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Abstract

A system that reconstructs 3D models from a single camera monitoring fish transported
on a conveyor system is investigated. Models are subsequently used for training a species
classifier and for improving estimates of discarded biomass. It is demonstrated that a
monocular camera, combined with a conveyor’s linear motion produces a constrained
form of multiview structure from motion, that allows the 3D scene to be reconstructed
using a conventional stereo pipeline analogous to that of a binocular camera. Although
motion stereo was proposed several decades ago, the present work is the first to com-
pare the accuracy and precision of monocular and binocular stereo cameras monitoring
conveyors and operationally deploy a system. The system exploits Convolutional Neural
Networks (CNNs) for foreground segmentation and stereo matching. Results from a lab-
oratory model show that when the camera is mounted 750 mm above the conveyor, a
median accuracy of <5 mm can be achieved with an equivalent baseline of 62 mm. The
precision is largely limited by error in determining the equivalent baseline (i.e. distance trav-
elled by the conveyor belt). When ArUco markers are placed on the belt, the inter quartile
range (IQR) of error in z (depth) near the optical centre was found to be ±4 mm.

1 INTRODUCTION

To prevent over-fishing and wasteful discarding, the fishing
industry is subject to regulation regarding catch composi-
tion. For example, the European Union’s landing obligation
regulations limit the length and species of fish that may be dis-
carded. Human observers have traditionally been employed on
board to verify compliance with these obligations, but recently
Remote Electronic Monitoring (REM), also known as Elec-
tronic Monitoring System (EM), of fishing vessels has been
used to augment and in some cases replace, observers in many
fisheries worldwide [1].

Between 2008-2016, CCTV cameras were installed and used
in trials of REM systems on board a number of Scottish fishing
vessels and during this time there were attempts to obtain catch
information such as species composition, numbers, lengths and
volumes from the video footage [2]. However, manually count-
ing, measuring and identifying fish species is laborious and time

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
© 2022 The Authors. IET Image Processing published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology

consuming, and this has motivated the development of a com-
puter vision system, named Catch Monitor, designed to analyse
the footage automatically [3, 4].

A key component of Catch Monitor is a convolutional neural
network (CNN) capable of automatically identifying common
species of fish landed by UK trawlers in 2D imagery from
REM systems. Catch Monitor’s success is founded on a large
database of expertly labelled fish imagery, acquired by REM
cameras overlooking conveyor belts on board UK trawlers and
research vessels. The current database comprises more than 30
species, however while there are thousands of examples of com-
mon commercial species (e.g. Cod, Haddock) other species are
underrepresented. We propose to address this by augmenting
the training set using 3D models to generate additional novel
2D views. This motivates the investigation of motion stereo
presented here. Additionally, 3D models offer possibilities for
improved estimates of biomass (presently, weight and girth of
fish are estimated by length).

IET Image Process. 2022;1–13. wileyonlinelibrary.com/iet-ipr 1
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2 FISHER ET AL.

Conveyor belt transport systems are common on board many
trawlers, and are used to move fish to a workspace where they
are gutted, sorted, packed and any remaining bycatch and fish
guts ultimately discarded. The accuracy of automated counts
and sizes of fish on conveyor belts depends on the density of
the load due to the increasing number of occlusions. Successive
CCTV video frames of fish in motion deliver multiple views
of individual fish and with this brings the possibility of using
Motion Stereo to render depth maps and 3D point clouds from
a single REM CCTV video camera. Although work on Motion
Stereo has been undertaken previously [5, 6] we believe our
system is the first to be deployed outside the laboratory, on a
commercial conveyor belt system that moves at variable speed,
and with Complementary Metal Oxide Semiconductor (CMOS)
cameras using rolling shutters.

Automated inspection and monitoring of material on con-
veyor belts is common in many industries [7, 8] and increasingly
important for waste recycling [9, 10] and agrifood [11, 12].
Our work demonstrates that, in these scenarios, RGBD imagery
can be acquired from existing monocular cameras. Many thou-
sands of hours of REM CCTV footage have been archived
since REM was initially deployed on board Scottish trawlers,
and while future REM may be upgraded to support 3D cameras
the possibility of augmenting this with legacy CCTV footage is
very attractive.

Motion Stereo comes with the advantage that since the stereo
baseline depends on the distance the conveyor belt moves
between acquisition of the left and right frame it can be adapted
depending on the desired accuracy of the depth reconstruction.
Another advantage, over more usual Structure from Motion
(SfM) of 3D reconstructions from images collected by a sin-
gle moving camera, is that the camera can be pre-calibrated,
and images rectified by applying a precomputed homography.
We use Zbontar et al.’s Matching Cost - Convolutional Neural
Network (MC-CNN) to determine stereo correspondences [13]
which is implemented on a GPU to achieve a throughput of
approx. 5 fps. We evaluated Motion Stereo by building a lab-
oratory model before testing on REM CCTV video acquired
during sea trials on board Marine Scotland’s research vessel
MRV Scotia. The precision of the system depends on precise
measurement of the stereo baseline (i.e. distance moved by the
conveyor belt). ArUco markers, fixed to the belt of the labora-
tory model simplifies this task. For trials footage we estimate the
baseline by computing sparse optical flow and deploy a Kalman
Filter to track the conveyor belt motion.

