where p∗l and p∗s correspond to pressures in the liquid

and substrate respectively.

Figure 6.1 shows the basic scales in the problem and the different local

regions. First we have the outer problem which considers the shape of the

free-surface. At a more local view we have the jet-root region where the

free-surface turns over and forms the base of the jet. This leads into the

smallest region, the jet region, here we have a very thin jet along the surface

of the substrate. Our governing equations are:

∇2φ∗(x∗, y∗, t∗) = 0 in fluid domain y∗ > η∗, (6.1)

D

Dt
(y∗ − η∗) = 0 the kinematic condition on y∗ = η∗(x∗, t∗), (6.2)

p∗(x∗, y∗, t∗) = 0 from zero stress on the free-surface on y∗ = η∗,

(6.3)

∂φ∗

∂y∗
= v∗ on the plate, y∗ = 0 and |x∗| < d(t∗). (6.4)
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(a) Diagram showing the basic scales in our problem

(b) Diagram showing the multiple regions of the problem

Figure 6.1: Diagrams showing the initial situation and the different regions

of our problem.

We have an undisturbed circular droplet shape given by:

x∗2 + (y∗ −R)2 = R2, (6.5)

y∗ = ±
√
R2 − x∗2 +R = η∗(x∗, 0). (6.6)

We non-dimensionalise by scaling spatial coordinates with R, taking our

velocity scale to be V , this will give an appropriate time scale of R
V . The

free-surface shape is scaled the same as our spatial coordinates, ρV 2 will

give an appropriate pressure scale (where ρ is the constant density of the

fluid) and we scale velocity potential as RV . Thus we have:

[x∗, y∗, t∗, φ∗, η∗, p∗, V ∗] =

[
Rx̄,Rȳ,

R

V
t̄, RV φ̄,Rη̄, ρV 2p̄, V v̄

]
. (6.7)
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Hence our problem becomes:

∇2φ̄(x̄, ȳ, t̄) = 0 in fluid domain ȳ > η̄, (6.8)

D

Dt
(ȳ − η̄) = 0 on ȳ = η̄(x̄, t̄), (6.9)

∂φ̄

∂ȳ
= v̄ on plate, ȳ = 0 and |x̄| < d(t̄). (6.10)

Let us assume we are looking at small times. Let ε be a small parameter

and we consider times of order ε2. With a plate rising into the droplet

the displacement of the turnover points are proportional to
√
t̄ = O(ε) (see

Wagner (1932) for more details about this), therefore the horizontal length

scale should be O(ε), by the continuity equation the vertical scale will be the

same as this. Let us also assume the velocity of the plate is O(1), since we

are looking at a small local region we expect the plate velocity to be a lower

order of this parameter. From this velocity scale we can use the definition

of the velocity potential to say that φ = O(ε).

As we are only considering a local region close to the plate we use the

negative branch of the square root in equation (6.6) and thus after applying

the local length scalings we have for the undisturbed free surface position:

εy = −
√

1− ε2x2 + 1 (6.11)

= 1− (1− ε2

2
x2) +O(ε4) (6.12)

y = 0 + ε

(
x2

2

)
+O(ε3), (6.13)

so all conditions applied on the free-surface at leading order can be applied

on y = 0. We can also conclude that the scale of the free-surface position is

O(ε2).

We have Bernoulli’s equation in the fluid domain in physical variables:

p∗l (x
∗, y∗, t∗)

ρ
+ φ∗t∗ +

1

2

(
φ∗x∗

2 + φ∗y∗
2
)

= 0, (6.14)

and thus to have pressure balance another term in this equation we must
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have p̄ = O(ε−1), so we have

pl(x, y, t) = −φt +O(ε). (6.15)

In conclusion we have the local scales as:

[x̄, ȳ, t̄, φ̄, η̄, p̄] =
[
εx, εy, ε2t, εφ, ε2η, ε−1p

]
. (6.16)

Expanding the total derivative in equation (6.2) using (6.7) we have the

kinematic condition:

φ̄ȳ = η̄t̄ + φ̄x̄η̄x̄, (6.17)

applying the scales in our local region (6.16) we have:

φy = ηt + εφxηx, (6.18)

which to leading order becomes simply:

φy = ηt on y = 0. (6.19)

This is valid on the free-surface, the region outside the wetted area in contact

with the plate i.e. |x| > d(t) and y = 0.

In the wetted region we have a zero penetration condition:

φy = 1, (6.20)

valid on y = 0 and |x| < d(t). In the far field as |x| → ∞ we expect the

droplet to be undisturbed so we have:

η(x, t)→ x2

2
as |x| → ∞. (6.21)

From (6.18) the horizontal velocity component is negligible compared to

vertical velocity component on the free surface, we expect to have zero hor-

izontal velocity component on the free-surface of the droplet.

For convenience we define a function h(x, t) which is the perturbation

from the initial shape of the droplet, so we have the position of the free

surface described in the expression:

η(x, t) =
x2

2
− h(x, t). (6.22)
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This gives desirable behaviour for h(x, t) as we will have decay as |x| → ∞

which provides mathematical convenience when we come to solve integral

equations further on by having h(x, t) > 0 and that h→ 0 as |x| → ∞.

From Wagner theory, to determine the turnover points we need an equa-

tion matching the free-surface position to the position of the plate at the

turnover points x = ±d(t). We have:

η(d(t), t)− t =
d(t)2

2
− h(d(t), t)− t = 0, (6.23)

where y = η(d(t), t) is our free-surface position and y = t is the position of

the plate.

In summary, in our inner region we have the mixed boundary value

problem:

∇2φ(x, y, t) = 0 in droplet y > 0, (6.24)

∂φ(x, 0, t)

∂y
= 1 on |x| < d, (6.25)

φ(x, 0, t) = 0 on |x| > d, (6.26)

∂φ(x, 0, t)

∂y
=
∂η(x, t)

∂t
on |x| > d, (6.27)

η(x, t)→ x2

2
as |x| → ∞, (6.28)

φ→ 0 as y →∞, (6.29)

p(x, 0, t) = 0 on |x| > d, (6.30)

d(t)2

2
− h(d(t), t)− t = 0, (6.31)

φ(x, y, t), η(x, t) and d(t) are all unknown functions with v̄ changing de-

pending on the substrate.

