
MODELLING THE DRIVERS OF LAND

AVAILABILITY FOR AFFORESTATION AND

BECCS

A thesis submitted to the School of Environmental Sciences

of the University of East Anglia in partial fulfilment

of the requirements for the degree of Doctor of Philosophy

THOMAS S. BALL - 100261319

OCTOBER 2022

© This copy of the thesis has been supplied on condition that anyone who consults it

is understood to recognise that its copyright rests with the author and that use of any

information derived there from must be in accordance with current UK Copyright

Law. In addition, any quotation or extract must include full attribution.





© Copyright 2022

Thomas S. Ball

iii





ABSTRACT

This thesis contains an exploration of the drivers of human land use for agriculture

in the context of land intense climate change mitigation strategies (afforestation and

BECCS). To do this, a model of the global food system was developed (C-LLAMA).

The model linearly projects country level diet, yield, and production data to 2050,

taking in to account waste and losses, and finally producing an output of agricultural

land use for crops and pasture. A business as usual ‘anchor’ scenario was produced,

in which all parameters and inputs are projected normally, which results in a global

agricultural land footprint of 5.2 Gha. In subsequent chapters, the model is used to

explore the sensitivity of agricultural land use to three key drivers: dietary trends,

food waste and losses, and crop yields. Prescribing a trajectory toward the EAT-

Lancet planetary health diet in all countries leads to a slight increase in global land

use of 100 Mha when compared with the anchor scenario. Reducing food waste and

losses, and increasing crop yields both unsurprisingly reduced global land use. The

final chapter contains an examination of various potential threats to the sustainable

delivery of bioenergy in four mitigation scenarios. The chapter explores the climate,

governance, environmental performance, and food demand changes in regions that

produce energy crops in this scenarios. It is found that large portions of energy crop

production occur in the tropics, in regions of moderate or poor governance, or with

significant (>30%) increases in food demand by 2050.

v





Access Condition and Agreement 
 
Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights, 
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material 
may be duplicated by you for your research use or for educational purposes in electronic or print form. 
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions 
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative 
Commons licence or Open Government licence. 
 
Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly 
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or 
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder 
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright 
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in 
this database has been supplied on the understanding that it is copyright material and that no quotation 
from the material may be published without proper acknowledgement. 
 



ACKNOWLEDGEMENTS

First and foremost, my wholehearted thanks to Nem, for being an amazing mentor

and guide, both personally and scientifically, throughout this entire process. For

motivating me through difficult times, and for encouraging me to take a step back

at times when things were overwhelming. Nobody could have prepared me for just

how much a PhD is akin to a marathon, mentally and emotionally, especially in light

of the isolation and uncertainty caused by the pandemic. I could not have done it

without Nem’s support.

Secondly, my sincere thanks to my wider supervisory team: Andrew, Tim, and Tom,

for their guidance, insight, and invaluable contributions to the discussions of this

work. Tim and Tom, I have thoroughly enjoyed my many trips to Exeter. The warm

welcomes and hospitality from you both and the wider research community there

made me feel right at home.

My thanks to the members of the FAB-GGR project for welcoming me into the group,

for their feedback on my work, and for providing me with valuable professional

experiences.

Thanks to my family for never missing an opportunity to tell me that they’re proud

of me and for providing all the love and support one could ever need. Special thanks

to Em for putting up with my never-ending incompetence and queries about figures

and mathematical formalism. Thank you to Rosie for being the sweetest and gentlest

soul in some of the most difficult times I have known; I will miss you immensely.

Thank you to all my friends, old and new. I have met some amazing people since

moving to Norwich. Thank you for making my time here an enjoyable one; I have

vii



viii

countless wonderful memories of this city and it’s people already, and many more are

to come.

Finally, my deepest gratitude to Elie, for providing me with seemingly limitless

support, patience, and love through the good times and the bad. I cannot thank you

enough.



ACRONYMS

Table 1: List of acronyms commonly used in this thesis (alphabetical order).

AFOLU Agriculture, Forestry, and Other Land Use
BECCS Biomass Energy with Carbon Capture and Storage
CCS Carbon Capture and Storage
CDR Carbon Dioxide Removal
DACCS Direct Air Capture with Carbon Storage
FAO Food and Agriculture Organisation of the United Nations
GDP Gross Domestic Product
GHG Greenhouse Gas
IAM Integrated Assessment Model
IPCC Intergovernmental Panel on Climate Change
NET Negative Emissions Technology
RCP Representative Concentration Pathway
SDG Sustainable Development Goal
SRC Short Rotation Coppice
SSP Shared Socio-economic Pathway

ix





CONTENTS

Abstract v

Acknowledgements vii

List of acronyms ix

1 Introduction 1

1.1 Anthropogenic climate change . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Mitigation scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Carbon dioxide removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Other CDR and mitigation methods . . . . . . . . . . . . . . . . . . . 8

1.4 Global land use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Population growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.2 Dietary trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.3 Food waste and losses . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.4 Intensification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.5 Protected areas and conservation . . . . . . . . . . . . . . . . . . . . 14

1.4.6 Modelling tools for land use. . . . . . . . . . . . . . . . . . . . . . . . 15

xi



xii CONTENTS

1.5 Land-use for mitigation strategies . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.1 Land-use change and forests . . . . . . . . . . . . . . . . . . . . . . . 18

1.5.2 Environmental governance and political stability. . . . . . . . . . . 19

1.6 Thesis description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Country-Level Land Availability Model for Agriculture (C-LLAMA) 1.0 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Model overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Model components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Food supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Food system efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.3 Food production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4 Livestock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.5 Land use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.4 Model output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.1 Anchor Scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.2 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Modelling the impacts of diet on land availability 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 The EAT-Lancet planetary health diet . . . . . . . . . . . . . . . . . . 60



CONTENTS xiii

3.2.2 Plant-based diet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 The EAT-Lancet planetary health diet . . . . . . . . . . . . . . . . . . 69

3.3.2 Plant-based diet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Modelling the impacts of food waste and losses on land availability 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.1 Food waste and loss in C-LLAMA . . . . . . . . . . . . . . . . . . . . 86

4.2 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 Reducing post-production waste. . . . . . . . . . . . . . . . . . . . . 87

4.2.2 Reducing processing and distribution waste. . . . . . . . . . . . . . 91

4.2.3 ‘Best-case waste’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1 Reducing post-production waste. . . . . . . . . . . . . . . . . . . . . 93

4.3.2 Reducing processing and distribution waste. . . . . . . . . . . . . . 95

4.3.3 ‘Best-case waste’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Modelling the impacts of yield on land availability and regional options

for improving land availability 105

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1.1 Yields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1.2 Food system optimisation . . . . . . . . . . . . . . . . . . . . . . . . . 111



xiv CONTENTS

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Closing yield gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.1 Closing yield gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.2 Regional food system optimisation . . . . . . . . . . . . . . . . . . . 117

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Environmental governance quality and other factors may jeopardise

delivery of bioenergy in mitigation scenarios 125

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3.1 Scenario context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3.2 Climate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.3 Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3.4 Food demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Discussion and conclusion 151

7.0.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A Appendices 163

Bibliography 175



1
INTRODUCTION

1.1 ANTHROPOGENIC CLIMATE CHANGE

It is well established that human activity since the industrial revolution is directly

responsible for the release of greenhouse gases into the atmosphere, which enhance

the natural greenhouse effect, cause the retention of additional solar energy by

the atmosphere, and hence a lead to a rise in global average temperature. Rising

temperatures drive changes in almost all of Earth’s natural systems, the influences

of which are already being felt. Changes in weather patterns, temperature, sea level

rises, ocean acidification, to name a few, are responsible for emerging threats to

terrestrial and marine ecosystems (Turner et al., 2020; Malhi et al., 2020) and to

human activity; food production, freshwater availability, and cultural heritage are all

under threat (Sesana et al., 2021; Mankin et al., 2019; Ray et al., 2019; Bhattacharya,

2019). This is anthropogenic climate change. In addition to emerging threats, the long

term impacts of climate change are unknown. Climate change impacts could trigger

1



2 INTRODUCTION

‘tipping points’; continued human emissions and appropriation of natural resources

could push any one (or several) of a number of natural Earth systems beyond a point

of no return (Lenton et al., 2019). Action must be taken to reverse the effects of

human induced greenhouse gas emissions and climate change before irreversible

effects begin to accumulate.

1.2 MITIGATION SCENARIOS

The 2015 Paris Agreement (United Nations Treaty Series, 2015) set the international

target of limiting the mean global temperature increase above the pre-industrial level

to well below 2 °C by the year 2100, with an aspiration to further limit warming

to 1.5 °C. Limiting warming to 1.5 °C corresponds to a limit on radiative forcing:

relative energy received from the Sun that is ‘trapped’ in the atmosphere as a

result of increased greenhouse gas concentrations. Representative concentration

pathways (RCPs), are future trajectories of greenhouse gas concentrations up to

2100, with characteristic end-of-the-century radiative forcing values (van Vuuren

et al., 2011). Each of these pathways corresponds with a warming target: a mean

global temperature above the pre-industrial level. Two of these trajectories, RCP2.6

and RCP1.9, correspond with end-of-the-century mean global temperatures above

the pre-industrial of 2 °C (van Vuuren et al., 2011) and 1.5 °C (Millar et al., 2017)

respectively. Modelling approaches are used to produce future scenarios that explore

the possibility of achieving these RCP targets: how can we follow the RCP1.9

greenhouse gas trajectory, and by doing so limit warming to 1.5 °C?

Climate scenarios consistent with the representative concentration pathways are

produced using integrated assessment models (IAMs). These are a complex,

economically driven modelling approach that engage with a wide range of

biophysical and socio-economic factors, particularly those that can lead to the

emission (or reduction) of atmospheric greenhouse gases. Their primary outputs
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are scenarios of future energy provision, land use, and greenhouse gas emissions.

Amongst their inputs, alongside the RCP trajectories, are shared socio-economic

pathways (SSPs), which were developed as a framework for modelling climate related

scenarios (O’Neill et al., 2014). There are five of these reference pathways (SSP1

to SSP5), each characterised by their level of global challenges to climate change

mitigation, with the SSP1 representing the least challenges, and SSP5 the most (Fricko

et al., 2017). SSP2 is the middle of the road pathway, in which many factors are at their

central position and represent a ‘continuation of the historical experience’ (Fricko

et al., 2017). Many IAM scenarios adhere to a combination of an RCP and an SSP, with

denominations such as ‘SSP1-RCP1.9’. However, there can still be significant variation

between scenarios even when constrained by the same pathways: two scenarios

might reach the same end point in different ways, especially when produced by

different IAMs.

There are two dimensions to anthropogenic emissions: ongoing emissions, and

cumulative emissions. Human activity is the cause of continual carbon dioxide

emissions, primarily through the combustion of fossil fuels for the provision of energy

but also secondarily through activity such as agriculture and land use change. These

emissions can ostensibly be reduced to just a fraction of their current amounts, by

transitioning to alternative energy sources such as biomass, wind, and solar power, by

electrifying road infrastructure, and by improving land management and agricultural

practices. However, these emissions have been prevalent in some quantity since

the beginning of the industrial revolution, and while Earth’s natural land and ocean

systems act as a buffer, absorbing some of these emissions, continued emissions

has lead to their accumulation. Therefore, in almost all climate change mitigation

scenarios, not only do current emissions need to be minimised, but some amount

of overshoot into ‘net negative emissions’ is required to reverse historical cumulative

emissions (Rogelj et al., 2018a). The process of removing carbon dioxide from the

atmosphere will be referred to as carbon dioxide removal (CDR) moving forward, the

mechanisms for which will be discussed in upcoming sections.
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Scenarios that achieve 1.5 °C by 2100 almost all require at least some amount of CDR,

and those that don’t would necessitate unrealistically rapid decarbonisation of energy

production globally before 2030; the lower emissions are in 2030, the greater the

chance of limiting 2100 warming to 1.5 °C (Rogelj et al., 2018a). In a given scenario,

the greater the reduction in current emissions the less CDR is required to offset them.

The IPCC estimate that for a two-thirds chance at limiting warming to 1.5 °C, the

remaining ‘carbon budget’ (that is, total cumulative emissions that are ‘allowed’) is

approximately 420 Gt of CO2 (Rogelj et al., 2018a). That leaves approximately 10 years

at the current rate of emissions of approximately 42.2 GtCO2 yr−1 (2020 estimate,

Friedlingstein et al. (2020)). Additionally, there are other greenhouse gases and other

factors that may affect radiative forcing, with an estimated forcing difference of up to

0.26 Wm−2 (Mengis & Matthews, 2020), which is not an insignificant impact given the

target of 1.9 Wm−2; this may reduce the remaining cumulative carbon budget even

further.

1.3 CARBON DIOXIDE REMOVAL

It is well established that limiting warming to 1.5 °C will require at least some amount

of carbon dioxide removal to offset continuing global emissions (Keller et al., 2018).

The exact requirement is unknown, but likely to be on the order of 100 GtCO2 to well

over 1200 GtCO2 over the course of the century (Kreuter & Lederer, 2021; Vaughan

et al., 2018). There are a number of methods for removing carbon dioxide, some

of which are favoured significantly more than others in IAM scenarios, and none of

which have seen real-world deployment at any relevant scale (Forster et al., 2020;

Brack & King, 2021).

The simplest method of CDR is through growing trees or other vegetation, which

draws carbon dioxide from the atmosphere through photosynthesis, which the plants

or trees then uses as ‘food’ to grow, effectively storing the carbon within the living



1.3. CARBON DIOXIDE REMOVAL 5

biomass. Some of this carbon is also transferred to the ground as leaf litter or other

litterfall where it enters the soil. The IPCC special report on climate change and

land use defines reforestation as the large scale planting of trees on land that has

previously contained forest. Afforestation is the conversion of land to forest that

has not ‘historically contained forest’: the planting of trees on land under another

use (such as agriculture) (van Diemen et al., 2019). The definition of these terms is

somewhat blurry, no timescale is given for how long land must be free of forest before

reforestation becomes afforestation. Typically when discussing CDR, reforestation

and afforestation are used somewhat interchangeably, and afforestation is commonly

used to refer to both (Waller et al., 2021). The rate at which afforestation is able to

remove carbon dioxide from the atmosphere is heavily dependant on climate, land

productivity and plant physiology. Additionally, the rate of carbon accumulation

tends to plateau as forests mature (Cook-Patton et al., 2020). Afforestation as a CDR

method is used moderately in IAM scenarios; it is relatively cheap and has almost

no upkeep costs once deployed, although ultimately its total storage potential is

constrained by the area of trees planted (Fuss et al., 2018).

Afforestation forms part of broader suite of land-based emissions related activity:

agriculture, forestry, and other land use (AFOLU). AFOLU describes a range of

activities, some of which (like afforestation) have the potential for net negative

emissions, but also includes positive emissions, for example from land use change

from grassland to energy crops (Pradhan et al., 2019). AFOLU emissions account for

approximately a quarter of current GHG emissions, but net negative carbon dioxide

emissions in this sector are possible (Pradhan et al., 2019; Henderson et al., 2021).

AFOLU emissions reach net zero emissions by around the mid century and provide

between 10-520 GtCO2 net negative emissions in mitigation scenarios; afforestation

and reforestation form the majority of this CDR (Rogelj et al., 2018a).

A key component of CDR is carbon capture and storage (CCS). CCS is a broad term

that refers to a method with a variety of applications, including as a standalone
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technology, heavy industry that cannot be decarbonised in other ways, fossil fuel

energy, or bioenergy. Carbon dioxide is captured in one of several ways, then the

carbon is transferred via either pipeline or transport infrastructure to long term

storage, typically in saline aquifers underground (Bui et al., 2018). Current estimates

of the global storage potential suggest that it exceeds capacity requirements by

estimates of CCS deployment, however suitable reservoirs are not distributed evenly

across the planet, so transport infrastructure for biomass or post-capture carbon

is a significant consideration (Consoli & Wildgust, 2017). The technology behind

CCS is largely well understood; the challenges to it’s use are societal rather than

technological (Wennersten et al., 2015). The application of CCS as a standalone

technology involves directly capturing air from the atmosphere; in combination with

CCS this method is referred to as direct air capture with carbon storage (DACCS).

DACCS typically involves an array of air intakes inside which are chemical sorbents

that scrub carbon dioxide from the air. DACCS requires almost no land (relative to

some other CDR methods), but is dependant on considerable energy input, with it’s

only ‘output’ being the carbon captured (Creutzig et al., 2019).

Another application for the capture of carbon is for heavy industries with limited

other decarbonisation options, for example the cement, paper, chemical, and steel

industries. These are essential industries, so to facilitate their continued operation

in the context of 1.5 °C warming, currently their best option is to decarbonise using

CCS (van Sluisveld et al., 2021). A third application of CCS is in the flue gases released

by combustion of fuel for energy generation. This can be applied to fossil fuel power

plants (in future constructions or retroactively), which can offset large portions of the

carbon dioxide that would otherwise be emitted by burning fossil fuels (Haszeldine,

2009). While this may initially appear to be an attractive option, this energy supply

chain simply cancels out some of the emissions generated by removing fossil fuels

from the ground, rather than a net removal of carbon dioxide from the atmosphere.

The most pertinent application of CCS in the context of climate change mitigation
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scenarios (the reasons for which will be discussed shortly), is the capture of carbon

dioxide in the flue gases produced during the combustion of biomass for energy. The

carbon dioxide removed from the atmosphere by vegetation as it grows is almost

all released upon it’s combustion, meaning that in a perfect world biomass energy

is effectively carbon neutral. Combining biomass energy with CCS foregoes the re-

release of the captured carbon, the result being an energy system with a net-negative

effect on atmospheric carbon. This combination is referred to as biomass energy with

carbon dioxide and storage (BECCS).

BECCS and afforestation are heavily favoured over other CDR methods in mitigation

scenarios produced by IAMs (Rogelj et al., 2018a). BECCS provides co-benefits,

solving two problems at once: the reduction of current emissions through

decarbonisation of energy provision, as well as carbon dioxide removal to account

for accumulated historical emissions. It appears almost ‘too good to be true’ in

the economically optimised world of IAMs, and hence the majority of mitigation

scenarios consistent with 1.5 °C make heavy use of BECCS (along with of bioenergy

without CCS); up to 1300 GtCO2 stored using BECCS by 2100 (Low & Schäfer, 2020;

Vaughan et al., 2018).

Biomass energy requires biomass of some kind to use as feedstock for combustion.

Biomass feedstock can come from a range of sources: from agricultural residues,

forestry and its associated residues, or dedicated crops grown specifically for energy

(Gough et al., 2018). While residues can account for up to 50% of biomass feedstock

in some scenarios (Vaughan et al., 2018), the deployment of bioenergy and BECCS

on the scales projected in mitigation scenarios consistent with 1.5 °C warming will

require significant use of dedicated energy crops. The primary candidates for these

crops are fast growing grasses such as miscanthus x giganteus: a tall, woody grass

with a C4 metabolic pathway (meaning it is highly resource efficient), or short

rotation coppicing (SRC) of tree species such as willow or poplar. The use of either

is dependant on climate and land productivity; miscanthus in particular is not a
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‘fussy’ organism and is capable of growing on relatively unproductive land such as

field margins (Haberzettl et al., 2021).

The projected increase in the demand for land for afforestation and dedicated energy

crops, both for bioenergy in the energy system and for BECCS, begins to raise

questions about the global land area available for these land intensive mitigation

strategies.

1.3.1 OTHER CDR AND MITIGATION METHODS

It is important to note that there are other strategies for reducing atmospheric carbon,

but none are land intensive, rather they are a supplement to keystone options like

BECCS and afforestation. The first of these is the use of biochar. Produced by the

pyrolysis of organic matter to form a substance like charcoal, biochar can then be

added to soils where it improves conditions for plant root growth and soil carbon

accumulation (Joseph et al., 2021). A similar method is enhanced weathering, which

is an enhancement of the chemical weathering of rocks, which is a natural process.

Presently, natural weathering absorbs about 1.1 GtCO2 yr−1 from the atmosphere,

most of which becomes bicarbonate in the ocean (Strefler et al., 2018). Fine rock can

be integrated into soil, where it’s high surface area speeds up the weathering process

and can improve crop yields (Beerling et al., 2020; Strefler et al., 2018). Both biochar

and enhanced weathering may contribute significantly to carbon dioxide removal

efforts, but are typically applied to cropland (which can include energy crops) (Jia

et al., 2019). They are sometimes included as part of AFOLU figures. They won’t be

considered as part of the work of this thesis since they require no additional land.

There are a set of CDR methods that involve the oceans, including alkanisation similar

to that of enhanced weathering. While the body of literature surrounding these

methods is growing rapidly in light of the 1.5 °C target, they remain largely uncertain

and their feasibility at the necessary scales is unknown and hence they aren’t currently
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included in the portfolio of CDR options in mitigation scenarios (Rogelj et al., 2018a).

Finally there are solar radiation management (SRM) options. SRM does not involve

the removal of atmospheric carbon, so does not constitute CDR. Instead, SRM directly

affects radiative forcing or surface albedo, reducing the absorption of solar energy by

the atmosphere. Methods for this include stratospheric aerosol injection or cloud

brightening (which increase cloud density or reflectivity respectively) (Nicholson

et al., 2018). The long term impacts of these methods are not yet understood and

could potentially have serious negative ecological and climatic consequences (Tang &

Kemp, 2021). These methods also require constant upkeep: they only effective while

they are in place, and are not presently included in mitigation scenarios developed

following the instigation of a 1.5 °C warming target (Rogelj et al., 2018a), hence will

not be considered for this thesis.

1.4 GLOBAL LAND USE

The global land use system is incredibly complex, there are a wide range of factors

affecting the amount of land that might be available for land intensive CDR and

mitigation strategies such as BECCS, afforestation, and bioenergy. Figure 1.1 shows

the state of global land use in 2019. Approximately half of all habitable land is

currently used for agriculture, with the remaining half being covered in forests and

shrub. While global hunger is likely to see a net decrease over the course of the

century, in the immediate future and well into the middle term, hunger is likely to

increase (Berndes & Cowie, 2021). With the sustainable development goals (SDGs)

in mind, particularly SDG 2, which is to ‘end hunger, achieve food security and

improved nutrition and promote sustainable agriculture’ (United Nations, 2019a),

the widespread land requirements of BECCS deployment may well conflict with the

rising demands of the food system. However options for offsetting some of the land

use pressure from BECCS and AFOLU as mitigation strategies may yet lie within the
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Figure 1.1: Global land cover by forests and agriculture in 2019, from https://ourworldindata.
org/land-use [Accessed 31-03-2022]. One square kilometre is 100 ha, so the 51 million km2

used for agriculture is equivalent to 5.1 Gha.

food system: in this section several avenues are identified for improving the land use

footprint and overall sustainability of food production (Springmann et al., 2018).

1.4.1 POPULATION GROWTH

Population is the most basic driver of food demand: in the context of the sustainable

development goals, a growing population translates directly to growing food demand

and hence increasing demand for agricultural land. The overall global trend in

population is currently one of accelerating growth, especially in middle income

countries, although the growth is expect to slow around middle of the century; in

the UN medium population scenario (which is a component of SSP2 and is a ‘middle

of the road’ - expected trajectory), the global population is projected to increase

throughout the majority of the first half of the 21st century, beginning to slow around

the year 2050 and stagnating almost entirely by 2100 (United Nations, 2019b). Much

of this increase occurs in Sub-Saharan Africa and Southern Asia, which currently face

https://ourworldindata.org/land-use
https://ourworldindata.org/land-use


1.4. GLOBAL LAND USE 11

Figure 1.2: Global population trajectories from 1950 to 2100, with future values taken from the
UN medium variant population scenario (OurWorldInData.org - World Population Growth,
Max Roser, Hannah Ritchie and Esteban Ortiz-Ospina).

high levels (upwards of 50% of the populations of some sub regions) of food insecurity

(Cooper et al., 2021). For the purpose of this thesis, population trajectories will be

assumed to be a constant - this is fairly common practice in literature surrounding

climate change mitigation scenarios: while the sustainability impacts of limiting

population growth in mitigation scenarios are acknowledged, the policy mechanisms

for doing so are often ignored (Dodson et al., 2020).

1.4.2 DIETARY TRENDS

Animal products require not only the land on which to raise livestock, but also land

to feed livestock. The food demand for livestock is met through fodder crops or

by grazing on pastoral land. The extreme land efficiency case is one in which the

footprint of an animal is only that required to grow the crops that feed it: animals

may be confined in minimal housing, and all their feed provided to them via fodder

crops. The opposite extreme is that of extensive grazing, in which the animal gains all
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of it’s feed energy from foraging. In either case, energy losses are incurred as plant-

based energy is converted to ‘animal-based’ energy, meaning that, in general, animal

products are inherently less land efficient (per calorie) than the majority of vegetal

products (Poore & Nemecek, 2018; Springmann et al., 2018; Alexander et al., 2016).

Beef, for example, has a feed conversion efficiency of approximately 3%, meaning

that every 100 kcal of energy consumed by the cow translates to only 3 kcal of ‘useful

product’ (Shepon et al., 2016). Poultry meat and eggs are the most efficient commonly

consumed animal products, with conversion efficiencies of 13% and 17% respectively

(Shepon et al., 2016). As a result, grazing land along with fodder crops account for 77%

of agricultural land use, around 4Gha, whilst animal products provide only 17% of

food energy to the human population (see Figure 1.1). Reducing the consumption of

animal products, especially in high income regions of the world, has the potential to

improve the land use efficiency of the food system, and reduce other environmental

impacts such as deforestation and greenhouse gas emissions (Weindl et al., 2017;

Röös et al., 2017).

1.4.3 FOOD WASTE AND LOSSES

An estimated third of all food produced yearly is wasted or lost between production

and consumption (Alexander et al., 2017; Gustavsson et al., 2011). There are three

primary avenues for food waste or loss on the journey from farm to consumer:

processing, distribution, and post-production. Losses tend to be much higher earlier

on the food supply chain for countries of low or lower-middle income, and later for

countries of upper-middle or high income (Gustavsson et al., 2011). Food losses are

usually not ‘avoidable’ where they occur in their economic context. Typically they are

due to poor transport and storage infrastructure, or lack of appropriate processing

technology; these require some level of investment to alleviate and hence they

typically occur in lower income countries (Kumar & Kalita, 2017; Lipinski et al., 2013).

Food waste on the other hand, is the avoidable discarding of food that was otherwise
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perfectly good to eat, in the household, in retail due to poor purchasing management,

or by processing inefficiencies due to (unnecessarily) high commercial standards, e.g.

trimming potato fries to be perfectly square (Dhir et al., 2020; Kavanaugh & Quinlan,

2020; Porat et al., 2018).

Food waste and losses artificially ‘inflate’ food demand - increasing the production

requirement to feed the same number of people, hence increasing land use to

produce food in addition to increasing other environmental impacts of the food

system. Clearly this is an avenue for improving the land use efficiency of the food

system, while some losses are unavoidable, there is the potential for significant

reduction through education and policy (in the case of post-production waste), or

through investment in infrastructure improvements and technology (in the case of

processing and distribution losses) (Cattaneo et al., 2021).

1.4.4 INTENSIFICATION

In recent decades, global agricultural production has increased dramatically to meet

the rising demand for food (Godfray et al., 2010). Much of this productivity increase

can be attributed to improvements in yield: the amount of produced mass per area (in

a given year), through improvements in technology and agricultural practices such as

irrigation and fertilisation (van Zeist et al., 2020). It is not unreasonable to expect this

pattern of increasing yields to continue. In many regions of the world, particularly

low income and middle income regions, crop yields are lower than their potential

physiological maximum for the climate of the region, so there is plenty of room for

crop yield improvement (Mueller et al., 2012). However the closure of these yield gaps

will require significant improvement to land management practices (Mueller et al.,

2012). Moreover, mitigation scenarios are overly optimistic about yield improvements

for food crops and pasture, with crop yields exceeding linearly projected yields and

modelled maximum ‘attainable’ yields in a large portion of scenarios and crop types

(van Zeist et al., 2020). In reality, the yields of several major crops are beginning to
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show signs of growth stagnation in many regions of the world. Not limited to high

income regions with plentiful access to agricultural technology; yields of staple food

crops (rice, wheat, and maize) have been observed to be stagnating in Nigeria, India,

France, and the USA amongst many others (Madhukar et al., 2020; Ramankutty et al.,

2018; Ray et al., 2012). Additionally, the emergent threat of climate change impacts,

including rising temperature, are likely to drive further yield stagnation due to both

biophysical and agronomic impacts (Iizumi et al., 2017).

It is possible to ‘intensify’ the production of animal products, as mentioned in

Section 1.4.2, at one extreme end of the spectrum of animal production systems

are housed animals that subsist entirely on fodder crops. These fodder-fed systems

are likely to play a critical role in future production of animal products if the

food system is to remain within sustainable boundaries (Davis & D’Odorico, 2015).

Although more sustainable livestock management practices such as silvopasture are

presenting themselves as an option for the sustainable intensification of animal

product production (Jose & Dollinger, 2019), the livestock sector is responsible for the

majority share of impacts on soil degradation and general greenhouse gas emissions

within the food system (De Oliveira Silva et al., 2021; Herrero et al., 2016). Despite

the option of intensification, animal products are almost always less land efficient, so

from the perspective of improving land use efficiency, the best option is to reduce

their consumption, especially that of ruminant meat and dairy products (Weindl

et al., 2017; Shepon et al., 2016).

1.4.5 PROTECTED AREAS AND CONSERVATION

Protected areas are those in which agricultural development could damage or

destroy sites of cultural or biophysical importance. Examples of this might include

monuments of historical or religious significance, or national parks, which are

culturally as well as economically significant on a somewhat larger scale. They are

generally included in IAM modelling as ‘forbidden’ regions, or are of small enough
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area that they are not resolved in spatial models. The United Nations maintains a list

of protected areas (UN Environment World Conservation Monitoring Centre, 2018).

Areas within this list include “national protected areas recognised by the government,

areas designated under regional and international conventions, privately protected

areas and indigenous peoples’ and community conserved territories and areas".

These areas are grouped into the following categories: strict nature reserves,

wilderness areas, national parks, natural monuments, habitat or species management

areas, protected landscape or seascapes, managed resource protected areas. These

areas can be considered to be completely out of bounds for energy crop production,

and although typically they account for a very small proportion of available land

there is a growing body of literature suggesting that in the looming shadow of climate

change impacts, they may be insufficient for biodiversity preservation (Elsen et al.,

2020).

