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Abstract
Ecologists often seek to infer patterns of species occurrence or community struc-
ture from survey data. Hierarchical models, including multi-species occupancy models 
(MSOMs), can improve inference by pooling information across multiple species via 
random effects. Originally developed for local-scale survey data, MSOMs are increas-
ingly applied to larger spatial scales that transcend major abiotic gradients and dis-
persal barriers. At biogeographic scales, the benefits of partial pooling in MSOMs 
trade off against the difficulty of incorporating sufficiently complex spatial effects to 
account for biogeographic variation in occupancy across multiple species simultane-
ously. We show how this challenge can be overcome by incorporating preexisting 
range information into MSOMs, yielding a “biogeographic multi-species occupancy 
model” (bMSOM). We illustrate the bMSOM using two published datasets: Parulid 
warblers in the United States Breeding Bird Survey and entire avian communities in 
forests and pastures of Colombia's West Andes. Compared with traditional MSOMs, 
the bMSOM provides dramatically better predictive performance at lower computa-
tional cost. The bMSOM avoids severe spatial biases in predictions of the traditional 
MSOM and provides principled species-specific inference even for never-observed 
species. Incorporating preexisting range data enables principled partial pooling of in-
formation across species in large-scale MSOMs. Our biogeographic framework for 
multi-species modeling should be broadly applicable in hierarchical models that pre-
dict species occurrences, whether or not false absences are modeled in an occupancy 
framework.
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1  |  INTRODUC TION

Community ecologists often seek inference about occurrence pat-
terns of multiple species simultaneously. To improve inference, 
especially for infrequently detected species, hierarchical models 
such as multi-species occupancy models (MSOMs) share infor-
mation across species via hierarchical random effects (Devarajan 
et al., 2020). MSOMs were originally developed for application to 
relatively homogeneous study areas where occupancy probabili-
ties vary little across space (Dorazio & Royle, 2005). Subsequently, 
MSOMs have been applied to a variety of landscapes where oc-
cupancy probabilities are modeled as a function of site-specific 
covariates (e.g., Ribeiro Jr. et al., 2018; Rich et al., 2017; Tingley & 
Beissinger, 2013).

At very large spatial scales that subsume biogeographic varia-
tion in species ranges, the biologically relevant covariate structure 
becomes exceedingly complex. The biogeographic distributions 
of multiple species depend on species-specific interactions be-
tween numerous environmental, geographic, and historical fac-
tors. Rather than attempting to parameterize and fit these myriad 
effects, large-scale single-species distribution models often es-
chew the generalized linear modeling framework in favor of highly 
flexible additive effects (Rushing et al., 2020) or machine-learning 
methods such as Maxent (Phillips et al., 2006) or regression trees 
(Fink et al.,  2010). Such approaches, however, are not easily 
amenable to pooling information across data-poor species for ro-
bust community-level inference. As a result, there is a need for 
hierarchical multi-species approaches to study community varia-
tion across biogeographic spatial scales (Janousek & Dreitz, 2020; 
Jarzyna & Jetz, 2018).

When the data at hand are insufficient to estimate realistic 
parametric models that adequately capture the biogeography of 
every species in a study region, the benefit of partial pooling across 
species trades off against the detriment of species-specific spatial 
biases. Across complex biogeographic landscapes, we expect that 
models that fail to robustly account for species' ranges will tend to 
underestimate occupancy at points within a species' range and over-
estimate occupancy at points outside a species' range.

Given the difficulty of estimating complex biogeographic pat-
terns in large-scale MSOMs, previous authors have applied a vari-
ety of post hoc strategies to address inferential problems that arise 
from fitting simple MSOMs to biogeographically complex regions. 
For example, Jarzyna and Jetz (2018) applied a MSOM to predict ter-
restrial bird richness across the coterminous United States and man-
ually adjusted their model output by setting occupancy probabilities 
to zero in regions where a species does not occur. Janousek and 
Dreitz (2020) applied a MSOM to the spatial complex bird commu-
nities of the greater Rocky Mountains of the United States, but 30 
species (29%) failed a posterior predictive check and were excluded 
from further analysis. However, such statistical palliatives are not 
sufficient to ensure reliable inference, because post hoc exclusion 
of species or geographic ranges still allows poorly modeled data to 
inform inference in the remainder of the model.