6.3 Solution using complex variable theory

To begin to solve the system (6.24) - (6.31) we can use complex variable

theory. The mixed boundary value problem we have for φ(x, y, t) is harmonic
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Figure 6.2: Summary of governing equations and regions where the condi-

tions apply, here v̄ = 0, this is non-zero for a permeable substrate.

(a) Contour without singularity on the contour

(b) Adjusted contour to account for the singularity on y = 0

Figure 6.3: Shapes of the contours in the complex z-plane used for the

integration.

and together with the stream function ψ(x, y, t) this pair of functions satisfy

the Cauchy-Riemann equations, see Acheson (1990). Let z = x + iy, we

define a characteristic function:

∆(z) =
√
z2 − d2,
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which has a useful property of switching between real and imaginary values

as we pass from the free surface into the wetted region and back onto the

free surface on the other side. We define a complex valued analytic function:

w(z, t) = ∆(z)(φ(x, y, t) + iψ(x, y, t)), (6.32)

Substituting into Cauchy’s integral formula, we have:

φx − iφy =
1

2iπ∆(z)

∮
Γ

∆(γ)(φα(α, β, t)− iφβ(α, β, t))

γ − z
dγ, (6.33)

with γ = α + iβ and z is inside the simple closed contour Γ which forms a

D in the upper half plane, see Figure 6.3(a). In the far field |∆(z)| behaves

as |z| and |φ + iψ| behaves as 1
|z2| or smaller. Therefore, the integrand has

modulus 1
|z2| , and behaves like 1

R in magnitude. It therefore tends to zero

as R → ∞. When we integrate around this contour we have a singularity

at γ = z on the contour on the y = 0 axis. To proceed with this we define

a new contour Γ1 which has a semi-circular contour around this singularity,

see Figure 6.3(b), this is only necessary if z lies on the the axis. By Jordan’s

Lemma the contribution of the integral from the large semi-circle is zero thus

leaving just a line integral. The factor of 1
2 is lost due to the contribution

from small semi-circle around the singularity.

For y = 0 and β = 0 we have from taking the real part of (6.33) and

|x| < d:

φx =
1

π
√
d(t)2 − x2

[∫ ∞
d

√
α2 − d(t)2φα
α− x

dα

+P.V.

∫ d

−d

√
d(t)2 − α2φβ
α− x

dα

+

∫ −d
−∞

√
α2 − d(t)2φα
α− x

dα

]
. (6.34)

However, we have information for the derivatives of φ from (6.25)-(6.27) in

these regions so we have:

φx =
1

π
√
d(t)2 − x2

P.V.

∫ d

−d
v̄

√
d(t)2 − α2

α− x
dα for |x| < d(t). (6.35)
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For |x| > d we have:

φx =
−1

π
√
x2 − d(t)2

[
P.V.

∫ −d
−∞

√
α2 − d(t)2φβ
α− x

dα

−
∫ d

−d

√
d(t)2 − α2φα
α− x

dα

+ P.V.

∫ −d
−∞

√
α2 − d(t)2φβ
α− x

dα

]
. (6.36)

Similarly from taking the imaginary parts of (6.33), for |x| > d we have:

−φy =
1

π
√
x2 − d(t)2

[
P.V.

∫ ∞
d

√
α2 − d(t)2φα
α− x

dα

+

∫ d

−d

√
d(t)2 − α2v̄

α− x
dα

+ P.V.

∫ −d
−∞

√
α2 − d(t)2φα
α− x

dα

]
, (6.37)

in which φα = 0 for |α| > d and (6.2) prescribes φβ. So we have:

−φy = −ηt = ht =
1

π
√
x2 − d(t)2

∫ d

−d

V
√
d(t)2 − α2

α− x
dα. (6.38)

Taking the imaginary parts of (6.33), for |x| < d we also have:

φy =
−1

π
√
d(t)2 − x2

[∫ ∞
d

√
α2 − d(t)2φβ
α− x

dα

−P.V.
∫ d

−d

√
d(t)2 − α2φα
α− x

dα

+

∫ −d
−∞

√
α2 − d(t)2φβ
α− x

dα

]
for |x| < d(t). (6.39)

6.3.1 Velocity field in the droplet

To calculate our solution anywhere in the inner region of our droplet we go

back to the formulation of the governing equations. We define the charac-

teristic function:

∆(z) =
√
z2 − d2.
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We have the same complex-valued analytic function:

w(z, t) = ∆(z)(φ(x, y, t) + iψ(x, y, t)). (6.40)

Substituting into Cauchy’s integral formula we have:

φx − iφy =
1

2iπ∆(z)

∮
Γ

∆(γ)(φα(α, β, t)− iφβ(α, β, t))

γ − z
dγ,

with γ = α+iβ, with y > 0 the singularity falls strictly inside of the contour.

We define our contour Γ as a half circle in the upper half plane and the real

axis. Since we have a stationary droplet the contribution from this arc tends

to zero in the limit of the radius R of the semicircle tending to infinity thus

for any (x, y) we have:

φx − iφy =
1

2iπ∆(z)

∫ ∞
−∞

∆(γ)(φα(α, 0, t)− iφβ(α, 0, t))

γ − z
dγ. (6.41)

This equation allows us to calculate the velocity at any point in the domain

once φ(x, t, 0) is known.

6.4 Analytic solution for an impermeable base

In order to solve for the free-surface shape equation (6.38) has to be solved.

Firstly we consider the impermeable case with v̄ = 1. To solve this equation

we first make a substitution for α and x in order to help remove integrable

singularities. Let α = d sin(θ) and x = d ·a with −π/2 < θ < π/2 and a > 1.

