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Abstract 

Application of ‘–omics’ technologies for diagnosis and surveillance 

of gastrointestinal infections 

The burden of gastrointestinal infections remains high, even in industrialised 

countries. Accurate, timely identification of enteropathogens is crucial for targeted 

treatment and global disease management. Routine diagnostic methods can be time-

consuming, often rely on pathogen isolation prior to phenotypic characterisation, and 

still commonly fail to detect the aetiological agent. This thesis explores the use of        

‘-omics’ technologies as an alternative to conventional diagnostic and surveillance 

approaches. 

A supervised learning algorithm using taxonomic and metabolic gut microbiota 

profiles derived from 16S rRNA gene sequencing and 1H nuclear magnetic 

resonance spectroscopy of faeces from 41 controls and 246 gastroenteritis patients 

allowed distinction of bacterial and protozoal infections with a prediction accuracy of 

81.61%. 

Metagenomic sequencing of twenty Salmonella enterica-positive stool samples 

confirmed the presence of S. enterica in 70% of samples. Data was compared with 

whole genome sequences from the corresponding pathogen isolates. Metagenome 

coverage was insufficient for reconstruction of phylogenies and antimicrobial 

resistance profiling. 

Comparison of antimicrobial resistance profiles inferred from whole genome 

sequences of 3,941 non-typhoidal S. enterica isolates with the results of phenotypic 

testing showed that resistance profiles encompassing fifteen antimicrobials were in 

complete agreement for 97.82% of isolates, with discordant results for only 0.17% of 

all possible isolate/antimicrobial combinations. 

A longitudinal metagenomic study monitoring changes in the gut antimicrobial 

resistome in 48 travellers visiting regions with high prevalence of resistance revealed 

that travel led to a 1.27-fold increase in the number of antimicrobial resistance 

determinants and increased carriage of potentially pathogenic species in the cohort, 

with some changes persisting up to six months after return. 

The results presented in this thesis provide evidence that some ‘–omics’-based 

approaches are suitable alternatives to traditional methods used for the diagnosis 

and surveillance of gastrointestinal infections, and that other tools could be of clinical 

use after further development work. 
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1.1 The human gut microbiota 

Human beings, like other complex organisms, exist in a symbiotic relationship with a 

multitude of microorganisms, collectively referred to as the microbiota. While these 

microbes include archaea, fungi, viruses and bacteria, the latter are thought to be the 

most abundant organisms1 and many studies describing microbial communities are 

therefore focussed on bacteria. Initial estimates from the 1970s suggested that 

bacterial cells vastly outnumbered those making up the human body, by a ratio of 

10:12,3. More recent estimates suggest that their actual number is more likely to be 

equal to the number of human cells, making up approximately 0.2 kg of the body 

mass of an average 70 kg male4,5. Nonetheless, even at these revised lower 

numbers, microbial activity can be expected to have profound effects on the host. 

The collection of genes encoding this activity is termed the microbiome6. 

1.1.1 Composition of the human gut microbiota 

Microbial communities of distinct composition have been described for various body 

sites, including the skin7, oral cavity8 and vaginal tract9. The largest number of 

microorganisms by far, however, resides in the gastrointestinal (GI) tract3,5. In 

general, descriptions of the gut microbiota refer to faecal, in other words colonic, 

content as the number of microbes in the stomach and small intestine is negligible in 

comparison, owing to low pH and short transit times5. 

An individual’s colonic microbiota is established early in life. For a long time the 

scientific consensus was that, during development in the womb, foetuses remained 

sterile and that the first contact with microorganisms occurred at birth through 

exposure to the mother’s vaginal flora and the environment. However, discovery of a 

microbiota in meconium10,11, the first stool of a neonate, challenged this conception 

and suggests that humans might be exposed to microbes earlier than assumed. 

Further colonisation occurs rapidly after birth and generally follows a common pattern 

of succession: Facultative anaerobes like Enterobacteria and Enterococci, the first 

colonisers, pave the way for strict anaerobes such as Bacteroides, Clostridia and 

Bifidobacteria by depleting the lumen of oxygen12. Over time, microbiota diversity 
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increases, and by three to five years of age its composition resembles that of an 

adult’s. At this stage, gut microbiota profiles are individually distinct, with the exact 

composition varying based on environmental exposures13. The early microbiota of 

babies delivered vaginally is dominated by Lactobacilli, derived from the maternal 

vaginal tract14,15. In children born via caesarean section, on the other hand, skin 

microbes are more prominent, bacterial diversity is decreased and colonisation with 

Bacteroidetes is delayed16,17. Preterm birth also leads to reduced diversity and 

additionally seems to favour colonisation with potentially pathogenic bacteria over 

Bifidobacteria and Bacteroides18,19. Infant diet is another factor influencing the 

taxonomic composition of the developing microbiota: Breast feeding leads to 

exposure to bacteria in the mother’s milk, mainly Streptococci and Staphylococci20,21, 

and complex oligosaccharides contained within the milk stimulate the growth of, for 

example, Bifidobacteria22. Introduction of solid foods during weaning plays an 

important role in further increasing gut microbiota diversity and leads to colonisation 

with butyrate producers such as Clostridia 23. 

Once established within the first years of life, an individual’s microbiota becomes 

less susceptible to modulation by environmental influences and, in the absence of 

serious insults, is relatively stable over time24,25. The typical adult gut microbiota is 

dominated by two phyla, Firmicutes and Bacteroidetes, and Actinobacteria, 

Proteobacteria, Fusobacteria and Verrucomicrobia make up most of the remaining 

microbes9,26. Different ratios of these common phyla, and their members at higher 

taxonomic resolution, give rise to individually distinct microbiota profiles. Apart from 

early-life exposures, the exact nature of the profiles is affected by host genetics27-29, 

lifestyle and geographical location30-33. Although studied less extensively, the gut 

microbiota seems to become less stable again in later life, with decreased diversity 

and increased levels of facultative anaerobes reported in elderly cohorts34-36. 

In an attempt to categorise individuals based on the dominant taxa making up their 

gut microbiota, the concept of enterotypes was introduced37: Enterotype 1 is 

characterised by the abundance of Bacteroides, type 2 by Prevotella and type 3 by 

Ruminococcus. On top of compositional information, these enterotypes also define 

major functions exerted by members of the gut microbiota. Nowadays, enterotypes 
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are viewed as continuous rather than discrete entities and they are thought to 

fluctuate depending on an individual’s diet38. 

1.1.2 Function of the human gut microbiota 

The strong effect of diet on the composition of the gut microbiota is linked to one of 

the major benefits the host derives from the symbiotic relationship with microbes. 

Bacteria have the ability to ferment complex dietary residues which humans cannot 

process as they lack the necessary digestive enzymes. In doing so, the gut 

microbiota produces metabolites essential to host health, including short chain fatty 

acids (SCFAs), vitamins and secondary bile acids. The SCFA butyrate, primarily 

produced by Firmicutes, has anti-inflammatory39,40 and anti-tumorigenic effects41,42, is 

the main energy source for colonic epithelial cells43,44, regulates their proliferation45 

and enhances gut barrier function by facilitating assembly of tight junctions46. 

Furthermore, SCFAs are involved in lipid and glucose homeostasis in the liver47,48 

and might play a role in appetite regulation49. Vitamin B12 and folate, important for 

haematopoiesis, are essential vitamins synthesised by lactic acid and 

Bifidobacteria50,51. The gut microbiota also contributes to bile acid metabolism by 

converting unabsorbed primary to secondary bile acids like deoxycholic and 

lithocholic acid52, which act as signalling molecules regulating lipid53, energy54 and 

glucose homeostasis55.  

An individual’s microbiota adapts to most efficiently process the dietary residues it 

is exposed to regularly. This explains why lifestyle choices or geographical location 

influence its composition. The GI tract of vegetarians and vegans, for example, was 

found to harbour high levels of Prevotella and Lachnospira, bacteria which degrade 

plant-based dietary fibre31,56. Similarly, Schnorr et al.32 compared gut microbiota 

composition in an Italian cohort following a Mediterranean diet with that of a 

traditional hunter-gatherer community in Tanzania. An enrichment of specialised 

Prevotella and Treponema in the latter allows them to extract the maximum amount 

of nutrients from the foods they have access to. 

The second major function of the gut microbiota is to promote host immune 

defence. Commensal microorganisms, the normal, largely beneficial inhabitants of 

the GI tract, have developed strategies to directly stop establishment of foreign, 
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potentially pathogenic microbes within the gut and to prevent the overgrowth of fellow 

commensals, a phenomenon referred to as colonisation resistance57. This can be 

achieved through a variety of mechanisms, one of which is the competition for 

nutrients. Many of the major commensal taxa, such as Bacteroides, have the ability 

to process a wide range of different dietary residues while pathogens may be more 

limited in the number of compounds they can use for energy generation58,59. In a 

balanced microbiota, most nutrients are scavenged by the commensals leaving little 

behind for utilisation by other organisms. Prebiotics are dietary nutrients that 

particularly favour the growth of beneficial taxa and their consumption by the host 

can enhance colonisation resistance, although most of the evidence supporting this 

theory has come from murine models60,61. The beneficial taxa themselves are 

referred to as probiotics and nutritional supplements enriched with such 

microorganisms are available. On top of having a competitive advantage, many 

commensals also secrete bacteriostatic or bactericidal compounds, such as 

bacteriocins, that directly inhibit or kill other microbes. Their ability to control the 

growth of pathogens has made them the target of many studies searching for 

alternatives to conventional antibiotics62. Additionally, contact-dependent inhibition 

mechanisms mediated by secretion systems have been described63,64. By-products 

of bacterial metabolism also contribute to colonisation resistance: SCFAs and 

secondary bile acids were shown to inhibit the growth of enteropathogens, such as 

Salmonella Typhimurium65 and Clostridioides difficile66, in mice. 

Moreover, the gut microbiota plays an important part in development of the host’s 

immune system by priming immune cells in early life. The T-cells of newborns 

preferentially develop tolerance in response to antigen exposure67. The mucosal 

immune system therefore learns to tolerate the early colonisers of the infant gut, 

preventing an autoimmune response to commensals68. During the weaning period in 

mice, high levels of pro-inflammatory cytokines have been observed in the gut in 

response to exposure to new microorganisms through solid food69. 

1.1.3 The gut microbiota in dysbiosis 

In the healthy state, the mechanism of colonisation resistance makes sure that the 

constituents of the gut microbiota occupy their individual niche and in conjunction 
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perform their beneficial functions. Disturbances that disproportionately affect certain 

taxa can therefore imbalance the entire finely tuned machinery, inducing a dysbiotic 

state. The nature of these disturbances can be varied with transient or long-term 

effects on the host’s health. A common cause of gut microbiota dysbiosis is antibiotic 

treatment. The majority of antibiotics are not specific and can therefore kill other 

species apart from the intended ones. Accordingly, antibiotic treatment is usually 

accompanied by a decrease in bacterial diversity and changes in taxon abundance70. 

Most groups are able to recover within a month after treatment but some changes 

appear to persist up to two years after treatment71. During the antibiotic-induced 

dysbiotic state, colonisation resistance is reduced increasing the likelihood of 

successful pathogen invasion. This forms the basis for development of a recurrent C. 

difficile infection (CDI)72. Faecal microbiota transplants are more successful at 

treating CDI than antibiotics as the former aim at restoring the protective function 

executed by gut microbiota commensals instead of utilising substances that could 

cause further damage73. The effects of antibiotic use are particularly detrimental in 

early life as even short-term antibiotic treatment can disturb the evolution of the infant 

gut microbiota, delaying the colonisation with Bifidobacteria and increasing the 

abundance of Proteobacteria74. Since this can also negatively affect the development 

of the immune system, antibiotic treatment of neonates can increase the risk of 

allergies in later life75. 

Obesity was found to change the healthy composition of the microbiota. The 

microbial community of obese individuals is characterised by a reduction in 

Bacteroidetes and higher levels of Actinobacteria, which results in an increased 

energy harvest capacity76. Obesity also causes chronic low-level inflammation that 

might be modulated by members of the microbiota77 and plays a part in the 

pathogenesis of non-alcoholic fatty liver disease via microbial metabolites78. 

Abnormal microbiota compositions were observed in patients suffering from disorders 

of the GI tract like Crohn’s disease79, ulcerative colitis and irritable bowel syndrome80. 

While it is easy to see why changes in the microbial ecosystem of the gut might 

contribute to the progression of GI diseases, alterations in microbiota composition 

have also been linked to other conditions less obviously related to the GI tract, such 

as depression81, anxiety82 and autism spectrum disorders83. These links are thought 



1.2 Acute gastroenteritis 

 
 

 

 
7 

 

to be based on the gut-brain axis, signalling between the GI tract and the central 

nervous system84. 

1.2 Acute gastroenteritis 

Failure of the gut microbiota’s protective mechanism against changes to the 

ecosystem can allow colonisation with or overgrowth of enteropathogens and lead to 

acute gastroenteritis. Enteropathogens cause symptoms by either secreting toxins, 

which tends to result in milder disease characterised by vomiting and/or diarrhoea, or 

by invasion of the intestinal mucosa85. The latter results in an inflammatory condition 

referred to as dysentery that is associated with bloody diarrhoea, abdominal cramps 

and fever86.  

Worldwide, there are an estimated 1.7 billion cases of gastroenteritis annually, 

resulting in 1.5 million deaths87. Due to inadequate sanitation and hygiene, the 

highest burden of disease is carried by developing countries, and here especially by 

children. Children under five years in these regions experience three to four 

diarrhoeal episodes per year88 and often suffer from long-term health consequences 

such as developmental defects89. Individuals in developed regions, in comparison, 

only experience an estimated 0.3 episodes of gastroenteritis annually, usually do not 

require medical attention and infections are rarely fatal90. The economic and societal 

impact of the disease can therefore easily be overlooked. Nonetheless, every year an 

estimated quarter of the UK population will suffer from gastroenteritis, leading to 

approximately 1 million general practice consultations90 and an average absence 

from work or school for six days per case91. Prolonged or recurrent disease increases 

the risk of long-term health complications and hospitalisation, putting further financial 

strain on the affected individuals and the healthcare sector. 

1.2.1 Aetiological agents of acute gastroenteritis 

A variety of pathogens of bacterial, viral, parasitic and fungal origin have been 

implicated as aetiological agents of GI infections. Rotavirus and norovirus are the 

most common viral causes of gastroenteritis, the former primarily affecting children92 

and the latter often associated with outbreaks in healthcare settings93. In the UK, 
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bacteria are involved in 20-40% of diagnoses and therefore of equal importance to 

viruses90. With an estimated 500,000 cases annually and 80,000 GP consultations, 

Campylobacter is the most common cause of bacterial gastroenteritis90. A potential 

complication resulting from campylobacteriosis is Guillain-Barré syndrome94, an 

autoimmune condition affecting the peripheral nervous system. Enteroaggregative 

and Shiga toxin-producing Escherichia coli (STEC) and non-typhoidal S. enterica 

(NTS) follow Campylobacter as the most frequently encountered aetiological agents 

of bacterial gastroenteritis90. Less common pathogens, such as Vibrio species95, are 

often associated with travel to countries where they are endemic. Transmission of 

bacteria usually occurs through interaction with contaminated surfaces96, close 

contact to animals, which may be asymptomatic carriers of pathogens97,98, or 

ingestion of contaminated water and food99,100. Salmonellae traditionally were a major 

cause of foodborne gastroenteritis but outbreaks linked to this pathogen have 

declined101, likely thanks to successful public health interventions targeting the 

poultry industry102.  Foodborne outbreaks due to Campylobacter and STEC, on the 

other hand, seem to be on the rise101. 

Similar to commensal bacteria, many protozoal eukaryotes are constituents of the 

healthy gut103,104, even though their exact role in the ecosystem is poorly 

understood105. Nonetheless, some protozoa are enteropathogens, with Giardia 

lamblia, Cryptosporidium, Entamoeba and Cyclospora cayetanensis being the most 

common ones in developed countries106.  Other protozoa, such as Blastocystis103,107 

or Dientamoeba fragilis104,108, are generally associated with asymptomatic carriage 

but can become pathogenic under certain conditions. Although foodborne outbreaks 

have also been reported109,110, protozoal infection is mainly transmitted through 

contaminated water111,112 and therefore incidence in developing countries with poor 

sanitation is higher. Giardia prevalence in human populations, for example, is 

estimated to be 4-43% in developing and 1-7% in developed countries113,114. Further 

risk factors for protozoal gastroenteritis seem to be contact with livestock115,116 as 

well as gender since several studies have observed an increased incidence of 

infection in men117,118. 



1.2 Acute gastroenteritis 

 
 

 

 
9 

 

1.2.2 Antimicrobial resistance in enteropathogens 

While the availability of antimicrobials undoubtedly plays a part in keeping fatality 

rates from GI infections low, the overuse of broad-spectrum antibiotics is one of the 

underlying factors of the global threat posed by antimicrobial-resistant organisms.  

When Alexander Fleming received his Nobel Prize for the discovery of penicillin in 

1945, he warned that misuse of the drug could lead to selection for resistant bacteria. 

Within ten years, penicillin-resistant strains were reported119. Antimicrobial resistance 

(AMR) occurs when microbes acquire certain traits by spontaneous mutation or 

incorporation of foreign DNA into their own genome, allowing them to survive 

exposure to compounds that would normally kill them. Since these resistant 

organisms have a selective advantage over their susceptible counterparts they 

quickly outgrow the normal population120.  Resistance strategies may include 

decreased cell wall penetration, export of drugs out of the cell or enzymatic 

inactivation. How quickly bacteria respond to environmental pressures imposed by 

antibiotics through accumulation of mutations, was demonstrated by the Baym 

laboratory’s MEGA-plate experiment, which showed that E. coli evolve to tolerate 

very high concentrations of antimicrobials within eleven days121. 

Annually, more than 700,000 deaths are attributed to resistant microorganisms 

already and this number is expected to rise to 10 million deaths per year by 2050, 

overtaking cancer as the main cause of mortality120 . While not all of these deaths will 

be linked to resistant enteropathogens, the World Health Organisation has included 

extended spectrum β-lactamase (ESBL)-producing, carbapenem-resistant 

Enterobacteriaceae and fluoroquinolone-resistant Salmonellae, Campylobacter and 

Shigella species on their list of priority pathogens for the development of new 

antibiotics due to a worrying increase in treatment failures122. Enrichment of AMR 

genes in the gut microbiota can occur via ingestion of contaminated food123 or 

water124 or by close contact with environments harbouring resistant bacteria125. 

Alternatively, chronic exposure to low levels of antibiotic residues in food and water 

can select for resistant bacteria125,126. Even animals exposed to environments 

enriched in antibiotic residues or resistant bacteria can act as reservoirs for the 

transfer of resistance genes to humans. Rats living in hospital sewage systems, for 
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example, were found to carry pathogens resistant to vancomycin and an increased 

number of ESBL-producing E. coli 127,128. 

1.3 ‘-omics’ technologies 

1.3.1 Next-generation sequencing 

Many of the insights into the composition and function of the gut microbiota would not 

have been possible without the development of advanced sequencing technologies. 

Initial studies relied on culturing and Sanger sequencing of the 16S rRNA gene of the 

isolated bacteria or PCR-Denaturing Gradient Gel Electrophoresis. These 

approaches were biased through the selection of media and limited in the number of 

organisms that could be detected, thus only capturing a fraction of the diversity of the 

gut microbiota26. Next-generation sequencing (NGS), on the other hand, allows 

massively parallel sequencing of millions of DNA fragments derived from isolated 

microorganisms or complex communities. The available NGS platforms exploit 

different sequencing technologies and the most widely used ones are manufactured 

by Illumina® and Oxford Nanopore Technologies. Illumina® platforms employ a 

sequencing-by-synthesis approach after attachment of DNA fragments to a flow cell 

and bridge amplification129. Oxford Nanopore sequencers guide single-stranded DNA 

molecules through a grid of protein nanopores, with readouts based on disruption of 

an electrical current130. The technologies can be used for metataxonomic, 

metagenomic and whole genome sequencing (WGS) studies of individual isolates. 

Metataxonomics refers to amplicon-based profiling of microbial communities with 

the help of conserved marker genes to determine taxonomic composition. 

Investigations of bacterial communities are carried out using the 16S rRNA marker 

gene, which encodes part of the prokaryotic 30S ribosomal subunit. The gene is 

approximately 1.5 kb in length and contains nine hypervariable regions, which 

species identification is based on, flanked by highly conserved regions ideal for 

primer binding131. Metagenomics, in comparison, is the untargeted study of all the 

genetic material of a complex community after random fragmentation of larger DNA 

sequences. On top of taxonomic information, the resulting data can be used to infer 

functional characteristics of the community through annotation of gene fragments. 
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1.3.2 Metabolomics 

Metabolomics is the study of all the metabolites present in a biological matrix132 that 

can be used for functional characterisation of microbial communities. Technologies 

available for metabolomic investigations include high-performance liquid 

chromatography, mass spectrometry (MS) and nuclear magnetic resonance (NMR) 

spectroscopy. Although less sensitive than MS, NMR spectroscopy allows higher 

sample throughput and is therefore more suitable for large-scale studies133. NMR is 

based on absorption of electromagnetic radiation by stable isotopes, such as 1H or 

13C, at a frequency characteristic of the isotope. The exact position of the isotope 

relative to other atoms further modifies its absorption characteristics so that unique 

spectra are obtained for different compounds. 

1.3.3 Multivariate statistics 

Classical statistical analyses focussing on easily identifiable changes in a single 

variable are rarely suitable for the large datasets produced by the high-throughput 

technologies described in the previous sections. To investigate trends in the data, 

multivariate statistics are employed  instead, which incorporate measurements for 

multiple variables, for example the relative abundance of all the individual bacterial 

species  present in a single stool sample. Many multivariate statistics tools make use 

of ordination, which aims to determine gradients of variation between samples based 

on the values measured for the investigated variables. Ordination generally involves 

dimensionality reduction so that samples can be represented in a system of 

coordinates of few dimensions with a larger distance between sample coordinates 

indicating higher dissimilarity. Ordination techniques can be unconstrained, reflecting 

overall data variance, or constrained. The latter approach uses a set of explanatory 

variables within the dataset and aims to explain the variation in the variables of 

interest by the variation in the explanatory variables. 

One of the most widely used ordination methods is principal component analysis 

(PCA), where each principal component (PC) is a linear combination of the original 

variables constituting an axis in the multidimensional data space with the first PC 

representing the largest gradient of variation in the data437. Correspondence analysis 
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(CA) similarly displays data in a low-dimensional space but while PCA is employed 

for continuous data, CA is used for categorical data438. In PCA and CA, samples are 

organised based on (weighted) Euclidean distances to one another. Principal 

coordinates analysis (PCoA), on the other hand, can be applied to any distance 

matrix, including those incorporating phylogenetic distance measures.  

1.4 Thesis aims and objectives 

This thesis seeks to prove the advantages of ‘–omics’ technologies over conventional 

techniques in the context of diagnosis and surveillance of GI infections and to provide 

guidance on future implementation of these technologies as routine services in 

diagnostic and reference laboratories. The following approaches will be taken to 

achieve this aim: 

1. Use of 16S rRNA gene sequencing of the gut microbiota of patients with 

symptoms of acute gastroenteritis for culture-independent detection of 

aetiological agents of disease. 

2. Identification of pathogen-specific taxonomic and metabolic biomarkers of GI 

disease with the help of 16S rRNA gene sequencing and NMR spectroscopy. 

3. Detection and characterisation of S. enterica strains in stool samples derived 

from patients diagnosed with salmonellosis using metagenomic sequencing. 

4. Evaluation of the sensitivity and specificity of WGS-derived AMR profile 

predictions compared to phenotypic antimicrobial susceptibility testing for NTS 

isolates. 