1.4.6 MODELLING TOOLS FOR LAND USE

IAMs are generally driven by economic equilibrium; the models attempt to achieve

this by finding the most cost effective solution within the constraints of the

scenario for each ‘agent’. The agents are different economic sectors, of which the

agricultural sector and by extension, land-use allocation, are one. Because of this,

their land-use components typically prioritise land allocation in one of two ways,

profit maximisation or cost minimisation. For example, GCAM focuses on profit

maximisation (in the case of agriculture) while IMAGE and MAgPIE(ReMIND) are

based around cost minimisation (Popp et al., 2014). The representative concentration

pathways were developed using these models, but are also used as input for analyses

of other aspects, such as land use. Whilst IAMs are well suited to broad scale analyses

of future scenarios, especially with policy-making in mind, they are somewhat

nebulous in their approach. Their outputs can be difficult to interpret in such a way

that it becomes clear, in the case of land-use allocation, how different drivers affect
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the availability and location of land for bioenergy, BECCS, and afforestation (Havlık

et al., 2014; Popp et al., 2014; Calvin et al., 2013; Fujimori et al., 2012; van Vuuren et al.,

2011).

Another type of model that are crucial in the development of future BECCS scenarios

and associated land-usages are dynamic global vegetation models (DGVMs), such as

the Joint UK Land Environment Simulator (JULES) or the Lund-Potsdam-Jena DGVM

(LPJ) (Clark et al., 2011; Sitch et al., 2003). These models simulate the interactions

between vegetation, energy and the water and carbon cycles. Whilst unable to directly

model available land, in the context of BECCS these models are used to simulate

aspects of bioenergy crop from pre-prescribed land allocation data, such as carbon

captured and energy yields. They have also been used to model various effects on the

environment, such as the hydrological cycle (Elliott et al., 2014). Some integrated

assessment models include a DGVM as part of their framework, for example the

inclusion of LPJmL in IMAGE.

At the other end of the spectrum from IAMs are simple, balance, accounting, and

flux models. The Flux Assessment of Linked Agricultural Food production, Energy

potentials & Land-use change (FALAFEL) model is one such example, in which the

primary input driver is a trajectory of the global food energy consumption per capita,

per day, up to 2050 (Powell, 2015). FALAFEL is at it’s heart a food system model; at each

time step (yearly), calculations of the flux of various aspects of the model between

‘boxes’ are made, finally calculating production demands for crop and livestock,

which are then converted into a projected land use. FALAFEL operates at a global

aggregation, which allows it to bypass considerations of the geographic, economic,

and cultural differences between food systems, but also precludes it from exploring

the impacts due to changes these differences.

Similar approaches to FALAFEL are taken by the Biomass Balance Model (BioBaM)

(Kalt et al., 2021), and a model presented by Bijl et al. (2017), which calculates

food demand (but not land use). Both BioBaM and the Bijl model operate at the
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regional level, with 11 and 26 regions respectively, allowing them explore regional

differences in food demand and production. BioBaM calculates biomass demand

and production scenarios, then discounts scenarios in which the two are not able

to be balanced. The Bijl model does not calculate a land use, rather stopping at

the demand stage, however it is worth mentioning since it’s structure is similar to

that of FALAFEL up that point. All of these models make greater simplifications of

real-world processes than spatially explicit or dynamic equilibrium models do, and

thusfar they have seen only limited use in projections of future land availability for

BECCS, afforestation, and bioenergy. However, they are more transparent than IAMs

in their inputs and outputs; the influence of each input on each output can be clearly

understood. Drawing aspects of these models together into a model that operates

at a regional level but produces land use as an output (rather than as an input like

BioBaM) could provide a useful framework for exploring food related drivers of land

available for land intensive mitigation.

1.5 LAND-USE FOR MITIGATION STRATEGIES

The widespread deployment of energy

crop production will require an unprecedented quantity of land to support it; there

are a range of estimates, varying significantly based on assumed yields and the type

of land used (Vaughan et al., 2018; Burns & Nicholson, 2017). In mitigation scenarios,

the change in forest area from present to 2100 ranged from -20 Mha to 720 Mha, and

bioenergy energy crop cover from 320 Mha to 660 Mha (median values across a range

of models, RCP4.5, RCP2.6, and RCP1.9 scenarios), with many scenarios having higher

peaks mid-century (Jia et al., 2019). Bioenergy potentials (for BECCS or otherwise)

within IAM scenarios that achieve 1.5 °C are based on the assumption that almost all

dedicated energy crops can be grown on abandoned cropland or marginal land (Næss

et al., 2021), or through expansion into natural grasslands (Vaughan et al., 2018; Dias
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et al., 2021). In reality, the amount of abandoned land that is actually available for

energy crop production may be limited. Næss et al. (2021) identified only 83 Mha of

abandoned cropland (2015), slightly under half of which (48%) of which is unsuitable

for energy crop production (at the rates assumed in IAM scenarios, unless the areas

are irrigated) due to a lack of water availability, or biodiversity concerns.

1.5.1 LAND-USE CHANGE AND FORESTS

Land stores carbon within vegetation above and below ground, organic compounds

within soil and inorganically, in carbonate compounds. Changing land use inevitably

causes the release of some of this carbon through mechanical disruption and

vegetation storage losses. The intensity of carbon release varies greatly dependant

on types of land between which the transition is occurring. Deforestation is the

transition of land use type away from natural forest, which presently accounts

for between 6-17% of anthropogenic carbon emissions (Baccini et al., 2012).

Cumulatively, deforestation is responsible for approximately 25% of all historical

emissions, as well as contributing heavily to biodiversity losses and land degradation

(Kindermann et al., 2008). Agricultural expansion is one of the primary drivers of

deforestation, particularly in the tropics (Milford et al., 2019; Pendrill et al., 2019).

Around 870 Gt of carbon is presently stored in the world’s forests, 380 Gt of which

is stored in soil, whilst the remainder is stored in trees, deadwood and litterfall

(Pan et al., 2011). Forests are a large store of carbon, but have different storage

densities dependant on their environment. Tropical and boreal forests store similar

densities of carbon, at around 240 t ha−1 of carbon. Temperate forests are less

carbon dense, at around 155 t ha−1 carbon (Pan et al., 2011). If the land use

changes made to facilitate energy crop production ‘leak’ carbon back into the

atmosphere, the efficacy of BECCS as a CDR method, or bioenergy as a carbon

neutral energy sourced will be significantly reduced, so deforestation is typically

avoided or severely limited in mitigation scenarios (Harper et al., 2018). It is crucial
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that governance frameworks, incentives, and accounting mechanisms surrounding

BECCS deployment are properly implemented such that they don’t inadvertently

incentivise the appropriation of natural forests and other carbon rich ecosystems for

bioenergy (Torvanger, 2019).

Harper et al. (2018) explore the trade-offs between carbon released and re-captured

as land transitions to BECCS feedstock production in different modelled scenarios,

finding that in around 40% of areas, afforestation, or re-forestation would result in

a greater net carbon reduction from the atmosphere than transitioning the area to

energy crop production for BECCS. In an assessment of the emissions efficiency

of transitioning between land uses in mitigation strategies, a wide range of carbon

emission efficiencies were identified when transitioning agricultural land to energy

crop or forest, or changing agricultural systems. In some cases it is more carbon-

efficient to avoid transitioning pasture to energy crop, instead using the land for more

intense pasture, or for food crop (Searchinger et al., 2018).

1.5.2 ENVIRONMENTAL GOVERNANCE AND POLITICAL STABILITY

Limiting 2100 warming to 1.5 °C through the widespread deployment of BECCS

and afforestation is highly likely to require solid environmental policies and

intergovernmental collaboration (Burns & Nicholson, 2017). Yet in mitigation

scenarios, IAMs derive a significant portion of BECCS and afforestation potentials

from failed states or countries of historically weak environmental governance (Brack

& King, 2021); up to a third of energy crop production occurs in developing regions,

and another third in China, Brazil, and Russia (Vaughan et al., 2018). Despite the

acknowledgement that BECCS and afforestation are likely to play a crucial role in

efforts to mitigate climate change in the coming decades, the necessary national and

international policy measures remain highly uncertain (Radunsky, 2018).

The magnitude of the effect that governance failure may have on the efficacy of
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BECCS and afforestation is unknown, but given historically weak environmental

performance in many regions, their adherence to prospective constraints cannot

be assumed (Brack & King, 2021). It is essential that deforestation doesn’t occur to

facilitate BECCS, and that forests remains in place once established, which may not

transpire if governance frameworks are not sufficient to incentivise these practices.

Such failure could pose significant risks not only to the efficacy of CDR, but also to

biodiversity (Brack & King, 2021). Thus far there have been no efforts to quantify the

‘risk’ of reliance on regions of poor environmental governance, or even the portion

of energy crop production that may be at risk; Mace et al. (2021) suggest that to

reduce the risks posed by unsustainable BECCS implementation, initial reliance on

CDR should be minimised until proper governance frameworks are in place.

1.6 THESIS DESCRIPTION

The work in this thesis was carried out primarily in the context of the 2018 IPCC

special report on warming of 1.5 °C (Rogelj et al., 2018a), and their 2019 special

report on climate change and land use (Arneth et al., 2019). These reports propose

with high confidence that meeting a climate target of 1.5 °C will likely require an

unprecedented expansion of land based mitigation: BECCS and AFOLU (including

afforestation). In April of 2022, the IPCC working group 3 released their contribution

to the sixth assessment cycle, which discusses climate change mitigation options.

The new report presents a portfolio of mitigation options with minor deviations from

the previous; the role of BECCS and afforestation are reduced, with the difference in

captured carbon dioxide being taken up largely by DACCS, especially in the near term

(IPCC, 2022). This reduced reliance may alleviate some of the threats to sustainable

development and land use by these mitigation strategies; nevertheless BECCS and

AFOLU remain in place as keystone mitigation options, with their scenario ranges for

net negative emissions being 30-780 GtCO2 and 20-400 GtCO2 respectively.
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Integrated assessment models are powerful tools for exploring the mitigation

scenario space, they provide a substantial basis for further investigation and

deployment of climate change mitigation strategies in future scenarios. In the case of

mitigation scenarios consistent with a 2100 warming limit of 1.5 °C, those mitigation

strategies are BECCS and afforestation, both of which see widespread use across

the board in mitigation scenarios, and both of which are require extensive land use

change to support their deployment (Brack & King, 2021; Roe et al., 2019). However,

IAMs are incredibly complex models, and their widespread use of BECCS and

afforestation to meet climate targets is based on a vast array of assumptions, many

of which are subject to high levels of uncertainty or contested claims of feasibility,

including their land use (Hansson et al., 2021; Low & Schäfer, 2020; Vaughan et al.,

2018).

The overall objective of this thesis is to step away from the complexities of integrated

assessment modelling; to explore some of the drivers of global land that could be

made available for BECCS and afforestation through the development and use of a

simplistic and traceable model of the global food system and it’s land footprint, and to

examine some of the assumptions surrounding the assumed land available for BECCS

and afforestation in mitigation scenarios.

Chapter 2 represents approximately two years of model development of the Country-

Level Land Availability Model for Agriculture (C-LLAMA), and details the processes

and mechanisms therein. The contents of Chapter 2 were published in Geoscientific

Model Development in February of 2022 (Ball et al., 2022). C-LLAMA is based on

the ‘Flux Assessment of Linked Agricultural Food production, Energy potentials &

Land use change’ (FALAFEL) model (Powell, 2015; Powell & Lenton, 2012), which

has previously been used to investigate the land use impacts of diet and food waste

and losses. However unlike FALAFEL, C-LLAMA operates at a country level, which

allows it to represent inherent differences in food systems, especially those between

countries of differing industrialisation. In this Chapter an anchor scenario is outlined,
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which is used as the baseline C-LLAMA scenario for comparison, as a means to

explore the sensitivity of agricultural land use in subsequent chapters to the various

drivers outlined in this introduction.

In Chapters 3 to 5, the C-LLAMA model is used to explore the land use implications

of pulling various ‘levers’ related to the drivers of agricultural land use that have been

outlined in this Chapter. In Chapter 3, the drivers and subsequent impacts on the

food supply chain (including land use) of dietary trends are discussed. The land use

impacts of changing diets are explored using C-LLAMA, including a scenario in which

all animal product consumption is eliminated by 2050. Rather than simply trying to

find the best dietary composition for the sake of land use, the work in this Chapter

was carried out in the context of the sustainable development goals, specifically

SDG 2 (end hunger and improve nutrition). With SDG 2 in mind, the EAT-Lancet

‘planetary health’ diet was selected: a globally applicable diet that aims to provide

sufficient nutrition whilst remaining within planetary boundaries (The Eat-Lancet

Commission, 2019). The land use impacts of transitioning to the EAT-Lancet diet are

explored by prescribing the diet to each region in turn.

Chapter 4 follows the same principles as Chapter 3. The general causes and potential

resolutions are discussed for early to mid (distribution and processing) and late stage

(household, retail, and commerce) food waste and losses. Two simple C-LLAMA

scenarios are constructed and compared, in which food waste and losses early and

late in the food supply chain are reduced globally. Then, the land use impacts of

reducing waste and losses are explored at a regional level, using estimates for ‘best

case’ observed values for various stages of waste and loss.

The first part of Chapter 5 discusses the mechanisms through which crop yields and

land use for animal production may be improved, followed by a simple examination

of closing ‘yield gaps’ (Mueller et al., 2012) at a regional level. The second part of

Chapter 5 is a comparison of the regional results from the first part with those of

the previous two chapters (3 and 4), identifying the relative regional sensitivity to the
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three key drivers of land agricultural land use.

Chapter 6 is an investigation of the land use and production of energy crops

in mitigation scenarios consistent with 2 °C or 1.5 °C. The range of energy crop

production, along with the rate of expansion in all SSP scenarios is discussed.

Following this is an exploration of various factors that may impact the availability,

suitability, and risk of energy crop production based on their location in these

scenarios. Exploratory attempts are made to quantify the portion of energy crop that

is produced in tropical regions, and regions of differing levels of environmental and

general governance quality.





2
COUNTRY-LEVEL LAND AVAILABILITY

MODEL FOR AGRICULTURE (C-LLAMA)

1.0

This chapter represents two years of work developing the C-LLAMA model. This model

description was then submitted to Geoscientific Model Development in July of 2021,

then published in February 2022 (Ball et al., 2022). T. Ball was responsible for the

development of the model, and preparation of the manuscript and figures therein. All

authors contributed suggestions to editing.

ABSTRACT

We present C-LLAMA 1.0 (Country-level Land Availability Model for Agriculture),

a statistical-empirical model of the global food and agriculture system. C-LLAMA

uses simplistic and highly traceable methods to provide an open and transparent

25
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approach to modelling the sensitivity of future agricultural land-use to drivers such

as diet, crop yields and food-system efficiency. C-LLAMA uses publicly available

FAOSTAT food supply, food production, and crop yield data to make linear projections

of diet, food system and agricultural efficiencies, and land-use at a national level,

aiming to capture aspects of food systems in both developing and developed nations.

In this paper we describe the structure and processes within the model, outline an

anchor scenario, and perform sensitivity analyses of key components. The models

land-use output behaves as anticipated during sensitivity tests and under a scenario

with a prescribed reduction in animal product consumption, in which land-use for

agriculture is reduced by 1.8 Gha in 2050 when compared with the anchor scenario.

2.1 INTRODUCTION

Land-use plays a critical role in achieving Paris Agreement temperature goals.

Favoured climate change mitigation strategies such as biomass energy with carbon

capture and storage (BECCS) and afforestation rely heavily on widespread land-use

change to achieve the necessary scales to be effective (Gough et al., 2018; Roe et al.,

2019; Rogelj et al., 2018a; Vaughan et al., 2018). However, a range of interlinked

factors may jeopardise the sustainable deployment of these mitigation strategies;

these include carbon leakage, ecosystem services and biodiversity, and the need

for land to support human livelihood and food supply (Arneth et al., 2019). With

growing global populations and wealth there are also increasing demands for food

quantity and diversity, placing additional pressure on the agricultural system and

corresponding land use to meet the demand (Alexander et al., 2016).

Integrated assessment models (IAMs) make comprehensive projections of future

scenarios by coupling economics and land-use with simple carbon cycle and climate

models. These models are driven by macro-economics, using a combination of

dynamic and static input factors to project future scenarios and are the basis of
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the Paris Agreement warming targets (United Nations Treaty Series, 2015). Most

IAMs deal with land use, although there are some exceptions. IAMs are well suited

to holistic modelling of future scenarios, especially with the objective of informing

policy. They are able to draw together a wide variety of physical, social, and economic

processes to produce informed estimates of future scenarios; their mechanisms are

well documented and many are open source (Havlık et al., 2014; Popp et al., 2014;

Calvin et al., 2013; Fujimori et al., 2012; van Vuuren et al., 2011). However, from

their complexity arises an element of nebulousness, they are not able to undertake

more detailed analysis of more specific aspects independent of the whole. Despite the

broad applicability of IAMs, there remains a need for models of reduced complexity;

they are able to undertake more specific analyses of components that more complex

models like IAMs are unable to represent individually. There are significant strengths

and weakness to both approaches and they are best used in conjunction with

one another, somewhat analogous to reduced-complexity climate models and their

general-circulation counterparts (R. J. Nicholls et al., 2020; Sarofim et al., 2021).

FALAFEL (Flux Assessment of Linked Agricultural Food production, Energy potentials

& Land-use change) is a global-level model, using linear projections of global food

supply, agricultural efficiencies, and yields to produce trajectories for land-use,

carbon capture and energy to 2050 (Powell, 2015; Powell & Lenton, 2012). C-LLAMA

(Country-Level Land Availability Model for Agriculture) is the successor to FALAFEL;

it is based on the same principles and processes as FALAFEL but disaggregated to

the country level. It produces a land-use trajectory to 2050 for each food commodity

and commodity group within a country. Where a global model cannot represent the

differences between the food systems in a highly developed country and a developing

one, C-LLAMA is able to. This is the primary advantage of moving to a country-level

model: it allows for the exploration of the drivers of land-availability in the across a

variety of food systems. C-LLAMA is built in Python (Van Rossum & Drake Jr, 1995),

unlike FALAFEL which is built in Microsoft Excel. The purpose of the model is to be

transparent and easily traceable, as such the model code is open-source and uses only
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publicly available data as it’s inputs.

C-LLAMA is situated at the opposite end of the modelling spectrum to IAMs; taking

a bottom-up approach to modelling future land availability; beginning with food

supply, then projecting food demand and production forward. In a similar approach

to that of FALAFEL, Bijl et al. (2017) consider the relationships between income and

dietary patterns to model long-term food demand, but halt at the crop demand stage.

C-LLAMA has no economic considerations but models the full range of the food-

system from the consumer to the production of crops and animal products. Where

FALAFEL and Bijl et al. model the food-system at a global and regional level, C-LLAMA

operates at a national level.

2.2 MODEL OVERVIEW

C-LLAMA is a statistical-empirical model that uses data from the FAOSTAT database

as its primary input (FAO, 2021a). These datasets contain food supply and production

data, with the food-balance sheets used containing data from 1961 to 2013, and all

other datasets (such as land-use and production) running from 1961 to 2017. All data

is at a country-level. C-LLAMA models the same timespan as FALAFEL: from 2017 to

2050. Many of the processes in the model are the same as those in the FALAFEL but

operate at a country level as opposed to being globally aggregated. An overview of the

structure of C-LLAMA is given in Figure 2.1. A list of all modules responsible for model

processes in C-LLAMA, grouped into model sections, can be found in Table A.1.

The model operates across five continents: Africa, the Americas, Asia, Europe

and Oceania, C-LLAMA then splits these into further subcontinental regions (for

example, the Americas are split into N. America, S. America, Central America and

the Caribbean), most of which contain several countries or states. The model is

structured into the following four spatial aggregations: global, continent, region, and

country, aligning with the United Nations Statistics Division (UNSD). The structuring
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Figure 2.1: Overview of C-LLAMA Model structure and flow, with relevant section numbers
within the paper indicated in parentheses. Boxes with a dotted border are external datasets
while a solid border represents values calculated in C-LLAMA. Thick arrows represent a flow of
mass or energy, thin arrows represent the contributing trajectories or factors. Boxes outlined
in green are core processes. Boxes shaded in green are globally summed quantities. National
crop land-use and livestock land-use are shaded and outlined in green, to highlight them as
the primary output of the model. Not all model processes and connections are depicted, this
diagram gives a general overview of C-LLAMA.

of the model into these spatial aggregations allows modifications to be targeted at

specific levels. All model processes operate at the country level, with the exception

of total global level food demand and global production demand, which are globally

aggregated. Food production is then allocated at the country-level.

Global food production and demand is dominated by a small handful of countries.

For example: Brazil, the USA and Argentina together accounted for 52% of production

by mass of crops used for food in 2017. Of the 162 countries in the FAOSTAT data (that

produced food in 2017), the 100 most food-productive countries account for 99.7%

of the total production mass. The remaining 62 countries account for only 0.3% of
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the total food production. Countries whose food production mass in 2017 equates

to less than 0.01% of the 2017 global total and whose agricultural land-area is less

than 34,000 hectares are excluded from the model processes. Figures illustrating this

can be found in appendix A. This is done in C-LLAMA for two reasons. The first is

to reduce unnecessary model run-time and development complexity. The second

reason is that many of these countries have reduced data quality and availability

due to their size. Often the data is discontinuous, most commonly due to changes

in reporting or assessment. This can lead to unrealistic behaviour when making

projections of the data as C-LLAMA does.

There are a small number of countries not included in the model processes because

no food balance data for them is available from the FAOSTAT database. The reason for

this in most cases is a recent history of political instability or conflict, which suggests

that motivating land-based climate mitigation action in these regions may be difficult

(The World Bank, 2020). Notable for their large land areas, Libya, Sudan, Somalia,

and the Democratic Republic of the Congo in Africa (DRC), and Papua New Guinea

in Oceania are not included in the dataset, a total land area of 500 Mha. Despite

their large land areas, Libya, the DRC, and Papua New Guinea have a small amount of

agricultural land for their size at less than 10%, and as low as 2% in the case of Papua

New Guinea. Sudan has 40% agricultural land coverage and Somalia has 70%.

2.3 MODEL COMPONENTS

POPULATION

C-LLAMA uses population trajectories from the shared socio-economic pathways

(SSP) database, available as 5-yearly population values for each country. SSP2 is

a middle of the road scenario with corresponding population projection based on

medium values for fertility, mortality, education and migration (KC and Lutz, 2017).
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The SSP2 population projection is used as a default but any population projection

data can be applied. The population data is interpolated linearly to produce a yearly

population trajectory to 2050.

2.3.1 FOOD SUPPLY

We define food supply for a given country to be the mean number of kilocalories

available per capita per day in a given year. This includes any post-production food

waste; some food reaches consumers but is never eaten, either commercially or as

domestic waste. The proportion of food wasted in this way is as high as 30% in most

developed countries (Alexander et al., 2017).

FAOSTAT food balance sheets contain food supply data disaggregated into different

food commodities (Food and Agriculture Organization of the United Nations, 1997).

C-LLAMA uses this data to produce a projected food demand for each country. First, a

regression line is calculated for the total food supply for a given country in the period

1961 to 2013, which is then used to calculate a projected food supply value for the

year 2050. A linear projection is made for each country from their current total food

supply to the projected 2050 total food supply, using the following equation:

F (n) = F0 + n −n0

ntarget −n0
(Ftarget −F0), (2.1)

where Fn is the total food supply in year n, Ftarget is the projected 2050 total food

supply per capita, F0 is the mean of the most recent five years of historical food supply

data. n0 and ntarget are the start and end years of the projection, 2013 and 2050.

Secondly, a linear regression is used to make a projection for the calorie supply from

each of the food groups animal products, vegetal products, and aquatic products.

Regression lines with a p-value greater than 0.05 are discounted (this threshold value

can be changed), instead fixing the projection at the mean value of the most recent
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five years of data. These projections are then converted into fractions. The proportion

of food supply (P ) made up by group i in year n, is given by

Pi (n) = ai n +bi∑
g∈G (ag n +bg )

, (2.2)

where a and b are the gradient and intercept of the regression line for that group and

G is the set of groups: animal, vegetal and aquatic products.

Third, another linear regression is used to project the relative proportions of

individual food commodities within the three food groups. Key food commodities are

represented individually, for example wheat, maize and rice in the vegetal product

group, and bovine meat and poultry meat in the animal product group. Other

commodities are represented in groups, for example ‘cereals – other’ contains all

cereals that are not singled out as key commodities, while the ‘luxuries’ group

contains all tea and coffee. Aquatic products are not the focus of the model as

they have minimal to no land requirements during their production; thus they are

placed in a single group. Hence, in C-LLAMA, aquatic products simply offset some

of the calorific demand from the other food groups. Where possible, C-LLAMA uses

vegetal product groups defined in FAOSTAT data. A full list of food commodities and

groupings can be found in Appendix Tables A.2 and A.3. The commodities within

a group are then converted into ratios, so the proportional calorific contribution of

commodity j to its umbrella food group i in year n is

P j (n) = a j n +b j∑
c∈C (ac n +bc )

, (2.3)

where a and b are the gradient and intercept respectively of the regression line for

that commodity and C is the set of commodities within the group, for example if j

is wheat then C would be all vegetal products. The structure of the projected food

supply is then as follows: the total calorie projection is apportioned to each of the

food groups by their projected ratios, which are in turn apportioned to the projected
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commodity ratios. Hence by combining equations 1, 2 and 3, the number of calories

contributed to the mean daily food supply per capita by commodity j (of group i ) is

E j (n) = F (n)∗Pi (n)∗P j (n), (2.4)

where all symbols have their previously defined meanings. This approach facilitates

the tuning of dietary scenarios by modifying the growth rate of the animal product

group or dairy commodities to simulate increases in vegetarianism or veganism.

2.3.2 FOOD SYSTEM EFFICIENCY

FOOD SYSTEM EFFICIENCY PARAMETER

There is significant variation in food system efficiency, both at different stages and

between developed and developing food systems. To reflect this in C-LLAMA, a

parameter was developed to assign areas an appropriate degree of efficiency at each

stage of the food system and in the model processes. The requirements of the system

are the following:

1. Allow the food system efficiency of states to improve as the model progresses.

2. Limit improvement to a realistic maximum.

3. Be representative of most real-world cases. Outliers are inevitable but

significant contributors of food demand or food production to the global food

system should be captured well.

A highly developed nation in which the majority of farming practices are heavily

industrialised with high levels of efficiency should have a score of greater than 1.0

whilst a less developed country in which the majority of people are fed through

subsistence farming should score lower than 0.5. A metric such as GDP per capita
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is not suitable, because a state with extreme income equality could score highly

when in actuality the majority of inhabitants rely on subsistence agriculture. Other

metrics such as irrigation, fertiliser use and agricultural machinery density were all

considered. However, each of these metrics can be skewed by climate, crop types

and traditional practices. As such these are also not always reflective of the relative

agricultural efficiency of an area.

A parameter was developed based on the yearly mean of daily food energy

consumption per capita. This is a self-moderating quantity: unlike GDP there is a

maximum realistic value that this can take regardless of economic disparity, so the

mean cannot be skewed by extreme cases. The equation for the food system efficiency

parameter X for a country a in year n is

Xa,n = Fa,n

0.7∗Ftarget
− 0.5

0.7
, (2.5)

where F is the country’s total food supply in year n. Ftarget is an idealised food supply,

defined as 2500 kcal per capita per day with an additional 30% lost to post-production

food waste (see Table 1). This is representative of the food supply in the majority

of highly developed regions (N. America, Europe, and Australia and New Zealand)

(Kearney, 2010; United Nations Environment Programme, 2021). . Using the ratio of

food supply to an idealised food supply generates values in the approximate range 0.5

to 1.2 for the year 2013. The values 0.5 and 0.7 scale the metric to produce values for

Xn in the range 0.0 and 1.0.

This parameter is then projected forward with a simple linear projection to 2050 for

use in the model processes. In the very few cases where the projection prescribes a

decline in food system efficiency, the parameter is halted at the most recent historic

value. In the majority of cases this parameter reasonably depicts the position of a

country along a scale between complete subsistence agriculture to an industrialised

nation with developed infrastructure. However, due to the complexity of the real-
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world food system, there are a small number of expected outliers, notably Japan

and the Republic of South Korea, both of which score in the range 0.4 to 0.6, much

lower than expected given their level of industrialisation. This can be explained by

a combination of two factors: a slightly lower post-production food waste of around

15% (Liu et al., 2016) and typically a lower daily calorific intake than other similarly

industrialised nations; a result of cultural and dietary trends (Tsugane & Sawada,

2014).

The parameter is used in the model processes to inform processes relating to

agricultural efficiency, including food energy losses at three stages: processing,

distribution, and post-production losses. The ratios of livestock feed energy obtained

from forage and non-forage are also derived using this parameter, along with the

portion of food waste that is used as livestock feed. Minimum and maximum values

are chosen for each, representing either the totally subsistence or total industrialised

case, and the metric is used to scale the value for a country between the two. The

equation for a factor µ is:

µa(n) =µsub +Xa(n)
(
µind −µsub

)
, (2.6)

where X is the value of the food system efficiency parameter for the country a in given

year n and sub and µind are the subsistence or industrialisation boundaries of the

factor respectively. The upper and lower boundaries for each of these parameters can

be modified as a means of scenario adjustment. The behaviour of the boundaries as

the model progresses can also be modified; they can be fixed at the initial values, or an

overall efficiency increase can be prescribed, in which case the limits will also change

over time.

INEFFICIENCY IN THE FOOD SYSTEM

In C-LLAMA, losses in the food system are grouped in four ways: losses at the harvest

stage, losses in the processing stage, distribution losses and post-production losses.
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Losses at the harvest stage occur before any processing or distribution and are

either non-recoverable or recoverable. Causes of non-recoverable losses include

insect and animal pests, weeds, and disease. Developing regions see greater losses

during production than developed regions due to the availability of disease and pest

prevention measures (Oerke & Dehne, 2004; Savary et al., 2012). Losses due to these

factors are accounted for in crop-yield data so no loss factor is applied at this stage.

The methodology for handling recoverable harvest losses: ‘harvest residues’, is more

complicated since these are crop dependant. Not all harvested material is edible

for humans, for example the husks and casings or ‘chaff’ produced when harvesting

grains. The formalisation of this concept is the harvest index, defined as the

ratio of the mass of useful product to the mass of above ground biomass (Singh

& Stoskopf, 1971). Despite being an inefficiency in the food system, many waste

products produced at the harvest stage can be used for other purposes to reduce

this inefficiency. Chaff for example, while inedible to humans, is suitable feed for

most livestock. Harvest residue indices and harvest residue recovery rates are used

to inform a ratio of produced residue to recovered residue (Krausmann et al., 2008;

Wirsenius et al., 2010). Harvest residue indices and recovery rates can be found in

Appendix Tables A.4 and A.5.

