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Genome evolution of a nonparasitic secondary 
heterotroph, the diatom Nitzschia putrida
Ryoma Kamikawa1*, Takako Mochizuki2, Mika Sakamoto2, Yasuhiro Tanizawa2, 
Takuro Nakayama3†, Ryo Onuma4‡, Ugo Cenci5, Daniel Moog6,7§, Samuel Speak8, 
Krisztina Sarkozi8||, Andrew Toseland8, Cock van Oosterhout8, Kaori Oyama9, Misako Kato9, 
Keitaro Kume10, Motoki Kayama11, Tomonori Azuma11, Ken-ichiro Ishii11, Hideaki Miyashita11, 
Bernard Henrissat12,13,14, Vincent Lombard12,13, Joe Win15, Sophien Kamoun15, 
Yuichiro Kashiyama16, Shigeki Mayama17, Shin-ya Miyagishima4, Goro Tanifuji18, 
Thomas Mock8*, Yasukazu Nakamura2

Secondary loss of photosynthesis is observed across almost all plastid-bearing branches of the eukaryotic tree of 
life. However, genome-based insights into the transition from a phototroph into a secondary heterotroph have so 
far only been revealed for parasitic species. Free-living organisms can yield unique insights into the evolutionary 
consequence of the loss of photosynthesis, as the parasitic lifestyle requires specific adaptations to host environ-
ments. Here, we report on the diploid genome of the free-living diatom Nitzschia putrida (35 Mbp), a nonphoto-
synthetic osmotroph whose photosynthetic relatives contribute ca. 40% of net oceanic primary production. 
Comparative analyses with photosynthetic diatoms and heterotrophic algae with parasitic lifestyle revealed that 
a combination of gene loss, the accumulation of genes involved in organic carbon degradation, a unique secretome, 
and the rapid divergence of conserved gene families involved in cell wall and extracellular metabolism appear to 
have facilitated the lifestyle of a free-living secondary heterotroph.

INTRODUCTION
The loss of photosynthesis in photoautotrophs is successful if com-
pensated by a competitive advantage arising from the availability of 
an extracellular energy source. Hence, many secondary heterotrophs 
evolve as parasites (1–3), relying on sufficient resources provided by 
their hosts. Well-studied examples are the Apicomplexa [e.g., (4)], 
which have lost photosynthesis secondarily. However, the loss of 

photosynthesis can also lead to free-living secondary heterotrophs, 
which are as common as parasites (2, 5–8). Despite their significance, 
our knowledge about the evolution of free-living secondary hetero-
trophs is very limited, and we therefore lack insights into evolutionary 
processes required for them to thrive without photosynthesis and 
independently of a resource-providing host. Given that a parasitic 
lifestyle accelerates the rate of evolution (cf. Red Queen hypothesis) 
(9) and of loss of conserved orthologous genes [e.g., (10)], the ge-
nome analysis of a nonparasitic secondary heterotroph can provide 
insights uncompromised by parasite-specific adaptations. Hence, 
the diatom Nitzschia putrida, isolated from mangrove estuaries, is 
the ideal model to test these hypotheses because it is an example of 
a free-living secondary heterotroph (5, 11) within the diverse group 
of largely photoautotrophic diatoms (12, 13). As several genomes of 
the latter have recently become available including close phylogenetic 
relatives (14–16), a genome-based comparative metabolic reconstruc-
tion of N. putrida promises to reveal fresh insights into what is re-
quired to thrive as a free-living secondary heterotroph. Thus, here, 
we have analyzed the draft genome sequence of N. putrida, which 
provides insight into evolutionary processes underpinning lifestyle 
shifts from photoautotrophy to free-living heterotrophy in the con-
text of a coastal surface ocean ecosystem.

RESULTS
Genome assembly
K-mer–based GenomeScope analysis (17) with 150–base pair (bp)–
long Illumina short reads suggested the genome of N. putrida (Fig. 1A) 
to be diploid (fig. S1A). To provide a high-quality genome with long-
range contiguity, PacBio sequencing (RSII platform) was performed, 
resulting in ≥40-fold coverage. Because of the confirmed diploid 
nature of the N. putrida genome, we have applied the Falcon assembler 
and Falcon_unzip version 0.5 (18) to provide a first draft genome of 
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this species. On the basis of this assembly, we estimated a genome 
size of 35 Mbp, including 87 scaffolds with an N50 of 860.9 kbp. 
The longest scaffold was 3.8 Mbp. The heterozygous regions of the 
genome (alternate contigs) estimated by the Falcon assembler re-
sulted in 12 Mbp, with an N50 of 121 kbp (table S1). The Falcon as-
sembly was error-corrected and polished by approximately 150-fold 
coverage of Illumina short reads, which were subsequently used 
for generating the final assembly with Pilon 1.2.2 (19) including 
manual curation.

