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Abstract: The transport of electronic excitation energy (EET) between ions, atoms, molecules or
chromophores is an important process that occurs in a wide range of physical systems. The tantalising
prospect of effective experimental control over such transfer is, in principle, amenable to a variety
of different kinds of approach. Several of the most promising, which are analysed and compared
in this paper, involve the influence of externally applied static electric or electromagnetic fields,
or the exploitation of local media effects. A quantum electrodynamical framework is used as a
common basis to describe the corresponding mechanisms, illustrated by specially adapted Feynman
diagrams. It becomes evident that energy transfer between polar species engages an additional
pairwise interaction beyond the EET coupling. Such an effect may also play an important role in
interatomic Coulombic decay (ICD), a process that has recently attracted fresh interest. The control of
ICD, in which the photoionisation of two nearby atoms via energy transfer, is determined to have
analogous characteristics to conventional forms of EET.

Keywords: electronic excitation energy; resonance energy transfer; quantum electrodynamics; inter-
atomic Coulombic decay; UV-Visible light; electromagnetic fields; static fields; X-ray radiation

1. Introduction

The absorption of ultraviolet–visible (UV-Visible) light by condensed phase dielectric
materials generally results in the promotion of ions, atoms, molecules or chromophores to
short-lived electronic excited states. In optically pure media that lack effective channels for
complete energy dissipation, a degree of fluorescence will commonly ensue—yet the site of
fluorescent emission will often differ from the site of initial excitation. In the short time
interval between the photon absorption and emission events, single- or multi-step electronic
energy transfer (EET) of the excitation may occur between proximal particles. Over short,
sub-wavelength ranges, each such transfer step takes the form of a radiationless pairwise
interaction, typically between electronically distinct particles. One of the particles (the
excited particle, the initial absorber) acts as the energy donor, the other as an acceptor [1–6].
The present authors have reported on this phenomenon in various review articles [7–10].

Recently it has been shown that, fundamentally, the same mechanism also operates
in atom physics, where photoexcitation of a donor atom leads to indirect ionisation of
a nearby acceptor [11,12]. Here, too, the associated pairwise energy transfer can still
be described in the same way as transfer between molecules or chromophores, based
on a description cast in terms of quantised field interactions. There is, nonetheless, an
important difference: in suitably complex, heterogeneous condensed phase media, multi-
step resonance energy transfer may arise, usually exhibiting a spectroscopic gradient. This
signifies that a small amount of energy is commonly lost through vibrational relaxation
after each transfer step, which means that back transfer from each acceptor to its energy
donor becomes exceptionally inefficient [13]. Similar effects can be observed in quantum
dot systems [14–18].
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An essential feature of EET (also known as resonance energy transfer, RET) is that the
process occurs spontaneously, by engaging quanta of the vacuum field [19]. However, it
has been shown that its efficiency and rate are amenable to modification by a variety of
means [20–27], including local media effects and externally applied static electric or electro-
magnetic fields. In this paper, a comprehensive quantum electrodynamical framework is
described in sufficient detail to explain the mechanism of inter-particle coupling in EET,
providing a basis for theory that represents these more complex energy transfer systems.
Adapting Feynman diagram methods, we establish results that exhibit fundamental con-
nections between all these effects, also eliciting their detailed dependence on parameters
that are under experimental control.

2. Electronic Energy Transfer

We begin with a straightforward representation of the electrodynamic coupling be-
tween the transition electric dipoles µ↓ of a donor D, whose transition involves electronic
relaxation, and µ↑ of an acceptor A which undergoes an excitation. The two dipoles are
separated by a displacement vector R = RD − RA (i.e., the distance between the positions
of D and A). Omitting a long and intricate derivation based on special functions [28], the
matrix element for EET in the electric dipole (E1) approximation is as follows;

M f i = µ↓i (D)Vij(k, R)µ↑j (A) (1)

Vij(k, R) =
eikR

4πε0R3

{
(1− ikR)

(
δij − 3R̂iR̂j

)
− (kR)2(δij − R̂iR̂j

)}
(2)

In the above expression, subscripts i and j signify Cartesian components: here and through-
out this paper, any such repeated indices are subject to implied summation (the Einstein
index convention). Moreover, the subscript fi on M is standard notation meaning the matrix
element for a transition from the initial to the final system state. The parameter k is the
reciprocal of the reduced wavelength

Appl. Sci. 2022, 12, 8597 2 of 13 
 

donor becomes exceptionally inefficient [13]. Similar effects can be observed in quantum 
dot systems [14–18]. 

An essential feature of EET (also known as resonance energy transfer, RET) is that 
the process occurs spontaneously, by engaging quanta of the vacuum field [19]. However, 
it has been shown that its efficiency and rate are amenable to modification by a variety of 
means [20–27], including local media effects and externally applied static electric or 
electromagnetic fields. In this paper, a comprehensive quantum electrodynamical 
framework is described in sufficient detail to explain the mechanism of inter-particle 
coupling in EET, providing a basis for theory that represents these more complex energy 
transfer systems. Adapting Feynman diagram methods, we establish results that exhibit 
fundamental connections between all these effects, also eliciting their detailed 
dependence on parameters that are under experimental control. 