Processing losses occur as the raw crops are processed to a form suitable for their

intended purposes, for example the removal of kernels from olives. Some of these

losses are potentially recoverable for use as animal feed, bioenergy feedstock or in

other industries (Van Dyk et al., 2013). Fodder crops generally incur less loss than

crops destined for human consumption at the processing stage as they require little

to no processing (Gustavsson et al., 2011; Kitinoja, 2013).

Distribution losses are incurred through transportation or storage. This stage is a

major contributor to food system inefficiency in developing countries; due to poor

road infrastructure, pests and lack of suitable refrigeration or other storage, losses at

this stage can be as high as 50% and as low as 5% in developing and developed areas
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Loss factor Industrialised (X = 1.0) Subsistence (X = 0.0)
Processing 6% 10%
Distribution 5% 50%
Post-production 30% 5%
Post-production waste to feed 5% 40%
Other waste to feed 40% 15%

Table 2.1: Boundary values for factors informed by the food system efficiency parameter.

respectively (Lipinski et al., 2013; Parfitt et al., 2010).

Post-production food waste refers to food lost at the consumer level, including food

thrown away after purchase in the home, or in commercial environments such as

restaurants. Unlike most other food system loss factors, the heaviest post-production

losses are seen in the developed world (Parfitt et al., 2010; Stancu et al., 2016).

Since post-production waste is inherently included in food supply data, the post-

production factor shown in table 1 is used only to estimate the amount of post-

production waste potentially available for use as livestock feed.

2.3.3 FOOD PRODUCTION

PRODUCTION

Following the application of the loss factors determined in the food system efficiency

section to the food supply projections described in section 3.1, each country is left

with a food energy requirement for each food commodity r , calculated using the

following equation:

r j ,a(n) = E j ,a(n)∏
l∈L

(
1−µl ,a(n)

) , (2.7)

where r is the energy demand from a country a for commodity j , µ is a loss factor

and L is the set of processing and distribution losses. E is the calorific contribution

to the countries food supply from commodity j , described in section 3.1. The food
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energy lost due to efficiency loss factors is retained for potential re-use as livestock

feed. Food demand is then summed globally for each key commodity or commodity

group is, so the global production requirement R for the commodity j is

R j (n) = ∑
a∈A

r j ,a(n), (2.8)

where r is the food energy demand for commodity j from a country a, and A is the

set of all countries.

C-LLAMA does not have a formal representation of trade, instead trade is implicit

in the allocation of food production; global proportions of production for each crop

commodity are calculated using the most recent five years of production data then

allocated accordingly. For example, the USA was responsible for 42% of global wheat

production between 2012 and 2017, thus 42% of all wheat production in C-LLAMA is

allocated to the USA. To account for the significant industrial use of primary crops in

Brazil and the USA, the historical production value is reduced by a factor to provide

an estimate for only food use of those crops. These factors are 0.34 and 0.289 for sugar

cane in Brazil and corn in the USA (Bordonal et al., 2018; De Miranda & Fonseca, 2019;

Mohanty & Swain, 2019). Following this process, each nation is left with a production

allocation for each key commodity and commodity group, the equation for which is

q j ,a(n) = M j ,a∑
a∈A M j ,a

∗R j (n), (2.9)

where q is the allocated production energy of commodity j in the country a, M is

the mean of the most recent five years (2012 to 2017) of historical production mass of

commodity j in country a and A is the set of all countries.
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CROP YIELD

A large proportion of yield variation can be explained by climate variability, with the

remainder being a result of farming practices and industrialisation (Mueller et al.,

2012; Ray et al., 2015). C-LLAMA takes largely the same approach as FALAFEL;

historical yields for each crop and group are projected linearly to 2050, but this is

done for each country. Yield has the potential for large transient variation on a year

by year basis, often a result of climate events, pests or management (Ray et al., 2015;

Frieler et al., 2017). Consequently, there is the possibility of yields increasing at an

unrealistically high rate through this kind of projection. To address this, in C-LLAMA

yields are capped at the historical maximum value for a region, preventing any region

from exceeding an observed value whilst allowing each country within a region to

catch up to a localised observed maximum. Linear projections with a p-value greater

than 0.05 (this threshold can be changed) or a decreasing yield are discarded. In either

of these cases, the mean yield from the previous ten years of data is used instead.

For all key crops the raw yield data, in tonnes per hectare per year, was used to make

the projection. In the case of grouped crops, the groups yield was calculated by

taking mean of all crops contained in the group, weighted by national production

mass. The group ‘sugar crops’ consists almost entirely of sugar beet since sugar cane

is represented as an individual crop. For palm oil, vegetable oils and other oil crops,

an effective oil yield was calculated for each using their respective oil factors which

can be found in the FAOSTAT database (FAO, 2021a).

2.3.4 LIVESTOCK

Animal product demand is one of the highest contributors to agricultural land

demand and greenhouse gas emissions globally, with estimated emissions between

5.6 and 7.5 Gt CO2 yr-1 equivalent between 1995 and 2005; as such livestock are a

crucial component of the C-LLAMA model (Herrero et al., 2016; Pikaar et al., 2018;
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Van Zanten et al., 2018). As with vegetal food commodities, livestock commodities

are partially grouped, with major commodities: bovine meat, pig meat, mutton/goat

meat and poultry meat remaining separate. The remaining meat products contribute

comparably little to the global demand for animal products and are grouped into

an ‘other meat’ category. Eggs, dairy and fish are each in their own groups. For

each country, an animal commodity demand is produced per year in the diet and

food supply section of the model. As is well established, livestock are inherently

less resource efficient than vegetal products as a means of providing calories for

human consumption. The feed consumed by livestock does not go directly to become

fresh animal product, instead much of it supports the survival of the animal. This

is commonly quantified as a feed efficiency (FE) or livestock conversion efficiency

(LCE, the inverse of feed efficiency), expressed as the quantity of fresh animal product

to feed energy mass or equivalent energy. This number varies drastically between

animal product types: bovine meat has an energy FE of approximately 3%, whereas

poultry meat is much higher at 21% (Shepon et al., 2016). Note that these FEs are

produced from data acquired in the USA. Currently the values used in C-LLAMA

are taken from FALAFEL; a cohesive energy-equivalent FE dataset was not found

at a regional or country level. FEs certainly do vary regionally, largely due to the

different role of livestock in different food systems. A cow in a subsistence agriculture

environment is more likely to be allowed to live to substantial age, providing dairy

and driving machinery. This contrasts with a cow in industrialised agriculture, where

it might be reared solely for meat and slaughtered in early adulthood (Wirsenius et al.,

2010). A proportion of livestock feed demand is met through forage (µforage) and

the remainder is met through feed and residues (µnon-forage, equivalent to 1−µforage),

calculated using the food system efficiency parameter to assign a value between the

subsistence case and the industrialised case, using the same method as in Eq. (6). The

quantity of feed demand energy from non-forage D for animal product j in country

a and year n is
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D j ,a(n) =Q j ,a(n)∗µnon-forage j ,a(n)∗ 1

FE j
(2.10)

where FE j is the livestock dependant feed efficiency and Q is the production

allocation. The extreme cases for each animal product are centred around the

FALAFEL numbers, with the developing limit being 20% lower and the developed limit

being 20% higher. The proportion also varies dependant on the animal product, for

example chickens and pigs typically obtain a higher proportion of their food energy

from feed than ruminants (Tufarelli et al., 2018). An individual animal will likely be

fed through a combination of forage and feed, but for the purpose of the model the

assumption is made that the land footprint of non-foraging animals comes only from

the land required for fodder crops. The portion of livestock feed demand met through

forage is therefore 1
FE j

∗Q minus D for each animal product j . This approach is coarse

compared with modelling livestock as entities with individual mixed feed demands,

however the feed energy requirements are comparable.

WASTE AND RESIDUES AS FEED

In some situations, livestock can utilise waste from the agricultural system,

processing losses, post-production food waste and harvest residues. For each

livestock commodity a potential feed ratio for each of these waste streams is

estimated: the maximum proportion of each waste type that could contribute to the

livestock diet (z). These ratios can be found in Appendix Table A.6. Waste produced

by processing, distribution and post-production are calculated at the country of

consumption, while harvest residues are calculated at the crop production stage.

Post-production waste is assumed to only be available to animals in the area in which

it was produced and is informed by a post-production waste to feed factor (µpost),

scaled by the food system efficiency parameter using Eq. (6) between 40% and 5% for

the subsistence and industrialised cases respectively. Note that in the case of post-

production waste the subsistence extreme is ‘more efficient’ than the industrialised
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case. The remaining total available waste energy is multiplied by an ‘other waste to

feed factor’ (µother ), again informed by the food system efficiency parameter using Eq.

(6), with the subsistence and industrialised limits being 15% and 40% respectively.

Other waste is that of harvest residues and processing waste, but not distribution

waste since this is ‘lost’ or spoiled. These numbers are taken from the low and

high efficiency scenarios in FALAFEL. Waste energy is ‘fed’ to livestock, up to the

potential feed ratio limit, allocated by the potential feed ratios (z). The energy used

is then subtracted from the livestock feed energy demand, the remainder of which

is accounted for with fodder crops. The remaining feed energy demand to be met

through fodder crops (D ′) is

D ′
j ,a(n) = D j ,a(n)∗

[
1− ∑

ω∈Ω
z j ,ω

]

+ ∑
ω∈Ω

[
S

(
D j ,a(n)∗ z j ,ω−

[
wω(n)∗µω∗

z j ,ω∑
c∈C

(
zc,ω

)])] (2.11)

S(x) =


x for x > 0

x for x <= 0

(2.12)

where D is the total feed energy demand, z is the maximum portion of feed energy

that livestock j can obtain from waste stream ω, w is the available waste energy and

µ is the waste to feed factor. C is the set of all livestock commodities andω is the set

of all waste streams: post-production, processing, and harvest residues. µ is µpost for

post-production waste and µother for all other waste streams.

FODDER

Following the reduction of livestock feed demand through waste to feed and foraging,

the remaining feed energy demand is met with fodder crops. The historical fodder

mix, the ratio of each crop making up fodder in a country, is calculated using the most

recent five years of ‘feed’ energy data in the FAOSTAT food balance sheets. The cereals

contributing the most to the fodder mix globally are maize, wheat, sorghum, barley
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and rice. In addition, soybeans, potatoes, cassava, pulses and fruits also contribute

in the top ten. Each of these products are represented individually while all other

products used as feed are grouped as ‘other feed’. Around 8% of the total feed mass

each year comes from non-crop products. The majority of this 8% is milk and the

remainder is largely comprised of aquatic products such as fishmeal and aquatic

plants, often added to livestock feed to supplement nutrition (Holman & Malau-Aduli,

2013; Oliveira Vieira et al., 2015). These products are removed from the fodder mix,

as these products require minimal additional land. The remaining livestock feed

demand is split according to the derived fodder mix, so the contribution to the total

fodder requirement (r ) in country a from fodder product k is

rk,a(n) = fk,a∑
s∈S fs,a

∗
(
1− fmilk,a + faq,a∑

s∈S fs,a

)
∗ ∑

c∈C

(
D ′

c,a

)
(2.13)

where f is the five year mean of feed data for fodder product k from the FAOSTAT

food balance sheets, fmilk and faq are the feed data for milk products and aquatic

products respectively, S is the set of all fodder products. D ′ is the fodder demand

for livestock commodity c, C is the set of all livestock commodities. The global

production requirement for fodder product k is then

Rk (n) = ∑
a∈A

rk,a(n) (2.14)

In the same way as crop production for food, the fodder crop production demand

is allocated based on historical production of the fodder products. The production

allocation (q) for fodder product k for country a is

qk,a(n) = Mk,a∑
a∈A Mk,a

∗Rk (n) (2.15)

where M is the five year mean production mass for fodder product k and A is the

set of all countries. In the case where the product has been considered as a food
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commodity and thus a yield and production allocation has already been calculated,

the additional production allocation for fodder is simply added to the nations existing

production quota of the commodity for food. In some cases, it is necessary to perform

a yield projection in the same manner as described in section 3.3. Following this stage,

each country has a production quota for each year for each commodity, used for food,

animal feed, or both, along with a corresponding yield trajectory.

2.3.5 LAND USE

CROP LAND USE

A simple division of yearly crop production allocations by national crop yield

projections produces a yearly land demand trajectory for each crop within a given

country. Since the model objective is to explore sensitivities rather than absolute

land-use values, land-use is projected from the most recent value in the FAOSTAT

data: a calibration factor is used to align the 2017 value of the projected values with

the 2017 historical value, for each crop. In the case that total land demand for crops is

less than the previous year, the land difference between the years is put into a ‘freed

land’ class. In FALAFEL this land is then used for either afforestation or energy crops,

while C-LLAMA does not currently process this further. In reality land use change

is multidimensional; the abandonment of agricultural land varies greatly between

areas and industrialisation levels, influenced by climate, land productivity, tradition

and governance Lambin & Meyfroidt (2011); Lambin et al. (2003). C-LLAMA currently

does not consider non-agricultural land use. Further development to include more

complex handling of land-use is intended.

LIVESTOCK LAND USE

As mentioned in section 3.4, the land requirements for livestock (in addition to fodder

crop production) in C-LLAMA come entirely from their pasture area; the implication
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being that all fodder fed animals are under roof, while their foraging counterparts

graze pasture. This is generally not the case for foraging pigs and chickens, so a

pasture factor (ρ) of 0.1 is applied to reduce their land footprint from that of cows

and sheep (Tufarelli et al., 2018).

The land used for livestock pasture is calculated using an effective pasture yield. First,

the historical energy obtained from pasture by livestock was estimated using a similar

process to the method adopted in Haberl (2007); for each country, available feed

is subtracted from a livestock feed demand, calculated using historical production

energy and feed conversion ratios between 1961 and 2017. This leaves animal food

acquired through forage. Dividing this quantity by land-area used for pasture in a

given year results in the historical effective pasture yield – animal product energy

produced per hectare of pasture. The land-area data used is taken from the FAOSTAT

database (FAO, 2021a). The historical effective pasture yield (Y ) for animal products

in country a is

Ya = 1

Lpasture, a
∗

(∑
j∈J

[
M j ,a ∗FE j ∗ρ j

]− ∑
k∈K

fk,a

)
(2.16)

where Lpasture is the country’s pasture land area, M is the production mass of an

animal product j , FE j is the feed conversion ratio for the animal product and J is

the set of animal products. f is the quantity of available feed product k and K is

the set of all feed products. The historical trajectory is linearly projected to 2050; the

pasture yield and pasture production mass demand together give a projected pasture

land requirement for each livestock commodity. Since there is no historical data to

calibrate the yield value to, the yield value is scaled such that the projected 2017

pasture land-use matches the 2017 historical pasture land-use. The value is calibrated

to the anchor scenario described in Section 5, rather than being scenario specific, to

address counter-intuitive model behaviour, discussed in the Appendix (Figures A.4

and A.5). Because this can result is minor discontinuity when running non-anchor

scenarios, the projected land-use is then calibrated to the historical land-use too. This
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method is coarse but offers a catch-all method of translating a production demand

into land-area for every country in C-LLAMA.

2.4 MODEL OUTPUT

C-LLAMA produces a land-use trajectory from 2013 to 2050 for each food commodity

and commodity group within a country, output as a comma separated variable file.

Animal product land-use is aggregated as pasture, explained in section 3.4. All crops

have individual land-use trajectories. An output with crops aggregated into either

crops or specifically fodder crops is also produced. Data from intermediate stages

of the model such as food supply, production, and crop yield projections is retained

upon completion of the model run. However, given that calibration of the model

occurs at the final stage rather than at every intermediate stage, these trajectories

should be viewed with this in mind. Food supply and crop yield projections are both

direct projections of historic data and so are exempt from this. For the sake of model

run time, intermediate outputs are stored in a serialised format using the ‘pickle’

library, part of the Python standard library (Van Rossum & Drake Jr, 1995).

2.4.1 ANCHOR SCENARIO

C-LLAMA is based around an anchor scenario, in which all parameters take default

values based on literature and projections from historical data are made to 2050. This

scenario aims to be as close an approximation to the real world as possible in the

framework of the model, with targets for efficiency and industrialisation being set

at middle of road values. Table D1 in shows key parameters and their values in the

anchor scenario. Regionally aggregated land-use types in the anchor scenario can be

found in appendix E.

Figure 2.2 shows agricultural land-use at the continental level for historical FAOSTAT
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data and in the C-LLAMA anchor scenario. All continents aside from Oceania see an

increase in land-use for both crop and animal production, with the rate of increase

slightly decreasing toward 2050, particularly in Africa. The greatest rate of increase

occurs in Asia and the least in Africa and Europe. In all cases, the rate of increase

for pasture is greater than that of cropland, with cropland for fodder crops lying in

between. The direction of the projected land-use aligns with that of the historical data

in the Americas, Africa, Oceania, and Asia. However, in Europe a slight reversal of the

direction of change occurs, a result of the significant historical production of beef and

dairy production in Russia; Russia produced 4% of the World’s bovine meat in 2013,

hence is allocated a significant portion of beef production in the model processes and

resultant pasture area increase.

Figure 2.3 shows the projection of mean diet at the continental level in the C-LLAMA

anchor scenario. All continents undergo an increase in total calorific intake toward

2050. With the magnitude of change being similar at around 400 kcal for every

continent with the exception of Europe, which sees a lesser increase of approximately

200 kcal by 2050. The proportional increase varies however, with the greatest

proportional increase occurring in Africa. The consumption of non-egg and dairy

animal products increases in across all continents, although only slightly in Africa.

The consumption of cereals decreases slightly in Asia and Europe, but increases

slightly elsewhere, with the strongest increase in Africa. The demand for oil crops

sees similarly proportional increases in every continent, with Europe and Oceania

consuming more.

COMPARISON WITH FALAFEL

The globally summed land-use output of the C-LLAMA anchor scenario can be

compared with the land-use trajectory of an analogous business as usual scenario

produced in FALAFEL. In the same way as C-LLAMA, the FALAFEL model allows

prescribed increases in efficiency – for example a forced reduction in animal product

consumption. To produce the business as usual scenario in FALAFEL, linear
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Figure 2.2: Agricultural land-use in FAOSTAT historical data and C-LLAMA anchor scenario
projection for five continental regions. The transition from historical to modelled data is
denoted by the dotted black line. Discontinuity at the dotted line is due to the countries not
included in C-LLAMA for various reasons described in section 3. 99.7% of this discrepancy
is the result of unavailable food balance data for Libya, Somalia, Sudan, the DRC, and Papua
New Guinea. Also note the sudden increase of land-use in Asia and corresponding decrease
in Europe in the early nineties, the result of the dissolution of the Soviet Union. As the
FAOSTAT land-use does not contain disaggregated crop-data for fodder and food, food crops
also include fodder crops in the historical data.

projections are made where they are available and all prescribed efficiency changes

are turned off. For comparison, the land-use data from both models is grouped into

pasture, food crops (for human consumption), and fodder crops. The resulting land-

use for both modelled scenarios is shown in Figure 2.4. The trajectory of both the

FALAFEL scenario and the C-LLAMA anchor scenario reach just over 5 Gha by around

2050, with C-LLAMA reaching approximately 5.2 Gha, an increase of approximately

450 Mha. The difference in starting food crop area is slightly higher in C-LLAMA, and

a small amount of additional growth occurs by 2050 in C-LLAMA. C-LLAMA starts

with a lesser area of fodder crops but sees less proportional growth by 2050 than in



2.4. MODEL OUTPUT 49

Figure 2.3: Calorific mean diet composition at the continent level in historical FAOSTAT data
and the C-LLAMA anchor scenario. Some food commodities are grouped for clarity and the
order of appearance from the origin for the groups aligns with the legend.

FALAFEL. Both models see an increase of approximately 90 Mha in total cropland by

2050. The largest difference lies in pasture, with C-LLAMA starting at just over 3 Gha

and FALAFEL starting at around 2.6 Gha. Both models have a very similar pasture

area in 2050 around 3.4 Gha. The method used to estimate pasture area in FALAFEL

is completely different to that of C-LLAMA, using estimates of land-productivity and

energy uptake by livestock, rather than calculating an empirical pasture-yield.

2.4.2 SENSITIVITY

Four key projections are made throughout the course of the model for each country.

Diet and crop yields are projected directly from the historical data, whereas the food

system efficiency parameter and effective pasture yield are internal values calculated

from historical data, which are then projected. To explore the sensitivity of the final

land-use output of C-LLAMA to these four projections, each was fixed at the mean

value of their most recent five years and the land-use by 2050 compared with the

anchor scenario. The results of this are shown in Figure 2.5.
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Figure 2.4: Aggregated global land-use for food production in the C-LLAMA anchor scenario
and a ‘business as usual’ (BAU) FALAFEL scenario. FALAFEL accounts for the production of
some non-food crops, however they are excluded for this comparative figure.

The impacts of each of these projections are within an order of magnitude of each

other. Halting the projection of crop yields results in an increased agricultural land-

use of approximately 300 Mha from the anchor scenario. This is consistent with

the current trend of increasing crop yields in most areas of the world: a result of

improving access to irrigation, agrochemicals and machinery (Ray et al., 2012; Iizumi

et al., 2017). Suspending the projection of the food system efficiency parameter has

the greatest impact on the total land-use with an increase of approximately 500 Mha.

Suspending the food system efficiency parameter locks many countries in a state

of lower efficiency, unable to meet the increasing food demand from the growing

population. Halting changes in pasture yield leads to an increase in land-use of

around 450 Mha. While the ‘effective pasture yield’ is not a real-world quantity, it aims

to capture a wide range of factors that govern the output of grazed land. This quantity
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Figure 2.5: Difference in 2050 global agricultural land-use between the anchor scenario
(dotted line) and when disallowing the progression of projections in the model by using the 5
year mean of historical values for each.

is increasing in the majority of countries, the result of livestock intensification by

transfer to more intensive pasture or a covered system (Davis & D’Odorico, 2015;

Thornton, 2010). Stopping the projection of dietary trends reduces the final land-use

by approximately 450 Mha. Current global dietary trends are toward increased animal

product consumption in developing countries and stagnation of animal product

consumption in developed nations (Tilman & Clark, 2014; Van Zanten et al., 2018).

This combined with an increase in total calorie intake in the majority of countries

explains the decrease in land-use when suspending the projection of diet.

Loss factors in C-LLAMA are dynamic, governed by the food system efficiency

parameter. To explore the sensitivity of the model to loss factors every country was

fixed at the lower and upper boundary values, equivalent to scoring every country at

0.0 or 1.0 respectively on the food system efficiency parameter. Figure 2.6 shows the
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Figure 2.6: Change in 2050 agricultural land-use between the anchor scenario (dotted line),
maximum, present, minimum efficiency, and full-vegetarian diet scenarios. Maximum and
minimum efficiency scenarios are produced by setting the food system efficiency parameter
to 1.0 and 0.0 respectively for all countries. The full-vegetarian diet scenario tends toward a
100% plant-based diet globally by the year 2050.

results of this analysis, along with a fully vegetarian (by 2050) diet scenario. Scores

of 1.0 leads to a land-use increase of approximately 700 Mha by 2050, and a global

score of 0.0 leads to an almost identical increase of just over 700 Mha by 2050. Scores

of 1.0 and 0.0 both precipitate very high loss ratios from the start of the model of

around 30% in post-production and production respectively. The present efficiency

scenario is achieved by setting the food system efficiency parameter at its present

values, identical to the ‘FSE param’ scenario in Figure 2.5. The fully vegetarian diet

scenario sees a drastic land-use decrease of approximately 1.8 Gha by the year 2050,

which is consistent with the previously discussed effective land-use inefficiency of

animal products as food when compared to vegetal products.
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2.5 DISCUSSION

Estimates of historical agricultural land cover, cropland harvests, and land-use

change are plentiful (Erb et al., 2017). There are a wide range of approaches from

book-keeping to satellite imaging, the majority of which are available at high spatial

resolutions (Fritz et al., 2015; Winkler et al., 2021; Hurtt et al., 2011). These datasets

are used as starting points for other modelling approaches such as IAMs or vegetation

models but cannot be used to directly make projections of land-use. From these

starting points, a great number of model and scenario drivers impact the land-use

trajectories of IAMs, including economy, energy demand, commodity pricing and

policy. IAMs are excellent tools for making holistic projections about a wide range

of factors in given scenarios, but the land-use component is difficult to extract. The

purpose of C-LLAMA is to explore the sensitivity of agricultural land-use to various

drivers within the food system, not to make explicit predictions about land-use within

specific countries.

The C-LLAMA anchor scenario projects cropland and pasture land-uses of

approximately 1.64 Gha and 3.57 Gha respectively by 2050. The projected cropland

value is within the range of projected values from IAM scenarios in the comparable

SSP2 and broader AR5 databases, shown in Table 2, and well within estimates of

cropland availability (Eitelberg et al., 2015). However, the projected pasture value is

slightly outside the range of other SSP2 scenarios, albeit only 70 Mha greater than

the marker scenario. The majority of agricultural land expansion in SSP2 scenarios

occurs in Africa and Latin America (Popp et al., 2017). In C-LLAMA there are pasture

expansions in these regions, along with expansion occurring in North America and

Asia, due to the very limited trade mechanics of C-LLAMA. Note that the scenarios

in these databases are based around key assumptions and pathways in the social

and economic sectors, whereas the only prescribed trajectory within C-LLAMA is of

population. As previously discussed, the intention of C-LLAMA is not to predict land-
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use futures, so this behaviour in these regions does not diminish the efficacy of the

model as a means to explore sensitivities to drivers.

A fully vegetarian scenario in C-LLAMA sees a significant decrease in agricultural

land-use of 1.8 Gha (a reduction of approximately 34%), in-line with the literature

(Röös et al., 2017; Swain et al., 2018; Weindl et al., 2017; Van Zanten et al., 2018). The

nutritional implications of such a diet were not considered in this scenario; which is

likely to be a significant hurdle in the transition to sustainable diets (Duro et al., 2020;

Willett et al., 2019). With the ability to prescribe trajectories for diet at a country level,

C-LLAMA is well placed to explore such questions. Nutritional information could also

be built into C-LLAMA for each commodity.

The strength of C-LLAMA lies in its simplicity: it can be easily modified, adapted,

and improved. However, there are limitations to the approach and two key areas

for improvement have been identified. One area with scope for improvement is in

the allocation of crop and livestock production described in section 4.3. The current

method uses a snapshot of current production to distribute the projected production

of a crop; this approach works for earlier projected years since interannual changes to

trade are relatively slow, being on similar timescales to changes in demand. However,

long term changes to global trade are not captured, specifically those likely to arise

from improved access to wealth and subsequent demand for luxury and animal

products in developing countries. Improvements might include trade matrices

for each food commodity, or a forward projection of the commodity production

allocation, which would allow semi-dynamic trade representation without the need

for any agent based or economically driven modelling. The other area with great

potential for improvement is the representation of livestock and, more broadly,

land-use within the model. The current method for estimating land-use for crops

and livestock is effective for exploring questions surrounding global-scale changes

and scenario options. However, a land class system with productivity, land-

use transitions, and associated carbon exchange would facilitate a more nuanced
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exploration of the drivers of land-use and their consequences, particularly in the case

of livestock, forests, and grasslands.

Including the DRC, Libya, Sudan, Somalia, and Papua New Guinea would

be beneficial as together they account for a significant portion of the global

land area (approximately 3%). Papua New Guinea and the DRC have humid,

equatorial climates with highly productive land; excellent conditions for agricultural

productivity (Kottek et al., 2006). While not included in the food balance data, they

are present in other FAO data, so it may be possible to construct an approximate

food balance dataset from their available FAO data and regional averages. Another

approach would be to construct food balances using other data sources, however this

approach would contravene the internal consistency of C-LLAMA.

C-LLAMA takes a simple approach to modelling the drivers of land availability,

offering transparency and adaptability where more complex modelling approaches

do not. Of the many drivers of future land-availability, the simplicity and traceability

of the model make it well placed to explore the impacts of broad scale drivers such

as changes in livestock production systems, crop yields, dietary trends and food

system efficiency on the future of land available for food agriculture, bioenergy and

afforestation from a bottom-up perspective. For example, scenarios with prescribed

increases to crop yields, consumption of specific commodities, calorie intake, or

wasted food could be constructed. The structure of C-LLAMA also facilitates that

these changes can be applied at regional or country levels. The model aims to be

easily accessible to use and modify, using only open source data and software.





3
MODELLING THE IMPACTS OF DIET ON

LAND AVAILABILITY

ABSTRACT

In this chapter the land-use implications of transitioning to both the EAT-Lancet

planetary health diet and a fully plant-based diet are explored in C-LLAMA.

Transitioning from business as usual diet projections to the EAT-Lancet planetary

health diet leads to an increase in global agricultural land use of approximately

160 Mha by the year 2050, with land used to support animal production (pasture

and fodder crops) decreasing by 670 Mha, and food crop area increasing by 830

Mha. The increased overall food supply in developing regions and transition to

more nutritious vegetal products in the EAT-Lancet planetary health diet scenario

offsets the land-use efficiency improvements made through reducing animal product

consumption. When prescribing dietary changes regionally, regions with larger

populations typically see greater agricultural land use sensitivity to diet. A fully

57
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plant-based diet when prescribed globally leads to a complete reduction to 0 Mha

of all fodder crop and pasture areas, and only a small increase in food crop area of

approximately 100 Mha.

3.1 INTRODUCTION

The growth of populations, changes in total food supply, and dietary composition

are the first in a series of driving forces behind the global food system and ultimately

land-use for agriculture, outlined in Chapter 1 (Bahar et al., 2020). The UN medium

population scenario is constructed using the median trajectory of a set of several

thousand projections for each country (KC & Lutz, 2017) and is used in the SSP2

and C-LLAMA anchor scenarios (Fricko et al. (2017), Chapter 2 Section 2.3), the

total global population is projected to increase at a steady rate until 2050, at which

point the rate of increase slows down, eventually stagnating around 2100 (see Figure

1.2). Increases in population mean there are more people to feed, inevitably leading

to increases in food demand and hence land-use for agriculture. However, this

relationship is not directly proportional, instead being heavily influenced by the

quantity and composition of food consumed by the population. In the SSP2 marker

scenario, overall calorie intake increases by 11% and 22% in the global North and

South respectively, and animal product consumption increases by 20% globally (from

15% to 18% of all calories consumed) (Fricko et al., 2017).

