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Abstract

This thesis investigates an interesting generalisation of the concept of

continuous functions, namely the notion of Boolean image. This type of

image does not preserve connectedness, but otherwise has many of the

properties of continuous images. We analyse this notion on many different

kinds of topological spaces, deepening our understanding of combinatorial

methods from set theory. The main contributions of this thesis can be

summarized as follows. In chapter 3, we prove that every compact

subspace of 2κ with a finite support is a Boolean image of a connected

space. This main result is followed by some applications in chapters 4 and

5 to different spaces, such as Eberlein compact spaces and

Radon-Nikodým spaces, respectively. Chapter 6 centres around the

connection between Banach spaces of continuous functions C(K) and

C(L), in the case that the spaces L and K are both compact and

zero-dimensional. In particular, we prove that if L is a a bijective Boolean

image of a compact zero-dimensional space K, then C(L) is isometric to

C(K). Moreover, we prove that if L is a Boolean image of K, then C(L) is

isometric to a subspace of C(K). On the other hand, we prove that if the

Banach spaces C(K) and C(L) are isomorphic, where the spaces K and L

are zero-dimensional, then there is a subspace K ′ in K and a subspace L′
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in L such that K ′ is a Boolean image of L′. In chapter 7, we examine some

cardinal functions in terms of the possibility of being transferred via a

Boolean image. In this respect, we show that weight and countable

density are preserved by Boolean images.
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Introduction, preliminaries and

background

This chapter is devoted to an introduction and some definitions and results

used in this thesis.

1.1 Introduction

Traditional research in Banach spaces is concentrated on separable spaces,

namely spaces with a countable dense subset. In the last 15 or so years much

progress has been made in the context of non-separable spaces, where such a

countable dense set is not available. This progress was made possible by the

use of methods from set theory. We concentrate on one such method, which

is the method of Boolean images. It has been shown particularly useful for

answering various questions from Banach space theory, as we now explain.

The method that we present here works for separable and non-separable

spaces.

An important class of Banach spaces are the spaces of the form C(K), i.e.,

the set of all continuous functions from a compact space K to the set of real
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numbers R, endowed with the topology of uniform convergence. A question

that can be asked is to what extent the space C(K) determines the space K,

knowing for example that all uncountable separable metric compact spaces

K have the same space C(K), up to isomorphism; this is a theorem of

Miljutin (see [31]). With this motivation in mind, Banach space theory is

also interested in the class of continuous images of a given compact space,

which brings the research back to topology, where, of course, continuous

mappings form the basic tool of research—one main reason being of course

that continuous mappings preserve various properties of the space, among

which is connectedness.

We shall study an interesting generalisation of the concept of continuous

image, namely the notion of Boolean image. This type of image does not

preserve connectedness, but otherwise has many of the properties of

continuous images.

We shall give partial solutions to the following open questions:

Question 1.1.1. (1) Suppose that κ is an infinite cardinal. Let K be a

compact space that is a subset of 2κ and such that every x from K has

support of size at most 3. Is such a space a Boolean image of a connected

space?

(2) Is every Eberlein compact space a Boolean image of a connected space?

(3) Is every Radon-Nikodým compact space a Boolean image of a connected

space?

The notion of support of a point x in 2κ is defined by

supt(x) = {α < κ : x(α) 6= 0}.
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Avilés and Plebanek proved in [11] that every compact subspace of 2κ which

consists of points of support of size ≤ 2 is a Boolean image of a connected

space.

Let us now define other notions mentioned in this question. We use the

concept of Eberlein compact space, which is defined as follows:

Definition 1.1.2. A compact Hausdorff space is called Eberlein compact

if it is homeomorphic to a weakly compact subset of a Banach space (see

Definition 1.2.17).

We shall not really use the weak topology, so we do not define it. In fact,

we prefer the following combinatorial characterisation of Eberlein compacta.

Namely, they are the compact subspaces of a product of the form RΓ, for

some index set Γ, where for each δ > 0, there is only a finite number of

points whose norm is bigger than δ (see [20]). This characterisation shows

the connection between parts (1) and (2) of Question 1.1.1.

The notion of Radon-Nikodým space is defined as follows:

Definition 1.1.3. [29] A compact topological space is called

Radon-Nikodým compact if it is homeomorphic to a weak∗ compact subset

of the dual of an Asplund space.

Again, we shall not need the weak topology or Asplund spaces, so we prefer

a combinatorial characterisation. Radon-Nikodým spaces are the compacta

fragmented by some lower semi-continuous metric ([4]). Every Eberlein

compact space is homeomorphic to a weakly compact subset of a reflexive

Banach space ([29]), from which it follows that an Eberlein compact space is

a Radon-Nikodým compact space. This last aspect represents a connection

between parts (2) and (3) of Question 1.1.1.
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In the second part of the thesis, we study the connections between Banach

spaces of continuous functions C(K) and C(L), in the case that the compact

space L is a Boolean image of the compact space K. We will give partial

answers to the following two questions:

Question 1.1.4. (1) If the compact space L is a Boolean image of a compact

space K, does this imply that C(L) is isomorphic to C(K)?

(2) If the Banach space C(L) is isomorphic to the Banach space C(K), does

this imply that L is a Boolean image of K?

In the third part, we study some cardinal functions. The focus is on how

cardinal invariants might be transferred from one topological space to

another via a Boolean image.

The thesis is focused on investigating the concept of Boolean image. First,

in chapter 3, we will prove that every compact subspace of 2κ with a finite

support is a Boolean image of a connected space.

This main result will be followed by some applications to different spaces,

such as Eberlein compact spaces and Radon-Nikodým spaces. In chapter 4

we will prove that a strong Eberlein compact space is a Boolean image of a

connected space. We will continue by showing that every scattered Eberlein

compact space is a Boolean image of a connected space. In chapter 5, we will

show that every scattered compact Corson R-N space is a Boolean image of

a connected space.

Chapter 6 will contain a proof of the fact that if spaces L and K are both

compact zero-dimensional and L is a a bijective Boolean image of K, then

C(L) is isometric to C(K). Moreover, we prove that if L is a Boolean image

of K, then C(L) is isometric to a subspace of C(K). On the other hand,

we will prove that if K and L are zero-dimensional, and C(K) and C(L)
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are isomorphic as Banach spaces, then there are subspaces K ′ and L′ of K

and L, respectively, such that K ′ is a Boolean image of L′.

The final chapter will examine cardinal functions. We will show that weight

and countable density are preserved by Boolean images.
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1.2 Preliminaries and background

All topological spaces we consider throughout the thesis are going to be

Hausdorff spaces, in most cases compact. No other property is assumed

unless explicitly stated.

1.2.1 Some general topology

In this section, we present the classical notions that will be used throughout

our work.

Definition 1.2.1. A space X is said to be compact if every open covering

A of X contains a finite subcollection that also covers X.

Theorem 1.2.2 (see [26], Theorem 26.2). Every closed subspace of a

compact space is compact.

Definition 1.2.3. A topological space X is Hausdorff if for any x, y ∈ X

with x 6= y there exist open sets U containing x and V containing y such

that U ∩ V = ∅.

Definition 1.2.4. Let X be a topological space. A separation of X is a

pair U, V of disjoint nonempty open subsets of X whose union is X. The

space X is said to be connected if there is no separation of X.

Theorem 1.2.5 ([26], Theorem 23.5). The image of a connected space

under a continuous map is connected.

Definition 1.2.6. [26] Given points x and y of the space X, a path in X

from x to y is a continuous map f : [a, b] → X of some closed interval in

the real line into X, such that f(a) = x and f(b) = y. A space X is said to

be path connected if every pair of points of X can be joined by a path in

X.



Chapter 1: Introduction, preliminaries and background 15

Definition 1.2.7. A connected component of a space X is the maximal

connected subset of X, i.e., a connected subset that is not contained in any

other (strictly) larger connected subset of X.

Definition 1.2.8. [12] A subset A of a topological space (X, τ) is called

a cozero set if there is a continuous real-valued function f on X such that

A = {x ∈ X : f(x) 6= 0}.

Separability is one of the principal topological properties that is used to

characterize different topological spaces.

Definition 1.2.9. [33] A topological space X is separable if there is some

countable subset of X which is dense in X.

Definition 1.2.10. [11] We say that K is separably connected if every two

points of K are contained in a connected separable subspace of K.

Definition 1.2.11. [30] A space X is called zero-dimensional if it is

nonempty and has a base consisting of clopen (both open and closed) sets,

i.e., if for every point x ∈ X and for every neighborhood N of x there

exists a clopen subset A ⊆ X such that x ∈ A ⊆ N .

Definition 1.2.12. A space is said to be totally disconnected if the only

connected nonempty sets are the singletons.

Definition 1.2.13. [26] Let X and Y be topological space; let f : X →

Y be a bijection. If both f and the inverse function f−1 : Y → X are

continuous, then f is called a homeomorphism.

Definition 1.2.14. [27] A continuous map f : X → Y is said to be a perfect

map if f is closed, surjective, and each fiber f−1(y) is compact in X.
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Definition 1.2.15. [17] Let R denote the real line, Γ an index set, and RΓ

the usual product of |Γ| lines. We set

Σ(RΓ) = {x ∈ RΓ : |{α : x(α) 6= 0}| ≤ ω}.

A compact space X is Corson compact if and only if X is homeomorphic to

a compact subspace of Σ(RΓ) for some Γ.

1.2.2 Banach spaces

Definition 1.2.16. [22] (Normed space, Banach space). A normed space

X is a vector space with a norm defined on it. A Banach space is a complete

normed space (complete in the metric defined by the norm as follows). Here

a norm on a (real or complex) vector space X is a real valued function on

X whose value at an x ∈ X is denoted by

‖ x ‖

(read norm of x) and which has the properties

(N1) ‖ x ‖≥ 0

(N2) ‖ x ‖= 0⇔ x = 0

(N3) ‖ αx ‖= |α| ‖ x ‖

(N4) ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖ (Triangle inequality);

here, x and y are arbitrary vectors in X and α is any scalar.

A norm X defines a metric d on X which is given by

d(x, y) =‖ x− y ‖ (x, y ∈ X)
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and is called the metric induced by the norm. The normed space just defined

is denoted by (X, ‖ . ‖) or simply by X.

Definition 1.2.17. [19] A closed convex subset C of a Banach space B is

weakly compact if and only if each continuous linear functional on B attains

a maximum on C.

Definition 1.2.18. [38] A Banach space is an Asplund space if and only if

every separable subspace Y of X has separable dual Y ∗.

Definition 1.2.19. [10] Let X be a topological space and let d : X ×X →

[0,∞) be a metric on X.

• We say that d fragments X if for every nonempty subset Y ⊂ X and

for every ε > 0 there exists a nonempty relatively open V ⊂ Y of

d-diameter less than ε, that is,

sup{d(x, y) : x, y ∈ V } < ε

• We say that d is lower semicontinuous if for every r > 0, the set

{(x, y) ∈ X ×X : d(x, y) ≤ r}

is closed.

A compact space K is fragmentable if there exists a metric that fragments

it, while it is called Radon-Nikodým (R-N) compact if there exists a lower

semicontinuous metric that fragments it.
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The concept of Boolean image

2.1 Motivation

I found an interesting statement in my research journey pointing to the

fact that “Topology is really just the study of continuous functions”. The

concept of continuity is a central idea in topology. If we wish to be able to

deform a topological space into another, we need to start considering the

relationships between spaces by using the notion of continuous functions.

This special type of functions between topological spaces is defined in such

a way that some features of the topological structure of the domain space

are also preserved in the co-domain space. Continuous functions, also called

mappings, provide a means to detect whether two given topological spaces

are “topologically equivalent” from the point of view of the topological

structure.
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2.2 A generalisation of a continuous

mapping

In our work, we study a generalisation of the concept of continuous

mappings, which is represented by the idea of Boolean image. The notion

of Boolean image was first defined by Avilés and Plebanek in [11]. They

state that a Boolean image allows to ‘lose connectedness’. In a sense, we

construct a Boolean image by twisting the definition of a continuous image

so as to allow disconnected images of connected spaces. By this we mean

that although the Boolean mapping does not preserve connectedness, it

has many properties of the continuous mappings. Of course, studying

different types of mappings is helpful when considering the relationship

between spaces and the possibility of deforming one space into another.

