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Abstract—In this paper we examine data representing patients
with Rheumatoid Arthritis (RA). This is an important medical
conditions that affects a proportion of the adult population and
is very disabling. The data contains some demographics as well
as follow up for up to 20 years where objective measures of ’joint
involvement’, e.g. counts of how many tender or swollen joints
are present in a given follow up year, are recorded.

To date the patterns of disease progression and joint involve-
ment have not been investigated in detail for RA. We propose
a clustering approach to extract patterns of joint involvement
in disease progression for groups of patients. For this, we
investigate how to measure distance for the type of data we
analyse which consists of multiple attributes each corresponding
to years of follow up measuring a particular objective measure.
We settle for an aggregate Dynamic Time Warping measure of
distance between patients and use it in combination with K-means
clustering to cluster our patient trajectories. Our preliminary
results, with some interpretation, show that it is possible to cluster
such complex data to extract some meaningful patterns of joint
involvement in disease progression.

I. INTRODUCTION

Rheumatoid arthritis (RA) is a chronic disabling condition
that affects around 1% of the adult population. It can start
at any age, and can progress to involve multiple joints and
other organ systems. The peak age of incidence in the UK
for both men and women is in the 70s [4]. The disability
associated with RA increases with a patient’s age. The rate of
progression in individuals varies considerably, and while the
disease can respond to treatment, individual responses also
vary. RA can be detrimental to the patient’s mental as well as
physical health. Smolen et al. [16] describe “musculoskeletal
deficits”, “decline in physical function and quality of life and
cumulative morbidity risk” as potential consequences. There
is also a cost attached to it as it may render people unable to
work or perform other physical activities such as sports.

Disease activity in RA is often measured as a composite
summary score (known as the DAS28 [18] which includes
data from a limited number of joints affected at one particular
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time. This score does not include information on the pattern
of joint involvement (for example whether the disease is
predominantly confined to small joints, or if larger joints or the
spine are involved). To date the patterns of disease progression
at individual joint sites over time in people with RA has not
been described. Some authors [3] have looked at the patterns of
inflammatory joint involvement, including symmetry patterns
where joints on both sides are involved or ray patterns, where
all joints in a particular digit (finger or toe) are involved.

In this paper, we apply a machine learning methodology
to examine these patterns of disease progression in data that
has been recorded in the Norfolk Arthritis Register [13]. This
is the largest long term disease register of its type in the
world, and includes serial data from over 5,000 patients with
inflammatory arthritis assessed at up to 20 time points (years
0-5,7,8,10,12,15,18,20) for over 25 years. The data include
objective measures from 44 joints at each time point. The
analysis will enable the exploration and characterisation of
the patterns of joint involvement over time (e.g. symmetry),
and the extent to which they are modified by individual patient
characteristics and treatments.

The data available consists of multiple attributes per patient
(89), each patient is associated with a number of years of
follow up which can be interpreted as a Time Series (TS) or a
Sequence per attribute. Clustering such data requires methods
for clustering multi-variate sequences or TS which are not well
developed.

Clustering of complex medical data is now emerging as an
area of application of machine learning including clustering of
genetic signatures to identify leukaemia [12]; clustering of RA
patients to investigate patient characteristics and drug effects
[10]; and clustering of of Juvenile Rheumatoid Arthritis patient
data to find disease progression based on early patterns of joint
involvement [1].

We demonstrate how a machine learning clustering ap-
proach using a distance measure adapted specifically for our
complex data can be used to group similar patterns of disease
progression over time, which involve multiple joints presenting
similar characteristics. Our contribution involves the novel
clustering of multi-TS data as well as the application to
RA data and further interpretation of the clustering results
which should eventually enable a new understanding of disease



progression for specific patient groups.
Our paper is structured as follows: section II presents the

data; section III present our method and IV presents the results
with a final section for our conclusions and further work.