The trajectories of population growth around the world are fairly immutable in the

context of climate change mitigation, so options for reducing the land required for

food production are limited to changes in diet, food waste and losses, or productivity

(crop and pasture yields). The focus of this chapter will be on diet, while later chapters

will explore waste and productivity. There are two avenues through which diets

can be changed to reduce land-use. The simplest is to reduce the quantity of food

consumed; in many developed countries the average calorific intake is increasingly
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higher than necessary for a healthy diet (over-consumption), sometimes so high as

to be detrimental to health (Cicatiello & Franco, 2018; Temme et al., 2020; Bodirsky

et al., 2020). Indeed, over-consumption may be as significant a contributor to food-

system inefficiency as post-production food waste (Alexander et al., 2017). However,

over-consumption is difficult to quantify as food supply estimates such as FAOSTAT

food balances usually also include food that is wasted in the household (Schmidt &

Matthies, 2018; FAO, 2021a). Additionally, under-nutrition and malnutrition remain

prevalent in many regions of the world: over 2 billion people experienced food

insecurity in 2019, which should be addressed as a priority in line with sustainable

development goal 2 (end hunger, achieve food security and improved nutrition, and

promote sustainable agriculture) (UN Department of Economic and Social Affairs,

2021). The second option to reduce the land-use impact through diets is to alter their

composition.

With the goal of reducing the broader environmental impact of diets, the literature

points overwhelmingly in the direction of reduced animal product consumption, in-

part due to the considerable greenhouse gas emissions and water usage of livestock

systems but also their high land footprints when compared with vegetal products

(Swain et al., 2018; Poore & Nemecek, 2018; Weindl et al., 2017; Clark & Tilman,

2017). Ruminant meat (primarily bovine meat, and sheep and goats) is by far the

greatest contributor to land-use for agriculture, with median land-use impacts an

order of magnitude higher than that of pig meat and even more so than almost all

vegetal products (Clark & Tilman, 2017; Poore & Nemecek, 2018). Eshel et al. (2016)

assess the impact of replacing beef in the North American diet with entirely plant-

based alternatives. Rather than modelling the land-use of the population this study

assessed the land footprint ‘per capita’ of these diets, finding that in a suite of 1500

beef-replacement diets, on-average the replacement diet required only 10% the land

of it’s beef-consuming counterpart. There are also significant variations in the land-

footprints of vegetal products, with cereals and starchy roots typically requiring less

land to produce (per calorie) than pulses, vegetables, and fruits (Poore & Nemecek,
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2018; Ramankutty et al., 2018).

To remain consistent with the principles of the sustainable development goals,

specifically sustainable development goal 2: which is to ‘end hunger, achieve

food security and improved nutrition and promote sustainable agriculture’ (United

Nations, 2019a), dietary targets should have both a sufficient calorie content and

nutritional content as to be ‘healthy’. Sustainable diets often have very limited animal

product content, especially in the case of ruminant meat and dairy products (Hemler

& Hu, 2019; Willett et al., 2019; Steenson & Buttriss, 2020). Animal products contribute

significant quantities of fats and protein to macro-nutrient intake in the diet, in

addition to micro-nutrients such as iron, zinc, calcium, and iodine, so they must

be replaced with vegetal products containing sufficient amounts of these nutrients

(Steenson & Buttriss, 2020; Sha & Xiong, 2020). While most vegetal products contain

a wide range of nutrients, legumes and vegetables are typically higher in nutrient

content than cereals and starchy roots, which contain mostly carbohydrates (Liew,

2020). While it would certainly be possible to achieve an incredibly high land-use per

calorie efficiency with diets comprised of only sugar products or cereals, such diets

would not be suitable for sustained human consumption.

In this chapter, C-LLAMA is used to explore the land-use implications of prescribing

a fully vegan diet globally, and the impacts of applying a diet, consistent with both

planetary and human health goals, globally and at a regional level.

3.2 METHOD

3.2.1 THE EAT-LANCET PLANETARY HEALTH DIET

The content of a healthy diet is subject to a number of factors individual to the

consumer, including lifestyle and metabolism. For example, individuals who are

more physically active will require a greater energy intake (Laquale, 2009). For
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a typical human, the same general guidelines for a healthy diet can be applied,

although factors such as pregnancy or infancy may change these (World Health

Organization, 2019). The EAT-Lancet commission present a ‘planetary health diet’

reference diet, the purpose of which is to operate within a safe space for both

human health and planetary boundaries: it could theoretically be sustainable for

every member of the population to consume this diet (Willett et al., 2019). Table

3.1 shows the composition of the EAT-Lancet planetary health diet (EL diet). The

presented diet is based on a total calorie intake of approximately 2500 kcal per

day, however as the intake is adjusted to account for lifestyle and metabolism the

energy contribution from each food should remain the same. This diet permits the

continued consumption of animal products, albeit at a severely reduced rate for many

regions of the world such as North and South America, Europe, Southern Africa, and

Oceania. A reduction in animal product consumption is a significant social hurdle to

overcome in the transition to sustainable food consumption (Culliford & Bradbury,

2020). This is especially true in middle-income countries such as India and China,

where increasing wealth has increased demand for these products (He et al., 2018):

the global production of poultry and ruminant products has increased by factors of

nearly 5 and 1.5 respectively since 1960 (Godfray et al., 2018, 2010).

The EAT-Lancet planetary health diet is an excellent candidate for an idealised

target diet to strive for: it is generally applicable since it allows for flexibility within

constituent food groups (Willett et al., 2019). To make the transition to the EL diet,

the usual projection (see Section 2.4.1) is used until 2021, at which point a linear

transition to the diet by 2050 occurs. The EL diet is expressed in terms of food groups

rather than specific commodities, allowing for some variation in the makeup of each

group. There are a number of steps needed to prescribe the EL diet in C-LLAMA.

First, commodities as grouped in C-LLAMA are aggregated to align with the groups in

the EAT-Lancet diet. For example, all cereals are aggregated (in addition to the ‘other

cereals’ commodity) and grouped into ‘whole grains’. A list of these aggregations can

be found in Table 3.2. Secondly, the proportion of commodities within the aggregated
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Food group Constituent products
Macronutrient intake
(g/day)

Calorie intake
(kcal/day)

Whole grains Cereals 232 811
Tubers and
starchy roots

Potatoes, cassava etc 50 39

Vegetables Vegetables 300 80
Fruits Fruits 200 126
Dairy foods Milk and equivalents 250 153
Protein sources Beef and lamb 7 15

Pork 7 15
Poultry 29 62
Eggs 13 19
Fish 28 40
Legumes 100 426
Tree nuts 25 149

Added fats Oils and equivalents 52 450

Added sugars
Sugar and other
sweeteners

31 120

Table 3.1: The EAT-Lancet planetary health diet, based on a daily calorie intake of 2500 kcal,
adapted from (Willett et al., 2019). Presented macronutrient values are the modal of a range.
Vegetable calories can vary dependant on the type of vegetables consumed. Pork and red (beef
and lamb) meat calories are also interchangeable.

group are projected as normal (see Section 2.3.1): the makeup of the group is allowed

to change over time. For example, if a country has an increasing contribution to diet

from wheat more so than other cereals, the contribution from wheat to the whole-

grains EAT-Lancet group will increase toward 2050.

There are some assumptions being made here; commodities in C-LLAMA also

includes derivative products. For example, the wheat commodity includes raw

wheat but also includes wheat flour and further derivatives such as breads. The

included derivative products in these categories are adjusted to reflect the calorie

contribution from the commodity (FAO, 2021a). Therefore, wheat as presented is

actually an effective ‘wheat-equivalent’ value, so this should have no impact on the

related agricultural land-use since it will propagate through the model as wheat

(when relating to yield and production). This also presents a slight inaccuracy in

the transition to the EAT-Lancet diet from the C-LLAMA projection, since cereals are

commonly refined, altering their nutrient content (Bazzano et al., 2005). Meaning
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EAT-Lancet group C-LLAMA commodities
Whole grains wheat, rice, maize, other cereals
Tubers and starchy roots potatoes, cassava, other starchy roots
Vegetables vegetables
Fruits fruit (excluding wine)
Dairy foods dairy
Beef, lamb and pork bovine meat, mutton and goat meat, pigmeat, other meat
Poultry poultry meat
Eggs eggs
Fish fish, seafood
Legumes pulses, soyabeans
Tree nuts nuts, seeds
Added fats palm oil, oilcrops, vegetable oils
Added sugars sugar, other sweeteners

Table 3.2: C-LLAMA food commodities as they are grouped into the EAT-Lancet planetary
health diet food groups. A detailed discussion of the C-LLAMA food groups and commodities
can be ground in chapter 2. Beef, lamb and pork are all grouped together since their energy
contributions to the EAT-Lancet diet are interchangeable.

that their nutrient content may not be the same as if the group was comprised entirely

of true whole grains, although the calorie content will be the same.

The third step in implementing the EL diet into C-LLAMA is to consider post-

production waste. The EAT-Lancet diet is not equivalent to food supply: the food

supply projected as part of C-LLAMA also includes post-production waste; that is

food wasted either in the household or by commerce and retail (see Section 2.3.1.

To avoid inadvertently also prescribing a drastic reduction in post-production waste,

the EAT-Lancet diet must be adjusted to account for this. This was done by estimating

the portion of food wasted in this way in the country using the food-system efficiency

metric, detailed in Section 2.3.2. This waste estimate is then used to scale the EL diet

to include post-production waste. The relative proportion of each food group remains

the same during this process. The post-production waste estimate is permitted to

change with time (as it does in C-LLAMA), so if a country sees an increase in post-

production waste by 2050 this will be reflected in the calories required to meet the

dietary target.

The calories C in year n, between 2021 and 2050, contributed to the diet by EAT-
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Lancet diet food group g , before post-production waste is accounted for, are

Cg (n) =Cg (2021)+ n −2021

2050−2021
(gtarget −Cg (2021)), (3.1)

where g t ar g et are the calories contributed to the EAT-Lancet planetary health diet by

group g . Cg (2021) is the sum of calories contributed to group g by component food

commodities i (detailed in Table 3.2) in 2021. Cg (2021) is derived from FAOSTAT food

supply data f as opposed to diet data; the food supply value is reduced using the

estimated post-production waste µpost , calculated using the food-system efficiency

parameter, described in Section 2.3.2. Cg (2021) is thus

Cg (2021) = (1−µpost(2021))
∑
iϵg

fi (2021) (3.2)

where fi is the contribution to the total food supply from food commodity i and

µpost (2021) is the estimated post-production waste in 2021. The estimated post-

production waste trajectory is then used again to translate the diet trajectory back

into food supply trajectory:

Fg (n) =Cg (n)
1

µpost(n)
(3.3)

where Fg (n) is the supply (including post-production waste) of food group g in year

n. The total food supply F (n) is then the sum over all groups of Fg (n).

REGIONAL TRAJECTORIES

The EL diet applied within C-LLAMA produces food supply trajectories for each

country, aggregated into regional means (weighted by population) in Figures 3.1 to

3.4. Note that in these figures commodities have been grouped for visual clarity.

Figure 3.1 shows the prescribed food supply trajectory for regions in the Americas.

Northern America (the USA and Canada) see reductions in sugar products and animal
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Figure 3.1: Prescribed food supply trajectories for regions in the Americas (weighted by
population).

product consumption by approximately half, increases in cereals and fruit, and an

increase by a factor of 4 in the consumption of pulses. The 2050 total food supply in

this region is approximately 3500 kcal/capita/day in the EL diet scenario, a significant

reduction from approximately 4200 kcal/capita/day in the C-LLAMA anchor scenario.

Both these countries score 1.0 on the food-system efficiency metric scale, so the

decrease in total food supply is indicative of initial over-consumption. Central and

South America follow similar trends in composition to that of North America, but

undergo an overall increase in total food supply. A handful of countries in these

regions have less than 2500 kcal total food supply in 2017 (Haiti, Guatemala, Ecuador,

Bolivia, Antigua, and Grenada, populations accounting for approximately 25%, 25%,

and 6% of the Caribbean, and Central and South America respectively), contributing

to the increasing regional food supply alongside post-production waste. Central

America sees a decrease in cereal consumption and the Caribbean doesn’t undergo

much change in overall animal product consumption, contrary the other regions in

the Americas.

All African regions see an increase in fruit, vegetables, and pulses consumption,

shown in Figure 3.2. There are also dramatic reductions in the consumption of starchy



66 DIET

Figure 3.2: Prescribed food supply trajectories for regions in Africa (weighted by population).

roots and cereals in many of these regions. These groups are dominated by cassava,

sorghum, and maize: staple crops in large areas of the continent (Belton & Taylor,

2004; Nweke et al., 2002). All but Northern Africa undergo an increase in total supply;

a combination of development, increases in post-production waste, and initial under-

nutrition in some regions. Animal product consumption is initially low in all African

regions and dominated by eggs and dairy when compared with other continents. All

regions but Southern Africa see a small increase in total animal product consumption,

with the majority of this increase coming from eggs and dairy products.

Similar to the trends in the Americas, all regions in Europe see increases in fruit,

vegetables and pulses consumption, and a decrease in animal products and sugar

consumption (Figure 3.3). Northern Europe undergoes a slight increase in total

supply; Lithuania, Estonia, and Latvia score slightly less than 1.0 on the food-system

efficiency metric at the start of the trajectory. Australia and New Zealand follow a

very similar trajectory to regions in Europe and the Americas; reduced animal product

consumption and increased fruit, vegetables, and pulses (Figure 3.4). Polynesia also

follows a similar trend, but has a slight increase in total food supply whereas Australia

and New Zealand do not.



3.2. METHOD 67

Figure 3.3: Prescribed food supply trajectories for regions in Europe (weighted by
population).

Figure 3.4: Prescribed food supply trajectories for regions in Oceania (weighted by
population). Melanesia is excluded since none of it’s constituent countries are present in C-
LLAMA processes (the largest of which is Papua New Guinea, excluded for reasons detailed
in chapter 2, accounting for more than half the population of the region at approximately 8
million people).
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Figure 3.5: Prescribed food supply trajectories for regions in Asia (weighted by population).

The general trend in vegetal products is the same across the Asian continent (Figure

3.5), there is a consistent decrease in cereal consumption and an increase in fruit,

vegetables, and pulses consumption. South-Eastern (including Brunei, Cambodia,

Indonesia, Lao, Malasia, Myanmar, Phillipines, Sinapore, Thailand, Timor-leste, and

Vietnam) and Eastern Asia (including China, North and South Korea, Mongolia, and

Japan) both have relatively high initial levels of pigmeat consumption, reducing by

more than half by 2050. Other regions in Asia begin with very little pork consumption

and see almost no increase by 2050; pork consumption in these regions is historically

very low due to the dominant religious demographics of Islam and Hinduism (Babji

& Ghassem, 2010; Ro’I & Wainer, 2009). Animal product consumption in Central,

Western, and Southern Asia is dominated by eggs and dairy. The most significant

initial beef consumption and also reduction by 2050 occurs in Central Asia.

3.2.2 PLANT-BASED DIET

A scenario in which a fully plant-based diet is adopted globally by 2050 was produced

in C-LLAMA. This scenario was constructed by replacing all animal product calories

with vegetal product calories, starting in 2021 and finishing at 100% vegetal product
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calories in 2050. The ratio of food commodities within the vegetal product remit were

projected using the same ratio projections as in the C-LLAMA anchor scenario, such

that the total portion of vegetal products in the diet increased, but the contributions

from each commodity are the same as the anchor scenario. This allows the

makeup of the plant commodities to vary between countries based on their historical

consumption. This scenario is not equivalent to the vegetarian scenario described in

chapter 2, which permitted the consumption of non-meat animal products and fish.

The nutritional value of the diet was not considered in the production of this scenario.

Unlike in the EAT-Lancet planetary health diet, grains and starchy roots would remain

a significant contributor to the calorie intake in many developing regions. Protein in

particular would be drastically underrepresented when animal products are removed

from diets of many developing regions that typically have high quantities of grains

and roots in their diets (Sharma et al., 2020).

3.3 RESULTS AND DISCUSSION

3.3.1 THE EAT-LANCET PLANETARY HEALTH DIET

The impact on global land use of the regional application of the El diet is shown

in Figure 3.7. Figure 3.6 shows the proportional change from the C-LLAMA anchor

scenario in global land use for each agricultural land use category when prescribing

a trajectory toward the EL diet to each region in turn (21 scenarios). Figure 3.7 shows

the global quantity of land used for each category for the same set of scenarios.

The sensitivity of land-use to changes in diet will inevitably be skewed in favour

of the most populous regions. This is evident in the dramatic changes seen when

applying the diet to Southern Asia and Eastern Asia (the two most populous regions

in the world, containing India and China respectively), and the almost undetectable

changes when applying the diet to regions with small populations such as Polynesia.
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Figure 3.6: Proportional change from the C-LLAMA anchor scenario in global land-use in
each category when prescribing a diet trajectory to the EAT-Lancet diet for the year 2050
to each of the 21 regions in C-LLAMA. Solid horizontal lines represent the change in total
agricultural land use (the sum of the three categories.

There are 10%, 15% and 40% increases in global food crop area when applying

the diet to South-East (including Brunei, Cambodia, Indonesia, Lao, Malasia,

Myanmar, Phillipines, Sinapore, Thailand, Timor-leste, and Vietnam), East (including

China, North and South Korea, Mongolia, and Japan), and Southern Asia (including

Afghanistan, Bangladesh, Bhutan, India, Iran, Maldives, Nepal, Pakistan, and Sri

Lanka) respectively. By far the most consumed vegetal product in each of these

regions is rice, which is fairly high yielding when compared to fruits, vegetables,

and pulses. The 2017 food supplies for Bangladesh, Sri Lanka, and India contained

approximately 1700, 1000 and 800 kcal worth of rice respectively, almost 70% of the

total food supply for Bangladesh. Pakistan (the second most populous country in

Southern Asia) obtained approximately 40% of it’s food supply energy from wheat

in the same year. China is the most populous nation in the world (in 2021) with
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Figure 3.7: Global agricultural land used by each category in 2050 for the same 21 regional
scenarios. The global land used by each category in 2050 and 2021 in the C-LLAMA anchor
scenario are represented by solid lines and dashed lines respectively.

1.41 billion people, compared to India’s 1.38 billion; it is surprising then that the

impact of applying the EAT-Lancet diet to Eastern Asia (including China) is much less

than in Southern Asia (including India), but less so when considering the projected

growth in India’s population, which (in the UN medium population scenario) is

expected to overtake that of China around 2030 (KC & Lutz, 2017). China’s food

supply contained around 800 kcal of rice in 2017, a decline from the previous 20

years but comparable to that of India. However, the overall food supply in China has

increased much more rapidly than in India in the past 60 years, overtaking India in the

early 1980s (illustrated in Figure 3.8). For this reason China scores higher than India

(with a greater rate of increase) on the food system efficiency parameter and hence

undergoes less of an increase in food supply when the projected post-production food

waste is applied to the projected food supply.
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Figure 3.8: Historical total food supply in China and India for 1961 to 2013, produced using
FAOSTAT food balance sheet data.

The change in vegetal products is a worthwhile one: rice and wheat (and other

cereals) are low in nutrient content while being high in calorie content, unlike fruits

and vegetables which typically have a high nutrient content. However, to provide

these rapidly growing populations with a nutritionally sufficient diet will require a

significant change in crop production in these regions away from rice and simple

grains, and toward vegetables and legumes. This will almost certainly lead to an

increase land use for food crops when compared with allowing current diet trends

to continue, due to the lower yields of these non-starchy vegetal products (Sharma

et al., 2020).

The EAT-Lancet diet contains 30 kcal per day of beef, lamb, and pork. In this set of

model runs, the diet was prescribed to all regions regardless of cultural backgrounds.

Realistically however, such an increase in the consumption of these products is

unlikely in Southern Asia without significant cultural change. Goats and poultry are

important livestock in Southern Asia, especially in India; the reduction in pasture area

and increase in fodder crops are likely due to a reduction in these products and a
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(potentially unlikely) increase in bovine and pig meat consumption in the EAT-Lancet

diet. In this region, poultry rely heavily on feed. Additionally, cattle, oxen, and most

importantly buffalo are commonly raised for dairy and labour rather than meat, being

found in small herds in and around cities (Teufel et al., 2010). Unlike Southern Asia,

Eastern Asia and South-East Asia both have initially high levels of pork consumption

and then a strong reduction by 2050. Pigs in these regions are typically raised in

relatively intense conditions, and are given a high effective yield by the pasture land

use calculation in C-LLAMA, leading to the large decreases in fodder crop land use

(Liu et al., 2021; Huynh et al., 2007).

When prescribing the EAT-Lancet diet to Northern and Central America, food crop

areas increased by less than 3% globally when compared to the anchor scenario in

each case. When applying the diet to regions in Europe the increase in food crop

area is similar, with Western Europe causing the greatest increase of approximately

3%. The opposite is true for pasture and fodder crop areas in these regions and in

all cases the greatest proportional change is in fodder crop area. Note that in Figure

3.6 a 10% change in fodder crop area is not equivalent in land use change to a 10%.

This is consistent with the initially high levels of animal product consumption and

presence of over-consumption in these regions. The trends when prescribing the

EAT-Lancet diet to South America are similar, but have a larger magnitude; since

Southern America has a smaller population than both Europe and North America,

the magnitude of the change is almost entirely due to the relatively greater reduction

in bovine meat consumption, even as overall food supply is increasing. Applying the

diet in Oceania has little impact on global land-use compared to the anchor, with only

a very small decrease in fodder crop land area and imperceptible changes to other

land-uses. Oceania is responsible for significant beef production at approximately

4% of the global total; it is also the second largest beef exporter, predominantly to

Asia and Russia (Bell et al., 2011; Kahn & Cottle, 2014).

A salient feature of Figure 3.6 is that the mean of the total proportional changes is
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greater than zero; implying that if the global population switched to this diet whilst

simultaneously undergoing a net increase in post-production waste (as countries

develop), the result would be a greater overall agricultural land-use in 2050 when

compared with the anchor scenario. This is more clearly shown in Figure 3.9,

which shows the mean proportional change compared to the anchor scenario when

applying the diet to each region. There are significant deviations from the anchor

scenario in food and fodder crop areas, and a smaller change in pasture area.

However, this is not equivalent to applying the diet to every region at once, so to

explore this result further an additional scenario was produced in which the EL diet

was applied to all regions simultaneously. The globally aggregated results of this

scenario are shown in Figure 3.10. In this scenario, the general trends implicated by

the 21 individual regional scenarios still are present; food crop area in 2050 is greater

than in the anchor scenario by approximately 830 Mha, fodder crop and pasture

areas are less by approximately 270 and 400 Mha respectively. The total increase in

agricultural land-use is approximately 160 Mha, about 3% more than in the anchor

scenario.

In an EAT-Lancet planetary health diet scenario produced by the Lancet commission

with no improvements to crop-yield or reductions in food waste and losses,

transitioning to the EL diet lead to an approximately 60% increase in global crop-land

area, which is comparable to the crop-land area change in the C-LLAMA EAT-Lancet

scenario (The Eat-Lancet Commission, 2019). There is no reference to a pasture-

area change in the EAT-Lancet scenario with which to compare the C-LLAMA pasture

reduction. The C-LLAMA scenario also includes ‘normal’ projections of crop yield

and food waste, leading to an overall food system efficiency increase.

The increased overall food supply in developing regions and transition to more

nutritious vegetal products in the EL diet C-LLAMA scenario offsets the land-

use efficiency improvements made through reducing animal product consumption.

Africa undergoes the second greatest population growth but doesn’t reach a per capita
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Figure 3.9: Mean of the proportional change when compared with the C-LLAMA anchor
scenario in global land-use in each category when prescribing the EAT-Lancet diet regionally,
from 2014 to 2050. This represents the mean of 21 model runs and is not equivalent to
applying the diet to all regions at once.

Figure 3.10: Global land-use in each category compared to the anchor scenario in a scenario
in which the EAT-Lancet diet is applied to every region at once in C-LLAMA. The anchor
scenario and EAT-Lancet diet scenario are represented by dashed and solid lines respectively.
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food supply of 3000 kcal per day in the anchor scenario, whereas the EAT-Lancet

diet combined with development (hence increased post-production waste) takes the

continental average to just over 3100 kcal by 2050. The rapid population growth in

Asia coupled with the discussed transition to less land-efficient but more nutritionally

valuable vegetal products also contributes to the approximately 80% global increase

in land-use for food crops when compared to the anchor scenario.

Pasture area remains surprisingly consistent overall despite the general trend toward

a reduction in animal product consumption, undergoing a decrease of only 7%

compared to the anchor scenario. The pasture changes shown in Figure 3.10 indicate

that increases in pasture in Eastern and Western Africa, along with South-Eastern

Asia are responsible for offsetting the decreases in South Asia, Europe, and America.

Livestock systems are significantly more extensive in the former regions than the

latter so this result is well-founded. It is important to note that the results presented in

Figure 3.6 are relative to the anchor scenario; the total agricultural land area in both

the anchor scenario and the EL diet C-LLAMA scenario increases by approximately

640 Mha from 2017 to 2050.

3.3.2 PLANT-BASED DIET

A diet with a (near) 100% reduction in animal product consumption by 2050 when

prescribed globally in C-LLAMA leads to a decrease in total agricultural land-use

of approximately 3.5 Gha from 2021, shown in Figure 3.11. Pasture and fodder

crop areas disappear entirely by 2050 and only a very small increase in food crop

area occurs. This is not surprising since C-LLAMA is highly idealised; a complete

lack of demand for animal products precipitates zero production. This result is

within the boundaries of the literature, which suggest that a fully vegan diet applied

globally could theoretically lead to agricultural land-use decreases of upward of 70%

(Aleksandrowicz et al., 2016; Poore & Nemecek, 2018). This is an extreme scenario

and realistically unlikely to be achievable by the year 2050. This scenario also does not
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Figure 3.11: Global agricultural land-use in the C-LLAMA anchor scenario and a scenario with
a 100% reduction in animal product consumption by 2050. Note that the actual reduction in
animal product consumption is 99.99% to avoid errors during model runtime.

take into account nutrition as discussed in Section 3.1: animal calories are replaced by

vegetal products using the ratios projected from the country’s historical food supply.

In practice this means that for most regions of the world, the diet in this scenario

tends toward the consumption of grains, primarily wheat and rice.

3.4 CONCLUSION

In this chapter, the sensitivity of agricultural land-use to changes in diet was explored

using C-LLAMA at a regional level. There is evidently the potential for significant

land-use efficiency improves attainable through diet, it is also clear that the impact

of switching to a sustainable diet is greater in regions with large populations - an

expected result. However, as illustrated by the regional analysis in C-LLAMA, these

impacts may not always lead to a reduction in overall land agricultural land-use.
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Moreover, the EAT-Lancet diet comes at a cost; Hirvonen et al. (2020) found that the

average cost of the diet is greater than the household income (per capita) for over 1.58

billion people.

The change in total agricultural land use area in the scenario where the EAT-Lancet

diet is adopted rapidly across all regions is very similar to that of the C-LLAMA anchor

scenario. However, the make-up of 2050 agricultural land in the two cases is different.

Pasture area increases only a small amount and fodder crop area decreases in the

EAT-Lancet scenario, while food crops increase significantly, whereas in the anchor

scenario it is pasture that increases. These results are consistent with the findings

of the EAT-Lancet planetary health report, which highlights the fact that no single

intervention strategy is sufficient to remain within all planetary boundaries at once;

yield gaps (as described in Section 5.1.1) are closed to 75%, and food waste and losses

(see Section 4.1) are halved to facilitate the global adoption of the planetary health

diet (The Eat-Lancet Commission, 2019).

The transition to food crops from pasture presents additional options for reducing

the land footprint of the food-system. In many parts of the world, especially less

developed regions, current crop yields are lower than their attainable maximums

(Mueller et al., 2012). The difference between attainable and actual yields are often

referred to as ‘yield-gaps’, which will be explored in Chapter 5. Additionally, emerging

technologies such as vertical farming have the potential to drastically increase crop

yields, albeit it a high cost compared to traditional farming (Benke & Tomkins,

2017; Specht et al., 2019). Moreover, crop production is far less constrained by the

potential ethical concerns surrounding the intensification of livestock production

(Pietrosemoli & Tang, 2020).

These results illustrate the potentially important role that diet could play amongst a

suite of strategies for reducing the land footprint and improving the sustainability of

the food system as a whole, especially in the context of land available for bioenergy

and afforestation.



4
MODELLING THE IMPACTS OF FOOD

WASTE AND LOSSES ON LAND

AVAILABILITY

ABSTRACT

The global food system is inefficient, but not inherently so. Between one third

and one half of the total food produced in a given year (by mass) is wasted or

lost through avoidable channels. The necessity for increasing food production to

meet the requirements of growing populations is being artificially ‘inflated’ by the

food that never makes it to the consumer, in-turn increasing the land footprint

of the agricultural system. In this chapter we use the simplistic representation of

food system efficiency in C-LLAMA to explore the potential for reductions in food

waste (consumer, retail, and commercial waste) and losses (production, processing,

and distribution) to reduce the land used directly and indirectly to produce food,

79
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and therefore increase land availability for land-intensive climate change mitigation

strategies (bioenergy, afforestation, and BECCS). Reducing post-production waste by

half by 2030, in accordance with sustainable development goal 12.3, reduces the land

requirement compared with the C-LLAMA anchor scenario in 2050 by approximately

700 Mha. Reducing processing and distribution losses by half in the same time frame

leads to a smaller reduction in global land-use of 430 Mha by 2050. Applying a

trajectory toward a ‘best-case’ scenario based on real-world waste values leads to a

global reduction in agricultural land-use of 1000 Mha. Reducing waste at a regional

level is most impactful in Southern Asia (containing India), and it is shown in general

that reducing waste and losses in regions with larger populations has a greater impact

on agricultural land-use.

4.1 INTRODUCTION

The United Nations Environment Programme (UNEP) defines food loss in their 2021

Food Waste Index report as any human edible animal or plant food commodity that

completely exits the food supply chain without re-utilisation in some other form (e.g.

animal feed) (United Nations, 2021a). Similar to food loss but slightly distinct is food

waste; defined in the same way as food loss but with the caveat that it was deliberately

discarded, either due to quality control standards or poor management (in the home

or in the supply chain). For the purpose of this chapter losses and wastes are treated

in kind: they both contribute to food production demand inflation and hence the

inflation of agricultural land-use in turn. It is estimated that one third of all produced

food is wasted yearly (Katt & Meixner, 2020).

Figure 4.1 represents general inefficiencies and stages of loss in the food system. In

this chapter the central three loss stages will be considered: storage and transport

(distribution), processing losses, and food waste by consumers (referred to as post-

production waste throughout this thesis), all of which occur before ‘harvested crops’.
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Figure 4.1: Stages of the food-system and associated losses. The top-central boxes are the
focus of this chapter, outlined in bold. Food-system stages are shaded in light-grey. This figure
is adapted from Alexander et al. (2017) (Figure 1).