Our work makes three novel contributions. Firstly, it repre-
sents the first and only attempt to develop a practical inspection
system using Motion Stereo to reconstruct a 3D scene. Sec-
ondly, we provide the first quantitative evaluation of motion
stereo. We measure the accuracy and precision of the motion
stereo 3D reconstructions and compare them with those of a
conventional binocular stereo system. Finally, our experimental
results using MC-CNN trained on the Middlebury benchmark
confirm the network’s ability to generalise and achieve good
results in a completely different domain.

Although, the performance of motion stereo in the lab-
oratory approaches that of binocular stereo, the deployment

of motion stereo in an operational context faces some addi-
tional challenges. Firstly, since motion stereo imagery is not
synchronised (i.e. the left and right images are acquired at dif-
ferent times), the stereo baseline is determined by the distance
moved by the conveyor belt between the acquisition of succes-
sive image frames. Commercial REM systems tend to reduce
the frame rate of the stored video stream and this makes recov-
ering the motion of the conveyor belt between successive image
frames challenging. Secondly, since REM video cameras employ
CMOS sensors and rolling shutters, further processing is needed
to correct motion artifacts. Thirdly, much the UK fishing indus-
try relies on smaller vessels and there is limited scope for
changing working practice or space to accommodate a dedicated
scanner (such as [14]). As such REM is deployed in an uncon-
trolled and largely unstructured working environment and the
real-world nature of the footage presents significant challenges
to the vision system.

The paper proceeds as follows: Section 2 reviews related
work; Section 3 describes our approach and the pre-processing
strategies we adopted for the Laboratory Reference System and
an Operational System used to process MRV Scotia’s REM
CCTV video. Section 4 presents results and we draw the paper
to a close in Sections 5 and 6 with a discussion and conclusions.

2 RELATED WORK

2.1 Computer vision within the fishing
industry

Over the last three decades the fishing and aquaculture industry
has pursued research to assist in identifying species and gather-
ing counts and sizes of fish [15, 16]. Catch Monitor [3] is one
of a number of technologies funded by the European Union’s
(EU’s) SMARTFISH H2020 project [17] aimed at developing
systems underwater and topside, to count, measure and classify
fish. The approaches adopted topside tend to be fishery depen-
dent. For example, Catch Monitor targets medium sized vessels
and exploits deep learning to count and classify fish captured
in ‘real-world’ 2D colour imagery from REM CCTV. In con-
trast, Catch Scanner [14] represents a dedicated solution using
cameras and laser scanners within an environment where light-
ing and occlusions are managed. Examples of similar systems
include AS3ID, designed to recover a 3D model of crustaceans
as they travel through a light box on a conveyor belt [18], com-
puter vision to measure tuna fish in REM video as they are
hauled on board a longline trawler [19] and algorithms to sep-
arate individuals in images of fish packed in boxes [20]. Recent
work has leveraged research by the Artificial Intelligence (AI)
community, CNNs are now commonplace and Mask R-CNN
[21] is the dominant technique for separating individuals in
cluttered scenes [3, 19, 22, 23].

Stereo vision is key for non-invasive subsea measurement
of fish length with invariance to their changing body shape.
Garcia et al. [22] acquire stereo pairs using the Deep Vision sys-
tem directly placed in the trawl [24], and propose a novel fish
sizing system.

 17519667, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ipr2.12636 by <

Shibboleth>
-m

em
ber@

uea.ac.uk, W
iley O

nline L
ibrary on [24/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FISHER ET AL. 3

2.2 3D reconstruction from a single camera

The terms multiview Structure from Motion (SfM) and visual
Simultaneous Location and Mapping (vSLAM) are used by the
computer vision and robotics communities to describe tech-
niques for reconstructing 3D models from images acquired
by a single (roving) camera [25, 26]. These approaches are
the focus of a large body of work addressing a fundamental
problem in computer vision, initially formalised by Longuet-
Higgins [27]. Before this, the term Motion Stereo was coined
by Ramakant Nevatia to describe the extraction of depth
information from a sequence of progressive views naturally
available in applications such as industrial parts placed on
a slowly moving conveyor belt [5]. With hindsight, Motion
Stereo can be summarised as a type of Structure from Motion
(SfM) where the camera is stationary and object motion is
constrained.

Nevatia presented results of experiments conducted as part
of the Stanford Artificial Intelligence Hand/Eye project from
a laboratory rig comprising a single stationary camera observ-
ing objects placed on a rotating turntable. Two decades later
Ens et al. revisited the problem and proposed multi-scale
algorithms for real-time motion stereo, describing how these
could potentially be applied in automated inspection using
conveyor belts or assembly lines in a manufacturing envi-
ronment [6]. Their approach considered the baseline as a
series of n increments of distance b and developed an expres-
sion for disparity based on measured disparity increments
and belt shifts. Results from a laboratory rig were presented
and a parallel implementation was developed running on
Transputers.