2. Electronic Energy Transfer 
We begin with a straightforward representation of the electrodynamic coupling 

between the transition electric dipoles μ↓ of a donor D, whose transition involves 
electronic relaxation, and μ↑ of an acceptor A which undergoes an excitation. The two 
dipoles are separated by a displacement vector R = RD − RA (i.e., the distance between the 
positions of D and A). Omitting a long and intricate derivation based on special functions 
[28], the matrix element for EET in the electric dipole (E1) approximation is as follows; 

( ) ( )D ( , ) Afi i ij jM V kμ μ↓ ↑= R  (1)

( )( ) ( ) ( ){ }
i

2
3

0

e 垐 垐( , ) 1 i 3
4π

kR

ij ij i j ij i jV k kR R R kR R R
R

δ δ
ε

= − − − −R  (2)

In the above expression, subscripts i and j signify Cartesian components: here and 
throughout this paper, any such repeated indices are subject to implied summation (the 
Einstein index convention). Moreover, the subscript fi on M is standard notation meaning 
the matrix element for a transition from the initial to the final system state. The parameter 
k is the reciprocal of the reduced wavelength   notionally associated with the transfer 
energy, i.e., 1 2k π λ= =  where the transfer energy is h c λ . The form of coupling 
represented by Equation (2) is known as the retarded resonance dipole–dipole interaction 
tensor; neglect of the imaginary part of this tensor leads to the monotonic distance-
dependence being modified by an oscillatory function. Such behaviour arises in 
dimensionally constrained systems, such as cavities of finite length [20,29,30], though not 
in any open system. 
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coupling, the effects of quantum time-energy uncertainty require that two distinct time-
orderings be taken into account. This reflects the fact that each dipole transition—the 
electronic decay of the donor and the excitation of the acceptor—can engage photon 
creation and annihilation operators only linearly. However, the sharply diminishing 
strength of coupling with distance, manifest in Equation (2), is such that EET generally 
occurs over distances where the term proportional to R−3 dominates. If consideration is 
limited to this regime, then it is possible (and expedient for the analysis that follows) to 
adopt a simplified, asymptotic representation formally consistent with treating Equation 
(2) as a first-order perturbation operator. Such a method was previously used to 
determine the dispersion interactions in the short-range region [31]. The corresponding 
single diagrammatic representation, exhibited in Figure 1b, essentially represents systems 
in which the energy transfer time (the interval between the release of electronic energy by 
the donor and its arrival at the acceptor) is itself immeasurably small, and whose duration 
is in practice experimentally indiscernible. 

notionally associated with the transfer energy, i.e.,
k = 1/ = 2π/λ where the transfer energy is hc/λ. The form of coupling represented by
Equation (2) is known as the retarded resonance dipole–dipole interaction tensor; neglect
of the imaginary part of this tensor leads to the monotonic distance-dependence being
modified by an oscillatory function. Such behaviour arises in dimensionally constrained
systems, such as cavities of finite length [20,29,30], though not in any open system.

Equation (2) is routinely derived by quantum electrodynamical calculations adapting
Feynman diagrammatic methods. Here, as shown in Figure 1a, colouring assists visualisation
of the energy flow. With calculations of this kind, based on virtual photon coupling, the effects
of quantum time-energy uncertainty require that two distinct time-orderings be taken into
account. This reflects the fact that each dipole transition—the electronic decay of the donor and
the excitation of the acceptor—can engage photon creation and annihilation operators only
linearly. However, the sharply diminishing strength of coupling with distance, manifest in
Equation (2), is such that EET generally occurs over distances where the term proportional to
R−3 dominates. If consideration is limited to this regime, then it is possible (and expedient for
the analysis that follows) to adopt a simplified, asymptotic representation formally consistent
with treating Equation (2) as a first-order perturbation operator. Such a method was previously
used to determine the dispersion interactions in the short-range region [31]. The corresponding
single diagrammatic representation, exhibited in Figure 1b, essentially represents systems in
which the energy transfer time (the interval between the release of electronic energy by the
donor and its arrival at the acceptor) is itself immeasurably small, and whose duration is in
practice experimentally indiscernible.
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Figure 1. Graphs for calculating the basic matrix element for electronic energy transfer, in which 
time is progressing upwards: (a) two separate time-orderings accounting for causality and (b) 
representation of the conflated result obtained from a near-zone approximation, in which R . 
In the vertical world-lines for D and A, red segments indicate an electronic excited state and black 
is the ground state. Between the two world-lines is a wavy green line that denotes virtual photon 
propagation; the horizontal dashed line indicates short-range dipole–dipole coupling. 