The final stages (nutritional requirements and over-consumption) fall under the remit

of diet and are discussed in Chapter 3.

The first avenue for food loss is during production, most commonly due to poor

crop management, disease, weeds, and pests. This loss factor is usually greater

in developing regions with limited access to pesticides, fungicides, machinery, and

other management practices (Savary et al., 2019; Oerke & Dehne, 2004; Alexander

et al., 2017). Losses due to climate and ecological factors can also occur, which

may become more prevalent with the ubiquitous impacts of anthropogenic climate

change (Ray et al., 2019; Kukal & Irmak, 2018). Losses due to climate and ecological

factors will not be considered in this chapter, since they are captured in yield data in

the FAOSTAT database which are derived from production quantity and harvest area

(rather than being measured empirically) (FAO, 2021a). Harvest residues also occur

at the production stage but are not losses of food in the conventional sense as they

are not suitable for human consumption; C-LLAMA has the capacity to divert these

losses to animal feed as discussed in Chapter 2, and in the real world they may also be

used as biomass for energy generation (Kalt et al., 2020).

Storage and transport losses, together referred to as distribution losses, are distinct
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types of loss but often occur in conjunction. Storage losses are the result of poor

storage conditions during intermediate stages of the food system, usually a lack

of suitable refrigeration, excess humidity, or the presence of rodents, fungus, or

parasites (Gustavsson et al., 2011; Bradford et al., 2018). Not only are poor storage

conditions a cause of inefficiency in the food-system, they can also be harmful to

human health if foods contaminated with fungal or insect infestation are ingested,

either due to necessity or lack of awareness (Bradford et al., 2018). Storage losses are

greater in regions of lower development (an estimated 22% in developing countries

versus 9% in developed countries), where access to refrigeration or suitably dry

conditions are limited, or in the case that refrigeration is available, it may not be

persistent due to inconsistent power supply (Kitinoja, 2013).

Food can be lost during transportation in two ways: the first is that food can become

damaged due to poor road surfaces. The second is that the time taken is too great for

the conditions of transit; food spoils before it reaches its destination (often due to a

lack of refrigeration) (Lipinski et al., 2013). Insufficient packaging can also contribute

to both storage and transportation losses. Fruits and vegetables are particularly

susceptible to losses at this stage: they are more fragile than grains and starchy roots

and more prone to spoilage (Kitinoja, 2013; Gustavsson et al., 2011). As Figure 4.2

shows, fruits, vegetables, grains, and seafood account for the bulk of food wasted

globally in terms of both mass and energy. Losses in the remaining categories (roots,

oil crops, pulses, dairy, and meat) account for approximately 20% in both cases.

Energy losses are skewed toward grains due to their higher energy content (and visa

versa with mass losses for fruits and vegetables).

It is estimated that around one third of all produced food (by mass) is wasted at this

stage (Kumar & Kalita, 2017). As described in Section 2.3.2, distribution losses are

much higher in the developing world than the developed world. Estimated losses

at this stage are as high as 40% in Sub-Saharan Africa and up to 80% in severe

cases (Kumar & Kalita, 2017), whereas in highly industrialised countries such as the
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Figure 4.2: Estimated food wastage globally by production energy and production mass for
the year 2011, from Lipinski et al. (2013), based on 2011 FAOSTAT data.

USA or the UK distribution losses range from 2% to 20% (for grains and fruits /

vegetables respectively) (Parfitt et al., 2010). Estimates for distribution losses can

be made using export, food supply, and processing data: food produced but not

reaching the consumer, processed, or exported within a country must have been lost

to distribution (FAO, 2021a; Alexander et al., 2017).

Processing losses are the smallest contributor to overall food waste, as well as being

the least avoidable. Food processing is divided into three categories. Primary food

processing occurs immediately post-harvest and includes drying, threshing, shelling,

or similar of cereal crops and pulses; reducing weight, removing inedible product, and

extending the lifetime of these products (Grumezescu & Holban, 2018). The waste

product produced at this stage are referred to as harvest residues (distinct from field

residues, which is biomass left on-site at harvest), and are not considered to be a

true ‘loss’, since they are not suitable for human consumption. Additionally, primary

processing losses are captured as part of yield data: production and yield data are

usually expressed in terms of the dry mass of product post-primary processing, for

example in the case of cereals, data represents the mass of dry grain only (FAO,

2021b). Processing losses in this chapter will be limited to secondary and tertiary;

since primary losses are usually captured in yield data they will be discussed in

Chapter 5. Secondary and tertiary processing losses occur post-harvest, usually

off-site. Secondary processing includes procedures that alter the state of the raw
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product, such as cleaning, milling, or splitting (in the case of legumes and grains).

Tertiary processing is the production of a ‘final product’ from secondarily processed

commodities, usually on large scales for commercial outlets such as supermarkets

(an example of this might be packaged ready meals) (Grumezescu & Holban, 2018;

Hitzmann & Ahmad, 2017).

Losses at the secondary and tertiary processing stages occur due to mishandling

or intrinsic tolerances in the processes - spillages, sorting errors, and spoilage due

to mismanagement are all examples of losses at this stage (Jeswani et al., 2021).

Processing losses are less dependant on development level since processing is

generally carried out on commercial scales and are more specific to the process

and food commodity, so estimates for losses at this stage vary dramatically even

within development levels; 13% to 20% in Egypt (Ali et al., 2021), 5% to 18% globally

(Gustavsson et al., 2011), 19% in Switzerland (Dora et al., 2020), 21% for the milling

of rice in South-Eastern and East Asia (Kumar & Kalita, 2017), and as low as 1% for

Australia, New Zealand, and North America (Porat et al., 2018). Additionally, the

boundary between tertiary processing losses and post-production food waste can

be somewhat blurred: preparation of food for mass food-service (for example, fast

food restaurants) takes place in large scale processing plants before distribution to

restaurants, so can potentially be included with ‘food-service’ waste, which will be

discussed in the next paragraph.

The post-production stage is the final avenue for food losses, almost all of which

can be categorised as waste. Post-production waste can be split grouped into three

categories: ‘food-service’, retail, and household wastes. Food-services are food outlets

- distributors of prepared food products, for example restaurants, hotels, educational

institutions, and prisons (Dhir et al., 2020; United Nations, 2021a). Food-service

is sometimes referred to as hospitality however that fails to capture prisons and

potentially education. Retail is the sale of food products to the general public, for

example at markets or supermarkets, and household waste is food discarded by
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consumers in homes (United Nations, 2021a). All three of these waste streams are

linked heavily to consumer behaviour, wastage here is much higher in developed

countries (Stancu et al., 2016), although it is prevalent across all seven continents

(United Nations, 2021a).

Estimates for post-production waste include 22% in the household in the UK (Stancu

et al., 2016), 7% to 24% at the consumer stage in the EU (Roodhuyzen et al., 2017),

and 40% during post-production in North America, Australia, and New Zealand

combined (Porat et al., 2018). There is a significant lack of data availability for post-

production food waste outside developed countries; with 77% of studies in the 2021

Food Waste Index Report coming from upper-middle and high income countries

(United Nations, 2021a). Additionally, only two low-middle income country studies

provide an estimate for household waste in the 2021 Food Sustainability Index (94 and

121 kg/person/year in India and Indonesia respectively) (The Economist Intelligence

Unit, 2021). Examples of waste in food-service are trimming scraps (up to 12%

in the case of potato fries in fast food outlets (Gustavsson et al., 2011)), quality

control, and industry standards or company policies. Retail food losses are linked

to quality control, poor communication between stages (leading to over-purchasing

or insufficient storage) in the (retail) supply chain, and high consumer standards for

appearance (eg. ‘ugly vegetables’ that are perfectly edible) (de Moraes et al., 2020;

Porter et al., 2018).

Household waste is the greatest contributor to food waste in the post-production

stage in high-income countries (Roodhuyzen et al., 2017). Food is wasted in the

household due to poor purchase planning, scraps produced during food preparation

(eg - vegetable peels), poor ‘leftover management’, and general misinformation

regarding food safety (Schanes et al., 2018; Porter et al., 2018; Kavanaugh & Quinlan,

2020; Toma et al., 2020). Misunderstanding by consumers of labels applied to food in

retail contribute significantly to household food waste (Toma et al., 2020; Kavanaugh

& Quinlan, 2020). For example, ‘best-before’ and ‘sell-by’ date indications have no



86 FOOD WASTE AND LOSSES

bearing on food safety, but are commonly interpreted to mean as such by consumers,

leading them to discard perfectly edible food (Porter et al., 2018; Kavanaugh &

Quinlan, 2020). Flexible ‘best-before’ dates have already been shown to reduce food

losses in the distribution and processing stages, however these labels are commonly

misinterpreted by consumers at the retail stage (Dobon et al., 2011).

Food losses and waste have a direct impact on food demand: the elimination of a

source of loss or pressure would take pressure away from the food system to deliver

that food to consumers. Nearly one third of all food produced is wasted globally, while

some food waste and loss is inevitable and this does include some unavoidable losses

(for example eggshells, coffee grounds), there is the potential for a third reduction in

food demand (Katt & Meixner, 2020). While this wouldn’t necessarily reduce land-use

by agriculture by one-third, land-use is almost directly proportional to demand, so

the potential for increasing land availability is large (Cattaneo et al., 2021).

4.1.1 FOOD WASTE AND LOSS IN C-LLAMA

Food losses and waste are represented simplistically in C-LLAMA, with each country

being assigned a value for each of the three stages of loss and waste: distribution,

processing, and post-production. In reality there are multiple sub-stages of loss and

waste within each of these that vary based on the commodity in question (Koester

& Galaktionova, 2021). A case-by-case approach for each country was not feasible

given the number of countries in C-LLAMA, in addition to the lack of a coherent global

dataset for food losses and waste. The Sustainable Development Goal indicators, the

Food Waste Index (FWI) and Food Loss Index (FLI) were initially classified as tier three

indicators in 2018, although have since been updated to tier two indicators (there are

no longer any tier three indicators), meaning that while ‘the indicator is conceptually

clear, has an internationally established methodology and standards are available’,

‘data are not regularly produced by countries’ (United Nations, 2021c). It was this lack

of data availability and consistency that excluded the possibility of an empirical waste
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and loss system in C-LLAMA, instead using the food-system efficiency parameter to

assign approximate values for each country.

Figures 4.3 and 4.4 show the availability of food loss data for two middle-high income

countries, the USA and Italy respectively between the years 1981 and 2021, in the

Food Loss Index (Koester & Galaktionova, 2021). While it would have been possible

to achieve high levels of real-world accuracy in countries with high data-availability

such as the USA, the large number of countries with scattered data availability

precluded the possibility. Additionally, there are a vast number of commodities listed

in this index; the data points for Italy are (exhaustively) for tomatoes, eggs, wine,

fruits, legumes, and ‘other vegetables’, while the USA data includes commodities

such as ‘grapefruit juice’ and ‘carrots and turnips’. Unfortunately, homogenising this

data (for example the conversion of grapefruit juice to grapefruits as part of the food

supply) was well outside the scope of development for C-LLAMA.

To explore the impact of food waste and loss on agricultural land-use using C-LLAMA,

subcategories of waste such as household and retail waste must be aggregated into

one of the three types of waste in the model. Since food losses are so dependant on

income level and development, the country-level structure of C-LLAMA place it in a

good position to explore the impacts of food losses on land-use. In this chapter the

effect of reducing food waste at different stages of the food system on agricultural land

globally will be explored.

4.2 METHODS

4.2.1 REDUCING POST-PRODUCTION WASTE

To explore the impact of reductions in food waste, three different sets of model runs

were conducted in C-LLAMA. The first is an exploration of sustainable development

goal (SDG) 12.3: ‘by 2030, halve per capita global food waste at the retail and
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Figure 4.3: Data points in the Food Loss Index for the USA for the years 1981 to 2021 (Koester
& Galaktionova, 2021). Each point represents a quantifying study of the wastage or loss of
a particular commodity or group of commodities in a given year within a country. Colours
indicate the method of data collection used in the study, they include case-studies census,
controlled experiments, expert opinion, literature reviews, national accounting, modelling,
and FAO annual surveys. For the illustrative purpose of this plot, the legend has been omitted.

consumer levels and reduce food losses along production and supply chains,

including post-harvest losses’ (United Nations, 2021b). The includes inedible food-

waste in the household, for example eggshells or bones (United Nations, 2021a); since

these are included in food-supply data used by C-LLAMA the definition of edible

vs inedible food waste should have no bearing on the outcome. The focus of this

scenario is on the first half of SDG 12.3: reducing retail and consumer waste (post-

production waste) by half by 2030. This is a very achievable goal from a technical

perspective: all waste generated here is due to consumer behaviour, which in theory

could change overnight. In reality motivating such large changes will almost certainly

require significant policy intervention (FAO, 2011).

A trajectory for ‘post-production waste’ was prescribed to each country from 2021

to 2030, such that the 2030 value is half that of the 2021 value; the trajectory then
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Figure 4.4: Data points in the Food Loss Index for Italy for the years 1981 to 2021 (there are no
data points prior to 1991) (Koester & Galaktionova, 2021). Each point represents a quantified
study of the wastage or loss of a particular commodity or group of commodities in a given
year.

remains constant from 2030 to 2050. Assuming SDG 12.3 is achieved, this is the most

conservative possible outcome for the scenario: the development goal was met and

then no further action taken. A linear decay was used for the trajectory (such that the

2030 value is half that of the 2021 value), so that the new post-production waste ratio

for a given country is:

Mpost(n) =


µpost(n), for n < 2022

µpost(2021)∗
(
1− n−2021

2∗(2030−2021)

)
, for 2022 < n <= 2030

µpost(2021)∗ 1
2 , for 2030 < n <= 2050

(4.1)

where Mpost(n) is the new fraction of food wasted during post-production in year

n and µpost(2021) is the previously calculated post-production food waste fraction

in 2021, calculated using the food system efficiency parameter described in Section

2.3.2. Figure 4.5 gives examples of the post-production waste trajectory for six
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Figure 4.5: Post-production waste trajectory for countries with initial (2021) post-production
waste values from 0.05 (score of 0.0 on the food-system efficiency parameter) to 0.3 (score of
1.0 on the food-system efficiency parameter).

different values of µpost(2021) from 0.05 to 0.3, corresponding to scores of 0.0 and

1.0 on the food-system efficiency parameter respectively.

Since food supply data inherently includes post-production waste, to implement the

new trajectories into C-LLAMA, the projected food supply for the chosen country was

first scaled down by the projected post-production µpost(n) (leaving a hypothetical

‘food-consumed’ trajectory) then re-scaled upward using the new post-production

waste trajectory Mpost(n). Evidently achieving this goal will require more drastic

change and have a greater impact in high-income regions that have initially high post-

production waste compared with low-middle income regions; while the proportional

change is the same regardless of initial post-production waste, the magnitude of

change is much greater given a higher starting value.
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4.2.2 REDUCING PROCESSING AND DISTRIBUTION WASTE

Sustainable Development Goal 12.3 is more ambiguous regarding production,

processing, and distribution losses (post-harvest): only aiming to ‘reduce’ losses at

these stages without specifying a quantity (Koester & Galaktionova, 2021). In the

absence of an analogous target, the trajectory used in Section 4.2.1 was applied to

both processing and distribution wastes: both undergo a reduction of half between

the years 2021 and 2030. Production waste was excluded, since it is usually included

in yield calculations. As such, Equation 4.1 governs the trajectory for each waste

stream, with µproc and µdist replacing µpost in each case. These waste trajectories were

applied to every country at once to produce a single scenario.

4.2.3 ‘BEST-CASE WASTE’

A final set of C-LLAMA model runs was conducted for this chapter, in which each

region tends toward a ‘best-case’ value for each of the avenues for food loss and

waste. As previously discussed, C-LLAMA does not differentiate between different

types of post-production waste. To obtain a best-case value for post-production

waste, the least wasteful example for each of household, retail, and food-service

was taken from the Food Sustainability Index (FSI) (The Economist Intelligence

Unit, 2021; United Nations, 2021a). The FSI ranks the G20 countries by metrics

surrounding food loss, waste, policy, diet, and sustainable agriculture to produce an

overall food sustainability index, in which Canada ranks first. Since a large portion

of Canada’s high score is due to policy and diet, rather than it having low food waste

and loss values, the metric scores for waste at each stage were used instead. Russia

produced the lowest household waste per capita at 33 kg/capita/year, followed by

South Africa and India at 40 and 50 kg/capita/year respectively. Italy and the UK

produced the lowest retail waste at 4 kg/capita/year each (followed by Germany at

6 kg/capita/year). Japan produced the least food-service waste at 15 kg/capita/year
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Waste stage Country
Food waste
(kg/capita/year)

Food supply
(kg/capita/year)

Waste fraction

Household Russia 33 888 0.016
Retail Italy / UK 4 993 / 970 (980) 0.004
Food-service Japan 15 603 0.025

Table 4.1: Best-case food waste values for each of the three ‘end-user’ waste categories in the
Food Sustainability Index The Economist Intelligence Unit (2021). The retail waste fraction
was calculated by weighting the total food supply quantities of Italy and the UK by their 2021
populations (The World Bank, 2021). The parenthesised 980 kg/capita/day represents the
weighted (by population) mean of the Italian and UK food supplies.

(followed by the UK at 17 kg/capita/year).

To convert these waste values into a fraction for use in C-LLAMA, the score for each

country was divided by the total food supply quantity (mass) in that country for 2021,

producing best-case waste fractions of 0.4%, 1.6%, and 2.5% for retail, household, and

food-service respectively. Summing these gives a total post-production waste fraction

of 4.5%, which is almost an order of magnitude lower than most literature estimates

of post-production waste in middle-high income countries, and the upper boundary

of 30% used in C-LLAMA (see Section 4.1). However, it worth noting that the top

scoring countries in each of these aspects do not score so well in other aspects, for

example the UK produces 77 kg/capita/year in household waste, more than double

that of Russia, which would give it an overall waste fraction of approximately 10%. The

best-case scenario should therefore be considered highly optimistic, since no single

country achieves comparably low wastage and losses across all aspects.

Processing and distribution losses are aggregated in the Food Sustainability Index

as ‘food loss’, defined as food lost been the point at which production is measured

(excluding losses before and during harvest) and before the consumer stage

(excluding household, retail, and food-service) (The Economist Intelligence Unit,

2021). Once again Russia has the lowest losses in this regard, with a food loss

estimate of 1.56% of it’s total production. Because processing and distribution losses

are summed in the FSI, they must be separated for implementation into C-LLAMA;

the total ‘food loss’ was split according to the relative projected processing and
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distribution losses in the C-LLAMA anchor scenario for each country.

Once again a linear trajectory was prescribed from 2021 to 2050, this time to the

idealised values for processing, distribution, and post-production waste fractions, to

each region in turn in C-LLAMA, for a total of 21 model runs. As in Section 4.2.1,

the food-supply projection for each country was scaled down by the projected post-

production loss value, then re-scaled up using the new post-production trajectory.

4.3 RESULTS AND DISCUSSION

4.3.1 REDUCING POST-PRODUCTION WASTE

The global results of applying a 50% reduction in post-production waste by 2030, in

line with the first target of sustainable development goal 12.3, are shown in Figure

4.6. The greatest decrease in land-use is with pasture area, with the 2050 area being

approximately 500 Mha less than in the C-LLAMA anchor scenario (section 2.4.1). As

described in Sections 4.1 and 3.2.1, developed regions typically have higher animal

product consumption and post-production waste, so it is not surprising the greatest

reduction in land-use occurs in pasture. Food and fodder crop areas decrease by

approximately 150 and 50 Mha respectively. Given the structure of C-LLAMA it is

expected that the trajectories for pasture, fodder, and food crops are approximately

proportional to their anchor scenario counterparts. The change in fodder crop area

is small compared to pasture and food crops; fodder crop and pasture areas are both

dependant on the make-up of the animal products being consumed due to the ratios

for forage and fodder feed discussed in Section 2.3.4. The total land use saving made

by 2050 is 700 Mha.

While the gains made in land availability by 2050 through reducing post-production

waste are significant when compared to the anchor scenario, the overall change

in land use from 2021 is fairly small. Pasture and food crops undergo reductions
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Figure 4.6: Global agricultural land-use when meeting the SDG 12.3 target of a 50% reduction
in post-production waste by 2030 in C-LLAMA (solid line), compared with the anchor scenario
(dashed line).

of 170 Mha and 120 Mha respectively between 2021 and 2050, while fodder crop

area increases by 40 Mha. The continuing increase in food demand in the majority

of regions is only marginally offset by the reduction in post-production waste,

especially in the case of animal products. This suggests that while SDG 12.3 is a

commendable initial target for improving efficiency within the food-system, alone it

will not sufficiently increase land-availability for climate change mitigation strategies

without further action beyond 2030. This result is also consistent with the findings

of Chapter 3 and the EAT-Lancet planetary health diets report, in that ‘no single

intervention is enough to stay below all boundaries simultaneously’ (The Eat-Lancet

Commission, 2019).
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4.3.2 REDUCING PROCESSING AND DISTRIBUTION WASTE

Reducing processing and distribution losses in C-LLAMA by the year 2030 (Figure 4.7)

leads to a similar pattern in land use as when reducing post-production waste over

the same period. Pasture area reduces by 310 Mha compared to the anchor scenario,

significantly less than the 500 Mha reduction when reducing post-production waste.

Animal products and especially ruminant meat and dairy are presently consumed

more readily in developed regions where processing and distribution wastes are

lower (Milford et al., 2019). Food crops and fodder crops reduce by 110 Mha and

10 Mha respectively. Overall, 430 Mha of land is freed from agriculture by the

year 2050 when halving processing and distribution losses by 2030 compared to the

anchor scenario in C-LLAMA. Both the processing and distribution, and the post-

production waste scenarios undergo rapid land-use reductions in the 2021 to 2030

period, then continue to climb again until 2050. This behaviour pattern is expected

given the deterministic and simplistic structure of the model; there are no hysteresis

behaviours in C-LLAMA.

4.3.3 ‘BEST-CASE WASTE’

Reducing global waste to the ‘best-case’ values described in Section 4.2.3 in every

region simultaneously in C-LLAMA results in a total global agricultural land-use of

approximately 4200 Mha in 2050, almost exactly 1000 Mha less than the C-LLAMA

anchor scenario in 2050 (a reduction of 19%). This is also 510 Mha less than the 2021

land-use value (an 11% reduction from the present day). The land-use by different

agricultural categories in this scenario are shown in Figure 4.8. Pasture land-use

decreases by around 600 Mha, food-crops by approximately 300 Mha, and fodder-

crops by just under 100 Mha.

It is estimated that approximately one third of all food produced is either lost or not

consumed (Porat et al., 2018). It is therefore tempting to set the theoretical maximum



96 FOOD WASTE AND LOSSES

Figure 4.7: Global agricultural land-use when reducing processing and distribution wastes by
half between the years 2021 and 2030 in C-LLAMA (dashed lines). The solid lines represent
the C-LLAMA anchor scenario.

Figure 4.8: Global land-use for agriculture for a scenario in which a trajectory toward ‘best-
case’ waste values in 2050 was prescribed to all regions at once in C-LLAMA.
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land-use reduction also at third the present value (in the case in which all post-harvest

food waste and losses are eliminated). However, different food products are wasted

and lost in differing amounts: vegetal products are typically subject to greater waste

and losses than animal products (likely due to the higher value of animal products)

(Alexander et al., 2017). Reducing the wastage of animal products leads to greater

reductions in agricultural land-use, a result of the on-average higher land-footprint

of animal products. This is reflected in these scenario results: by far the greatest

reduction in land-use occurs in pasture. Kummu et al. (2012) estimates that food

waste and losses are responsible for 25% of land use for crop production (in addition

to the same proportion of extraneous water and fertiliser use).

While there are savings land-use to be made by reducing food wastage and losses,

growing populations and demand for food products will continue to drive an

increasing demand for agricultural land. With this in mind, an almost 20%

reduction (compared to the ‘business-as-usual’ anchor scenario in 2050) in total

agricultural land-use when prescribing a trajectory toward ‘best-case’ waste values

is encouraging. The values chosen are observed values, so certainly attainable.

However, they are from relatively developed countries (Table 4.1). While developing

countries typically have very low rates of post-production food waste to begin with,

empirically post-production food waste increases as development occurs and access

to food and wealth are improved. To avoid ‘repeating history’ in countries that

are developing, this increase in post-production waste must be minimised at the

same time as allowing development (a strategy in-keeping with the sustainable

development goals). As discussed in Section 2.3.2, losses in developing countries are

much higher earlier in the food supply chain, and reductions to which are concurrent

with the general development of the country (improved infrastructure, power grid

reliability, etc).
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Figure 4.9: Global land-use for agriculture for twenty-one scenarios in which a trajectory
toward minimal waste values was prescribed to each region in turn. Narrow horizontal lines
represent the 2050 position of each of pasture, and food and fodder crops.

REGIONAL WASTE REDUCTION

The 2050 land-usage for each scenario in which trajectories toward the best-case

waste and loss values are prescribed in each region, described in Section 4.2.3, are

shown in Figure 4.9. By far the most significant change in global land-use occurs when

reducing waste and losses in Southern Asia (the most populous country in which is

India) with a reduction in land-use of approximately 400 Mha, the majority of which

comes from pasture (just over 300 Mha). Food and fodder crops are both around

50 Mha less than in the anchor scenario. Prescribing the waste and loss reduction

to Eastern Asia and Eastern Africa (the most populous countries in these respective

regions being China and Ethopia) both lead to a reduction in land-use of around

100 Mha. In all scenarios there is at least some reduction in agricultural land-use,

although for some regions this is imperceptible in Figure 4.9.

To emphasise the small changes when reducing waste in the majority of regions,
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Figure 4.10: Proportional projected land-use change in 2050 relative to the anchor scenario,
for the twenty-one scenarios in which a trajectory toward minimal waste values was
prescribed to each region in turn.

Figure 4.10 shows the proportional land-use in 2050 relative to the C-LLAMA anchor

scenario. All types of waste in C-LLAMA inflate food production demand, so it is no

surprise that reducing waste leads to a reduction in production demand and hence

agricultural land use in all cases. Reducing waste in Eastern, Western, and Northern

Africa lead to global land-use reductions of between 1% and 2%, second only to

Southern and Eastern Asia (approximately 10% and 1%). In SSP2, Africa undergoes

a near doubling of population size from approximately 1 billion (2010) to 2 billion by

2050; the population in Asia also grows by approximately 1 billion in the same time

period, but this is a much smaller proportional increase since the Asian population

was 4 billion in 2010 (KC & Lutz, 2017).

Figure 4.11 shows the relationship between regional population in 2050 and the global

land-use impact of reducing waste in that region. For each land-use category there are

strong correlations between population size in 2050 and land use impact of reducing
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Figure 4.11: Log10 regional projected (UN medium population, 2050) population versus the
difference in global land use from the anchor scenario in 2050 when applying a trajectory
toward a ‘best-case’ waste scenario in that region. Positive values indicate a reduction in land
use when compared with the anchor scenario (note all values are positive). Since it lies very
far to the left with a projected 2050 population of less than one million, Polynesia is excluded
from this plot for visual clarity (r values for all lines are greater when Polynesia is included).

food waste and loss, with fodder crops being the least correlated. Australia and

New Zealand, Southern Asia, Central Asia, Southern Europe, Western Europe, Central

America, South America, Northern Africa, and Eastern Africa all lie above the fitted

line for total land use difference by 2050. This implies that reducing waste and losses

in those regions has a greater impact per capita than in the regions below the fit line.

Figure 4.12 shows the land use difference when reducing waste in a given region

compared with the anchor scenario, adjusted by the projected 2050 population for

that region (from the UN medium population scenario). This is not a true per capita

sensitivity since populations change over the 2021 to 2050 time period, however it

gives a general sense of the individual impact of reducing waste and losses. Since

both distribution and processing, and post-production losses are reduced in these

scenarios, changes to land use are tied to both the population and diet of a region
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(demand), and the production of the region (supply).

Pasture area is more sensitive than cropland to waste and loss reductions in the

majority of regions, with the exception of Northern, Western, and Middle Africa, and

South-Eastern Asia. The per capita consumption of cereals and fruits and vegetables

in these regions (as a portion of diet) are some of the highest in the World (see Section

3.2.1). Southern Asia remains the region with the greatest impact on land use when

reducing processing, distribution, and post-production waste, with a change in land

availability of approximately 0.20 ha/capita across pasture and cropland. Central Asia

(which includes Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan)

is inflated dramatically from it’s pre-adjustment land use impacts at 0.16 ha/capita,

where before reducing waste in this region lead to a global land use reduction of less

than 1%. Adjusting for population swaps South America and Central America as the

regions with the first and second greatest land use sensitivity to waste and losses in the

Americas, with the continental range being 0.04 to 0.12 ha/capita. European regions

have similar sensitivities of between 0.05 and 0.09 ha/capita, with Western Europe

having the greatest land use impact.

4.4 CONCLUSION

This chapter has explored the agricultural land use implications of reducing waste

and losses in the food system both during production and in post-production, along

with regional trajectories toward best-case waste values. The waste and losses system

in C-LLAMA is dramatically simplified due to the lack of a coherent data set of waste

and losses for all countries, but has served as a tool for an exploratory set of analyses

into the impacts of reducing waste on agricultural land-use. In all cases, reductions in

waste and losses lead to significant reductions in agricultural land use when applied

globally. However, the regional application of these reductions has much greater

impacts in regions with high populations. Adjusting for population reveals that
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Figure 4.12: Population (UN medium population, 2050) adjusted land use impact of reducing
waste and losses in a given region when compared to the C-LLAMA anchor scenario. All values
are negative; lower values indicate a stronger land-use impact when reducing waste in that
region. Black lines represent the aggregated land use impact for that region.

the per capita impacts of reducing waste in any region are between 0.04 and 0.20

ha/capita.

When applied globally, reductions in post-production and pre-consumer (processing

and distribution) wastes lead to total land use reductions of 700 and 430 Mha

respectively when compared with the C-LLAMA anchor scenario. As with all C-

LLAMA scenarios, it is likely that the actual land use saving would be less; since

agricultural land use change is a process rather than instantaneous as in the model.

However, these are still significant land use efficiency improvements that together

could contribute a significant portion of land toward land-intensive mitigation

practices such as BECCS and afforestation.

Tending towards best-case waste and loss values for both pre-consumer (processing

and distribution) and post-production waste and losses simultaneously ties the

ultimate land footprint of a region to both its food demand and food production. To
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target waste and loss reductions at specific regions, a further exploration of the space

using C-LLAMA could be informative, for example prescribing separate trajectories

(such as the global scenarios in Sections 4.2.1 and 4.2.2) to each region in turn.