5. Examination of the prevalence and persistence of changes in gut microbiota 

composition and resistome induced by exposure to a foreign environment by 

conducting a longitudinal metagenomic study involving international travellers. 
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2.1 Summary 

Due to the limitations of current diagnostic methods for acute gastroenteritis, 

identification of an aetiological agent is only possible in approximately half of the 

cases referred to laboratories. Increasing the proportion of successful diagnoses 

would allow targeted treatment and provide more surveillance data for enteric 

pathogens. To identify pathogen-specific changes in gut microbiota taxonomic and 

metabolic profiles during infection that could aid successful diagnosis when other 

methods fail, 16S rRNA gene sequencing and 1H nuclear magnetic resonance (NMR) 

spectroscopy were performed on stool samples from 41 healthy controls and 246 

patients diagnosed with bacterial or protozoal gastroenteritis. Infection decreased 

bacterial diversity and the abundance of Firmicutes. A decrease in Blautia 

abundance and in the levels of caprate and caprylate were characteristic of bacterial, 

an increase in butyrate, hypoxanthine, isovalerate and phenylacetate of protozoal 

infection. Random Forest classification of samples based on both taxonomic and 

metabolic features resulted in prediction of the type of infection with an accuracy of 

81.61%, and prediction of the aetiological agent with an accuracy of 69%. 
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2.2 Introduction 

2.2.1 Conventional approaches to diagnosis of gastrointestinal 

infections 

Since gastroenteritis is generally self-limiting134 and unlikely to cause long-term 

health consequences for otherwise healthy individuals, or even prompt patients to 

access healthcare, a large number of cases remain undiagnosed. Establishment of 

an aetiological agent of disease is, however, necessary for patients with severe or 

prolonged symptoms, an indication of invasive disease and a history of complications 

associated with gastrointestinal (GI) disease134. Mere assessment of symptoms is of 

limited use as clinical presentation is highly similar for many enteric pathogens135 so 

that laboratory testing is required for precise diagnoses. To this end, faeces (and to a 

lesser extent rectal swabs) are collected during the acute phase of diarrhoea and 

ideally processed within two hours136.  

Initial examination includes visual inspection of the sample for blood and mucous 

as well as description of stool colour and consistency according to the Bristol Stool 

Chart (BSC)137. The UK Standards for Microbiology Investigations86 recommend 

routine screening of stool samples for Campylobacter, Salmonella, Shigella and 

Shiga toxin-producing Escherichia coli (STEC). Inclusion of further pathogens in the 

testing panel depends on the season, the patient’s age and travel history, and 

whether the case occurred in a community or healthcare setting. Cases linked to 

recent travel to Asia, Africa and Latin America, for example, should additionally be 

tested for Vibrio and Plesiomonas species and several cases from the same hospital 

or nursing home might be indicative of a nosocomial outbreak, often caused by 

Norovirus or Clostridioides difficile. 

In the majority of frontline laboratories, stool culture on selective media remains 

the routine diagnostic method for identification of bacterial pathogens. An example is 

the isolation of Salmonella species by initial inoculation on mannitol selenite broth 

and subsequent subculture on xylose lysine desoxycholate agar138. For higher 

taxonomic resolution, culturing can be followed up with biochemical tests, such as 

the mannitol fermentation test for differentiation of Shigella species139. Over the last 
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decade, some laboratories have started using matrix-assisted laser 

desorption/ionisation time-of-flight (MALDI-TOF) mass spectroscopy (MS) for follow-

up testing instead, which identifies species based on the size of characteristic 

peptides140. Diagnosis of protozoal infections is traditionally based on the detection of 

trophozoites or oocysts using a microscope, sometimes with the help of stains such 

as the fluorescent Auramine O employed for Cryptosporidium oocysts141.  

As an alternative to these classical methods, antigenic tests have been developed 

for many pathogens, including viruses, and are the recommended approach for 

detection of C. difficile toxins142. Increasingly, laboratories use nucleic acid 

amplification tests (NAATs), either for a single pathogen and its virulence factors or 

combining several reactions into a multiplex panel. These panels range in the 

number and type of their targets - some being specific for bacteria143,144, viruses145 or 

parasites146,147, and others covering a wider selection of pathogens148 – and also in 

the type of analysis platform required. The BioFire® Film Array GI panel149, for 

example, detects 22 pathogens but requires specialised equipment, whereas the 

EntericBio Gastro Panel 2150 only targets six organisms but can be used with a 

standard real-time polymerase chain reaction (PCR) instrument. 

2.2.2 Challenges of gastrointestinal infection diagnostics 

Improving the outcome of certain enteric infections depends heavily on timely, 

adequate interventions. Renal problems in children suffering from haemolytic 

uraemic syndrome after STEC gastroenteritis, for example, were found to be less 

severe when administration of intravenous fluids occurred early during the 

infection151. The high turnaround time of stool culture – a minimum of 48 hours – is 

prohibitive to fast, targeted interventions. Successful recovery of viable organisms 

depends heavily on bacterial load, time of sample collection after the onset of 

symptoms and the time that has passed between sample collection and 

processing152, and the approach is not cost-effective153. Furthermore, some 

pathogens, such as the anaerobe C. difficile, do not grow under standard conditions. 

Thus, culturing is thought to underestimate even the burden of common 

enteropathogens like Campylobacter and Shigella154,155. Some of these challenges 

can be overcome by the use of MALDI-TOF MS: The method is more cost-effective 
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and decreases turnaround times as it allows identification of many organisms after a 

24-hour inoculation period. However, it does not eliminate the initial culturing step 

and many platforms cannot distinguish Shigella from E. coli and are unable to type 

Salmonella at the serovar level140,156. 

Microscopic identification of protozoa requires experienced staff but since some 

organisms are encountered very infrequently, training of additional staff can only be 

undertaken sporadically. Oocysts are often small and thus easily missed, especially 

for organisms that do not stain well such as Cyclospora cayetanensis157. Shedding of 

protozoa in faeces is irregular so to increase the likelihood of detection collection of 

three specimens over several days is generally required157. Due to these issues, the 

sensitivity of microscopy-based diagnosis of protozoal infections can be as low as 

20%157. On top of this, some pathogenic species are morphologically 

indistinguishable from non-pathogenic relatives, as is the case for Entamoeba 

histolytica and dispar146. 

While antigenic tests can be more cost-effective and decrease turnaround times, 

their sensitivity and specificity varies158,159 so that initial results frequently need to be 

followed up with a confirmatory test. Implementation of NAATs, although at first 

associated with higher expenses due to procurement of additional equipment, has 

been shown to lead to cost savings for healthcare facilities in the long term160. When 

designed to amplify the appropriate pathogen-specific target sequences, sensitivity 

and specificity of NAATs is generally high for all types of pathogens. However, due to 

their ability to detect pathogen nucleic acids at very low levels, PCR-based methods 

do not necessarily prove the presence of viable organisms. The clinical importance of 

positive results can therefore sometimes be questionable. 

2.2.3 Potential use of ‘–omics’ technologies for diagnosis of 

gastrointestinal infections 

While multiplex PCR panels simultaneously target the most commonly encountered 

enteropathogens, even the most elaborate ones will only detect a restricted number 

of organisms. However, for bacteria alone, more than 40 species have been 

associated with GI infections161. Adding this fact to the aforementioned limitations of 

enteropathogen diagnostics, it is unsurprising that an aetiological agent is 
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successfully identified in only 40-50% of gastroenteritis cases referred for laboratory 

diagnostics162. A diagnostic approach simultaneously detecting all microorganisms in 

the gut would circumvent the problem of missing aetiological agents by simply not 

targeting them. 

Acute GI infections have been shown to introduce changes in the commensal gut 

microbiota based on the pathogens outcompeting established bacteria and disrupting 

the network of interactions between organisms. This effect has been described for 

bacterial163-165, protozoal166 and viral pathogens167,168. Since more than 10% of 

metabolites found in faeces are estimated to be of microbial origin or at least 

microbially modified136, changes in gut microbiota community composition are 

expected to also have an effect on the metabolome. Given that a pathogen’s specific 

virulence factors will influence the exact manifestation of disease169, different 

pathogens might induce characteristic changes in the established gut microbiota. In 

cases where direct identification of an aetiological agent is not possible, pathogen-

specific taxonomic and metabolic biomarkers of infection could therefore provide an 

indication of the organism responsible for the patient’s symptoms, increasing the 

number of successful diagnoses and allowing more targeted treatment.  

2.3 Objectives 

The purpose of the work presented in this chapter was to assess the potential of 16S 

rRNA gene sequencing for identification of bacterial enteropathogens and to identify 

pathogen-specific taxonomic and metabolic biomarkers of bacterial and protozoal 

disease using metataxonomics and metabolomics. It was hypothesised that 

characteristic changes in gut microbiota composition and function could be used to 

predict the aetiological agent of acute gastroenteritis. 



2.4 Materials and Methods 

 
 

 

 
19 

 

2.4 Materials and Methods 

Routine diagnostics were carried out by staff at the Norfolk and Norwich University 

Hospital’s (NNUH) enteric laboratory. Stool samples were collected by Marieke Pape, 

Dr. Lee Kellingray, Henry Whiley and the author. Faecal waters and DNA extracts 

were prepared by Marieke Pape and the author. NMR spectra were acquired and 

transformed by Dr. Gwenaelle Le Gall and Dr. Ian Colquhoun. Unless otherwise 

stated, default software parameters were used. 

2.4.1 Processing of faecal samples 

2.4.1.1 Sample collection 

Faecal samples from patients with symptoms of GI infections were referred to the 

NNUH enteric laboratory from local hospitals and general practitioners. For samples 

received up until November 2017, stool culture on selective media was performed for 

pathogen detection. From November 2017 onwards, testing was carried out by PCR 

using the EntericBio Gastro Panel 2 (Serosep Limited, Limerick, Ireland), which 

detects C. jejuni/coli/lari, C. parvum/hominis, Giardia lamblia, S. enterica, Shigella 

species and STEC150. For the latter three pathogens, a positive PCR result was 

confirmed by stool culture. The faecal material remaining after testing was stored at 

4°C in the enteric laboratory. Aliquots of pathogen-positive samples were transferred 

to Quadram Institute Bioscience (QIB) and stored at -20°C until further processing. 

Sample collection was undertaken between December 2015 and December 2017. 

The study was approved by the University of East Anglia’s Faculty of Medicine and 

Health Sciences Research Ethics Committee (Reference: 20152016 31 HT). Ethics 

application form and approval letter can be found in Appendix I. 

Pre-intervention faecal samples from participants in the BERI (The Effects of 

Bilberry Fruit and Black Rice Derived Anthocyanins on Lipid Status in Adults) (NCT 

number: NCT03213288) and EBL (Effects of Brassica on Human Gut Lactobacilli) 

(NCT number: NCT02291328; described in Kellingray et al.170) studies as well as 

samples obtained from volunteers on the QIB Colon Model study (NCT number: 

NCT02653001) were used as healthy controls.  
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2.4.1.2 Faecal water preparation 

Samples were kept on ice whenever possible. Approximately 200 mg of faecal 

material was homogenised in 12x (w/v) NMR buffer using a Kimble® Kontes cordless 

pellet pestle motor with reusable pestles (Merck, Darmstadt, Germany). The buffer 

composition is shown below: 

 

 0.26 g NaH2PO4·H2O (BDH AnalaR NORMAPUR®, Safat, Kuwait) 

 1.44 g K2HPO4 (Sigma-Aldrich, St. Louis, MO, USA) 

 56.1 mg NaN3 (Sigma-Aldrich) 

 17 mg sodium 3-(trimethylsilyl)propionate (TSP) (CK Isotopes Ltd., Desford, 

UK) 

 100 ml D2O (CK Isotopes Ltd.) 

 

For negative controls, 1 ml of buffer was processed without faecal matter. Samples 

were centrifuged at 3,220 x g and 4°C for 15 min and the supernatants sterile-filtered 

through 0.2 μm Minisart® syringe filters (Sartorius, Göttingen, Germany). Filtered 

faecal waters were stored at -20°C until acquisition of NMR spectra. Pellets were 

stored at -20°C until further processing. 

2.4.1.3 Faecal DNA extraction 

Total genomic DNA was extracted from the pellets obtained after faecal water 

preparation by mechanical lysis using the FastDNA™ SPIN Kit for Soil (MP 

Biomedicals, Santa Ana, CA, USA). Samples were kept on ice until the first 

centrifugation step. After addition of 978 μl sodium phosphate buffer and 122 μl MT 

buffer, samples were left to stand at 4°C for 1 h with a vortexing step every 15 min. 

Samples were transferred into Lysing Matrix E tubes and bead beating was carried 

out with a FastPrep-24™ tissue homogeniser (MP Biomedicals) using three 60 s 

pulses at 6.5 m/s with 2-min intervals between pulses. Lysates were centrifuged at 

16,800 x g for 1 min and 250 μl of protein precipitation solution were added to the 

supernatant. Samples were mixed by inversion and centrifuged at 16,800 x g for 5 

min. Supernatants were mixed with 1 ml binding matrix solution by inversion for 2 min 
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and left to stand for 3 min. After removal of approximately 1 ml of supernatant, the 

matrix was resuspended in the remaining supernatant, transferred to SPIN filter 

tubes and centrifuged at 14,500 x g for 1 min. The binding matrix was washed with 

500 μl of salt/ethanol solution and centrifuged at 14,500 x g for 1 min. The washing 

and centrifugation steps were repeated twice more followed by an additional 2-min 

centrifugation step at 16,800 x g. The flow-through was discarded and the binding 

matrix left to air-dry for 5 min. The matrix was resuspended in 50 μl of DNA elution 

solution-ultrapure water, left to stand for 3 min and centrifuged at 16,800 x g for 1 

min. Eluates were stored at -20°C until sequencing. DNA from the EBL study 

samples had been pre-extracted by Lee Kellingray and stored at -40°C. 

2.4.2 Metataxonomics 

2.4.2.1 Preparation of 16S rRNA gene libraries and amplicon sequencing 

Extracted DNA was quantified using a Qubit fluorometer with broad-range reagents 

(Thermo Fisher Scientific, Waltham, MA, USA) prior to being sent to Earlham Institute 

(formerly The Genome Analysis Centre, Norwich, UK), the Centre for Genomic 

Research (University of Liverpool, Liverpool, UK) or Novogene (Beijing, China) for 

further processing in nine separate batches. The V4 hypervariable region of the 16S 

rRNA gene was amplified with 515F (GTGCCAGCMGCCGCGGTAA) and 806R 

(GGACTACHVGGGTWTCTAAT) primers171 using the Phusion® High-Fidelity PCR 

Master Mix (New England Biolabs, Ipswich, MA, USA). Quality control of amplicons 

was carried out on a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) 

and only amplicons 400-450 bp in size were included in the sequencing reaction. 

Sequencing libraries were generated with the NEBNext® Ultra™ DNA Library Prep 

Kit for Illumina® (New England Biolabs). Libraries were purified using the AMPure XP 

system (Beckman Coulter, Brea, CA, USA), analysed for size distribution using the 

Bioanalyzer instrument and quantified by real-time PCR. Cluster generation was 

performed on a cBot System (Illumina®, San Diego, CA, USA). Paired-end 150 bp 

sequencing was performed on a HiSeq 2500 instrument (Illumina®).  
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2.4.2.2 Trimming and quality filtering of sequencing reads 

Quality trimming and filtering of sequencing reads was carried out by the sequencing 

providers. Reads were demultiplexed and adapters as well as index sequences were 

removed. Reads containing >10% of ambiguous base calls as well as those for which 

>50% of total base calls had a quality score ≤5 were filtered out. Only the remaining 

high-quality reads were included in subsequent analyses. 

2.4.2.3 Sequence analysis 

The following analyses were performed using the Medical Research Council’s Cloud 

Infrastructure for Microbial Bioinformatics34. Taxonomic analysis of demultiplexed 

sequencing reads was carried out with QIIME 2 (Quantitative Insights Into Microbial 

Ecology) v. 2018.8 and software versions implemented within the environment172,173 

as described in the “Moving Pictures” tutorial (https://docs.qiime2.org/2018.8/ 

tutorials/moving-pictures/). Denoising, quality filtering, construction of a feature table 

containing the frequency of each unique sequence and mapping of identifiers to the 

sequences were performed with DADA2174 for each sequencing batch separately.  If 

median quality scores dropped below 30, reads were truncated at the base position 

this drop occurred for the first time.  

Representative sequences obtained for the different batches were merged. 

Taxonomic labels were assigned to the sequences using a Naïve Bayes classifier 

pre-trained on the SILVA 132 99% operational taxonomic unit (OTU) database175. 

The feature table with taxonomic assignments was either converted to a tab-

separated file directly using the ‘biom convert’ command or collapsed at the 

taxonomic level desired, converted to a relative abundance table and then to a tab-

separated file. 

Multiple sequence alignment of the representative sequences was performed 

using MAFFT (Multiple Alignment using Fast Fourier Transform)176 and the alignment 

was filtered to remove highly variable positions. A phylogenetic tree was built with 

FastTree177 and midpoint rooting was applied to the resulting tree. 

Feature tables obtained for the different sequencing batches were merged. From 

the previously generated rooted phylogenetic tree and the merged feature tables with 

the sampling depth set to 12,150, alpha-diversity- a measure of microbial diversity 



2.4 Materials and Methods 

 
 

 

 
23 

 

within a sample – was estimated in the form of Faith’s phylogenetic diversity (PD)178, 

Shannon’s index and observed OTUs and β-diversity – a measure of microbial 

diversity between samples – was computed in the form of weighted UniFrac 

distances179. 

Predictions of functional metagenome content from the merged feature tables and 

the representative sequences was carried out using the QIIME 2 PICRUSt2 

(Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) 

plugin v. 2019.10 (https://github.com/gavinmdouglas/q2-picrust2)180,181. Maximum 

parsimony was selected as hidden-state prediction method and the cut-off for 

exclusion of sequences based on distance from the reference phylogeny was set to 

2. KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathways were 

reconstructed from the resulting KEGG orthology metagenome predictions with the 

HUMAnN2 (HMP Unified Metabolic Analysis Network) pipeline182 v. 2.8.0 and the 

KEGG pathway database from the HUMAnN v.0.99 software183. 

2.4.3 Metabolomics 

2.4.3.1 1H nuclear magnetic resonance spectroscopy 

Faecal waters were transferred to 5 mm borosilicate glass NMR tubes (Wilmad, 

Vineland, NJ, USA). 1H NMR spectra were recorded on a 600 MHz AVANCE™ 

spectrometer (Bruker, Billerica, MA, USA) fitted with a cryoprobe and a 60-slot 

autosampler using the TopSpin® software, v. 3.2 (Bruker). Each spectrum was 

acquired with 1,024 scans, a spectral width of 12,295 Hz, an acquisition time of 2.67 

s and a relaxation delay of 3 s. The “noesygppr1d” pre-saturation sequence was 

used to suppress the residual water signal with a low-power selective irradiation at 

the water frequency during the recycle delay and a mixing time of 10 ms. 

2.4.3.2 Metabolite quantification 

The recorded spectra were transformed with a 0.3 Hz line broadening, and manually 

phased, baseline-corrected and referenced by setting the TSP methyl signal to 0 

ppm using the TopSpin® software. Metabolite identification and quantification based 

on reference compounds was carried out with the Chenomx NMR Suite software v. 

https://github.com/gavinmdouglas/q2-picrust2
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8.2 (Chenomx, Edmonton, Canada). Reference libraries were provided with the 

software or had previously been custom-built at QIB. 

2.4.4 Statistical analysis 

2.4.4.1 Univariate analysis 

Differences in α-diversity or metabolite concentrations were assessed using the 

dunnTest function with Benjamini-Hochberg (BH) correction in R’s FSA (Fisheries 

Stock Assessment) package v. 0.8.25 (https://github.com/droglenc/FSA)184. An 

adjusted p-value ≤0.05 was considered statistically significant. 

2.4.4.2 Multivariate analysis 

Principal coordinate analysis (PCoA) of taxonomic sample composition was 

performed in the QIIME 2 environment on the weighted UniFrac distance matrix 

generated in section 2.4.2.2. Biplots were generated by projecting the information 

contained in the feature table onto the resulting PCoA matrix. Visualisation of data 

was carried out in R using the qiime2R package v. 0.99.12 

(https://github.com/jbisanz/qiime2R). Differences in sample group dissimilarity were 

assessed using PERMANOVA (Permutational Multivariate Analysis of Variance)185 in 

the QIIME2 environment. 

Principal component analysis (PCA) of sample metabolite profiles was performed 

using the mixOmics package v. 6.8.4 in R186. The contribution of individual 

metabolites to variance was visualised using the package’s plotLoadings function. 

2.4.4.3 Normalisation of sequencing reads 

Sequencing reads assigned to individual OTUs were aggregated at the desired level 

of the QIIME 2 taxonomy output using the metagenomeSeq package v. 1.26.3 in 

R187. Read counts were normalised with the help of the package’s cumNorm function, 

which calculates scaling factors (SFs) equal to the sum of counts up to a specified 

quantile. The 0.5 quantile (i.e. median) was selected for this analysis. Read counts 

assigned to individual KEGG pathways were normalised in the same manner without 

prior aggregation. 
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2.4.4.4 Differential abundance testing 

Differences in specific features at the desired level of taxonomy or in specific KEGG 

pathways between sample groups were estimated using the limma package v. 3.40.6 

in R188. A design matrix was generated from the (aggregated) normalised read count 

data with the model.matrix function, adding storage time of the sample at 4°C, year of 

DNA extraction and sequencing centre as covariates. Furthermore, normalisation 

factors, derived from the SFs described in section 2.4.4.3, were added to the matrix. 

Normalisation factors were calculated as follows: 

log2(SF/median(SF) + 1) 

The lmFit function was used to produce weighted fits for all features with the 

previously generated design matrix as input. Pairwise comparisons between sample 

groups were carried out by constructing a contrast matrix and re-orientating the fitted 

model object from the coefficients of the original design matrix to any set of contrasts 

of the original coefficients. From the resulting linear model fits, fold change (FC) 

estimates and t-statistics with BH correction were computed using the eBayes 

function. An adjusted p-value ≤0.05 was considered statistically significant. 

2.4.4.5 Correlation analysis 

Centered log-ratio (clr) transformation of relative abundance data for genera making 

up >0.1% of the community in at least ten samples was carried out using the 

compositions package v. 1.40-2 in R189. Concentrations of metabolites present at 

>0.1 mM in at least ten samples were log10-transformed. A correlation matrix was 

generated using sparse partial least squares (sPLS) analysis in canonical mode, 

implemented in the mixOmics package. Modelling was performed with ten 

components and five metabolite and 20 taxonomic features on each component. A 

clustered image map was generated from the correlation matrix by determining the 

scalar products of sample coordinates on the sPLS axes.  
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2.4.5 Random Forest classification 

Relative abundance data for genera making up >0.1% of the community and 

concentrations of metabolites present at >0.1 mM in at least ten samples as well as 

Faith’s PD were used as features to classify samples based on the type of infection 

or the aetiological agent identified during routine diagnostics with the randomForest 

package v. 4.6-14 in R190. To ensure reproducibility, the seed of R’s random number 

generator was set to 100. The training dataset was generated by randomly choosing 

70% of samples and a Random Forest model was built with the number of trees set 

to 500 and the number of features sampled at each split set to 14 for the 

classification of the type of infection and to 16 for the classification of the aetiological 

agent identified. The importance of individual features in the model was assessed in 

the form of the mean decrease in prediction accuracy. Predictions of type of infection 

or aetiological agent were performed on the training set first, followed by predictions 

on the remaining 30% of samples comprising the validation dataset. 
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2.5 Results 

2.5.1 Study samples 

A total of 276 faecal samples from patients with symptoms of GI infections were 

collected during the study period. Of these, 159 tested positive for a bacterial and 

117 for a protozoal pathogen. Campylobacter was identified in 111, Cryptosporidium 

in 24, G. lamblia in 90, S. enterica in 31, Shigella in 8 and STEC in 7 samples. A 

single patient suffered from a Blastocystis hominis infection and another from a 

Campylobacter/Shigella co-infection. For two samples, pathogen identification was 

ambiguous and stated as either Cryptosporidium or G. lamblia. Of the 43 faecal 

samples from healthy controls, nine were provided by QIB Colon Model study 

participants, ten from the EBL study and 24 from the BERI study. 

Eight samples did not yield a sufficient amount of DNA for successful amplicon 

sequencing and a further five showed low sequencing read counts and thus fell 

below the sampling depth chosen for diversity analysis. To guarantee identical 

sample sets, these were also excluded from the metabolomics analysis.  

Furthermore, samples testing positive for a pathogen detected in less than ten 

samples overall, and those for which a single pathogen could not unambiguously be 

identified as the aetiological agent, were excluded from both datasets.  

Table 2.1 shows the characteristics of the 287 samples included in the following 

analyses. Factors other than infection which might influence taxonomic and 

metabolite composition were also recorded. These comprised the storage time of the 

faeces at 4°C in the NNUH enteric laboratory before their transfer to -20°C at QIB, 

the time period of sample processing, the provider of the amplicon sequencing 

service and the stool’s consistency. Stools defined as Type 1-4 according to the 

BSC137 were categorised as solid, Types 5 and 6 as semi-liquid and Type 7 as loose. 
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2.5.2 Taxonomic signatures of gastrointestinal infections 

2.5.2.1 Effect of gastrointestinal infections on gut microbiota diversity 

Read counts after amplicon sequencing for the final study samples ranged from 

12,150 to 332,157 with a median of 56,303. A total of 6,790 different OTUs were 

detected. However, 5,749 of these were present in less than ten samples. 