Never-observed species pose additional modeling challenges at 
biogeographic scales. In principle, traditional MSOMs can handle 
never-observed species via data augmentation with excess pseu-
dospecies, each of which is given an all-zero detection history and 
is included or excluded from the true community according to a 
Bernoulli random variable with modeled probability Ω(Dorazio & 
Royle, 2005). However, these models cannot estimate independent 
covariate relationships for the never-detected species, and some au-
thors have chosen to exclude data-augmented pseudospecies from 
downstream analyses (e.g., Tingley & Beissinger, 2013). Incorporating 
data-augmentation approaches into models that leverage traits or 
phylogeny to predict detection (Sólymos et al., 2017) or occupancy 
(e.g., via trait–environment interactions) is especially challenging, re-
quiring potentially dubious assumptions about the trait distributions 
for never-detected species or the discretization of traits into func-
tional guilds (Tenan et al., 2017).

Recent progress toward multi-species pooling in biogeographic-
scale MSOMs, including models for never-observed species, has fo-
cused on discretizing the study region into spatial units (Sutherland 
et al., 2016; Tobler et al., 2015) and discretizing the community into 
ecological guilds (Tenan et al., 2017). Sutherland et al.  (2016) pro-
pose a multi-region model where data-augmented MSOMs are fit 
to each region and region-specific community richness is directly 
modeled as a function of covariates. Importantly, the identities of 
species, including species that are never detected in a particular re-
gion, are fixed across regions, thus enabling pooled estimation of 
species-specific occupancy and detection probabilities across the 
entire multi-region study area. Tobler et al. (2015) fit a similar model 
without data augmentation, such that the potential pool of species in 
any region is exactly the total pool of species observed study-wide, 
and all species identities are fixed and known. Tenan et al.  (2017) 
extend the approach of Sutherland et al. (2016) to trait-based mod-
els, discretizing the community into ecological guilds and estimating 
the richness of never-observed species for each guild separately. 
However, all of these methods rely on the assumption that, con-
ditional on covariates, the spatially discrete regions are internally 
homogeneous and mutually independent. Therefore, they are not 
suitable for application to biogeographic landscapes with complex 
and continuous spatial variation.

For many taxa, a wealth of preexisting biogeographic informa-
tion is available in the form of range maps, geospatial sightings 
databases, and/or published range descriptions. We hypothesized 
that by leveraging this information, we could develop simple, trac-
table multi-species models that yield reliable pooled inference 
about in-range occupancy probabilities while avoiding the pitfall 
of conflating in-range and out-of-range occupancy probabilities 
within and across species. We achieve such inference by collaps-
ing complex, multidimensional biogeographic variation into sim-
ple summary covariates, which we call range covariates. Possible 
range covariates include (transformations of) the distance to the 
nearest geographic range margin or elevational range limit. Such 
information is increasingly available, especially for taxa amenable 
to occupancy modeling (Jetz et al., 2012). We refer to an MSOM 
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that incorporates range covariates as a biogeographic multi-species 
occupancy model (bMSOM). Like the multi-region model of Tobler 
et al.  (2015), the bMSOM fixes the identity of every species (in-
cluding never-observed species) in the dataset. However, unlike 
all previous models, the bMSOM handles arbitrarily complex 
biogeographic-scale spatial dependencies using a very simple co-
variate structure.

Here, we formally describe the bMSOM and apply it to two 
published datasets: 51 Parulid warbler species in the United States 
Breeding Bird Survey (49 observed; two never-observed), and 910 
bird species in forests and pastures of Colombia's West Andes (314 
observed, 596 never-observed). In addition to providing a mecha-
nism for principled data pooling across very large spatial scales, bM-
SOMs fix the identity of every species in the metacommunity and 
link those identities to real-world species with known traits. They are 
therefore exceptionally suited to trait-based models for occupancy 
and detection, analyses of point-scale richness, and biogeographi-
cally pooled analyses of the influence of local-scale environmental 
variation on community composition or structure. Furthermore, bM-
SOMs sometimes allow for a priori exclusion of data at extralimital 
sites (where occupancy is implausible), thereby reducing the total 
dataset size and the computational resources required for model 
fitting.

2  |  METHODS

2.1  |  Model formulation

We formulate the likelihood for the standard MSOM as

where i, j, and k index the species, site, and visit; Y is an array of binary 
detection/non-detection data; Z is a matrix giving the latent true oc-
cupancy state; � is an array of detection probabilities conditional on 
occupancy (i.e., p

(
Y ijk = 1|Z ij = 1

)
), such that �k is a matrix of detec-

tion probabilities for the kth visit; � is a matrix of occupancy prob-
abilities (i.e., p

(
Z ij = 1

)
); a and c are column vectors of intercepts for 

occupancy and detection, respectively; X and W are design matrices 
for occupancy and detection, respectively; b and d are column vectors 
of coefficients for occupancy and detection, respectively; and R is the 
joint random effects distribution for a, b, c, and d. At a minimum, R 
must include random intercepts by species for both occupancy (a) and 
detection (c).