According to the k-mer–assessed diploid nature of the N. putrida 
genome, the read coverage of the homozygous regions is approximately 
twofold higher than the read coverage for the heterozygous regions, 
suggesting the presence of diverged alleles as previously identified in 
the genome of the photoautotroph diatom Fragilariopsis cylindrus 
(fig. S1, A and B). Thus, most of the diverged allelic variants can be 
found in the heterozygous regions characterized by the presence of 
alternate contigs, whereas the regions with no corresponding alter-
nate contigs are homozygous (fig. S1B). On the basis of the analysis 
with Braker2 version 2.0.3 (20), the Nitzschia genome comprises 
15,003 and 5767 inferred protein-coding loci on the primary and 

alternate contigs, respectively (table S1). Almost 40% of loci in the 
genome of N. putrida appear to be characterized by diverged alleles. 
A BUSCOv3 analysis (21) revealed the genome to be complete at a 
level of 90.1% based on the haploid set of genes.

The loss of photosynthesis
The haploid set of genes was used to reconstruct the nuclear-encoded 
plastid proteome of N. putrida and therefore to reveal the extent of 
gene loss including key genes of photosynthesis. A comparative anal-
ysis of the N. putrida plastome (22) with its photosynthetic counterparts 
revealed that more than 50% of nuclear encoded plastid proteins 
have been lost (Fig. 1B). More than 500 orthogroups (OrthoFinder) 
(23) of nuclear-encoded plastid proteins, which are usually shared 
between photosynthetic diatoms (22), are missing in the predicted 
plastid proteome of N. putrida (Fig. 1C). The missing part of the 
plastid proteome included genes encoding for proteins of light-
harvesting antenna including fucoxanthin-chlorophyll a/c protein 
(fcp), photosystem II and I (e.g., psbA, psbC, psbO, psaA, psaB, and 
psaD), the cytochrome b6/f complex (e.g., petA), and carbon fixa-
tion (e.g., rbcS and rbcL) in addition to genes of the Calvin cycle 
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Fig. 1. The heterotrophic diatom N. putrida and its plastid proteome. (A) The frustule view of N. putrida. Bar, 10 m. (B) Estimated plastid proteome size in three dia-
toms. Light and dark gray bars show low and high confident plastid-targeted proteins identified by ASAFind (22), respectively. Data of two photosynthetic diatoms 
P. tricornutum and T. pseudonana are derived from the previous study (22). (C) Unique and shared plastid-targeted orthogroups. Highlighted in red is the orthogroup ex-
clusively shared by the two photosynthetic diatoms. (D) Predicted metabolic map of the nonphotosynthetic plastid. Representative pathways found in photosynthetic 
diatom species are shown. Green and light gray arrows show the presence and absence of the responsible protein sequences for the reactions in the genome, respective-
ly. Amino acids are highlighted in red. Abbreviations are described in the Supplementary Materials.
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[e.g., phosphoribulokinase (prk)]. Furthermore, a substantial num-
ber of key genes were missing for the biosynthesis of chlorophyll, 
carotenoids, and plastoquinones (fig. S1C).

Despite the loss of some of these key photosynthesis genes, there 
is still a substantial number of genes left encoding common plastid 
metabolic pathways as known from photosynthetic diatoms, including 
the generation of adenosine 5′-triphosphate (ATP) by adenosine 
triphosphatase (ATPase) subunits, which are encoded both in the 
nuclear and plastid genomes (24). Almost all genes encoding for 
plastid enzymes to synthesize essential amino acids are still encoded 
in the nuclear genome of N. putrida. Furthermore, all genes of the 
heme pathway have been found, and N. putrida appears to be able 
to synthesize riboflavin. The presence of plastid-targeted transporters 
(25) enables the transport of phosphoenolpyruvate, 3-phosphoglycerate, 
and dihydroxyacetone-phosphate across the plastid membranes. In 
addition, our genome-based reconstruction of plastid metabolism 
identified the biosynthesis pathway for lipids and the ornithine cy-
cle in N. putrida (Fig. 1D and fig. S2). The latter has been reported 
neither in previous transcriptome-based studies with this species (26) 
nor in any other secondary heterotroph ([.g., (6, 7)]. As N. putrida 
has an osmotrophic lifestyle, it relies on dissolved organic matter 
and nutrients. Thus, the biosynthesis of a variety of metabolic com-
pounds supports the osmotrophic lifestyle, lacking abilities to prey 
or to parasitize on other organisms.