A more in-depth analysis of the derivation of the transition dipole-transition dipole 
(E1-E1) coupling tensor, Vij, and the transfer rate of EET (an outline of which follows)—
without providing all of the intricate specifics—is delivered by Salam in his recent review 
[32]. The physical observable derived from the Vij tensor, via the matrix element, is the 
transfer rate of EET, symbolised by Γ. This rate is determined from the Fermi rule [33], 

which is given by 2~ fiMΓ  when omitting a proportionality constant that corresponds 
to the spectral overlap of the donor emission and acceptor absorption [7,34]; the same 
constant of proportionality applies to all of the EET rate equations in our subsequent 
analysis. Assuming a system of two freely tumbling molecules, meaning that a rotational 
average is required [35], the following is found; 

( ) ( )
( )

2 2

EET 23
0

2 D A
~

3 4π Rε

↓ ↑

Γ
μ μ

 (3)

It should be noted here that EET might, in principle, also occur via couplings between a 
transition dipole (E1) and higher order transition multipoles of either electric or magnetic 
form, or even through the interactions of two such multipoles. Commonly, the efficiencies 
of such effects are negligibly small in comparison to EET via E1-E1 coupling [10,36,37]—
though exceptions may arise, as for example, in recent work by Wade et al. on ordered 
chiral materials, where magnetic dipole interactions come prominently into play [38]. 

When the process of energy transfer is modified by local fields, it is possible to 
approach theory by either of two alternative methods. One way is first to apply 
perturbation theory to correct the form of the donor and acceptor wavefunctions, taking 
into account the electromagnetic influence of these fields, then adopt these modified forms 
in evaluation of the correspondingly modified transition moments for direct inclusion in 
Equation (3). For example, under the influence of a static field all wavefunctions may be 
modified by a perturbation associated with the Stark effect; with throughput light the 
perturbation identifies with an AC Stark effect. In each case the alternative method, 
treating all the fundamental interactions in a single perturbation-based calculation, arrives 
at the results in a single step. Both methods yield the same results; we adopt the latter 
approach since it is correct, direct and the associated graphs lend clearer insights. 

3. Controlled Energy Transfer 
3.1. Static-Field Induced EET 

Figure 1. Graphs for calculating the basic matrix element for electronic energy transfer, in
which time is progressing upwards: (a) two separate time-orderings accounting for causality and
(b) representation of the conflated result obtained from a near-zone approximation, in which R�

Appl. Sci. 2022, 12, 8597 2 of 13 
 

donor becomes exceptionally inefficient [13]. Similar effects can be observed in quantum 
dot systems [14–18]. 

An essential feature of EET (also known as resonance energy transfer, RET) is that 
the process occurs spontaneously, by engaging quanta of the vacuum field [19]. However, 
it has been shown that its efficiency and rate are amenable to modification by a variety of 
means [20–27], including local media effects and externally applied static electric or 
electromagnetic fields. In this paper, a comprehensive quantum electrodynamical 
framework is described in sufficient detail to explain the mechanism of inter-particle 
coupling in EET, providing a basis for theory that represents these more complex energy 
transfer systems. Adapting Feynman diagram methods, we establish results that exhibit 
fundamental connections between all these effects, also eliciting their detailed 
dependence on parameters that are under experimental control. 

2. Electronic Energy Transfer 
We begin with a straightforward representation of the electrodynamic coupling 

between the transition electric dipoles μ↓ of a donor D, whose transition involves 
electronic relaxation, and μ↑ of an acceptor A which undergoes an excitation. The two 
dipoles are separated by a displacement vector R = RD − RA (i.e., the distance between the 
positions of D and A). Omitting a long and intricate derivation based on special functions 
[28], the matrix element for EET in the electric dipole (E1) approximation is as follows; 

( ) ( )D ( , ) Afi i ij jM V kμ μ↓ ↑= R  (1)

( )( ) ( ) ( ){ }
i

2
3

0

e 垐 垐( , ) 1 i 3
4π

kR

ij ij i j ij i jV k kR R R kR R R
R

δ δ
ε

= − − − −R  (2)

In the above expression, subscripts i and j signify Cartesian components: here and 
throughout this paper, any such repeated indices are subject to implied summation (the 
Einstein index convention). Moreover, the subscript fi on M is standard notation meaning 
the matrix element for a transition from the initial to the final system state. The parameter 
k is the reciprocal of the reduced wavelength   notionally associated with the transfer 
energy, i.e., 1 2k π λ= =  where the transfer energy is h c λ . The form of coupling 
represented by Equation (2) is known as the retarded resonance dipole–dipole interaction 
tensor; neglect of the imaginary part of this tensor leads to the monotonic distance-
dependence being modified by an oscillatory function. Such behaviour arises in 
dimensionally constrained systems, such as cavities of finite length [20,29,30], though not 
in any open system. 