So we have:∫ d

−d

√
d(t)2 − α2

α− x
dα =

∫ π
2

−π
2

d cos(θ)

d sin(θ)− d · a
d cos(θ)dθ (6.42)

= d

∫ π
2

−π
2

cos2(θ)

sin(θ)− a
dθ (6.43)

=
d

2

∫ π

−π

cos2(θ)

sin(θ)− a
dθ. (6.44)

To remove the trigonometric functions we define a complex variable z = eiθ

so that dz = ieiθdθ and dθ = dz
iz , this also changes our domain we are
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integrating over to a contour which is the unit circle. Let:

I =

∫ π

−π

cos2(θ)

sin(θ)− a
dθ. (6.45)

Thus we have:

I =

∫
c

(
z+z−1

2

)2(
z−z−1

2i

)
− a

dz

iz

=
1

4

∫
c

(
z + z−1

)2
z2

2 −
1
2 + aiz

dz, (6.46)

where c is the unit circle at centre 0. The denominator has roots at z± =

ai±
√

1− a2. Since a > 1, z− lies inside the circle and z+ lies outside, and

the integrand has a double pole at z = 0. Thus by using Cauchy’s Residue

Theorem we simply need to calculate the residues these poles. The pole at

z = z+ has residue:

R1 = limz→z−

(
(z − z−)

(
z + z−1

)2
z2

2 −
1
2 + aiz

)
R1 = 2(z− − z+) = −4

√
1− a2. (6.47)

For the pole at the origin we need to express the integrand as a Laurent

series about z = 0 to find the coefficient of z−1, we have:(
z + z−1

)2
z2

2 −
1
2 + aiz

=

(
z + z−1

)2
1
2(z − z−)(z − z+)

(6.48)

=
2(z2 + 2 + z−2)

z−z+

(
1

1− z
z−

)(
1

1− z
z+

)
(6.49)

=
2(z2 + 2 + z−2)

z−z+

(
1 +

z

z−
+ o(z2)

)(
1 +

z

z+
+ o(z2)

)
. (6.50)

So we have the residue given by:

R0 =
2

z−z+

(
1

z−
+

1

z+

)
R0 =

2

z−z+

(z− + z+)

z−z+
= 4ai. (6.51)
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Thus:

I = −2π
√
a2 − 1 + 2πa. (6.52)

So we have (6.42)∫ d

−d

√
d(t)2 − α2

α− x
dα = −π

√
x2 − d2 + πx, (6.53)

hence:

ht = −1 +
x√

x2 − d2
, (6.54)

and

h(x, t) = −t+

∫ t

0

x√
x2 − d(τ)2

dτ + h(x, 0), (6.55)

= −t+

∫ t

0

x√
x2 − d(τ)2

dτ, (6.56)

as the initial droplet is undisturbed. From the Wagner condition (6.31) we

have:

d2

2
− h(d(t), t)− t = 0 (6.57)

⇒d2

2
=

∫ t

0

d(t)√
d(t)2 − d(τ)2

dτ. (6.58)

Upon substitution of d(t) = 2
√
t we can see that this is indeed a solution

to (6.58), see Oliver (2002). With this known the free-surface shape can be

solved for. From (6.56)

h(x, t) = −t+

∫ t

0

|x|√
x2 − d(τ)2

dτ (6.59)

= −t− |x|
2

√
x2 − 4t+

x2

2
. (6.60)

This gives the free-surface shape as:

η(x, t) =
x2

2
− h(x, t) = t+

|x|
2

√
x2 − 4t. (6.61)
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We can also evaluate (6.35) to obtain the velocity potential. To solve we

progress in a similar way to before, let α = d sin(θ) with −π/2 < θ < π/2:

I = P.V.

∫ d

−d

√
d(t)2 − α2

α− x
dα (6.62)

= d2P.V.

∫ π
2

−π
2

cos2(θ)

d sin(θ)− x
dθ. (6.63)

Let Θ = π − θ, then:

I = d2P.V.

∫ π
2

3π
2

cos2(Θ)

d sin(Θ)− x
(−1)dΘ (6.64)

= d2P.V.

∫ 3π
2

π
2

cos2(Θ)

d sin(Θ)− x
dΘ, (6.65)

upon adding (6.63) and (6.64) together we have:

2I = d2P.V.

∫ 3π
2

−π
2

cos2(θ)

d sin(θ)− x
dθ. (6.66)

Define c as the unit circle in the complex z plane described anticlockwise.

Therefore let z = eiθ so that dz = ieiθdθ and dθ = dz
iz so we have:

2I = d2P.V.

∫
c

1
4

(
z + z−1

)2
d
2i (z − z−1)− x

1

iz
dz (6.67)

=
d

4
P.V.

∫
c

z2 + 2 + z−2

z2

2 −
ixz
d −

1
2

dz (6.68)

=
d

2
P.V.

∫
c

z4 + 2z2 + 1

z2(z2 − 2ixz
d − 1)

dz (6.69)

4I

d
= P.V.

∫
c
1 +

2ix

zd
+

4
(

1− x2

d2

)
z2 − 2ixz

d − 1
− 1

z2
dz. (6.70)

In the third term in the integrand in (6.70) using the quadratic formula we

can see that both poles lie on the unit circle, c, so we have:

z1,2 =
ix

d
±
(

1− x2

d2

) 1
2

. (6.71)

We now redefine our contour of integration with indentations of semicircles

around z1,2. We shall call these c1 and c2. So we have our new contour,
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c′ = c ∪ c1 ∪ c2. Considering the third term in (6.70) the numerator has no

z dependence and by Cauchy’s Theorem we have:∫
c′

1

z2 − 2ixz
d − 1

dz = 0

0 = P.V.

∫
c

dz

(z − z1)(z − z2)
+

∫
c1∪c2

dz

(z − z1)(z − z2)
,

(6.72)

with:

P.V.