We shall now define the basic objects. We note that the definition below

differs from the one in [11] in that we require ‘closed under complements’

in item (2) of the main definition. This simplifies certain proofs and is

equivalent to the original definition. We also need to define preliminary

concepts.

Definition 2.2.1. [11]

1. A family G of clopen sets in some space L separates the points of L

(or is point-separating) if for every two different points x, y ∈ L there

exists c ∈ G which contains exactly one among x, y.

2. A pseudoclopen in a compact space K is a pair a = (a−, a+) such that

a− is a closed subset of K, a+ is an open subset of K and a− ⊆ a+.

Definition 2.2.2. [11] Given a family of sets G and a bijection φ from G

onto a family of pseudoclopens of a compact space K, we say that φ is an



Chapter 2: The concept of Boolean image 20

isomorphism if for every m,n and any distinct a1, . . . , an, b1, . . . , bm ∈ G,

if
⋂
i≤n

ai \
⋃
j≤m

bj = ∅ then
⋂
i≤n

φ(ai)
+ \

⋃
j≤m

φ(bi)
− = ∅;

if
⋂
i≤n

φ(ai)
− \

⋃
j≤m

φ(bj)
+ = ∅ then

⋂
i≤n

ai \
⋃
j≤m

bj = ∅.

Now for the main definition:

Definition 2.2.3. 1. We define the set-theoretic operations on the

family of pseudoclopen pairs by naturally extending the operations

from P(K); for example,

(a−, a+) ∩ (b−, b+) = (a− ∩ b−, a+ ∩ b+),

and similarly for the operation ∪. We define the complement by

(a−, a+)c = ((a+)c, (a−)c).

2. We say that a compact zero-dimensional space L is a Boolean image

of a compact space K if there is a family of clopens of L that separates

the points of L and which is isomorphic to a family of pseudoclopens

of K with the above introduced operations of ∩,∪ and c, under an

isomorphism which assigns (K,K) to L.

Note that if c is a clopen set in a compact space K, then (c, c) is a

pseudoclopen. Therefore, the idea of pseudoclopen pairs generalises the

concept of clopen sets. We identify a clopen c with the pseudoclopen pair

(c, c) that it generates.

We may also invert isomorphisms.
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Lemma 2.2.4. Suppose that a zero-dimensional space L is a Boolean image

of a compact space K by an isomorphism ϕ. Then the inverse of ϕ is an

isomorphism from the clopens of L to the pseudoclopens of K.

Proof. Since L is a Boolean image of K, there is an isomorphism ϕ from

a family {(a−i , a+
i ) : i ∈ I} of pseudoclopens of K to a point-separating

family {ai : i ∈ I} of clopens of L such that ϕ : (a−i , a
+
i ) 7→ ai.

So ϕ preserves the set-theoretic operations on the family of pseudoclopen

pairs as follows:

Let (a−1 , a
+
1 ), (a−2 , a

+
2 ) be pseudoclopens. We have

ϕ[(a−1 , a
+
1 ) ∩ (a−2 , a

+
2 )] = ϕ(a−1 , a

+
1 ) ∩ ϕ(a−2 , a

+
2 );

ϕ[(a−1 , a
+
1 ) ∪ (a−2 , a

+
2 )] = ϕ(a−1 , a

+
1 ) ∪ ϕ(a−2 , a

+
2 );

ϕ[(a−1 , a
+
1 )c] = (ϕ(a−1 , a

+
1 ))c.

Since ϕ is a bijection, its inverse ϕ−1 : ai 7→ (a−i , a
+
i ) exists and is bijective.

Now we want to prove that ϕ−1 respects the set-theoretic operations on the

family of clopens: Let a1, a2 be clopens in L.

First, we show that ϕ−1 is closed under intersection:

ϕ−1(a1 ∩ a2) = ϕ−1(ϕ(a−1 , a
+
1 ) ∩ ϕ(a−2 , a

+
2 ))

= ϕ−1[ϕ((a−1 , a
+
1 ) ∩ (a−2 , a

+
2 ))]

= (a−1 , a
+
1 ) ∩ (a−2 , a

+
2 )

= ϕ−1(a1) ∩ ϕ−1(a2)

Then, ϕ−1 is closed under union:
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ϕ−1(a1 ∪ a2) = ϕ−1(ϕ(a−1 , a
+
1 ) ∪ ϕ(a−2 , a

+
2 ))

= ϕ−1[ϕ((a−1 , a
+
1 ) ∪ (a−2 , a

+
2 ))]

= (a−1 , a
+
1 ) ∪ (a−2 , a

+
2 )

= ϕ−1(a1) ∪ ϕ−1(a2).

ϕ−1 is closed under complement:

ϕ−1(L \ a1) = ϕ−1(ac1) = ϕ−1(ϕ((ac1)−, (ac1)+)))

= ((ac1)−, (ac1)+)).

The following is given in the paper [11] as Remark 1.6, with a sketch of the

proof. We give a detailed proof.

Lemma 2.2.5. Let the compact space K be zero-dimensional. Then a

compact zero-dimensional space L is a Boolean image of K if and only if

L is a continuous image of K.

Proof. ⇐=: Suppose that g : K → L is continuous onto function. We want

to produce L as a Boolean image which matches the clopens of L to the

pseudoclopens of K.

If c is clopen in L, then g−1(c) is, by continuity, clopen in K.

So, (g−1(c), g−1(c)) is a pseudoclopen in K. Define

ϕ : c 7→ (g−1(c), g−1(c)).

Then Clop(L) ≈ {(a, a) : a is clopen in K}. We need to show that ϕ is an

isomorphism. We have, for all c, d that are clopen in L:

ϕ is closed under intersection:
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ϕ(c ∩ d) = (g−1(c ∩ d), g−1(c ∩ d)) = (g−1(c) ∩ g−1(d), g−1(c) ∩ g−1(d)) =

ϕ(c) ∩ ϕ(d),

ϕ is closed under union:

ϕ(c ∪ d) = (g−1(c ∪ d), g−1(c ∪ d)) = (g−1(c) ∪ g−1(d), g−1(c) ∪ g−1(d)) =

ϕ(c) ∪ ϕ(d),

ϕ is closed under complement:

ϕ(L \ c) = (g−1(L \ c), g−1(L \ c)) = (K \ g−1(c), K \ g−1(c)), which is by

definition the complement of the pseudoclopen pair ϕ(c).

Clearly the family of all clopen sets in L separates the points of L, so we

are done.

=⇒: Suppose that L is a Boolean image of K. We want to show that L is a

continuous image of K. Suppose that we are given a family G of clopens of L

which separates the points of L and which is isomorphic by an isomorphism

ϕ to a family G ′ of pseudoclopens of K that contains (K,K). Without

loss of generality, G ′ is closed under finite intersections, since if it is not,

we can replace it by its closure under finite intersections and complements.

It follows that also G is closed under these operations. For d ∈ G denote

ϕ(d) = (ϕ(d)−, ϕ(d)+).

Since K is zero-dimensional, for every pseudoclopen pair ā = (a−, a+) there

exists a clopen set c such that a− ⊆ c ⊆ a+. We choose one such set c and

call it c(ā), and we make this choice so as to respect the complements, that

is c(āc) = c(ā)c. We now claim that there is a continuous onto function

g : K → L such that for every d ∈ G we have that g−1(d) = c∗ for the

unique c∗ such that c(ϕ(d)) = c∗.
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To see this, let us define g(x) = y if y is the unique point in
⋂
d∈G,x∈c(ϕ(d)) d.

We shall show that g is indeed a well-defined continuous function from K

to L. First, let us see that for every x ∈ K there is indeed a point in⋂
d∈G,x∈c(ϕ(d)) d. We show that there must be d ∈ G such that x ∈ c(ϕ(d)).

Otherwise, there would certainly be a d ∈ G, so by the assumption x /∈

c(ϕ(d)). Therefore, x ∈ c(ϕ(d))c = c(ϕ(dc)) (which is well defined since G is

closed under complements), a contradiction with the assumption. Hence the

family {d ∈ G, x ∈ c(ϕ(d))} is non-empty and we can take the intersection.

Now, if this intersection is empty, then for every y ∈ L there is d = dy ∈ G

such that y /∈ d but x ∈ c(ϕ(d)). Consequently, the family {dcy : y ∈ L}

of clopen sets covers L and hence there must be a finite subset {y0, . . . , yn}

such that L =
⋃
i≤n d

c
yi

. But then, since ϕ is an isomorphism, we have that

ϕ(
⋃
i≤n d

c
yi

) = (K,K) and hence ϕ(
⋂
i≤n dyi) = (∅,∅), and so c(

⋂
i≤n dyi) =

∅. Yet, by the choice of d′ys we must have x ∈ c(
⋂
i≤n dyi) =

⋂
i≤n(c(dyi)).

Contradiction.

Now let us show that for any x, the intersection
⋂
d∈G,x∈c(ϕ(d)) d can only

contain one point. Suppose, for a contradiction, that it contains two

different points y and z. Since G separates points of L, there is d ∈ G such

that exactly one of the points y, z belongs to d. By the choice of y, z we

cannot have that x ∈ c(ϕ(d)) and, therefore, x ∈ c(ϕ(d))c = c(ϕ(dc)) (this

is well defined since G is closed under complements). Therefore y, z ∈ dc,

which is a contradiction. So g is a well-defined function.

Now we show that g is continuous. For this, suppose that O is an open

subset of L and consider

g−1(O) = {x ∈ K : g(x) ∈ O}.
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We need to show that g−1(O) is open. Suppose that x ∈ g−1(O) and let

g(x) = y. Hence y ∈ O and, by the choice of g, there is d∗ ∈ G such that

y ∈ d∗ and x ∈ c(ϕ(d∗)). Moreover, by intersecting with further elements d

of G that satisfy x ∈ c(ϕ(d)) if needed and using the fact that O is open in

a compact space L, we can find a finite intersection of such elements which

is a subset of O. By the closure of G under finite intersections, we have that

such an intersection is itself a member of G: let us abuse the notation and

still call it d∗. We claim that c∗ = c(ϕ(d∗)) ⊆ g−1(O). Indeed, if z ∈ c∗,

then d∗ is such that z ∈ c(ϕ(d∗)). Therefore
⋂
d∈G,z∈c(ϕ(d)) d ⊆ d∗ ⊆ O and

so g(z) ∈ O.

Finally, we show that g is onto. For this, we check that for every y ∈ L,

K(y) =
⋂
{ϕ(d)− : d ∈ G, y ∈ d}\

⋃
{ϕ(d)+ : d ∈ G, y /∈ d} 6= ∅.

Taking x ∈ K(y) we have g(x) = y, so g is a surjection.

2.3 More facts about Boolean images

In this section we consider a compact zero-dimensional space L and an

arbitrary compact space K.

Proposition 2.3.1. [11] If L is a Boolean image of K and K is a continuous

image of K0, then L is a Boolean image of K0. In particular, if L is a

Boolean image of K, then L is a continuous image of every zero-dimensional

compact space that maps continuously onto the space K.

Proof. If f : K0 −→ K is the continuous onto map and {(a−i , a+
i ) : i ∈ I} is

a family of pseudoclopens of K that is isomorphic to a point-separating
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subfamily of Clop(L), then simply consider the family

{(f−1[a−i ], f−1[a+
i ]) : i ∈ I} of pseudoclopens in K0. The second statement

follows from Lemma 2.2.5.

Boolean images and continuous functions are linked in a way that the

existence of the former points to the existence of the latter. Avilés and

Plebanek prove in [11] that if there is a Boolean image between topological

spaces L and K, then there is a continuous map from a closed subspace K ′

of K onto L. Their theorem is the following.

Proposition 2.3.2. [11] If L is a Boolean image of K, then L is a

continuous image of a closed subspace of K.

Proof. Let φ : G −→ F be an isomorphism of a point-separating family G ⊂

Clop(L) with a family F of pseudoclopens of K. Consider

K0 =
⋂
a∈G

(φ(a)− ∪ (K \ φ(a)+)),

and define f : K0 −→ L by declaring f(x) to be the only point in

L(x) =
⋂
{a ∈ G : x ∈ φ(a)−}\

⋃
{a ∈ G : x /∈ φ(a)+}.

To check that f is well defined, note that we cannot have two different

elements in L(x); indeed, take any y1, y2 ∈ L, y1 6= y2. Because the family

G separates the points of L we can assume, by symmetry, that y1 ∈ a and

y2 /∈ a for some a ∈ G. Since x ∈ K0, we have either x ∈ φ(a)−, giving

L(x) ⊂ a and y2 /∈ L(x), or x /∈ φ(a)+, giving L(x) ∩ a = ∅ and y1 /∈ L(x).