II. DATA

For each patient we have both year of birth and gender
plus a number of “joint variables” which either count someone
having ’tender’ or ’swollen’ joints (or both). For an illustration
of the joints of a human hand which the data refers to see Fig.
1

As previously mentioned, there are up to 20 years of follow-
up recorded per patient in up to 12 visits in specific years,
though for some patients there are a lot less, with many missed
years of follow up. See Fig. 2 for a visualisation of the records
available by gender for each year of follow up. Females are
more prominent in the dataset for all follow up years. Hence,
for each patient if we consider a specific attribute, e.g. swollen
metacarpals (MCP) on the left, this is a sequence of values
which can either be Boolean (taking values 0 for false and
1 for true) or an integer representing a count (e.g. number of
swollen Proximal Phalanges (PIPs) which can take values up to
10).Clustering such data requires methods for clustering multi-
variate sequence data/TS data which are not well developed.

Fig. 1. Bones and joints of a human hand. Diagram is from [17]

Fig. 2. Number of records available for each follow up year represented in
the x-axis and broken down by gender

The attributes available for the analysis are described in
Table I.

III. METHODS

To cluster our data successfully, first we need a distance
measure that can be used with multi-variate sequence or TS
data. Our first approached used the Levenshtein distance [11]
which represents the minimum number of single-character
edits (insertions, deletions or substitutions) required to change
one sequence into another. This was a basis for our own
distance metric which we adapted to take account of the multi-
sequence data (Boolean and numeric) so that we compute a
distance for each pair of patient records. We then use the
distance matrix generated to cluster the dataset using a hierar-
chical agglomerative algorithm [9]. We find 5 distinct clusters
that correspond to different disease projection trajectories.
However most of the clusters were found to be dependent on
the length of follow up so this was not a particularly helpful
segmentation and results are not presented here.
Our second approach looks at the data as TS. For numeric (not
binary) attributes, we normalised the data as a pre-processing
step to ensure that attributes with larger values do not dominate
the distance calculations. We then use the Dynamic Time
Warping (DTW) distance measure for two time series [5] to
compute the distance between two patients at each TS attribute
level. DTW is a distance measure that is insensitive to local
compression and stretches; the warping optimally deforms one
of he two input series onto the other. As we can see in Fig. 3
a single point ”observation” in the first TS is aligned to one
or more points in the second TS.

Consider two TS to compare X=x1,x2,x3,...,xn and
Y=y1,y2,y3,...,ym. To compare X and Y, a point-wise distance
matrix M(n∗m) is created, where every element in this matrix
corresponds to the distance between two points i ∈ X , and
j ∈ Y , as follows:

Mi,j = (xi − yj)
2 (1)

To find the optimal alignment between X and Y, a warping
path

W = w1, w2, w3, . . . , wk,

in matrix Mi is constructed, where wk = (i, j)k indicates the
alignment and matching relationship between i and j.

The DTW distance between X and Y is calculated as follow:

DTW (X,Y ) = min

{
1

K

√√√√ K∑
k=1

Wk

}
. (2)

For our specific application, the overall distance between
two patients is calculated as the average distance between all
the attributes in the dataset. The aggregate distance matrix
contains an entry for each pair of patients. This is, the aggre-
gated distance is calculated as the simple average distance of
all attributes (A1, A2, A3, . . ., An). For example for patients
P and Q, the aggregate distance between these patients is:



Column index Attribute name Type Description
0 regno Numerical Patient’s unique ID number
1 fupno Numerical Follow-up year (from 0 to 20)
2 dobyear Numerical Date of birth year
3 gender Categorical Male or female

4–16 swwrst-swankl Binary If a specified joint or part of body is swollen or not
17–26 numpip-numjoin Numerical Count how many are swollen for the given attribute

27 swollen 28jt Numerical Sum of all swollen joints out of 28
28 numsym Numerical Number of swollen ARA joints for which symmetrical joint is affected
29 num non Numerical Number of swollen ARA joints for which symmetrical joint is not affected
30 joiswlg Numerical Number of swollen large joints
31 lgejoint Binary If they have any swollen large joints or not
32 both 51jt Numerical Sum up the number of tender and swollen joints out of 51

33-48 baxmcpr-bankl Binary Whether a specified joint or body part is swollen and tender
49-59 bnmpip-bjoislg Numerical Counts how many are swollen and tender for an attribute

60 blgejt Binary If a large joint is swollen and tender
61 both 28jt Numerical Count how many joints are swollen and tender out of 28
62 tend 51jt Numerical Count only the number of tender joints out of 51

63-75 temcpr-tknee Binary If the specified joint/body points are swollen or not
76-86 tnmpip-tlgejt Numerical How many of each specified joint/body part is swollen

87 tlgejt Binary If the patient has a tender large joint or not
88 tend 28jt Numerical The number of tender joints out of 28 joints

TABLE I
SUMMARY DESCRIPTION OF THE ATTRIBUTES IN THE DATA SET

Fig. 3. Visual comparison of optimal alignment between two time series
based on DTW.