Stereo vision is a mature technology and numerous stereo
reconstruction algorithms have been published, some imple-
mented in hardware (e.g. [28]), and available in libraries (e.g.
[29]). Trucco and Verri provide a good overview of early
stereo algorithms and other 3D reconstruction techniques in
their text book [30]. Scharstein and Szeliski [31] distinguish
between four steps that most stereo methods perform, that is,
matching cost computation, cost aggregation, disparity com-
putation/optimization, and disparity refinement. Matching cost
computation is very often based on the absolute, squared, or
sampling the difference of pixel intensities or colors. However,
since these costs are sensitive to radiometric differences, costs
based on image gradients and Mutual Information have also
been adopted. Many current algorithms are evaluated using the
Middlebury and KITTI benchmarks [32, 33], and a comparison
is given on the Middlebury [34] and KITTI [35] Stereo Pages.
Algorithms that adopt a deep learning paradigm are consis-
tently amongst the best performers. MC-CNN [13] represents
an early attempt using a CNN to compute the matching cost for
image patches. This is followed by a pipeline, first described by
Hirschmuller [36]. Hirschmuller proposed Semiglobal Matching
(SGM) for cost aggregation. This approach casts the problem
of finding a globally optimal disparity image in an energy
minimisation framework and uses dynamic programming to
recover a semi-global optimal solution. Two disparity images are

computed, by considering either the left or right image as ref-
erence. Comparing these allows occluded pixels to be identified
and their disparity ‘in-painted’ by copying neighbouring values.
MC-CNN achieved an average error of 3.82 in 2015, while the
most recent recurrent CNN network submitted to CVPR’2022,
achieves an average error of 1.09 [34]. Such architectures target
state-of-the-art GPUs and can achieve performance in excess
of 100 fps.

2.3 Object tracking with rolling shutter
cameras

Object tracking is another fundamental problem that has been
investigated by many researchers. Tracking moving objects in
surveillance video is a demanding application and the subject
of several surveys, for example, [37–39]. Using a Kalman fil-
ter [40] to track SIFT features [41] is a robust strategy since
SIFT is invariant to changes in scale, rotation and illumina-
tion. The following represent only a fraction of published work
[42–44]. The majority of today’s image sensors used in video
cameras are of the CMOS type. In contrast to classical CCD
sensors which employ global sensor readout, the image rows
of CMOS sensors are read in rapid succession, and the sen-
sor is reset electronically so there is no need for a mechanical
shutter. This arrangement is called an electronic rolling shut-
ter and leads to a rolling shutter camera model [45, 46]. Rolling
shutter sensors present additional challenges for stereo match-
ing and tracking algorithms and remains an active research
area [47–51].

As a result of the motion constraint imposed by the con-
veyor system there is limited benefit in extending recent work
in tracking, or rolling shutter compensation, and we are able to
achieve good performance using a relatively simple rolling shut-
ter model. The featureless surface of the white conveyor belt
is a limiting factor for motion tracking, which we’ve addressed
using engineered markers (it could also be addressed by plac-
ing sensors within the belt transport mechanism). Adopting a
more highly ranked stereo matching network [34] could bring
fewer mismatches and a performance gain. While our work
does not extend any individual system components it does
demonstrate an engineering solution, reports the accuracy that
can be achieved, and compares this to that of a conventional
stereo camera.

3 MATERIALS AND METHODS

3.1 Video dataset

The data set for this work was acquired in the laboratory and
from commercial electronic monitoring systems fitted to UK
trawlers and marine research vessels. The laboratory model
was constructed comprising a conveyor transport system and
low cost USB binocular camera [52]. Left and right cameras
use a rolling shutter CMOS sensor and are not synchronised.
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4 FISHER ET AL.

FIGURE 1 Stereo image formation

FIGURE 2 System architecture

The laboratory footage was captured in 1080p HD resolution
and stored in MPEG-4 format. Operational video footage was
obtained from REM systems provided by Archipelago Marine
Research Ltd. [53] and Anchor Lab. [54]. These were installed
on board Marine Scotland’s research vessel MRV Scotia, and
UK trawlers recruited to REM trials. The operational footage
was captured in 800p HD resolution and stored in MPEG-4
format.

3.2 Software

The software used in this work was written in Python and
calls the following libraries: PyTorch [55], OpenCV [29], and
Open3D [56]. The stereo pipeline front end uses a CNN
proposed by Zbontar et al. [13] to compare 11x11 pixel
patches. Subsequent pipeline stages comprise cross-based-
cost-aggregation, Semi-Global-Matching (SGM), in-painting
of mismatched/occluded pixels, and bilateral filtering. The
pipeline is implemented for both CPU and GPU [57] hard-
ware, however, when running on CPUs we usually omit
cross-based-cost-aggregation as it is very time consuming.

3.3 Stereo geometry

Consider a pair of pinhole cameras with parallel optical axis
mounted above a conveyor system (Figure 1). Assuming the
image planes are coplanar then by similar triangles [30]:

B

Z
=

B + xr − xl

Z − f
. (1)

Hence:

Z =
B f

xl − xr
=

B f

d
, (2)

FIGURE 3 Frame buffer

FIGURE 4 Video input (MRV Scotia): (a) Raw video frame; (b) Rectified
image frame

where B represents the distance between the cameras (stereo
baseline), f the focal length and d the disparity.