∫
c

dz

(z − z1)(z − z2)
=

−1

z1 − z2

∫
c1∪c2

1

(z − z1)
− 1

z − z2
dz (6.73)

P.V.

∫
c

dz

(z − z1)(z − z2)
=

−1

z1 − z2
(−πi− (−πi)) = 0, (6.74)

in the limit of the radius of the indentations tending to 0. So the only term

that does not integrate to 0 in (6.70) is 2ix
zd which has a simple pole at the

origin. Thus we have:

4I

d
= P.V.

∫
c

2ix

zd
dz = 2πi

2ix

d
(6.75)

I = −πx. (6.76)

From (6.35) we have:

φx(x, 0, t) =
−x√

d(t)2 − x2
, (6.77)

φ(x, 0, t) =
√
d(t)2 − x2. (6.78)

6.5 Conclusions

In this chapter we formulated and solved analytically the post-impact flow

of a droplet on an impermeable substrate. Wagner theory was used to close

the problem and complex variable theory was used to solve the system of

equations to provide exact functions for the free surface, pressure, velocity

potential and the function that governs how quickly the droplet spreads,

d(t). The results in this chapter are going to be used in the following chapter

when we have a porous substrate instead of an impermeable substrate.
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7

Post-impact dynamics onto a

porous base

7.1 Formulation and solution with a porous base

To incorporate porosity into the post-impact equations we look back at the

function v̄ introduced in Chapter 6. The objective is to define v̄ in such a

way that it incorporates the behaviour of the substrate and how the fluid

in contact with the substrate reacts. The analytic solutions for the various

functions for an impermeable impact from the previous chapter are:

φI(x, d) =
√
d2 − x2, (7.1)

φI(x, d)x =
−x√
d2 − x2

, (7.2)

φI(x, d)t =
2√

d2 − x2
, (7.3)

hI(x, d)t = −1 +
x√

x2 − d2
, (7.4)

hI(x, d) = −t− x

2

√
x2 − d2 +

x2

2
, (7.5)

dI(t) = 2
√
t. (7.6)

The subscript I refers to impermeable quantities and below we use subscript

p to refer to the porous correction.

We begin by considering simplified model for the contribution to φy on

the boundary between the droplet and the porous layer, the full problem

121
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will be discussed in Chapter 8. At the top of the substrate, let us assume

that:

φy = 1 + kdφt, (7.7)

here we are assuming we have a particular amount of fluid entering the sub-

strate which is proportional to the pressure (−φt from Bernoulli’s equation

(6.15)), the porosity (k) and the size of the wetted region (d). We are ex-

tending the substrate condition used in Parker and Nally (2012) where a

constant pressure was assumed across this interface. We have (7.7) as an

approximation for any k, however we are going to consider a small porosity,

k � 1.

Expanding our functions in powers of the small-valued parameter k we

assume a regular asymptotic expansion in powers of the small parameter k,

for each of the three unknowns functions in the model:

φ(x, y, t) = φI(x, t) + kφp(x, y, t) +O(k2), (7.8)

d(t) = (2 + ka)
√
t, (7.9)

h(x, t) = hI(x, t) + khp(x, t) +O(k2), (7.10)

where a can be a function of t. However, for this analysis we will only

consider the simplest case, when a is a constant. Substituting these into our

governing equation (6.38) we have:

ht =
1

π
√
x2 − d(t)2

∫ d

−d

√
d(t)2 − α2(1 + kdφ(α, t)t)

α− x
dα

=
1

π
√
x2 − d(t)2

∫ d

−d

√
d(t)2 − α2(1 + kdφI(α, t)t)

α− x
dα+O(k2)

=
1

π
√
x2 − d(t)2

(∫ d

−d

kd
√
d(t)2 − α2φI(α, t)t

α− x
dα

+

∫ d

−d

√
d(t)2 − α2

α− x
dα

)
+O(k2). (7.11)

We now begin to evaluate the integrals in equation (7.11). The second

integral is identical to the one solved for the impermeable case, thus we have
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the second integral for all x : |x| > d given by:

1

π
√
x2 − d(t)2

∫ d

−d

√
d(t)2 − α2

α− x
dα = −1 +

x√
x2 − d2

. (7.12)

We also have:

kd(2 + ka)2

2π
√
x2 − d(t)2

∫ d

−d

√
d(t)2 − α2√

d(t)2 − α2(α− x)
dα =

k(2 + ka)2

2π
√
x2 − d(t)2

∫ d

−d

1

α− x
dα

(7.13)

=
kd(2 + ka)2

2π
√
x2 − d2

log

(
x− d
x+ d

)
,

(7.14)

which is valid for |x| > d. Thus we have the solution to (7.11) given by:

ht = −1 +
x√

x2 − d2
+
kd(2 + ka)2

2π
√
x2 − d2

log

(
x− d
x+ d

)
+O(k2). (7.15)

To obtain h(x, t) we now want to integrate with respect to t, we will proceed

by doing an integral with respect to d, we rearrange (7.9):

t =
d2

(2 + ka)2
, (7.16)

we have dt = 2d
(2+ka)2 dd. Our limits of integration are 0 to t before the

change of variables and after the change we have from 0 to d. This upper

limit is due to the integral ranging from the start of the impact (t = d = 0)

to the current time, t, while our d integral ranges how far the liquid has

spread horizontally. Thus we have:

h(x, t) = −t− 2x
√
x2 − d2

(2 + ka)2
+
k

π

∫ d

0

d′2√
x2 − d′2

log

(
x− d′

x+ d′

)
dd′ + h(x, 0)

(7.17)

= −t− 2x
√
x2 − d2

(2 + ka)2
+
k

π

∫ d

0

d′2√
x2 − d′2

log

(
x− d′

x+ d′

)
dd′ +

2x2

(2 + ka)2
.