To see that the set L(x) must be nonempty, note that the family

{a ∈ G : x ∈ φ(a)− or x /∈ φ(a)+},
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has the finite intersection property, as φ is an isomorphism. Therefore, by

compactness, such a family has a nonempty intersection. Otherwise, by

compactness, we would have a finite subset G0 ⊂ G such that

⋂
{a ∈ G0 : x ∈ φ(a)−}\

⋃
{a ∈ G0 : x /∈ φ(a)+} = ∅.

But since φ is an isomorphism, that would mean that

⋂
{φ(a)− : a ∈ G0, x ∈ φ(a)−}\

⋃
{φ(a)+ : a ∈ G0, x /∈ φ(a)+} = ∅,

which is absurd, since x belongs to that set.

In the same manner we check that for every y ∈ L,

K(y) =
⋂
{φ(a)− : a ∈ G, y ∈ a}\

⋃
{φ(a)+ : a ∈ G, y /∈ a} 6= ∅.

Taking x ∈ K(y) we have f(x) = y, so f is a surjection.

Finally, note that if a ∈ G, then

f−1[a] = φ(a)− ∩K0 = φ(a)+ ∩K0

is a clopen subset of K0. Since G separates the points of L, G generates

Clop(L) and therefore f−1[b] is clopen for every b ∈ Clop(L). Hence f is

continuous.

Similarly, if we change the definition of Boolean image to be applied to

Lindelöf spaces and we require that the countable intersection is preserved

by the isomorphism φ, then we can make a similar observation and obtain
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the following proposition:

Proposition 2.3.3. Suppose that K and L are Hausdorff Lindelöf spaces

such that L is a Boolean image of K that preserves countable intersection.

Then L is a continuous image of a closed subspace of K.

Proof. Let φ : G −→ F be an isomorphism of a point-separating family G ⊂

Clop(L) with a family F of pseudoclopens of K. Consider

K0 =
⋂
a∈G

(φ(a)− ∪ (K\φ(a)+)),

and define f : K0 −→ L by declaring f(x) to be only in

L(x) =
⋂
{a ∈ G : x ∈ φ(a)−}\

⋃
{a ∈ G : x /∈ φ(a)+}.

To check that f is well defined note first that we can not have two different

elements in L(x); indeed, take any y1, y2 ∈ L, y1 6= y2. Because the family

G separates the points of L we can assume, by symmetry, that y1 ∈ a and

y2 /∈ a for some a ∈ G. Since x ∈ K0, we have either x ∈ φ(a)−, giving

L(x) ⊂ a and y2 /∈ L(x), or x /∈ φ(a)+, giving L(x) ∩ a = ∅ and y1 /∈ L(x).

To see that the set L(x) must be nonempty, note that the family

{a ∈ G : x ∈ φ(a)− or x /∈ φ(a)+}

has the countable intersection property, as φ is an isomorphism, because

otherwise, by Lindelöfness, we would have a countable subset G0 ⊂ G such

that ⋂
{a ∈ G0 : x ∈ φ(a)−}\

⋃
{a ∈ G0 : x /∈ φ(a)+} = ∅.
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But since φ is an isomorphism, that would mean that

⋂
{φ(a)− ∈ G0 : x ∈ φ(a)−}\

⋃
{φ(a)+ ∈ G0 : x /∈ φ(a)+} = ∅,

which is a contradiction since x belongs to that set.

In the same manner we check that for every y ∈ L,

K(y) =
⋂
{φ(a)− : a ∈ G, y ∈ a}\

⋃
{φ(a)+ : a ∈ G, y /∈ a} 6= ∅.

Taking x ∈ K(y) we then have f(x) = y, so f is onto.

Finally, note that if a ∈ G, then

f−1[a] = φ(a)− ∩K0 = φ+(a) ∩K0

is a clopen subset of K0. Since G separates the points of L, G generates

Clop(L) and therefore f−1[b] is clopen for every b ∈ Clop(L). Hence f is

continuous.

However, since the main focus of this study is on compact spaces, we are

not pursuing this direction any further.

Proposition 2.3.2 is a pivotal result in our work. By analysing it, we notice

that this proposition can be improved in the following way.

Corollary 2.3.4. If L is a Boolean image of K, then there is a closed

subspace K0 of K that maps onto L by a perfect mapping (see Definition

1.2.14).
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To prove this corollary, we need the following well known proposition.

Proposition 2.3.5. Any continuous map from a compact space onto a

Hausdorff space is a perfect map.

Proof. First, we need to prove that every continuous map from a compact

space to a Hausdorff space is closed: Let f : X → Y be a continuous

function such that X is a compact topological space and Y is a Hausdorff

topological space. We need to show that if A ⊂ X is a closed subset of

X, then f(A) ⊂ Y is a closed subset of Y . Now, since a closed subset of

a compact space is compact, it then follows that A ⊂ X is also compact.

Since a continuous images of a compact space is compact, it follows that

f(A) ⊂ Y is compact. Since a compact subspace of a Hausdorff space is

closed, it follows that f(A) is also closed in Y .

Then, for a map to be perfect we need to show that the inverse images of

points are compact: Since f is continuous and every point is closed, the

inverse image of any point is closed and hence compact due to the fact that

every closed subset of a compact subspace is compact.

The next proposition is proved in [11], but we give a detailed proof here.

Proposition 2.3.6. If Li is a Boolean image of Ki for i ∈ I, then L =∏
i∈I Li is a Boolean image of K =

∏
i∈I Ki.

Proof. For every i, consider a point-separation family Gi ⊂ Clop(Li) and a

family Fi of pseudoclopens of Ki that is isomorphic to Gi. Write for every

i ∈ I, πi : L −→ Li and pi : K −→ Ki for the projections, and put

G =
⋃
i∈I

{π−1
i [a] : a ∈ Gi}, F =

⋃
i∈I

{(p−1
i [b−], p−1

i [b+]) : b ∈ Fi}.
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It is sufficient to show that for every i ∈ I, the set {π−1
i [a] : a ∈ Gi} is

isomorphic, by an isomorphism ϕ, to the set {(p−1
i [b−], p−1

i [b+]) : b ∈ Fi}.

For every c, d that are clopen in {π−1
i [a] : a ∈ Gi}, let c = π−1

i [a1], d =

π−1
i [a2], for some a1, a2 ∈ Gi.

ϕ is closed under intersection:

ϕ(c ∩ d) = ϕ(π−1
i [a1] ∩ π−1

i [a2]) = ϕ(π−1
i [a1]) ∩ ϕ(π−1

i [a2]) = ϕ(c) ∩ ϕ(d)

ϕ is closed under union:

ϕ(c ∪ d) = ϕ(π−1
i [a1] ∪ π−1

i [a2]) = ϕ(π−1
i [a1]) ∪ ϕ(π−1

i [a2]) = ϕ(c) ∪ ϕ(d)

ϕ is closed under complement:

ϕ(L\c) = ϕ(L\π−1
i [a1]) = ϕ(L)\ϕ(π−1

i [a1]) = K \(p−1
i [b−], p−1

i [b+]), which

is by definition the complement of a pseudoclopen pair.

The following corollary was stated without a proof in [11]. So we give the

proof.

Corollary 2.3.7. For every infinite set Γ the space 2Γ is a Boolean image

of [0, 1]Γ.

Proof. This follows since 2 = {0, 1} is a Boolean image of [0, 1]. We need

to find a family of pseudoclopens in [0, 1] which is isomorphic to {{0}, {1}}

(these are all clopens of {0, 1} = 2, and it is of course a point-separating

family).

So we want to find pseudoclopens (a−, a+), (b−, b+) in [0, 1]. We choose

a− = [0, 1
3
] as a closed subset of [0, 1] and a+ = [0, 1

2
) as an open subset of

[0, 1] and such that a− ⊆ a+. Also, we choose b− = [1
2
, 1], which is a closed

subset of subset of [0, 1], and b+ = (1
3
, 1], which is an open subset such that

b− ⊆ b+.
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Let ϕ : (a−, a+)→ {0}

(b−, b+)→ {1}

We can close ϕ under intersection, union and complement, so it becomes

an isomorphism.

Theorem 2.3.8. [11] If K is separably connected and L is a Boolean image

of K, then either L is Corson compact or L maps continuously onto 2ω1.

Corollary 2.3.9. [11] If K is a separably connected space that does not

map onto [0, 1]ω1, then every Boolean image of K is Corson compact.

Proof. Otherwise, K has a Boolean image that maps onto 2ω1 . By

Proposition 2.3.2, this implies that K has a closed subspace that maps

continuously onto 2ω1 , hence also onto [0, 1]ω1 . By Tietze’s extension

theorem: ( continuous functions on a closed subset of a normal topological

space can be extended to the entire space), we have that K itself maps

continuously onto [0, 1]ω1 .

Corollary 2.3.10. [11] Let L be a zero-dimensional compact space which

is a continuous image of a zero-dimensional compact line (compact linearly

ordered topological space) L∗. Then L is a Boolean image of a compact

connected space.

2.4 A few more examples

1. An adequate space:

The notion of an adequate family of subsets was introduced in [1].

Definition 2.4.1. Let Γ be a non-empty set, a family A of subsets

of Γ is called adequate if:
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(i) If A ∈ A, and B ⊂ A, then B ∈ A.

(ii) If B ⊂ Γ is such that all finite subsets of B belongs to A, then

B ∈ A.

Every adequate family of subsets of Γ can be viewed as a closed subset

of {0, 1}Γ. Such a family may be seen as a compact space L = {x ∈

2Γ : {γ : xγ = 1} ∈ A} and is therefore called an adequate compact

space.

Proposition 2.4.2. [11] Every space L defined by an adequate family

is a Boolean image of a path-connected compact space.

2. Tree spaces:

Tree spaces constitute another interesting example. First, the

definition of a tree should be recalled:

Definition 2.4.3. [11] A tree is a partially ordered set T with a

minimum element (its root) and in which each initial segment

{t ∈ T : t < s}

is well ordered.

Remark 2.4.4. [11] Let T̄ be a family of subsets of T that are either

initial segments or full branches in T . Then T̄ is again a tree when

ordered by inclusion. In a sense, it represents the completion of T .

The tree space is a classical construction. The definition can be found

in [11]:

Definition 2.4.5. A tree space associated to T is the compact

subspace of 2T made of the characteristic functions of subsets A ∈ T̄

(for some T̄ ).
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Proposition 2.4.6. [11] Let T be a tree and let L ⊂ 2T be the tree

space defined by T , that is, for every x ∈ L we have that {t ∈ T :

xt = 1} ∈ T̄ . Then L is a Boolean image of a compact connected

space. If all branches of T are countable, then L is a Boolean image

of a path-connected space.

3. Boolean images of convex spaces:

Avilés and Plebanek in [11] give a result on the class of compact

spaces defines by an n-adequate family. They prove that such spaces

are Boolean images of convex compacta.

We need to recall some definitions as follows:

Definition 2.4.7. [11] Given a natural number n, an adequate family

A of sets is n-adequate if a set belongs to A if and only if all of its

subsets of cardinality at most n belong to A.

Definition 2.4.8. A set C is convex if the line segment between any

two points in C lies in C, i.e. ∀x1, x2 ∈ C, ∀φ ∈ [0, 1],

φ x1 + (1− φ)x2 ∈ C.

We can generalize the definition of a convex set above from two

points to any number of points n. A convex combination of points

x1, x2, . . . , xk ∈ C is any point of the form

φ1 x1 + φ2 x2 + . . .+ φk xk,

where φi ≥ 0, for i = 1, . . . , k, and
∑k

i=1 φi = 1. Then a set C is

convex iff any convex combination of points in C is in C.

Proposition 2.4.9. [11] Every compact space L defined by an
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n-adequate family for some n is a Boolean image of a compact

convex set.

2.5 A partial answer to a problem posed by

Avilés and Plebanek

The following problems are posed by Avilés and Plebanek in [11].

Problem 2.5.1. (i) Suppose that L is a continuous image of every zero-

dimensional space that maps continuously onto K. Does this imply

that L is a Boolean image of K ?

(ii) Let L be a Boolean image of K and suppose that L′ is a continuous

image of L. Is L′ a Boolean image of K ?