To assess the effect of bacterial and protozoal infection on the number of gut 

microbiota organisms within an individual, α-diversity was estimated. Compared to 

controls, Faith’s PD was significantly decreased in patients suffering from a protozoal 

infection (22.95±3.34 vs. 15.86±6.33) and further decreased during bacterial infection 

(10.28±3.98) (Fig. 2.1A).  This trend was also apparent when samples were stratified 

by aetiological agent with patients testing positive for G. lamblia exhibiting the 

smallest, yet still significant, difference in Faith’s PD from controls (16.32±6.28) and  
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Campylobacter-positive patients showing the lowest diversity (9.72±3.03) (Fig. 2.1B). 

Patients suffering from salmonellosis or cryptosporidiosis could not be distinguished 

based on their gut microbiota diversity and neither could patients who carried 

different pathogens causing the same type of infection. The pattern described could 

also be reproduced when using the number of observed OTUs or Shannon’s index 

as α-diversity metric. 

Other sample characteristics were also found to have an effect on Faith’s PD: 

There was a decrease in diversity with increasing storage time at 4°C as well as 

significant differences between the three sequencing centres and the years the 

samples were processed. Furthermore, solid stools showed a higher diversity than 

loose ones. 

After estimation of diversity within samples, differences in overall taxonomic 

composition between samples were investigated using PCoA of weighted UniFrac 

distances. Principal component (PC) 1 and PC2 explained 41.44% of the total 

variance. While most control samples formed a cluster, indicating similarities in 

taxonomic composition, samples testing positive for bacterial pathogens were more 

dispersed (Fig. 2.2A). This suggests that bacterial infection causes a shift in 

microbiota composition away from the healthy state with the exact nature of this shift 

varying between individuals. The difference to healthy samples was less pronounced 

during protozoal infection as the majority of patients testing positive for protozoal 

pathogens clustered close to the controls. To understand which taxa drove the 

observed separation, a biplot was generated. Lower PC1 scores, which were 

obtained for the control cluster and many samples from patients suffering from 

protozoal gastroenteritis, were associated with higher abundances of Blautia and 

Collinsella while lower PC2 scores, obtained for a subgroup of samples positive for 

protozoal pathogens, were characterised by a higher abundance of Prevotella (Fig. 

2.2B). Higher PC2 scores as seen for most controls, on the other hand, were linked 

to higher levels of Lactobacilli. A greater distance from the control cluster, observed 

for the majority of samples testing positive for Campylobacter and Salmonella, was 

accompanied by higher abundances of Enterobacteriaceae, Escherichia-Shigella and 

Bacteroides. Pairwise comparisons of weighted UniFrac distances further highlighted 

the patterns observed in the PCoA plots: Controls were more dissimilar to infection 
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samples than to one another (Fig. 2.3A). On the other hand, as indicated by their 

dispersal on the PCoA plot, samples testing positive for a bacterial pathogen were 

equally dissimilar to one another than they were to controls and samples positive for 

a protozoal infection (Fig. 2.3B). PERMANOVA revealed significant dissimilarity 
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between controls and infection samples and between samples positive for bacterial 

and protozoal infection (q=0.001). 

 

2.5.2.2 Changes in abundance of specific taxa during gastrointestinal 

infections 

Given that 16S rRNA gene sequencing targets a region not present in eukaryotic 

genomes, it is unsuitable for direct detection of Cryptosporidium and G. lamblia. 

However, identification of prokaryotic pathogens should be possible. Only few 

bacteria could be classified down to species level due to the inherent limitations of 

the method and these organisms did not include Campylobacter species and S. 

enterica. At genus level, while Campylobacter was detected in 79 out of 107 

(73.83%) samples testing positive for the pathogen during routine diagnostics, with 

relative abundances ranging from <0.01% to 11.71%, no sequences were assigned 

to Salmonella in the S. enterica-positive samples. Campylobacter was additionally 
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detected in 13 of the 108 (12.04%) remaining samples at relative abundances 

<0.01%-1.23%. 

Due to the limited suitability of 16S rRNA gene sequencing for direct pathogen 

detection, the possibility of using other taxa which undergo changes in relative 

abundance during infection as biomarkers was investigated using linear model fits. 

Fold changes determined based on these models illustrate the ratio of relative 

abundances between two sample groups.  Storage time of the sample at 4°C, year of 

DNA extraction and sequencing centre were added as covariates. To ensure that the 

potential biomarkers are carried by a large proportion of the population, only taxa 

present at a relative abundance >0.1% in at least ten samples were included in the 

analysis. 

At the phylum level, the abundance of Firmicutes was decreased during both 

bacterial and protozoal infection compared to controls (FC=16 and FC=15.89, 

respectively) (Figure 2.4). Furthermore, bacterial infection led to a reduction in the  

abundance of Actinobacteria (FC=13.35) No phyla were found to show significant  
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differences in abundance between patients suffering from bacterial and protozoal 

infection. When stratified by aetiological agent, the abundance of Firmicutes was  

decreased in all groups compared to controls (FC range: 15.82-16.04) and 

Campylobacter- (FC=13.49) as well as S. enterica-positive patients (FC=13.19) 

showed a decreased abundance of Actinobacteria (FC=13.49 and FC=13.19, 

respectively). 

A total of 41 genera present at a relative abundance >0.1% in at least ten samples 

were differentially abundant between groups. The decrease in Firmicutes observed 

during infection was due to changes in abundance of members of the 

Erysipelotrichaceae, Lachnospiraceae, Peptostreptococcaceae, Ruminococcaceae 

and Veillonellaceae families, members of the Clostridiales Family XIII AD3011 and 

Christensenellaceae R-7 groups as well as Clostridium sensu stricto 1 and 

Lactococcus. Actinobacteria genera undergoing changes included Collinsella, 

Libanicoccus and members of the Eggerthellaceae family. Further changes were 

observed in Akkermansia, Barnesiella, the gammaproteobacteria Morganella and 

Parasutterella, and genera of Prevotellaceae. 

Inspection of normalised read counts revealed that most differentially abundant 

genera were enriched in controls (Figure 2.5). Only Akkermansia, Barnesiella, 

Catenibacterium, Eggerthella, Flavonifractor, Libanicoccus, Parasutterella, Prevotella 

2, Veillonella, and members of the Ruminococcus torques and Lachnospiraceae 

UCG-010 groups were more abundant in infection samples. The majority of 

significant changes in abundance were universal to all aetiological agents and could  

therefore not be used for their distinction. Exceptions were Blautia, showing similar 

abundance in controls and during protozoal infection but differing from both during 
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bacterial infection (FC=12.49 and FC=11.77, respectively), and Morganella, which 

could be a potential biomarker for distinction of Cryptosporidium and G. lamblia 

infection (FC=5.87) (Figure 2.6). 

 

2.5.2.3 Prediction of microbiome function from metataxonomic data 

Although the metataxonomic approach employed does not provide direct information 

about the presence of other functional genes, the metagenomic content of the 

microbiota can be inferred with the help of tools mapping the functions of known 

sequenced genomes to the taxa identified through 16S rRNA gene sequencing. The 

PICRUSt2 pipeline identified a total of 99 differentially abundant KEGG pathways 

between sample groups. In line with previously observed taxonomic differences, 

most changes were universal to all aetiological agents and most pathways were 

enriched in controls (Figure 2.7). Cell functions these pathways are associated with  
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include cell motility, glycan biosynthesis, replication and repair, translation and the 

metabolism of amino acids, carbohydrates, cofactors, vitamins, terpenoids and 

polyketides. Only glycosaminoglycan degradation, lipopolysaccharide biosynthesis 

and the synthesis of steroids, their hormones and terpenoid precursors were 

enriched during all types of infection. Lipoic acid metabolism and geraniol 

degradation were enriched during bacterial but not during protozoal infection. 

Enrichment of polycyclic aromatic hydrocarbon degradation was observed solely 

during Campylobacter infection (FC=8.22). 

2.5.3 Metabolic signatures of gastrointestinal infections 

2.5.3.1 Effect of gastrointestinal infections on gut microbiota metabolic profiles 

The predicted functional changes in the gut microbiota during infection suggest that 

some faecal metabolites could act as biomarkers for different aetiological agents. To 

assess whether variations in taxonomic composition translate into real functional 

changes, differences in the microbiota’s metabolite profile during infection were 

identified using NMR spectroscopy. A total of 93 faecal metabolites were studied 

initially. This list of compounds was based on metabolites commonly identified in 

human faeces during previous studies at QIB (e.g. Kellingray et al.192). Only the 56 

metabolites detected at a concentration >0.1 mM in at least ten samples were 

included in the following analyses to ensure that potential biomarkers are present in a 

large proportion of stool samples tested. 

To detect overall metabolome differences between sample groups, multivariate 

analysis in the form of PCA was carried out. PC1 and PC2 explained 45.87% of the 

total variance. Most control samples formed a tight cluster, indicating similarities in 

functional profiles, while infection samples were more dispersed (Figure 2.8). As for 

taxonomic profiles, this suggests that infection causes a shift away from the healthy 

state with the exact nature of the shift varying between individuals. However, 

differences in metabolite profiles appeared less pronounced than differences in 

community composition (cf. Figure 2.2). 
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Investigation of loading weights on the two axes revealed which metabolites primarily 

drove the separation of samples: On PC1, the carboxylic acid acetate, the 

nucleobase uracil and several proteinogenic as well as the non-proteinogenic amino 

acids citrulline, ornithine and taurine were the main contributors to sample variance 

(Figure 2.9). Methylamine, ribose, phenylacetate, 2-methylbutyrate, the amino acids 

aspartate, leucine and proline, the nucleobases hypoxanthine and uracil and several 

carboxylic acids as well as short and medium chain fatty acids were responsible for 

separation along PC2. 
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2.5.3.2 Changes in concentration of specific metabolites during gastrointestinal 

infections 

The PCA loading weights give an indication of which metabolites might be suitable 

biomarkers for different types of GI infections. Of the 56 metabolites analysed in total, 

the concentrations of 49 differed significantly, either between control and infection 

samples or between different aetiological agents (Figure 2.10). Mean concentrations 

of all metabolites in the different sample groups can be found in Appendix II. 

Hierarchical clustering based on the concentrations of the 49 metabolites grouped 

most control samples together. Samples from patients with bacterial infections, on 

the other hand, showed high variation within the group. Several subgroups were 

observed for samples from patients suffering from protozoal gastroenteritis: While  
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some formed two separate distinct clusters and some were grouped with control 

samples, others showed a variation similar to that caused by bacterial infection. 

Most metabolite differences were based on increased concentrations during 

infection. Examples include the levels of acetate rising from 3,339.79±1,659.66 mM 

in controls to 6,778±3,998.90 mM during bacterial and 7,993±5,362.13 mM during 

protozoal infection, an increase in lactate concentration from 20.39±16.89 mM to 

572.29±1,607.60 mM and 256.02±1,163.91 mM and putrescine levels changing from 

3.89±2.74 mM to 144.44±141.71 mM and 64.57±97.27 mM. Butyrate, hypoxanthine, 

isovalerate and phenylacetate were revealed as candidate biomarkers for protozoal 

infections, with concentrations increasing in this sample group only (Figure 2.11). 
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During bacterial infection, the levels of caprate and caprylate were decreased 

compared to controls and samples from patients with protozoal gastroenteritis. 

Aspartate was identified as a potential biomarker for campylobacteriosis with the 

levels of this metabolite increasing during infection with all other aetiological agents 

but sustaining control levels during Campylobacter infection (Figure 2.12). For  

distinction of pathogens causing the same type of infection, 3-phenylpropionate and 

serine were identified, with the concentrations of the former differing during 

cryptosporidiosis and giardiasis (22.96±38.04 mM vs. 43.82±53.35 mM), and the 

concentrations of the latter differing during campylobacteriosis and salmonellosis 

(129.06±101.10 mM vs. 191.74±174.79 mM). 

Stool sample storage time at 4°C before faecal water preparation also had an 

effect on metabolite concentrations. In most cases, metabolite levels increased with 

increasing storage time before freezing and most significant differences found were 

between samples that had been frozen on the day of production and those that had 

not, regardless of the exact number of days at 4°C. 
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2.5.4 Correlation of taxonomic and metabolic gut microbiota 

features 

So far, metataxonomic and metabolomic features have been analysed as separate 

entities. In the environment of the gut microbiota, however, they are interconnected 

with alterations in the abundance of certain microbes resulting in alterations in the 

levels of metabolites they produce or utilise, which can in turn inhibit or favour the 

growth of other taxa. To assess whether the two datasets are statistically correlated, 

sPLS regression was performed on clr-transformed relative abundance data for 

genera making up >0.1% of the community in at least ten samples and log10-

transformed concentrations of metabolites present at >0.1 mM in at least ten 

samples. The coefficient of determination (R2) of the resulting linear model was 0.51 

on canonical axis 1 (Figure 2.13) suggesting that the datasets correlated well for a 

subset of samples only. When repeating the analysis for all sample groups 

separately, R2 ranged from 0.36 for giardiasis samples to 0.81 for controls. 
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Evaluation of correlation coefficients for individual features revealed three distinct 

clusters (Figure 2.14). Relative abundances of Enterorhabdus and several 

Bacteroidetes, Clostridiales and Erysipelotrichaceae genera, were positively 

correlated with the concentrations of the carbohydrate myo-inositol, the carboxylic  
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acids malonate and succinate, and of amino acids and their breakdown products. 

Abundances of several Lachnospiraceae and Ruminococcaceae genera, on the 

other hand, were negatively correlated with the levels of these metabolites and 

positively correlated with the concentrations of fatty acids and their derivatives. 

2.5.5 Prediction of aetiological agents of gastrointestinal infections 

by Random Forest classification 

The previous analyses suggest that some gut microbiota changes introduced by 

infection might be pathogen-specific. However, even when there are statistical 

differences between sample groups, individual values within the groups for any given 

feature vary widely. Thus, none of the candidate biomarkers mentioned, when 

measured in isolation, will provide sufficient discriminatory power to guarantee 

unambiguous identification of the aetiological agent. Combining measurements of 

several features from both the metataxonomic and metabolomics dataset, on the 

other hand, could improve discriminatory power. To evaluate which features should 

form part of this set of measurements and how well they perform in distinguishing 

between different infections, a Random Forest classifier was built based on Faith’s 

PD, relative abundance data for genera making up >0.1% of the community and 

concentrations of metabolites present at >0.1 mM in at least ten samples. 

Overall mean accuracy of distinguishing samples derived from patients suffering 

from two different types of GI infection and controls was 81.61%. Within the 

validation dataset, all control samples were correctly identified as controls and none 

of the infection samples were misidentified as controls (Table 2.2). Of the 
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gastroenteritis patients, however, 19.44% with bacterial gastroenteritis were 

incorrectly predicted to suffer from protozoal infection and 23.86% diagnosed with 

protozoal infection were predicted to suffer from bacterial gastroenteritis. Relative 

abundance of the Ruminococcus 1 genus was the biggest contributor to the model’s 

discriminatory power (Figure 2.15A). Other taxonomic features important for 

prediction accuracy included members of the Christensenellaceae R-7 group, 

Coprococcus 2, Romboutsia, Campylobacter and Turicibacter. Ribose, lysine, uracil 

and succinate were the main metabolomic contributors. 

  

For identification of the exact aetiological agent, overall mean prediction accuracy 

dropped to 69%. While all controls were again identified correctly, 14.29% of 

Campylobacter-positive samples were misclassified as G. lamblia-positive and 

17.86% of giardiasis samples were wrongly predicted to be positive for 
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Campylobacter (Table 2.3). None of the samples testing positive for S. enterica or 

Cryptosporidium were classified correctly, being identified as campylobacteriosis 

(62.5% and 17.86%, respectively) or giardiasis samples (37.5% and 82.14%, 

respectively). Although their individual weights differed slightly, many of the main 

contributors to prediction accuracy overlapped for the type of infection and the 

aetiological agent with the Ruminococcus 1 genus being the most important 

taxonomic and ribose the most important metabolomic feature (Figure 2.15B). 

Interestingly, Faith’s PD was amongst the most important features for accurate 

prediction of the aetiological agent but not for the type of infection. 

 



2.6 Discussion 

 
 

 

 
51 

 

2.6 Discussion 

2.6.1 Gut microbiota taxonomic and metabolite profiles in health 

and disease 

As reported previously163-168, acute gastroenteritis induced a shift of the gut 

microbiota away from the healthy state in the present study. The variation introduced 

by the diseased state appeared to be larger than expected interindividual differences, 

as indicated by the fact that control samples from 41 different healthy individuals 

formed a tight cluster, clearly distinct from the infection population during multivariate 

analysis of both 16S rRNA gene sequencing-derived taxonomic and NMR-derived 

metabolic profiles. A major characteristic of infection-induced dysbiosis is a decrease 

in α-diversity163,167, which could be reproduced for all aetiological agents. Given that 

diarrhoea can lead to a loss of 200 g of stool and fluids per day191, many 

microorganisms will be lost along with this matter. Especially in the case of BSC Type 

7 stools the remaining microbes will be diluted in higher than usual volumes of liquid, 

which likely explains why bacterial diversity was lowest in loose faeces. In line with 

this, both the number of loose stools and the reduction in α-diversity was greater in 

patients suffering from bacterial infection than for protozoal infection.  

The PCoA biplot suggests that samples at a greater distance from healthy 

controls, i.e. those patients experiencing the most severe infection-induced dysbiosis, 

are characterised by a high abundance of Escherichia. This genus seems adept at 

occupying niches which open up in a dysbiotic microbiota as a bloom of Escherichia 

has, for example, been observed in patients suffering from recurrent C. difficile 

infection prior to faecal microbiota transplants192. A decrease in Firmicutes 

abundance seems to be another characteristic of GI infection, identified in this as well 

as multiple other studies166,168,193. Firmicutes are one of the major phyla constituting a 

typical, healthy microbiota1,26 and a reduction might indicate that infection opens up 

niches to be occupied by other, less common organisms. Similarly, at higher 

taxonomic resolution, amongst the genera decreased during infection were 

Faecalibacterium, Ruminococci, Coprococcus, Clostridium sensu stricto 1 and 

Roseburia, all major commensal constituents of the microbiota1,194,195. A reduction in 
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several of these genera was previously described during STEC infection196. The 

oxygen hypothesis suggests that dysbiosis can result in increased oxygen availability 

in the normally anaerobic gut, favouring the growth of facultative over strict 

anaerobes197. The largest change between healthy and diseased state was detected 

for Akkermansia. A. muciniphila is a mucin degrader and changes to the normal 

thickness and constitution of the GI tract’s mucous layer might facilitate colonisation 

by pathogens198,199. 

In line with this, prediction of gut microbiota function from taxonomic composition 

suggested an increased abundance of pathways promoting colonisation by new 

microorganisms: both the degradation of glycosaminoglycans and the presence of 

lipopolysaccharide play a part in surface adhesion200,201. Predicted functions support 

some of the observed metabolic differences: A decrease in glutamine/glutamate and 

alanine metabolism during infection is reflected in higher concentrations of the 

compounds in disease samples. Correlation analysis of metataxonomic and 

metabolomics datasets revealed further relationships between the composition of the 

microbiota and its function. The concentrations of ketogenic amino acids such as 

isoleucine, phenylalanine and tryptophan were inversely correlated with abundances 

of Lachnospiraceae and Ruminococcaceae genera. Members of these bacterial 

families were found to thrive on media containing proteins and peptones as the sole 

fermentable substrates202 indicating they use amino acids as energy sources. 

Degradation of ketogenic amino acids yields acetyl coenzyme A, a precursor of fatty 

acids, concentrations of which were positively correlated with Lachnospiraceae and 

Ruminococcaceae genera. Succinate, levels of which were positively correlated with 

Bacteroidetes and Clostridiales genera, was reported to enhance colonisation of 

germfree mice seeded with these microorganisms203. Furthermore, members of these 

taxa are major contributors to proteolytic activity in the gut204, which could explain 

their positive correlation with the levels of amino acids. 

 The pathogenesis of gastroenteritis and associated damage to the host’s enteric 

cells should also be considered when interpreting changes in the gut microbiota’s 

taxonomic and metabolic profile during disease. Controlled absorption of nutrients 

released by the breakdown of food molecules is reliant on intact enterocytes. Enteric 

pathogens can cause electrolyte imbalance either by directly modulating ion transport 
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processes and gut barrier function or indirectly by promoting inflammation and loss of 

absorptive surfaces439. This in turn results in impaired transport of small molecules 

across the gut epithelium. Giardiasis, for example, is associated with shortening of 

microvilli due to cytoskeletal reorganisation and induction of enterocyte apoptosis, 

leading to decreased absorption of glucose440,441.  

2.6.2 16S rRNA gene sequencing and nuclear magnetic resonance 

spectroscopy as diagnostic tools for gastrointestinal infections 

As a direct diagnostic tool, 16S rRNA gene sequencing is inherently limited by the 

fact that the technology targets a region unique to the prokaryotic genome. It can 

therefore not be used for identification of eukaryotic and viral pathogens. The 18S 

rRNA gene and the internal transcribed spacer region are similarly conserved 

sequences in eukaryotic genomes, widely used for profiling of fungal 

communities205,206. Sequencing of these regions could be used to supplement the 

data presented with information about non-bacterial taxa. Due to their high genetic 

diversity and mutation rates, no equivalent marker gene is available for viruses. The 

16S rRNA gene sequencing approach completely failed to identify the bacterial 

pathogens detected during routine diagnostics at species level and sequences 

assigned to the genus Campylobacter were found in only a subset of 

campylobacteriosis samples. The PCoA biplot showed that many salmonellosis 

samples were characterised by changes in the abundance of Enterobacteriaceae, 

indicating that Salmonella might have been identified at family level only. Taxon 

classification is based on the extent of sequence identity in the 16S rRNA gene. For 

more closely related organisms, which have only undergone evolutionary 

diversification relatively recently, differences in one hypervariable region of the 16S 

rRNA gene sequence will be few, making unambiguous distinction difficult. Confident 

identification at higher taxonomic resolution can therefore not always be achieved, 

further limiting the usefulness of the method for direct pathogen diagnostics. Recent 

research suggests that sequencing of the entire 16S rRNA gene, on the other hand, 

can provide strain-level taxonomic resolution207. 

Due to the aforementioned issues with using 16S rRNA gene sequencing for 

diagnostics directly, the focus of the study was shifted towards identifying taxonomic 
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and metabolic biomarkers for indirect diagnostics. Previous studies reported 

universal rather than pathogen-specific gastroenteritis-induced dysbiosis191,208, i.e. 

microbiota changes could not be used for distinction between different aetiological 

agents. Indeed, many of the significant differences in abundance of taxa and 

concentrations of metabolites found in this study differentiated all the infection from 

the control samples rather than pathogens from one another. Exceptions potentially 

allowing distinction between bacterial and protozoal gastroenteritis were the 

Firmicute Blautia, phenylacetate, the fatty acids butyrate, isovalerate, caprate and 

caprylate and the purine derivative hypoxanthine. Singh et al.191 observed a similar 

decrease in Blautia in patients suffering from bacterial infection compared to healthy 

family members. Blautia, like other Lachnospiraceae, metabolise dietary 

polysaccharides that humans cannot degrade themselves209, thus contributing to the 

symbiotic microbiota-host relationship. The decreased abundance of this genus 

during bacterial but not protozoal infection suggests that microbial activity beneficial 

to the host is reduced to varying extents by different types of infection. Butyrate is 

essential for differentiation of regulatory T-cells210, which have an 

immunosuppressive function. Increased levels of butyrate during protozoal infection 

could therefore be part of the pathogen’s immune system evasion strategy. Ng 

Hublin et al.211 also found increased hypoxanthine concentrations in mice infected 

with C. parvum. Parasitic protozoa are incapable of synthesising purine nucleotides 

de novo and thus depend on salvage pathways from compounds such as 

hypoxanthine212. Three metabolites were identified that might allow distinction 

between pathogens from the same domain of life: Aspartate levels were increased 

during salmonellosis but not campylobacteriosis, serine levels were higher in 

Salmonella- than Campylobacter-positive samples and 3-phenylpropionate 

concentrations were elevated during giardiasis compared to cryptosporidiosis. 

Although some of these potential biomarkers appear promising, the 

abundances/concentrations still varied widely between individuals suffering from the 

same infection making it impossible to define a reference range that did not overlap 

with another sample group. On top of this, despite filtering out very low abundance 

taxa, some taxa included in the analyses were not detected at all in a large number 

of samples. Morganella, for example, found to be differentially abundant between 
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cryptosporidiosis and giardiasis samples, would not be a suitable biomarker for 

distinction of the two pathogens as the genus was only present at detectable levels in 

25% and 10.23% of the samples, respectively. The high variation between infection 

profiles might indicate that different strains of the same pathogen, which could not be 

distinguished by the technology used, have different effects on the microbiota. The 

prediction accuracies of 81.61% for the type of infection and 69% for the aetiological 

agent when classifying samples with a Random Forest model show that the problems 

imposed by this variation can partly be overcome using a range of markers instead of 

individual taxa/metabolites. Interestingly, the genus Blautia was the only feature 

suggested as an individual biomarker that was also of high importance for accurate 

prediction during Random Forest classification. This indicates that the interplay 

between several features is more characteristic to disease aetiology than the 

presence or absence of specific ones. 