Communication between organelles and light-dependent 
gene expression
The lack of CO2 fixation in plastids of N. putrida—which reduces 
the amount of amino acids, lipids, and other metabolites to be syn-
thesized—appears to be partially compensated for by the remodeling 
of metabolic interactions with mitochondria and peroxisomes and 
by retaining active recycling of nitrogen (Figs. 1 and 2 and figs. S3 
and S4). It appears that the nonphotosynthetic plastid of N. putrida 
still exchanges glutamine and ornithine, both of which are important 
intermediates of the ornithine cycle. All genes for the ornithine-urea 
cycle have been retained in the N. putrida genome. The ornithine-
urea cycle is indispensable for nitrogen recycling in photosynthetic 
diatoms (27, 28), and even after the loss of photosynthesis, nitrogen 
recycling appears to be essential in N. putrida (Fig. 2A) due to its 
osmotrophic lifestyle. Usually, the ornithine-urea cycle is tightly 
linked with tricarboxylic acid cycle and/or photorespiration in photo-
synthetic diatoms (27, 28). However, N. putrida is not likely to per-
form photorespiration (Fig. 2A). The metabolic exchange with the 
peroxisome through glycolate likely has ceased as phosphoglycolate 
phosphatase and peroxisomal glycolate oxidase are missing. Thus, 
photorespiration is unlikely to take place in nonphotosynthetic plastids 
of N. putrid due to the lack of ribulose 1,5-bisphosphate carboxy-
lase/oxygenase and other key enzymes of the Calvin cycle (Fig. 1). 
Nevertheless, peroxisomes still appear to play a role in N. putrida 
for the production of malate or glyoxylate, which feed into respiratory 
pathways of the mitochondria to support ATP and NADPH (reduced 
form of nicotinamide adenine dinucleotide phosphate) production 
(Fig. 2A).

Light in photosynthetic organisms not only plays a substantial 
role for photosynthesis generating ATP and NADPH but also regu-
lates cell division, diel cycles, and different signaling processes 
unlike in many heterotrophic organisms (29–31). As a consequence, 
we identified the remaining photoreceptors and cell-cycle regulators 
such as cyclins and cyclin-dependent kinases (32). Although they 

were still encoded and expressed in the genome of N. putrida (Fig. 2B 
and fig. S5, A and B), we were unable to identify a diel cycle in cell 
division (Fig. 2C). This suggests that these cel-cycle regulators po-
tentially have neo/subfunctionalized and therefore have a different 
regulatory role in N. putrida unrelated to the diel cycle. The loss of 
the transcription factor bHLH-1a (RITMO1), which has been iden-
tified as a master regulator of diel periodicity (33), corroborates our 
finding that N. putrida has lost the ability to perform diel cycles. In 
addition, most of the other photoreceptors known from photo-
synthetic diatoms have also been lost (Fig. 2B) such as the blue light 
sensing aureochromes 1a/b, both of which are transcription factors 
responsible for photoacclimation (34). Despite the lack of light-
dependent cell-cycle regulation, a few remaining photoreceptors were 
identified including bHLH1b_PAS, aureochrome 1c, and cryptochrome-
DASH/CPF2 (Fig. 2B) (29, 35). Basic ZIP [basic leucine zipper pro-
teins (bZIP)] transcription factors having potentially light-sensitive 
Per-Arnt-Sim (PAS) domains (bZIP-PAS) (36) were also identified 
in the N. putrida genome such as homologs to bZIP6 and bZIP7 of 
Phaeodactylum tricornutum (37). The latter homolog has been 
duplicated and diversified in N. putrida (fig. S5C). The presence of 
bZIP-PAS protein in a heterotrophic eukaryote is not unprecedented 
as some oomycetes, nonphotosynthetic parasites, have been reported 
to also encode them in their genomes [e.g., (38)]. Although their role 
in regulating gene expression remains to be investigated in N. putrida, light 
still appears to influence the expression of some genes in this hetero-
trophic species. Comparative transcriptome analyses every 4 hours 
during a shift from a light phase to darkness (Fig. 2D) revealed eight 
clusters characterized by different expression patterns. Furthermore, 
there was no cluster explicitly representing the light-dependent gene 
expression patterns as seen in photosynthetic algae [e.g., (29, 39)]. 
However, one of the clusters contained genes only expressed in the 
mid-light phase: cluster 7 containing 90 genes (0.6% total). Forty four 
of them were genes with known functional domains based on a 
KOG (EuKaryotic Orthologous Groups) analysis, and 21 of them 
were encoding proteins for substrate import and carbon metabolism 
(fig. S5D). However, the photoreceptor homologs above—bHLH1b_PAS, 
aureochrome 1c, and cryptochrome-DASH/CPF2—were not part of 
this cluster, and there was no explicit trend in their gene expression 
patterns with respect to changes between light and dark conditions.