We are able to answer the question 2.5.1(ii) under the additional

assumption that L′ is the image of L by a bijective continuous mapping.

This implies that the spaces are homeomorphic, since they are both

compact. Hence the answer is not surprising, but it is still not completely

trivial since being a Boolean image is not something that is given by the

existence of a function between spaces, so we cannot just compose such a

function with a homeomorphism.

Proposition 2.5.2. Let L be a Boolean image of K and suppose that L′ is

a bijective continuous image of L. Then L′ is a Boolean image of K.

Proof. Since L is a Boolean image of K, let {(a−i , a+
i ) : i ∈ I} be a family

of pseudoclopens of K that is isomorphic by an isomorphism ψ to a family

{ai : i ∈ I} of clopens of L and that separates the points of L so that

ψ : (a−i , a
+
i ) 7→ ai.
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To show that L′ is a zero-dimensional space:

Let f : L → L′ be a continuous bijective function. Since L is a compact

space and f is continuous, L′ is compact.

We know that any bijective continuous function between compact spaces

is a homeomorphism. Thus, f is a homeomorphism, which means that it

is closed and open. Since closed and open continuous functions preserve

zero-dimensionality, L′ is a zero-dimensional space.

To prove that L′ is a Boolean image of the space K, we need to find

clopen sets in L′ which separate the points of L′ and are isomorphic to the

pseudoclopens in K. To do so, we will take the sets f(ai). These sets are

clopen, as we shall now show:

We know that ai is clopen in L. Since ai is a closed subset of a compact

space L and the function f is continuous, the image f(ai) is closed. Since

the set ai is open and the function f is open, the set f(ai) is open. So, f(ai)

is clopen in L′.

Now, we want to prove that there is an isomorphism ϕ between the family

{f(ai) : i ∈ I} of clopen sets in L′ and the family (a−i , a
+
i ) of pseudoclopens

of K. Define ϕ = fψ, which takes the psedoclopen pair (a−i , a
+
i ) in K to

the clopen sets f(ai) in L′.

For any pseudoclopens c and d in K such that c = (a−1 , a
+
1 ) and d = (a−2 , a

+
2 ),

we have the following:

ϕ is closed under intersection:

ϕ(c ∩ d) = ϕ[(a−1 , a
+
1 ) ∩ (a−2 , a

+
2 )]

= fψ[(a−1 , a
+
1 ) ∩ (a−2 , a

+
2 )]

= f(ψ(a−1 , a
+
1 ) ∩ ψ(a−2 , a

+
2 ))
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= fψ(a−1 , a
+
1 ) ∩ fψ(a−2 , a

+
2 )

= ϕ(a−1 , a
+
1 )] ∩ ϕ(a−2 , a

+
2 ))

ϕ is closed under union:

ϕ(c ∪ d) = ϕ[(a−1 , a
+
1 ) ∪ (a−2 , a

+
2 )]

= fψ[(a−1 , a
+
1 ) ∪ (a−2 , a

+
2 )]

= f(ψ(a−1 , a
+
1 ) ∪ ψ(a−2 , a

+
2 ))

= fψ(a−1 , a
+
1 ) ∪ fψ(a−2 , a

+
2 )

= ϕ(a−1 , a
+
1 )] ∪ ϕ(a−2 , a

+
2 ))

ϕ is closed under complement:

ϕ(K \ c) = ϕ(K \ (a−i , a
+
i )) = fψ(K \ (a−i , a

+
i )) = fψ(K) \ fψ(a−i , a

+
i ) =

L′ \ f(ai), which is by definition the complement of the clopen pair ϕ(c).

Next, we want to prove that the family {f(ai), i ∈ I} of clopen sets of L′

separates the points of L′: this means that for every two points x, y in L′,

there exists c ∈ {f(ai) : i ∈ I} which contains exactly one among x, y.

Let x 6= y in L′. Since f : L → L′ is onto, there are z, w ∈ L such that

f(z) = x and f(w) = y.

Let aj be a clopen set and suppose that z ∈ aj and w /∈ aj (since (ai)i∈I

separates the points in L). Since f is a bijective function, we have z ∈ aj ⇒

f(z) ∈ f(aj)⇒ x ∈ f(aj).

But y /∈ f(aj) because f is one-to-one and y = f(w).

Therefore, for every two different points x 6= y ∈ L′, there exists f(aj) ∈

{f(ai) : i ∈ I} that contains exactly one among x, y.

Problem 2.5.1(i) similarly has a positive solution under the same

assumptions, even dropping the requirement ‘for every 0-dimensional
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space’ and replacing it by ‘for some 0-dimensional space’. This again is not

surprising and we omit the proof. So we have the following proposition:

Proposition 2.5.3. If the zero-dimensional space L is a continuous image

of every zero-dimensional compact space that maps continuously by a

bijective map onto a compact space K, then L is a Boolean image of K.

Proof. Suppose that Kj are zero-dimensional spaces that map continuously

onto a compact K. Since the spaces Kj are zero-dimensional and L is

a continuous image of every Kj, using Lemma 2.2.5 we have that L is a

Boolean image of every Kj.

Consequently, for every j there is a family {aij : ij ∈ Ij} of clopens of L that

separates the points of L and which is isomorphic to a family {(a−ij , a
+
ij

) : i ∈

Ij} of pseudoclopens in the space Kj by an isomorphism ϕj : (a−ij , a
+
ij

)→ aij .

Now let fj : Kj → K be a continuous bijective function for every j. Since

the sets a−ij are closed in the compact space Kj, fj is continuous, so fj(a
−
ij

)

are closed in K.

Since the sets a+
ij

are open in Kj, fj(a
+
ij

) is open in K. Also, fj(a
−
ij

) ⊆ fj(a
+
ij

)

(since a−ij ⊆ a+
ij

). Therefore, the pair (f(a−ii ), f(a+
ii

)) is a pseudoclopen in

the compact space K.

So we want to prove that there is an isomorphism ψ between all families

{aij : i ∈ Ij} of clopens of L that separate the points of L and the families

{(fj(a−ij), fj(a
+
ij

)) : i ∈ Ij} of pseudoclopens of K. Define ψ = ϕjf
−1
j , which

takes the pseudoclopen pair (fj(a
−
ij

), fj(a
+
ij

)) in K to the clopen aij in L.

We have, for (fj(a
−
i1

), fi(a
+
i1

)) and (fj(a
−
i2

), fj(a
+
i2

)) that are pseudoclopens

in K,

ψ is closed under intersection:
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ψ[(fj(a
−
i1

), fj(a
+
i1

)) ∩ (fj(a
−
i2

), fj(a
+
i2

))]

= ϕjf
−1
j [(fj(a

−
i1

), fj(a
+
i1

)) ∩ (fj(a
−
i2

), fj(a
+
i2

))]

= ϕjf
−1
j (fj(a

−
i1

), fj(a
+
i1

)) ∩ ϕjf−1
j (fj(a

−
i2

), fj(a
+
i2

))

= ψ(fj(a
−
i1

), fj(a
+
i1

)) ∩ ψ(fj(a
−
i2

), fj(a
+
i2

)).

ψ is closed under union:

ψ[(fj(a
−
i1

), fj(a
+
i1

)) ∪ (fj(a
−
i2

), fj(a
+
i2

))]

= ϕjf
−1
j [(fj(a

−
i1

), fj(a
+
i1

)) ∪ (fj(a
−
i2

), fj(a
+
i2

))]

= ϕjf
−1
j (fj(a

−
i1

), fj(a
+
i1

)) ∪ ϕjf−1
j (fj(a

−
i2

), fj(a
+
i2

))

= ψ(fj(a
−
i1

), fj(a
+
i1

)) ∪ ψ(fj(a
−
i2

), fj(a
+
i2

)).

ψ is closed under complement:

ψ(K \ (fj(a
−
i1

), fj(a
+
i1

))) = ϕjf
−1
j (K \ (fj(a

−
i1

), fi(a
+
i1

)))

= ϕj(f
−1
j (K) \ f−1

j (fj(a
−
ij

), fj(a
+
ij

))) = ϕj(kj \ ((a−i1), (a
+
i1

))

= L \ϕj((a−i1), (a
+
i1

)) = L \ (ai1), which is by definition the complement of a

clopen set.

It remains to prove that ψ(K,K) = L:

ψ(K,K) = ψ(fj[(a
−
ij
, a+

ij
)∪(a−ij , a

+
ij

)c)] such that (a−ij , a
+
ij

) = ∅, (a−ij , a
+
ij

)c = K

= ϕjf
−1
j fj[((a

−
ij

), (a+
ij

)) ∪ ((a−ij), (a
+
ij

))c]

= ϕj[((a
−
ij

), (a+
ij

)) ∪ ((a−ij), (a
+
ij

))c]

= ϕj[Kj]

= L.
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Function spaces with finite

support

The concept of Boolean image represents a generalisation of a continuous

image in the sense that there can be a zero-dimensional space constituting

a Boolean image of a connected one. This cannot happen under continuous

mappings. In fact, a Boolean image is not a function between the points of

one space and the points of another space, which makes it different from a

continuous map. But, as the results in this project show, Boolean images

seem to behave quite like continuous maps.

This research develops a relatively new concept which has emerged from

the Avilés and Plebanek paper [11]. They discuss the Boolean images of

different kinds of spaces, among them being the compact zero-dimensional

subspaces of

σn(Γ) = {x ∈ 2Γ : |{γ : xγ = 1}| ≤ n} for n = 1, 2, 3, . . .

for an uncountable set Γ. A question arises if such spaces are Boolean

images of connected spaces. Avilés and Plebanek prove this for n = 2 in

the following proposition:
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Proposition 3.0.1. [11] If L is a compact subspace of σ2(Γ), then L is a

Boolean image of a compact connected space.

No study to date has examined the case when n = 3. To do that, we first

reprove that for a compact subspace K of 2κ such that every x from K has

support of size equal to 1 or 2 is a Boolean image of a connected space.

Then we prove the main result of this chapter stating that every subspace

of 2κ with a finite support n is a Boolean image of a connected space, which

is given in the following theorem:

Theorem 3.0.2. Let n = 1, 2, 3, . . ., κ is an uncountable set and Xn =

{f ∈ 2κ : |supt(f)| ≤ n}. Then Xn is a Boolean image of [0, 1]κ.

Section 3.1 is devoted to that.

3.1 An answer to another question posed by

Avilés and Plebanek

Along with the aim announced in the previous section, the aim of this

section is to study the spaces C(K) by studying the spaces K where K is a

compact Hausdorff space. A basic example of a compact space is 2κ, where

2κ = {f : κ→ 2 = {0, 1}}

and where κ is an infinite cardinal, along with its closed subspaces. Of

special interest are the subspaces that have a property of every point having

finite support. This means that every point (function) is equal to zero except

at finitely many γ ∈ κ. First, we will prove that these spaces are closed
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subspaces of 2κ, implying that they are compact. Then, we will show that

these spaces are Boolean images of connected spaces.

The first question to ask concerns the space Y1, which is the subspace of 2κ

consisting of all x ∈ 2κ with support of size 1.

Problem 3.1.1. Is the subspace Y1 of 2κ consisting of functions f ∈ 2κ

with |supt(f)| = 1 compact ?

Observation 3.1.2. Let κ be an infinite cardinal and let Y1 be the subspace

of 2κ consisting of all functions fα with |supt(fα)| = 1. We can write it as

the set of all functions fα, for α < κ, such that fα(β) =

{
0 if β 6= α.

1 if β = α.

We claim that this space is not compact: recall that Y1 is compact if every

open cover of it has a finite subcollection that also covers Y1. Fix α < κ,

and note that [(α, 1)] ∩ Y1 = {f ∈ Y1 : f(α) = 1} = {fα}, so this is a

relatively open set in Y1 and O = {[(α, 1)] ∩ Y1 : α < κ} is an open cover

of Y1. Suppose that F ⊆ O is finite, so

F = {[(α0, 1)]∩Y1, [(α1, 1)]∩Y1, . . . , [(αn, 1)]∩Y1} for some α0, α1, . . . , αn <

κ. If α < κ and α /∈ {α0, α1, . . . , αn}, then fα /∈ F . Hence F is not an

open cover of Y1. This argument shows that Y1 is not compact and hence it

is not a closed subspace of 2κ.

Now, let X1 be the set of functions in 2κ which take value zero except at at

most one point.

Proposition 3.1.3. The space X1 = Y1 ∪ {0} = {f ∈ 2κ : |supt(f)| ≤ 1}

is a compact subspace of 2κ.