2.2  |  The bMSOM

The likelihood for the bMSOM is no different from the standard 
MSOM; what differs is the data. As in a data-augmented MSOM 
(Dorazio & Royle, 2005), we append all-zero detection histories for 
never-observed species. However, each of these all-zero entries cor-
responds to a specific species that we know a priori occurs in the 
biogeographic vicinity of the sampling points, and so we treat all spe-
cies as present in the metacommunity and “available” for occupancy.

Crucially, we include one or more “range covariates” that de-
scribe whether a given species is in-range or out-of-range at each 
point, and we estimate species-specific random coefficients for the 
range covariates. For example, if species-specific minimum and max-
imum elevation data are available along an elevational gradient, an 
appropriate range covariate might be the squared elevational dis-
tance from a survey point to the midpoint of a species' elevational 
range. If species differ substantially in their elevational breadth, we 
might rescale these differences for each species separately prior to 
squaring, such that values of 1 correspond to the species-specific 
upper range limits and values of −1 correspond to the species-
specific lower range limits. When species are distributed over two-
dimensional space rather than along one-dimensional gradients, we 
suggest using a range covariate based on the geographic distance 
from a survey point to the species geographic range margin. When 
only crude range descriptions are available, the range covariate 
might simply be binary, designed to distinguish areas that are clearly 
out-of-range. Regardless of the precise nature of the range covari-
ates, we include them in the bMSOM with species-specific random 
slopes.

In the bMSOM context, it is sometimes additionally useful to 
completely exclude severely out-of-range species-site combinations 
from analysis, a process that we call “biogeographic clipping.” By ex-
cluding sites where occupancy probabilities are a priori negligible, 
it is possible to improve within-range estimation while reducing the 
computational burden of model fitting. For example, biogeographic 
clipping can account for sharp range margins associated with abrupt 
biogeographic barriers (e.g., mountains or deepwater marine barri-
ers) while still allowing occupancy probabilities to decay more grad-
ually at range margins elsewhere. Likewise, migratory species can 
be modeled with temporal clipping, where species-site combinations 
are removed from the data if the site was surveyed outside of the 
dates of potential presence. Here we assume that repeat visits to a 
site occur sufficiently quickly to avoid problems of closure for mi-
gratory species.

2.3  |  Example 1: Warblers of the coterminous 
United States

Jarzyna and Jetz (2018) analyzed multi-species occupancy patterns 
of North American birds by applying a traditional MSOM to the 
United States Breeding Bird Survey (BBS) dataset (Bystrak, 1981). 
With a focus on the year 2018, the coterminous United States, and 

Y ijk ∼ Bernoulli
(
Z ij

∗
�ijk

)

Z ij ∼ Bernoulli
(
� ij

)

logit(�) = a + Xb

logit
(
�k
)
= c +Wkd

[
a, b, c, d

]
∼ R
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the Parulid warblers, we reimplemented the modeling framework 
of Jarzyna and Jetz  (2018) and compared the traditional MSOM 
with the bMSOM. We restricted the analysis to Parulid warblers 
(as opposed to the full North American avifauna) for the sake of 
computational efficiency, and we selected the Parulid warblers in 
particular because they are relatively speciose (51 species breed 
in the coterminous United States), display marked variation in 
species' ranges, are well sampled by BBS protocols, and are suf-
ficiently homogeneous in their territoriality and vocal behavior to 
ensure that they approximately satisfy exchangeability assump-
tions for hierarchical modeling, even in the absence of species-
specific covariates.

We downloaded BBS data for the year 2018 from www.pwrc.
usgs.gov, and we obtained range maps for all Parulid warblers that 
regularly breed within 200 km of the coterminous United States 
from Birdlife International (BirdLife International and Handbook 
to the Birds of the World, 2019). To develop a range covariate, we 
measured the distance from the starting point of each BBS survey 
route to the nearest edge of each species' range, excluding range 
limits associated with shorelines. We then sought a transformation 
of the species ranges that would approximately linearize the logit-
proportion of occupied points. We believed a priori that the function 
should asymptote at large negative distances (i.e., in the core of the 
range), and we sought a function that would asymptote at zero, such 
that hierarchical model components would effectively be setting a 
prior on occupancy probabilities in the core of a species range. We 
believe that an asymptote at zero should help to ensure exchange-
ability across species and should aid in eliciting informative priors (if 
desired).