Equation (2) is routinely derived by quantum electrodynamical calculations adapting 
Feynman diagrammatic methods. Here, as shown in Figure 1a, colouring assists 
visualisation of the energy flow. With calculations of this kind, based on virtual photon 
coupling, the effects of quantum time-energy uncertainty require that two distinct time-
orderings be taken into account. This reflects the fact that each dipole transition—the 
electronic decay of the donor and the excitation of the acceptor—can engage photon 
creation and annihilation operators only linearly. However, the sharply diminishing 
strength of coupling with distance, manifest in Equation (2), is such that EET generally 
occurs over distances where the term proportional to R−3 dominates. If consideration is 
limited to this regime, then it is possible (and expedient for the analysis that follows) to 
adopt a simplified, asymptotic representation formally consistent with treating Equation 
(2) as a first-order perturbation operator. Such a method was previously used to 
determine the dispersion interactions in the short-range region [31]. The corresponding 
single diagrammatic representation, exhibited in Figure 1b, essentially represents systems 
in which the energy transfer time (the interval between the release of electronic energy by 
the donor and its arrival at the acceptor) is itself immeasurably small, and whose duration 
is in practice experimentally indiscernible. 

.
In the vertical world-lines for D and A, red segments indicate an electronic excited state and black
is the ground state. Between the two world-lines is a wavy green line that denotes virtual photon
propagation; the horizontal dashed line indicates short-range dipole–dipole coupling.

A more in-depth analysis of the derivation of the transition dipole-transition dipole (E1-
E1) coupling tensor, Vij, and the transfer rate of EET (an outline of which follows)—without
providing all of the intricate specifics—is delivered by Salam in his recent review [32]. The
physical observable derived from the Vij tensor, via the matrix element, is the transfer
rate of EET, symbolised by Γ. This rate is determined from the Fermi rule [33], which is

given by Γ ∼
∣∣∣M f i

∣∣∣2 when omitting a proportionality constant that corresponds to the
spectral overlap of the donor emission and acceptor absorption [7,34]; the same constant
of proportionality applies to all of the EET rate equations in our subsequent analysis.
Assuming a system of two freely tumbling molecules, meaning that a rotational average is
required [35], the following is found;

ΓEET ∼
2
∣∣µ↓(D)

∣∣2∣∣µ↑(A)
∣∣2

3(4πε0R3)
2 (3)

It should be noted here that EET might, in principle, also occur via couplings between a
transition dipole (E1) and higher order transition multipoles of either electric or magnetic
form, or even through the interactions of two such multipoles. Commonly, the efficiencies
of such effects are negligibly small in comparison to EET via E1-E1 coupling [10,36,37]—
though exceptions may arise, as for example, in recent work by Wade et al. on ordered
chiral materials, where magnetic dipole interactions come prominently into play [38].

When the process of energy transfer is modified by local fields, it is possible to
approach theory by either of two alternative methods. One way is first to apply perturbation
theory to correct the form of the donor and acceptor wavefunctions, taking into account
the electromagnetic influence of these fields, then adopt these modified forms in evaluation
of the correspondingly modified transition moments for direct inclusion in Equation (3).
For example, under the influence of a static field all wavefunctions may be modified by
a perturbation associated with the Stark effect; with throughput light the perturbation
identifies with an AC Stark effect. In each case the alternative method, treating all the
fundamental interactions in a single perturbation-based calculation, arrives at the results in
a single step. Both methods yield the same results; we adopt the latter approach since it is
correct, direct and the associated graphs lend clearer insights.
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3. Controlled Energy Transfer
3.1. Static-Field Induced EET

It is somewhat surprising to observe that seemingly little attention has been given
to the effect of local static electric fields on the process of electronic energy transfer. First,
let us consider a static field whose strength, assumed to be uniform across the sample, is
under direct experimental control. The most obvious evidence for the existence of any
such effect, modifying the transfer efficiency, may be anticipated as a change in the relative
intensities of fluorescence from the donor and acceptor [9]. For example, an enhanced rate
of energy transfer, relative to donor emission, will lead to stronger fluorescence from the
acceptor—unless the donor emission is itself modified to the same degree by the static field.
In this respect, the surest guide to rate modification will be the specific effect of the static
field on the acceptor.

For a given donor-acceptor pair in the solution phase, for which there is a free molecu-
lar orientation with respect to any fixed-direction, an externally applied field may correctly
be assumed to negate any consistent effect on the rate of energy transfer. Much the same
conclusion can be drawn for any randomly oriented ensemble of donors and acceptors in a
solid, heterogeneous medium. In any such system (provided that the rotational relaxation
times exceed the emission timescales), one might only expect a marginally broadened
distribution of donor and acceptor fluorescence intensities. However, the situation is very
different in the case of a medium in which the static field can affect the orientational distribu-
tion. An obvious instance is a doped liquid crystal, though the molecules in any polar liquid
will experience the same effect to some degree. Indeed, the structure of most molecules
have a sufficiently low symmetry to support a permanent electric dipole—specifically,
those that belong to one of the Schoenflies point groups Cs, Cn or Cnv. The most familiar
manifestation of alignment in a static field, featuring in the Debye equation, is the dipolar
contribution to electronic polarisation [39].