AggDTW (A,B) =

∑n
i=1 DTW (PAi

, QAi
)

n
. (3)

where n is the number of attributes, PAi represents the
values of follow up for patient P and attribute Ai and QAi

represents the values of follow up for patient Q in the same
attribute and DTW is the distance between those values.

A number of clustering algorithms [8] were applied to the
data once distances were obtained, including k-means [6], k-
medoids [14] and an agglomerative algorithm [7].

To work out the best number of clusters k to report, we
used the silhouette visualisations [15] which compare the
tightness and separation of objects in particular clusters into

one visual plot. The average silhouette width provides an
evaluation of clustering validity and can be used to select an
’appropriate’ number of clusters. The silhouette visualisations
use Principal Component Analysis (PCA) which is able to
reduce the dimensionality of data points [2] by keeping the
variables that produce a large proportion of the variation in
the data and are not correlated with each other. This enables
visualisation in two dimensions.

IV. RESULTS

The best results were obtained using k-means with an
aggregated DTW distance metric and we chose a value of
k=5 clusters (see fig. 4), although still the silhouette coefficient
value was low and we expect to carry out further experimen-
tation in the future to improve on this. Nevertheless, as a first
exercise it enable us to proceed a groping of patients that we
can attempt to further interpret.

The resulting clusters enable us to group patients that show
a similar trajectory of disease activity and analysing those
clusters in terms of their characteristics. For example, in Table
II we show the (normalised) average values for the groups of
patients in a cluster for a specific attribute and year of follow
up. We pick some representative attributes but others may also
be interesting to compare.

We can see that the top cluster in Fig. 4, cluster 4, has an
average of 0.6 (1 being the highest value) in Table II for ’any
tender large joints’, which is higher than other clusters in year
1 and stays high through follow up. They also have a high
value at cluster 4 for ’Any Swollen MCPs on left’ and ’Any
tender’ PIP’s on right. This may represent a group of patients
who have high levels of RA progression through the follow
up years and in the visualisation it is positioned as cluster of
high values for the PCA components.



Fig. 4. Silhouette analysis for k-means with k=5 clusters

On the other hand, cluster 0 represents a cluster which over
the follow up years has high values of ’any both (s and t)
MPCs and perhaps other attributes.

Cluster 2 contains a group of outliers which cluster together
very closely but separate from the other data points. This is
observable in the visualisation although they overlap to appear
as one point to the right of the diagram. The outliers may give
the cluster a high silhouette coefficient but may overall deteri-
orate the clustering results. The cluster corresponds to 143 data
points which are very closed together so one possibility may
be to remove those and redo the clustering. It has, for example,
low values for ’any large tender joints’ in the initial years. It
has also low values in the early years for most attributes we
are examining in Table II.

Cluster 3 has low values for most of the later follow up
years and for most of the attributes we are examining but not
the lowest in year 0. Perhaps it represents patients who present
improvements over time. Cluster 1 may display more middle
values for most attributes and may be difficult to differentiate
from other clusters, in particular from cluster 3.

V. CONCLUSIONS AND FURTHER WORK

So far we demonstrated how a machine learning clustering
approach using a distance measure adapted specifically for
these complex data can be used to group similar patterns of
disease progression over time, which involve multiple joints
presenting similar characteristics. Our contribution involves
the novel clustering of multi-sequence data using an aggrega-
tion of DTW as a distance metric, as well as the application
to RA data and further interpretation of the clustering results

which may enable new understanding of disease progression
for specific patient groups. Our results are very preliminary
and will require further interpretation. For example, we may
be able to use a decision tree to extract a classification in
terms of different attributes that denote disease progression
for each of the clusters. This may enable further under-
standing/interpretation of results. As future work, we need to
experiment more with clustering algorithms and we need to
involve the experts in interpretation of results from a medical
and disease progression point of view but we believe that the
results are encouraging so far.
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