The genetic toolkit for the evolution of nonparasitic 
secondary heterotrophy
Despite the loss of many nuclear genes and their families, the genome 
size of N. putrida is not significantly different to photosynthetic rela-
tives such as F. cylindrus and P. tricornutum and the more distantly 
related diatom Thalassiosira pseudonana (table S1). This is distinct 
from evolutionary trends observed in parasitic eukaryotes that have 
lost photosynthesis as they have smaller genomes encoding smaller 
gene families compared to their photosynthetic relatives (fig. S6). 
By comparing KOGs of paralogous proteins, there was no signifi-
cant difference in the number of unique KOG IDs between these 
four diatom species (fig. S7, A and B). However, when we compared 
the number of paralogous proteins assigned to each KOG ID, there 
were several KOG categories for which N. putrida had a higher number 
of paralogous proteins compared to the other diatom species: 
nucleotide transport (F), transcription (K), signal transduction (T), 
intracellular trafficking, secretion, vesicular transport (U), and 
cytoskeleton (Z) (fig. S7C). Even after normalization by total 
gene numbers, nucleotide transport (F), signal transduction (T), 
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and cytoskeleton (Z) genes were more abundant in the N. putrida 
genome (fig. S8A). This observation was corroborated by N. putrida–
specific enrichment of Pfam domains such as adenylate/guanylate 
cyclase and cyclic nucleotide esterase, leucine-rich repeat (LRR), 
and glycosyl/galactosyl transferase domains (fig. S8B).

A microbial heterotroph acquires nutrients either by phagotro-
phy, the preferred nutrition of many parasites, or by osmotrophy. 
The latter requires uptake of dissolved organic compounds by 
osmosis as realized by bacteria and fungi, for instance (40, 41). As 
N. putrida grows well under axenic conditions (5, 42), it is likely an 
osmotroph, dependent on the uptake of dissolved organic com-
pounds across the silicified cell wall and the plasma membrane. As 
realized by osmotrophic fungi, N. putrida may even be able to 
degrade higher–molecular weight compounds extracellularly to be 
subsequently taken up as individual molecules by specific transporters 
or even osmosis (40, 41). Thus, it is likely that cell wall, membrane, 
and secreted proteins were diversified in N. putrida compared to 
photosynthetic diatoms to facilitate osmotrophy.

To address this hypothesis, we analyzed the enrichment of paralog 
proteins and differences in nutrient transporters involved in the 
uptake of dissolved organic compounds such as solute carriers. A 
comparison to photosynthetic diatoms and parasitic nonphotosyn-
thetic algal species [Prototheca and Helicosporidium (green algae), 
and the apicomplexans Plasmodium and Toxoplasma] has revealed 
that N. putrida has a unique composition of genes encoding trans-
porters, which is therefore different to photosynthetic algae and 
parasitic nonphotosynthetic algal species (Fig. 3, A  to C). For in-
stance, the number of genes encoding silicon transporters (SITs), 
solute symporters, and the resistance-nodulation–cell division 
superfamily was more than twice as abundant in N. putrida com-
pared to photosynthetic diatom species (Fig.  3D and fig. S9A). 
However, in contrast to the difference between N. putrida and 
photosynthetic diatom species, there is no enrichment of particular 
transporters in parasitic algal species when compared to their photo-
synthetic relatives (fig. S9, B and C).

Expansion of those gene families may, at least partly, have been 
achieved by recent tandem duplications (Fig. 3E). To gain insight 
into when the expansion had occurred, we performed a coalescence 
analysis, which revealed that SITs in N. putrida began to expand 
around 3.3 million years (Ma) ago [1.2 to 6.6, 95% confidence inter-
val (CI)], while divergence from another nonphotosynthetic diatom 
N. alba is estimated to have occurred around 6.67 Ma ago (2.5 to 11.5, 
95% CI; fig. S10). The split between F. cylindrus and P. multiseries, 
which was used to date the tree, was estimated at 9.7 Ma ago (7.6 to 
11.6, 95% CI).

Thus, the recent expansion of SITs suggests neo/subfunctional-
ization of the gene family in response to the change in lifestyle. The 
divergence rate of SIT genes was much larger than that of control 
genes (e.g., myosin), indicating that SIT diversification might have 
contributed to the adaptation of the heterotrophic lifestyle. In sup-
port of this hypothesis, we detected several sites under positive 
selection in different members of the SIT family (table S2), which 
implies that the evolution of those genes may have been driven by 
diversifying selection.