2.6.2.1 Study limitations 

Several flaws of the present study have been identified, which have the potential to 

negatively affect the significance of the findings. Stool samples were stored at 4°C for 

a varying number of days before freezing. At this temperature, metabolism slows 

down but does not cease completely, leading to alterations in both taxonomic and 

metabolic profiles213,214. In line with this, prolonged storage at 4°C decreased 

bacterial α-diversity and increased the concentrations of many metabolites. 

Furthermore, previous studies found that differences in DNA extraction protocols 

introduce bias with regards to taxonomic profiles215,216. Although the same extraction 

protocol was used for all samples, processing was carried out over a time period of 

four years and by three people in total so that batch variation between extraction kits 

and operator bias cannot be excluded entirely. On top of this, sample batches were 

sequenced by different external providers and while the hypervariable region 

targeted and the sequencing platform used were identical for all three, thus 

eliminating variation introduced by these factors217,218, the exact protocols of sample 

handling and processing after send out could not be controlled. During differential 

abundance testing, potential bias was accounted for by adding storage time at 4°C, 

year of DNA extraction, and sequencing centre to the analysis as covariates. 
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However, while the control samples obtained from healthy volunteers were frozen 

immediately upon receipt, the infection samples were stored at 4°C for up to five 

days before freezing. Most Campylobacter-positive samples were collected during 

the early stages of the study and sequenced at one centre while the controls were 

obtained towards the end of the study and sequenced at a different centre (cf. Table 

2.1). Distinction of sample processing artefacts from true differences introduced by 

infection is therefore difficult and the chosen analysis method might conceal 

changes. 

Apart from different pathogen strains, the wide range of both taxonomic and 

metabolic profiles observed for gastroenteritis samples could also be due to different 

reactions to colonisation by the pathogen based on pre-infection interindividual 

diversity of microbiota composition in the patients. Unfortunately the present study is 

not a longitudinal one, i.e. data is only available from the acute phase of infection but 

not from before and after. Additionally, no patient demographics or lifestyle 

information were recorded so that the effect of factors such as gender, age, 

comorbidities and diet34,219-221 could not be accounted for. 

Finally, while the effects of four different pathogens were studied overall, 

Campylobacter-positive samples dominated the data for bacterial and G. lamblia-

positive samples the data for protozoal infection. Increasing the number of controls, 

salmonellosis and cryptosporidiosis samples to match those of the 

campylobacteriosis and giardiasis samples might potentially lead to the discovery of 

more pathogen-specific biomarkers and increase prediction accuracy of the Random 

Forest classifier. 

2.7 Conclusions 

Although this study shows that, without modifications to the protocol, 16S rRNA gene 

sequencing is not suitable for direct pathogen identification - at least in an 

environment as complex as stool – and that the use of individual pathogen-specific 

biomarkers for diagnostics is unlikely to be feasible, prediction of aetiological agent 

with the help of several taxonomic and metabolic features yielded more promising 

results. Further investigation of interconnected changes in the gut microbiota during 

gastroenteritis with a larger number of samples, encompassing additional pathogens 
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and adjusting for patient demographics and lifestyle could lead to the development of 

alternative, culture-free diagnostic tests targeting changes in the ecosystem induced 

by the pathogen instead of the pathogen directly. Increasing the proportion of specific 

diagnoses would contribute to a better understanding of the prevalence of certain 

aetiological agents, which can in turn inform public health interventions aimed at 

decreasing the burden of gastroenteritis.  

However, if successful, one major issue remains: A culture-free diagnostic 

approach in this form does not yield a pathogen isolate for further characterisation, 

which is crucial for antimicrobial susceptibility testing and outbreak investigations. 

How high-throughput sequencing technologies could be exploited to circumvent this 

problem whilst still eliminating the need for culture, will be explored in the following 

chapter.



 

 

 CHAPTER THREE 

 

3. Culture-independent, metagenome-based 

detection and characterisation of non-typhoidal 

Salmonella enterica 
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3.1 Summary 

Currently, initial confirmation of infection caused by a gastrointestinal pathogen and 

further characterisation of the detected pathogen are carried out by separate 

laboratories and involve multiple, culture-dependent steps. Data obtained from a 

single metagenomic sequencing reaction could allow both detection and 

characterisation of enteropathogens simultaneously, thus decreasing diagnostic 

turnaround times and leading to a faster availability of surveillance data. This chapter 

describes metagenomic sequencing of twenty stool samples from patients diagnosed 

with salmonellosis and comparison of the resulting data with the corresponding 

isolate whole genome sequencing (WGS) data generated during routine surveillance 

by Public Health England (PHE). Taxonomic classification of metagenomic 

sequencing reads identified Salmonella enterica in 70% of the samples. Coverage of 

assembled S. enterica metagenomes was insufficient to establish phylogenetic 

relatedness with their isolate genome counterparts or to determine antimicrobial 

resistance (AMR) profiles. This shows that, without modifications leading to an 

enrichment of the targeted pathogen, the protocol is not suitable to provide the 

resolution achieved by current surveillance methods. 
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3.2 Introduction 

3.2.1 Salmonellosis 

After Campylobacter, Salmonellae are the second most common bacterial cause of 

foodborne infections in Europe222. Salmonellosis generally manifests in the form of 

diarrhoea and vomiting, which is usually self-limiting and does not require treatment, 

or, in the case of a systemic infection, as a febrile disease. The genus Salmonella 

comprises two species, S. bongori and S. enterica. The latter can be divided into the 

six subspecies enterica, salamae, arizonae, diarizonae, houtenae and indica 223. 

Based on specific agglutination reactions, over 2,500 S. enterica serovars have been 

identified 224.  

For S. enterica subsp. enterica, responsible for 99% of human and animal 

infections, a further distinction is made between typhoidal and non-typhoidal 

Salmonellae (NTS). While typhoidal Salmonellae are host-restricted225, NTS tend to 

be either generalist or host-adapted226 and can be transferred from animals to 

humans causing zoonotic infections. As such, they fall under the realm of the World 

Health Organisation’s One Health Approach. Traditionally, only the typhoidal 

serovars S. Typhi and Paratyphi were thought to be the causative agents of enteric 

fever227. However, in recent years, invasive NTS strains, capable of colonising sites 

outside the gastrointestinal (GI) tract, have been observed in low-income 

settings228,229. In fact, invasive NTS are among the most common causes of 

bloodstream infections in parts of Africa. Here, prevalence is particularly high in 

children and human immunodeficiency virus-infected adults228. Worldwide, NTS 

cause an estimated 93.8 million cases of gastroenteritis annually, resulting in 

155,000 deaths230. In the UK, they are the third most common cause of bacterial 

gastroenteritis162. About 3.4 million cases and 680,000 deaths are thought to be 

attributable to invasive NTS infections231 compared to about 27 million cases of 

typhoid fever and 200,000 associated fatalities232. In the UK in 2014, international 

travel was linked to 26% of laboratory-confirmed NTS infections233. Given the high 

prevalence of systemic disease in Southeast Asia225, these rates are much higher 
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when looking at typhoid fever: In 2017, more than 90% of Salmonella bloodstream 

infections referred to PHE were acquired abroad234. 

3.2.2 Metagenomic sequencing as a diagnostic tool 

Following initial diagnosis, salmonellosis cases in the UK are investigated further by 

a reference laboratory for surveillance purposes. Surveillance allows compilation of 

case numbers from across the country to evaluate the pathogen’s prevalence in the 

population but is not limited to mere confirmation of infection. Other tasks of the 

reference laboratory require a detailed characterisation of the organism: establishing 

phylogenetic relationships between isolates aids detection and tracing of outbreaks, 

and generation of AMR profiles furthers the understanding of resistance 

dissemination (discussed further in Chapter 4). Rapid diagnostic approaches 

generally do not provide this level of detail, thus laboratories need to perform 

additional work to isolate the pathogen prior to referral. A diagnostic tool, which omits 

the culturing step but allows both detection and characterisation of the pathogen, 

would reduce the burden on laboratories and ensure faster availability of surveillance 

data. 

Metagenomic sequencing of stool samples from patients with acute gastroenteritis 

holds promise for becoming this tool as it can be used for identification of 

enteropathogenic taxa and, after metagenome assembly, provide insights into 

functional characteristics of the detected pathogens. Initial research into the use of 

metagenomic sequencing for diagnostic purposes focussed on infections of the 

nervous system. Over the years, a range of pathogens, including viruses235-239, 

fungi239, bacteria240 and parasites241, were successfully identified from cerebrospinal 

fluid (CSF) and brain biopsies using a metagenomic approach. Based on this 

research, an assay for the diagnosis of meningitis and encephalitis of unknown 

aetiology from CSF was validated and is now in use at the clinical laboratories of the 

University of California San Francisco242,243.  

Further research into metagenomic diagnostics mainly targeted respiratory, ocular 

and bloodstream infections: Graf et al.244 demonstrated good agreement between 

untargeted metagenomics and a commercial respiratory virus PCR panel. In the case 

of eye infections, the scope of diagnostic testing is restricted by the limited volume of 
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ocular fluid that can be collected at a time. This issue could be overcome by an 

untargeted sequencing approach, as demonstrated by Doan et al.245,246 who were 

able to detect fungal, parasitic and viral pathogens in low-volume samples from 

uveitis patients. During sepsis, rapid, targeted treatment is crucial for a positive 

patient outcome247 but diagnostic blood culture has a high turnaround time and might 

yield negative results due to initial therapy with broad-spectrum antimicrobials. 

Several studies suggest that metagenomic sequencing could be used for detection of 

circulating pathogens and even cell-free DNA from non-circulating microorganisms 

when specimens are culture-negative, and additionally provide information about 

AMR profiles to prevent treatment failures248,249. 

3.2.3 Metagenome-based diagnostics of gastrointestinal infections 

Most of the research into metagenome-based diagnostics has been conducted on 

tissues that are generally thought to be sterile, like blood and those derived from the 

central nervous system, or harbour microbiotas of relatively low complexity, like 

specimens from the respiratory tract250. Only a few studies have investigated the 

potential of metagenomic sequencing for detection and characterisation of infections 

in the more complex environment of faecal material where sequences from the 

pathogen could be outcompeted by those from commensals resident in the GI tract. 

Joensen et al.87 performed metagenomic sequencing on 38 stool samples which 

tested positive for Clostridioides difficile, Salmonella, Campylobacter, Yersina 

enterocolitica or diarrhoeagenic Escherichia coli by conventional diagnostics. The 

same pathogen was detected in 89.47% of samples by the sequencing-based 

approach. Additionally, putative aetiological agents could be identified in diarrhoea 

samples that were conventionally negative. Zhou et al.251 were able to detect C. 

difficile in 86.3% of samples from patients with confirmed C. difficile infection and 

retrospective metagenomic analysis of eight Campylobacter-positive faecal samples 

by Andersen et al.252 identified Campylobacter in all samples. 

Even fewer studies do not merely focus on detection of enteropathogens but aim 

for a more in-depth characterisation: Gigliucci et al.165 were able to demonstrate a 

match between virulence factors found in the metagenome and the whole genome 

sequences of Shiga toxin-producing Escherichia coli (STEC) isolates from an 
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outbreak in Italy. Providing higher resolution still, Huang et al.169 successfully used 

metagenomic sequencing to subtype Salmonella from two foodborne outbreaks in 

the United States to serovar level and showed that the outbreaks were unrelated by 

phylogenetic analysis of assembled metagenomes, which was in agreement with the 

results of culture-dependent methods. For culture-independent sequencing to be 

considered as a replacement for the current system of Salmonella surveillance in the 

UK, the approach would need to reliably provide information equivalent to that 

derived from WGS data at PHE. 

3.3 Objectives 

The purpose of the work presented in this chapter was to compare the resolution of 

WGS performed on S. enterica isolates to that of metagenomic sequencing 

performed on the corresponding stool samples. It was hypothesised that S. enterica 

can be identified and placed in a phylogenetic context to other infection isolates in a 

culture-independent manner and that AMR profiles derived from assembled 

metagenomes match those determined by WGS. 
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3.4 Materials and Methods 

Routine diagnostics were carried out by staff at the Norfolk and Norwich University 

Hospital’s (NNUH) enteric laboratory. Processing of bacterial isolates and 

bioinformatics were carried out by staff at PHE’s Gastrointestinal Bacteria Reference 

Unit. Removal of host DNA and co-assembly generation were performed by Dr. 

Andrea Telatin at Quadram Institute Bioscience (QIB). Unless otherwise stated, 

default software parameters were used. 

3.4.1 Collection and processing of faecal samples 

Twenty S. enterica-positive stool samples, for which pathogen isolates were sent to 

PHE for WGS-based surveillance, were collected as part of the study described in 

Chapter 2. Total genomic DNA was extracted from the samples as outlined in section 

2.4.1.3. 

3.4.2 Processing of Salmonella enterica isolates 

3.4.2.1 Genomic DNA extraction 

S. enterica cultures were inoculated in 750 µl of nutrient broth immediately after 

receipt at PHE and incubated at 37°C overnight.  Automated genomic DNA extraction 

from overnight cultures was carried out using a QIAsymphony instrument (Qiagen, 

Hilden, Germany). DNA was quantified with a GloMax® microplate reader (Promega, 

Fitchburg, WI, USA). 

3.4.2.2 Whole genome sequencing 

Extracted genomic DNA was submitted to the Genomic Services and Development 

Unit at PHE for automated preparation of sequencing libraries. Concentrations were 

normalised with the help of Biomek liquid handling robots (Beckman Coulter, Brea, 

CA, USA). Libraries were generated with a Sciclone® G3 workstation (PerkinElmer, 

Waltham, MA, USA) using the Nextera™ XT DNA sample preparation kit (Illumina®, 

San Diego, CA, USA). Sizing of resulting DNA fragments was carried out using a 
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LabChip® GX nucleic acid analyser (PerkinElmer) and library concentrations were 

assessed with a ViiA7 real-time PCR thermocycler (Thermo Fisher Scientific, 

Waltham, MA, USA) using the KAPA library quantification kit (Roche, Basel, 

Switzerland). 

Clusters of DNA templates were generated using the cBot system (Illumina®). 

Short-read sequence fragments of 100 bp were produced by paired-end sequencing 

on a HiSeq 2500 platform (Illumina®) in fast mode. FASTQ sequences were 

deposited in the National Centre for Biotechnology Information’s (NCBI) Sequence 

Read Archive under the BioProject PRJNA315192. Accession numbers (ANs) can be 

found in Table 3.1. 

 

3.4.2.3 Quality trimming of sequencing reads 

Demultiplexing of samples was carried out with the Illumina CASAVA software, 

version 1.8. Trimmomatic253 v.0.36 was used to remove any bases with a Phred 
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quality score below 30 from both ends of the sequencing reads. Reads less than 50 

bp in length after trimming were discarded along with their paired read. 

3.4.2.4 Initial species identification 

Initial taxonomic classification of isolates to species and subspecies level was 

performed using the kmerID pipeline developed by PHE (https://github.com/phe-

bioinformatics/kmerid)254. Sequencing k-mers were compared against the k-mers of 

1,769 reference genomes, representing 59 pathogenic genera, obtained from 

RefSeq, the NCBI reference sequence database. 

3.4.2.5 Serovar prediction 

Salmonella sequence type and eBurst group255 were determined using MOST, a 

pipeline for identifying multilocus sequence types (MLSTs) from short-read 

sequencing data256. Based on the correlation between sequence types and serovars 

described by Achtman et al.255, serovar designations were inferred from sequence 

types according to the PHE database containing matched MLST and serovar data for 

>12,000 Salmonella isolates254. Predicted serovars for the twenty S. enterica isolates 

are shown in Table 3.1. 

3.4.3 Metagenomics 

3.4.3.1 Shotgun sequencing 

Extracted DNA was quantified using a Qubit fluorometer with broad-range reagents 

(Thermo Fisher Scientific, Waltham, MA, USA) and sent to Novogene (Beijing, China) 

for further processing. Sequencing libraries were generated with the NEBNext® 

Ultra™ DNA Library Prep Kit for Illumina® (New England Biolabs, Ipswich, MA, USA). 

Libraries were purified using the AMPure XP system (Beckman Coulter, Brea, CA, 

USA), analysed for size distribution using a 2100 Bioanalyser instrument (Agilent 

Technologies, Santa Clara, CA, USA) and quantified by real-time PCR. Cluster 

generation was performed on a cBot System (Illumina®, San Diego, CA, USA). 

Paired-end 150 bp sequencing was performed on a HiSeq 2500 instrument 

(Illumina®).  
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3.4.3.2 Trimming and quality filtering of sequencing reads 

Quality trimming and filtering of sequencing reads was carried out by the sequencing 

provider. Reads were demultiplexed and adapters as well as index sequences were 

removed. Reads containing >10% of ambiguous base calls as well as those for which 

>50% of total base calls had a quality score ≤5 were filtered out. 

Contaminant host DNA was removed by alignment of the remaining reads to a 

human reference genome using BBMap257 v. 38.08. Only the resulting high-quality, 

microbial sequences were included in subsequent analyses. 

3.4.3.3 Taxonomic analysis 

Taxonomic analysis was carried out from the resulting FASTA files for each sample 

with two different taxonomic classifiers: MetaPhlAn2258,259 v. 2.7.8 was used for 

analysis of forward reads only. The tool infers the presence and read coverage of 

taxa based on a set of approximately 1 million clade-specific markers from >7,500 

species, yielding relative abundance tables.  

Paired-end analysis was performed with Kraken v. 1.0 and the default Kraken 

database260. The database, built from completed microbial genomes in the NCBI 

RefSeq database, contains a record of k-mers (k=31) and the lowest common 

ancestor (LCA) of organisms whose genomes share this k-mer. The k-mers 

contained within a sequencing read are queried against the database and a 

taxonomic label is assigned based on the determined set of LCA taxa. The resulting 

output files were converted to sample report files providing read counts associated 

with each taxon using the kraken-report command. Relative abundances were 

determined by dividing the read counts associated with specific taxa by the total 

number of reads assigned to the root for this sample. 

3.4.3.4 Co-assembly and metagenome binning 

A metagenome co-assembly was generated from the sequencing reads of all twenty 

samples. Forward sequencing reads from individual samples were aligned against 

the co-assembly using BBMap257 v. 38.08. The resulting BAM files were sorted with 

SAMtools261 v. 0.1.19. Metagenomic binning was carried out using MetaBAT 2262 v. 
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2.12.1: A depth file was produced from the previously generated BAM files and 

binning of the co-assembly contigs was performed with this depth file. Taxonomic 

assignment of the resulting 179 bins was carried out by aligning contigs against the 

NCBI nt database with the blob_annotate_mod.pl command, modified from the 

blobology package263 for implementation with gbtools264 v. 2.6.0. For each sample 

individually, forward and reverse metagenomic sequencing reads were mapped 

against the bin containing contigs annotated as S. enterica and the mapped reads 

were assembled with metaSPAdes265 v. 3.11.1. 

3.4.4 Phylogenetic analysis 

Phylogenetic relationships between reads from both shotgun and isolate whole 

genome sequencing were established with the help of StrainSifter266 based on 

Snakemake v. 5.4.2 using S. Typhimurium str. LT2 (AN: AE006468) as reference 

genome, which is also used as a reference genome in PHE’s WGS analysis pipeline. 

The minimum mapping quality score was set to 60, the maximum number of allowed 

mismatches to 5 and the minimum read depth to 5. The minimum fraction of bases 

covered at minimum read depth for a sample to be included in the analysis was fixed 

at 0.5 and the minimum frequency of a nucleotide to call a base at any position to 

0.8. The resulting tree file was visualised using iTOL (Interactive Tree of Life)267 v. 5. 

S. enterica metagenomes assembled as described in section 3.4.3.4 and WGS 

reads from the corresponding isolates were uploaded to PATRIC v. 3.6.2268 along 

with the aforementioned S. Typhimurium reference genome and two further 

reference genomes used in PHE’s WGS analysis pipeline, S. Agona str. SL483 (AN: 

CP001138) and S. Enteritidis str. P125109 (AN: AM933172). All uploaded genomes 

were annotated with PATRIC’s genome annotation service using the RAST tool kit269. 

Protein family predictions were based on the Salmonella enterica taxon (Taxonomy 

ID: 28901). A phylogenetic tree was built with the Codon Tree method of PATRIC’s 

Phylogenetic Tree Building Service, which uses RAxML270 to analyse proteins and 

coding DNA aligned to PATRIC cross-genus families. The number of genes to 

analyse was set to 1,000 and the maximum allowed number of deletions and 

duplications within a homology group to 10.  
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3.4.5 Antimicrobial resistance profiling 

3.4.5.1 Detection of antimicrobial resistance determinants in isolate whole 

genome sequences 

Antimicrobial resistance determinants (ARDs) in isolate WGS were identified with the 

help of the ‘Genefinder’ algorithm developed at PHE. Sequencing reads were 

mapped to a set of reference sequences using Bowtie 2, version 2.2.5271, followed by 

generation of an mpileup file with SAMtools, version 0.1.18261,272. Positive matches 

between the read set and the reference sequence or nucleotide variations were 

defined as query coverage 100%, base-call variation >85% and nucleotide identity 

>90%. The reference database used included acquired genes and mutations known 

to confer resistance to β-lactams (including penicillins, 2nd-, 3rd- and 4th-generation 

cephalosporins and carbapenems), phenicols, aminoglycosides, sulphonamides, 

tetracyclines, trimethoprim and fluoroquinolones273,274. Variants of β-lactamase genes 

were identified with 100% identity based on reference sequences downloaded from 

the Lahey (www.lahey.org) or NCBI β-lactamase data resources 

(https://www.ncbi.nlm.nih.gov/pathogens/beta-lactamase-data-resources). Further 

reference sequences for acquired resistance genes were obtained from CARD (The 

Comprehensive Antibiotic Resistance Database) (http://arpcard.mcmaster.ca) and 

the ResFinder datasets (https://cge.cbs.dtu.dk/services/data.php). Chromosomal 

mutations were limited to previously published variations within the quinolone 

resistance-determining region of gyrA and parC. 

3.4.5.2 Resistome profiling of metagenomic sequencing reads 

Resistome profiling of forward shotgun sequencing reads from each sample was 

performed using GROOT (Graphing Resistance out of Metagenomes)275 v. 0.8.3 with 

the pre-clustered CARD database. Database clusters are collections of sequences 

sharing high nucleotide identity, from which variation graphs were produced. The 

graphs were indexed with the node window length set to 150. Sequencing reads 

were then aligned against the indexed variation graphs. Reports were generated 

from the resulting BAM files, including only those ARDs covered at ≥97%. 

https://www.ncbi.nlm.nih.gov/pathogens/beta-lactamase-data-resources
http://arpcard.mcmaster.ca/
https://cge.cbs.dtu.dk/services/data.php
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3.4.5.3 Detection of antimicrobial resistance determinants in assembled 

(meta)genomes 

Isolate genomes and assembled metagenomes were annotated with PATRIC as 

described in section 3.4.4. Lists of ARDs detected in the genomes were derived from 

the antibiotic resistance specialty genes identified during annotation. 
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3.5 Results 

3.5.1 Recovery of Salmonella enterica sequences 

Read counts per sample ranged from 33.39 to 42.34 million with a median of 37.83 

million. The Q30 value exceeded 91% for all samples. Host contamination was 

minimal (<7%), except for samples 10 (43%), 11 (45%) and 20 (27%). To assess 

whether culture-independent metagenomic sequencing can be used for direct 

detection of S. enterica, sequencing reads were analysed with two taxonomic 

classifiers. A sample was classed as positive when S. enterica was detected at a 

relative abundance >0.01%. Using this cut-off, S. enterica was identified in fourteen 

samples (70%) using Kraken and in twelve samples (60%) using MetaPhlAn2 (Table 

3.2). Relative abundances for the positive samples ranged widely, from 0.02% to 
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28.5% for Kraken and from 0.05% to 28.33% for MetaPhlAn2. The two additional 

samples identified as S. enterica-positive using Kraken only contained the pathogen 

at a low abundance of 0.02%. For all other samples, both classifiers were in good 

agreement, with abundance estimates differing by maximally 2.91%.  