(7.18)

We now focus on the integral in (7.18), to transform this integral into

something we can simplify using integration by parts let d = Sx, f(S) =
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(1− S2)
1
2 log

(
1−S
1+S

)
and G(S) = log

(
1−S
1+S

)
so we have:

J =

∫ d

0

d′2√
x2 − d′2

log

(
x− d′

x+ d′

)
dd′

=

∫ d
x

0

x2S2

√
1− S2

G(S)dS (7.19)

= x2

(
[−Sf(S)]

d
x
0 −

∫ d
x

0
−(1− S2)

1
2

(
G(S)− S

1− S
− S

1 + S

)
dS

)
J

x2
= −

(
1− d2

x2

) 1
2 d

x
log

(
x− d
x+ d

)
+

∫ d
x

0
f(S)− (1− S2)

1
2

2S

1− S2
dS

(7.20)

J = −d(x2 − d2)
1
2 log

(
x− d
x+ d

)
+ x2

[
2(1− S2)

1
2

] d
x

0
− x2

∫ d
x

0
f(S)dS

= −d(x2 − d2)
1
2 log

(
x− d
x+ d

)
+ x2

(
1− d2

x2

) 1
2

− 2x2 − x2

∫ d
x

0
f(S)dS.

(7.21)

At t = 0 we have d = 0 and from the above we can see J = 0 which is

the desired behaviour. As x → ∞ J → 0 which is also what we would

expect, we can see as x increases the log term vanishes and the limits of the

integration tend to zero. Thus J has both the desired properties. We can

now substitute (7.21) into (7.18) and evaluate at x = d to apply the Wagner

condition:

d2

2
− t = h(d, t), (7.22)

to determine our unknown, a. We have:

h(d, t) = −t+
2d2

(2 + ka)2
− d2k

π

(
2−

∫ 1

0
f(S)ds

)
+O(k2). (7.23)

We can use the trapezium rule and evaluate this integral numerically, we

find that
∫ 1

0 f(S)ds = −0.832 to three significant digits, let c = −0.832 for

simplicity, we can now evaluate a. Substituting into the Wagner condition
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we have:

d2

2
− t = −t+

2d2

(2 + ka)2
− d2k

π
(2− c) +O(k2) (7.24)

(2 + ka)2

2
= 2− k

π
(2− c)(2 + ka)2 +O(k2) (7.25)

4 + 4ka

2
= 2− k

π
(2− c)(4) +O(k2) (7.26)

a ≈ − 2

π
(2− c) = −1.803. (7.27)

Since a is negative, the porous contact region is smaller and spreads more

slowly than for the impermeable substrate. This is intuitive since the fluid

can enter the substrate which will reduce the spreading across the surface,

and we can appeal to the conservation of mass, with an incompressible fluid

to support this. With our new d we can write down our free-surface position

for a given small k:

η(x, t) =
d2

2
− t

+ t− 2x
√
x2 − d2

(2 + ka)2
− 2x2

(2 + ka)2

− k

π

(
−d(x2 − d2)

1
2 log

(
x− d
x+ d

)
+ x2

(
1− d2

x2

) 1
2

−2x2 − x2

∫ d
x

0
f(S)dS

)
, (7.28)

in which:

d(t) = (2− 1.803k)
√
t, (7.29)

f(S) = (1− S2)
1
2 log

(
1− S
1 + S

)
. (7.30)

7.2 Computational results

Figure 7.1 shows the comparison between a droplet impact with and without

porosity. It is clear from the figure that the free-surface is less deformed in

the porous case which is what would be expected since fluid enters the
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(a) Impermeable solution

(b) k = 0.1 solution

Figure 7.1: Comparison between the impermeable solution and a solution

with porosity, each pair of the same-coloured curves occurs at the same time

substrate reducing the spread. We can see a reduced size of the wetted

region which can be seen in the figure as this point is the intersection with

the x-axis. Figure 7.2 shows a comparison between the two solutions with

different values of the porosity. As we can see when we further lower the

porosity we recover the same shape of the free surface as for the impermeable

plate. The lower panels in Figure 7.2 show the difference between the porous

solution and the impermeable solution. At like times, the wetted region is

smaller with an impact with a porous substrate than with an impermeable

substrate. A comparison is possible provided an allowance is made for the

two differing values of d, at any given instant t. There is a region between

the two d values in which the region is only wetted in the impermeable
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solution. This is more evident for the larger porosity solution, we can see a

smooth curve leading to a sharp minimum then another smooth curve which

tends to 0 as x → ∞. Figure 7.3 has most of the time steps removed to

show more clearly how, as time proceeds, the difference in the boundary of

the wetted region becomes much larger.

7.3 Evaluation of the velocity components

We have from (6.35) and (7.7)

φx =
1

π
√
d(t)2 − x2

P.V.

∫ d

−d

√
d(t)2 − α2(1 + kdφ(α, t)t)

α− x
dα

=
1

π
√
d(t)2 − x2

(
kd(2 + ka)2

2
PV

∫ d

−d

1

α− x
dα

+PV

∫ d

−d

√
d(t)2 − α2

α− x
dα

)
. (7.31)

We have a solution to the second principal value integral in terms of d, see

(7.2). The first integral we can calculate directly:

φx =
−x√
d2 − x2

+
kd(2 + ka)2

2π
√
d2 − x2

log

(
d− x
d+ x

)
. (7.32)

We now integrate with respect to x between x and d, we have a boundary

condition φ(d, t) = 0 needed to integrate this, we have:

−φ(x, t) = −
√
d2 − x2 +

kd(2 + ka)2

2π

∫ d

x
(d2 − x′2)−

1
2 log

(
d− x′

d+ x′

)
dx′.

(7.33)

To simplify this integral we can make a substitution of x′ = d cos(θ) to

simplify the integrand, then we have:

−φ(x, t) = −
√
d2 − x2 − kd(2 + ka)2

2π

∫ 0

arccos(xd )
log

(∣∣∣∣cos(θ)− 1

cos(θ) + 1

∣∣∣∣) dθ
= −

√
d2 − x2 − kd(2 + ka)2

2π

∫ 0

arccos(xd )
log

(
tan2

(
θ

2

))
dθ.