Proof. To prove that X1 is a compact subspace, it suffices to show that it

is a closed subspace of 2κ . We show that its complement 2κ\X1 is open.
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2κ\X1 is the set of all functions that are equal to 1 at least twice,

2κ\X1 = {f ∈ 2κ : ∃α1 6= α2, f(α1) = f(α2) = 1}.

It is open because for every point x ∈ 2κ\X1, there is an open set:

[(α1, 1), (α2, 1)] = {g ∈ 2κ : g(α1) = g(α2) = 1} containing x and contained

in 2κ\X1. Therefore the space X1 is a closed subspace of 2κ, so it is compact.

Similarly, if we take Y2 to be a subspace of 2κ such that every point x from

Y2 has support exactly equal to 2, then Y2 is not a compact space. Namely,

Y2 = {f ∈ 2κ : |supt(f)| = 2} = {f ∈ 2κ : ∃α1 6= α2, f(α1) = f(α2) = 1}.

Fix α1, α2 < κ. Let [(α1, 1), (α2, 1)]∩Y2 = {f ∈ Y2 : f(α1) = f(α2) = 1} =

{fα1,α2}, so this is a relatively open set in Y2. Then O = {[(α1, 1), (α2, 1)]∩

Y2 : α1, α2 < κ} is an open cover of Y2. Now suppose that F ⊆ O is

finite such that F = {[(β1
1 , 1), (β1

2)]∩ Y2, . . . , [(β
n
1 , 1), (βn2 , 1)]∩ Y2} for some

β1, . . . , βn < κ. If α1, α2 < κ, and α1, α2 /∈ {β1, . . . , βn}, then {fα1,α2} /∈ F ,

which gives a point in Y2 which is not covered by F . So, Y2 is not a compact

subspace of 2κ.

But again if we choose our space to contain all the functions that have

support of size at most 2, we will obtain a compact subspace of 2κ.

Therefore, let X2 be the set of functions that take value zero except at

most two points.

Proposition 3.1.4. The space X2 = Y2 ∪Y1 ∪{0} = {f ∈ 2κ : |supt(f)| ≤

2} is a closed subspace of 2κ.

Proof. to prove that X2 is a closed subspace, we prove that its complement

is open. We have that 2κ\X2 is the set of all functions that are equal to 1
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at least three times:

2κ\X2 = {f ∈ 2κ : ∃α1 6= α2 6= α3, f(α1) = f(α2) = f(α3) = 1}.

This space is open because for every point x ∈ 2κ\X2, there is an open set:

[(α1, 1), (α2, 1), (α3, 1)] = {g ∈ 2κ : g(α1) = g(α2) = g(α3) = 1} containing

x and contained in 2κ\X2. Therefore, the space X2 is a closed subspace of

2κ, so it is compact.

Arguing as above, we conclude that for each n,

Xn = Yn ∪ Yn−1 ∪ . . . ∪ Y1 ∪ {0} = {f ∈ 2κ : |supt(f)| ≤ n}

is a closed subspace of 2κ, where Yn is defined as the set of all points in 2κ

which have support consisting of exactly n points.

Theorem 3.1.5. Each Xn is a Boolean image of a connected space.

We first deal with the case n = 1. We recall:

Definition 3.1.6. (1) Let X1 = {x ∈ 2κ : |{α : x(α) 6= 0}| ≤ 1}.

(2) For each α < κ, let [〈α, 1〉] = {x ∈ 2κ : x(α) = 1}.

Lemma 3.1.7. X1 is a Boolean image of [0, 1]κ.

Proof. We observe that X1 is a zero-dimensional compact space. Let x−1

be the identically 0 function and xα the unique point in the intersection

X1 ∩ [〈α, 1〉]. Then X1 = {xα : α ≥ −1}.

Let C = {X1 ∩ [〈α, 1〉] : α < κ} ∪ {X1 ∩ [〈0, 0〉]}. It is easily checked that

C is a family of clopens of X1 which separates the points of X1. Let C∗ be

the closure of C under ∩,∪ and c.
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For α < κ define a−α = {x ∈ [0, 1]κ : x(α) = 1} and let a+
α = [0, 1]κ. Then

(a−α , a
+
α ) is pseudoclopen in [0, 1]κ. Also, we define a− = {x ∈ [0, 1]κ : x = 0}

and let a+ = [0, 1]κ. Then (a−, a+) is pseudoclopen in [0, 1]κ. We define

ϕ((a−α , a
+
α )) = X1 ∩ [〈α, 1〉] and ϕ((a−, a+)) = X1 ∩ [〈0, 0〉].

Then we extend this to an isomorphism by defining

ϕ((a−α , a
+
α ) ∩ (a−β , a

+
β )) = ϕ(a−α ∩ a−β , a

+
α ∩ a+

β )

and similarly for ∪ and c and (a−, a+). This is a mapping onto C∗.

It remains to prove that ϕ([0, 1]κ, [0, 1]κ) = X1.

By the definition of the extension using complements, we have

ϕ([0, 1]κ, [0, 1]κ) = ϕ((a−α , a
+
α ) ∪ (a−α , a

+
α )c ∪ (a−, a+) ∪ (a−, a+)c)

= X1 ∩ [〈α, 1〉] ∪ (X1 ∩ [〈α, 1〉])c ∪X1 ∩ [〈0, 0〉] ∪ (X1 ∩ [〈0, 0〉])c = X1.

Now we are able to prove that every compact subspace of 2κ where every

point has support of size at most 2 is a Boolean image of a connected space

.

Definition 3.1.8. (1) Let X2 = {x ∈ 2κ : |{α : x(α) 6= 0}| ≤ 2}.

(2) For each α1, α2 < κ, let [〈α1, 1〉, 〈α2, 1〉] = {x ∈ 2κ : x(α1) = x(α2) = 1}.

Lemma 3.1.9. X2 is a Boolean image of [0, 1]κ.

Proof. We observe that X2 is a zero-dimensional compact space. Let x−1

be the identically 0 function and xα1,α2 the unique point in the intersection

X2 ∩ [〈α1, 1〉, 〈α2, 1〉]. Then

X2 = X1 ∪
⋃

α1,α2<κ

{x ∈ 2κ : x(α1) = x(α2) = 1, x(α) = 0 if α 6= α1, α2}
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Let C = {X2 ∩ [〈α1, 1〉, 〈α2, 1〉] : α1, α2 < κ} ∪ {X2 ∩ [〈0, 0〉]} (α1, α2 might

be equal). It is easily checked that C is a family of clopens of X2 which

separates the points of X2. Let C∗ be the closure of C under ∩,∪ and c.

For α1, α2 < κ, define a−α1,α2
= {x ∈ [0, 1]κ : x(α1) = x(α2) = 1} and let

a+
α1,α2

= [0, 1]κ. Then (a−α1,α2
, a+

α1,α2
) is pseudoclopen in [0, 1]κ. Also, we

define a− = {x ∈ [0, 1]κ : x = 0} and let a+ = [0, 1]κ. Then (a−, a+) is

pseudoclopen in [0, 1]κ.

We define ϕ((a−α1,α2
, a+

α1,α2
)) = X2∩ [〈α1, 1〉, 〈α2, 1〉] and ϕ((a−, a+)) = X2∩

[〈0, 0〉]. Then we extend this to an isomorphism by defining

ϕ((a−α1,α2
, a+

α1,α2
) ∩ (a−β1,β2 , a

+
β1,β2

)) = ϕ(a−α1,α2
∩ a−β1,β2 , a

+
α1,α2

∩ a+
β1,β2

)

and similarly for ∪ and c and (a−, a+). This is a mapping onto C∗.

It remains to prove that ϕ([0, 1]κ, [0, 1]κ) = X2. By the definition of the

extension using complements, we have

ϕ([0, 1]κ, [0, 1]κ) = ϕ((a−α1,α2
, a+

α1,α2
) ∪ (a−α1,α2

, a+
α1,α2

)c ∪ (a−, a+) ∪ (a−, a+)c)

= ϕ(a−α1,α2
, a+

α1,α2
) ∪ ϕ(a−α1,α2

, a+
α1,α2

)c ∪ ϕ(a−, a+) ∪ ϕ(a−, a+)c

= X2∩[〈α1, 1〉, 〈α2, 1〉]∪(X2∩[〈α1, 1〉, 〈α2, 1〉])c∪X2∩[〈0, 0〉]∪(X2∩[〈0, 0〉])c

= X2.

Let us consider now, for n = 1, 2, 3, . . . and an uncountable set κ, the zero-

dimensional compact space Xn = {f ∈ 2κ : |supt(f)| ≤ n}. We will show

that any closed subspace of 2κ with a finite support is a Boolean image of

a connected space.

Definition 3.1.10. (1) Let Xn = {x ∈ 2κ : |{α : x(α) 6= 0}| ≤ n}.
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(2) For each α1, α2, . . . , αn < κ, let [〈α1, 1〉, 〈α2, 1〉, . . . , 〈αn, 1〉] = {x ∈ 2κ :

x(α1) = x(α2) = . . . = x(αn) = 1}.

Theorem 3.1.11. Xn is a Boolean image of [0, 1]κ.

Proof. We observe that Xn is a zero-dimensional compact space. Let x−1 be

the identically 0 function and xα1,α2,...,αn the unique point in the intersection

Xn ∩ [〈α1, 1〉, 〈α2, 1〉, . . . , 〈αn, 1〉].

Then Xn = Xn−1 ∪
⋃
α1,α2,...,αn<κ

{x ∈ 2κ : x(α1) = x(α2) = . . . = x(αn) =

1, x(α) = 0 if α 6= α1, α2, . . . , αn}.

Let C = {Xn ∩ [〈α1, 1〉, 〈α2, 1〉, . . . , 〈αn, 1〉] : α1, α2, . . . , αn < κ} ∪ {Xn ∩

[〈0, 0〉]} (α1, α2, . . . , αn might be equal). It is easily checked that C is a

family of clopens of Xn which separates the points of Xn. Let C∗ be the

closure of C under ∩, ∪ and c.

For α1, α2, . . . , αn < κ, define

a−α1,α2,...,αn
= {x ∈ [0, 1]κ : x(α1) = x(α2) = . . . = x(αn) = 1} and let

a+
α1,α2,...,αn

= [0, 1]κ. Then (a−α1,α2,...,αn
, a+

α1,α2,...,αn
) is pseudoclopen in [0, 1]κ.

Also, we define a− = {x ∈ [0, 1]κ : x = 0} and let a+ = [0, 1]κ. Then

(a−, a+) is pseudoclopen in [0, 1]κ.

We define ϕ((a−α1,α2,...,αn
, a+

α1,α2,...,αn
)) = Xn∩[〈α1, 1〉, 〈α2, 1〉, . . . , 〈αn, 1〉] and

ϕ((a−, a+)) = Xn ∩ [〈0, 0〉]. Then we extend this to an isomorphism by

defining

ϕ((a−α1,α2,...,αn
, a+

α1,α2,...,αn
) ∩ (a−β1,β2,...,βn , a

+
β1,β2,...,βn

))

as

ϕ(a−α1,α2,...,αn
∩ a−β1,β2,...,βn , a

+
α1,α2,...,αn

∩ a+
β1,β2,...,βn

),
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and similarly for ∪ and c and (a−, a+). This is a mapping onto C∗.

It remains to prove that ϕ([0, 1]κ, [0, 1]κ) = Xn. By the definition of the

extension using complements, we have ϕ([0, 1]κ, [0, 1]κ) =

ϕ((a−α1,α2,...,αn
, a+

α1,α2,...,αn
) ∪ (a−α1,α2,...,αn

, a+
α1,α2,...,αn

)c ∪ (a−, a+) ∪ (a−, a+)c)

= ϕ(a−α1,α2,...,αn
, a+

α1,α2,...,αn
) ∪ ϕ(a−α1,α2,...,αn

, a+
α1,α2,...,αn

)c ∪ ϕ(a−, a+) ∪

ϕ(a−, a+)c)

= Xn ∩ [〈α1, 1〉, 〈α2, 1〉, . . . , 〈αn, 1〉] ∪ (Xn ∩ [〈α1, 1〉, 〈α2, 1〉, . . . , 〈αn, 1〉])c ∪

Xn ∩ [〈0, 0〉] ∪ (Xn ∩ [〈0, 0〉])c = Xn.