We binned all BBS point-species combinations by their distance 
to the range edge (negative distances at in-range points, positive 
distance at out-of-range points), and we examined several functions 
to select one that approximately linearizes the logit-proportion of 
occupied points, ultimately selecting the inverse logit of distance-
to-range expressed in units of 200 km (Supporting Information, 
section 1).

We fit three occupancy models to these data. Model 1 (traditional 
MSOM) is the model of Jarzyna and Jetz (2018), with correlated ran-
dom intercepts for detection and occupancy and a random slope for 
the effect of elevation on occupancy (Zipkin et al., 2009):

Model 2 (bMSOM) extends Model 1 via the inclusion of the 
range covariate described above, to become:

Model 3 (bMSOM with biogeographic clipping) is equivalent to 
model 2 but excluding all species-point combinations >400 km from 
the mapped range, a distance beyond which no detections existed 
in the data.

We compared the predictive performance of models 1, 2, and 
3 via approximate leave-one-out cross-validation using Pareto-
smoothed importance sampling with moment-matching (Vehtari 
et al., 2017, 2021). For each pair of models, we compared overall 
predictive performance as well as predictive performance for each 
species separately. For models 1 and 2, we compared predictive per-
formance over all points as well as over just the subset of points that 
we retained after biogeographic clipping. For comparisons involving 
model 3, we evaluated predictions only over the subset of points 
retained after biogeographic clipping, as this model sees nondetec-
tions outside of the clipped range as deterministic structural zeros.

Code to perform these analyses is available online at https://
github.com/jsoco​lar/bmsom_paper/​tree/maste​r/BBS.

2.4  |  Example 2: Forest conversion in Colombia's 
West Andes

We applied the bMSOM to a dataset of bird species at 146 point-
count stations on an elevational gradient from 1260 to 2680 masl 
in Colombia's West Andes. Each point was visited on four consecu-
tive or nearly-consecutive days (Gilroy, Edwards, et al., 2014; Gilroy, 
Woodcock, et al., 2014). Points were located in either forest or pas-
ture and were arranged in clusters of three points each nested in-
side one of three subregions. Following the taxonomy of BirdLife 
International, 910 bird species potentially occurred in the vicinity of 
the points, based on biogeographic clipping (see below). Of these, 
314 were detected at least once and 596 were never observed. Our 
inferential goal was to assess how point-scale species richness varies 
along the elevational gradient.

We implemented a biogeographically clipped bMSOM framework 
to address Colombia's exceedingly complex biogeography. We incor-
porated two range covariates, based on elevation and geography. 
The elevational range covariate was based on the elevational limits 
reported in Ayerbe Quiñones (2018), supplemented with several ad-
ditional references for species whose taxonomic treatment differed 
between Ayerbe Quiñones (2018) and BirdLife International (2020). 
We standardized the elevations of each point across species by lin-
early rescaling the raw elevations of the points such that an elevation 
of 1 corresponded to the upper range limit, and an elevation of −1 
corresponded to the lower range limit (Figure S1). We implemented 
biogeographic clipping at species-standardized elevations of −3 and 
3, beyond which our dataset contained no detections. We addition-
ally implemented temporal clipping for migratory species, treating all 
migrants as deterministically absent outside of their normal dates of 
presence in Colombia (Supplementary Data).

We derived the geographic range covariate using digital range 
maps from Ayerbe Quiñones (2018; see also Vélez et al., 2021). We 
implemented biogeographic clipping at a buffer of 160 km around 
these maps, as well as at the crest of the West Andes and the 
floor of the Cauca Valley to address the complex biogeography of 
birds in this region. Against this biogeographic clipping, our field 
data exposed errors of omission in just two species, indicative of 

logit
(
� ij

)
=ai+�1ielevj

logit
(
�i
)
= ci

logit
(
� ij

)
= ai + �1ielevj + �2idistanceToRangeij

 20457758, 2022, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9328 by U

niversity O
f E

ast A
nglia, W

iley O
nline L

ibrary on [09/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.pwrc.usgs.gov
http://www.pwrc.usgs.gov
https://github.com/jsocolar/bmsom_paper/tree/master/BBS
https://github.com/jsocolar/bmsom_paper/tree/master/BBS


    |  5 of 11SOCOLAR et al.

the high quality of the Ayerbe Quiñones maps. For these two spe-
cies, we added range around previously known clusters of records 
(eBird, 2021) that coincided with the records in our data, and we re-
fined the biogeographic clipping to incorporate an appropriate buf-
fer around this additional range (see Supporting Information, section 
2). The spatially balanced sampling of forest and pasture ensures 
that this post hoc addition of range does not compromise inference 
about responses to deforestation. Our field data exposed no errors 
of omission against our temporal clipping.