As described in the previous chapter, stool consistency and time since onset of 

symptoms can affect the likelihood of successful pathogen recovery. In the present 

study, detection of S. enterica was more likely in loose stools (Figure 3.1A). Five 

samples were derived from hospital inpatients, for which the time of onset of 

symptoms had not been recorded. For the remaining patients, there did not appear to 

be an obvious relationship between the duration of disease before sample collection 

and the relative abundance of S. enterica (Figure 3.1B) as detection was 

unsuccessful both for some patients with a recent onset of disease and those who 

had been ill for more than a month. The highest abundance detected was associated 

with a disease duration of eleven days followed by seven and 27 days. 
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3.5.1.1 Gut microbiota profiles during salmonellosis 

In order to investigate whether metagenomic sequencing is able to identify any 

common features in gut microbiota composition during S. enterica infection, 

taxonomic profiles of the twenty samples, as determined using MetaPhlAn2, were 

compared (Figure 3.2). Sample 10 was found to contain relatively high levels of 

Retroviridae while sample 11 was characterised by a high abundance of 
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Streptococcaceae and Staphylococcaceae, and sample 12 only contained 

sequences classified as Enterococcaceae and Streptococcaceae. At such 

abundances, these features are unusual for the human gut microbiota and suggest 

either poor DNA quality, sample contamination or misclassification of sequencing 

reads. Noticeably, even for samples with few S. enterica reads, Enterobacteriaceae 

were found to be abundant. At species-level taxonomic resolution, most of the 

Enterobacteriaceae reads were assigned to E. coli with a relative abundance of the 

organism of up to 62.57% in sample 20. 

3.5.2 Genome assemblies 

Although further characterisation of detected S. enterica was attempted directly from 

the shotgun sequencing reads as described in the following sections, it was deemed 

likely that the signal from the remaining microorganisms in the gut microbiota might 

outcompete the signal of interest, especially in samples where the pathogen was only 

detected at a low abundance. To amplify the S. enterica signal, a co-assembly was 

generated from the sequencing reads of all twenty samples, followed by 

metagenome binning and taxonomic annotation of the resulting bins. To specifically 

filter out S. enterica reads for each patient, the sample’s sequencing reads were then 

individually aligned to those forming the S. enterica bin. The mapped reads were 

used to assemble individual metagenomes. A comparison of assembly statistics for 

metagenomes and WGS-derived isolate genomes revealed that the metagenomes 

were of a much poorer quality (Table 3.3).  

Contig counts ranged from 81-447 (median: 149.5) for isolate genomes and from 

13-11,982 (median: 3,038) for metagenomes. Generally, a lower number of contigs 

indicates that more reads overlap and can be assembled into a continuous 

consensus sequence, thus hinting at an almost complete genome. However, while all 

isolate genomes were classed as 100% complete based on the percentage of 

universal functional roles, a lower number of contigs was not reflected in more 

complete metagenomes. Instead, low contig numbers appeared to be associated 

with a lack of S. enterica-specific reads. The most incomplete metagenome was 

obtained from sample 12 (0%) and the most complete from sample 20 (68.20%). Two 

additional indicators of genome quality, the N50 and the fine consistency values, 
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further highlighted that the assembled metagenomes were of lower quality than the 

isolate genomes. The N50 value describes the contig size, at which 50% of the 

genome are contained in contigs of equal or larger size. The higher the number, the 

closer it is to the size of the complete genome, indicating a good-quality assembly. 

N50 ranged from 28,913 to 145,067 bp (median: 75,457.50 bp) for isolate and from 

245 to 5,546 bp (median: 545 bp) for metagenomes. Coarse consistency describes 

the number of functional roles in an annotated genome, presence or absence of 

which was predicted correctly based on the expected roles occurring in S. enterica 

reference genomes. Coarse consistency equalled or exceeded 99.5% for all isolate 

genomes but ranged from 76.30% to 96.30% for metagenomes. 
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3.5.3 Phylogeny of Salmonella enterica strains  

Individual S. enterica isolates received by PHE are characterised at single nucleotide 

polymorphism (SNP)-level resolution as described in section 4.4.2.4. This level of 

resolution could not be achieved for the metagenomes due to the incompleteness of 

the assemblies. Instead, phylogenetic analysis with the available reads and contigs 

was carried out to investigate whether isolates clustered together with their 

corresponding metagenomes.  

This analysis was first performed on WGS and shotgun sequencing reads using 

StrainSifter, which was developed specifically for metagenomes (Figure 3.3A). Only 

seven of the twenty metagenomic sequencing samples were included in the resulting 

tree, indicating that reads aligning to the reference S. enterica strain were not 

detected by the pipeline in the remaining samples. The seven samples that were 

retained were those for which the taxonomic classifiers had identified the highest 

relative abundances of S. enterica (cf. Table 3.2). Whole genome and metagenomic 

sequencing reads clustered together for sample 6 only. On the phylogenetic tree built 

from assembled isolate and metagenomes, the metagenomes of both sample 6 and 

11 were located close to their WGS-derived counterparts (Figure 3.3B). Both 

approaches were able to detect the close phylogenetic relatedness of isolates 

designated as the same serovar (cf. Table 3.1) and placed isolate 19, which was 

identified as S. enterica subsp. diarizonae, at the furthest distance from the 

remaining samples, which all belonged to subspecies enterica. 
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3.5.4 Antimicrobial resistance profiling in Salmonella enterica 

The Genefinder algorithm forms part of PHE’s routine WGS analysis pipeline for S. 

enterica, providing information about ARDs present in the isolate genomes. The 

algorithm identified an aminoglycoside acetyltransferase gene of the aac(6’)-type, 

either aac(6’)-Iy (n=14) or aac(6’)-Iaa (n=6), in all twenty isolates included in this 

study (Table 3.4). However, these ARDs are generally silent and only become 

transcriptionally active in rare cases276. Only seven isolates carried further ARDs, 

namely aadA-type aminoglycoside adenylyltransferase genes, the aminoglycoside 

acetyltransferase gene aac(3)-IVa, strA-strB, the penicillinase gene blaTEM-1, sul 

variants associated with sulphonamide resistance, the tetracycline efflux pump-

encoding tet(A), the trimethoprim resistance gene dfrA12, ermB and mphA involved 

in resistance to macrolides, lincosamides and streptogramins, and mutations in parC 

and gyrA, which contribute to fluoroquinolone resistance. AMR profiles determined 

from assembled isolate genomes after genome annotation with PATRIC matched 

with few minor exceptions: strB but not strA was detected in sample 13 and aadA3 

and aadA8b could not be found in samples 13 and 14, respectively, while another 

aadA variant was identified successfully.  

To evaluate whether direct profiling of metagenomic sequencing reads yields 

comparable results, GROOT was used for resistome analysis. Focussing only on 

ARDs detected in both the isolate genomes and metagenomic reads resulted in an 

exact match of AMR profiles for samples 16 and 18. In a further three samples, the 

pipeline detected aac(6’)-Ie-aph(2’’)-Ia, another aminoglycoside acetyltransferase 

gene, instead of aac(6’)-Iy. Partially matching AMR profiles were obtained for 

samples 13 and 14, for which GROOT identified strA, tet(40), sul-2 and ermB but 

none of the other ARDs present in the isolate genomes. However, since resistome 

profiling was carried out on the entire gut microbiota in this case it is uncertain 

whether the detected ARDs were carried by S. enterica or other organisms. To 

overcome this uncertainty, metagenomes assembled from sequences aligning to the 

S. enterica bin were annotated using PATRIC, and antibiotic resistance specialty 

genes were investigated. Only the parC mutations in samples 9 and 10 were found in 

both isolate and metagenomes. 
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3.6 Discussion 

3.6.1 Direct detection and characterisation of Salmonella enterica 

by metagenomic sequencing of stool samples 

Of the twenty salmonellosis cases used in this study, confirmed by routine 

diagnostics and WGS-based surveillance, only 60-70% - depending on the 

taxonomic classifier used – would have been classed as S. enterica-positive by 

metagenomic sequencing. This highlights that, without any modifications to the 

protocol, the approach would be prone to a high number of false negatives. 

Successful recovery of pathogen sequences can be influenced by a variety of 

factors, one of which is the amount of time that has passed between onset of 

gastroenteritis symptoms and sample collection for diagnostic purposes. Pathogen 

loads during viral gastroenteritis, for example, are thought to peak 24-48 hours after 

symptoms develop277. In the present study, no apparent relationship was found 

between time since disease onset and successful detection of S. enterica 

sequences. Stool samples were stored at 4°C for a varying number of days at the 

NNUH enteric laboratory before being transferred to QIB and frozen, which could 

have further effects on the detection of the target organism as described in chapter 2. 

The likelihood of recovering S. enterica sequences seemed to be higher for loose 

than solid stools. Vandeputte et al.278 showed that variations in stool consistency 

were associated with differences in microbiota composition and suggested that 

shorter colonic transit times could increase the abundance of fast-growing species 

and organisms that adhere to host tissue, such as Salmonella. Conventional 

diagnostic methods like culture and PCR enrich for the pathogen of interest by using 

selective media or targeting and amplifying a genomic region specific to a particular 

pathogen. Metagenomic sequencing, on the other hand, is unbiased and heavily 

affected by the ratio of pathogen to commensal DNA. In samples classed as negative 

in this study, S. enterica might therefore be present at an abundance high enough to 

cause symptoms and be detected by selective methods but the background noise of 

the remaining gut microbiota, for example the high levels of E. coli observed in 

several patients, could make it impossible to pick up the low abundance signal during 
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unbiased sequencing at this depth. Since no longitudinal sampling was carried out, it 

is unclear whether high E. coli levels were also present in the gut microbiota of these 

patients prior to disease but an increase in, most likely commensal, members of this 

species has been detected previously during infection with Salmonella, 

Campylobacter and Shigella169,191. 

While detection of S. enterica by metagenomic sequencing was partially 

successful, further characterisation in the form of phylogenetic analysis and 

determination of AMR profiles failed using both sequencing reads directly and 

metagenome assemblies. This was still true when samples 10, 11 and 12, which 

showed high host contamination and/or unusual taxonomic profiles indicating poor 

quality, were disregarded. Only seven samples contained sufficient species-specific 

information to be retained in a phylogenetic tree built directly from the sequencing 

reads and the majority of samples were located at a distance from their isolate 

genome counterparts. Overall, this analysis indicates that the resolution obtained 

from metagenomic sequencing is not sufficiently high to examine phylogenetic 

relatedness between different strains of the same species, even when the species is 

present at high abundance as is the case for sample 16. Similarly, only few AMR 

profiles partly matched those derived from WGS. The apparent discrepancy between 

the ability to simply detect S. enterica, which was successful for more than half of the 

samples, and the failure to characterise the pathogen further can be explained by the 

different approaches employed by taxonomic classifiers and tools used to determine 

phylogeny and AMR profiles: the former make use of short taxon-specific marker 

sequences. The latter, on the other hand, require longer, uninterrupted consensus 

sequences for reliable results. The quality metrics obtained for the metagenome 

assemblies, however, indicate that large parts of the genome are not covered so that 

a lot of data will not pass the analysis tools’ built-in quality control features. 

Rodriguez & Konstantinidis279 estimated that datasets with >60% average coverage 

perform best for assemblies and SNP-level strain identification requires deep 

coverage of at least 10X259, values not achieved in this study. Huang et al.169, who 

successfully performed phylogenetic analysis on S. Heidelberg metagenomes, 

reported coverage ranging from 7.8X-120.4X. 
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3.6.2 Potential improvements to culture-free diagnostics and 

surveillance of salmonellosis 

Although analysis at a level required for S. enterica surveillance was not achieved in 

the current study, changes to the protocol could likely improve results. The DNA 

extraction protocol was not developed specifically for metagenomic sequencing. 

Rather, the same extracts as used for 16S rRNA gene sequencing in the study 

described in chapter 2 were sequenced. Extensive bead beating can alter the 

apparent taxonomic composition of a sample280 and host depletion was not carried 

out. The ratio of human to microbial DNA in stool is generally low, with up to 75% of 

the faecal mass estimated to be of bacterial origin281. In line with this, only three 

study samples showed significant human contamination and this could easily be 

removed bioinformatically. However, exclusively sequencing microbial DNA in the 

first place would increase the total number of reads derived from the target organism. 

An example of a DNA extraction protocol for metagenomic sequencing with a host 

depletion step is described in section 5.4.2.1. 

Validation of a metagenomics-based diagnostic test for S. enterica infection would 

require establishment of a limit of detection. This could be achieved by spiking faecal 

samples with different known numbers of colony-forming units (CFU)/ml of the 

organism and investigating at which point the taxonomic classifier chosen cannot 

reliably pick up the pathogen signal anymore. Andersen et al.252 performed this 

experiment for Campylobacter and found 7.75x104 CFU/ml to be the lowest 

detectable spiking level. Furthermore, they showed that higher spiking levels were 

associated with higher relative abundances but this relationship was not proportional 

indicating that abundance data cannot easily be translated into the number of viable 

organisms present in a sample. Conducting a similar validation for S. enterica might 

reveal that bacterial loads were below the limit of detection for patients in which S. 

enterica sequences could not be recovered in this study. Limits of detection 

determined in this way will be specific for the pathogen and the DNA extraction 

protocol, library preparation method, sequencing platform and analysis pipeline used 

so they would have to be re-evaluated should any changes be made to the process. 

To address the problem of insufficient coverage for detailed characterisation of the 

detected S. enterica, enrichment of the target organism prior to sequencing could be 
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carried out, thus decreasing the signal from other constituents of the gut microbiota. 

Selective capture has been described for viral sequences282,283 and STEC using 

whole-genome RNA baits284. Development of a similar bait-capture system for 

Salmonella would increase coverage and sequencing depth of the pathogen genome 

and most likely allow for phylogenetic analysis and AMR profiling. However, it has to 

be kept in mind that a pathogen enrichment approach is only feasible when the target 

organism is known. While this eliminates one of the main benefits of choosing 

metagenomics for diagnostic purposes, its ability to identify a multitude of potential 

pathogens in an unbiased manner, initial pathogen identification by sequencing 

followed by capture-based enrichment and further characterisation of the resulting 

sequences might still be faster than culture-based enrichment followed by WGS. 

3.7 Conclusions 

This small-scale study of twenty stool samples from patients with acute 

gastroenteritis testing positive for S. enterica infection by conventional diagnostics 

illustrates that, while culture-free metagenomic sequencing cannot yet replace 

established diagnostic approaches and WGS-based surveillance of salmonellosis, 

there is scope for improvement of the methodology presented here. This might 

eventually allow reliable culture-independent detection and characterisation of S. 

enterica and lead to a decrease in current turnaround times from confirmation of 

infection to availability of surveillance data. 

How high-throughput sequencing has already allowed reference laboratories to 

replace laborious wet-lab work with computational methods, albeit retaining the need 

for an initial culturing step, will be discussed in the following chapter. 
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4. Antimicrobial resistance in UK isolates of non-
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genome sequencing-derived resistance profiles for 
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Parts of this chapter have previously been published in Neuert et al.285. 

4.1 Summary 

The use of whole genome sequencing (WGS) for surveillance of enteric pathogens, 

such as Salmonella, has revolutionised the work of public health laboratories. It 

allows inference of a multitude of pathogen characteristics from a single sequencing 

experiment, including identification of species, serovar and even strain at single-base 

resolution. Additionally, it enables detection of functionally important genes, such as 

antimicrobial resistance determinants (ARDs). In this chapter, antimicrobial 

resistance (AMR) profiles of 3,491 non-typhoidal Salmonella enterica (NTS) isolates 

received by Public Health England’s (PHE) Gastrointestinal Bacteria Reference Unit 

(GBRU) were characterised. Pansusceptibility was observed in 68.98% of isolates. 

Of the resistant isolates, 74.42% showed multidrug resistance (MDR). Co-resistance 

to ampicillin, streptomycin, sulphonamides and tetracycline, mostly mediated by 

carriage of blaTEM-1, strA-strB, sul2 and tet(A), was the most common MDR profile. 

Extendend spectrum β-lactamase (ESBL)  genes were detected in 1.23% of isolates 

and associated with travel to North Africa, while multiple mutations in chromosomal 

genes underlying ciprofloxacin resistance were found in 2.35% of isolates and linked 

to travel to South and Southeast Asia. Prediction of phenotypic resistance based on 

ARDs identified in WGS resulted in complete agreement of phenotypic and genotypic 

profiles in 97.82% of cases. Only 0.17% of all possible isolate/antimicrobial 

combinations were discordant, with the largest number of mismatches associated 

with streptomycin resistance. This highlights the suitability of using WGS-based 

prediction of AMR profiles for NTS surveillance. 
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4.2 Introduction 

4.2.1 History of antimicrobial resistance in Salmonella enterica 

Without the use of antimicrobial agents to treat invasive and severe gastrointestinal 

(GI) cases of S. enterica infection, associated mortality rates would likely be even 

higher. Additionally, veterinary antimicrobial therapy has decreased the incidence of 

Salmonella in animal reservoirs, reducing the risk of zoonoses. However, these 

initially successful interventions have not come without a price: S. enterica rapidly 

developed resistance against antimicrobials used to control the organism in both 

humans and animals. Resistance dissemination was aided by the fact that many 

ARDs are located on mobile genetic elements and can therefore be transferred 

horizontally between organisms. 

In humans, chloramphenicol was the drug initially recommended for the treatment 

of enteric fever caused by S. Typhi and Paratyphi. The first outbreaks resistant to 

chloramphenicol were reported in the early 1970s and by the 1990s strains with 

additional resistance to ampicillin, sulphonamides and trimethoprim were 

widespread286. The introduction of fluoroquinolones as an alternative to 

chloramphenicol in the 1980s was followed by a larger number of isolates displaying 

decreased susceptibility to ciprofloxacin287,288. Consequently, 3rd-generation 

cephalosporins and azithromycin, intended as antimicrobials of last resort when other 

treatments fail, are increasingly being used as first-line therapies for systemic 

infections225. Resistance to these drugs has been reported in European isolates and 

is often associated with travel to Asia289.   

Resistance in NTS is heavily linked to veterinary application of antimicrobials and 

subsequent zoonotic transfer to humans. The increased use of ampicillin, 

chloramphenicol, streptomycin, sulphonamides and tetracycline resulted in the 

emergence of S. Typhimurium strains displaying the so-called ACSSuT phenotype, 

resistance to exactly these antimicrobials, in the 1980s290,291. By the early 1990s, the 

phenotype had disseminated globally with some strains acquiring additional 

resistance to cephalosporins, aminoglycosides, trimethoprim and even 

fluoroquinolones, the antimicrobials initially introduced to circumvent the treatment 
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challenges imposed by the MDR organism291. More recently, the spread of an 

extensively drug-resistant strain of S. Kentucky, which originated in Egypt, has 

sparked concern. This strain is non-susceptible to extended-spectrum 

cephalosporins, cabapenems, most aminoglycosides, trimethoprim-

sulfamethoxazole, fluoroquinolones and azithromycin292. Azithromycin resistance has 

also been reported in other NTS serovars293,294. By 2015, 29.3% of all NTS isolates in 

the EU were classed as MDR295. Resistance to colistin, considered the antimicrobial 

of last resort for the management of many MDR Gram-negative pathogens, was 

believed to be solely encoded chromosomally296. However, plasmid-mediated colistin 

resistance via mcr genes, first described in China in 2015297, has since been 

detected in UK NTS isolates, most of which were associated with international 

travel298.  

4.2.2 Surveillance of antimicrobial resistance in Salmonella enterica 

Surveillance of NTS infections by public health agencies is essential for monitoring 

transmission of the organism through the food chain to humans, and for establishing 

effective treatment guidance. Since infections caused by MDR NTS are associated 

with increased mortality and higher costs to the healthcare system299,300, 

determination of AMR profiles is an integral part of this surveillance. 

Traditionally, surveillance in reference laboratories has required a series of 

independent tests: species and subspecies identity were confirmed by biochemical 

tests and PCR301,302 and agglutination reactions formed the basis of assigning 

isolates to serovars following the White-Kauffman-Le Minor scheme224,303.   

Despite international acceptance of the scheme, serotyping has its disadvantages: 

firstly, it cannot be automated and requires costly antibodies derived from rabbits. 

With the number of NTS isolates referred to PHE in the last years ranging from 7,250 

in 2014 to 12,094 in 2007304, this puts an enormous strain on the reference 

laboratory. Secondly, antigenic concordance does not always reflect the pathotype of 

the organism. The serological formulae of S. Paratyphi B and S. Java, for example, 

are identical but while the former causes typhoid fever, the latter is responsible for 

non-invasive gastroenteritis305. To overcome these issues, a sequencing-based 

approach for serotyping S. enterica has been developed: multilocis sequence typing 
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(MLST) relies on grouping isolates according to the sequence similarity of several 

housekeeping gene fragments306. Since first proposed, this scheme has been shown 

to correlate well with phenotypic serovar designations in many cases255. 

Advances in sequencing technology have allowed reference laboratories to 

investigate isolates in even greater detail307. At PHE’s GBRU, traditional phenotypic 

serotyping was replaced by the routine implementation of WGS for identification and 

surveillance of S. enterica in April 2015254. Typing at single-nucleotide resolution 

allows inference of phylogenetic relationships between isolates and has proven 

invaluable for outbreak detection308-312. Ashton et al.254 showed that serovar 

designations based on MLST derived from WGS data correlated with the results of 

phenotypic serotyping in 96% of cases, thus WGS even permits maintenance of 

serovar nomenclature for backwards compatibility and data exchange with countries 

that still rely on traditional serotyping methods. At PHE, most of these methods have 

been discontinued as routine services in favour of WGS-derived methodologies. 

The gold standard for generation of AMR profiles in S. enterica is the 

determination of minimum inhibitory concentrations (MICs) and the classification into 

resistant and susceptible isolates based on clinical breakpoints as recommended by 

the European Committee on Antimicrobial Susceptibility Testing (EUCAST). 

Annotation of WGS, however, also allows the detection of ARDs, from which AMR 

profiles can be inferred, and therefore provides the means to rapidly monitor 

emerging trends in AMR patterns of NTS without the requirement for additional 

laboratory testing. 

4.3 Objectives 

The purpose of the work presented in this chapter was to characterise the prevalence 

of phenotypic AMR and genetic ARDs in a subset of UK NTS isolates referred to 

PHE’s reference laboratory. It was hypothesised that the detection of ARDs could be 

used to infer AMR profiles from WGS data, providing evidence that genome-derived 

prediction can replace phenotypic antimicrobial susceptibility testing (AST). 
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4.4 Materials and Methods 

Processing of bacterial isolates, bioinformatics and antimicrobial susceptibility testing 

were carried out by staff at PHE’s GBRU. Further analysis of the resulting data was 

performed by the author. 

4.4.1 Processing of bacterial isolates 

Processing and sequencing of bacterial isolates was carried out as described in 

sections 3.4.2.1 and 3.4.2.2. All 7,009 isolates received by the reference laboratory 

between April 2014 and March 2015 were included in this study. WGS accession 

numbers can be found in supplementary table 1 of Neuert et al.285. 

4.4.2 Bioinformatics workflow 

Quality trimming of sequencing reads, initial species identification and serovar 

prediction were performed as described in sections 3.4.2.3-3.4.2.5. Detection of 

ARDs was carried out as detailed in section 3.4.5.1. 

4.4.2.1 Single nucleotide polymorphism typing  

For single nucleotide polymorphism (SNP) typing, sequence reads were mapped to a 

reference genome from the same eBurst group using the BWA-MEM algorithm from 

the Burrows-Wheeler Aligner package313 and SNPs were identified with GATK, 

version 2.6.5314. Isolates were grouped together into clusters of increasing similarity 

and assigned a hierarchical ‘SNP address’ as described in Dallman et al.315. 

4.4.3 Antimicrobial susceptibility testing 

Isolates were recovered from the PHE archive and retrospective AST was performed 

and interpreted using EUCAST breakpoints and screening concentrations as outlined 

in Table 4.1. Temocillin and cefoxitin were included in the panel to aid the detection 

of OXA-48-like carbapenemase and acquired AmpC genes, respectively. While 

isolates with an MIC greater than the lower of the two screening concentrations were 
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already classed as resistant for cefotaxime, ceftazidime and chloramphenicol, 

decreased susceptibility (MIC 0.06-0.25 mg/L) and resistance (MIC >0.5 mg/L) were 

distinguished for ciprofloxacin. Breakpoint values were determined by agar dilution 

with Müller-Hinton agar (2 g/L beef extract, 17.5 g/L acid hydrosylate of casein, 1.5 

g/L starch). If required, MICs were confirmed by Etest® (bioMérieux, Marcy-l’Étoile, 

France) or by agar dilution. 
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4.4.4 Statistical analysis 

Chi-square tests of association were carried out using the chisq.test function in R. A 

p-value ≤0.05 was considered statistically significant. Bonferroni correction for 

multiple testing was performed by dividing this threshold p-value by the number of 

tests. 
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4.5 Results 

4.5.1 Distribution of serovars in the dataset 

From the 7,009 isolates that underwent WGS at PHE in the study period, outbreak 

cases were identified based on SNP addresses identical down to the five SNP level 

and deduplicated. Furthermore, isolates with an insufficient number of high-quality 

reads left after trimming and those for which the KmerID pipeline indicated 

contamination with another strain were excluded. This resulted in inclusion of 3,491 

(49.81%) of the total isolates in the study. Of these, the majority (n=3,487) were of 

human origin, three were derived from a food and one from an unknown source. 