4

Eberlein compact spaces

This chapter deals with Eberlein compact spaces. The main references

for this section are [13] and [20]. The motivation of this chapter comes

from the result given by Y. Benyamini, M.E. Rudin and M. Wage in [13]

showing that the continuous image of an Eberlein compact space is also

Eberlein compact. With this motivation in mind, and with respect to the

fact that Boolean images are a generalisation of continuous mappings, we

study Eberlein compacta in terms of the possibility of being Boolean images

of connected spaces.

In section 4.1 we give a brief introduction to the theory of Eberlein compact

spaces, followed by some definitions. In section 4.2 we recall the definition

of strong Eberlein compact spaces, and some of their properties. We also

prove in Theorem 4.2.5 that strong Eberlein compacta are Boolean images

of connected spaces. Section 4.3 is dedicated to definitions and properties of

scattered spaces, Corson spaces and W-spaces. Then, we show in Theorem

4.3.15 that every scattered Eberlein compact space is a Boolean image of a

connected space.
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4.1 Introduction

The weakly compact subspaces of Banach spaces were first studied by

William Frederick Eberlein of hence the name ‘Eberlein compact spaces’.

His results showed that these compact spaces are very important and have

many applications in different areas of mathematics such as topological

algebra, functional analysis, and topology.

Definition 4.1.1. [13] A compact Hausdorff space is called Eberlein

compact (E-C) if it is homeomorphic to a weakly compact subset of a

Banach space.

As we mentioned earlier, we shall not need the weak topology, so we do not

define it and prefer the combinatorial characterisation of Eberlein compacta.

The main structure theorem for the combinatorial definition of Eberlein

compact is due to Amir and Lindenstrauss [3]: a compact space is Eberlein

compact if and only if it can be embedded into a Σ∗-product of real lines

where Σ∗(RΓ) = {x ∈ RΓ : ∀ε > 0 {γ ∈ Γ : x(γ) > ε} is finite }.

By the mentioned result, Kalenda in [20] defines Eberlein compact spaces

as follows:

Definition 4.1.2. A compact space is Eberlein if and only if it is

homeomorphic to a subset of the space

c0(Γ) = {x ∈ RΓ : ∀ε > 0 {γ ∈ Γ : x(γ) > ε} is finite }

for some set Γ.

Equivalently, due to H. P. Rosenthal [32], Eberlein compact spaces can be

characterised using the covering property. Let us first recall the following

definition.
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Definition 4.1.3. [13] A family C is called point-finite if each x ∈ X

belongs to at most finitely many sets in C . It is called σ-point-finite if

C =
⋃∞
n=1 Cn, where each Cn is point finite.

Proposition 4.1.4. [35] A compact space X is an Eberlein compact if and

only if there exists a σ-point-finite system C ⊂ Coz(X) which weakly

separates points of X, i.e., for any two different x, y ∈ X there is a

C ∈ C such that {x, y} ∩ C 6= ∅ and {x, y} − C 6= ∅.

Benyamini, Rudin and Wage [13] proved in 1977 that the class of Eberlein

compacts is stable with respect to continuous images. Moreover, they state

that a closed subset of an Eberlein compact space is Eberlein compact,

and a countable product of Eberlein compact spaces is Eberlein compact.

Nonetheless, an uncountable product of non-trivial Eberlein compact spaces

is never Eberlein compact [23].

When dealing with Eberlein compact spaces, we come across a special type

of these spaces called strong Eberlein. Strong Eberlein compact spaces are

much easier to handle and thus we devote section 4.2 to the study of such

spaces.

4.2 Strong Eberlein compact spaces

At the beginning of this section, we recall the definition of strong Eberlein

compacta and collect some known results related to these spaces in an

attempt to understand and analyse them. Subsequently, we prove that

every strong Eberlein compact space is a Boolean image of a connected

space.

Definition 4.2.1. [13] An Eberlein compact space X is called strong if it
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embeds in c0(Γ) in such a way that x(γ) = 0 or x(γ) = 1 for all x ∈ X and

γ ∈ Γ.

Equivalently, P. Simon in [35] state that strong Eberlein compacts can be

defined by using a covering property:

Definition 4.2.2. A compact space X will be called strong Eberlein

compact if there exists a point-finite system C ⊂ Coz(X), weakly

separating points of X.

Here are some results related to the strong Eberlein compact spaces. One

of the main theorems is that strong Eberlein compacts are stable under

continuous images.

Theorem 4.2.3. [35] A continuous image of a strong Eberlein compact

space is also strong Eberlein compact.

Now we want to prove that every strong Eberlein compact space is a Boolean

image of a connected compact space. To this end, we need the following

proposition to show that every strong Eberlein compact space is a closed

subspace of the zero-dimensional space 2Γ, where Γ is an infinite cardinal.

Proposition 4.2.4. [35] Every strong Eberlein compact space can be

embedded into 2Γ for some set of indices Γ in such a manner that for

every x ∈ X, the set {γ ∈ Γ | x(γ) = 1} is finite .

Proof. Let C ⊂ Clopen(X) be a point-finite system, which weakly separates

points of X. For C ∈ C let fC : X → 2 be the mapping which maps C

onto 1 and maps X \ C onto 0. Let ψ : X → 2C be defined by the rule

ψ(x)(C) = fC(x). Then the mapping ψ is the desired embedding.
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Now, we prove the main result of this section.

Theorem 4.2.5. Every strong Eberlein compact space is a Boolean image

of a connected space.

Proof. We know from Proposition 4.2.4 that every strong Eberlein compact

space is a closed subspace of the function space 2Γ. Also, from Theorem

3.1.11 we know that every compact subspace of 2Γ with a finite support

is a Boolean image of a connected space. Therefore, every strong Eberlein

compact space is a Boolean image of a connected compact space.

4.3 Scattered Eberlein spaces

In this section we prove a theorem in which we give some necessary and

sufficient condition for Eberlein compact spaces to be a Boolean image of a

connected space.

Before starting to prove our theorem, we recall some definitions and

fundamental results that will help us complete the proof.

4.3.1 Scattered spaces

This section is dedicated to the definition of scattered spaces and some of

their topological properties.

Definition 4.3.1. [2] A topological space X is said to be scattered if every

non-empty subset S of X contains at least one point which is isolated in S

(that is, X is scattered if and only if it contains no non-empty subset which

is dense-in-itself).
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Remark 4.3.2. [2] Every subspace of a scattered space is itself scattered.

Proposition 4.3.3. [2] Let X be a T0-space and S1, S2 be two scattered

subspaces of X. Then the following statements hold:

(1) S1 ∩ S2 is a scattered subset of X.

(2) S1 ∪ S2 is a scattered subset of X.

Proof. (1) Straightforward.

(2) Since S1 is a scattered subspace of X, there exists x ∈ S1 and an

open neighborhood O of x such that S1 ∩ O = {x}. If O ∩ S2 = ∅, then

O ∩ (S1 ∪ S2) = {x}; so that x is an isolated point of S1 ∪ S2.

Suppose that O∩S2 6= ∅. Since O∩S2 is a subset of the scattered subspace

S2 of X, there exists y ∈ O∩S2 and an open neighborhood V of y such that

(O∩S2)∩V = {y}. Hence O∩V = {y} or O∩V = {x, y}. If O∩V = {y},

then y is an isolated point of S1 ∪S2. Since X is a T0-space, there exists an

open set W of X such that x ∈ W and y /∈ W or y ∈ W and x /∈ W . Hence

(O ∩ V ∩W ) ∩ (S1 ∪ S2) = {x} or (O ∩ V ∩W ) ∩ (S1 ∪ S2) = {y}. Thus

S1 ∪ S2 has an isolated point. Therefore S1 ∪ S2 is a scattered subspace of

X.

Corollary 4.3.4. [2] Let X be a topological space and {Si | i ∈ I} be a finite

collection of scattered subspaces of X. Then
⋃
i∈I Si is a scattered subspace

of X.

Simon [35] found the connection between strong Eberlein compact spaces

and scattered spaces in the following proposition.

Proposition 4.3.5. [35] Every strong Eberlein compact space is scattered.
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Consequently, we think it is important to answer the following question: Is

it true that each scattered Eberlein compact is strong? This was an open

question in Simon’s paper [35], and before giving the proof we proceed by

recalling two strong notions of topological spaces: Corson compacts and

W-spaces. Then, we investigate some properties of these spaces followed by

some main results.

4.3.2 Corson compact spaces

Σ-products and their subspaces were studied by many mathematicians since

the 1950s. We will consider the class of Σ-products of the real line and

their compact subspaces, which became interesting because it contains all

Eberlein compact spaces. Benyamini, Rudin and Wage in [13] proved that

not all compact spaces that are lying in Σ(Γ) are Eberlein, for some Γ,

by giving a consistent example of non-Eberlein compact subspace of Σ(Γ).

As a result, E. Michael and M.E. Rudin in [25] introduced the concept of

Corson compact spaces that are lying in Σ(Γ).

Corson compact spaces have been intensively studied by many authors

because of their distinctive topological properties. Also, they have various

connections to many different areas in functional analysis, which makes

them an interesting subject.

Definition 4.3.6. [17] Let R denote the real line, Γ an index set, and RΓ

the usual product of |Γ| lines. We set

Σ(RΓ) = {x ∈ RΓ : |{α : x(α) 6= 0}| ≤ ω}.

A compact space X is Corson compact if and only if X is homeomorphic to

a compact subspace of Σ(RΓ) for some Γ.
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Corson compact spaces behave nicely in terms of some topological

operations. According to Kalenda in [20], numerous functional-analytic

properties of Corson compact were established in the 1980s. These studies

had two orientations. The first direction was to study the common

properties shared by Eberlein compact and Corson compact spaces. The

second direction was to study the gap between Corson and Eberlein

compacta. It is apparent that every Eberlein compact is Corson compact.

But the converse is not true. Therefore, we obtain the following chain:

Strong Eberlein compact ⇒ Eberlein compact ⇒ Corson compact space.

A topological property of Corson compact spaces can be seen in the next

theorem.

Theorem 4.3.7. [17] The closed image of a Corson compact space is

Corson compact.

The following theorem shows a stronger result on stability of Corson

compact spaces.

Theorem 4.3.8. [25] Every continuous image of a Corson compact space

is Corson compact.

Next, we present a different class of topological spaces, called W-spaces.

We show that every Corson compact space is a W-space. Before starting

to prove our theorem, we recall the definition of these spaces and present

some more results.

4.3.3 W-spaces

The class of W-spaces was first introduced by Gruenhage in [16], as a

generalization of first countable spaces. In order to define these spaces, we
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consider first the notion of W-sets. This is defined in terms of a simple

two-person infinite game: at the nth play, O (for ‘open’) chooses an open

Un ⊃ H, and then P (for ‘point’) chooses a point xn ∈ Un. We say that O

wins if xn → H (i.e., every neighbouhood of H contains all but finitely

many xn). We call H is a W-set in X if O has a winning strategy in this

game. According to G. Gruenhage in [17], if H ⊂ X has a countable

neighbourhood base in X, then H is a W-set in X.

Definition 4.3.9. [16] We call a space X in which each point of X is a

W-set a W-space.

Theorem 4.3.10. [16] Every subspace of a W-space is a W-space.

Theorem 4.3.11. [16] The countable product of W-spaces is a W-space.

Theorem 4.3.12. [16] Every Σ-subspace of a product of W-spaces is a W-

space.

Gruenhage in [16] defines the notions of Σ-product as follows: For each

α ∈ Γ, Xα a space, and xα ∈ Xα, the subspace

{x ∈
∏
α∈Γ

Xα : {α : x(α) 6= xα} is countable}

of
∏

α∈ΓXα is called a Σ-product of the Xα’s. Then he proved that a Σ-

product of W-spaces is a W-space. In particular, Corson compact spaces

are W-spaces.

As a next step, we want to demonstrate that every scattered Corson compact

space is strong Eberlein. To accomplish this we first need to recall the

following result showing that a compact scattered space X is strong Eberlein

compact if and only if X is a W-space.
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Theorem 4.3.13. [17] The following are equivalent:

(a) X is strong Eberlein compact.

(b) X is a compact scattered W-space.

Now we show that every scattered Eberlein compact is strong Eberlein,

which lead us to the proof of our theorem. We give the proof here as the

following proposition:

Proposition 4.3.14. Every scattered Eberlein space is strong Eberlein

compact.