There are two distinct mechanisms through which the applied electric field may modify
observations of energy transfer [40]. One is by direct engagement in one of the electronic
transitions—either the donor decay or the acceptor excitation; the other is through an effect
on the relative alignment of those two components. The first of these effects requires that the
given transition is allowed by both single-quantum (electric dipole, E1) and two-quantum
(E12) selection rules. In fact, for polar molecules of every symmetry type, all of their
conventional (i.e., E1-allowed) electronic transitions are also E12-allowed, so this condition
is automatically satisfied. Nonetheless, the contribution of the latter, static field-engaging
channel, will generally be small since it arises from a higher order of perturbation theory.
The second mechanism for a field-induced change in the energy transfer rates, i.e., that
which occurs through an influence on molecular orientation, arises from the conventional
average value of the orientation factor—the 2/3 in Equation (3)—being modified as a result
of partial alignment, commonly signified by a Boltzmann-weighted distribution function.
As Van der Meer showed in a comprehensive analysis of the orientation factor known as
‘kappa squared’ [41], optimal alignment can enhance the rate of transfer by a factor of up to
six (the isotropic value 2/3 increasing to an upper limit of 4). Methods for estimating the
value of the orientation factor are discussed in a useful review by Loura [42].

The matrix element for EET is dominated by the input-field-independent term of
Equation (2), but it also comprises correction terms that arise due to the presence of the
static electric field. With respect to the first mechanism described above, the most significant
process involves a linear coupling of the static field with either D or A. Simultaneous
interactions with both are also possible, but their description entails a yet higher order of
perturbation theory that contributes negligibly to the rate of energy transfer. The Fermi
rate expression is again used to determine an observable, but in principle it now includes
an extra term that represents a second-order molecular interaction, signifying one molecule
(either the donor or the acceptor) coupling with both its neighbour and the input static

electric field. This is written as Γ′ ∼
∣∣∣M f i + Mstat

f i

∣∣∣2, in which Mstat
f i accordingly represents
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an overall third-order correction term due to the static field. The structure of the correction
term is readily ascertained from the simplified (near-zone) time-ordered diagrams shown
in Figure 2. Hence, we find:

Mstat
f i = −ε0Di

{
S↓ij(D)µ↑k (A) + µ↓k (D)S↑ij(A)

}
Vjk(0, R) (4)

where ε0 is the vacuum permittivity, D is the local electric displacement field and Sij is a
second rank (E12) response tensor. Specifically including the state connections and frequency
arguments of the latter, the donor tensor takes the form S↓ij(D) ≡ S↓ij(−ck; 0) and, for the

acceptor, we have S↑ij(A) ≡ S↑ij(0; ck). Both tensors are fully defined in the original paper [40],
which majors on the selection rules and an orientational averaging. In Equation (4), the first
term relates summed contributions from both (a) and (b) in Figure 2; the second term is
derived from both (c) and (d). Moreover, since the system resides in the near-zone region,
the static limit (for which k = 0) of Equation (2) can be used—while the explicit frequency
dependence of the S tensors, representing their dispersion property, needs to be retained.
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linearly engages with a static electric field: in (a,b) the static field influences the donor decay transition;
in (c,d) it affects the acceptor excitation. Red and black lines denote electronically excited and ground
states, respectively; a yellow line denotes a virtual intermediate state. The blue dashed line indicates
the applied static field, while the green dashed line denotes short-range dipole–dipole coupling.

In the relatively unusual case of entirely nonpolar donor and acceptor molecules, the
rate of transfer delivered by the matrix element (4) without any input-field-independent
contributions will clearly lead, through the Fermi Rule, to a transfer rate with a quadratic
dependence on the applied field strength D, so that:

ΓSTAT ∼
D2

3(4πR3)
2

∣∣∣µ↓(D)
∣∣∣2∣∣∣TrS↑(A)

∣∣∣2 + ∣∣∣TrS↓(D)
∣∣∣2∣∣∣µ↑(A)

∣∣∣2 (5)

More generally, in the case of orientable molecules, the general outcome from the original
study [40] results from a derivation requiring the evaluation of Boltzmann-weighted tensor
averages [43], and it is duly cast in a form that entails spherical Bessel functions. However,
simplification can now be effected for the short-range effects that dominate energy transfer,
where E1 processes are pre-eminent. With a Taylor series expansion of Equation (31) from
ref. [40], we thus find for partially oriented systems:

Γ′STAT ∼
∣∣µ↓(D)

∣∣2∣∣µ↑(A)
∣∣2D4

12
(
πε3

0R3
)2
(kBT)4

∆µ↓2z (D)µ2(D)∆µ↑2z (A)µ2(A) (6)

Here, the absence of superscript arrows on µ designates a static dipole moment, whose
direction within each molecule represents an internal axis chosen to define its intrin-
sic z-direction—i.e., the zD-axis within the donor and the zA-axis within the acceptor,
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given that each is polar; T is the absolute temperature and kB is the Boltzmann constant.
The mechanism of mutual orientation that generates the above result applies only when
both donor and acceptor are polar; the inverse fourth power dependence on tempera-
ture indicates a sharp diminution of the mutual orientation effect as temperature rises,
since randomising thermal motions become increasingly dominant. In this result, there
is also a notable dependence on the relative internal orientation of each transition dipole
with respect to the corresponding static dipole, as signified by the two factors defined as
∆µ2

z ≡ 3µ2
z − |µ|

2 = 2µ2
z − µ2

x − µ2
y in Equation (6). Evidently the effect is optimised if the

transition and static dipoles have a common orientation, signifying that the relevant excited
state has the symmetry of a totally symmetric representation in the relevant point group.