At a later time, when P is moved a distance T = B by the
conveyor belt, P′ in the left image will be equivalent to that of
P in the right. Again, by similar triangles:

T

Z
=

xl − x′r
f

. (3)

Hence:

Z =
T f

xl − x′r
=

T f

d
. (4)

In general, the stereo cameras’ optical axis will not be parallel,
but from the fundamental matrix we can compute homogra-
phies that transform each image plane such that they are parallel
[58]. Similarly, in general, the optical axis of a single camera will
not be perpendicular to the conveyor belt but this can also be
corrected by a suitable homography.

3.4 Operational system

The main components of the system are shown in Figure 2. Two
fundamental problems in computational stereo are correspon-
dence and reconstruction [30]. The correspondence problem
involves identifying parts of the left and right images that are
projections of the same scene element. Using this information,
together with knowledge of the geometry of the stereo sys-
tem, reconstruction determines the 3D location and structure of
the object. The matching algorithm implemented by the stereo
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FISHER ET AL. 5

FIGURE 5 Belt motion estimation

pipeline is one of a family that search for correspondences
in 1D (i.e. along image rows). This technique assumes that
the left and right inputs have been transformed so their rows
are aligned; a process called rectification. Since the monocular
geometry derives stereo disparity from motion induced by the
conveyor belt, the stereo pipeline’s input covers the conveyor
belt region only.

3.4.1 Video input

Video is recorded by systems supplied by Archipelago Marine
Research Ltd. [53] and Anchor Lab. [54]. The specification
varies, depending on the supplier. Some installations deploy
rolling shutter cameras, others favour global shutter cameras.
The frame rate of the recorded footage depends on the system
configuration. However, REM systems typically downsample
the camera’s video stream by dropping frames and overwrite
the camera’s frame timestamps. We estimate the camera’s frame
rate using conveyor belt motion cues and resample the stored
footage so frames are equispaced in time as this allows us to
deploy a textbook Kalman filter to track the position of the belt
[40].

3.4.2 Frame buffer

Video frames are stored in a buffer that is configured as a First
In First Out (FIFO) queue (Figure 3). The buffer stores frames,
masks, and accumulated belt position. Frames are transformed
before they are enqueued, to correct lens distortion, map the
image into a rectilinear space, and extract the conveyor belt
region (Figure 4).

Rolling shutter distortion is corrected using the approach
outlined below and frames are enqueued until the required base-
line is achieved (i.e. baseline ≥ target baseline). The incremental
conveyor belt motion (dx′) is found by computing optical flow
from a sparse set of SIFT keypoints located on the surface of
the conveyor belt. See Section 3.4.3 for further details.

∙ Correct lens distortion: The surveillance cameras used on
board fishing vessels often employ fish-eye lenses to increase
the field of view. This introduces severe lens distortion in the
image which compromises the search for stereo matches. The
radial distortion coefficients necessary to correct lens distor-
tion and intrinsic matrices necessary for transforming from

FIGURE 6 Belt motion estimation: (a) Background Mask computed by
Mask-RCNN network; (b) Motion vectors due to background point
correspondences (An , An−1). Note: ROI excludes the edge of conveyor belt; (c)
Histogram of dx estimates; (d) Kalman Filter predictions

camera coordinates to world coordinates are found by an off-
line camera calibration procedure [59, 60]. This information
is used to undistort the video frames that (after rectification)
become the left and right images.

∙ Belt extraction: Once lens distortion has been corrected
frames are rectified by finding a homography that corrects
any perspective distortion and applies an affine transforma-
tion that presents the conveyor belt region in the image
frame. This transform is precomputed by interactively iden-
tifying the conveyor belt region of interest (corners) in
a video of a chess board placed on the conveyor belt.
After transformation, the resulting frames are effectively
rectified, thereby allowing the search for correspondences
to be focused along rows. For further details see French
et al. [3].

∙ Crop ROI: A region-of-interest (ROI) that excludes the
edges of the conveyor belt is also precomputed (see
Figure 6b).

∙ Correct rolling shutter distortion: Some cameras use a hor-
izontal rolling shutter and therefore the scanlines are exposed
sequentially. Assuming the frame starts at t0, the row index of
the scanline can be expressed as a function of time by:

𝜐cam (t − t0) = rt − 𝜐0, (5)

where r is the rate of rows per microsecond, and 𝜐0 is the
index of the first exposed scanline [61]. Meingast et al. [61]
develop a general projection equation for a rolling shutter and
show how it is affected by different types on camera motion.
In our case the camera is fixed. Assuming image motion is
constant and only due to the conveyor belt moving in the
x-y Cartesian plane (i.e. we assume effects due to disparity
are negligible), then pixel coordinates xr , yr in a video frame
captured with a rolling shutter camera are mapped to xg, yg

in an equivalent video frame captured with a global shutter
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6 FISHER ET AL.

camera:

xg(𝜌, 𝜃) = xr + 𝜌
𝜐

h
cos 𝜃

yg(𝜌, 𝜃) = yr + 𝜌
𝜐

h
sin 𝜃

, (6)

where 𝜐 is the row index Equation (5), 𝜌 is the distance (no.
of pixels) travelled by the conveyor belt in (t = 1/fps s), h is
the number of rows in the cropped video frame and 𝜃 is the
direction of travel.