(7.34)
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We can find an approximation of the integrand using Maple, let:

I =

∫ 0

arccos(xd )
log

(
tan2

(
θ

2

))
dθ

= 2

∫ 0

arccos(xd )
log

(
tan

(
θ

2

))
dθ, (7.35)

Maple approximates this integrand, which is valid for 0 < θ < π to within a

relative error of less then 1%, as:

log

(∣∣∣∣tan

(
θ

2

)∣∣∣∣) ≈ log
(
π2
(
1− C2θ2

))
+ log |θ| − log(π − θ)− log(π + θ),

(7.36)

with C = 0.1341187916 and the coefficient of the O(θ4) term being negligi-

ble. We can now integrate (7.35) by using standard methods.

Figure 7.4 shows a Maple plot of the solution for I(θ) for a wide range

of θ values. The important part of this plot is that at the origin (where

x = d) we have I = 0, due to the range of x we are considering we are only

interested in 0 < θ < π
2 .

Figure 7.5 shows a comparison for φ between the current analytically

derived impermeable solution and the porous solution (here the dashed line

is the porous solution). We see that the magnitude of the velocity potential

is much lower than for the impermeable case. Figure 7.6 shows how varying

the porosity affects the shape of the free surface. The slopes of the free

surface at the plate are strongly affected by porosity: when the plate is

impermeable the free surface is orthogonal to the plate; for porous plates the

free surface meets the plate at an acute angle. For extremely large porosities

the model appears to break down (see the yellow line). Figure 7.7 shows

a direct comparison between the approximation of the integral (7.35) using

a series approximation for the integrand and a direct numerical integration

method. As shown, the difference is very small so going forward the series

approximation will be used for the benefit of faster computation time. With
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φ(x, 0, t) known calculating the pressure comes from Bernoulli’s equation.

Figure 7.8 shows this result. We can see we have singularities at the end

point of the wetted region, although the peak seems to decrease as time gets

larger this is just a facet of the numerical truncation of the numerics, there is

indeed a singularity at the turnover point. With the pressure known we can

then find the fluid lost into the substrate. Figure 7.9 shows the instantaneous

rate of flow of fluid into the substrate. As expected, as time increases the

quantity of fluid that enters the substrate increases. An integral of this will

show the cumulative fluid that has entered the substrate. Figure 7.10 shows

a comparison between two different methods in calculating the fluid lost

into the substrate, red circles indicate the value of the fluid lost calculated

by integrating the flux of the fluid entering the substrate over length of the

wetted region. The blue circles show a direct comparison in free surface

shapes between the porous and impermeable models for matching times,

the fluid lost here is calculated by integrating to find the area the droplet

occupies and finding the difference between these values. We have very good

agreement between these two methods.

7.4 Jet region

The dynamics of the jet can help show some further effects of the influence

of porosity on the flow. The jet-root region removes the singular properties

of the solution found using Wagner theory. Our solution has a singularity at

the turnover point, d, this is not physically possible so we look at a smaller

region centred on this point to resolve the singularity.

We consider a local region around the contact point d(t), this region is

two orders of magnitude smaller than the previously considered problem.
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We scale our variables as:

x = d(t) + ε2xj , (7.37)

y = ε2yj , (7.38)

t = tj , (7.39)

φ = εn
(
φj + ḋxj

)
, (7.40)

η = ηj , (7.41)

where n is to be determined, the subscript j refers to jet variables. We

consider the solution for the velocity potential (7.34) and we substitute our

new scaled variables into this equation to obtain the matching condition,

which will also be the far field condition in this smaller region. This will

also provide n. First we will show that the integral in (7.34) will never be

at leading order for k < ε
log(ε) or smaller. We do this to show the leading

order for small k the affect of porosity on the jet formed.

The lower limit in (7.34) is arccos
(
x
d

)
, let x

d = 1 + ε2xj and s = −ε2xj

then we have arccos(1− s) ≈
√

2s, let S =
√

2s as the limit in the integral:

∫ 0

arccos(xd )
log

(
tan2

(
θ

2

))
dθ

=

∫ 0

S
log

(∣∣∣∣cos(θ)− 1

cos(θ) + 1

∣∣∣∣) dθ. (7.42)

Since θ is very small over the integration range, we can approximate using

a Maclaurin series cos(θ) = 1− θ2

2 , thus we have:∫ 0

S
log

(∣∣∣∣cos(θ)− 1

cos(θ) + 1

∣∣∣∣) dθ
=

∫ 0

S
log

(
θ2

4 + θ2

)
dθ

≈
∫ 0

S
log

(
θ2

4

)
dθ (7.43)

=2S log(S)− 2S − 2S log(2). (7.44)
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We have neglected the θ2 in the denominator in (7.43) as it is very small

compared to 4. In (7.44) 2S log(S) is non-singular, and is the dominant term

as S → 0. Since S = O(ε) we have the integral is O(ε log(ε)). Taking the

factor multiplying this integral into account the leading order of this factor

is O(k). So for small k this term will never be present at leading order

leaving only the term corresponding to the impermeable solution present.

The impermeable part of this solution for φ is:√
d2 − x2

=
√
d2 − (d+ ε2xj)2

=ε
√
−2dxj − ε2xj

=ε
(√
−2dxj +O(ε2)

)
, (7.45)

valid for xj < 0, with d = O(1) we have the leading order to be O(ε). Thus

our matching condition at leading order is:

εn
(
φj + ḋxj

)
= ε
√
−2dxj (7.46)

φj(x, 0, t) =
√
−2dxj − ḋxj , (7.47)

to achieve balance, the power n = 1. We have our substrate condition given

by:

φy = 1 + kdφt, (7.48)

after substituting in our new scaled variables we have:

1

ε
φjyj = 1 + εkd

(
φjt + d̈xj

)
(7.49)

φjyj = ε+ ε2kd
(
φjt + d̈xj

)
(7.50)

φjyj = 0 +O(ε). (7.51)

On the free surface we have φy = ηt, after substituting our scales in we have:

φjyj = εηjt = 0 +O(ε). (7.52)
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Substituting these scales into our governing equations we have:

∇2φ = 0 in the droplet, (7.53)

φy = 0 on flow boundries, (7.54)

|∇φ| = ḋ on the free surface. (7.55)

To solve this system we use a hodograph plane. We define a complex poten-

tial W = φ+iψ and the complex velocity U = dW
dζ = φx−iφy with ζ = x+iy.