It is worth emphasizing the unique fourth power dependence on the strength of the
applied static field D, which affords a sensitivity that is especially amenable to experimental
validation. Wherever field-induced orientation occurs, any corrections associated with the
mechanism of direct engagement with the applied field will only furnish terms with a still
higher order dependence on the field strength.

The above analysis has focused on a case where a uniform applied field permeates the
energy transfer system. However, static field effects can also be produced by local molecular
dipoles—as, for example, in structurally ordered media or at surfaces [44]—where intrinsic
local fields may exert another kind of influence on observed energy transfer effects. This is
the topic of the next Section.

3.2. Static-Dipole Induced EET

Typically, EET is described in terms of a coupling between electronically isolated
molecules. In practice, however, most systems comprise numerous nearby atoms, molecules
or chromophores whose presence may alter the surrounding electronic environment and,
thus, affect any pairwise energy transfer events. Such non-participating entities (i.e., those
not directly involved in the pairwise EET) are known as a ‘third body’ and they are often
labelled by M. In recent times, the possibility of M exerting an influence on the rate of donor-
acceptor transfer has received much more attention [29,45–51]. Such work has verified that
these nearby entities, especially any that are strongly polar, may substantially affect the
energy transfer rate without themselves having an overall change in state (namely, their
initial and final state are identical). In consequence, the physical introduction of ancillary
molecules, suitably positioned to act in the capacity of a passive third body, offers a route
to control the energy transfer efficiency.

It is imperative that third body influences are considered in systems that contain
closely spaced chromophores, such as those within light-harvesting materials. Indeed,
for all condensed phase applications, it should be borne in mind that the single entity
termed the third body, in the following analysis, will almost always be one of many close
neighbours—representing many species whose effects on a specific energy transfer process
will give additive contributions to the matrix element. By the inclusion of any individual
third body, the expression for the correction term of the total rate becomes more complicated.
For the mechanisms exemplified by Figure 3a, where the static dipole of M interacts with
A, and the corresponding situation coupling M with D, represented by Figure 3b, the net
result is written as;

M3−body
f i = µ↓i (D)Vij(0, R)S↑jk(A)Vkl(0, RAM)µl(M)

+µi(M)Vij(0, RMD)S
↓
jk(D)Vkl(0, R)µ↑l (A)

(7)

where µ is the static dipole moment of M, up and down arrow superscripts denote excitation
and decay transitions, and RAM = RA − RM is the displacement between A and M (RMD
is for M and D). Note that when constructing each of the terms shown in Equation (7),
an additional contribution is also taken into account, in which the temporal order of the
interactions is inverted; these must also be considered to achieve the correct results, which
are fully provided in ref. [48].
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Whenever energy transfer occurs in the vicinity of a third body M, one other term
always arises in the matrix element. This term, engaging the electronic polarisation rather
than the static dipole of M, can be considered a background, dynamic interaction that is
not directly controllable. For any significantly polar third body, this contribution arising
from a higher order of perturbation theory can be anticipated to have a relatively small
effect on the efficiency of the EET, but for non-polar species it represents the only local-field
correction. Although it is seldom significant, for completeness in this account it is fully
expressed as follows;

M3−body
f i

∣∣∣
background

= µ↓i (D)Vij(0, RDM)Sjk(M)Vkl(0, RAM)µ↑l (A) (8)

in which Sjk(M) is not a transition tensor but corresponds to the dynamic polarisability of
M at the frequency of the conveyed energy.

Irrespective of any neighbouring third body, another intriguing effect arises when D
and A are both polar, in which case a coupling of the static dipoles can take place alongside
the energy transfer, as illustrated in Figure 3c. This feature, which is seldom given sufficient
scrutiny in studies on EET, generates a matrix element whose main contribution can be
secured on the basis of two-level approximations for D and for A. The result is expressible
as follows [44];

Mpolar
f i =

(
1
}ck

)
Vjk(0, R)Vil(0, R)µ↓i (D)µ↑j (A)

×
[
µk(D)µl(A)− µ∗k (D)µ∗l (A)

] (9)

This result exhibits an interesting dependence on three types of dipole, for each species. As
before, the decay and excitation transition dipoles here carry arrow superscripts; dipoles
without a superscript denote electronic ground state dipoles and those with an asterisk
signify static dipoles in the relevant electronic excited states. It emerges that if either the
donor or the acceptor has a negligible difference between its ground and excited state
dipole—as will occur if those two states have a similar nuclear geometry—then the above
expression becomes simply proportional to the vector dipole shift of the other species.
This linear dependence is a feature that also arises in the theory of solvatochromism [52],
thereby enabling a quantitative assessment of the relevance of this dipole-coupling effect
on EET; more detail is given in ref. [44]. The general mechanism represented by Figure 3c
is especially pertinent to the specific case of interatomic Coulombic decay; we return to
consider this connection in Section 4. First, however, we now analysis the effects on EET of
an input beam of off-resonant laser radiation.
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3.3. Optically Controlled EET