The solute sodium symporters are estimated to have diverged 
around 7.5 Ma ago (3.8 to 11.1, 95% CI), markedly earlier than the SIT 
gene family. Although the divergence rate is also larger than that of 
control genes (fig. S10), we did not find evidence of diversifying selec-
tion in this gene family. The differences between these two families 

of transporters suggest that their expansion might have occurred in 
a stepwise manner and driven by different evolutionary forces.

Furthermore, although the overall carbohydrate-active enzyme 
(CAZyme) family composition of Nitzschia was not different from 
that of photosynthetic diatoms (fig. S11), families encoding 
-glycoside hydrolase (GH8), laminarinase (GH16_3), pectinase 
(GH28), -glucanase (GH72), -mannan hydrolyzing enzymes (GH99), 
and -1,2-glucan hydrolytic enzymes (GH114) were enriched in 
N. putrida compared to photosynthetic species (Fig. 3F). Expansion 
of these families might, at least partly, have been achieved by recent 
tandem duplications (Fig.  3G), suggesting an important role of 
these genes for the heterotrophic lifestyle of N. putrida. Notably, 
more than one-third of proteins assigned to the above six CAZyme 
families are predicted to be secreted in N. putrida (see below). The 
CAZyme compositions suggest that N. putrida might be able to de-
grade extracellular polysaccharides such as ß-1,3 glucans (e.g., lichenin, 
paramylon, callose, and laminarin), starches, -1,2-glucans, pectin, 
and -mannan. As N. putrida has been isolated from disintegrating 
mangrove leaves in a paddle (5, 42), this species might play a role in 
degrading dead leaves and therefore facilitating carbon recycling in 
mangroves. To gain first insight into how transcription of CAZyme 
genes is regulated by different carbon sources, we performed com-
parative transcriptome analyses with starved N. putrida cells in com-
parison to cells growing on glucose and starch. However, we found 
that only a limited number of genes encoding CAZymes were dif-
ferentially expressed (table S3). About half of these genes were up-
regulated in response specifically to starch as a carbon source, while 
only one CAZyme gene was up-regulated in response to glucose 
(table S3). This observation suggests that most of the CAZymes in 
N. putrida are not for the utilization of glucose and only very few 
for starch utilization. Arguably, providing a very limited set of organic 
substrates does not reflect the complexity of organic carbon provided 
by disintegrating leaves in a mangrove ecosystem. Hence, this might 
be the main reason for the limited transcriptome response observed 
in our experiments.

The predicted secretome of the nonparasitic, free-living 
secondary heterotroph N. putrida
Given that the secretome plays an important role for substrate deg-
radation and subsequent uptake of low–molecular weight compounds 
in osmotrophs (40), we conducted a comparative analysis to predict 
secreted proteins of N. putrida in silico by identifying proteins with 
N-terminal signal peptides and a lack of transmembrane domains. 
The resulting proteins were clustered using TribeMCL (43), and 
plastid- and lysosome-localized proteins were subsequently removed 
using ASAFind according to their characteristic targeting motifs 
(22) and Pfam domains. The number of putatively secreted proteins 
is 978, 998, 596, and 718 in N. putrida, F. cylindrus, P. tricornutum, 
and T. pseudonana, respectively, which corresponds to between 5 
and 7% of the total number of genes in their genomes (fig. S12A). 
Nevertheless, there were significant differences when we com-
pared the diversity of proteins between these four diatom species 
(Fig. 4, A and B); N. putrida, on average, had a significantly higher 
number of proteins per tribe than any of the other diatom species 
(two-sided Wilcoxon signed-rank test; P < 0.01; Fig. 4C). In particular, 
proteins involved in heterotrophy such as organic matter degrada-
tion/modification including CAZymes and peptidases were more 
abundant in N. putrida than in the photosynthetic diatom genomes 
(188 in N. putrida, 142 in F. cylindrus, 118 in P. tricornutum, and 
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Fig. 3. Diversity of transporters and carbohydrate active enzymes in N. putrida. (A) Distribution of the number of transporters in each transporter family of diatoms. 
Differences in the distributions among species were tested by the Wilcoxon signed-rank test corrected with the Benjamini-Hochberg procedure (P < 0.05), but there is no 
significant difference. Outliers were omitted in the boxplot. Nonphotosynthetic species are highlighted in gray. (B) Distribution of the number of transporters in each 
transporter family of Alveolata. Details are described in (A). (C) Distribution of the number of transporters in each transporter family of green algae (Trebouxiophyceae). 
Details are described in (A). (D) The gene number of transporters in the 12 most abundant transporter families of N. putrida. (E) Silicon transporter (SIT) genes tandemly 
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Fig. 4. Secretome of nonphotosynthetic algae. (A) The number of secretome tribes of diatoms, including at least four sequences, clustered by TribeMCL (45). Different 
colors represent tribe categories as follows: 1, species specific tribes; 2 to 4, tribes shared by two to four species, respectively. OTUs, operational taxonomic 
unit. (B) Proportion of each tribe category in diatoms. Details are described in (A). (C) Distribution of the number of protein sequences in each secretome tribe in dia-
toms. Outliers were omitted in the boxplot. The Wilcoxon signed-rank test corrected with the Benjamini-Hochberg procedure was used for tests of statistical significance. 
(D) The number of secretome tribes in green algae (trebouxiophytes), including at least four sequences, clustered by TribeMCL (45). Different colors represent tribe categories 
as follows: 1, species specific tribes; 2 to 5, tribes shared by two to five species, respectively. (E) Proportion of each tribe category in green algae. Details are described in 
(D). (F) Distribution of the number of protein sequences in each secretome tribe in green algae. Details are described in (C). (G) Expression of the 10 largest tribes in 
N. putrida during the 25 hours of cultivation. Genes in the tribes could be divided into four clusters. Details are described in Fig. 2D.
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101 in T. pseudonana; fig. S12A). This is in contrast to parasitic green 
algae because their predicted secretomes are smaller than those of 
their photosynthetic relatives and show no explicit enrichment of 
secretome proteins per tribe (Fig. 4, D to F).