3.4.3 Measuring the stereo baseline

The distance moved by the conveyor belt between acquisition
of the left and right image must be precisely measured (ideally
with sub-pixel accuracy) since it determines the stereo base-
line. We estimate belt motion by determining correspondence
of SIFT interest points [41]. We search for SIFT interest points
in an ROI that covers the conveyor belt but excludes foreground
objects as these point correspondences include an additional
disparity and over represent the true belt motion. We discard any
outliers and represent the individual displacements as a vector
dx. We select the most frequent histogram bin as a global esti-
mate dx of the conveyor belt position. These estimates form the
input of a Kalman Filter which tracks the belt position in suc-
cessive video frames [40]. The processing pipeline is depicted in
Figure 5.

Let, {x} = {x f } ∪ {xb}, be the set of all interest points in the
ROI where x f and xb represent the interest points that cover
foreground and background objects respectively. Considering
only the points lying in the background, let An = {xb

n} the set
of background interest points in the current frame ( fn) and
Am = {xb

m} the set of background interest points in the previ-
ous frame ( fn−1 ). The segmentation mask used to separate x f

and xb is precomputed using a Mask-RCNN network [21], orig-
inally trained for species classification [3]. An example mask is
shown in Figure 6a. We use OpenCV’s Fast Library for Approx-
imate Nearest Neighbors (FLANN) to identify background
SIFT point correspondences. FLANN is a library comprising
a collection of algorithms for fast nearest neighbour search that
targets large datasets and high dimensional feature spaces. The
approach was developed by Muja and Lowe [62] who formalise
the nearest neighbor search problem as follows:

“Given a set of points P = {p1, … , pn} in a vector space X ,
these points must be preprocessed in such a way that given a
new query point q ∈ X , finding the points in P that are nearest
to q can be performed efficiently.”

To match the SIFT keypoint vectors we configure FLANN
for hierarchical k-means clustering. The method clusters the
given feature vectors by constructing a hierarchical k-means
tree and chooses a cut in the tree that minimizes the cluster’s
variance. Using this approach we establish pairwise correspon-
dences between SIFT points identified in consecutive frames
and compute a set of motion vectors cmn = (dx, dy) connecting
points xb

n and xb
m . Examples of the inlier (≤ 1 Std. Error) motion

vectors cmn. are shown in Figure 6b.

FIGURE 7 Stereo pre-processor: (a) Input Stereo Pair; (Tb = 0.5 s); (b)
Output Stereo Pair showing background replaced with pseudo-random texture
to force reference disparity on the conveyor belt

The dy component of cmn is negligible due to rectification
and dx represents the belt motion. Individual belt motion esti-
mates h f (dx) are noisy so we build a histogram and select the
central value of the most frequent bin to represent the global
belt motion dx (see Figure 6c).

Finally, a Kalman Filter is deployed to predict the belt posi-
tion px from estimates dx and the measurement noise is set
by examining the frequency histogram h f (dx) [40]. Figure 6d
illustrates the performance of the tracker.

3.4.4 Stereo pre-processor

The left and right stereo pair (Figure 7a) can be processed
directly by the stereo pipeline, but this is rather inefficient
since the search for disparities is dominated by the conveyor
belt motion. Additionally, some conveyor belts appear white
and featureless, and the lack of texture is very challenging
for the stereo block matching network. We address this prob-
lem by translating the right frame by a distance equivalent to
the baseline, and in-paint the belt surface (background) with
a pseudo-random texture to force zero disparity on the belt
(Figure 7b).

The input to the preprocessor is a pair of frames acquired
at time t0 and t0 + Tb from a monocular camera monitoring a
conveyor system. Tb is determined by the desired target baseline.

The stereo pre-processor performs the following tasks:

∙ Segment foreground For subsequent steps we need to sepa-
rate foreground objects and the background belt surface. We
reuse the precomputed Mask-RCNN masks (e.g. Figure 6a)
for this purpose.

∙ Translate right image We translate the right frame hori-
zontally by 𝜐, where 𝜐 represents the sum of incremental
belt shifts stored in the frame buffer. Applying a translation
reduces the size of the search window (no. of disparities) for
the stereo pipeline.

∙ Render background We render the background in both left
and right frames in a pseudo-random texture. This forces
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FISHER ET AL. 7

FIGURE 8 Camera extrinsics (MRV Scotia): (a) Calibration imagery; (b)
Camera centric extrinsics visualisation

a ‘zero-disparity’ match for the background (i.e. the belt
surface).