Amongst the 3,491 isolates included, 3,471 (99.43%) were identified as S. enterica 

subsp. enterica, comprising 222 different serovars and 58 isolates that could not 

successfully be subtyped to serovar level. Eleven isolates (0.32%) were classified as 

S. enterica subsp. houtenae and nine (0.26%) as S. enterica subsp. salamae. The 

ten most common subsp. enterica serovars were S. Typhimurium (23.69%, n=827), 

S. Enteritidis (8.42%, n=294), S. Virchow (4.01%, n=140), S. Stanley (3.78%, n=132), 

S. Newport (3.75%, n=131), S. Infantis (3.47%, n=121), S. Kentucky (3.12%, n=109), 

S. Oranienburg (2.06%, n=72), S. Java (2.03%, n=71) and S. Saint-paul (1.86%, 

n=65) (Fig. 4.1). 
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4.5.2 Prevalence of phenotypic antimicrobial resistance  

Phenotypic resistance to at least one antimicrobial of the testing panel (cf. Table 4.1) 

(excluding decreased susceptibility to ciprofloxacin) was detected in 1,083 (31.02%) 

of the 3,491 total isolates (Fig. 4.2).  Focussing on the ten most common serovars, 

the percentage of resistant isolates was highest in S. Kentucky (73.39%, n=80), S. 

Typhimurium (66.51%, n=550) and S. Infantis (50.41%, n=61). The lowest number of 

resistant isolates was observed for S. Oranienburg (1.39%, n=1), S. Java (9.86%, 

n=7) and S. Enteritidis (13.61%, n=40). All S. enterica subsp. salamae and houtenae 

isolates were pansusceptible to the testing panel. 
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Tetracycline resistance was the most prevalent phenotype (26.27% of all isolates, 

n=917), followed by resistance to sulphonamides (23.72%, n=828) and ampicillin 

(21.43%, n=748). In comparison, resistance to cephalosporins was low: 0.57% 

(n=20) for cefoxitin, 1.63% (n=57) for cefotaxime and 1.35% for both ceftazidime and 

cefpirome (n=47). Resistance to the carbapenem ertapenem was observed in ten 

isolates (0.29%), resistance to temocillin in a single isolate (0.03%). Amongst the 

aminoglycosides, streptomycin resistance was most common (17.79%, n=621, 

compared to 3.98%, n=139, for gentamicin and 2.78%, n=97, for tobramycin). While 

only 3.95% (n=138) of isolates exhibited full resistance to ciprofloxacin, decreased 

susceptibility to the fluoroquinolone was detected in 18.50% (n=646) of NTS in this 

study. MDR was observed in 23.09% (n=806) of isolates. 

Chi-square tests of association between resistance phenotypes and the ten most 

common S. enterica serovars revealed that serovars Typhimurium (p=3.24x10-140), 

Virchow (p=1.17x10-6), Infantis (p=4.37x10-6) and Kentucky (p=7.2x10-22) were 

significantly associated with resistance to at least one antimicrobial when compared 

to all other isolates. Specifically, an association with aminoglycoside (p<0.03), 

sulphonamide (p≤9.57x10-9) and tetracycline resistance (p≤1.94x10-8) was observed 

in all four serovars. With the exception of S. Infantis, these serovars were also more 

likely to exhibit MDR (p≤4.49x10-11). Ampicillin resistance was more prevalent in S. 

Typhimurium (p=1.62x10-174), S. Virchow (p=0.02) and S. Kentucky (p=7.08x10-28) 

while an increased frequency of cephalosporin resistance was detected in S. 

Typhimurium (p≤0.01), S. Infantis (p=0.02) and S. Kentucky (p≤0.01). Trimethoprim 

resistance was more common in S. Typhimurium (p=2.01x10-5), S. Virchow 

(p=3.39x10-51) and S. Infantis (p=9.28x10-5). Chloramphenicol resistance was more 

frequently detected in S. Typhimurium (p=1.37x10-29) and S. Kentucky (p=0.01) and 

ciprofloxacin resistance in S. Infantis (p=0.03) and S. Kentucky (p=7.08x10-277). 

While most S. Enteritidis isolates (86.39%, n=254) were pansusceptible to the testing 

panel and only nine (3.06%) displayed full ciprofloxacin resistance, decreased 

susceptibility to the antimicrobial, observed in 114 S. Enteritidis (38.78%), was 

positively associated with this serovar (p=1.79x10-20). Similarly, only five S. Virchow 

isolates (3.57%) were fully resistant to ciprofloxacin but 61.43% (n=86) showed 
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decreased susceptibility. The Bonferroni-corrected p-value for these tests was 

2.31x10-4. 

4.5.2.1 Co-occurrence of phenotypic antimicrobial resistance 

Among the 1,083 resistant isolates, 154 (14.22%) showed resistance to a single 

antimicrobial class and 123 (11.36%) were resistant to two antimicrobial classes. The 

majority (74.42%, n=806) exhibited MDR, resistance to three or more antimicrobial 

classes (Figure 4.3). MDR was especially common in S. Virchow (92.86% of 

resistant isolates, n=65), S. Kentucky (86.25%, n=69) and S. Typhimurium (83.82%, 

n=461). The majority of resistant S. Enteritidis (62.5%, n=25), on the other hand, only 

displayed resistance to a single antimicrobial class, either to ampicillins or 

quinolones. None of the isolates comprised in this study were resistant to all nine 

antimicrobial classes tested but one S. Typhimurium exhibited resistance to eight 

classes, as well as decreased susceptibility to ciprofloxacin. 

 

The high frequency of resistance to more than one antimicrobial class prompted an 

investigation of resistance co-occurrence within isolates. Chi-square tests of 

association between individual resistance phenotypes were carried out (Figure 4.4). 
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All 1,083 resistant isolates, as well as 218 isolates showing decreased ciprofloxacin 

susceptibility, were included in the analysis. Co-occurrence of temocillin resistance 

with the other antimicrobials was not evaluated as resistance to temocillin was only 

detected in a single isolate. The Bonferroni-corrected p-value for the tests was 

2.22x10-4. There was a very strong association (p≤7.23x10-84) between resistance to 

different antimicrobials of the same class. This was the case for the cephalosporins 

as well as gentamicin and tobramycin. Between classes, ampicillin, streptomycin, 

sulphonamide and tetracycline resistance were strongly associated (p≤1.89x10-30). 

Decreased ciprofloxacin susceptibility was associated with resistance to ampicillin 

(p=4.24x10-48). Conversely, some resistance phenotypes were less likely to be found 

within the same isolate: there was no association between tetracycline and 

cephalosporin resistance; chloramphenicol resistance and decreased susceptibility or 

resistance to ciprofloxacin; streptomycin resistance and resistance to trimethoprim or 
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ciprofloxacin. The results of chi-square tests have to be interpreted with caution when 

resistance combinations occur at a low frequency. Cefoxitin and ertapenem 

resistance, for example, were only detected in few isolates decreasing the chance of 

these phenotypes co-occurring with others. 

 In line with these findings, co-resistance to ampicillin, streptomycin, 

sulphonamides and tetracycline was the most frequently observed MDR as well as 

overall resistance profile (22.53% of resistant isolates, n=244). However, almost all 

isolates displaying this profile (n=238) were S. Typhimurium. In S. Virchow co-

resistance to sulphonamides, tetracycline and trimethoprim was most common 

(n=23) while the most frequent MDR profile in S. Kentucky comprised resistance to 

ampicillin, gentamicin, streptomycin, sulphonamides, tetracycline and ciprofloxacin 

(n=24). 

4.5.3 Prevalence of genetic antimicrobial resistance determinants 

To identify the genetic determinants underlying the AMR phenotypes observed, WGS 

of the isolates were analysed using the ‘Genefinder’ algorithm. Overall, 112 different 

genes and chromosomal mutations known to be associated with phenotypic 

resistance to the antimicrobials included in the testing panel were detected. Some 

ARDs were more prevalent in and significantly associated with specific S. enterica 

serovars (Figure 4.5), which will be described in more detail in the following sections. 

The Bonferroni-corrected p-value for these tests was 2.31x10-4. 
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4.5.3.1 β-lactam resistance determinants 

Of the 3,491 isolates in this study, 749 (21.46%) carried genes conferring resistance 

to β-lactam antibiotics (Table 4.2). Carbapenemase genes were not detected. 

Penicillin resistance determinants were detected in 709 isolates (20.31%), most 

commonly blaTEM-1 (n=603) and blaCARB-2 (also known as blaPSE-1) (n=75). 

Additionally, a further nine different TEM-type β-lactamase genes were identified. A 

single isolate carried the blaHERA-3 gene. Serovars Typhimurium (n=451; p=3x10-171), 
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Virchow (n=42; p=4.92x10-3) and Kentucky (n=65; p=1.06x10-24) were significantly 

associated with carriage of penicillinase genes. 

The acquired AmpC resistance gene blaCMY-2 was found in 16 isolates (0.46%). 

Seven isolates (0.20%), four serovar Typhimurium and two serovar Kentucky, carried 

OXA-type class D β-lactamase genes. 

ESBL-encoding genes were present in 43 isolates (1.23%), with most carrying 

CTX-M type resistance determinants (n=41). The blaSHV-12 ESBL gene was identified 

in four isolates. More than half (n=23) of the isolates with ESBL genes were serovar 

Typhimurium and a further five each were serovars Infantis and Kentucky. 

Combinations of penicillinase and ESBL genes occurred in 16 isolates. 

4.5.3.2 Chloramphenicol resistance determinants 

Genes linked to chloramphenicol resistance were identified in 215 isolates (6.16%) 

(Table 4.3). Efflux pump genes occurred in 194 isolates (5.56%), either floR (n=147) 

or cmlA1 (n=67), and their carriage was significantly associated with serovars 

Typhimurium (n=107; p=7.01x10-26) and Kentucky (n=13; p=6.21x10-3).  

Chloramphenicol acetyltransferase genes of the catA- or catB-type were detected in 

32 isolates (0.92%). Of these, 19 were S. Typhimurium and four S. Stanley. Eleven 

isolates harboured genes encoding both an efflux pump and an acetyltransferase. 
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4.5.3.3 Aminoglycoside resistance determinants 

All but eight of the total 3,491 isolates carried an aminoglycoside acetyltransferase 

aac(6’)-type gene, either aac(6’)-Iy (n=1,997) or aac(6’)-Iaa (n=1,486) (Table 4.4). 

Among the ten most common S. enterica serovars, the former was more frequent in 

S. Enteritidis, S. Virchow, S. Stanley, S. Newport, S. Infantis, S. Oranienburg, S. Java 

and S. Saint-paul, while the latter was more often found in S. Typhimurium and S. 

Kentucky. The aforementioned genes were the only resistance determinants 

identified in the 20 S. enterica subsp. salamae/houtenae isolates. Furthermore, 

aac(6’)-Ii and aac(6’)-IIc were detected in three and two isolates, respectively. 

Streptomycin resistance determinants were detected in 728 isolates (20.85%): 537 

carried strA-strB and 292 carried at least one of 13 aadA-type aminoglycoside 

adenylyltransferase genes, most commonly aadA2 (n=189) and aadA17 (n=107). 

Both strA-strB and an aadA variant occurred in 101 isolates. Carriage of strA-strB 

was significantly associated with serovars Typhimurium (n=381; p=7.29x10-172) and 

Virchow (n=32; p=0.02), carriage of adenylyltransferase genes with serovars 

Typhimurium (n=124; p=5.66x10-15), Virchow (n=30; p=2.97x10-8), Stanley (n=22; 

p=8.01x10-4) and Kentucky (n=63; p=1.48x10-78). 

Variants of aminoglycoside acetyltransferase genes of the aac(3)-type, associated 

with resistance to gentamicin and tobramycin, were present in 130 isolates 

(n=3.72%), most notably aac(3)-Id (n=50) and aac(3)-IIa (n=36). Serovars Virchow 

(n=36; p=2.62x10-43) and Kentucky (n=47; p=1.77x10-105) were significantly 

associated with carriage of aac(3) variants. The aminoglycoside adenylyltransferase 

gene ant(2’’)-Ia was identified in 12 isolates (0.34%), nine of which were S. 

Typhimurium and three S. Infantis. Aminoglycoside phosphotransferase genes of the 

aph-type occurred in 27 isolates (0.77%), 16 S. Typhimurium and five S. Infantis. 

Both streptomycin and gentamicin/tobramycin resistance determinants were found in 

122 isolates. No 16S rRNA methyltransferase genes were detected. 
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4.5.3.4 Sulphonamide resistance determinants 

Genes associated with resistance to sulphonamides occurred in 830 isolates 

(23.78%): 490 carried sul2, 350 sul1 and 75 sul3 (Table 4.5). Combinations of two 

different sul genes were detected in 77 isolates and four isolates harboured all three 

variants. There was a significant association between carriage of sulphonamide 

resistance determinants and serovars Typhimurium (n=468; p=1.54x10-141), Virchow 

(n=62; p=1.08x10-8), Infantis (n=58; p=4.24x10-10) and Kentucky (n=65; p=1.14x10-

18). 

 

4.5.3.5 Tetracycline resistance determinants 

Tetracycline resistance determinants were identified in 927 isolates (26.55%) (Table 

4.6). The majority carried at least one of four efflux pump-encoding genes, mainly 

tet(A) (n=843). In 57 isolates, the ribosomal protection protein gene tet(M) was found. 

A combination of two different tetracycline resistance determinants was detected in 

56 isolates. Carriage of efflux pump genes was significantly associated with serovars 

Typhimurium (n=478; p=2.49x10-121), Virchow (n=67; p=7.16x10-9), Infantis (n=59; 

p=2.4x10-8) and Kentucky (n=71; p=3.04x10-20), carriage of tet(M) with S. Stanley 

(n=26; p=4.72x10-60). 
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4.5.3.6 Trimethoprim resistance determinants 

Dihydrofolate reductase genes of the dfrA-type conferring resistance to trimethoprim 

occurred in 302 isolates (8.65%) (Table 4.7). The most common genes were dfrA12 

(n=84), dfrA1 (n=81), dfrA14 (n=65) and dfrA5 (n=41). Additionally, a further seven 

other dfrA variants were detected. Only one S. Typhimurium harboured a 

combination of two different genes, namely dfrA1 and dfrA12. There was a significant 

association between carriage of trimethoprim resistance genes and serovars 

Typhimurium (n=103; p=1.17x10-5), Virchow (n=62; p=6.96x10-52) and Infantis (n=20; 

p=2.95x10-3). 
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4.5.3.7 Fluoroquinolone resistance determinants 

Acquired genes and chromosomal mutations associated with decreased 

susceptibility and resistance to ciprofloxacin were detected in 2,241 isolates 

(64.19%) (Table 4.8). However, the majority of these isolates (n=1,554) only carried 

a mutation in the quinolone resistance-determining region (QRDR) of the DNA 

topoisomerase gene parC causing a threonine to serine substitution at position 57 of 

the encoded protein. Seven isolates harboured the fluoroquinolone- and 

aminoglycoside-modifying N-acetyltransferase gene aac(6’)-Ib-cr, six of these in 

combination with other fluoroquinolone resistance determinants. 

Single mutations in the QRDR of the DNA gyrase subunit gene gyrA were 

identified in 430 isolates (12.32%), most commonly gyrA[87:D-Y] (n=155) and 



4.5 Results 

 

 

 

 
107 

 

 



4.5 Results 

 

 

 

 
108 

 

 

gyrA[83:S-Y] (n=111). In 152 isolates, this gyrA mutation was accompanied by a 

single mutation in parC. Single gyrA mutations were significantly associated with 

serovars Enteritidis (n=114; p=1.37x10-46), Virchow (n=91; p=2.13x10-82) and Infantis 

(n=62; p=2.56x10-39). 

Plasmid-mediated quinolone resistance (PMQR) genes were found in 189 isolates 

(5.41%), most frequently qnrS1 (n=95) and qnrB19 (n=49). In 20 isolates, PMQR 

genes occurred together with a single gyrA mutation, with or without a single 

mutation in parC, and in 103 isolates with a single parC mutation only. Carriage of 

PMQR genes was significantly associated with S. Stanley (n=14; p=0.01). 

Multiple mutations in the QRDR of both gyrA and parC were detected in 82 

isolates (2.35%). The most common combinations were either gyrA[83:S-F;87:D-Y] 

(n=41) or gyrA[83:S-F;87:D-N] (n=25) with parC[57:T-S;80:S-I]. There was a 

significant association between carriage of multiple gyrA and parC mutations and 

serovar Kentucky (n=77; p=0). Of the isolates carrying both multiple gyrA and parC 

mutations, only one S. Indiana had additional PMQR genes, namely oqxA and oqxB. 

4.5.3.8 Co-occurrence of genetic resistance determinants 

In the previous sections, the co-occurrence of genes associated with resistance to 

antimicrobials from the same class was described. However, the frequently observed 
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phenotypic co-resistance to antimicrobials from different classes (cf. Figure 4.4) 

suggests that some of their genetic determinants must also co-occur. Indeed, chi-

square tests of association between individual genotypes indicated that penicillinase 

genes, strA-strB and aadA variants, sul genes and tetracycline efflux pump genes, 

which underlie the common ampicillin, streptomycin, sulphonamides and tetracycline 

resistance phenotype (ASSuT), were strongly associated (p≤4.5x10-146) (Figure 4.6). 

Furthermore, chloramphenicol efflux genes commonly co-occurred with penicillinase 

genes (p=1.02x10-120), aadA variants (p=6.64x10-249) and determinants of 

sulphonamide (p=1.99x10-127), tetracycline (p=5.19x10-109) and trimethoprim 

resistance (p=4.16x10-88). Association between phenotypic chloramphenicol 

resistance and resistance to ampicillin, streptomycin, sulphonamide, tetracycline and 

trimethoprim was less strong than for the resistance profile described previously, yet 

still significant (p≥1.03x10-24 compared to p≤1.89x10-30). Multiple mutations in the 

QRDR of gyrA and parC were associated with aadA and aac(3) variants (p=1.08x10-

115 and 1.14x10-151, respectively). The Bonferroni-corrected p-value for these tests 

was 1.54x10-4. It should be kept in mind that for the co-occurrence analysis of 

phenotypic resistance, the 2,190 isolates showing neither resistance to any of the 

antimicrobials tested nor reduced susceptibility to ciprofloxacin were excluded while 

analysis of the genetic determinants included all 3,491 isolates, and therefore also 

genes that did not result in phenotypic consequences.  

In line with the findings described above and disregarding the isolates that carried 

an aac(6’) variant with or without parC[57:T-S], ARDs normally considered 

silent273,276, as the only genetic resistance determinant, the most commonly occurring 

genotype in S. Typhimurium was blaTEM-1, strA-strB, aac(6’)-Iaa, sul2, tet(A) (n=208). 

In S. Enteritidis, for which only few isolates exhibited phenotypic resistance, 97 

isolates harboured a single gyrA mutation and aac(6’)-Iy. The blaTEM-1, strA-strB, 

aadA2, aadA17, aac(6’)-Iy, aac(3)-IIa, sul1, tet(A), dfrA1 genotype was detected in 

17 S. Virchow isolates, the blaTEM-1, aadA7, aac(6’)-Iaa, aac(3)-Id, sul1, tet(A), 

gyrA[83:S-F;87:D-Y], parC[57:T-S;80:S-I] genotype in 24 S. Kentucky. 
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4.5.4 Prediction of phenotypic resistance profiles from genotype 

4.5.4.1 Comparison of phenotypic and genotypic resistance profiles 

Prediction of phenotypic antimicrobial resistance profiles based on the genetic 

resistance determinants detected in the WGS was carried out for all 3,491 isolates 

using information from the literature about the phenotypic consequences of the ARDs 

in question. Results of AMR profile prediction from genotype were compared to the 

AMR profiles resulting from phenotypic susceptibility testing. For ciprofloxacin, in 

cases where the genotype suggested reduced susceptibility but the isolate exhibited 

full resistance phenotypically, the prediction was still classed as a match since 
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reduced susceptibility has been linked with clinical failure287,288. The phenotypic and 

genotypic AMR profiles of 3,415 isolates (97.82%) were entirely in agreement for 

both approaches for all 15 antimicrobials from nine different classes tested. For the 

76 isolates with discordant results, the genotype wrongly predicted pan-susceptibility 

for one isolate (1.32% of wrong predictions) phenotypically resistant to ciprofloxacin. 

For a further 64 discrepant results (84.21%), the mismatch was based on false or 

missing prediction of resistance to a single antimicrobial, and for the remaining 11 

(14.47%) to two antimicrobials. Overall, 52,277 (99.83%) out of a possible 52,365 

predictions for each isolate and individual antimicrobial of the testing panel were 

correct (Table 4.9). Sensitivity of resistance prediction from genotype, defined as the 
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number of isolates correctly predicted to be resistant divided by the sum of isolates 

correctly predicted to be resistant and isolates falsely predicted to be susceptible, 

was ≥95% for all antimicrobials except temocillin (Figure 4.7). However, only a single 

isolate was found to be phenotypically resistant to temocillin. Specificity of prediction, 

defined as the number of isolates correctly predicted to be susceptible divided by the 

sum of isolates correctly predicted to be susceptible and isolates falsely predicted to 

be resistant, exceeded 98% for all 15 antimicrobials tested. The nature of false 

predictions will be discussed in more detail below. 

 

4.5.4.2 Major and very major prediction errors 

Of the 88 isolate/antimicrobial mismatches, 69 (78.41%) constituted major errors 

(MEs), i.e. isolates were genotypically predicted to be resistant but showed 

phenotypic susceptibility, rather than very major errors (VMEs), which were 

genotypically susceptible but phenotypically resistant. This equates to an overall ME 

rate of 0.13% and a VME rate of 0.04%. 

The relationship between geno- and phenotype is relatively straightforward in 

some cases: isolates carrying a penicillinase gene are expected to exhibit ampicillin 
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resistance, blaCMY-2, class D β-lactamases and ESBLs can confer resistance to 

cephalosporins, yet they will also be active against ampicillin. The single ME 

associated with predicted ampicillin resistance was based on the detection of blaTEM-1 

without phenotypic consequences. The presence of sul, tet and dfrA genes is linked 

to resistance to sulphonamides, tetracycline and trimethoprim, respectively. sul1, sul2 

and dfrA14 were present without phenotypic consequences in one isolate each. Five 

of the six isolates with predicted but not phenotypic tetracycline resistance harboured 

tet(M). 

Despite strA-strB or aadA being good predictors of streptomycin resistance, the 

largest fraction of the 88 mismatches (n=59, 67.05%) was associated with this 

antimicrobial. Fifty-one were MEs, with strA-strB detected in 29 and an aadA variant 

in 21 genomes without phenotypic consequences. Since aac(6’) variants are 

normally silent and only become transcriptionally active in rare cases276, their 

presence was not considered an indicator of streptomycin resistance. However, all 

eight isolates falsely predicted to be susceptible to this antimicrobial carried aac(6’)-Iy 

as the only aminoglycoside resistance determinant. For the other aminoglycosides, 

aac(3)-type acetyltransferase genes indicate gentamicin and tobramycin resistance. 

The single ME associated with gentamicin resistance was linked to the presence of 

aac(3)-IId, the VME to carriage of aac(6’)-Iy only. Of the two isolates falsely predicted 

to be resistant to tobramycin, one harboured ant(2’’)-Ia and the second one aac(3)-

IIa. 

In the case of ciprofloxacin, where decreased susceptibility and full resistance can 

be distinguished, prediction of phenotype from genotype becomes more complex. 

The most common ARD profiles and resulting phenotypes are shown in Table 4.10. 