5
MODELLING THE IMPACTS OF YIELD ON

LAND AVAILABILITY AND REGIONAL

OPTIONS FOR IMPROVING LAND

AVAILABILITY

ABSTRACT

In this chapter, the land use impacts of closing yield gaps (to maximum attainable

yields) at a global and regional level were explored using C-LLAMA. Prescribing a

trajectory toward maximum attainable yield for several major crops in every world

region simultaneously resulted in a 200 Mha decrease in global crop land compared

with the C-LLAMA anchor scenario. In the regional analysis, the general result

is that closing yield gaps is much less effective in high and upper-middle income

regions, while doing so in low and lower-middle income regions has a stronger effect,
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between 2-3% change in global crop area. The regional yield gap closure was then

compared with regionally prescribed EAT-Lancet diet, or ‘best case’ waste reduction

scenarios. Applying the diet in some regions (especially those with low and lower-

middle income) lead to increases in global land use of up to 4%, but was effective at

reducing land use in upper-middle or high income regions (with land use decreases

of up to 2%). Closing yield gaps was generally ineffective compared to waste and diet

on the global scale, but decreased land use in the targeted regions more significantly.

Reducing waste in Southern Asia lead to a dramatic land use decrease of 10% (530

Mha) when compared with the C-LLAMA anchor scenario.

5.1 INTRODUCTION

5.1.1 YIELDS

CROP YIELDS

Crop yields are a direct driver of agricultural land-use; the land area required to

produce a given quantity of a crop is directly inversely proportional to the yield of

that crop. Moreover, yields are defined empirically as the mass of product harvested

per unit area (importantly, they are defined this way in FAOSTAT data (FAO, 2021b)).

Mitigation scenarios consistent with 1.5◦C warming generally assume significant

improvement in yields whilst avoiding extraneous land-use change to facilitate the

deployment of land-intensive climate change mitigation strategies (Daioglou et al.,

2019). Despite this assumption however, in recent years yield growth in major

crops has been stagnating or halting completely in many regions, especially in the

developed world. Between 1961 and 2008, in 24-39% of areas growing wheat, maize,

rice, and soybean, yield growth didn’t occur, stagnated, or collapsed, and nearly 50%

of both rice and wheat sources are not currently seeing any increases in yield (Ray

et al., 2012). On the other hand, yields in a number of regions are lower than their
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potential physiological maximums, the difference between which is described as a

‘yield-gap’ (Mueller et al., 2012; Tian & Yu, 2019; Battisti et al., 2018).

There a wide range of factors that can influence the yield of a crop in a given

region, with varying degrees of tractability. As with all organisms, plants favor

certain conditions for growth. These include of temperature, nutrient access, light

intensity, humidity, and water availability. With all of of these factors, each plant

will have a minimum, maximum, and optimal value for growth, although some

plants are more particular than others; the range for a suitable condition might be

very narrow for some species (Schlenker et al., 2006; Chapin et al., 1987; Hatfield

& Prueger, 2015). All of these conditions can be controlled precisely when growing

crops in artificial conditions (such as in glass-houses). Outside the use of artificial

environments, water and nutrient availability can be controlled through the use of

irrigation and fertilisation. Temperature, light intensity, and humidity however, are

entirely determined by the climate of a region (Iizumi et al., 2017; Kukal & Irmak,

2018). Lobell & Field (2007) found that climate variables explained approximately

30% of the variation in annual crop yields for six major crop types.

YIELD GAPS

Potential yield (as defined by van Zeist et al. (2020) is the physiological maximum yield

for a given crop, assuming perfect conditions and most productive strain. Attainable

yields on the other hand, are the yields obtained by farmers under economically

optimised conditions and (fertiliser and irrigation) inputs - i.e., maximum output is

achieved with minimum input. In the real world, attainable yields are realistically

maximum yields: unless crop production undergoes nationalisation the world over,

farms will continue to effectively operate as businesses (van Zeist et al., 2020).

Yield-gaps are the discrepancy between observed, actual crop yield and the attainable

yield for a given crop, based on the climatic conditions of a region. Attainable yields

are produced using modelling approaches or empirical studies (Grassini et al., 2015).
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As discussed previously, nutrient and water availability have significant impacts on

crop productivity, so access to irrigation and nutrients are key determinants of yield

gaps (Mueller et al., 2012). In addition to irrigation and fertilisation, mechanisation is

another land management practice that may serve to close yield gaps (Licker et al.,

2010). It is unsurprising then, that yield gaps are typically larger in lower income

regions, since each of irrigation, fertilisation, and agricultural machinery require

initial or continued financial investment.

By closing yield gaps, Mueller et al. (2012) identifies potential yield increases of 45

to 70% for major crop types, accounting for 76% of the agricultural land surface.

Return on investment is high, especially developing regions: maize, wheat and rice,

responsible for 57% of the world’s food energy (Tilman et al., 2011), could all be

brought to 75% of their potential maximum output with relatively small changes to

nutrient application and irrigation regimes.

In this chapter, the global land-use implications of ‘closing’ yield gaps at a regional

level will be explored. In the real world, changes to yield might drive the economic

value of food commodities up and down, which may affect the distribution of their

production. However, since yield is a direct driver of agricultural land-use and

economics are not considered in C-LLAMA, changes to yield will only affect land-use

in the region in which they are applied.

CROP YIELD FRONTIERS

In addition to glasshouses as a controllable environment in which to produce vegetal

products, aeroponics, hydroponics, and vertical farming have all seen increased

interest in recent years (Garg, 2014). In aeroponics, the plant is suspended by an

artificial support, allowing the roots to hang freely in air, with water and nutrients

being delivered at regular intervals (usually as a mist). This allows precise amounts

of water and nutrients to be administered to the plant (in addition to light and

temperature under artificial conditions), improving water and nutrient efficiency by
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up to 99% and 50% respectively when compared to substrate-based farming (Lakhiar

et al., 2018). With similar benefits, in a hydroponic system oxygenated water (along

with nutrients) is delivered to plant roots, either through submersion, intermittent

flow, or constant flow (Sharma et al., 2018). Water consumption is slightly higher

in hydroponic systems but still between 70% and 90% less than traditional methods

(Khobragade et al., 2021).

A third method of cultivation - aquaponics, operates in the same manner as

hydroponics, but with the addition of aquatic livestock. Waste produced by the

aquatic livestock (crustaceans or fish) enters the water column and breaks down into

nutrients that can be taken up by plant roots, acting as a fertiliser. This has the added

benefit of removing the toxic waste products from the environment of the aquatic

livestock, and while not as resource efficient as aero or hydroponics, it produces both

vegetal and aquatic products (Palm et al., 2018).

Vertical farming is the high-rise scaling of plant cultivation under climate-controlled

conditions. Any one of aero, aqua, or hydroponics are used as the delivery system

for water and nutrients, foregoing the need for growth substrate and facilitating the

vertical engineering of the setup. This method lifts the yield constraints of traditional

farming from crop production by allowing yields to scale upward, essentially infinitely

(within the limits of water and energy usage) (Benke & Tomkins, 2017). Asseng

et al. (2020) compared modelled wheat growth with experimental yields in controlled

conditions on a vertical farm setup with 10 layers. They observed yields of 700

tonnes/ha, and modelled yields of up to 1900 tonnes/ha, 220 and 600 times greater

than the average global wheat yield in 2020 (3 tonnes/ha).

In addition to relatively high setup costs, considerable means and energy inputs

are required to maintain crop production in artificial conditions and as such, at

present they are largely the domain of the developed world (Benke & Tomkins, 2017).

Instead of looking for solutions within planetary boundaries, these technologies look

to escape the constraints of traditional farming, and thus in the face of ever increasing
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food production demand, could play a key role in future food production, especially

in urban environments (Benke & Tomkins, 2017).

LIVESTOCK

Quantification of yield is not limited to vegetal products; an empirical yield can

also be defined for livestock. As with crops, this is simply the mass of livestock

product generated per area in a given time-frame. Defining livestock yield in this way,

maximum potential yields can be achieved when livestock are severely confined and

fed entirely on dedicated feed (rather than grazing), thus their only land footprint is

that of the fodder crops required to raise them. Such systems are not uncommon,

for chickens and pigs in particular. In addition to high land-use efficiency, there

are other environmental benefits to these extremely intense livestock systems since

they facilitate the management of waste products such as manure, preventing issues

such as water contamination and eutrophication (Pexas et al., 2020). However, there

exists a trade off between the environmental and land-use benefits, and the ethical

considerations of such systems (Boogaard et al., 2011).

At the other end of the spectrum, there are extensive pasture grazing systems, where

a high portion of (or all) livestock feed is grazing or foraged. These systems are

more commonly used to rear ruminant livestock, and are typically associated with

better levels of animal welfare (Spigarelli et al., 2020). They are also perhaps the

least land-efficient food production system, in addition to producing detrimental

environmental effects, including widespread soil degradation, biodiversity loss, and

the motivation for deforestation (Poore & Nemecek, 2018; Kreidenweis et al., 2018; De

Oliveira Silva et al., 2021).

The most obvious solution to the problem of animal product land-inefficiency is to

simply forego the consumption of animal products (see Chapter 3). However in the

absence of this possibility, livestock production systems can be intensified. In C-

LLAMA, livestock production is essentially separated into either completely extensive
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or completely intensive, based on estimates of the portion of livestock fed through

fodder and forage. Then a theoretical ‘pasture-yield’ is used to estimate the land

requirement for animal products produced in the foraging systems, while the land

footprint of fodder fed livestock is assumed to be entirely based on the fodder crop

requirement (see Section 2.3.4 for details). As discussed in Chapter 3, due to the

‘feed conversion’ stage of livestock production, animal products (especially beef)

are inherently less land-efficient than vegetal products, even in the most efficient

possible production systems (Byerly, 1967).

Grazing animal land usage is calculated at the very end of the C-LLAMA model

process and does not influence any other aspects of the model. Therefore applying

an arbitrary pasture intensification trajectory in C-LLAMA would not be informative;

an intensification of 15% in a region would lead to a 15% reduction in land use for

pasture. The intensification of pasture will not be explored in this chapter, but is

an inviting avenue for further development of C-LLAMA to include a head-count

based livestock and land use model, with different grazing systems (as opposed to

an empirically defined pasture yield).

5.1.2 FOOD SYSTEM OPTIMISATION

In order to meet the climate target of a maximum net global warming of 1.5 °C by 2100,

it is likely that a significant quantity of land will be required to facilitate deployment

of land-intensive mitigation strategies such as BECCS and afforestation (Gough et al.,

2018; Burns & Nicholson, 2017; Arneth et al., 2019). This land requirement can be

as great as 58 Mha per GtCO2e removed for BECCS, and potentially even higher for

afforestation (Roe et al., 2019). As discussed in detail in Chapter 1, the amount of

suitable land currently available is not like to be sufficient to meet these climate

targets. Suitable land could be recovered either from forests or from the agricultural

system, however for BECCS and afforestation to be worthwhile as carbon dioxide

removal methods, removing forests to procure the land is not a viable option (Harper
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et al., 2018). The land must therefore be obtained by reducing the land used by the

global food system.

Cultural differences, wealth and resource inequality, and trade amongst other

things, give rise to an incredibly complex and interlinked global food system. The

environmental impacts (especially land-use) of producing a single food commodity

can vary drastically, sometimes even within the same administrative or climatic

region (Poore & Nemecek, 2018). For example, in addition to it’s extremely high land-

use compared to other food products, beef production is one of the biggest emitters of

greenhouse gases within the food system, and yet in some situations it can actually act

as a greenhouse gas sink (Poore & Nemecek, 2018). The task of reducing the land-use

required to feed the global population is complex, but there are a range of potential

options available. These options can be made in three broad areas: food demand,

food waste or losses, and food production. Undoubtedly, the implementation of

improvements to all three of these broad aspects would lead to the greatest reductions

in land-use, and sustainable food provision whilst meeting climate targets is certain

to require some combination of the three (The Eat-Lancet Commission, 2019). The

impacts of food demand (diet and population), and food waste or losses on land

availability were explored using C-LLAMA in Chapters 3 and 4. In the first part of this

chapter, the impacts of closing yield gaps on land use will be explored. In the second

part of this chapter, the outcomes of the three sets of analyses will be compared at a

regional level.

5.2 METHOD

5.2.1 CLOSING YIELD GAPS

To explore the land-use impact of closing the yield gaps described in Section 5.1.1,

trajectories were prescribed in C-LLAMA to the maximum attainable yields for
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several major food crops, at each region in turn, for a total of twenty one scenarios

(one for each region). Additionally, a scenario in which all regional yield gaps are

closed simultaneously was produced. The attainable yields used were taken from

the supplementary material of Mueller et al. (2012). The Global Yield Gap Atlas

(GYGA) (yieldgap.org, 2021) is a more comprehensive data-set, with national yield

gap estimates, as well as climate-zone aggregated data. The regional data from

Mueller et al. (2012) is suitable given the exploratory nature of this work in C-LLAMA,

however further work might involve a more in-depth analysis using the GYGA data in

C-LLAMA. The values used in the scenarios are shown in Table 5.1.

NA LA/CA WE EE/CAs ME/NAf SSAf SAs EAs SEAs/O
barley 3.51 3.88 5.26 4.38 3.02 3.31 3.11 4.01 2.67
cassava – 18.18 – – – 16.25 27.01 19.53 18.11
maize 9.79 5.58 9.85 9.65 8.6 4.85 3.81 8.94 3.77
millet 1.98 1.98 2.0 1.99 1.38 1.1 1.3 1.99 1.46
oilpalm – 19.38 – – – 17.97 – 19.94 20.52
potato 43.1 30.65 39.27 27.57 35.24 24.22 27.55 27.83 27.62
rapeseed 1.68 2.0 3.39 3.27 2.29 1.8 1.31 2.29 2.11
rice 7.43 5.89 9.29 9.37 7.87 5.24 4.84 7.72 5.09
sorghum 4.96 3.78 5.03 4.34 2.28 1.71 1.55 4.49 5.51
soybean 3.02 2.77 3.2 2.77 2.66 2.56 1.86 2.77 2.68
wheat 3.93 4.7 6.85 4.42 4.43 4.26 4.46 5.24 3.8

Table 5.1: Maximum attainable yield gap value for each region for several major crops (tonnes
/ ha / year), adapted from Mueller et al. (2012) supplementary material. NA = Northern
America, LA/CA = Latin America and the Caribbean, WE = Western Europe, EE/CAs = Eastern
Europe and Central Asia, ME/NAf = Middle East and Northern Africa, SSAf = Sub-Saharan
Africa, SAs = South Asia, EAs = East Asia, SEAs/Oc = Southeast Asia and Oceania.

The prescribed trajectory begins with the 2021 yield of a given crop in the C-LLAMA

anchor scenario, then moves linearly toward the maximum attainable yield for the

region such that it reaches the value in 2050. The yield Y of a crop c in year n is then:

Yc (n) = Yc (2021)+ n −2021

2050−2021
(cattainable −Yc (2021)), (5.1)

where cattainable is the regional attainable yield. In the case that the crop is not

included in the attainable yield data the projection as produced by the anchor
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scenario continues as normal. Since the regions used in C-LLAMA are at a smaller

spatial aggregations than the regions defined in Table 5.1, the C-LLAMA region uses

data from the containing region in the table in the cases where they do not align.

For example Latin America and the Caribbean (Table 5.1 region) contains all of South

America, Central America, and the Caribbean (C-LLAMA regions).

5.3 RESULTS

5.3.1 CLOSING YIELD GAPS

The results of closing yield gaps in every region simultaneously are shown in Figure

5.1. Pasture area does not deviate from the anchor scenario at all, and reductions of

approximately 100 Mha occur in both food and fodder crop areas, for a total of 200

Mha reduction. These numbers are of the same order as in the SSP1 scenario (just

under 100 Mha reduction in rain-fed crop are by 2050) (Doelman et al., 2018). Röös

et al. (2017) found a total agricultural land use decrease of approximately 15% in a

scenario in which diets are projected as normal but yield gaps were closed by 50%.

However, many additional crop yield gap data were used in this scenario, essentially

closing a greater number of yield gaps than in the C-LLAMA scenario. Unfortunately

at the time of conducting the C-LLAMA scenario we were not aware of the data used

to produce the Röös et al. (2017) scenario (this can be found in the supplementary

material of Bajželj et al. (2014)): this is an avenue for more in depth exploration of the

impacts of yield gaps on agricultural land in C-LLAMA.

The land use difference between the gap-closed scenario and the anchor scenario is

very small when compared with the changes in land use achieved by reducing food

waste or reducing animal product consumption as in previous chapters. In the C-

LLAMA anchor scenario (see Section 2.4.1, yields are linearly projected forward using

historical yield data. This results in relatively large yield increases over the 2021 - 2050
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Figure 5.1: Global land-use trajectory when prescribing yield trajectories towards regional
maximum attainable yields (shown in Table 5.1) and the C-LLAMA anchor scenario. Solid
lines represent the yield-increase scenario, the dashed lines represent the anchor scenario.

time period in the anchor scenario, with many regions getting close to closing their

yield gaps. Prescribing a trajectory toward closed yield gaps is less effective than other

methods of ‘efficiency increase’, at least within the framework of C-LLAMA. In Section

2.4.2, disallowing crop yield projection in C-LLAMA leads to a 300 Mha increase in

global agricultural land use in the year 2050 compared with the anchor. The scenario

with closed yield gaps has approximately 500 Mha less land use in 2050 compared

with the scenario with no changing yields (using present day yields). This is a 10%

reduction; while a reduction in land-use is not directly comparable to an increase in

production mass, Mueller et al. (2012) found a 30% increase in production mass for

maize, wheat, and rice, globally by closing yield gaps.

Figure 5.2 represents 21 scenarios. In each, the yield gap was closed for that region

only, while the yield in other regions was projected as normal in the C-LLAMA

anchor scenario. In the simplistic world of C-LLAMA, changes in yield will only
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Figure 5.2: Proportional change in global land-use in 2050 compared to the anchor scenario
when closing crop yield gaps in each of the twenty-one regions in C-LLAMA. Negative values
represent a reduction in land-use compared to the anchor scenario (for example, -0.010
represents a 1% reduction in land use compared to the anchor scenario).

affect land use in the region in which the change occurs (there are no dynamic trade

or economic mechanisms in the current version). There are no changes to pasture

area since livestock intensification was not considered in these scenarios. In most

regions, the changes in land use are comparable to those modelled in Chapter 4

(in the range 0-3%). In Northern America and Western, Northern, and Southern

Europe, the reduction in land use compared to the anchor scenario is very small at

less than 0.1%. This agrees with the findings of Mueller et al. (2012); each of those

regions currently achieves nearly 100% of their respective attainable yields for the

modelled crop groups, so closing their yield gaps will have only a small impact on land

use. Eastern and Western Africa, Southern Asia, and Eastern Europe see the greatest

decreases in land use (0.5, 0.8, 0.4, and 0.6% respectively change to the global total).

Again these results are aligned with the general trends found by Mueller et al. (2012).

Much like waste and diet, the results here will be dependant on other factors within
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the model. In the case of crop yield analyses, the skew comes from production:

regions with higher production quantities will inevitably see a better ‘return on

investment’ by increasing yields in that region (land-use and yield are directly

inversely proportional since there are no calculations that occur in between), similar

to the influence of population when making efficiency improvements to diet and

waste within C-LLAMA.

5.3.2 REGIONAL FOOD SYSTEM OPTIMISATION

The following analysis compares changes in yield (from the previous section), to

changes in diet and food waste within C-LLAMA. The results in this section represent

63 scenarios; there are 21 regions in C-LLAMA, 3 scenarios were produced for each.

In the first, a trajectory toward the EAT-Lancet planetary health diet was prescribed

(see Section 3.2.1). In the second, trajectories toward values from the best performing

countries in the food waste and loss index (FLI) were prescribed (see section 4.2.3).

Thirdly, as discussed in the previous section, a trajectory toward the maximum

attainable yield for certain crops in that region was prescribed (other crop yields were

projected as normal in the C-LLAMA anchor scenario). In each of these scenarios, the

normal linear projection of diet, waste values, and yields were used for regions outside

the target region (see Section 2.3). Figure 5.3 shows the proportional change in total

global agricultural land use (pasture and crops) from the anchor scenario in 2050 for

each of these scenarios. The most obvious feature of Figure 5.3 is the 10% decrease in

global land use when reducing waste in Southern Asia (the most populous country in

which is India). For reference, the C-LLAMA anchor scenario sees a global agricultural

land use of approximately 5300 Mha, so a 10% decrease equates to a reduction of 530

Mha. The efficacy of reducing waste in C-LLAMA is linked to both population (food

demand), and food production quantity, both of which are high in Southern Asia. In

2017 Southern Asia produced 16% of the worlds cereal crops at 450 Mt: the third most

globally, just behind Eastern Asia (including China) at 640 Mt and Northern America
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Figure 5.3: Proportional change in global land use compared to the C-LLAMA anchor scenario
when prescribing one of three ‘land use efficiency’ options to the food system in a region.

at 500 Mt (FAO, 2022). In SSP2, the population of India grows by upward of 500 million

people by 2050, whereas Northern America grows by only 100 million, and Eastern

Asia actually sees a net decrease of 80 million people over the same time period (KC

& Lutz, 2017).

In 14 of the 21 regions, the magnitude of land use impacts of transitioning to the

EAT-Lancet diet are greater than the changes achieved through closing yield gap or

reducing waste and losses. In fact, on the global stage, closing yield gaps appears

to have very little impact on total agricultural land use at all; it only out ‘performs’

reducing waste in two regions: Western Africa and Eastern Europe. These two regions

saw the largest proportional increases in cereal production (almost doubling in both

cases) when closing yield gaps in Mueller et al. (2012).

From a global perspective, of the three options tested, the EAT-Lancet diet is the



5.3. RESULTS 119

best option for improving land availability in mostly upper-middle and high income

regions. Applying the diet in Northern America, and Western, Northern, and Southern

Europe lead to global land use decreases of between 1-2%. This result aligns with

the general trend of increased proportional consumption of less land efficient food

products (animal products, and fruits and vegetables as opposed to cereals and

starchy roots). It is also the best option in Eastern Asia, which has seen a rapidly rising

consumption of beef in recent years and hence a projected continuation of this rise in

C-LLAMA (Li et al., 2018). In these regions, reducing waste has less impact than diet,

surprising given the high levels of post-production waste in industrialised regions,

which directly inflates food demand. However, the majority of countries in these

regions have low levels of processing and distribution losses. This result highlights

the importance of diet and the potential role of the consumer in achieving climate

targets.

The EAT-Lancet diet causes relatively large increases in global agricultural land use

(2-4%, or approximately 100-200 Mha) when prescribed in Eastern and Western

Africa, and South-Eastern Asia. As discussed in Chapter 3, this does not mean

that transitioning to such a diet in these regions should be avoided. The EAT-

Lancet diet scenarios prescribe a trajectory toward a diet that is consistent with

planetary boundaries, which may serve to improve environmental performance in

these regions in aspects other than agricultural land use, in addition to improving diet

quality and health (The Eat-Lancet Commission, 2019). However, since improving

diet in these regions increases agricultural land use, decreasing agricultural land use

through other means is likely to be more difficult in these regions if the goal of also

providing a nutritionally sufficient diet is also to be met.

The results shown in Figure 5.3 are dependant on the total amount of food production

and demands within the region compared with other regions. The general picture is

altered when considering agricultural land use only within the region targeted by the

changes to diet, waste, or yield, shown in Figure 5.4. Southern Asia once again sees
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Figure 5.4: Proportional change in land use compared to the C-LLAMA anchor scenario
for the target region when prescribing one of three ‘land use efficiency’ options to the food
system.

the most dramatic land use change of any region with over a 30% increase, but this

time in the diet scenario rather than the waste scenario. This result was discussed in

Section 3.3.1, and is due to a combination of rapidly growing populations and initially

high consumption of cereals and starchy roots, transitioning into higher quantities of

fruits, vegetables, and pulses (which are more generally land extensive). With only

four exceptions, prescribing any of the three changes to efficiency lead to a reduction

in local agricultural land use within the region. In addition to diet in Southern Asia,

the exceptions are all diet, in Eastern and Western Africa, and Western Asia. Like

Southern Asia, diets in Western and Eastern Africa are heavy in cereals and starchy

roots, especially cassava in Eastern and Western Africa (Tian & Yu, 2019). Western Asia

(the largest producer and consumer in which is Turkey) sees a very marginal land use

increase of 0.01% in the EAT-Lancet diet scenario.
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In 16 of the 21 regions, closing the yield gap in that region leads to larger reductions

in localised agricultural land use than reducing waste or prescribing the EAT-Lancet

diet. As previously mentioned, increasing yield will decrease land use exclusively in

the targeted region, whereas diet and waste will have impacts in both the targeted

region and elsewhere, dependant on imports and exports. In the simple world of

C-LLAMA, there is no dynamic trade or trade matrices; increases in a demand for a

certain food product in a given region distribute the production globally based on

historical production quantities (see Section 2.3.3). However, in reality, trade is much

less universal. For example, Brazil is presently (as of 2019) the largest exporter of

beef in the world, but the majority of it’s exports are to a handful of regions rather

than globally; almost 50% of it’s exports go to China and Hong Kong, while these two

countries do not account for 50% of global beef consumption (Zia et al., 2019). Trade

is complex, and typically the domain of economic equilibrium models, however it is

probable that if beef consumption in a country were to increase, much of that demand

would be met by countries from which it already imports. C-LLAMA currently fails

to capture this, and hence fails to capture the fact that prescribing changes to food

system efficiency in one region is likely to impact external regions in different ways.

5.4 CONCLUSION

In this chapter, the impact of closing yield gaps on agricultural land use (when

compared with a projection of current yield growth) was modelled in C-LLAMA. These

results were then compared with results from Chapters 3 and 4 to explore the ‘best

options’ for improving land use efficiency at a regional level. Unsurprisingly, regions

with large populations (or projected populations) were especially sensitive to changes

particularly in diet (albeit sometimes leading to an increase in land use), since in C-

LLAMA the food demand of a region is directly proportional to its population.

Food waste in C-LLAMA is divided into two components: post-production waste,
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and production (processing and distribution) losses. Post-production waste is tied

directly to diet and hence population, whereas production losses occur in the

region of production, so are linked more closely to total regional food production

production. As a country industrialises and production wastes decrease, post-

production waste tends to increase (see Section 4.1, Gustavsson et al. (2011)). In

the scenarios analysed here, waste seemed to have the greatest impact in regions

of generally lower and middle incomes (Southern America, Eastern, Western and

Northern Africa, and Eastern and Southern Asia). In general, more food is wasted

earlier in the supply chain than later at 48% and 35% respectively of the estimated

global total (Lipinski et al., 2013), so sensitivity is skewed toward less industrialised

regions, since they are where higher levels of early-stage waste and losses occur.

Additionally, in C-LLAMA the transition between the two ‘states’ of full subsistence

and fully industrialised is linear. Each country in C-LLAMA sees waste at both stages;

those that lie in the middle get ‘medium’ values for both waste and loss avenues.

Given two inversely proportional linear trajectories, their product will always be

maximised at the point where they intersect, so countries that lie somewhere in the

middle will get the worst of both worlds and see higher levels of overall food waste.

The real world is far more complex than C-LLAMA however, and this linear transition

between the two cases may not be the case, and so the middle peak may never occur;

exploration of this is an avenue for further research.

With the goal of producing biomass feedstock for energy generation and carbon

capture and storage (BECCS), land made available in one region is not equivalent

to another. As will be discussed in more detail in Chapter 6, productivity varies

significantly between regions and even on a country level scale, in addition to the

fact that many forecasts and bioenergy potentials assume that second generation

energy crops (such as miscanthus x giganteus) are grown on less-productive marginal

or degraded agricultural land (Wang et al., 2021; Næss et al., 2021). Indeed, many

integrated assessment model scenarios favour tropical climates for energy crop

production due to their productivity (see Chapter 6). Many of the regions most
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sensitive to the changes made in the C-LLAMA scenarios lie in the tropics (Eastern

and Western Africa, South-Eastern Asia, and Southern Asia); and in three of these

regions applying the EAT-Lancet diet led to a significant increase in global land use

upward of 2% (100 Mha). Food insecurity and hunger are prevalent in these regions

(Cooper et al., 2021), so the sustainable production of energy crops may present

additional challenges and competition for land use.

In almost all regions, the most effective change to the food system to improve land

use was different depending on the consideration of total land footprint (global land

use), or land use specifically within the region where the changes were applied.

Unsurprisingly, yield was significantly more impactful than diet or waste at the local

scale, since it only applies to local land use, whereas changes to diet or waste have

impacts on land use in other regions due to trade. The lack of a dynamic trade

module is highlighted as a key step in the future development of the C-LLAMA model.

Currently, an increase in a food commodity demand in a region affects all regions

independent of where the increase occurred (production an additional demand for

100 tonnes of wheat will be distributed the same if the demand comes from the

Caribbean or Western Asia). Realistically, despite increasing globalisation, trade

favours proximity more than the C-LLAMA mechanism would indicate (illustrated by

Figure A.1).





6
ENVIRONMENTAL GOVERNANCE QUALITY

AND OTHER FACTORS MAY JEOPARDISE

DELIVERY OF BIOENERGY IN MITIGATION

SCENARIOS

ABSTRACT

Land based mitigation strategies play a crucial role in future scenarios consistent with

Paris Agreement warming limits. Biomass energy is likely to require unprecedented

land use change for energy generation and greenhouse gas removal. However, the

risk of relying on countries with poor governance quality and other pressures on

land-use is yet unquantified. In this chapter it is shown that a high proportion

(approximately 35-70% by 2050 and 41-70% by 2100) of bioenergy production in

mitigation scenarios with end-of-the-century radiative forcing values of 2.6 Wm−2
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and 1.9 Wm−2 consistently occurs in regions with historically poor environmental

and general governance quality, with 4% having extremely poor environmental

performance. Nearly half of cumulative energy crop production occurs in regions

with a tropical climate before 2050 (36-37% by 2100), where land productivity and

emissions due to land use change are high. Almost one third (57%) of production

occurs in regions with a food demand growth of up to 30%, and 37-38% occurs

in regions with food demand growth of between 30% and 60%, which are likely to

experience increased pressures on land use from food demand, production, and

growing populations. The efficacy of bioenergy as a carbon neutral energy source and

BECCS as a greenhouse gas removal technology will be reduced in countries where

these factors accumulate.