After performing all clipping, we selected an appropriate trans-
formation of raw distance for the geographic range covariate fol-
lowing the procedure described for warblers above. Again, we 
approximately linearized the logit-proportions by taking the inverse 
logits of the distance, this time measured in units of approximately 
14.9 km (Supporting Information, section 1).

We modeled occupancy on the logit scale based on an intercept 
and coefficients for the geographic range covariate, the elevational 
range covariate (linear and quadratic terms), interactions between 
the elevational range covariate (linear and quadratic terms) and 
whether the species occurs at lowland elevations, land-use, 18 spe-
cies traits (Table S1), and the interactions of those 18 traits with land 
use. Our random effects structure incorporated random taxonomic 
intercepts for species and family, random spatial intercepts for spe-
cies:cluster and species:subregion, and random taxonomic coeffi-
cients for all range covariates (species-specific terms) and for land 
use (species- and family-specific terms). Occupancy is therefore:

We modeled detection on the logit scale based on an intercept and 
coefficients for land use, time of day (given as hours post-sunrise), four 
species traits, and the interaction between time of day and the median 
elevation where a species occurs. Our random effects structure incor-
porated random taxonomic intercepts for species and family, a random 
intercept for species:observer, and random taxonomic coefficients for 
time of day (species-specific terms) and land use (species- and family-
specific terms):

See Supporting Information (section 3) for details of our prior 
specification.

To assess our ability to recover principled trait-based estimates 
of sensitivity to deforestation, including for never-observed species, 
we compared the sensitivity estimates from the model (i.e., the co-
efficients for the forest/pasture term) against independently esti-
mated forest dependency scores from BirdLife International (2020). 
We repeated this comparison for just species with at least one ob-
servation in our data and for just the never-observed species.

We then use the bMSOM to predict the local species richness 
(including never-observed species) in forest and pasture across an 
elevational gradient in the Colombian West Andes. For comparison, 
we also estimated species richness along the elevational gradient in 
forest and pasture using a data-augmented multi-species occupancy 
model including the 314 observed species and 1000 never-observed 
pseudospecies (Dorazio & Royle, 2005). To enable use of the data-
augmented model, we removed all species-specific covariates (in-
cluding information about range, traits, dates of occurrence, and 
family-level classification) from the analysis.

2.5  |  Model fitting

We implemented occupancy models using Hamiltonian Monte Carlo 
sampling in Stan (Stan Development Team,  2021) via R packages 
brms (Bürkner, 2017) for the Parulid warblers and cmdstanr (Gabry 
& Češnovar, 2021) for the Colombian birds. We performed model 
comparison using the R package “loo” (Vehtari et al., 2020). For all 
warbler models, we ran four chains for 1000 warmup iterations and 
1000 sampling iterations. For the Colombian Andes, we ran four 
chains for 1500 warmup iterations and 1500 sampling iterations. For 
the data-augmented model, we encountered substantial challenges 
in model fitting; we describe these problems and their resolution in 
the Supporting Information (section 4). We ensured that all mod-
els (except the data-augmented model; see Supporting Information, 
section 4) converged with maximum r-hats less than 1.03 for all pa-
rameters, no divergences in the Hamiltonian trajectories, and energy 
fraction of missing information greater than 0.2 in all chains.

Code to perform these analyses is available online at https://
github.com/jsoco​lar/bmsom_paper/​tree/maste​r/wAndes.

3  |  RESULTS

3.1  |  Warblers of the coterminous United States

The inclusion of the distance covariate in the bMSOM yielded dra-
matic improvements in predictive performance (Figure  1), with an 
improvement in expected log predictive density (ELPD) of 8558 with 
standard error (SE) 127. Predictive performance improved for 50 out 
of 51 species, the only exception being a marginal decrease of −0.4 
(SE 0.8) for Tropical Parula (Figure 1a).

logit
(
� ij

)
=aij+�1ielevj+�2ielev

2
j
+�3ihabitatj+�4idistanceToRangeij+�5lowlandi
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(
elevj× lowlandi

)
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(
elev2
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)
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(
habitatj×migratoryi

)

+�37
(
habitatj×massi

)
+�38

(
habitatj×dietInverti

)
+�39

(
habitatj×dietCarni

)