A combination of mutations in the QRDRs of gyrA and parC is expected to confer full 

ciprofloxacin resistance316 while single gyrA mutations and/or the presence of 

PMQRs are thought to be the basis of decreased susceptibility. Carriage of 

parC[57:T-S] alone, without additional mutations in gyrA, does not generally result in 

altered interactions with the antimicrobial273. Of the 138 isolates displaying 

phenotypic ciprofloxacin resistance, 19 carried a single gyrA mutation only, 17 a 

single gyrA mutation together with a PMQR gene, and 20 had one or more PMQR 

genes. The single VME was associated with detection of parC[57:T-S] as the sole 
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fluoroquinolone resistance determinant, the ME with the presence of gyrA[83:S-

F;87:D-N] and parC[57:T-S;80:S-I] resulting in reduced susceptibility instead of full 

resistance. Although the QRDR of gyrA is located between amino acids 67 and 106, 

mutations at positions 83 and 87 are most common317 and in the present study none 

of the isolates with only gyrA mutations at other positions of the QRDR exhibited 

reduced ciprofloxacin susceptibility. 
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4.5.5 Salmonella pheno- and genotypes and international travel 

Travel history data was available for 1,070 isolates (30.65%). Classed according to 

the United Nations geoscheme, four of these isolates (0.37%) were linked to travel to 

Central Africa, 57 (5.33%) to East Africa, 150 (14.02%) to North Africa, four (0.37%) 

to Southern Africa, 42 (3.93%) to West Africa, 61 (5.70%) to the Caribbean, 37 

(3.46%) to Central America, 14 (1.31%) to North America, 17 (1.59%) to South 

America, 11 (1.03%) to East Asia, 290 (27.10%) to Southeast Asia, 97 (9.07%) to 

South Asia, 100 (9.35%) to Western Asia, 16 (1.50%) to Eastern Europe, one 

(0.09%) to Northern Europe, 74 (6.92%) to Southern Europe, 10 (0.93%) to Western 

Europe and seven (0.65%) to Oceania. For the remaining 78 isolates, the travel 

destination was either recorded as “unknown” or as an entire continent. 

Chi-square tests revealed that travel was significantly associated with acquisition 

of serovars Enteritidis (p=9.19x10-26), Virchow (p=3.54x10-3), Stanley (p=2.48x10-4), 

Kentucky (p=5.59x10-5) and Saint-paul (p=1.67x10-3) (Table 4.11). While resistance 

in general, to at least one antimicrobial of the testing panel, and MDR were not more 

prevalent in travel-related isolates (32.06% vs. 30.57% and 22.99% vs. 23.13%, 

respectively), travel was significantly associated with phenotypic resistance to 

gentamicin (p=5.16x10-3) as well as reduced susceptibility (p=2.09x10-21) and 

resistance to ciprofloxacin (p=2.88x10-5). Consequently, travel was also associated 

with the presence of single gyrA mutations (p=7.67x10-9), PMQRs (p=1.27x10-7), 

multiple gyrA and parC mutations (p=8.51x10-6) and aac(3) variants (p=8.11x10-3). 

Furthermore, aadA variants (p=0.02) and tet(M) (p=3.67x10-3) were more likely to be 

found in isolates for which travel was reported. 
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Figure 4.8 provides an overview of the association between specific travel 

destinations and Salmonella pheno- and genotypes. Only a few attributes were linked 

to West Africa, East and West Asia, the Americas and Europe but North Africa and 

South and Southeast Asia were identified as resistance hotspots. Decreased 

ciprofloxacin susceptibility (p=4.1x10-13), resistance to cephalosporins (p≤7.64x10-3), 

gentamicin (p=8.63x10-7), tobramycin (p=3.79x10-10), trimethoprim (p=5.42x10-8) and 

chloramphenicol (p=5.54x10-3), and carriage of the corresponding genetic resistance 

determinants (p≤3.03x10-4), were significantly associated with travel to North Africa. 

Ertapenem (p=0.02), gentamicin (p=4.73x10-4), trimethoprim (p=0.03) and  



4.5 Results 

 

 

 

 
117 

 

 



4.5 Results 

 

 

 

 
118 

 

ciprofloxacin resistance (p=0.01) were more common in isolates linked to South Asia  

and ampicillin (p=8.14x10-5), chloramphenicol (p=2.29x10-3), sulphonamide 

(p=6.28x10-4), tetracycline (p=1.4x10-4), trimethoprim (p=0.02) and ciprofloxacin 

resistance (p=9.98x10-6) were frequently observed after travel to Southeast Asia. 

Southeast Asia was the only travel destination significantly associated with MDR 

(p=4.45x10-3). The Bonferroni-corrected p-value for these tests was 5.72x10-5. 
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4.6 Discussion 

4.6.1 Antimicrobial resistance and its genetic determinants in non-

typhoidal S. enterica  

Most S. enterica isolated in European countries belong to a limited number of 

serovars255. In England and Wales in 2012, S. Typhimurium and S. Enteritidis made 

up 48.7% of all isolates318. GBRU’s routine phenotypic testing strategy for 

surveillance of NTS attempts to maximise the detection of AMR by focussing on 

serovars known to have high resistance rates. This leads to an underrepresentation 

of some, such as S. Enteritidis, and an overrepresentation of other serovars, such as 

S. Typhimurium and S. Kentucky, in the dataset presented here. Thus, it is not a true 

representation of the expected serovar distribution in England and Wales over the 

timeframe investigated, which made it impossible to meaningfully assess changes in 

incidence of resistance to specific antimicrobials over the years. 

Pansusceptibility to the phenotypic testing panel was observed in 68.98% of 

isolates in this dataset. Worryingly though, of the resistant isolates, over 70% were 

MDR, i.e. resistant to three or more antimicrobial classes. Rates of MDR were 

especially high in serovars Typhimurium, Kentucky and Virchow. The most frequent 

resistance phenotypes were tetracycline (26.27% of isolates), sulphonamide 

(23.72%) and ampicillin (21.43%). These trends are comparable to those observed 

for the entire EU in 2014 and 2015295,319. The ACSSuT phenotype was identified in 

1.52% of isolates making it the third most common MDR phenotype after co-

resistance to ampicillin, streptomycin, sulphonamides and tetracycline (6.99%) and 

co-resistance to sulphonamides, tetracycline and trimethoprim (1.89%). The genetic 

determinants underlying these phenotypes are located on a mobile element termed 

Salmonella genomic island 1320, thereby explaining their linked carriage and 

detection (cf. Fig. 4.6). It has been suggested that an increased use of alternative 

antimicrobials for treatment of typhoid fever, such as ciprofloxacin and extended-

spectrum β-lactams, favoured the re-emergence of susceptibility to classical first-line 

drugs321,322, thus explaining the observed worldwide decrease in the number of 

isolates displaying the ACSSuT phenotype323,324. 
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Full resistance to ciprofloxacin was detected in 3.95% of isolates and particularly 

prevalent in S. Infantis and S. Kentucky. An increased number of mutations in gyrA 

and parC, which reduce the binding affinity of ciprofloxacin, are associated with an 

increase in MIC273. Therefore, in order to confer full resistance, multiple mutations in 

both gyrA and parC were thought to be required316. Carriage of PMQRs on their own, 

which prevent interactions between the antimicrobial and topoisomerases by sterical 

hindrance, were not considered sufficient. Indeed, in our study, the majority of 

isolates showing resistance carried at least two mutations in both gyrA and parC. 

However, 37 had a PMQR gene, alone or in conjunction with a single gyrA mutation, 

which would normally be expected to result in reduced susceptibility instead of full 

resistance. Ciprofloxacin MICs for isolates carrying only PMQR genes were found to 

range between 0.25 and 1 mg/L325 so that some isolates with this profile would be 

classed as resistant and some as having reduced susceptibility during phenotypic 

testing. 

Although still relatively low, resistance to extended-spectrum cephalosporins is on 

the rise326,327: while only 0.04% of S. enterica isolates in England and Wales showed 

resistance between 1992 and 2003328, its prevalence had increased to 0.55% by 

2010-2012329. In this study, 1.63% and 1.35% of isolates exhibited resistance to the 

3rd-generation cephalosporins cefotaxime and ceftazidime, respectively, and 1.35% 

were resistant to the 4th-generation cephalosporin cefpirome. Resistance to these 

antimicrobials is encoded by AmpC and ESBL genes, detected in 0.46% and 1.23% 

of isolates, respectively. Since extended-spectrum cephalosporins are used as an 

alternative for treatment of invasive disease in cases of resistance to ciprofloxacin, 

the emergence of co-resistance to both antimicrobial classes is of great concern. Co-

resistance was identified in 13 isolates (0.37%) in this study, which is in agreement 

with EU data from the year 2015295 and slightly higher than the 0.25% prevalence 

observed in the UK between 2010 and 2012329. 

Due to this emerging co-resistance, the use of azithromycin for treating NTS 

infections has increased in recent years, also prompting the surveillance of 

resistance to this antimicrobial. The first EU-wide reports in 2017 identified 

azithromycin resistance in 2.5% of NTS isolates330. Although not included in the 

phenotypic testing panel, the ‘Genefinder’ algorithm was able to detect genetic 
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azithromycin resistance determinants. Twenty-two isolates carried mph(A). All 22 

were phenotypically resistant to at least one other antimicrobial, seven showed 

ciprofloxacin resistance and four were resistant to extended-spectrum 

cephalosporins. The mph(E) gene was detected in seven isolates, only one of which 

was resistant to ciprofloxacin. Validation of predicting phenotypic azithromycin 

resistance based on the presence of these genes would further aid surveillance 

efforts for this antimicrobial. 

4.6.1.1 Prevalence of antimicrobial resistance and its determinants in travel-

related isolates 

Based on the travel history data available, North Africa as well as South and 

Southeast Asia were identified as resistance hotspots (cf. Fig. 4.8). Phenotypes 

more frequently observed after travel to these regions included extended-spectrum 

cephalosporin, chloramphenicol, sulphonamide, tetracycline, trimethoprim and 

ciprofloxacin resistance. Co-resistance to ciprofloxacin and extended-spectrum 

cephalosporins was shown to be especially prevalent in Asia with 9.3% of NTS 

isolates between 2003 and 2005 exhibiting this phenotype331. Of the 13 co-resistant 

isolates in this study, one was associated with travel to Thailand and one with travel 

to Egypt. Travel to Asia was recorded for seven of the 43 isolates carrying ESBL 

genes and travel to North Africa for a further eight isolates. As observed previously 

by Hopkins et al.332, PMQR genes were more likely to be found in isolates from 

patients who had travelled to Southeast Asia.  

Furthermore, in this study, Southeast Asia was found to be the only travel 

destination significantly associated with MDR. Burke et al.329 identified resistance to 

at least five antimicrobial classes in all NTS isolates, for which travel to Thailand was 

recorded. Extensively-drug resistant S. Typhimurium, like the one isolate in this study 

showing resistance to eight antimicrobial classes plus decreased susceptibility to 

ciprofloxacin, have been observed in Southeast Asia before333,334. Unfortunately, no 

travel history data was available for this isolate.  

Since clinicians are aware of the increased likelihood of acquiring MDR NTS 

infections during travel, azithromycin treatment is recommended especially for 

returning travellers. However, travel was reported for eight of the 22 isolates in our 
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study carrying the mph(A) gene, highlighting how alternative antimicrobials might 

become inefficient when overused. 

4.6.2 Feasibility of genome-based prediction of antimicrobial 

resistance profiles 

WGS has previously been employed successfully for prediction of AMR profiles in a 

variety of enteropathogens, including S. sonnei 274, E. coli 335-337, typhoidal 

Salmonellae273 and smaller datasets of NTS293,338,339. The comparison of phenotypic 

susceptibility testing and genotypic prediction of AMR profiles based on WGS data 

presented here for a much larger dataset, comprising 3,491 NTS isolates, identified 

88 discordant results (0.17%) out of a possible 52,365 isolate/antimicrobial 

combinations, with the AMR profiles of 3,415 isolates (97.82%) completely matching 

for both approaches. Zankari et al.338 observed complete agreement of the two 

approaches for 50 S. Typhimurium isolates but only when excluding ciprofloxacin 

from the testing panel. Similar to the results of the present study, McDermott et al.339  

found lower sensitivity and specificity for prediction of streptomycin resistance than 

for other antimicrobials tested. 

Many MEs, where an isolate is expected to be resistant based on the presence of 

genetic determinants but shows phenotypic susceptibility, seem to be associated with 

the clinical breakpoints used for phenotypic testing. Slight technical variations of the 

agar dilution method for isolates with an MIC close to the recommended breakpoint 

can lead to their false classification as susceptible. This was found to especially be 

an issue when testing for streptomycin resistance340  and could explain some of the 

51 MEs observed for this antimicrobial. To overcome this, it has recently been 

suggested to integrate phenotypic and genetic data by adapting breakpoint values 

based on the MICs associated with specific ARDs341. A caveat of this study was that 

phenotypic susceptibility testing was carried out retrospectively. Most of the ARDs 

detected by the algorithm are plasmid-encoded and during storage and subculture of 

isolates plasmids may be lost. Genes detected when sequencing the original culture 

might therefore not be present during retrospective phenotypic testing of a different 

colony. Furthermore, the mere detection of a gene does not always reflect an 

organism’s phenotype as it does not provide any information about expression levels 
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and enzyme activities or the interplay between different factors involved in 

resistance. Silent resistance genes, such as blaCMY-2 and tet variants, have previously 

been described in Salmonella342,343.  

VMEs, where an isolate is genotypically predicted to be susceptible but exhibits 

phenotypic resistance, highlight the importance of active curation of the ARD 

reference database used for prediction. Mismatches are likely based on the presence 

of ARDs not included in the database or on novel resistance mechanisms, the 

genetic determinants of which have not yet been described. The ‘Genefinder’ 

pipeline, for example, does not detect impermeability or efflux pump genes potentially 

contributing to ciprofloxacin resistance344. Continuous scanning of the literature for 

newly discovered resistance mechanisms and their incorporation into the database 

are essential to maintain a high level of prediction sensitivity. The increasing number 

of genomes available for analysis can be expected to be accompanied by the 

discovery of new genes. Only recently, computational methods identified previously 

unknown qnr-type PMQRs, six of which could be experimentally validated as 

conferring reduced ciprofloxacin susceptibility345. At the time this study was 

conducted, colistin ARDs were not included in the database at all. However, 

considering that colistin use in England is higher than in other European countries346, 

resistance to this antimicrobial has to be monitored. Since the first reports of the 

plasmid-encoded mcr-1 gene, seven further mcr variants have been described345 and 

a new homologue was recently discovered by Carroll et al.347 through in silico 

screening of Salmonella genomes.  

Despite the issues mentioned above, the overall ME and VME rates of 0.13% and 

0.04%, respectively, obtained in this study fall below the cut-offs of 3% and 1.5% 

from the US Food and Drug Administration for authorising new susceptibility testing 

devices348. Nonetheless, AMR prediction based on WGS data is not yet deemed 

suitable to guide clinical decision making. Apart from the cost and the infrastructure 

necessary to implement the service routinely, which would be too much for many 

front-line laboratories, the high turnaround times are the biggest obstacle349. Faster 

diagnosis is associated with improved patient outcomes but at PHE it takes seven 

days from receipt of the isolate to completion of all bioinformatics analyses. For AMR 
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surveillance, however, where slightly longer turnaround times are permissible, WGS 

constitutes a valuable alternative to traditional methods. 

 4.7 Conclusions 

This large-scale study demonstrates that AMR and MDR are ubiquitous in UK 

isolates of NTS, especially in returning travellers. This highlights the need for 

continuous surveillance of trends in AMR patterns to inform public health 

interventions aimed at minimising the dissemination of resistance in the population. 

The successful prediction of AMR profiles based on detection of ARDs in the genome 

presented here supports the suitability of WGS profiling to reliably replace phenotypic 

susceptibility testing for rapid monitoring of AMR in NTS. Since sequencing is 

routinely used in public health laboratories already, it constitutes a time-saving 

alternative to traditional approaches that can further our understanding of resistance 

mechanisms as long as constant curation of the resistance gene database used is 

warranted and validation of prediction for further antimicrobials, such as azithromcyin 

and colistin, is undertaken. 

WGS-based AMR profiling, while eliminating laborious AST, still requires an initial 

culturing step. The use of culture-independent metagenomic sequencing for 

investigation of AMR dissemination networks will be explored in the next chapter. 
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5.1 Summary 

Antimicrobial resistance (AMR) is on the rise even in industrialised countries, not just 

in healthcare but also in community settings. International travel is expected to play 

an important part in the dissemination of resistance genes but most of the data 

supporting this theory is based on surveillance of infectious disease, thus ignoring 

the potential carriage of antimicrobial resistance determinants (ARDs) in the gut 

microbiota of returning travellers who do not seek healthcare. This chapter describes 

the results of the GutBack study, a prospective, longitudinal investigation of changes 

in gut microbiota resistome and taxonomic composition in 48 UK travellers visiting 

regions with a high prevalence of AMR. A 1.27-fold increase in the sum of all 

individual ARDs detected in the cohort was observed after travel. Beta-lactam, 

particularly blaCTX (log2(FC)=2.86) and blaTEM genes (log2(FC)=2.32), and 

sulphonamide ARDs (log2(FC)=2.41) as well as chloramphenicol acetyltransferase 

genes (log2(FC)=1.86) were more abundant in post-travel compared to pre-travel 

samples.  Carriage rates of Escherichia, Klebsiella, Salmonella and Shigella were 

significantly higher after travel. Changes in sulphonamide ARDs, blaCTX genes and 

increased carriage rates of potentially pathogenic Enterobacteriaceae persisted up to 

six months after travel. Antimicrobial use was associated with a shift in overall 

resistome, traveller’s diarrhoea (TD) with a shift in overall taxonomic composition. 
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5.2 Introduction 

5.2.1 Impact of international travel on gastrointestinal health 

The decreased cost and higher availability of airline travel has made international 

journeys accessible to a wide demographic350. In 2015, 1.2 billion people travelled 

internationally351, with numbers expected to reach 1.8 billion by 2030352. Per year, an 

estimated 320 million people from industrialised countries visit developing regions351. 

Exposure to a foreign environment harbouring different microorganisms, as well as 

changed diet and sleeping patterns, have been shown to alter gut microbiota 

composition, even in the absence of ill health353,354. These changes can be 

exacerbated by acquisition of an infectious disease355. Varying based on destination, 

duration of travel and the season, 6-87% of people report travel-related illness356. 

An imbalanced gut microbiota during travel might lead to reduced colonisation 

resistance. At the same time, travellers are often exposed to food and water 

contaminated with pathogens due to lower hygiene and sanitation standards. TD is 

therefore unsurprisingly the most common infectious disease acquired abroad. 

Aetiological agents of TD are primarily bacterial. While overall, it is most frequently 

caused by enterotoxigenic (ETEC) and enteroaggregative Escherichia coli357 

(EAEC), the prevalence of TD pathogens varies between travel destinations: 

Campylobacter and Salmonella infections, for example, are more common in South 

and Southeast Asia, and Shigella infections are often found in travellers returning 

from the Middle East or Africa357,358. Travel to Asia has also been linked to protozoal 

TD caused by pathogens such as Giardia and Entamoeba histolytica357. 

5.2.2 Acquisition of antimicrobial resistance during travel 

Pathogens isolated in developing regions show high rates of AMR, generally 

attributed to the uncontrolled use of antimicrobials in humans and animals due to the 

lack of prescription regulations implemented in most industrialised countries359,360. 

Multidrug-resistant (MDR) Enterobacteriaceae in particular are common in tropical 

regions361. The family comprises many of the species frequently causing TD, and the 

production of extended-spectrum β-lactamases (ESBLs) by these organisms is of 
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great concern as it enables them to hydrolyse most clinically relevant β-lactam 

antimicrobials. Infections caused by ESBL-producing Enterobacteriaceae (ESBL-E) 

are associated with a poor prognosis and higher mortality rates362,363.  ESBL-E have 

been isolated from vegetables, sewage and the faeces of livestock in developing 

countries364. Consequently, community carriage of ESBL-E is high in these regions, 

estimated at 20-70% in Asia, 10-15% in South America and 10-40% in Africa361,365. 

Specific countries, such as India, Thailand and Egypt, are considered hotspots for 

ESBL-E in the community361,365,366.  

In England, the estimated community carriage of ESBL-E of 7.3% is still 

comparably low367. However, the rise in carriage rates observed even in 

industrialised countries is accompanied by an increased risk of community-acquired 

infections361,363,366. Colonisation abroad and subsequent import of resistant 

microorganisms to travellers’ home countries have undoubtedly played a part in this 

development. Acquisition rates of 14-69% for MDR Enterobacteriaceae were 

reported for travellers to tropical regions368,369. Numerous studies from, for example, 

Australia370, France371, Germany372, the Netherlands373,374 and Sweden369,375,376 

demonstrated acquisition of ESBL-E or CTX-M-type ESBL genes during travel. In line 

with community carriage rates, the risk of acquisition was highest for individuals who 

visited the Indian peninsula followed by destinations in Southeast Asia368,369,372-

374,377,378. Gut microbiota dysbiosis induced by TD and antimicrobial use were the 

most frequently identified additional risk factors369,370,375,377,379.  

5.2.3 Dissemination of acquired antimicrobial resistance after travel 

Despite its association with TD, acquisition of resistant organisms is not restricted to 

individuals who experience ill health. Although most of our understanding of the link 

between travel and AMR acquisition is based on surveillance data from patients 

accessing healthcare, travellers can become asymptomatic carriers, thus constituting 

a reservoir for future infections of the host or other individuals, which is seldom 

detected before illness occurs. The potential of unsuspecting travellers spreading 

acquired resistance determinants was further illustrated by Nordahl Petersen et al.350, 

who found a higher abundance of ARDs, including blaCTX-M and other β-lactamase 
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genes, in toilet waste from international planes arriving from Asia compared to those 

coming from North America. 

 Onward transmission of acquired ESBL-E to household members, both co-

travellers who tested negative immediately after return and non-travellers, has been 

demonstrated368,373, proving the potential of AMR dissemination in the community. 

The longer an individual remains colonised with the resistant organism, the higher 

the chance for transmission to occur. Although longitudinal studies have shown that 

most individuals clear acquired MDR Enterobacteriaceae within a month368, 

sustained carriage of up to six months is not uncommon369,370,373 and colonisation 

persisting for up to one year has been observed368,380. 

The spread of acquired resistance is further facilitated by the existence of ARDs 

on mobile elements, which can be horizontally transferred to other organisms. Many 

previous studies focussed on culture- or PCR-based detection of resistance in 

Enterobacteriaceae, which normally only make up a small amount of an individual’s 

gut microbiota9,37, and ignored ARDs harboured by commensals or non-pathogenic, 

environmental bacteria acquired abroad. If they persist, these ARDs can be 

transferred to pathogenic organisms during future infections, thus limiting treatment 

options. A metagenomics study of UK travellers encompassing the entirety of the gut 

microbiota and its resistance potential outside of a healthcare context could therefore 

further our understanding of the dissemination of ARDs in the community. 

5.3 Objectives 

The purpose of the work presented in this chapter was to conduct a prospective 

longitudinal study investigating changes in gut microbiota taxonomic composition and 

its pool of ARDs in a cohort of UK travellers visiting areas with high prevalence of 

AMR in the community. It was hypothesised that travel leads to an enrichment of 

certain ARDs and taxa, regardless of health status, and that some of the changes 

persist up to six months after travel. 
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5.4 Materials and Methods 

Participant recruitment and sample collection were undertaken by staff at University 

College London’s (UCL) Hospital for Tropical Diseases. DNA extractions were carried 

out by the author. Library preparation, metagenomic sequencing, quality control and 

taxonomic classification were performed by MicrobesNG (University of Birmingham, 

Birmingham, UK). The pipeline for detection of ARDs was run by Dr. Tim Dallman at 

Public Health England (PHE). Statistical analysis of the data was performed by the 

author. Unless otherwise stated, default software parameters were used. 

5.4.1 Participant recruitment 

Ethical approval for the study was obtained from the National Health Service 

Research Ethics Committee. Recruitment took place between December 2015 and 

July 2016. Individuals aged 18 years or over planning travel to countries outside of 

Europe, North America and Australia for two weeks to three months, who attended 

the pre-travel outpatient clinic at UCL’s Hospital for Tropical Diseases, were invited to 

participate in the study. Additional recruitment of prospective travellers was carried 

out via advertisement of the study on the local university campus. Potential 

participants were provided with a participant information leaflet in person or by post. 

Written, fully informed consent was obtained from all individuals who agreed to take 

part and did not meet any of the following exclusion criteria: 

 travel outside of Europe, North America and Australia three months prior to 

recruitment or planned travel within six months after return. 

 antimicrobial use at the time of or in the two weeks prior to recruitment. 

 age under 18 years. 

Participants were assigned a unique identification number for data anonymisation. 

5.4.1.1 Collection of faecal samples 

Participants provided a faecal sample before travel (pre-travel), within two weeks 

after travel (post-travel) and around six months after travel (follow-up) to assess long-

term persistence of changes. Samples were stored at -80°C in the local laboratory 
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and sent to PHE’s Gastrointestinal Bacteria Reference Unit (Colindale, UK) in 

batches. Upon receipt at PHE, samples were aliquoted and stored at -20°C until 

further processing. 