Another strategy to produce a modification to the efficiency of energy transfer in-
volves the input of an off-resonant (i.e., a non-absorbing) laser beam of sufficient intensity.
Depending on a number of factors, the rate of transfer can be enhanced or reduced [53,54].
The equation representing an observable for this case is again derived from the Fermi
rate expression; it now includes an extra term that corresponds to an overall fourth-order

interaction with respect to D and A. This is written as Γ′ ∼
∣∣∣M f i + Mdyn

f i

∣∣∣2, in which Mdyn
f i

is a correction term that arises due to the input of the dynamic electromagnetic field. In
detail, again presuming that D and A are in close proximity, Mdyn

f i is representative of the
energy transfer interactions taking place as part of a concerted quantum process. This
involves four possible fourth-order interactions: second-order molecular interactions at D
and A, in which the input beam is absorbed at D and emitted back into the beam at A or
vice versa (the former is shown in Figure 4a), or third-order molecular interactions at either
D or A, where the input beam is absorbed and emitted at the same molecule (Figure 4b
displays the case when this occurs at D). Therefore, in this near-zone region that is again
represented by the static limit, the explicit form of Mdyn

f i is given by;

Mdyn
f i =

(
I

2ε0c

)
ei ēlVjk(0, R)

(
S′↓ij (D)S′↑lk (A) + S′↑ij (A)S′↓lk (D)

+T↓ijl(D)µ↑k (A) + T↑ijl(A)µ↓k (D)
) (10)

Here, S′ is a transition polarisability, explicitly written as S′↓(D) ≡ S′↓(−c(k + k′); ck′) and
S′↑(A) ≡ S′↑(−ck′; c(k + k′)), where k′ is the wave-vector of the input photons. Moreover,
Tijl is a transition hyperpolarisability, explicitly given by T↓ijl(D) ≡ T′↓ijl(−ck,−ck′; ck′)

and T↑ijl(A) ≡ T′ijl
↑(−ck′; ck, ck′), while I and e are the intensity and polarisation of the

throughput beam, respectively. For entirely nonpolar donor and acceptor molecules, the
rate expression for the optically controlled EET (otherwise known as laser-assisted RET or
LARET) is then written as;

ΓLARET = Vjk(0, R)Vmn(0, R)
{

µ↓j (D)µ↑k (A)µ↓m(D)µ↑n(A) +
(

I
2cε0

)
eiel

×µ↓m(D)µ↑n(A)
(

S′ij
↓(D)S′lk

↑( A) + S′ij
↑(A)S′lk

↓(D)
)
+ . . .

} (11)

Here, the first term is the EET rate that denotes an input-field-independent contribution,
and the second term (which has the next largest magnitude since its linear, not quadratic,
in I) is based on a quantum interference between the EET term and the fourth-order input
beam terms. Note that the transition hyperpolarisability terms are omitted because of the
assumption that the molecules are nonpolar.

With the very rare exception of molecules with icosahedral symmetry, all transitions
that are single-quantum electric dipole (E1) allowed are also allowed in a three-quantum
(E13) process [55]. Hence, mechanism (b) will always be effective in, to some degree,
modifying EET efficiency when D and A are polar, whereas mechanism (a) provides a basis
to switch on transfer processes between states that would otherwise not be allowed.
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Examining the latter in more detail, we now analyse the case of coupling between
a non-polar donor and acceptor whose transitions are electric dipole (E1) forbidden but
two-quantum (E12) allowed. This signifies that the initial excitation of the donor cannot
occur via direct one-photon absorption but, for example, may involve initial excitation to a
higher energy electronic state followed by relaxation. In such a case, only terms involving
the transition polarisability arise, since they represent two-quantum allowed transitions
at D and A, i.e., the absorption (or emission) of the input beam and the energy transfer
interaction. Here, since this system is electric dipole (E1) forbidden, EET could not, in
the absence of a beam, occur—except via extremely weak higher multipole interactions
(associated with exceptionally sharp R-n dependence of the rate, where n� 6). Therefore,
energy transfer can only reasonably occur when the input beam is applied; this is the origin
of the switching action. For this scheme, since the input-field-independent contribution
does not arise, Equation (11) is null and the leading term of the rate, which is dependent on
I2, then becomes;

ΓSWITCH = Vjk(0, R)Vmn(0, R)

{(
I2

4c2ε2
0

)
eieleqep

(
S′ij
↓(D)S′lk

↑( A)

+S′ij
↑(A)S′lk

↓(D)
)(

S′pm
↓(D)S′qn

↑( A) + S′pm
↑(A)S′qn

↓(D)
)} (12)

which is the term that represents the possibility of all-optical switching [56–58]. The effect
of an off-resonant throughput beam on simple optical processes is covered in our recent
review article [59]. Another feasible system, based on this form of all-optical switching,
is known as an optical transistor. Here, it is estimated that stimulated emission might be
increased by up to 16 orders of magnitude, on input of an off-resonant input beam with
sufficient intensity, for a three-level population-inverted material pumped just below its
lasing threshold [60].