3.4.5 Stereo correspondence

We search for correspondences using a feature based approach
that employs a Matching Cost - Convolutional Neural Net-
work (MC-CNN) trained on the Middlebury 2014 dataset [32].
The network determines the cost of matching 11x11 pixel
patches and forms part of a stereo pipeline proposed by Zbon-
tar et al. [13]. The pipeline comprises MC-CNN, followed
by cross-based cost aggregation, semi-global-matching (SGM),
interpolation of mis-match and occlusion, sub-pixel enhance-
ment and bilateral filtering. We developed our own Pytorch
implementation of MC-CNN (the original implementation is
written in Lua) and the other pipeline functions were taken from
a GPU library published by Xing Mei et al. [57], called by a
Python/C API. We also translated the GPU library into Python
to allow us to run on the CPU for debugging and offline test-
ing. Due to the computational complexity of cross-based cost
aggregation we usually skip this step when running on the CPU.
An example of the input to the stereo pipeline is shown in
Figure 7b.

3.4.6 Stereo post-processor

The post-processor performs two tasks. It adds the baseline
disparity to the disparity map (reversing the translation applied
by the preprocessor) and transforms the disparity map into a
calibrated xyz depth map using the projective transformation

matrix Q.

Q =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 −cx

0 1 0 −cy

0 0 0 f

0 0 −
1

B
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (7)

where cx and cy are the coords. of the camera’s principle point,
f represents the focal length and B the length of the baseline.

The viewing geometry can be recovered using calibration
imagery (Figure 8). By examining MRV Scotia’s camera extrin-
sics we can determine that the camera is mounted 1289mm
above the conveyor belt. To display a calibrated depth map rep-
resentation of the aligned image we compute the focal length by
rearranging Equation (4).

f =
Zd

B
. (8)

Let Z = Zb represent the distance to the surface of the conveyor
belt (recovered from camera extrinsics). Then,

f =
ZbBP

B
= ZbP , (9)

where P represents the number of pixels per mm in the aligned

image. We set cx =
w

2
and cy =

h

2
where w and h represent the

height and width of the aligned image.

3.4.7 Testing

We produced depth maps and 3D point clouds from video
acquired during trials undertaken as part of a preliminary
evaluation of REM [2] and Smartfish H2020 [17].

3.5 Reference system

A laboratory model was constructed to explore the architecture
and provide a performance benchmark. The model conveyor
system comprised a stepper motor, PVC sheet and rollers cut
from plastic tubing. A low cost USB stereo camera (stereo base-
line = 62 mm) was mounted 750mm above the conveyor belt.
We used FFmpeg [63] to record video and synchronised the
left and right cameras based on their frame timestamps. Check-
ing the timestamps and by introducing a ‘flash’ exposure we
confirmed that synchronisation remained reasonably stable and
frames were acquired at 30 fps. Note: More recent versions
of the ELP Stereo Camera provide synchronised outputs. The
operational system architecture was modified to allow selection
between monocular and binocular camera inputs (Figure 9).

ArUco markers were attached to the conveyor belt
(Figure 10) to enable its position to be easily determined with-
out the need for a Kalman Filter [64]. For a conventional stereo
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8 FISHER ET AL.

FIGURE 9 Reference system architecture

FIGURE 10 Laboratory rig, showing ArUco markers fixed to conveyor
belt

FIGURE 11 Rectified stereo pair from the laboratory rig. Showing
segmented conveyor with ArUco markers. Note: Horizontal lines have been
added to visualise rectification

camera rectification determines a transformation of each image
such that pairs of conjugate epipolar lines become collinear and
parallel to the horizontal image axis [65, 66]. The stereo cam-
era was calibrated using the OpenCV library [67]. In addition
to calculating lens distortion coefficients, and camera intrinsics,
the library also provides a rectification matrix to align the left
and right images (e.g. Figure 11) and Q matrix (Equation 7) to
project the disparity map to 3D world coordinates.

For the laboratory rig we assume only one object is present
at a time. This constraint allows us to use a simple foreground
segmentation threshold followed by a morphological filter to
remove noise.

3.5.1 Testing

To assess the performance of the reference system we con-
structed a number of calibration objects. These were printed
with a pseudo-random pattern designed to ensure their
reflectance functions were approximately lambertian and albe-
dos non-uniform (i.e. rich in non-homogeneous textures). We
also built 3D CAD models to provide ground truth (Figure 12).

We acquired images at high definition (HD) resolution (1280
x720 pixels) and standard definition (SD) resolution (640x360
pixels down sampled). To test precision we produced 3D point
clouds from 30 frames (1 s) of video acquired with the belt
stopped and in motion with the calibration object near the cam-
era’s optical centre. We fitted bounding boxes to the 3D point

FIGURE 12 (a) Calibration pentahedron. Base = 190x190 mm; height =
140 mm. (b) CAD model

TABLE 1 Reference system: Results from one stereo pair

System

config-uration

Base-

line

(mm)

Voxel size

(mm) BBox (mm)

Misma-

tches

(pixels)

Binocular (SD) 62.0 1.7x1.7x4.6 190.6x188.0x123.2 477

Binocular (HD) 62.0 0.9x0.9x2.2 189.7x188.0x126.8 9366

Monocular (SD) 62.2 1.7x1.7x4.6 183.6x182.7x122.9 337

Monocular (HD) 62.2 0.9x0.9x2.2 183.6x182.7x122.9 7983

FIGURE 13 3D point clouds rendered as heat colour map.: (a) Binocular
stereo (HD), belt stopped; (b) Binoccular stereo (HD), Belt moving; (c)
Monocular stereo (HD), Belt moving

clouds and measured length, width, and height. To test accu-
racy we registered one of the point clouds (acquired close to
the optical centre) with the CAD model (upsampled) and used
Open3D method compute_point_cloud_distance to compute
the distance from the output point cloud to the target (CAD
model ground truth) point cloud. We also analysed the point
cloud and estimated x,y,z quantisation.