The complex velocity plane corresponds to the semi-circle φX
2 + φy

2 = ḋ2

with −φy > 0. In the far field x2 + y2 → ∞ corresponds to U = −ḋ since

we are in a frame of reference moving with the turnover point our far-field

will be stationary. We assume that the jet thickness approaches a constant

thickness, Hj as x → ∞ and from the dynamic boundary condition (7.55)

we have φy → 0 and φx → ḋ. The kinematic condition (7.54) shows that the

stream function is independent of x and y on the interface between the fluid

and both the substrate and the air. Let ψ(x, y, t) = 0 on the substrate-liquid

interface and ψ(x, y, t) = f(t) on the free surface, where f(t) is unknown.

Knowing the behaviour of the jet velocities we have:

φx = ψy = ḋ, (7.56)

[ψ]
y=Hj
y=0 =

[
ḋy
]y=Hj

y=0
, (7.57)

f(t) = ḋHj . (7.58)

From the matching condition (7.47) we have:

W (ζ) =
√
−2dζ − ḋζ, (7.59)

U(ζ) =
dW

dζ
= −ḋ− d(−2dζ)−

1
2 , (7.60)

rearranging (7.60) we have:

ζ =
−1

2d

(
ḋ+ U

d

)−2

. (7.61)
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Substituting this into (7.59) to eliminate ζ we have:

W =
ḋd

2

(
ḋ+ U

)−2
+

d

ḋ+ U
(7.62)

W ≈ ḋd

2

(
ḋ+ U

)−2
, (7.63)

since we are considering as U → −ḋ the dominant term we have taken is the

more singular term.

Consider:

U =
dW

dζ
=
dW

dU

dU

dζ
, (7.64)

dW
dU will be zero at the stagnation point, U = 0 given dU

dζ 6= 0. We split W

into a sum of two parts, let W (U) = W1(U) +W2(U), with:

W1 = −dU(U + ḋ)−2

2
, (7.65)

W2 = −2f(t)

π
log

(
ḋ− U
ḋ+ U

)
, (7.66)

with W1 having the correct behaviour as U → −ḋ on the boundary and W2

satisfies the condition on W when |U | = ḋ. Close to the stagnation point,

U = 0 by looking at a Taylor expansion of these function we have:

W1 ≈ −
dU

2ḋ2
, (7.67)

W2 ≈
4f(t)U

πḋ
. (7.68)

We have the condition at the stagnation point dW
dU = 0, so we have:

dW1

dU
+
dW2

dU
= 0 (7.69)

− d

2ḋ2
+

4f(t)

πḋ
= 0 (7.70)

f(t) =
πd

8ḋ
. (7.71)

From (7.58) we have now found that the jet thickness is given by:

Hj(t) =
πd(t)

8ḋ(t)
2 . (7.72)



134 CHAPTER 7. IMPACT ONTO A POROUS BASE

We have d(t) = (2− 1.803k)
√
t with k = O(ε), expanding our jet thickness

in powers of ε we have:

Hj =
πt

3
2

2

1

2− 1.803k

=
πt

3
2

2

(
1

2
+

1.803k

4
+O(ε2)

)
(7.73)

Hj =
πt

3
2

4
+ k

1.803πt
3
2

8
+O(ε2). (7.74)

The volume flux of the jet can be calculated, we can integrate the velocity

of the jet over the thickness. Assuming that the jet thickness tends to Hj

quickly we have:

ψj =

∫ Hj

0
ḋ(t)dy

= ḋHj (7.75)

ψj =
πt

4
. (7.76)

This flux is independent of k and equal to the flux of the jet on a impermeable

substrate. We have that for a porous substrate the jet is thicker, however,

the fluid has a lower velocity.

7.5 Conclusions

In this Chapter we have presented and solved a model of the post-impact

behaviour. The governing equations for an impact with a general substrate

were formulated. These general equations can be modified to give the equa-

tions for impermeable or more complicated substrates. Firstly we solved

the case for an impact with an impermeable substrate. Complex analysis

methods were used to solve this system of equations to obtain the free sur-

face deformations and velocity fields. We then went on to formulate and

solve the case with a porous substrate. We used a simple approximation

for the substrate condition. Upon comparing these result to that of the
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impermeable case the rate which the droplet spreads out on the substrate

is given by ḋ(t), for all values of permeability we have this function, (7.29),

is strictly less than the same function for the impermeable case. This can

be explained simply because we are allowing fluid to enter the substrate, so

we have less overall fluid in the droplet. This reduced fluid in the droplet is

also reflected in the free surface shapes, Figure 7.10 displays this difference.

In the jet region we found that the jet’s volume flux remains constant for

any k although we also found that the thickness increases as k increases.

Despite the constant volume flux of the jet, independent of the value of k,

an increase in k leads to a thicker and slower jet.
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(a) k = 0.1 free-surface comparison

(b) k = 0.01 free-surface comparison

Figure 7.2: Upper panels show comparisons between the impermeable

(dashed curves) and porous (solid curves) solutions the same time steps.

Lower panels show the difference between the two solutions.
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Figure 7.3: A view at particular time steps to show more clearly the differ-

ences in the free-surface shapes between the impermeable solution and the

k = 0.1 porous solution.