The most common secreted proteins in N. putrida are LRR-
containing proteins (fig. S12B), many of which contain additional 
domains such as tegument and glycoprotein domains, suggesting 
an increased functional diversity (fig. S13). Only very few LRR-con-
taining proteins were identified in the predicted secretomes of the 
photosynthetic diatoms, indicating that signal peptide–dependent 
secretion of abundant and diverse LRR-containing proteins may be 
an essential requirement in this secondary heterotroph, such as for 
environmental signaling (44). In addition to LRR-containing pro-
teins, the top 10 most enriched proteins in N. putrida were von 
Willebrand factor type D (VWFD) proteins involved in adhesion or 
clotting, two types of endopeptidases, trypsin and leishmanolysin 
(cell-surface peptidase of the human parasite Leishmania), intradiol 
ring-cleavage dioxygenase protein for degradation of aromatic com-
pounds, methyltransferase, and four proteins with unknown func-
tion (fig. S12B). LRR-containing proteins and VWFDs might play 
important roles in N. putrida for attaching to disintegrating mangrove 
leaves (5, 42, 45). Endopeptidases and aromatic compound degrada-
tion may facilitate the utilization of their complex carbon compounds.

Furthermore, transcriptional dynamics of the predicted secre-
tome over a diel cycle (Fig. 2) revealed the presence of four different 
clusters. Genes in cluster 1 were transcribed at the beginning of the 
first light phase and genes in cluster 2 at the end of the dark phase 
and into the second light phase (Fig. 4G). Genes of cluster 3 were 
most strongly expressed in the middle and end of the first light 
phase, whereas genes in cluster 4 were relatively weakly expressed 
throughout day and night. These results suggest that stimuli includ-
ing light and/or nutrients play a role in the regulation of these genes, 
which might either be a relict from the photosynthetic ancestor or a 
response to diel cycles of organic substances in the aquatic system 
occupied by N. putrida. There is only weak evidence of lateral trans-
fer of secretome genes in N. putrida (figs. S14 and S15) with five 
genes of potential lateral origin (figs. S14 and S15). Thus, the origin 
of most secretome proteins in N. putrida likely was derived vertically 
from homologs of a photosynthetic ancestor.

DISCUSSION
N. putrida experienced a series of genetic adaptations toward a 
heterotrophic lifestyle. This diatom species took a step backward in 
one of the major evolutionary transitions, from photoautotrophs to 
heterotrophs, potentially relaxing selection on some of the now re-
dundant gene networks and their functions. As expected, more than 
50% of nuclear encoded plastid proteins have been lost in the 
N. putrida plastid proteome in comparison to its photosynthetic 
counterparts (22). However, the total number of genes (~15,000) 
fell within the range of photosynthetic microalgae, and we found no 
evidence of pseudogene formation, genome streamlining [e.g., (46)], 
gene family contraction (cf. birth-and-death hypothesis) (47), or 
reductive genome evolution (Black Queen hypothesis) (48). The 
relatively large genome size is not unexpected given that N. putrida 
is a free-living osmotroph. This free-living lifestyle in a complex and 
highly variable coastal marine environment likely is the reason why 
a substantial number of genes including some photoreceptors, cell 
cycle regulators, and common plastid metabolic pathways usually 