+�40
(
habitatj×dietFruitNecti

)
+�41

(
habitatj×dietGrani

)

logit
(
�ijk

)
= cijk+�1ihabitatj+�2itimejk+�3massi+�4elevMediani+

�5migratoryi+�6dietCarni+�7
(
timejk×elevMediani

)
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Biogeographic clipping delivered further gains in predictive per-
formance at in-range points, with an ELPD improvement of 147 (SE 
17). Within the species-specific regions that were retained after 
clipping, predictive performance improved for 33 out of 51 species 
(Figure 1b). Among the 18 species that did not see improvements, we 
observed the largest decrease in ELPD in Lucy's Warbler, but even 
this decrease was only marginal (−0.9; SE 0.6), which is too small to 
conclude that the clipped model performs worse than the unclipped 
model for Lucy's Warbler or any other species. Biogeographic clip-
ping also yielded substantial gains in computational efficiency, 
reducing the runtime by a factor of almost three, from a mean per-
chain execution time of 5.8 h (worst-case chain 6.1 h) to 2.0 h (worst-
case chain 2.1 h) on an M1 Macbook Air.

Predicting the traditional MSOM across space yielded relatively 
uniform occupancy probabilities compared with the bMSOM, which 
universally predicted higher occupancy probabilities at in-range 

points and lower probabilities at out-of-range points (Figure 2). The 
predictions of the clipped bMSOM were generally quite similar to 
those of the unclipped bMSOM, though small differences were ap-
parent for some species. In these cases, the clipped model tended to 
estimate steeper elevational relationships, which reflects the clipped 
model's flexibility to fit locally appropriate relationships uncon-
strained by the need for accurate prediction at severely out-of-range 
sites. For example, the Mourning Warbler is restricted to the eastern 
United States, and within this range, it tends to occur at high eleva-
tions. Without clipping, the bMSOM estimates only a modest positive 
elevational relationship (1.4, 95% CI 0.8–2.0), because steeper esti-
mates yield unacceptably high occupancy probabilities in the high-
elevation mountains of the western United States (Figure 3). Clipping 
allows the model to estimate an appropriately steep relationship (3.2, 
95% CI 2.1–4.4) within the species' northeastern range. We provide 
maps of predicted occupancy probabilities for all species in Figure S2.

F I G U R E  1 Differences in species-specific expected log pointwise density (ELPD) calculated by approximate leave-one-out cross 
validation for the BBS data. Points represent species-specific posterior means and are ordered by decreasing ELPD difference; lines 
represent ±2 standard errors. Positive values indicate superior predictive performance in the first model. Comparisons are performed across 
all points (a) or across just the subset of points that are retained in the clipped model (b).

F I G U R E  2 Predicted occupancy 
probabilities for prothonotary warbler 
(left-hand column), a low-elevation 
eastern species, and red-faced warbler 
(right-hand column), a high-elevation 
southwestern species. Predictions are 
given by the traditional MSOM (a, b), the 
bMSOM (c, d), and the clipped bMSOM 
(e, f). Equivalent figures for all species are 
available in Figure S2.
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3.2  |  Forest conversion in Colombia's West Andes

The bMSOM yielded reliable trait-based inference for the sen-
sitivity of the entire avifauna, including never-observed species 
(Figure 4). We provide a summary of the fitted model posterior in 
Table S1. Among species with at least one observation and classi-
fied by BirdLife International as having either high forest depend-
ence or low/no forest dependence, the model universally inferred 
that species classified as highly forest-dependent responded more 
negatively to forest conversion than other species. Even among spe-
cies with no observations, the model successfully inferred that the 
vast majority of species classified as having high forest dependence 
respond more negatively to pasture than species with low/no for-
est dependence (Figure 4). Moreover, some of this overlap may arise 
due to the difficulty of accurately categorizing forest dependence in 
rarely encountered species.

The bMSOM provided species-specific trait-based inference on 
occupancy probabilities in both pasture and forest, even for never-
observed species. While the data-augmented MSOM predicted 
similar patterns of alpha-diversity along the gradient (Figure 5a,b), 
the data-augmented model also displayed specific pathologies that 
affect both its practicality as an inferential tool and the quality of 
the resulting inference. First, the data-augmented MSOM required 
dramatically more computational resources and fine-tuning of algo-
rithmic parameters to successfully fit (Supporting Information, sec-
tion 4). Second, the data-augmented model implausibly estimated 
that species were included in the metacommunity with probability 
near unity (95% credible interval 0.995–1.000). The data-augmented 
model accounts for the non-detection of the 1000 never-observed 
pseudospecies species by ascribing to them extreme elevational 
ranges that overlap little with the sampling points. Thus, the data-
augmented model predicts that never-observed species occur 
most frequently at both the lower and upper extremes of the gra-
dient (Figure  5c,d). At the lower end of the gradient, this pattern 

is expected based on the tendency for species richness to increase 
with increasing productivity and forest stature toward lower eleva-
tions and is consistent with the predictions of the bMSOM. At the 
upper end, however, this pattern is at odds with both theoretical ex-
pectations and with the predictions of the bMSOM. In particular, 
the data-augmented model estimates a spurious increase in alpha 
richness near the highest sampling points (all of which are in forest; 
Figure 5a) due to an uptick in occupancy of never-observed species 
(Figure 5c).