4 RESULTS

4.1 Reference system

Table 1 summarises the operational parameters of the binocular
and monocular systems. A comparison of 3D point clouds and
depth maps produced from monocular and binocular video are
presented in Figures 13 and 14.

An analysis of the size of bounding boxes enclosing the point
clouds in 30 consecutive frames is presented in Figure 15 and
the distance between source and target (CAD model) point
clouds is shown in Figure 16.
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FISHER ET AL. 9

FIGURE 14 Depth maps: (a) Binocular stereo (HD); (b) Monocular
stereo (HD)

We compared 3D objects recovered by binocular and motion
stereo as follows. First we down-sampled both the point clouds
to a voxel size of 2.5 mm and computed the distance between
them. We found that 97.5% of the points were coincident and
those non-coincident corresponded to outlying points, rendered
in red in Figure 17. After removing the outliers we found that
there was no difference between the point clouds, that is, all
(approx. 10,000) points were coincident (Figure 17c).

4.2 Operational system

Depth maps obtained from video footage acquired on board
MRV Scotia are presented in Figure 18 and rendered as
3D point clouds in Figure 19. Further results are shown in
Section A. The throughput of the GPU implementation is
approximately 5 fps (1 x NVIDIA Tesla K40).

5 DISCUSSION

The results demonstrate that MC-CNN trained on the Mid-
dlebury stereo data set produces good reconstructions of 3D
scenes both in the laboratory and at sea. This is interesting, since
the Middlebury training images represent a variety of scenes
comprising everyday objects that are very different to the target

FIGURE 15 Estimates of the calibration object’s BBox in 30 stereo
frames. (a) Standard definition (SD); (b) High definition (HD). Note: BBox
ground truth = 190x190x140 mm

FIGURE 16 Distance between registered 3D point clouds: (a) Standard
definition; (b) High definition

FIGURE 17 Comparison of (HD) point clouds: (a) Binocular stereo
outliers (red); (b) Motion stereo outliers (red); (c) Matching points (grey) after
outliers have been removed

 17519667, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ipr2.12636 by <

Shibboleth>
-m

em
ber@

uea.ac.uk, W
iley O

nline L
ibrary on [24/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 FISHER ET AL.

FIGURE 18 Depth maps: (a) Standard Definition; (b) High Definition.
Note: z (mm) relative to conveyor belt

FIGURE 19 Point clouds Rendered with image texture): (a) Standard
Definition (SD); (b) High Definition (HD)

domain. One of the disadvantages of neural networks is that
the features encoded by the network are somewhat opaque,
so we cannot claim that MC-CNN learns mutual information,
image gradients, colour difference, etc. However, the network
appears to learn a set of universal features (within a 11x11 win-
dow) that enables it to match stereo imagery captured in a range
of scenarios. Although we did not confirm experimentally that
the network is robust to changes in illumination, since MC-
CNN is ranked higher in the Middlebury evaluation than other
approaches that do claim illuminant invariance, we might expect
it to perform well in this regard.

5.1 Laboratory reference

A striking feature in Table 1 is the high number of mismatched
pixels at HD resolution compared to SD resolution for both
binocular and monocular systems. This illustrates that block
matching at HD is much more sensitive to errors in correct-
ing radial lens distortion. The mismatches are corrected by an
in-painting algorithm and there is little difference in the visual
appearance of 3D point clouds and depth maps presented in
Figures 13 and 14.

Figure 15 confirms that with no conveyor belt motion, the
binocular camera recovers the pentahedron’s bounding box
(BBox) size with high precision. This represents a benchmark
level of performance, such as could be expected from syn-
chronised binocular stereo head employing a global shutter
monitoring a belt in motion. When the conveyor belt moves
the noise due to the lack of synchronisation and motion blur
(the rolling shutter integration period is approx. 1/30 s ) are
introduced along image rows and this is reflected in the BBox
length and height estimates. The BBox width is not signifi-
cantly affected by the horizontal shutter or motion artifacts. The

monocular and binocular systems perform similarly however
heights estimated by the monocular system tend to be noisier.
This is most likely due firstly to different camera intrinsics, that
is, the binocular system stereo forms images from the left, right
camera and the monocular system forms images from the left
camera only, and secondly reflects some uncertainly in estimat-
ing the effective baseline. All estimates tend to under represent
the true BBox size as the stereo pipeline matches patches of size
11x11 pixels.

Figure 16 compares the accuracy of the systems and confirms
the HD imagery delivers better estimates than SD, although not
by the margin one might expect given the voxel sizes reported
in Table 1. This is probably due to the larger number of mis-
matched pixels at HD resolution. The significant outliers are
mainly due to inaccuracies in height estimates. Figure 16 shows
these could reach a maximum of 18 mm.