Proof. Let X be a scattered Eberlein compact space. Since every Eberlein

compact space is Corson compact, X is scattered and Corson. We know

that Corson compact spaces are W-spaces, which means that X is scattered

and W-space. Then, by Theorem 4.3.13, we have that X is a strong Eberlein

compact space.

Now we prove the main result of this chapter, namely.

Theorem 4.3.15. Every scattered Eberlein compact is a Boolean image of

a connected space.

Proof. We know from Proposition 4.3.14 that every scattered Eberlein space

is strong Eberlein compact. And from Theorem 4.2.5, every strong Eberlein

compact space is a Boolean image of a connected space. Therefore, we

obtain that every scattered Eberlein compact space is a Boolean image of

a connected space.



5

Radon-Nikodým spaces and

more related classes

This chapter is divided into three sections. Section 5.1 is dedicated to

Radon-Nikodým (R-N) spaces. We show in Theorem 5.1.4 that every zero-

dimensional compact that is a scattered Corson R-N space is a Boolean

image of a connected space. In Theorem 5.1.5 we prove that if L is a Boolean

image of a zero-dimensional R-N compact space and C(K) is isomorphic to

C(L), then K is also a Boolean image of a zero-dimensional R-N compact

space. In section 5.2 we recall the definition of quasi Radon-Nikodým spaces

and study the nature of these spaces. Then we show in Theorem 5.2.6 that

if L is a zero-dimensional quasi Radon-Nikodým space that is scattered

Corson, then it is a Boolean image of a connected space. Section 5.3 is

devoted to fragmentable compact lines. We prove in Theorem 5.3.4 that

every scattered Corson fragmentable compact line is a Boolean image of a

connected space.
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5.1 Radon-Nikodým spaces

The class of Radon-Nikodým compacta has been investigated by many

authors. The main references for this section are [10] and [28].

Definition 5.1.1. [10] A compact topological space is called

Radon-Nikodým (R-N) compact if there exists a lower semicontinuous

metric that fragments it (see Definition 1.2.19).

We showed in the previous chapter in Theorem 4.3.15 that every scattered

Eberlein space is a Boolean image of a connected space. Every Eberlein

compact space is homeomorphic to a weakly compact subset of a reflexive

Banach space ([29]), from which it follows that an Eberlein compact space

is a Radon-Nikodým compact space, since every reflexive space is Asplund

(this follows from the conjunction of the fact that every reflexive Banach

space admits a Frechet differentiable norm [40] and the fact that every

Banach space admitting a Frechet differentiable norm is an Asplund space

[7]).

Therefore, the fact that all Eberlein compacts are among the

Radon-Nikodým spaces leads us to an interesting question: Is every

Radon-Nikodým space a Boolean image of a connected space? We are not

able to answer this question in its full generality but we do show in

Theorem 5.1.4 that every zero-dimensional compact that is a scattered

Corson R-N space is a Boolean image of a connected space. To approach

that theorem, we need to understand these spaces by recalling some

important results from the literature.
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5.1.1 Properties of Radon-Nikodým spaces

In this section, we summarize some properties of Radon-Nikodým compact

spaces. As will be seen, these properties, in most cases, are analogous to

the corresponding properties of Eberlein compact spaces.

Theorem 5.1.2. [28] (a) A closed subset of an R-N compact space is R-N

compact.

(b) The product of countably many R-N compact spaces is again R-N

compact.

As we stated above, every Eberlein compact is a Radon-Nikodým compact

space. Consequently, it is important to recall the following theorem which

offers a necessary and sufficient condition for a Radon-Nikodým compact

space to be an Eberlein compact.

Theorem 5.1.3. [18] A compact space is Eberlein compact if and only if it

is both Radon-Nikodým and Corson.

Now our previous Theorem 4.3.15 can be rephrased in the following way:

Theorem 5.1.4. Every scattered Corson R-N space is a Boolean image of

a connected space.

Proof. Let X be a scattered Corson R-N space, so it is a scattered Eberlein

space. Since every scattered Eberlein compact space is a Boolean image of

a connected space (Theorem 4.3.15), X is a Boolean image of a connected

space.

Theorem 5.1.4 allows us to reformulate Theorem 4.3.15 in terms of Radon-

Nikodým spaces.
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5.1.2 Radon-Nikodým spaces and Banach spaces

The class of Radon-Nikodým compact spaces plays an important role in

Banach space theory. The fact that this class can be characterized through

its Banach spaces of continuous functions C(K), allows one to establish a

significant connection.

Avilés and Koszmider in [9] explain this connection by stating that both

classes of R-N compact spaces and their continuous images are stable under

taking isomorphisms of their space of continuous functions, meaning that:

1. If L is an R-N compact space and C(K) is isomorphic to C(L), then

K is also R-N compact.

2. If L is a continuous image of an R-N compact space and C(K) is

isomorphic to C(L), then K is also a continuous image of an R-N

compact space.

Now we want to find the connection between the Radon-Nikodým space K

and the Banach space C(K) in terms of Boolean images.

Theorem 5.1.5. If L is a Boolean image of a zero-dimensional R-N space

and K is a compact Hausdorff space such that C(K) is isomorphic to C(L),

then K is a continuous image of an R-N space.

Proof. If L is a Boolean image of a zero-dimensional space L′, then by

Lemma 2.2.5, L is a continuous image of L′, since L is itself

zero-dimensional. Since C(K) is isomorphic to C(L), from the above

characterization 2, it follows that there is an R-N compact space K ′ that

maps continuously onto K.
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5.2 Quasi Radon-Nikodým spaces

The analysis of Radon-Nikodým spaces in terms of Boolean images leads

us to study a closely related class of compact spaces called quasi

Radon-Nikodým spaces, introduced by A. D. Arvanitakis [6]. The class of

quasi Radon-Nikodým compact includes Radon-Nikodaim compact and

subsequently Eberlein compact spaces (every Eberlein space is R-N

compact). This follows from the fact that quasi Radon-Nikodým compact

spaces are fragmented by a metric [6] and from the definition of

Radon-Nikodým spaces 5.1.1. Therefore, we obtain the following chain:

Eberlein compact ⇒ Radon-Nikodým compact ⇒ quasi Radon-Nikodým

compact.

In this section we first recall the definition of quasi Radon-Nikodým spaces

and some important results. This will be followed by an examination of

the necessary conditions for a quasi Radon-Nikodým space to be a Boolean

image of a connected space.

Definition 5.2.1. [6] We call a compact space K quasi Radon-Nikodým if

there exists a lower semicontinuous (as a function on K ×K) fragmenting

quasimetric defined on K. By a quasimetric, we mean a “metric” which

may fail to satisfy the triangle inequality, i.e. a function f : K ×K → [0, 1]

for which:

1. For all x, y ∈ K, f(x, y) = 0⇔ x = y.

2. For all x, y ∈ K, f(x, y) = f(y, x).

Proposition 5.2.2. [6] The continuous image of a quasi Radon-Nikodým

compact space is also quasi Radon-Nikodým.
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Proposition 5.2.3. [6] A closed subspace of a quasi Radon-Nikodým

compact space is also quasi Radon-Nikodým. The Cartesian product of

countably many quasi Radon-Nikodým compact spaces is quasi

Radon-Nikodým.

We know that every Radon-Nikodým compact space is quasi

Radon-Nikodým compact. Actually the following theorem yields that all

totally disconnected quasi Radon-Nikodým compacta are Radon-Nikodým

spaces.

Theorem 5.2.4. [6] A totally disconnected quasi Radon-Nikodým compact

space is a closed subset of a countable product of scattered compact spaces,

and hence is Radon-Nikodým.

Now, as mentioned above, every Eberlein compact is a quasi

Radon-Nikodým compact space. The following theorem gives us a

necessarily condition for a quasi Radon-Nikodým compact space to be

Eberlein.

Theorem 5.2.5. [6] Let K be a quasi Radon-Nikodým compact space. If K

is Corson compact, then it is already Eberlein.

The main result of this section is the following theorem which improves

Theorem 5.1.4.

Theorem 5.2.6. Let L be a quasi Radon-Nikodým space that is scattered

Corson. Then it is a Boolean image of a connected space.

Proof. Since L is a Corson quasi Radon-Nikodým space, and from Theorem

5.2.5, L is Eberlein compact. And from the assumption, L is scattered

Eberlein, which means, from Theorem 4.3.15, that L is a Boolean image of

a connected space.
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5.3 Fragmentable compact lines

Fragmentable compact lines were introduced in [8]. This class of compact

spaces is larger than the classes of Radon-Nikodým and quasi

Radon-Nikodým spaces.

In the last two sections we used topological characterisations of quasi

Radon-Nikodým compact spaces and Radon-Nikodým compact spaces, as

follows: those spaces admitting a lower semicontinuous fragmenting metric

and those spaces admitting a lower semicontinuous quasi fragmenting

metric (respectively). These characterisation give rise to the study of

fragmentable compact lines in terms if Boolean images.

Before proceeding with the main result, we must first recall some definitions.

Definition 5.3.1. [10] A compact space K is fragmentable if there exists a

metric that fragments it (see Definition 1.2.19) .

Definition 5.3.2. [10] A compact line is a linearly ordered space that is a

compact space in the topology generated by the base of open intervals.

We shall use the following theorem, proved in [10], in order to pave the way

for the main conclusion of this section.

Theorem 5.3.3. [10] If K is a fragmentable compact line, then K is Radon-

Nikodým compact.

This leads directly to the final result:

Theorem 5.3.4. Every scattered Corson fragmentable compact line is a

Boolean image of a connected space.
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Proof. Let K be a scattered Corson fragmentable compact line. From

Theorem 5.3.3, we have that K is a scattered Corson R-N compact space.

We know from Theorem 5.1.3 that every Corson R-N space is Eberlein.

Thus K is a scattered Eberlein compact space, which means that K a

Boolean image of a connected space (Theorem 4.3.15).



6

Banach spaces of continuous

functions

This chapter is dedicated to Banach spaces of continuous functions. We

show in Theorem 6.1.4 that if spaces L and K are both compact

zero-dimensional and L is a a bijective Boolean image of K, then C(L) is

isometric to C(K). Moreover, we show in Proposition 6.1.5 that if L is a

Boolean image of K, then C(L) is isometric to a subspace of C(K). On

the other hand, we prove in Theorem 6.1.7 that if K and L are

zero-dimensional, and C(K) and C(L) are isomorphic as Banach spaces,

then there are subspaces K ′ and L′ of K and L, respectively, such that K ′

is a Boolean image of L′.

6.1 The birth of Banach space theory

Banach spaces were named after the Polish mathematician Stefan Banach.

He introduced the notion of complete normed linear spaces, which are now

known as Banach spaces. These spaces originally emanated from the study

of function spaces. The study of Banach spaces and their applications forms

the core of linear and nonlinear functional analysis.
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6.1.1 The Banach spaces C(K)

Given a compact space K, we denote by C(K) the Banach space of

real-valued continuous functions with the usual supremum norm (

Marciszewski and Plebanek in [24]). As pointed out for example by

Haskell P. Rosenthal (see [32]), the special Banach spaces of the form

C(K) play a fundamental role in the study of general Banach spaces.

They admit beautiful characterizations singling them out from the general

theory. Their structure is particularly rich. Moreover, every Banach space

is isometrically isomorphic to a closed subspace of C(K) for some compact

Hausdorff space K [14]. Also, a number of results for general Banach

spaces obtained from some of those initially established and developed for

the special spaces C(K) [32]. In fact, if we want to prove some general

results about all Banach spaces, it might be sufficient to prove that result

for the spaces C(K) .

In the earlier sections of this thesis we analysed the compact spaces K

with the aim of paving the way for understanding the Banach spaces C(K).

Now we are going to shift our attention from studying the functions between

compact Hausdorff spaces to the possibility of the existence of an isomorphic

embedding between two Banach spaces of continuous functions.

A celebrated result of Miljutin from 1966 states that if K and L are

uncountable compact metric spaces, then C(K) is isomorphic to C(L) as

Banach spaces. For this reason, we are only interested in spaces K which

are compact (so C(K) makes sense) but not metric. Such spaces K are

not Banach spaces, but C(K) is.

The goal of this chapter is to show the connection between compact

Hausdorff spaces K and L, related by a Boolean image, and the
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isomorphism between their Banach spaces C(K) and C(L). Therefore, our

question is: If L is a Boolean image of a compact space K, are C(K) and

C(L) isomorphic as Banach spaces?