4  |  DISCUSSION

Ecologists increasingly seek inference about occurrence patterns for 
multiple species over vast spatial scales (Janousek & Dreitz,  2020; 
Jarzyna & Jetz, 2018). We show that it is possible to leverage the exist-
ing multi-species occupancy model framework to provide principled 
inference over these large scales simply by including covariates that 
summarize the positions of sampling points with respect to species 
ranges. When appropriate range information is available, the resulting 
biogeographic models deliver improved predictive performance, trait-
based inference for unobserved species, and computational speed-up 
compared with traditional approaches. The application of traditional 
MSOMs (that lack range covariates) at biogeographic spatial scales re-
sults in lack-of-fit and unrealistic spatial predictions, suggesting that 
modelers must proceed with great caution when fitting large-scale 
MSOMs in contexts where a priori range information is unavailable.

4.1  |  Core advantages of the bMSOM

There are three main advantages of bMSOM over traditional 
MSOMs. First, we get better inference on the observed species 
for a range of reasons. It is unsurprising that the introduction of a 

F I G U R E  3 Predicted occupancy probabilities for mourning warbler from (a) the traditional MSOM, (b) the bMSOM without clipping, (c) 
the clipped bMSOM, and (d) the clipped bMSOM coefficients projected across the entire country. Mourning warbler tends to occur at higher 
elevation within its eastern range. Biogeographic clipping allows the model to estimate appropriately strong elevational relationships in the 
eastern United States, without the need to avoid predicting high occupancy probabilities across the mountainous western United States. In 
(d) the steep elevation relationship overcomes the negative relationship with geographic distance to yield high occupancy probabilities in the 
mountains of the western United States.
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covariate that reliably distinguishes in-range from out-of-range 
points should improve predictive performance, but the full scope 
of the improvement is broad and at times subtle. For example, al-
though revising extralimital occupancy probabilities to zero after 
model fitting eliminates obviously erroneous predictions of extra-
limital occupancy, doing so does not enable accurate estimation of 
within-range occupancy probabilities (Jarzyna & Jetz,  2018). The 
traditional MSOM's conflation of occupancy probabilities at in-
range and out-of-range points induces a strong negative bias in oc-
cupancy probabilities at in-range points (Figure 2). Range covariates 
additionally improve predictive performance by placing species on a 
common scale, where exchangeability assumptions are more likely 
to hold. For instance, by using species-standardized elevations to 
model avian occupancy in Colombia's West Andes, we ensured that 
the magnitudes of the quadratic coefficients are likely to be similar 
across species, irrespective of heterogeneity in elevational range 

breadth. In traditional MSOMs, heterogeneity in elevational range 
breadth might be confounded with phylogeny, traits, or other pre-
dictors of interest, which could impede clear inference about covari-
ate relationships (Sólymos et al., 2017).

Likewise, the geographic range covariates ensure that the inter-
cepts for all species correspond to occupancy probabilities in their 
core ranges, partially removing potential relationships between in-
tercepts and range size. In the BBS analysis, the bMSOM yielded 
large gains in predictive performance even for the most widespread 
species in the dataset, the Common Yellowthroat (ELPD gain 153, 
SE 18). Part of this effect results from principled handling of range 
margins in southern Texas and California, but part arises from bet-
ter pooling of the intercept across species. Whereas the traditional 
occupancy model pools the intercept for Common Yellowthroat 
with intercepts for other species that reflect a mixture of in-range 
and out-of-range occupancy probabilities, the bMSOM pools the 

F I G U R E  4 Model-estimated logit-scale effects of forest conversion to pasture on avian occupancy in the West Andes. The pasture index 
is the difference in the log-odds of occupancy between forest and pasture. Data points are posterior medians for individual species. Box 
plots are grouped by whether or not the species was detected at least once during sampling (observed/never-observed), and by whether 
BirdLife international independently ascribes the species to the “high” forest dependency category (high) or to the “low” or “not a forest 
species” categories (low). Species ascribed to “medium” or “unknown” forest dependency categories are omitted from this figure.