Comparing binocular and motion stereo point clouds we
find 97.5% of points are coincident with errors mostly con-
fined to the interface between the belt and the base of the
polyhedron (Figure 17). These mismatches occur at a transition
between two similar pseudo-random textures; rendered onto
the conveyor belt and printed on the polyhedron. This presents
challenges for the stereo pipeline and it is not surprising that
mismatches occur at this interface. Fortunately, these points can
be identified as outliers, and after removing them we find there
to be no difference between point clouds from binocular and
motion stereo.

5.2 MRV Scotia

We have no ground-truth for depth maps derived from MRV
Scotia’s video footage. A possible source of inaccuracy in esti-
mating depth is in determining the baseline. This becomes
increasingly difficult as the density of fish carried by the
conveyor system increases since there is less exposed belt.
The REM CCTV camera was installed before this work was
envisaged and is located 1289 mm above the conveyor. The
quantisation in z is approx. 8mm (SD resolution) at an equiv-
alent baseline of 80 mm. Figure A1 illustrates some challenges
for the system. Part of the fish rendered in Figure A1d is miss-
ing due to an error with the mask, possibly caused by the region
of shadow. The depth map for the smallest fish in Figure A1f is
corrupted, probably due to the lack of texture on the underside
of the fish. Figure A2 illustrates noise due to inconsistencies in
the baseline estimates which manifest as a lack of precision in
the depth maps.

5.3 North sea trawler

Figure A3 illustrates some challenges with motion stereo in an
operational setting. In this case the camera is mounted 1278 mm
above the conveyor belt. A crew member is gutting fish and a
gloved hand can be seen in the right of the frame. Splatter from
this work has fouled the dome protecting the camera lens and
parts of the image appears blurred. The conveyor belt is moving
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FISHER ET AL. 11

debris and discarded fish to the left; on this side the camera
dome is cleaner, objects appear sharper and we have successfully
recovered the depth.

We have yet to acquire ground truth depth from fish con-
veyor systems or analyse sufficient data to draw conclusions
regarding the accuracy of biomass estimates using Motion
Stereo. However, we already use a generic geometric model to
provide estimates of depth to generate shadows in synthesised
imagery that is used to augmented training data. We expect that
depth estimates produced by Motion Stereo will represent an
improvement over the generic models we currently employ.

6 CONCLUSION

We have demonstrated the efficacy of a system that computes
depth from a sequence of monocular images obtained from
REM CCTV monitoring fish in transit on a conveyor belt. The
motion constraint imposed by the conveyor belt allowed us to
recover depth by Motion Stereo. In this case the stereo base-
line is determined by the distance travelled by the conveyor
belt. We addressed some practical challenges such as correc-
tion of motion artifacts due to the camera’s rolling shutter, and
adopted MC-CNN stereo matching due to Zbontar and LeCun
[13] to produce disparity maps. By observing a calibration pen-
tahedron placed on a model conveyor system constructed in
the laboratory with a stereo camera at a distance of 0.75 m
above, we compared 3D point clouds rendered by binocular
and monocular stereo with a ground truth CAD model. We
fixed ArUco markers to our laboratory rig to help accurately
determine belt motion and found that Motion Stereo and con-
ventional binocular stereo performed equivalently. Comparing
the recovered point cloud with ground truth gave a median error
of < 5 mm and the maximum error of 15 mm. We also com-
pared the Binocular and Motion Stereo point clouds directly
and found that after removing outlying points (>2 Std. Error)
there was no difference between the 3D point clouds. We tested
with standard and high definition imagery and found that with
HD a significant number of mismatched pixels were reported
by the stereo pipeline. We believe this to be due to inaccuracy
in correcting for radial lens distortion. The relatively large max-
imum error is due to the 11x11 patch size used by MC-CNN.
We estimated precision to be < 4 mm (interquartile interval) by
analysing 30 consecutive video frames acquired near the cam-
era’s optical centre. We also presented depth maps rendered
from operational video acquired from a REM CCTV system
installed on board Marine Scotland’s research vessel MRV Sco-
tia. This presented further challenges as we found the video
timestamps had been overwritten when the REM video was
recorded. Recovering belt motion was more challenging due to
dropped frames and the absence of ArUco markers. In this case
we recovered the conveyor belt motion by tracking SIFT inter-
est points with a Kalman Filter. The depth maps obtained from
the operational system are quite noisy but sufficient for some
tasks such as applying training data augmentation for training
of further CNN models. In future work we plan to use this
data to augment the species classifier training set and investigate

other machine learning techniques for estimating depth from
monocular imagery.
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APPENDICES A

FIGURE A1 Further examples of depth maps from MRV Scotia

FIGURE A2 Montage of depth maps from 1.8 s clip of video acquired
on board MRV Scotia (SD Resolution)

FIGURE A3 Depth map rendered from video footage acquired from a
North Sea trawler as part of Marine Scotland’s REM trial [2] (SD Resolution).
(a) Left image; (b) Depth map; (c) 3D reconstruction
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