We are aware that our question may not be solvable if we work on an

arbitrary compact Hausdorff topological space. Consequently, we choose

our spaces to be zero-dimensional. First, we prove that if a compact

zero-dimensional space L is a bijective Boolean image of a compact

zero-dimensional space K, then C(L) is isometric to C(K). Moreover, we

prove that if L is a Boolean image of K, then C(L) is isometric to a

subspace of C(K).

Probably the best-known result that we shall use to answer our question

is that if X and Y are homeomorphic topological spaces, then C(X) and

C(Y ) are isomorphic as vector spaces, as order spaces, and as rings, etc.

More precisely, a homeomorphism τ : X → Y induces a bijection f 7→ f ◦ τ

of C(Y ) onto C(X) that preserves all kinds of structure [15].

We start by introducing the following known results, which will help us to

prove our theorem:

Lemma 6.1.1. [4] If (X, τ0) and (Y, τ1) are compact Hausdorff spaces and

f : (X, τ0)→ (Y, τ1) is a continuous mapping, then f is a closed mapping.

Proof. We need to show that if U ⊆ X is a closed subset of X, then also

f(U) ⊆ Y is a closed subset of Y . Now, since closed subsets of compact

spaces are compact, it follows that U ⊆ X is also compact. Since continuous

images of compact spaces are compact, it then follows that f(U) ⊆ Y is

compact. Since compact subspaces of Hausdorff spaces are closed, it finally

follows that f(U) is also closed in Y .

Lemma 6.1.2. [34] If the bijection f : X → Y is closed, then the inverse
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map g : Y → X is continuous.

Proof. We know that g is continuous if and only if the inverse image g−1(U)

is closed for all U ⊆ X. We have that g−1(U) = f(U) due to the fact that

g is the inverse of the bijection f . Since f is a closed map by assumption,

g−1(U) is closed and hence g is continuous.

Proposition 6.1.3. [36] Any continuous bijection between compact

Hausdorff spaces is a homeomorphism.

Proof. Let f be a continuous bijection between compact Hausdorff spaces

X and Y . By Lemma 6.1.1, f is a closed mapping, which means, by

Lemma 6.1.2, that the inverse map g = f−1 is continuous too. And if both

the function f and the inverse function f−1 are continuous, then f is a

homeomorphism. So, we are done.

Theorem 6.1.4. If a compact zero-dimensional space L is a bijective

Boolean image of a compact zero-dimensional space K, then C(L) is

isometric to C(K).

Proof. Since the spaces L and K are compact zero-dimensional and L is a

Boolean image K, L is a continuous image of K (Lemma 2.2.5). From the

assumption, there is a continuous bijection between L and K as compact

Hausdorff spaces, which means that K and L are homeomorphic

(Proposition 6.1.3). Therefore, by the Banach-Stone theorem, saying that

two compact Hausdorff spaces K and L are homeomorphic if and only if

C(K) and C(L) are isometric, we obtain that C(K) and C(L) are

isometric.

Proposition 6.1.5. If a compact zero-dimensional space L is a Boolean

image of a compact zero-dimensional space K, then C(L) is isometric to a
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subspace of C(K).

To prove this proposition, we present the next result:

Proposition 6.1.6. [21] Suppose K an L are compact spaces. If L is a

continuous image of K, then C(L) is isometric to a subspace of C(K).

Now we prove Remark 6.1.5.

Proof. Since the spaces L and K are compact zero-dimensional and L is a

Boolean image K, L is a continuous image of K (Lemma 2.2.5).

Therefore, by Proposition 6.1.6, we have that C(L) is isometric to a subspace

of C(K).

On the other hand, the properties of the Banach spaces of continuous

functions C(K) reflect those properties of the compact spaces K

themselves. That means that some information regarding the class of

spaces of the form C(K), such as being isomorphic as Banach spaces,

might help to analyse the nature of the spaces K and the topological

relations between them.

Now, we know that if C(K) and C(L) are merely isomorphic as Banach

spaces, then K and L may be far from being homeomorphic. Can we

nonetheless find a topological relation between these spaces?

To that end, we want to investigate the possibility of existence of a Boolean

image between the spaces K and L using which the Banach space C(K) is

isomorphically mapped into a Banach space C(L).

Theorem 6.1.7. Let L and K be compact zero-dimensional spaces. If C(K)

is isomorphic to C(L), then there is a subspace K ′ ⊂ K and a subspace
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L′ ⊂ L such that K ′ is a Boolean image of L′.

Before starting to prove our theorem, we need to present the following

proposition:

Proposition 6.1.8. [31] Let K and L be compact spaces such that C(K) is

isomorphic to C(L). Then for every nonempty open set U ⊆ K there exists

a nonempty open set V ⊆ U such that V is a continuous image of some

compact subspace of L.
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Now we prove Theorem 6.1.7:

Proof. From Theorem 6.1.8 it follows that if K and L are compact spaces

such that C(K) is isomorphic to C(L), then for every nonempty open set

U ⊆ K there exists a nonempty set V ⊆ U such that V is a continuous

image of some compact subspace L′ of L.

So choosing K ′ = V will give that K ′ is a continuous image of a compact

subspace L′. Since K ′ and L′ are zero-dimensional (as they are subspaces

of zero-dimensional spaces), K ′ is a Boolean image of L′.



7

Cardinal Functions

This chapter deals with cardinal functions. We examine some cardinal

functions in terms of the possibility of being transferred via a Boolean

image. We show in Theorem 7.2.5 that weight is preserved by Boolean

images. Then we show in Theorem 7.3.2 that If L is a Boolean image of a

compact connected space K and K is separable, then L is separable.

Therefore, countable density is also preserved by Boolean images.

7.1 Introduction

What are cardinal functions and why are they useful?

Cardinal functions represent a classical topic in topology and are widely

used for extending different topological properties such as separability,

countability of the base, and first countability to higher cardinality.

Cardinal invariants then help one to prove, formulate, and generalize some

results related to different topological properties. In addition, these

cardinal characteristics allow us to make precise quantitative comparisons

between certain topological properties. For example, it is well known that

a space with a countable base (second-countable) has a countable dense
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set (i.e., is separable). A celebrated result by Arhangelskii in [5] is a

converse of this result which states that a regular space with a countable

dense set has a base of cardinality ≤ 2ω. Therefore, cardinal invariants

play a vital role in general topology. In fact, these invariants describe the

local behaviour of a given space in different ways. Also, they are used to

reveal some specific features of the space.

Definition 7.1.1. [37] A function φ which assigns a cardinal φ(X) to each

topological space X is called a cardinal function if φ is a topological

invariant, i.e., if we have φ(X) = φ(Y ) whenever X and Y are

homeomorphic.

When we consider any kind of mappings, it is very important to know which

of the cardinal invariants are preserved by these maps. We will study some

cardinal functions and will focus on how these invariants transfer to other

spaces via Boolean images.

7.2 The weight of a topological space

The most important cardinal function is the weight w(X) of X.

Definition 7.2.1. [37] The weight w(X) of X, is defined by

w(X) = min{|B| : B is a base for X}+ ω.

Here ω is added to make the value infinite.

Definition 7.2.2. [37] A space X satisfies the second axiom of countability,

or is second countable, if w(X) = ω, in other words, if it has a countable

base.
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Theorem 7.2.3. [26] A subspace of a second countable space is second

countable.

Proof. Suppose X is second countable and that B is a countable basis for

X. Then for any A ⊂ X, {B ∩ A : B ∈ B} is a countable basis for the

subspace A and A is second countable.

Theorem 7.2.4. If the compact space L is a Boolean image of a compact

connected space K and the weight of K is ω, then the weight of L is also ω.

Proof. If the weight of K is ω, then K is a second countable. Since L is a

Boolean image of K, by Proposition 2.3.2 we have that L is a continuous

image of a closed subspace K0 of K. Since K0 is a closed subspace of a

second countable space, it is compact and second countable.

We know that if the space is compact, then its weight is preserved by a

continuous onto map. Therefore, L is a second countable space.

The same proof works for any cardinal κ in place of ω.

Theorem 7.2.5. If the compact space L is a Boolean image of a compact

connected space K, and w(K) ≤ κ, for some cardinal κ, then the w(L) ≤ κ.

Proof. If the weight w(K) ≤ κ, then every subspace K0 of K has weight

≤ κ. Since L is a Boolean image of K, and by Proposition 2.3.2, L is a

continuous onto image of a closed subspace K0 of K.

We know that if the space is compact, then its weight is preserved by a

continuous onto map. Therefore, w(L) ≤ κ.
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7.3 The density of a topological space

Density is one of the most significant cardinal characteristics.

Definition 7.3.1. [37] Let X be an infinite space. Define the density d(X)

of X by

d(X) = min{|D| : D is a dense subset of X}.

If d(X) = ω, we say that X is separable.

Theorem 7.3.2. If L is a Boolean image of a compact connected space K

and K is separable, then L is separable.

Before giving the proof we recall a few basic notions and some results which

will be relevant to our discussion.

7.3.1 Stone-Cech compactification

Definition 7.3.3. [41] A compactification of a topological space X is a

compact space K together with an embedding e : X → K with e[X] dense

in K.

Remark 7.3.4. [41] We will usually identify X with e[X] and consider X

as a subspace of K.

Theorem 7.3.5. [26] Let X be a completely regular space. There exists a

compactification Y of X having the property that every bounded continuous

map f : X → K, with K compact, extends uniquely to a continuous map of

Y into K.

Definition 7.3.6. [26] For each completely regular space X, a

compactification of X satisfying the extension condition in Theorem 7.3.5

will be called a Stone-Cech compactification and will be denoted by βX.
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Remark 7.3.7. [26] The Stone-Cech compactification is characterised by

the fact that any continuous map f : X → K of X into a compact Hausdorff

space K extends uniquely to a continuous map g : βX → K.

7.3.2 Stone-Cech compactification of a discrete space

First, we consider βω, the Stone-Cech compactification of the discrete space

of natural numbers ω. We will use the function extension property (Remark

7.3.7) that characterises the Stone-Cech compactification to prove a well

known fact about βω stating that every separable space is a continuous

image of the space βω.

Theorem 7.3.8. Let ω be the discrete space of natural numbers. Then βω

maps continuously onto any separable compact Hausdorff space.

Proof. Suppose K is a separable compact Hausdorff space, with countable

dense subset A. Let f : ω → A be a bijection from ω onto A. Then f

is necessarily continuous since ω is discrete (for any open subset V in A,

f−1(V ) is in P(ω) and hence is open in ω).

Let F : βω → K be a continuous extension of f (Remark 7.3.7).

Note that F (βω) ⊇ F (ω) = f(ω) = A, hence F (βω) is dense in K. Then

F (βω) = K. Also, since the space βω is compact, F (βω) is a compact

subspace of Hausdorff space K, which means that F (βω) is closed in K.

So, we have F (βω) = F (βω). It follows that F (βω) = K. Therefore F

maps βω continuously onto K.

Definition 7.3.9. [39] A space is called extremally disconnected (or ED for

short) if it is regular and the closure of every open set is open.
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Remark 7.3.10. [42] A topological space X is extremally disconnected if

and only if the Stone-Cech compactification βX of X is extremally

disconnected.

Proposition 7.3.11. The space βω is zero-dimensional.

Proof. Since the space ω is discrete, it is extremally disconnected. From

Remark 7.3.10, we have that βω is extremally disconnected, which means

that the closure of any open set is open in βω. Then the clopen sets form

an open base for βω, thus the space is zero-dimensional.

Now we prove Theorem 7.3.2:

Proof. K is compact and separable, so it is a continuous image of βω

(Theorem 7.3.8). Hence, by Propositions 2.3.1, if L is a Boolean image of

K and K is a continuous image of βω, L is Boolean image of βω. Since

βω is the Stone-Cech compactification of a discrete space, by Proposition

7.3.11 it is is zero-dimensional. By Lemma 2.2.5, L is a Boolean image of a

compact zero-dimensional space K if and only if L is a continuous image

of K. Thus, L is a continuous image of the space βω. βω is separable (ω is

a countable dense set in it), and separability is preserved by continuous

onto maps, so we have that L is separable. We conclude that separability

is preserved by Boolean images.
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[28] I Namioka. Radon-Nikodỳm compact spaces and fragmentability.

Mathematika, 34(2):258–281, 1987.

[29] J Orihuela, W Schachermayer, and M Valdivia. Every Radon-Nikodỳm
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