present in photosynthetic diatoms have remained. Although some 
of the latter genes were still expressed, N. putrida appears to lack a 
diel growth cycle, which suggests that these cell-cycle regulators 
have neo/subfunctionalized. However, as a certain number of genes 
still appear to be regulated by light, osmotrophy potentially benefits 
from diel fluctuations of resources such as dissolved organic carbon 
in aquatic environments (49–51). For photoautotrophs, it is important 
to regulate the cell cycle in accordance with diel cycles for optimiz-
ing photosynthesis and therefore cell proliferation (29–31, 52, 53). 
Without being reliant on light as its primary energy source, the 
osmotroph N. putrida no longer requires coordinating its cell cycle 
with diel cycles. Thus, after the loss of photosynthesis, the strict 
light-dependent regulation of gene expression might have become 
less important and gene expression therefore may have become pre-
dominantly regulated by other stimuli. Many photoreceptors are 
missing, but duplication of genes for bZIP transcription factors 
with PAS domains and genes for signal transduction and cellular 
regulatory roles such as adenyl/guanyl cyclase and cyclic nucleotide 
esterase domains was enriched in the N. putrida genome. Further-
more, the peroxisome-plastid interaction is no longer required after 
the loss of photosynthesis, giving rise to loss of carbon fixation in 
the context of glycolate recycling. In contrast, the ornithine-urea 
cycle likely remains to be functional to facilitate nitrogen recycling.

Gene family expansions and neo/subfunctionalizations appear 
to have played a prominent role in the adaptation to its different 
lifestyle given that many proteins predicted to be secreted have di-
versified in N. putrida, possibly to facilitate osmotrophy. Together, 
the marked change of lifestyle associated with the “devolution” did 
not result in reductive genome evolution as known from non-
photosynthetic plastid-bearing parasites.

METHODS
Cultivation, DNA and RNA extraction, and sequencing
N. putrida NIES-4239 was cultivated in the Daigo’s IMK medium 
(Wako) including 1% Luria-Bertani medium based on the artificial 
seawater made with MARINE ART SF-1 (Osaka Yakken Co.) at 
20°C under the 12-hour light and 12-hour dark conditions: 50 mol 
photons/m2 per second with plant cultivation light-emitting diode 
light (BC-BML3, Biomedical Science). DNA was extracted with the 
Extrap Soil DNA Kit Plus version 2 (Nippon Steel). Total DNA was 
subjected to library construction with TruSeq DNA PCR-Free (350; 
Illumina) and to 151-bp paired-end sequencing by HiSeqX, result-
ing in 660 million paired-end reads, and to PacBio RSII, with SMRT 
cell 8Pac v3 and DNA Polymerase Binding Kit P6 v2, in Macrogen, 
resulting in 1.3-Gb subreads. Total RNA was extracted with TRIzol 
(Sigma-Aldrich) according to the manufacturer’s instruction and was 
subjected to library construction with TruSeq RNA Sample Prep Kit 
v2 (Illumina) and 101-bp paired-end sequencing by HiSeq 2500, 
resulting in 107.5 million paired-end reads.

Genome assembly and construction of gene models
PacBio reads were assembled into contigs using Falcon (version 0.7.0) 
(18) with a length cutoff of 7000 bp for seed reads and an estimated 
genome size of 33 Mbp. Genome size estimation was performed on 
the GenomeScope web server (http://qb.cshl.edu/genomescope/) 
based on the k-mer frequency distribution of Illumina reads calcu-
lated by JellyFish version 2.2.6 with a k-mer size of 21. The resultant 
primary and associate contigs were then subjected to Falcon_unzip 

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 07, 2022

http://qb.cshl.edu/genomescope/


Kamikawa et al., Sci. Adv. 8, eabi5075 (2022)     29 April 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 12

(version 0.5.0) (18), generating partially haplotype-phased contigs 
(primary contigs) and fully phased contigs (haplotigs). The assem-
bly was polished using PacBio reads and Quiver program, followed 
by single-nucleotide polymorphism (SNP) and short insertion-deletion 
(indel) error correction using Pilon (version 1.2.2) with Illumina reads 
mapped by the Burrows-Wheeler Aligner (version 0.7.15) (19). Indel 
errors in the vicinity of hetero-SNPs were further fixed manually, as they 
were difficult to be automatically corrected. Contigs derived from 
plastid and mitochondrial genomes were identified using BLASTN and 
separated from contigs derived from the nuclear genome.