F I G U R E  5 Predicted point-scale avian 
richness for all species (a and b) and only 
never-observed species (c and d) along the 
west Andean elevational gradient in forest 
(a, c) and pasture (b, d). The bMSOM is 
shown in gray and the data augmented 
MSOM is shown in blue with 80% credible 
interval overlaid. The data-augmented 
model spuriously infers an excess of 
never-observed species at points on the 
upper end of the elevational gradient.
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intercept for Common Yellowthroat with intercepts that reflect in-
range occupancy probabilities across all species. Thus, the bMSOM 
estimates a larger intercept for Common Yellowthroat than the naïve 
MSOM, yielding better predictive performance.

A second key advantage of incorporating range covariates into 
occupancy models is their ability to specify both the metacommu-
nity size and the identity of every species in the metacommunity. 
Doing so simplifies the formulation and implementation of models 
that include never-detected species, enables the use of species-
specific covariates to model occupancy for never-detected spe-
cies, and eliminates uncertainty in the total metacommunity size 
as a source of uncertainty in point-level species richness. Thus, 
the bMSOM ameliorates the substantial computational challenges 
associated with fitting the data-augmented model, the limitations 
on inference about never-detected species inherent to the data-
augmented model (Tingley & Beissinger, 2013), and a variety of pa-
thologies that arise in the data-augmented model when detection 
probabilities are low (see Tingley et al.,  2020). At the same time, the 
bMSOM avoids assuming that variation in occupancy across space 
or in trait distributions affecting occupancy or detection is readily 
discretized (Sutherland et al., 2016; Tenan et al., 2017). In our anal-
ysis of the West Andean avifauna, the bMSOM was able to recover 
the forest dependency of never-observed bird species with high fi-
delity (Figure 4). By leveraging this ability, we were able to predict 
alpha-richness in forest and pasture for the full community using a 
procedure that avoided predicting spurious patterns among never-
observed species (Figure  5) and was not subject to the computa-
tional challenges of fitting the data-augmented model (Supporting 
Information, section 4).

A third benefit associated with range covariates is the ability to 
perform biogeographic clipping, which can substantially reduce the 
computational burden of model fitting (a threefold reduction in our 
BBS analysis) and can improve model fit at biologically relevant sites 
(Figure 3). Biogeographic clipping also enables modelers to account 
for biogeographic barriers that produce abrupt drops in occupancy 
probability, with zero occupancy probability on one side of the bar-
rier. Such drops are difficult to capture with general-purpose range 
covariates that must also account for the more gradual decay in oc-
cupancy probability at other range margins. By removing species-
point combinations on the wrong side of biogeographic barriers from 
analysis, these out-of-range detection histories do not propagate 
(mis)information about the distance-decay in occupancy probabili-
ties near mapped range margins elsewhere.

4.2  |  Application in practice and conclusions

The importance of prior range information highlights one potential 
pitfall in occupancy modeling (including the traditional occupancy 
model) at scale: when is a range map good enough? While a range 
map does not need to precisely reflect range margins, significant 
errors of omission will carry through to posterior inference with 
zero occupancy probabilities at locations where a species is in fact 

present. In our West Andes dataset, for example, we identified 
deficiencies for a minority of species (n  =  2), requiring manual 
adjustment of range maps to bring them up to date with known 
species' occurrences. While expert knowledge can be harnessed 
both to assess the quality of range maps as well as make any req-
uisite changes, this does raise the danger of inflated “researcher 
degrees of freedom” (Simmons et al., 2011), and manual updat-
ing of range maps based on the observed data. Judicious care is 
needed to ensure that these choices do not generate unfounded 
inference.

Overall, the bMSOM carries advantages that are especially 
well suited for estimating covariate relationships by pooling across 
species with disparate ranges, uncovering local-scale covariate 
relationships while controlling for broad-scale biogeography, es-
timating alpha-scale species richness, and trait-based modeling of 
never-observed species. On the other hand, due to the requirement 
for preexisting range data the bMSOM is ill suited for exploratory 
species-distribution modeling at biogeographic scales or inference 
about the effects of environmental predictors that are spatially au-
tocorrelated over scales comparable to species entire ranges. We 
caution, however, that except in data-rich contexts where ranges 
can be reliably estimated from data for all species under study (and 
thus multispecies approaches are unlikely to be necessary or use-
ful), approaches that do not incorporate range information are likely 
to yield poor inferences about occupancy, biasing in-range occu-
pancy probabilities downward while also predicting non-negligible 
occupancy in many areas far removed from a species' range. There 
thus appear to be general limitations to the application of MSOMs 
at large spatial scales that subsume significant biogeographic turn-
over. In the absence of major sampling efforts that allow range-wide 
variation in occupancy to be estimated from the data directly, ap-
plication of occupancy models to species or taxonomic groups for 
which range information cannot be included will typically yield poor 
inference.
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