6.1 INTRODUCTION

Biomass is a prominent energy source in future low emission scenarios, used as both

an energy source and, when coupled with carbon capture and storage (BECCS), a

greenhouse gas removal (GGR) method. The integrated assessment models (IAMs)

used to produce these scenarios rely heavily on the deployment of biomass energy

due to it being potentially carbon neutral and versatile - usable for heat, electricity

generation and transport fuel (Daioglou et al., 2019). Biomass feedstock can come

from dedicated energy crops as well as forestry and agricultural residues and food

waste (Breunig et al., 2017; Rogelj et al., 2018b). In IMAGE scenarios approximately

half of the total biomass energy is delivered by energy crops, with the remainder

coming from residues (Vaughan et al., 2018). Scenarios with lower end-of-the-century

radiative forcing values have greater bioenergy use, with RCP1.9 scenarios ranging

from below 50EJ yr−1 to upward of 500EJ yr−1, with SSP1 and SSP2 scenarios making

up the lower range of estimates, and SSP4 and SSP5 scenarios accounting for the

higher end (Rogelj et al., 2018b). There are a wide range of practical energy crop



6.1. INTRODUCTION 127

potential estimates from 130 EJ yr−1 to over 350 EJ yr−1 by 2050, with the former

having tighter constraints on land selected for deployment (Fuss et al., 2018).

For biomass to be effective as a carbon neutral energy feedstock or means of

greenhouse gas removal, it is crucial that carbon removed from the atmosphere

during photosynthesis is not offset by positive emissions elsewhere in the process.

In addition to associated biodiversity impacts (Durán et al., 2020), land use change

is a potential source of significant greenhouse gas emissions in the production of

biomass energy feedstock, as soil and vegetation carbon stocks are disrupted during

land use change (Searchinger et al., 2018). Land use change for crops and pasture are

together the largest contributors to agricultural land emissions through expansion

into forests and grasslands (Hong et al., 2021). Between 20-25% of current cumulative

greenhouse gas emissions are the result of land use change (Searchinger et al., 2018).

Carbon stocks and thus potential emissions due to land use change are dependent

on several factors: climate, previous land-use (including other types of agriculture),

and vegetation. Deforestation and poor forest management are major contributors to

anthropogenic greenhouse gas emissions; the worlds forests are a major carbon sink

and store, especially in tropical climates (Csillik et al., 2019). In the pursuit of land

intensive mitigation strategies forest removal is not likely to be beneficial, and should

be avoided (Harper et al., 2018).

Literature exploring the mechanisms to facilitate widespread bioenergy deployment

highlight the importance of effective governance and policies at domestic and

international scales (Dooley & Kartha, 2018; Hurlbert et al., 2019; Kreuter & Lederer,

2021). Integrated assessment model projections infer some level of national action,

but a ‘high level of abstraction’ is required to represent the non-economic factors

(social and policy) surrounding the production of energy crops (Low & Schäfer,

2020). A significant portion of energy crop production in mitigation scenarios

occurs in countries with historically poor environmental governance (Vaughan et al.,

2018). However, presently there are few attempts to quantify the risk of relying
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on countries of historically poor environmental or general governance quality to

deliver sustainable biomass energy (Torvanger, 2019). Deforestation, land use change

emissions, and food competition are likely to be key factors in the sustainable

deployment of large-scale energy crop production, especially in developing regions,

and those lacking effective governance frameworks (Humpenöder et al., 2018;

Haberzettl et al., 2021). Reducing Emissions from Deforestation and forest

Degradation, and the enhancement of forest carbon stocks (REDD+) is a framework

for sustainable forest management and policy implementation (UNFCCC, 2022).

REDD+ is a global initiative that typically operates at project scales, and has thus far

been only moderately successful (Duchelle et al., 2018). Similar frameworks are likely

to play an essential role in the pursuit of bioenergy as a negative emissions technology

(Kreuter & Lederer, 2021).

In this chapter we identify three sources of uncertainty surrounding the sustainable

governance of bioenergy delivery and make an exploratory attempt to quantify

them. First, tropical land is more productive than temperate land and thus generally

favoured by IAMs for energy crop production. However, carbon stocks are also higher

in tropical land, increasing the risk of emissions due to poor land management.

Second, poor governance quality could incur some ‘leakage’, placing the sustainable

delivery of biomass energy at risk if policy measures are not implemented properly.

Finally, many counties projected to produce energy crops are also likely to see an

increase in food demand, potentially introducing competition for land use between

the food and energy crop agriculture.

6.2 METHODS
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SCENARIO DATA

Scenario data in this chapter is used at two levels of regional disaggregation. The

analysis contextualising the scenario space (Section 6.3.1) was conducted using

publicly available data from the SSP scenario database (Rogelj et al., 2018b; Gidden

et al., 2019; Riahi et al., 2017). Energy crop production in 2020 was subtracted from

the 2050 value, at the five-regional level, for all scenarios in the database. The five

regions and constituent countries are listed in Table 6.1. Additionally SSP2 scenarios

in the database compatible with end-of-the-century post-industrial global warming

limits of 2.0◦C and 1.5◦C were analysed.

For analyses of governance, climate, and food demand (Sections 6.3.2 to 6.3.4),

IMAGE scenario data for four SSP2 scenarios were used. The data for these four

scenarios was kindly provided by collaborators Prof van Vuuren and Dr Daioglou

at the PBL Netherlands Environment Agency. The four scenarios are: a reference

scenario, and three scenarios following representative concentration pathways (RCP)

with end-of-the-century radiative forcing values of 4.5, 2.6, and 1.9 Wm−2, labelled

as RCP4.5, RCP2.6, and RCP1.9 respectively. RCP2.6 and RCP1.9 are compatible

with end-of-the-century post-industrial global warming limits of 2.0◦C and 1.5◦C

respectively. Data in these scenarios is aggregated into 26 regions, with some regions

containing only one country (for example Japan and Brazil are their own region).

Regional definitions and constituent countries can be found in Table 6.2.

CLIMATE CLASSIFICATION

The quantity of energy crop produced and energy crop land cover in 5 different

climates (tropical, arid, temperate, cold (continental), and polar) was calculated

for the four IMAGE SSP2 scenarios. The portion of Köppen-Geiger climate classes

making up each country was calculated as a percentage of the country’s total land

area (Beck et al., 2018). The proportional climatic make-up of a given region was

calculated using a weighted (by land-area) sum of the climate make-up of constituent
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Asia Latin America Middle East and 

Africa 

OECD countries Reforming 

economies 
Most Asian countries 

with the exception of 

former Soviet Union 

states, Japan, and the 

Middle East  

Includes Latin 

America and the 

Caribbean 

As described OECD90 and EU 

member states (and 

candidates) 

Countries from the 

reforming economies 

of Eastern Europe 

and the former Soviet 

Union 

Afghanistan, 

Bangladesh, Bhutan, 

Brunei Darussalam, 

Cambodia, China 

(incl. Hong Kong and 

Macao, excl. Taiwan) 

Democratic People's 

Republic of Korea, 

Fiji, French 

Polynesia, India, 

Indonesia, Lao 

People's Democratic 

Republic, Malaysia, 

Maldives, Micronesia 

(Fed. States of), 

Mongolia, Myanmar, 

Nepal, New 

Caledonia, Pakistan, 

Papua New Guinea, 

Philippines, Republic 

of Korea, Samoa, 

Singapore, Solomon 

Islands, Sri Lanka, 

Taiwan, Thailand, 

Timor-Leste, 

Vanuatu, Viet Nam 

Argentina, Aruba, 

Bahamas, Barbados, 

Belize, Bolivia 

(Plurinational State 

of), Brazil, Chile, 

Colombia, Costa 

Rica, Cuba, 

Dominican Republic, 

Ecuador, El Salvador, 

French Guiana, 

Grenada, 

Guadeloupe, 

Guatemala, Guyana, 

Haiti, Honduras, 

Jamaica, Martinique, 

Mexico, Nicaragua, 

Panama, Paraguay, 

Peru, Suriname, 

Trinidad and Tobago, 

United States Virgin 

Islands, Uruguay, 

Venezuela 

(Bolivarian Republic 

of) 

Algeria, Angola, 

Bahrain, Benin, 

Botswana, Burkina 

Faso, Burundi, 

Cameroon, Cape 

Verde, Central 

African Republic, 

Chad, Comoros, 

Congo, Côte d`Ivoire, 

Democratic Republic 

of the Congo, 

Djibouti, Egypt, 

Equatorial Guinea, 

Eritrea, Ethiopia, 

Gabon, Gambia, 

Ghana, Guinea, 

Guinea-Bissau, Iran 

(Islamic Republic of), 

Iraq, Israel, Jordan, 

Kenya, Kuwait, 

Lebanon, Lesotho, 

Liberia, Libyan Arab 

Jamahiriya, 

Madagascar, Malawi, 

Mali, Mauritania, 

Mauritius, Mayotte, 

Morocco, 

Mozambique, 

Namibia, Niger, 

Nigeria, Occupied 

Palestinian Territory, 

Oman, Qatar, 

Rwanda, Réunion, 

Saudi Arabia, 

Senegal, Sierra 

Leone, Somalia, 

South Africa, South 

Sudan, Sudan, 

Swaziland, Syrian 

Arab Republic, Togo, 

Tunisia, Uganda, 

United Arab 

Emirates, United 

Republic of 

Tanzania, Western 

Sahara, Yemen, 

Zambia, Zimbabwe 

Albania, Australia, 

Austria, Belgium, 

Bosnia and 

Herzegovina, 

Bulgaria, Canada, 

Croatia, Cyprus, 

Czech Republic, 

Denmark, Estonia, 

Finland, France, 

Germany, Greece, 

Guam, Hungary, 

Iceland, Ireland, 

Italy, Japan, Latvia, 

Lithuania, 

Luxembourg, Malta, 

Montenegro, 

Netherlands, New 

Zealand, Norway, 

Poland, Portugal, 

Puerto Rico, 

Romania, Serbia, 

Slovakia, Slovenia, 

Spain, Sweden, 

Switzerland, The 

former Yugoslav 

Republic of 

Macedonia, Turkey, 

United Kingdom, 

United States of 

America 

Armenia, Azerbaijan, 

Belarus, Georgia, 

Kazakhstan, 

Kyrgyzstan, Republic 

of Moldova, Russian 

Federation, 

Tajikistan, 

Turkmenistan, 

Ukraine, Uzbekistan 

 

Table 6.1: Region descriptions and constituent countries at the five-regional level in the SSP
scenario database.
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Region Constituent countries 

Canada Canada 

USA 

St. Pierre and Miquelon, United States 

Mexico 

Mexico 

Central 

America 

Anguilla, Aruba, The Bahamas, Barbados, Belize, Bermuda, Cayman Islands, Costa Rica, 

Dominica, Dominican Republic, El Salvador, Grenada, Guadeloupe, Guatemala, Haiti, Honduras, 

Jamaica, Martinique, Montserrat, Netherlands Antilles, Nicaragua, Panama, Puerto Rico, St. Kitts 

and Nevis, St. Lucia, St. Vincent and the Grenadines, Trinidad and Tobago, Turks and Caicos 

Isl., Virgin Isl. (Br.), Virgin Islands (U.S.)  

Brazil 

Brazil  

Rest of 

South 

America 

Argentina, Bolivia, Chile, Colombia, Ecuador, Falklands Isl., French Guyana, Guyana, Paraguay, 

Peru, Suriname, Uruguay, Venezuela, RB  

Northern 

Africa 

Algeria, Egypt (Arab Rep.), Libya, Morocco, Tunisia, Western Sahara  

Western 

Africa 

Benin, Burkina Faso, Cameroon, Cape Verde, Central African Republic, Chad, Congo (Dem. 

Rep.), Congo (Rep.), Cote d'Ivoire, Equatorial Guinea, Gabon, Gambia, The, Ghana, Guinea, 

Guinea-Bissau, Liberia, Mali, Mauritania, Niger, Nigeria, Sao Tome and Principe, Senegal, 

Sierra Leone, St. Helena, Togo  

Eastern 

Africa 

Burundi, Comoros, Djibouti, Eritrea, Ethiopia, Kenya, Madagascar, Mauritius, Reunion, Rwanda, 

Seychelles, Somalia, Sudan, Uganda  

South 

Africa 

South Africa  

Western 

Europe 

Andorra, Austria, Belgium, Denmark, Faeroe Islands, Finland, France, Germany, Gibraltar, 

Greece, Iceland, Ireland, Italy, Liechtenstein, Luxembourg, Malta, Monaco, Netherlands, 

Norway, Portugal, San Marino, Spain, Sweden, Switzerland, United Kingdom, Vatican City State  

Central 

Europe 

Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Estonia, Hungary, 

Latvia, Lithuania, Macedonia (FYR), Poland, Romania, Serbia and Montenegro, Slovak 

Republic, Slovenia  

Turkey 

Turkey  

Ukraine  

Belarus, Moldova, Ukraine  

Central Asia 

Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan, Uzbekistan  

Russia  

Armenia, Azerbaijan, Georgia, Russian Federation  

Middle East 

Bahrain, Iran (Islamic Rep.), Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, 

Syrian Arab Republic, United Arab Emirates, Yemen (Rep.)  

India 

India  

Korea  

Korea (Dem. Rep.), Korea (Rep.)  

China  

China, Hong Kong, China, Macao, China, Mongolia, Taiwan  

South-

Eastern 

Asia 

Brunei, Cambodia, Lao PDR, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam  

Indonesia  

East Timor, Indonesia, Papua New Guinea  

Japan 

Japan  

Oceania 

American Samoa, Australia, Cook Isl., Fiji, French Polynesia, Kiribati, Marshall Islands, 

Micronesia (Fed. Sts.), Nauru, New Caledonia, New Zealand, Niue, Northern Mariana Islands, 

Palau, Pitcairn, Samoa, Solomon Islands, Tokelau, Tonga, Tuvalu, Vanuatu, Wallis and Futuna 

Island  

Rest of 

South Asia 

Afghanistan, Bangladesh, Bhutan, Maldives, Nepal, Pakistan, Sri Lanka  

Rest of 

Southern 

Africa 

Angola, Botswana, Lesotho, Malawi, Mozambique, Namibia, Swaziland, Tanzania, Zambia, 

Zimbabwe  

 

Table 6.2: Region descriptions and constituent countries at the 26-regional level in four SSP2
scenarios produced in IMAGE (PBL Netherlands Environmental Assessment Agency, 2018).
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countries. For example, the region containing the USA (only), is <1% tropical, 23%

arid, 32% temperate, 36% cold, and 8% polar. Energy crop production in the four

IMAGE SSP2 scenarios (reference, RCP4.5, RCP2.6, and RCP1.9) is then categorised

by the climate of the region. This has the consequence of placing some production

in polar climates (for example 8% of production in the USA), which in reality is

unlikely given the lack of productivity in polar climates. However, in the absence

of spatial energy crop production data, this method is sufficient for an exploratory

quantification.

GOVERNANCE AND ENVIRONMENT INDICATORS

The Worldwide Governance indicators (WGI) are a set of six metrics which together

are designed to capture the many aspects of governance quality (World Bank, 2019).

Each country is assigned a score between -2.5 and +2.5 for each of the six metrics,

which are: voice and accountability, political stability and absence of violence,

government effectiveness, regulatory quality, rule of law and control of corruption.

The metrics are highly inter-linked; it can be shown that the first component of a

principle component analysis sufficiently describes 86% of the inter-metric variance

(Langbein & Knack, 2010). We perform a principle component analysis of the 2019

values of the dataset to produce a combined score to represent the whole dataset.

The Environmental Performance Index is an aggregate metric based on 32 individual

indicators of environmental governance quality for 180 countries (Wendling et al.,

2020). Scores in 2021 for the metric range between 22.6 and 82.5, with the lowest

score being Liberia and the highest being Denmark.

Energy crop production and energy crop land cover in regions of different WGI and

EPI scores was calculated for the four IMAGE SSP2 scenarios. Both the first principle

component of the WGI dataset and the EPI scores were divided into five bins of equal

score range. Each nation was assigned two scores from 1 to 5 based to represent the

‘risk’ of failure to deliver sustainable bioenergy due to either general governance or

environmental performance quality, with bin 1 containing nations of least concern
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and bin 5 containing nations of high concern. A third score of ‘disagreement’ was

calculated: the difference in score between the two bins. Energy crop production for

each ‘bin’ in the WGI and EPI is calculated.

FOOD SUPPLY

Energy crop production and energy crop land cover was calculated for regions

of given proportional changes in food demand energy, for the four IMAGE SSP2

scenarios. C-LLAMA (Country-Level Land Availability Model for Agriculture) is

an open-source, national-level statistical-empirical model of food demand and

production based on UN FAOSTAT data (Ball et al., 2022). C-LLAMA makes linear

projections of diet and food supply for each country to the year 2050. The food

supply trajectory takes post-production waste into account: it is the amount of food

energy required to feed each person in the country for a given year assuming some

of that food is wasted post-production (see Sections 2.3.2 and 4.1 for further detail).

To calculate the growth in food energy demand for a given region, the projected

food supply (per capita) was multiplied by the UN medium population scenario

projection for countries within the region, then the sum of projected demands is

calculated. Finally, the proportional growth between 2020 and 2050 is calculated.

The range of values was split into 5 bins (from -30% to greater than 100% change in

proportional food energy demand), and the energy crop production and land cover

in regions of each bin calculated. The region containing only Japan, and the UKR

region (Belarus, Moldova, and Ukraine) see reductions in food energy demand. The

EAF region (Eastern Africa: including Burundi, Comoros, Djibouti, Eritrea, Ethiopia,

Kenya, Madagascar, Mauritius, Reunion, Rwanda, Seychelles, Somalia, Sudan, and

Uganda) is the only region that sees a food energy demand increase greater than 100%

between 2020 and 2050 (between 100% and 130% increase).
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6.3 RESULTS

6.3.1 SCENARIO CONTEXT

In this section, all instances of ‘energy crop production’ refer to the production

of dedicated energy crops. This includes first generation crops such as sugarcane

and maize, and second generation lignocelluosic crops such as miscanthus and

switchgrass. Initial energy crop production varies significantly between scenarios,

but more significantly between models: MESSAGE-GLOBIOM scenarios all have

global energy crop production between 900 and 1400 Mt(DM) (million tonnes of

dry matter) per year in 2020, and GCAM4 scenarios between 350 and 420 Mt(DM)

yr−1. Scenarios from IMAGE and REMIND-MAGPIE models range from 80 to 180

Mt(DM) yr−1 energy crop production mass in 2020, and AIM/GCE scenarios range

from 19 to 24 Mt(DM) yr−1. Only IMAGE and REMIND-MAGPIE have any energy

crop production in 2010, so the increases between 2010 and 2020 are dramatic in

many cases: from 0 to 1400 Mt(DM) yr−1 in one instance. However, the increases

in production over the first half of the century (2020 to 2050) are more stable: most

models see significant energy crop production increases in this time period.

Figure 6.1 shows the range of bioenergy crop production mass change from 2020

to 2050 in all modelled scenarios in the SSP database. Lower RCP scenarios rely

heavily on energy crop production. The expansion of energy crop production from

2020 to 2050 is consistently lower as the end of century radiative forcing (RCP)

value increases, with production increases greater than 2000 Mt(DM) yr−1 in RCP1.9,

RCP2.6, and RCP4.5 scenarios, and increases of less than 1000 Mt(DM) yr−1 in

all but one RCP 6.0 scenario. All scenarios see the least energy crop production

increase in the reforming economies and a greater change in production in Asia, Latin

America and OECD countries. In some RCP1.9 and RCP2.6 scenarios: Asia, Latin

America, and OECD countries see production increases upward of 2000 Mt(DM) yr−1
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Figure 6.1: Change in energy crop production between years 2020 and 2050 in (a) all SSP-
RCP database scenarios (n = 81), (b) IMAGE model scenarios (n = 14) and (c) SSP2 scenarios
(n = 24). Representative concentration pathways 1.9, 2.6, 3.4, 4.5 and 6.0 are arranged into
columns with 11, 13, 17, 17, and 12 scenarios respectively. REF to the SSP scenarios here –
specifically the data.

between 2020 and 2050. In 2011 an estimated 1200 Mt of biomass feedstock was

produced globally, of which only 17% was used for energy generation (Haberzettl

et al., 2021). Approximately 1% of global agricultural land use was dedicated to the

production of biomass in the same year (Haberzettl et al., 2021). Considering these

historical estimates, future regional production quantities of thousands Mt(DM) yr−1

are unprecedented.

IMAGE is the most conservative model in the suite, with lower energy crop production
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than other models in the majority of scenarios (Figure 1(b)). In no IMAGE scenarios

does production mass in any region significantly exceed 1000 Mt(DM) yr−1. In all

scenarios, IMAGE places relatively more of this energy crop production increase in

the Middle East & Africa and Latin America regions than other models do, with

increases between 200 and 1000 Mt(DM) yr−1. Interestingly, the largest increases

in energy crop production in the Middle East and Africa occur in higher RCP (3.4,

4.5, and 6.0) IMAGE scenarios. IMAGE places very little energy crop production

in the reforming economies in all scenarios, with an SSP1-RCP1.9 scenario seeing

the largest increase at just over 100 Mt(DM) yr−1 between 2020 and 2050. Since

it typically makes the most conservative estimates for energy crop production in

mitigation scenarios, results in this chapter will be focused around IMAGE scenarios.

SSP2 scenarios are selected as the focus of this chapter, since SSP2 is the ‘middle-of-

the-road’ shared-socioeconomic pathway, with medium challenges the adoption of

mitigation strategies in addition to a ‘medium’ population scenario: many aspects

of the SSP2 marker scenario reflect an extension of the historical experience (Fricko

et al., 2017).

Figure 6.2 shows the production of energy crops in a range of SSP2 scenarios with end-

of-the-century radiative forcing values of 1.9 Wm−2 (RCP1.9) and 2.6 Wm−2 (RCP2.6),

all consistent with pre-industrial warming targets of 1.5◦C and 2.0◦C. In the marker

scenarios, rapid increases in energy crop production to 3000 Mt(DM) yr−1 occur

throughout the century for Asia and Latin America, with slight slowing toward the

latter half of the century. The lower boundary is higher for Asia (approximately 1000

Mt(DM) yr−1 by 2100) than Latin America (approximately 100 Mt(DM) yr−1 by 2100),

and the upper limit is much greater at nearly 6000 Mt(DM) yr−1 by 2100 compared

to approximately 3300 Mt(DM) yr−1 in Latin America. In the OECD countries, energy

crop production in the marker scenarios is slightly over half of that in Asia and Latin

America by 2100, but the upper boundaries for both RCP1.9 and RCP2.6 scenarios

are both approximately 6000 Mt(DM) yr−1 by 2100, with faster production increases

occurring before 2050. Relatively little energy crop production is allocated to the
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Figure 6.2: Regional energy crop production in SSP2 scenarios consistent with Paris
Agreement warming targets to end of century. Solid lines represent the marker scenarios,
shaded areas are the range of other scenarios.

reforming economies in all scenarios, with the RCP2.6 and RCP1.9 marker scenarios

reaching 400 and 500 Mt(DM) yr−1 by 2100 respectively. The upper boundary for

energy crop production in the reforming economies by 2050 is just under 500 Mt(DM)

yr−1 in both RCP1.9 and RCP2.6 scenarios.

6.3.2 CLIMATE

In the four IMAGE SSP2 scenarios with end-of-the-century radiative forcing values of

4.5 Wm−2 (RCP4.5), 2.6 Wm−2 (RCP2.6), 1.9 Wm−2 (RCP1.9), and a reference scenario,

increases in energy crop production are front-loaded to the first half of the century,

with the rate of increase in production mass and land cover peaking at around 2070

(Figure 6.3). In the reference scenario and RCP4.5, energy crop production increases

steadily for the first part of the century, reaching around 250 Mt(DM) yr−1 by 2030.

The majority of this increase is in tropical regions for both scenarios, accounting

for over 60% in both cases. From 2030 to around 2070, more rapid increases in

production mass take place, reaching approximately 1000 Mt(DM) yr−1, at which

point the acceleration slows and production increases by an approximate further 100

Mt(DM) yr−1. The tropical share of production is approximately half of the global
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Figure 6.3: Energy crop production mass for regions of different Koppen climate
classifications, in IMAGE SSP2 reference, RCP4.5, RCP2.6, and RCP1.9 scenarios. Each region
was apportioned a percentage of each climate classification; leading to the result that a small
amount of energy crop is produced in polar climates.

total by 2100 in both of these scenarios. Temperate regions have the second largest

share in production, although production in arid and cold climates is comparable

(approximately 30%, 20%, and 10% of total 2100 production for temperate, arid,

and cold climates respectively). In the scenarios consistent with warming targets of

1.5◦C and 2.0◦C (RCP1.9 and RCP2.6), global energy crop production mass increases

considerably from 2030 to 2070, from around 300 Mt(DM) yr−1 to 1750 Mt(DM) yr−1

in RCP2.6, and to 2000 Mt(DM) yr−1 in RCP1.9. Initially, much of this production

increase occurs in the tropics, which produce almost half of all energy crops until

around 2060 (48% and 45% for RCP2.6 and RCP1.9 respectively), at which point

production in other climates beings to catch up, with the total yearly production in

other climates overtaking that of the tropics around 2070. In RCP2.6, tropical regions

account 38% of the total energy crop production over the course of the century,
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with arid, temperate, cold, and polar regions account for 25%, 20%, 12%, and 4%

respectively. The pattern is similar in RCP1.9, with tropical regions producing 37% of

the cumulative total; arid, temperate, cold, and polar regions account for 26%, 20%,

12%, and 4% respectively.

Comparing the energy crop production mass results of Figure 6.3 with the energy

crop land-cover results of Figure 6.4, similar patterns emerge. All scenarios are

characterised by an initially rapid rate of expansion before 2050, with the rate of

expansion slowing by 2070. In all scenarios, energy crop land cover begins to

shrink around the year 2080. Crop yields in these scenarios are assumed to increase

throughout the century in many regions, albeit slowing before 2050, gradually

increasing the land-use efficiency of energy crop production (van Zeist et al., 2020).

Additionally, the requirement for energy crop production decreases slightly toward

the end of the century as cumulative carbon emissions are brought closer to pre-

industrial levels, leaving only the requirement to offset gross emissions. All four

scenarios have resurgences in expansion rate from 2060 to 2080, but this is more

pronounced in mitigation scenarios RCP1.9 and RCP2.6. The fastest rate of initial

expansion occurs in RCP1.9, from less than 10 Mha in 2020 to over 250 Mha in 2050,

compared with a change from 10 to approximately 180 Mha over the same time period

in the RCP2.6 scenario. As with production mass, the tropics host the majority of the

pre-2050 energy crop land cover expansion (around 35-40% of global cover in 2050 in

all four scenarios). In RCP2.6 and RCP1.9, energy crop land use also expands quickly

in arid climates to around 40% of the total, then slowing around 2050. After around

2060 contribution to energy crop land cover from the tropics drops to 36% of the

total (in 2080), and the total contributions from arid, temperate, and cold climates

slightly overtake (approximately 20%, 25%, and 20% respectively). As discussed in

Section 6.1, tropical climates are generally highly productive, thus placing energy crop

production there may reduce the overall land footprint of climate change mitigation.

However, production in these regions poses a greater risk of disrupting the initially

high terrestrial carbon stocks, especially when forests are removed to facilitate energy
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Figure 6.4: Energy crop land cover in regions of different climate classifications, in IMAGE
SSP2 reference, RCP4.5, RCP2.6, and RCP1.9 scenarios.

crop production (Harper et al., 2018).

6.3.3 GOVERNANCE

Country-level scores on the Worldwide Governance Indicators metric (WGI) and the

Environmental Performance Indicators (EGI) metric are shown in Figure 6.5. At the

continental scale, the two metrics generally agree with one another. Countries in

highly industrialised regions such as Europe, Australia, Japan, South Korea, and North

America have low scores of 1 and 2 on both metrics. Scores in South America are

between 2 and 5 on both metrics. Most countries in Central and Southern Asia

(including China and India) have WGI scores of 3, but EPI scores of 4 and 5. Illicit

forestry practices and illegal deforestation are widespread issues in Southern Asia

(including India) and South-Eastern Asia (including Indonesia), which is reflected in
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Figure 6.5: Country scores on the principle component of the Worldwide Governance
Indicators (WGI) (a), the Environmental Performance Indicators (EGI) (b), and the magnitude
of difference between the two (c). Values for (a) and (b) range from 1 to 5, where 1 represents
a country of high quality governance according to the WGI, and good environmental
performance according to the EPI. No countries have a score difference of 4 and only Fiji,
Micronesia, and Cabo Verde have a score difference of 3 (omitted for visual clarity).

their moderate WGI scores but poor EPI scores (Kumari et al., 2019; Tacconi et al.,

2019). The majority of the African continent scores 3 and 5 on the WGI metric, with

the exceptions of Namibia, Botswana, Libya, and Côte d’Ivoire, which score 2. EPI

scores across Africa are generally higher than the WGI scores, with most countries

scoring 4 or 5. Russia scores 4 and 3 on the WGI and EPI metrics respectively.

Disagreement between the metrics (Figure 6.5(c)) is generally low in North and South

America, Europe, North Africa, and Oceania. Disparities between the scores are larger

in Sub-Saharan Africa and much of Asia. Based on the results shown in Figure 6.5,

it appears that discrepancies between the scores are highest in lower-middle and

middle-income countries. This is perhaps reflective of increased economic activity

and hence environmental pressures, especially GHG emissions (the environmental

Kutznet curve), while policy action to address environmental impacts lags behind

(Dasgupta et al., 2006).
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Figures 6.6 and 6.7 show energy crop production four IMAGE SSP2 scenarios

(reference, RCP4.5, RCP2.6, and RCP1.9), grouped by regional scores on the WGI

(principle component) and EPI metrics. Regions with a WGI score of 3 (moderate

overall governance quality) make up the majority share in pre-2050 production (66 -

70% of cumulative 2020 to 2050 production in all 4 scenarios). Production in regions

with scores of 2 and 4 (good and poor governance quality respectively) begins around

2030. In these two brackets, production rate doesn’t vary dramatically between

scenarios but is slightly higher in the RCP2.6 and RCP1.9 scenarios, peaking at around

250 Mt(DM) yr−1 in both. Energy crop production in regions with a score of 1

(excellent governance quality) begins around 2050 in all scenarios. In RCP1.9 and

RCP2.6, energy crop production in regions with a score of 1 is significantly higher than

in the reference and RCP4.5 scenarios, with more than double the yearly production

by around 2080. No regions were assigned a WGI score of 5, hence no production

occurs in that bracket. Overall, 70% of cumulative energy crop production by 2050

occurs in regions with a WGI score of 3 or 4 in RCP2.6 and RCP1.9 (also approximately

70% by 2100). The distribution of production across the EPI scores is more even than

that of the WGI metric, with less emphasis being placed on one particular score-

bracket. As with the WGI metric, pre-2050 energy crop production initially favours

regions with a score of 3. However around 2030, production increases quickly in

regions with scores of 1 and 2, up to around 500 Mt(DM) yr−1 in the reference and

RCP4.5 scenarios, and up to approximately 1000 Mt(DM) yr−1 in the RCP2.6 and

RCP1.9 scenarios. Regions with scores 3, 4, and 5 increase production in the latter

half of the century, especially in the RCP2.6 and RCP1.9 scenarios, where they produce

just over 750 Mt(DM) yr−1, or just under half of total production, at their peak (around

2070). Overall, 35% of cumulative energy crop production by 2050 occurs in regions

with EPI scores of 3 or 4 in RCP2.6 and RCP1.9 (increasing approximately 41% by

2100). Around 4% of production throughout the century occurs in regions with a score

of 5 (extremely poor environmental performance).