RNA sequencing reads were trimmed under the parameters of 
ILLUMINACLIP:TruSeq3-PE.fa:2:30:10, LEADING:20 TRAILING:20, 
SLIDINGWINDOW:4:15, and MINLEN:75 using Trimmomatic 
(version 0.36) (54). The trimmed reads aligned to the assembled 
contigs using HISAT2 (version 2.0.4) (55). They were provided to 
BRAKER2 gene annotation pipeline (version 2.0.3) (20) as training 
data to be used for ab initio prediction of protein-coding genes. In 
addition, PASA (version 2.3.3) (56) was used to generate transcript-
based gene models by integrating de novo transcriptome assembly 
and genome-guided assembly using Trinity (version 2.5.0) (57). The 
genome-guided assembly used the mapping result from HISAT2 
with --dta option. TransDecoder (version 5.0.2) (58) was used to 
extract protein coding regions from PASA result with the alignment 
files from BlastP (version 2.7.1) (59) against UniRef90 with -evalue 
1e-5 option and hmmscan (http://hmmer.org/, version 3.1b2) against 
Pfam (60) database.

The gene models that overlapped with the results from BRAKER 
were removed using BlastP with evalue 1e-5 option, and the re-
maining gene models were merged with the BRAKER gene models 
to generate the final gene annotation. Transposable elements in the 
NIES-4239 genome were searched by RepeatMasker (version 4.9.0) 
using Dfam3.1 and RepBase-20170127 as reference repeat libraries 
(61). The predicted gene set was available in Dryad (https://doi.
org/10.5061/dryad.j3tx95xft).

The integrity of gene annotation was assessed by BUSCO 
(version 3.0.2) (21) and the Eukaryota odb9 (version 2) dataset. 
The manipulation of SAM/BAM file was used by SAMtools (version 1.9). 
The sequence files of gene region from gff file were used by GffRead 
(version 0.9.11) (62).

Organellar genome annotation was performed by comparison 
with previously sequenced organellar genomes of nonphoto-
synthetic diatoms (24). Gene sets and their arrangements of the 
plastid and mitochondrial genomes sequenced in this study were 
found to be identical to previously sequenced nonphotosynthetic 
diatoms (24). Assembled genomes were deposited to DNA Data 
Bank of Japan (http://getentry.ddbj.nig.ac.jp/) under the acces-
sion numbers BLYE01000001 to BLYE01000234 for the nuclear 
genome, LC600866 for the mitochondrial genome, and LC600867 for 
the plastid genome.

Functional annotation
The predicted protein coding genes were annotated using InterProScan, 
and RPS-BLAST search was performed against KEGG orthology 
database (63, 64). KO identifiers for Kyoto Encyclopedia of Genes 
and Genomes (KEGG) metabolic pathways were assigned using KEGG 
Automatic Annotation Server (65). Transporter proteins were 
annotated with TransportTP (66) followed by manual curation. 
Reference proteome datasets for three photosynthetic diatom spe-
cies were obtained from the JGI Genome Portal: P. tricornutum 

CCAP 1055/1 v2.0 (Phatr2_bd_unmapped_GeneModels_FilteredModels1_
aa.fasta and Phatr2_chromosomes_geneModels_FilteredModels2_
aa.fasta, 10,402 protein sequences in total), T. pseudonana CCMP 
1335 (Thaps3_bd_unmapped_GeneModels_FilteredModels1_aa.fasta 
and Thaps3_chromosomes_geneModels_FilteredModels2_aa.fasta, 
11,776 sequences), and F. cylindrus CCMP 1102 (Fracy1_GeneModels_
FilteredModels3_aa.fasta, 21,066 sequences). KEGG and KOG anno-
tation was performed with them in the same manner as NIES-4239. 
Other details for annotation of CAZyme, cyclins, cyclin-dependent 
kinases, bZIP transcription factors, photoreceptor proteins, mito-
chondrial proteins, plastid proteins, and secretome proteins are de-
scribed in the Supplementary Materials. Evolutionary analyses, 
comparative transcriptome analyses under the 12-hour light and 
12-hour dark condition, those in different carbon sources, and bio-
chemical experiments for lipids, fatty acids, and quinones are also 
described in the Supplementary Materials. Transcriptome data 
obtained in this study were deposited to DNA Data Bank of Japan 
(https://ddbj.nig.ac.jp/resource/bioproject/PRJDB11016 and 
https://ddbj.nig.ac.jp/resource/bioproject/PRJDB12553).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abi5075

View/request a protocol for this paper from Bio-protocol.
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