4. Interatomic Coulombic Decay

The fundamental electrodynamic mechanism of EET plays a role in other photonic
interactions too numerous to detail here. However, it is interesting to briefly focus on a
recently emerging phenomenon, in which EET plays such a role: interatomic Coulombic
decay (ICD) [61–65]. This process bears the hallmark R−6 distance dependence of EET
in the near-zone region, but the energy it transfers between atoms is associated with
electromagnetic radiation in the X-ray range. Moreover, compared to molecular EET, much
more complex prior and posterior processes occur.
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In essence, ICD is the photoionization of an atom leading to photoionization of another
nearby atom through exchange of a high energy quantum, mediated in the form of a virtual
photon. The steps involved are as follows: (i) on input of incident X-ray radiation, donor D
is photoionized via ejection of an inner shell electron; (ii) the energy released as an outer
electron relaxes into this vacancy is transferred from D to A, and then; (iii) acceptor A is
also photoionized since the transferred energy expels an outer electron from the atom; in
consequence (iv) the newly charged atoms repel each other and move apart. A practical
example is the decay of Ne2 via electron emission, in which the interactions of the created
ions cause fragmentation of this dimer in a ‘Coulomb explosion’ [66].

Step (ii) is clearly analogous to molecular EET, but the associated mechanism is not the
simple process of Equation (1) since the static field effects of the newly formed donor ion
should also be taken into account. Therefore, the relevant mechanism is the one depicted
by the Feynman diagram of Figure 3c. Here, following the initial step that expels the
electron to form the ion, the donor is in an energetically unfavourable configuration that is
analogous to an excited donor in molecular EET. There are then two quasi-simultaneous
interactions between D and A, one involving the energy transfer and the other the static
field effects on A due to D. In contrast to molecular EET, where the energy migration from
D to A simply excites the acceptor from its ground state (i.e., an electron is promoted
to a higher quantized state), the acceptor in the ICD mechanism is ionised because the
transfer energy is in the high-frequency X-ray range; in consequence, an outer electron is
excited to the continuum. The energy transfer step can be represented by the follow matrix
element [67]:

Mpolar
f i = ∑

r,s

µrα
i (D)µ0r

j (D)µs0
k (A)µ

βs
l (A)Vik(0, R)Vjl(0, R)

Eα(D)− Er(D) + E0(A)− Es(A)
(13)

where r and s are the virtual intermediate states that also appear in the explicit form of the
S tensors referred to in previous equations. Moreover, α and β are the excited states of D
and A, respectively; atomic energies are denoted by E with 0 signifying the ground state. In
this general expression, forsaking a two-level approximation that is no longer appropriate,
the summations over r and s naturally excludes any system state that matches the initial
or final system state. Equation (13) is in fact the generic precursor to Equation (9), whose
derivation explicitly discounts intermediate states that fall foul of this matching rule.

Despite this basic comparison of the energy transfer step of ICD with molecular EET,
the ICD process is much more complex. ICD often operates in the ultra-near-zone region,
meaning that wavefunction overlap can arise, and thus contributions corresponding to
electron correlation and exchange need to be considered. Furthermore, account also needs
to be taken of the Auger effect [68], since there is electron relaxation from a valence shell to
the core shell in D. This competing effect involves the generated energy from such an event
transferring to another electron within D (thus causing its ejection) and, as a result, energy
transfer between D and A is not possible. An overview of these additional considerations
is provided in a review by Jahnke [69]. The theoretical developments of ICD significantly
mirror those established in molecular EET—such as the effects of retardation and virtual
photons—and, as such, it can also be controlled via surrounding dielectric environments
and third bodies [12,70]. While application of a static electric field would be disruptive to
observations of ICD, it is still the case that an applied off-resonant field could be engaged as
a control mechanism, as discussed earlier. A potential advantage, in the case of an atomic
system, is that the relative sparsity and discreteness of energy levels (compared to any
molecule) would facilitate judicious choice of a suitably off-resonant wavelength for the
applied beam.

5. Conclusions

Using comprehensive quantum theory and a Feynman diagram approach, a range of
electrodynamic mechanisms has been shown to provide a route to control energy transfer
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through the influence of static or electromagnetic fields. Connections have also been
established to a related effect that arises in energy transfer between polar molecules—
where theory demands the inclusion of an additional coupling effect beyond conventional
EET. It is this mechanism that is also most pertinent to interatomic Coulombic decay, i.e., a
relatively new phenomena in which two nearby atoms are photoionised via energy transfer.
Recognizing the fundamental connections between these processes offers new prospects
for identifying control mechanisms across the full range of EET systems.
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