While these metrics are not analogous to sustainable energy crop production in a
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Figure 6.6: Energy crop production mass in IMAGE SSP2 reference, RCP4.5, RCP2.6, and
RCP1.9 scenarios, categorised by regional scores on the Worldwide Governance Indicators
(WGI) principle component metric. Colours correspond to Figure 6.5: scores of 1 and 5
correspond to high and low quality governance respectively. When aggregating countries into
regions to align with scenario data, no regions have an aggregate score of 5.

given region, they represent the potential greater challenges to sustainability and

increased risk of failure. Regions with a scores of 1 and 2 on either metric are likely

to be at low risk of unsustainable energy crop production, since they have quality

governance frameworks (WGI) and a history of good environmental performance

(EPI) in place. On the other hand, regions with higher scores may represent a greater

risk of unsustainable energy crop delivery through failure due to weaker governance

structures (e.g. poor provision of monitoring and verification). The initial rapid

ramp-up of energy crop production assigned to regions with a WGI score of 3, and

the reliance on regions with EPI scores greater than 2 may be cause for concern.

A significant portion of energy crop production occurs in these regions, a portion

that may be at risk of diminished sustainability and therefore reduced efficacy as
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Figure 6.7: Energy crop production mass in IMAGE SSP2 reference, RCP4.5, RCP2.6, and
RCP1.9 scenarios, categorised by regional scores on the Environmental Performance Index
(EPI) metric. Colours correspond to Figure 6.5: scores of 1 and 5 correspond to good and poor
environmental performance respectively.

a low carbon energy source or GHG removal strategy. However, it is important to

note that the scores used in these results are snapshots of the present, so there is

plenty of scope for change, especially post-2050. Additionally, global governance

frameworks, guidance, and incentives (analogous to REDD+ in the forestry industry)

may be able to aid the sustainability of biomass production in regions with historically

lower governance quality (Torvanger, 2019).

6.3.4 FOOD DEMAND

An additional pressure on land available for for energy crop production in mitigation

scenarios are the increasing food demands of many regions. There are a wide range

of estimates for future bioenergy potentials, but few consider the already increasing
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global food energy demand, or ever prevalent aspirations to improve nutritional

content and sustainability of diet in many regions (Dias et al., 2021). In response to

growing populations and increasing demand for less land-efficient food products, it

is expected that agricultural production will need to approximately double by 2050

(Duro et al., 2020), and cropland to expand by upward of 69 Mha (Bahar et al.,

2020). Along with the pressures increasing food demand will place on natural forests

and ecosystems, it also adds an additional dimension of complexity for energy crop

production.

C-LLAMA makes simple linear projections of food energy demand and dietary

trajectories; it does not make any prescriptions regarding the nutritional content of

projected diets (see Section 2.3.1). Despite this, C-LLAMA projects that food energy

demand increases in almost all countries by 2050, along with increases in the portion

of food energy provided by animal products (Figure 2.3). Note that these trajectories

also take into account an estimate of post-production food waste and are reflective of

the characteristic increase in food-waste quantity that accompanies increased food

availability (Katt & Meixner, 2020). Taking into account changing populations, these

food supply trajectories are used to calculated country-level yearly total demand for

food.

Figures 6.8 and 6.9 show energy crop production mass and land cover in four IMAGE

SSP2 scenarios, grouped by proportional, regional changes in food demand energy

(from 2020 to 2050). In all scenarios, the vast majority of energy crop production

and land expansion occurs in regions with an increased food demand by 2050. In

all scenarios, less than 2% of the cumulative 2100 total energy crop is produced

in regions with a reduction in total food demand energy. In the reference and

RCP4.5 scenarios, 60% of all energy crops are produced in regions with up to a 30%

increase in total food demand. In RCP2.6 and RCP1.9, 57% is produced in these

regions. Cumulatively throughout the century, 34%, 33%, 37%, and 38% energy crop

production occurs in regions with a 30% to 60% increase in total food demand, in the



146 ENVIRONMENTAL GOVERNANCE AND OTHER FACTORS

Figure 6.8: Energy crop production mass in IMAGE SSP2 reference, RCP4.5, RCP2.6, and
RCP1.9 scenarios, categorised by proportional change in food supply quantity (total food
supply calories multiplied by projected population) from 2020 to 2050 (C-LLAMA runs until
2050). Values between 0.7 and 1.0 indicates a net reduction in food supply from 2020 to 2050
of up to 30%. Values between 1.0 and 1.3 indicate a net growth of up to 30%.

reference, RCP4.5, RCP2.6, and RCP1.9 scenarios respectively. Regions with a food

supply increase between 60% and 100% produce a very small quantity of energy crop

(cumulatively less than 0.5% in all scenarios). However, the group of regions with

food demand increases greater than 100% produce 3% of the cumulative total in the

RCP2.6 and RCP1.9 scenarios.

In all scenarios, the initial deployment of energy crop production occurs in regions

with up to 30% growth in food energy demand, until around 2040. Expansion in the

30% group continues after 2040, but is accompanied by additional expansion in the

30% to 60% growth bracket. This result is unsurprising given the rising requirement

and demand for food, but highlights a further complication.
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Figure 6.9: Energy crop land cover in IMAGE SSP2 reference, RCP4.5, RCP2.6, and RCP1.9
scenarios, categorised by proportional change in food supply quantity (total food supply
calories multiplied by projected population) from 2020 to 2050.

6.4 CONCLUSION

Future projections made by IAMs are not certain, and there is a high level of

uncertainty surrounding the quantity and land-use required to produce sufficient

energy crops to meet climate targets in these scenarios. This is especially true in low

emissions scenarios such as RCP1.9 and RCP2.6, where the production requirement

to meet Paris temperature goals may be anywhere between 2500 Mt(DM) yr−1 to

upward of 10000 Mt(DM) yr−1 by 2100 (Popp et al., 2017). IMAGE scenarios were the

focus of this chapter, and while the ramp-up in energy crop production pre-2050 may

seem dramatic, IMAGE is also typically a conservative model in the suite.

In this chapter it was found that there may be significant complications to the

deployment of energy crops. Tropical climates are preferred within IAMs for energy

crop production due to their generally higher productivity and therefore yields; this is
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reflected in the four SSP2 scenarios analysed here, where nearly half of initial energy

crop production (pre-2050) occurs in tropical climates. Additionally, between 35 and

70% of production occurs in regions which have had historical adversity surrounding

governance quality and environmental performance. Many of these regions are also

lower or middle income, so may face additional challenges during their ongoing

development. These include rapidly growing populations and therefore food energy

requirements, along with rising increase for less land efficient food commodities,

especially animal products.

To ensure that bioenergy is carbon neutral, and that BECCS delivers on net

atmospheric carbon removal, it is essential that emissions in the supply chain,

especially land-use change emissions, are minimised (Harper et al., 2018). Strong

environmental governance is essential to minimise carbon ‘leakage’ during energy

crop production and carbon storage (Lyngfelt et al., 2019). This means complete

aversion to deforestation (which comes with additional ecological benefits), since

forests account for a significant portion of the terrestrial carbon pool, especially

tropical forests which hold an estimated 306–324 Pg of carbon (Mackey et al., 2020).

Tropical forest deforestation (and deforestation in other climates) to make way for

energy crop production is generally avoided in most IAM scenarios. However, in

the real world this is not the case: over half of the world’s remaining primary forest

can be found in developing countries (Mackey et al., 2015), where food demand and

competition for land are increasing. Forest removal to facilitate agriculture (often

illegal but poorly policed) is an ongoing problem (Tacconi et al., 2019).

While the methods of analysis used in this chapter are crude compared to the

incredible complexity of the real world, they provide an exploratory estimate of

the magnitude of potential challenges to sustainable energy crop delivery. Meeting

climate targets is likely to require unprecedented large-scale energy crop production,

the governance frameworks for which are not yet in place (Martin et al., 2020;

Torvanger, 2019). Placing large portions of pre-2050 energy crop production in these



6.4. CONCLUSION 149

regions, where deforestation, weak governance, and increasing food demand may

accumulate may compound the risk, since there will be no previous examples of

energy crop production on the required scale from which to learn.





7
DISCUSSION AND CONCLUSION

This chapter will provide a summary and discussion of the work carried out in this

thesis and the findings of the previous chapters. A large portion of the work in

this thesis was the development of the Country-Level Land Availability Model for

Agriculture (C-LLAMA). C-LLAMA is used in all subsequent chapters, so a discussion

of the development process and sensitivity findings will follow, but additional

reference to the model and it’s strengths and weaknesses will be made as part of the

discussion for other chapters.

Chapter 2 describes the development of the C-LLAMA model, along with the C-

LLAMA anchor scenario, and sensitivity to changes in some of the key components of

the model. This chapter was not framed around a specific research question as such,

rather the purpose of C-LLAMA is to provide an open and transparent framework for

modelling the land footprint of the agricultural system from a bottom up approach,

beginning with food demand. In Chapter 1, three key drivers of agricultural land

use were identified: diet, waste and losses, and yields of both crops and pasture. C-

LLAMA include a representation of each of these drivers, and behaves as expected

151
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when manipulating them, both in the sensitivity analyses conducted in Chapter 2,

but also in the general findings of Chapters 3, 4, and 5. In that sense, the development

of C-LLAMA has been successful, the simplicity of the model allows it to be easily

modified to construct scenarios surrounding any of those drivers.

The C-LLAMA anchor scenario is a baseline scenario in which all dynamic factors

in the model, such as diets, yields, waste streams, and efficiency parameters are

projected linearly to 2050 from their historical data, or calculated historical values.

It acts as a business as usual scenario from which to compare the results of other

modelled scenarios. The global land use trajectory in the anchor scenario is

comparable to that of FALAFEL (Powell, 2015), starting at around 4.7 Gha in 2017,

then growing to approximately 5.2 Gha in 2050, with pasture and fodder crop areas

growing, and food crops seeing a slight decrease of around 50 Mha over the time

period. Each continent sees a continuation of it’s historical trend in land use, with the

exception of Europe, that has a slight increase where historically it was decreasing;

this is down to Russia having extensive production of crops and livestock, which in

C-LLAMA leads to it being allocated a high portion of production as demand grows.

C-LLAMA doesn’t aim to make explicit predictions about future land use, but rather to

represent the food system in an internally consistent way. So by comparing modelled

scenarios to the anchor scenario, the sensitivity of the food system to the drivers of

agricultural land use can be inferred.

While C-LLAMA is a solid initial framework for food system modelling, there

are a number of avenues for development of the model that would improve it’s

representation of the food system and it’s nuances. The first is the land use aspect

of the model; the current version of C-LLAMA simply calculates the land necessary to

meet the food production demand each year. However, in reality agricultural land use

is far more complex: land use is not ‘on or off’, agricultural land may be abandoned

due to reduced productivity (sometimes indefinitely) or lack of local necessity, driving

agriculture into natural grasslands or forest, or sometimes in a rotation around
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previously used crop and pasture land (Subedi et al., 2021; Munroe et al., 2013). The

abandonment and reutilisation process is not linear (as the structure of C-LLAMA

might imply), and is also highly dependant on the ecology, climate, industrialisation,

and policy of the area (Subedi et al., 2021). A next step in the development of C-

LLAMA would be to implement a dynamic land use system, with a country-level

bin for each land type (including natural biomes), then a set of rules to govern the

transition of land between each category, driven by the food production demand.

Such a system would also facilitate the inclusion of a simple land use change carbon

emissions and uptake model, and perhaps an exploration of the ‘carbon opportunity

costs’ described by Hayek et al. (2021) and Searchinger et al. (2018).

There are other food system models with a similar simplistic structure as that of

C-LLAMA. Bijl et al. (2017) present a food demand model, in which the demand

for food commodities (equivalent to the diet section of C-LLAMA) are modelled

based on projections of income and expenditure. However, the structure of the

rest of the model is similar, although it terminates at ‘crop-use’ for food and animal

feed, and ‘grass-use’ for animal feed. Another model that takes a similar approach

is the Biomass Balance Model (BioBaM). BioBaM attempts to balance the supply

and demand of 14 biomass streams (and corresponding food commodities) for 11

regions of the world (Kalt et al., 2021). The BioBaM model doesn’t have a land use

allocation component, rather asking is it possible to produce the required biomass on

the land that is available?, then discarding scenarios in which supply and demand

are incompatible. Both of these models forego the inclusion of any kind of trade

implications (by either stopping before, or using the balancing method in BioBaM).

While the representation of trade in C-LLAMA is coarse, it is at least a first-pass

attempt at constructing such a model with an inferred trade mechanism.

The functionality of C-LLAMA is currently somewhat limited to exploring trends

in global land use and the land footprints of regions without an improved trade

mechanism, but the model provides a reasonable foundation upon which a trade
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mechanism can be built. Arguably, BioBaM provides the same foundation, since

functionally the models are very similar, but C-LLAMA operates at a country-level

and for a greater range of food commodities. Perhaps the reason there exist no

comparable models of the food system in the spirit of BioBaM or C-LLAMA with

a trade system, is that implementing one is impossible without surrendering the

traceability of the model to an agent-based or economic equilibrium approach. This

would be an unsatisfying outcome, so high on the agenda for further development of

C-LLAMA is to attempt an improvement of the trade mechanism in a transparent way,

perhaps by projecting trade matrices. In the event that a trade matrix for specific food

commodities is not available, general ‘food products’ matrices could be used, and

projected forward in time to 2050. This would allow C-LLAMA to explore scenarios

with high levels of growth in regions that are currently less productive. Doing so

would have been preferable in this iteration of C-LLAMA, but unfortunately the

inconsistency and data complexity placed this outside the scope of this work.

In Chapter 3 the impacts of transitioning from projected dietary trends toward the

EAT-Lancet planetary health diet (Willett et al., 2019) were explored using C-LLAMA.

The resulting global land use trajectory was actually very similar to that of the C-

LLAMA anchor scenario, although the composition changed, with food crop area

increasing by around 700 Mha, and pasture and fodder crop area decreasing by

around 300 Mha and 250 Mha respectively, leading a slight overall increase in land

use of approximately 150 Mha. Higher income regions and those with higher beef

consumption saw overall decreases in land footprint as a result of prescribing the diet

there. It also became clear that regions of larger population (or with higher projected

population growth) were the most sensitive to changes toward the EAT-Lancet diet,

with dramatic impacts when applying it in Central, Eastern, and especially Southern

Asia which lead to a 40% increase in global crop area.

Population changes are the single most impactful driver of agricultural land use in a

‘food first’ modelling framework and in the context of the sustainable development
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goals. Throughout this thesis, the population trajectories used have been kept

constant, but the UN medium population trajectory is just one scenario, and the

reality may be very different. The findings of Chapter 3 indicate that while it may help

to address ongoing global hunger and malnourishment, transitioning to a sustainable

diet is likely to increase pressure on land use, meaning that improving land use

efficiency in other areas (such as waste and yields) is all the more important.

Chapter 4 investigated the potential for increasing land availability through

reductions in food waste and losses. Halving post-production food waste (globally)

by 2030, a target set out by SDG 12.3, lead to a modest global agricultural land use

decrease of 700 Mha compared with the anchor scenario in 2050, with the majority

of that decrease (500 Mha) occurring in pasture. A similar pattern but slightly smaller

decrease in land use of around 430 Mha was achieved when halving processing and

distribution losses by 2030, again with the largest decrease occurring in pasture. All

waste and loss streams in C-LLAMA (with the exception of harvest losses, which

are not included here) are applied equally to all food products, so the change in

land use for each of food crops, fodder crops, and pasture in these scenarios was

proportional to their initial value. In reality, certain commodities are wasted or lost

in higher quantities than others, for example roots and tubers are wasted the most

(63% of global production energy), and oilseeds and pulses the least (10% of global

production energy) (Lipinski et al., 2013).

The availability of data for waste and losses was a source of frustration during the

development of C-LLAMA. There are data available: for example the FAOSTAT food

balance sheets have estimates of loss (FAO, 2021a), the Food Loss Index (also from

the FAO (Koester & Galaktionova, 2021)), and the Food Waste Index (United Nations,

2021a) all have estimates for portions of commodities lost and wasted, but all suffer

significant gaps in their data, especially for developing countries and less-traded

commodities. It may be possible to take an accounting-based approach to estimating

the portion of each commodity lost or waste, based on production, consumption,
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and import and export values. To do this for every country and commodity in C-

LLAMA was outside the scope of the work in this thesis, but is an inviting avenue for

development of the model; it would significantly improve the robustness of the model

framework.

The first part Chapter 5 was an investigation of crop yields and the global land use

implication of closing regional ‘yield gaps’ for several major food crops in C-LLAMA.

Closing all yield gaps at once resulted in only a 100 Mha reduction in land use when

compared with the C-LLAMA anchor scenario. In the regional analysis of closing

yield gaps, the general expected trends of a greater land use impact in lower income

countries, and those with a high portion of global cereal production were generally

observed. Only a minimal reduction in land use compared to the anchor of up to 1%

was observed when closing yield gaps in upper-middle and high income regions such

as North America, Europe (excluding Eastern Europe), and Oceania.

The results of these analyses were less impactful than perhaps expected, especially

given the disparity between currently achieved and attainable yields across many

regions of the world (yieldgap.org, 2021). The C-LLAMA anchor scenario linearly

projects yields forward to 2050; the relatively minor reduction in land use when

closing yield gaps globally highlights the fact that perhaps continuously increasing

yields every year leads to an overestimation of future crop yields, especially over

periods of several decades. However, this is exactly the approach that many IAMs take,

at least in the production of key scenarios surrounding Paris warming targets. For

example, IMAGE assumes a universal increase in yield 0.75% per year in the RCP2.6

baseline scenario, an assumption based on historical yield increases (van Vuuren

et al., 2011). While 0.75% appears to be fairly conservative, it translates to an 82%

yield increase over a period of 80 years (e.g. 2020 to 2100, or a 25% increase in the 10

years between 2020 and 2030). Note that it is unclear if this is a compound effect, but

in the case that it is linear, the increase is still 60% over the same time period.

The second part of Chapter 5 was a comparison of the previous results in the chapter
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with the results of Chapter 3 and Chapter 4. In this part of Chapter 5, an attempt was

made to assess the most effective changes for reducing the land use footprint of food

demand within a given region. A clear result of these results was that in high income

regions and those with high levels of animal product consumption, transitioning to

the EAT-Lancet planetary health diet lead to the greatest reduction in land footprint

(up to 2% decrease in global land use when applied in North and South America, and

much of Europe). Of the three ‘options’ (diet, waste, and yield), changing diet lead

to the largest change in land use footprint in 15 out of the 21 regions, although in

three of those the change in land use was a positive one (Eastern and Western Africa,

and South-Eastern Asia). Reducing waste was significantly more effective in regions

with large populations (Eastern and Southern Asia) or those with high projected

population growth (Eastern and Western Africa). The impact of reducing waste in

Southern Asia was the largest effect of any option in any region, with a reduction in

global agricultural land use of 10%.

The results of this section highlight the

significant benefits of efficiency improvements in the global food system, not only

for making land available for land based mitigation options, but also for ensuring

the sustainable provision of food for future generations, and the provision of food

to those currently suffering the effects of limited food availability and malnutrition.

The EAT-Lancet diet is alone in the set of options in that it provides a direct benefit;

even in high income regions where the availability of food is not a concern to most,

the goal of the EAT-Lancet diet is to improve public health, which also applies to

highly developed countries where overconsumption is a problem (Willett et al., 2019;

Schmidt & Matthies, 2018). In this sense, it is worth considering the case where the

EAT-Lancet diet is prescribed everywhere. In this case, the improvements to land

availability that come from reducing waste and improving crop yields become all the

more important in light of the projected land demands of afforestation and BECCS,

which are only likely to compound competition from the growing demands of the

food system.
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Chapter 6 explored the use of bioenergy in the whole scenario-space for scenarios

in the SSP database. The scale of expansion (between 2020 and 2050) of bioenergy

production varied dramatically between scenarios, from less than 500 Mt(DM) yr−1

to upward of 4000 Mt(DM) yr−1 within one region in RCP1.9 scenarios. The initial

expansion of production was the least in IMAGE scenarios, with increases in the

2020 to 2050 time period of less than 1000 Mt(DM) yr−1 in all regions for all IMAGE

scenarios. Asia and Latin America were identified as the regions allocated the most

energy crop production in SSP2 scenarios. Both of these regions have countries across

a range of economic development.

An exploratory attempt was made to quantify some of the risks posed to the

sustainable delivery of energy crops for energy provision and BECCS in four SSP2

scenarios (a reference scenario, RCP4.5, RCP2.6, and RCP1.9). In the first half of the

century all scenarios saw rapid expansion of energy crop production up to around

2050. In low emissions scenarios (RCP2.6 and RCP1.9, consistent with 2 °C and 1.5 °C

respectively) the rate of expansion is greater, and continues well into the latter half of

the century.

In the four IMAGE scenarios, but particularly the low emission scenarios, tropical

regions bore a large portion of the pre-2050 ramp up of energy crop production

(approximately one-third). Tropical regions are favoured due to their (typically)

higher productivity. However, the high carbon stocks of tropical forests, and the

historical propensity of some tropical regions to unsustainable forest management

and deforestation raises questions surrounding the risk of leakage occurring during

energy crop production in these regions. The quantity of energy crop production

occurring in regions of varying general and environmental governance quality was

then assessed for the four IMAGE scenarios. The metrics used for governance were

the principle component of the Worldwide Governance Indicators (WGI) and the

Environmental Governance Index (EPI). Both metrics were partitioned in 5 bins, from

excellent (1) to poor (5). The results for the WGI metric showed that the majority of
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energy crop production in the scenarios (especially pre-2050) occurred in regions of

moderate (3) governance, while regions with excellent (1) and good (2) governance

quality only saw energy crop production beginning in earnest in the latter half of

the century. The story was slightly more encouraging for the EPI metric; just over

half of production occurred in regions of excellent (1) and good (2) environmental

performance throughout the scenarios.

The method employed for this set of analyses was coarse: placing regions into bins of

governance and historical environmental performance is a dramatic simplification

of a complex system. Every country is different, and realistically, governing the

production of energy crops for bioenergy and BECCS at national and international

levels will require a careful approach on likely a case by case basis. Nevertheless, when

considering both the WGI and EPI metrics, more than half of energy crop production

occurs in regions where there might be an increased risk of leakage. The actual risk

of relying on these regions unquantified (perhaps even unquantifiable), but there

is little doubt that the risk is increased when compared with regions of high quality

governance and environmental performance. Energy crops produced in these areas

may have a larger carbon footprint than anticipated, obstructing the path to achieving

climate targets. An avenue for further work might be to assess the historical carbon

leakage in these regions, to estimate the level of leakage that might be incurred, and

re-considering the governance and magnitude of energy crop production accordingly

(Kreuter & Lederer, 2021).

The final part of Chapter 6 was a look into the projected food demand increases

for regions producing energy crops in the four IMAGE SSP2 scenarios. The first few

stages of C-LLAMA were used to estimate the growth in total food supply energy for

each region, then each region was placed into a bin by proportional growth in food

demand by 2050. In the C-LLAMA anchor scenario and hence this analysis, almost

all regions undergo an increase in food demand by 2050. In the scenarios consistent

with 2.0 °C and 1.5 °C warming targets, approximately 60% of energy crop production
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occurred in regions with a projected food demand growth up to 30%, and around 35%

in regions with a growth up to 60%. A tiny portion (<4%) was produced in regions

with a reduction in food demand or regions with a doubling of food demand. This is a

simple result, but it highlights the importance of considering the production of food

for growing populations and wealth, and the potential for increased competition for

land use with energy crop production in these regions.

7.0.1 OUTLOOK

Those practicing the least destructive behaviours, contributing the smallest burdens

on the planet, are likely to be the first affected by the repercussions of anthropogenic

climate change. How we arrived at this circumstance is a certainty, and while the

same cannot be said for the future, the efforts of climate science have provided us with

pathways to mitigate the impending damage. Bioenergy, BECCS, and afforestation are

the champions of integrated assessment modelling scenarios, and although they are

subject to contested authority and controversial assumptions, directing our efforts

there currently appears to be our best option. To achieve 1.5 °C by 2100 with BECCS

and afforestation as keystone technologies will be a challenge in of itself, but even

more so whilst upholding the tenets of sustainable development. The goal of this

thesis has been to explore global land use prospects for mitigation in the context of

one aspect of sustainable development: the provision of food. C-LLAMA takes a very

simple approach to modelling the global food system, but in it’s simplicity also lies it’s

strength: it has allowed each lever of the drivers of agricultural land use to be pulled

in turn.

The recurring theme in the results of this thesis is that there is no single answer;

short of eradicating animal product consumption overnight, not one of the drivers

alone can alleviate the growing land use pressure for food production to facilitate

the deployment of BECCS and afforestation. However, another recurring theme has

been that the people and governments of income regions not only have the least
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sustainable food consumption and waste habits, but also the economic means and

accessible solutions to improve them, for themselves and for others. To achieve 1.5 °C

within the boundaries of equity for both nature and people, it is essential that the

those that have the means to act now begin to do so on the behalf of those that cannot.
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Counter-intuitive behaviour arises when setting the proportion of animals fed

through fodder and residues (fed without forage - FWF) to extreme values. Decreasing

the FWF factor (more animals are fed through pasture) leads to an increase in land-

use by 2050. This is expected, as pasture is typically far less land-efficient than housed

animals fed through fodder and residues (Pikaar et al., 2018). However, this trend does

not continue when the FWF is increased, instead an increased land-use is observed.

The behaviour of the FWF prompted further investigation; the factor was scaled by

a range of values between 0.5 and 1.5 to observe the behaviour around the default

values (a scaling of 1.0), the global agricultural land-use values for which are shown

in Figure A.4.

Inspection of the land-use for pasture, fodder and food crops revealed that food crop

land-use was constant as expected since only animal product production methods

are being varied. Fodder crop land-use also behaved as expected – increasing with

FWF, as more fodder crops must be produced to meet the feed demand of animals not

produced on pasture. However, pasture did not behave as expected, instead following

163
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Table A.1: Five main sections within C-LLAMA, each comprised of a handful of model-process
modules. There are sixteen model-process modules in total. There is some overlap between
model-processes; the sections and model-process modules listed here are not necessarily in
the order that they appear in C-LLAMA, some sections are re-visited at later stages of the
model. The first section of the model produces a food supply at a national level, disaggregated
into calories and commodities.
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Figure A.1: Flow of international food trade between countries in 2018, taken from Konar
et al. (2018). The size of the points are proportional to the flux of food (imports and exports)
through the country.

the same trend as the global land-use, with an increased land-use when varying the

FWF factor in either direction. The cause of this behaviour has been identified as

the scaling method applied to pasture land area. When the scaling is turned off,

variations in the FWF factor lead to expected behaviour: global land use decreases

as FWF increases. The effective pasture yield is calculated using the projected 2017

land-use value before any scaling is applied. When FWF is increased the quantity of

animal products produced on pasture decreases, including the 2017 value, however

the historical pasture area remains unchanged. The result is an artificial decrease

in effective pasture yield as FWF increases when the scaling is applied, as shown in

Figure A.5.

To resolve this and any similar anomalies arising from scaling methods, the effective

pasture yield is now scaled based on the projected pasture area in the anchor scenario,

regardless of the scenario parameters. This can introduce minor discrepancies in the
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Figure A.2: Cumulative food production mass for the year 2017 of all current countries in the
FAOSTAT database, dissolved states are not included.

Figure A.3: Log of agricultural land area against total food production mass for the year
2017 for all countries in the FAOSTAT database, dissolved states are not included. Countries
contained in the small dotted-line box are not included in model processes (n = 23), while the
remaining countries are included (n = 139).
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Figure A.4: Change in global agricultural land-use when varying the proportion of livestock
feed from non-forage (FWF)

Figure A.5: Magnitude of change in pre and post global mean scaled effective pasture yield
for forced scaling of livestock feed through non forage (FWF).
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early years of the projection when setting factors to a fixed value, but this is not the

normal mode of operation for the model. This sensitivity test varied the FWF factor for

the entire projection, including the starting values, where in normal model operation

any changes to this factor would be applied as a gradual deviation from the normal

value. For example, the scaling might vary from 1.0 in 2017 to 1.5 in 2050, as opposed

to being 1.5 from the start as in this sensitivity analysis.
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Table A.2: Vegetal products and grouped vegetal products. Grouped products do not contain
any products represented as staple products. The luxury group consists of tea, coffee and
cocoa

Table A.3: Animal products and groups. In the case of these animal products, the ‘individual’
animal products represent a small group of products but are dominated by a single product.
For example, while bovine meat includes derivative products and buffalo, the majority of the
bovine meat supply and consumption is formed of cattle meat. There are only two sets of
grouped animal products: dairy and ‘other meat’. Dairy is a significant contributor to global
food supply and demand, but meat products not listed individually do not. Dairy includes
milk, butter, ghee and cream. Products such as cheese and yoghurt are also included in the
data for milk.
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Table A.4: Vegetal product harvest factors – the ratio of the mass of useful product to above
ground biomass. Values in this table are adapted from Krausmann et al. (2008). Where a
direct mapping was impossible, the average value of other products was used (for example –
vegetables). Fruits are assumed to be permanent crops.
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Table A.5: Vegetable product residue recovery factors – the recovered proportion of potential
harvest residues. As with Table A.4, this table is also adapted from Krausmann et al. (2008).

Table A.6: Maximum portion (z) of livestock feed that can be derived from each residue
source. These values are taken from FALAFEL (Powell & Lenton, 2012).
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Table A.7: Inputs, values and data used to produce the anchor scenario in C-LLAMA.
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Table A.8: Table of aggregated land-use areas at a regional level in the C-LLAMA anchor
scenario. Values are in hectares.
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