Figure 7.4: This plot shows a plot for I(θ), which is a function of θ =

arccos
(
x
d

)
, which is an angle in the interval 0 < θ < π from equation (7.35).
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Figure 7.5: Comparison between φ(x, t) for impermeable (dashed curves)

and porous (solid curves) solutions, here k = 0.1.
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Figure 7.6: Comparing the solutions for varying the porosity for like times

for k = 0.001, 0.05, 0.5 corresponding to red, green, blue and yellow lines.

The dashed line represents the impermeable case.
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Figure 7.7: Comparison between using the estimated series approximation

((7.36) and (7.34) and numerical integration when solving for φ.
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Figure 7.8: A plot for the pressure as a function of x for increasing times.
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Figure 7.9: Plot showing the instantaneous rate of flow of fluid into the

substrate as a function of time, in the lower panel.
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Figure 7.10: Plot comparing the fluid lost into the substrate using different

methods, the symbols are so close they are indistinguishable.
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8

Conclusions and further study

8.1 Conclusions

In this thesis various cases for pre- and post-impact droplet dynamics were

considered. At the start we considered a typical droplet impact and included

surface tension and obliqueness in the derivations of the coupled equations

to solve. These were solved numerically showing how obliqueness makes

touchdown happen faster and surface tension making the touchdown slower.

In Chapter 3 we considered a shallow-water layer impact. Here we obtained

a different system of equations and considered the effect of obliqueness which

has not been looked at with this case before. We found results that agreed

with the obliqueness addition from Chapter 2, seeing an acceleration into

touchdown. In chapter 4 we considered the shallow-water impact onto a

porous media which again hasn’t been considered before. Interesting be-

haviour was seen when the porous layer depth and porosity were varied

giving rise to regions of delayed touchdown time. In Chapter 5 we consid-

ered thicker porous layers, initially deriving the system for an intermediate

depth layer before considering an infinitely deep layer. We observed the

effects of varying the porosity and depth of these layers and the unexpected

behaviour of changing the layer depth. The entry of air, forced into the

substrate, and the exiting of air from the substrate as fast narrow jets, are

all new discoveries.

Chapter 6 considered the post-impact dynamics of a droplet impact.

145
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Using Wagner theory to close the problem, the system was derived and

solved analytically for the simple case of an impermeable substrate. Chapter

7 considered the introduction of a porous base for the post-impact dynamics.

This has not been studied before, we used an approximation for the velocity

of the liquid entering the substrate. The system for this problem was derived

and solved numerically. The jet region caused from this impact was also

considered which gave an interesting relationship between the jets with a

porous base and with an impermeable base.

8.2 Further study for pre-impact dynamics

To add to the content covered in chapter 2, future work could look at the

case of having both obliqueness and surface tension. This would be an in-

teresting case to consider given each of the two physical effects (obliqueness

and surface tension) has an opposite influence on touchdown time. Run-

ning both surface tension and obliqueness numerically is difficult with the

methods used to solve them separately so another method of solving these

would have to be used. Similarly considering the shallow-water layer impact

with surface tension would be interesting but suffers from the same prob-

lem of it being difficult to solve without a very different numerical method.

Other regimes for the fluids such as compressible or inviscid air would be

interesting modifications to the current theory.

8.3 Further study for post-impact dynamics

To begin looking at more accurate physical models that include substrate

dynamics for porosity there are two cases we will consider. First, a dry

porous layer where the substrate is occupied by air (which we are ignoring);

secondly, a wet porous layer, where the substrate is pre-saturated with the

same fluid as the droplet.



8.3. FURTHER STUDY FOR POST-IMPACT DYNAMICS 147

In each case we have three sub-cases depending on the depth of the

substrate. We have thin, where the depth is order of magnitude smaller

than the width; intermediate, where the width and depth are comparable;

and deep, where we have infinite depth substrate. In all cases we have a

mixed boundary value problem, the aim is to calculate the velocity, φy, of

the fluid entering the substrate for the contact region. For the intermediate

case the full Laplace’s equation in a rectangle needs to be solved for both

cases. Here we define the subscript s to refer to substrate quantities and d

to refer to droplet quantities, v is the vertical velocity component and p is

the pressure.

Inside the contact region on y = 0 and −d < x < d the pressure in the

droplet is approximated by pd = −φt from Bernoulli’s equation. We assume

Darcy flow inside the substrate and so we have:

∇2ps = 0 in substrate, (8.1)

vs = vd on y = 0 and |x| < d, (8.2)

ps = pd on y = 0 and |x| < d, (8.3)

p = 0 on y = 0 and |x| > d, (8.4)

φ = 0 on y = 0 and |x| > d. (8.5)

8.3.1 Dry substrate

In a dry porous medium when the droplet makes contact there will be a free

surface that moves through the medium, let this free-surface be y = g(x, t),

since this is a free surface we have that ps(x, t) = 0 on y = g(x, t). So we

have in the substrate:
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∇φs = 0, in substrate, (8.6)

vs(x, 0, t) = vd(x, 0, t) in wetted region, (8.7)

Ps(x, g(x, t), t) = 0, (8.8)

vs = gt + usgx from the kinematic condition, (8.9)

Ps(x, 0, t) = pa(x, 0, t) outside of the wetted region. (8.10)

8.3.2 Saturated porous

With a saturated porous layer of depth H we have alternative boundary

conditions for the layer. At the bottom we expect a zero normal velocity

component on y = −H and the flow to tend to zero as we move far away

from the contact region, we also have an initial condition that the flow is

stationary. So we have:

vs = 0 on y = −H, (8.11)

us, vs → 0 as |x| → ∞, (8.12)

us = vs = 0 at t = 0. (8.13)

From the conservation of mass, we would expect jets to come out of the

substrate (to compensate for the droplet entering it).

8.3.3 Air effects

In the models presented in chapters 6 and 7 we have neglected the air. With

the inclusion of air we would have some minor resistance and deformation of

the free surface of the droplet. We would also have jets of air exiting the dry

region of the substrate. These jets would disrupt the jets of fluid along the

substrate and the free surface of the drop would would change the dynamics

of the problem considerably. Further work could be done to investigate the

problem with the incorporation of air.
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