5.4.1.2 Questionnaires 

Along with the provision of faecal samples, participants completed a questionnaire at 

the three different timepoints. Data collected included information on demographics, 

participant health, medication, region and duration of travel and travel-related 

behaviour. 

5.4.2 Processing of faecal samples 

5.4.2.1 Genomic DNA extraction 

Total genomic DNA was extracted from participants’ faecal samples using a 

combination of mechanical and enzymatic lysis. For negative controls, all the 

following steps were undertaken without addition of a sample. Incubation of 200 mg 

of sample with 2 ml Gibco™ phosphate-buffered saline (PBS), pH 7.4 (Thermo 

Fisher Scientific, Waltham, MA, USA) and 2 ml 2% 2-mercaptoethanol (Sigma-

Aldrich, St. Louis, MO, USA) was carried out for one hour on a Stuart tube rotator 

(Cole-Parmer, Vernon Hills, IL, USA). After centrifugation at 6,000 x g for 10 min, the 

pellets were resuspended in 10 ml PBS by vortexing. To remove particulate matter, 

the samples were first sterile-filtered through a 100 µm, then through a 40 µm 

Steriflip centrifuge tube top filter unit (Merck Millipore, Burlington, MA, USA) with the 

help of a vacuum pump. Samples were centrifuged at 6,000 x g for 10 min and the 

pellet resuspended in 1 ml PBS.  

The following steps were performed using DNA LoBind tubes (Eppendorf, 

Hamburg, Germany). Host DNA depletion was carried out by selective lysis of human 

cells and subsequent DNase treatment using the MolYsis kit (Molzym, Bremen, 

Germany). Unless stated otherwise, reagents were obtained from this kit. Samples 

were incubated with 200 µl buffer CM for 5 min at room temperature. After 

centrifugation at 6,000 x g for 10 min, the pellets were resuspended in 1 ml Gibco™ 

Hank’s Balanced Salt Solution with calcium and magnesium (Thermo Fisher 
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Scientific) and 250 µl DNase buffer and 10 µl DNase. The mixture was incubated at 

25°C for 15 min, centrifuged at 6,000 x g for 10 min and the pellets resuspended in 1 

ml buffer RS. This was followed by another centrifugation at 6,000 x g for 10 min. 

The pellets were resuspended in 100 µl PBS and incubated at 65°C for 5 min.  

Enzymatic lysis of the remaining cells was carried out using the MasterPure 

purification kit (Epicentre, Madison, WI, USA). Unless stated otherwise, reagents 

were taken from this kit for the remainder of the extraction protocol. Additional lytic 

enzymes were obtained from Sigma-Aldrich. The samples were incubated with 150 µl 

2x tissue and cell lysis buffer, 2 µl lysozyme (10 mg/ml), 6 µl mutanolysin (20 U/µl) 

and 3 µl lysostaphin (8 µg/µl) at 37°C for one hour in a ThermoMixer® (Eppendorf). 

This was followed by a 30-minute ThermoMixer® incubation at 65°C with 2 µl 

proteinase K.  

For mechanical lysis, the samples were transferred to tubes containing acid-

washed glass beads 212-300 µm in size along with an additional 50 µl 2x tissue and 

cell lysis buffer. Bead beating was carried out with a FastPrep-24™ instrument (MP 

Biomedicals, Santa Ana, CA, USA). Samples were pulsed twice at 6.0 m/s for 20 s 

followed by one pulse of 10 s with 2-minute intervals between pulses. After a 10,000 

x g centrifugation for 10 min at 4°C, lysates were separated from cell debris and 

allowed to cool on ice for 2 min. Samples were kept on ice from this step onwards 

whenever possible. For protein precipitation, 180 µl MPC were added. Samples were 

vortexed for 15 s and centrifuged at 15,000 x g and 4°C for 10 min. For DNA 

precipitation, the supernatants were mixed with 500 µl of isopropanol (Sigma-Aldrich) 

by inversion and centrifuged at 15,000 x g and 4°C for 10 min. Pellets were washed 

twice with 200 µl 70% ethanol (Sigma-Aldrich) and resuspended in 100 µl TE buffer. 

For clean-up, samples were transferred to OneStep PCR inhibitor removal kit 

columns (Zymo Research, Irvine, CA, USA) and centrifuged at 8,000 x g for 1 min. 

Quantification of eluted DNA was carried out using a Qubit fluorometer with high-

sensitivity reagents (Thermo Fisher Scientific). Extracts were stored at -20°C until 

sequencing. 
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5.4.2.2 Metagenomic sequencing 

Metagenomic DNA libraries were generated using the Nextera XT kit (Illumina®, San 

Diego, California) at MicrobesNG. Paired-end 125 bp sequencing was performed on 

a HiSeq instrument (Illumina®) in high-output mode. 

5.4.3 Bioinformatics workflow 

5.4.3.1 Detection of antimicrobial resistance determinants 

Detection of ARDs in the sequencing data was carried out using AmrPlusPlus, 

version 1.1 (https://github.com/cdeanj/amrplusplus)381. Trimming of paired-end reads 

and removal of adapter contamination was performed with Trimmomatic, version 

0.36253 

with the following parameters: ILLUMINACLIP 2:20:10:3:TRUE, LEADING 3, 

TRAILING 3, SLIDINGWINDOW 4:15, MINLEN 36. Contaminant host DNA was 

identified by alignment of trimmed reads to human chromosome 21 with the Burrows-

Wheeler-Aligner (BWA)313 and removed with SAMtools261. Remaining reads were 

aligned to the MEGARes database, version 1.01, a non-redundant compilation of 

ARD sequences from Resfinder, ARG-ANNOT, CARD (The Comprehensive 

Antibiotic Resistance Database) and the National Centre for Biotechnology 

Information’s Lahey Clinic β-lactamase archive using BWA. After sorting, the 

resulting BAM file was converted to a SAM file with SAMtools. The threshold for 

positive detection of an ARD in the sequencing data was set to 80%, i.e. ≥80% of 

nucleotides in the reference sequence had to be covered by at least one read. 

AmrPlusPlus provides a hierarchical output of the ARDs identified as outlined in 

Figure 5.1. Read counts assigned to individual ARDs are first added up as gene- or 

operon-level groups. ARD groups are then further classified based on the biological 

mechanism by which they confer resistance. Finally, resistance mechanisms are 

grouped together based on the antimicrobial class they confer resistance to. Groups, 

mechanisms or classes present in less than ten samples were removed prior to 

statistical analysis. 

https://github.com/cdeanj/amrplusplus
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5.4.3.2 Taxonomic analysis 

Taxonomic classification of sequences was performed using Kraken, v. 1.0260 as 

described in section 3.4.3.3. A table with relative abundances of operational 

taxonomic units (OTUs) was generated using the ‘feature-table relative-frequency’ 

command of the QIIME 2 package (v. 2018.8)173. 

5.4.4 Statistical analysis 

5.4.4.1 T-statistics 

Differences in the number of detected ARDs or OTUs between two groups were 

assessed using the t.test function in R choosing the paired test option when 

comparing samples between timepoints. A p-value ≤0.05 was considered statistically 

significant. 

5.4.4.2 Normalisation of sequencing reads 

Sequencing reads assigned to individual ARDs or OTUs were aggregated at the 

desired level of the AmrPlusPlus output or taxonomy using the metagenomeSeq 

package v. 1.26.3 in R187. Read counts were normalised with the help of the 

package’s cumNorm function, which calculates scaling factors (SFs) equal to the sum 
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of counts up to a specified quantile. The 0.5 quantile (i.e. median) was selected for 

this analysis. 

5.4.4.3 Ordination 

Constrained correspondence analysis (CCA) on aggregated, normalised read counts 

was performed using the vegan package v. 2.5-6 in R382. When appropriate, TD, 

antibiotic and antimalarial use during initial travel, antibiotic use between initial travel 

and provision of the third sample, repeat travel and TD during repeat travel were 

added to the model as covariates. 

Permutation tests for the significance of constraints were carried out using the 

package’s anova function with the number of permutations set to 999 and separate 

analysis of terms. A p-value ≤0.05 was considered statistically significant. 

5.4.4.4 Tests of association 

Differences in carriage rates between timepoints were assessed using the 

mcnemar.test, differences in carriage and acquisition rates between groups at the 

same timepoint using the chisq.test function in R. A p-value ≤0.05 was considered 

statistically significant. Bonferroni correction for multiple testing was performed by 

dividing this threshold p-value by the number of tests. 

5.4.4.5 Differential abundance testing 

Differences in specific features at the desired level of AmrPlusPlus output or 

taxonomy were estimated by creation of zero-inflated Gaussian mixture models as 

described in Paulson, 2016187. A design matrix was generated from the aggregated, 

normalised read count data with the model.matrix function, adding TD, antibiotic and 

antimalarial use during initial travel, antibiotic use between initial travel and provision 

of the third sample, repeat travel and TD during repeat travel as covariates when 

appropriate. Furthermore, normalisation factors, derived from the SFs described in 

section 5.4.4.2, were added to the matrix. Normalisation factors were calculated as 

follows: 

log2(SF/median(SF) + 1) 
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The fitZig function was used to produce weighted fits for all features with the 

previously generated design matrix as input. The useCSSoffset argument was set to 

FALSE and the control parameter was defined via the zigControl function. The 

maximum number of iterations was set to 10 and the dfMethod to default. From the 

resulting linear model fits, fold change (FC) estimates and t-statistics were computed 

using the limma package’s (v. 3.40.6) eBayes function188. An adjusted p-value ≤0.05 

was considered statistically significant. 
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5.5 Results 

5.5.1 Study participants 

A total of 107 participants were recruited. Sample donation and questionnaires at all 

three timepoints were completed by 76 of the 107 initial recruits (71.03%). Stools of 

the first 50 participants, for which complete sample sets were received at PHE, were 

prepared for sequencing. All further results refer to these 50 sample sets.  

5.5.1.1 Demographics and pre-travel health 

Information on sex, age, birthplace, presence of chronic health conditions and use of 

regular medication for the 50 study participants are shown in Table 5.1. Median age 

was 41.5 years, ranging from 22 to 79 years. 

The 11 extraintestinal chronic health complaints included asthma, hypertension, 

psoriasis, cancer, diabetes, human immunodeficiency virus and osteoporosis, and 

the six gastrointestinal ones gastric ulcers, inflammatory bowel disease and irritable 

bowel syndrome. Tumour necrosis factor α and protein pump inhibitors, steroids, 

statins and antiretrovirals were amongst the regular medications prescribed to the 

participants. 
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5.5.1.2 Travel information and health 

Information on destination and duration of travel, travel-related illness and medication 

used during travel can be found in Table 5.2. Travel destinations in East Africa were 

Kenya, Tanzania, South Sudan, Malawi, Zimbabwe, Zambia, Uganda, Mozambique 

and Ethiopia, in Southern Africa South Africa, Botswana and Namibia, in West Africa 

Ghana, Nigeria and The Gambia, in the Caribbean Saint Kitts and Nevis, in Central 

America Honduras, Nicaragua, El Salvador, Mexico, Belize, Guatemala and Costa 

Rica), in South America Brazil, Argentina, Ecuador, Peru and Bolivia, in Eastern Asia 

China, in South Asia India and Sri Lanka and in Southeast Asia Myanmar, Laos,  
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Vietnam, Thailand, the Philippines and Cambodia. Travel across several countries 

was undertaken by 12 participants. Three of these visited two geographical 

subregions but all remained on the same continent. Median travel duration was 18.5 

days, ranging from 14 to 78 days. 

Symptoms lasted less than a week in most individuals affected by TD (n=21) but 

one participant reported a duration of ten days and another one a duration of 42 

days. Four participants who suffered from TD additionally experienced fever, a 

further four nausea and vomiting, one muscle cramps and one flu-like symptoms. 

Further health complaints in the absence of TD included a sore throat, constipation 

and coughs. Of the twelve participants using antimicrobials, nine took them for a 

single day, one completed a two-day, one a three-day and a further one a six-day 

course. All but one participant who used antimicrobials suffered from TD. 

5.5.1.3 Travel-related behaviour 

Reasons for travel as well as eating and drinking habits of the 50 study participants 

are illustrated in Table 5.3. 
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5.5.1.4 Post-travel health and behaviour 

Information on antimicrobial usage and spontaneous repeat travel before provision of 

the six-month follow-up sample, as well as on ill health and use of malaria 

prophylaxis in re-travellers, is shown in Table 5.4. The eight participants who took 

antimicrobials used azithromycin (n=1), trimethoprim (n=2), metronidazole (n=1), co-

amoxyclav (n=2), nitrofurantoin (n=1), cephalexin (n=1) or amoxicillin (n=1). Ten of 

these repeat travellers visited countries in Africa, Asia and Central America. To 

prevent overall sample numbers from becoming too low, they were not excluded from 

the study, in spite of planned repeat travel initially being an exclusion criterion. To 

adjust for the effects of a second exposure to a foreign environment, repeat travel 
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was, however, added as a covariate to all statistical analyses involving follow-up 

samples. 

 

5.5.2 Metagenomic sequencing 

Per-sample read counts ranged from 27,814 to 28.04 million with a median of 3.98 

million. One pre- and one post-travel sample had to be excluded. The samples were 

from two different participants, both of which re-travelled and one of which 

experienced TD and used antibiotics. All three samples from these participants were 

excluded from the following analyses, reducing the total number of complete datasets 

to 48. 

5.5.3 Prevalence and persistence of resistome changes after travel  

5.5.3.1 Resistome diversity 

The impact of travel on resistome diversity was assessed by comparing the number 

of individual ARDs detected with the AmrPlusPlus pipeline at the three timepoints. 

The total number of different ARDs identified was 601. There was a FC of 1.27 in the 
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sum of all ARDs in post- compared to pre-travel samples. For follow-up compared to 

pre-travel samples, this FC was 1.22.  

Twenty-seven participants (56.25%) carried a higher number of ARDs immediately 

after travel than before. For 15 of these 27 (55.56%), the number remained increased 

in the follow-up samples. The mean (±SD) number of individual ARDs per sample 

increased non-significantly from 52.67±26.47 (range: 7-127) before travel to 

67.02±38.52 (range: 9-178) immediately after travel and remained elevated in the 

follow-up samples at 64.42±45.69 (range: 11-190) (Figure 5.2). Repeat travel has to 

be considered as a potential confounding factor in the apparently persistent increase 

in the number of ARDs six months after initial travel. 

 

5.5.3.2 Differences in pre- and post-travel resistomes 

CCA was performed to assess whether travel causes a shift in the overall ARD pool 

sufficient to distinguish a pre- from a post-travel resistome. To investigate the impact 

of travel alone, regardless of ill health and medication, TD as well as antimicrobial 

and antimalarial use were added as covariates. The latter were included since, 

although not targeted at them, some antimalarial agents are thought to have an 

antibacterial effect on members of the gut microbiota community353. Pre- and post-

travel resistomes showed significant separation starting at the highest level of the 
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AmrPlusPlus output, antimicrobial class (p=1x10-3), and down to the resistance 

mechanism (p=1x10-3) and ARD group levels (p=1x10-3) (Figure 5.3). The 

differences in resistomes remained significant six months after travel at all three 

levels (p=6x10-3; p=2x10-3; p=5x10-3, respectively). 

 

5.5.3.3 Differences in specific antimicrobial resistance determinants after travel 

To find out which ARDs drive the observed separation of post-travel and follow-up 

from pre-travel resistomes at the different levels of the AmrPlusPlus output, carriage 

rates of ARDs were compared for the three different timepoints using McNemar’s 

test. Additionally, acquisition rates during travel were investigated. To gain 

quantitative information on top of mere presence/absence testing of ARDs, 

differences in their abundance, i.e. the number of reads assigned to an ARD at each 

timepoint, were assessed using zero-inflated Gaussian mixture models. 

Before travel, all participants already carried ARDs conferring resistance to 

tetracyclines and macrolides, lincosamides and streptogramin (MLS) (Figure 5.4A). 

Trimethoprim ARDs were detected in 46 participants (95.83%) before travel, with a 



5.5 Results 

 
 

 

 
145 

 

  

reduction in carriage to 87.50% after travel. Significant differences in carriage rates 

were seen for glycopeptide and cationic antimicrobial peptide (CAP) ARDs, changing 

from 27.08% to 8.33% (p=0.03) and 47.92% to 70.83% (p=0.01), respectively. The 

Bonferroni-corrected p-value for these comparisons was 5x10-3. Non-significant 
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increases in carriage were observed for aminoglycoside (81.25% to 91.67%), 

bacitracin (31.25% to 47.92%), β-lactam (87.50% to 95.83%), phenicol (60.42% to 

68.75%) and sulphonamide ARDs (10.42% to 16.67%). For most antimicrobial 

classes, ARD carriage had not returned to pre-travel rates at follow-up. Since 

fluoroquinolone ARDs were only detected in nine samples in total, two pre-, five post-

travel and two follow-up samples, they were excluded from statistical analyses.  None 

of the participants carried fluoroquinolone ARDs at more than one timepoint. 

Acquisition rates were highest for bacitracin ARDs: seventeen participants 

(35.42%), who tested negative for these ARDs before travel, tested positive 

afterwards (Figure 5.4B). This was followed by acquisition rates for phenicol 

(29.17%), CAP (27.08%) and sulphonamide ARDs (16.67%). The proportion of 

participants still carrying acquired ARDs six months after initial travel was highest for 

phenicol (16.67%). Acquired sulphonamide ARDs did not persist in any of the 

participants. Conversely, only six participants (12.5%) acquired β-lactam ARDs but 

all six still tested positive at follow-up. 

The abundance of sulphonamide and β-lactam ARDs was significantly higher after 

travel (log2(FC)=2.41 and log2(FC)=1.19, respectively) while glycopeptide ARDs were 

less abundant (log2(FC)=3.93) (Figure 5.4C). Only for sulphonamide ARDs did this 

change persist up to six months after travel (log2(FC)=4.60). 

At the mechanism level, the changes in glycopeptide and β-lactam ARD 

abundance were driven by a persistent decrease in vanD-type regulator 

(log2(FC)=5.87) and a persistent enrichment of class A β-lactamase genes 

(log2(FC)=2.61). Although there were no significant differences in the sum of 

aminoglycoside ARDs, a significant decrease in the abundance of aminoglycoside O-

nucleotidyltransferase genes was observed after travel (log2(FC)=2.07). 

Investigations at the group level revealed that the increase in CAP ARD carriage 

was partly mediated by pmrC genes, involved in lipid A modification, with their 

carriage rates increasing from 27.08% before to 54.17% after travel (p=0.01) (Figure 

5.5A). Further ARDs present in a significantly higher number of post-travel samples 

were cpxA genes, which encode regulatory machinery for multidrug efflux systems 

(8.33% pre-travel vs. 31.25% post-travel, p=0.01), chloramphenicol acetyltransferase 

genes (18.75% vs. 41.67%, p=0.04) and aph(3’’)-type aminoglycoside O- 
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phosphotransferase genes (16.67% vs. 37.50%, p=0.04). Increased carriage did not 

persist until follow-up for any of these ARDs. However, carriage rates were 

significantly higher for another type of aminoglycoside O-phosphotransferase genes, 

namely those of the aph(3’) type, six months after travel, increasing from 29.17% in 
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pre-travel to 52.08% in follow-up samples (p=0.04). Carriage rates of tet(W) 

tetracycline ribosomal protection protein genes increased non-significantly from 

87.5% before to 97.92% after travel. In their follow-up samples, all participants 

carried tet(W) genes (p=0.04). The Bonferroni-corrected p-value for these 

comparisons was 5.26x10-4. 

Carriage of CTX group ARDs significantly increased from 12.5% before to 37.5% 

after travel (p=0.01) and remained elevated at follow-up (31.25%, p=0.04). Three 

different CTX group genes were detected in pre-travel samples: three participants 

carried blaCTX-M-54 only, two blaCTX-M-159 only and one participant carried both blaCTX-M-

17 and blaCTX-M-159. Carriage of blaCTX-M-54 persisted in post-travel samples of all three 

participants and was acquired by an additional nine during travel. Those initially 

testing positive for blaCTX-M-17 and blaCTX-M-159, on the other hand, tested negative for 

the genes immediately after travel. However, blaCTX-M-17 was acquired by six and 

blaCTX-M-159 by nine participants. Seven participants carried more than one of the 

previously mentioned genes after travel. While acquired blaCTX-M-159 and blaCTX-M-54 

genes persisted up to six months after travel in one and four participants, 

respectively, blaCTX-M-17 carriage did not persist. No participant persistently carried the 

same gene at all three timepoints. Another 54 CTX group genes were identified at 

follow-up. However, all of these were detected in a single sample from a 79-year old 

male who had travelled to Brazil and had not experienced TD, used antibiotics or re-

travelled. 

For some of the ARDs mentioned above, increased post-travel carriage rates were 

also reflected by an increase in abundance (Figure 5.5B): There was an enrichment 

of reads assigned to cat (log2(FC)=1.86) and blaCTX genes (log2(FC)=3.21). The latter 

was still observed six months after travel (log2(FC)=2.86). Another group contributing 

to the enrichment in class A β-lactamase ARDs were blaTEM genes. While tet(L) 

(log2(FC)=2.39) and tet(D) (log2(FC)=1.61) tetracycline efflux pump as well as tet(44) 

(log2(FC)=1.14) ribosomal protection protein genes were more abundant after travel, 

there was a decrease in abundance of tet(X) tetracycline inactivation enzyme genes 

(log2(FC)=1.10). Similarly, there was a persistent increase in ant(9) aminoglycoside 

O-nucleotidyltransferase gene abundance (log2(FC)=1.09) but a lower abundance of 

another O-nucleotidyltransferase gene group, ant(6) (log2(FC)=1.57). Additional 



5.5 Results 

 
 

 

 
149 

 

groups less abundant after travel were msbA (log2(FC)=5.43), mdtK (log2(FC)=0.43) 

and mdtG (log2(FC)=0.38) multidrug efflux pump genes. A persistent decrease was 

detected for sat aminoglycoside N-acetyltransferase genes (log2(FC)=2.69) as well 

as lnuB lincosamide nucleotidyltransferase (log2(FC)=4.75) and erm(T) 

(log2(FC)=2.20) and erm(R) (log2(FC)=2.01) rRNA methyltransferase genes involved 

in MLS resistance. 

Among the ARD groups differing significantly either in carriage rate or abundance, 

acquisition rates were highest for pmrC genes (37.5%), followed by cat (35.42%), 

blaCTX (31.25%), aph(3’’) (31.25%), cpxA (27.08%) and aph(3’) (22.92%) genes 

(Figure 5.5C). The number of participants, who still tested positive for acquired ARDs 

six months after travel, was also highest for pmrC genes (18.75%), followed by 

aph(3’) (12.5%), tet(W) and blaCTX genes (both 10.42%). 

5.5.3.4 Effect of traveller’s diarrhoea and antimicrobial use on the post-travel 

resistome 

Given that TD and consumption of antimicrobials have been identified as risk factors 

for acquisition of ARDs in previous studies, their effect on diversity and composition 

of the study participants’ resistomes after travel was evaluated. Participants will be 

referred to as TD-positive or –negative and antimicrobial-positive or –negative in the 

following paragraphs, depending on whether or not they experienced TD and used 

antimicrobials. 

Immediately after travel, the 22 TD-positive participants carried a mean of 

62.95±32.65 and the 26 TD-negative ones 70.46±43.21 individual ARDs. The 

difference between the two groups was not significant. Similarly, there was no 

separation of TD-positive and TD-negative post-travel resistomes at either the class, 

mechanism or group level of the AmrPlusPlus output after CCA.  

Chi-square tests were carried out to investigate whether post-travel carriage or 

acquisition rates of specific ARDs were associated with TD. There was an 

association between TD and carriage of polymyxin B resistance regulator genes, 

which were identified in 68.18% of TD-positive and 30.77% of TD-negative 

participants after travel (p=0.02). Furthermore, acquisition rates for aminoglycoside 

efflux regulator genes were higher after TD. The genes were acquired by 54.55% of 
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TD-positive and only 19.23% of TD-negative participants (p=0.02). The Bonferroni-

corrected p-value for these tests was 2x10-3.   

In line with carriage rates, polymyxin B resistance regulator genes were more 

abundant in TD-positive participants after travel (log2(FC)=2.84). This difference was 

still observed at follow-up (log2(FC)=2.27). Another mechanism persistently enriched 

after TD were streptogramin resistance ATP-binding cassette ABC efflux pumps 

(log2(FC)=3.04). At the group level, the enrichment of these two mechanisms in TD-

positive participants was partly due to a persistently higher abundance of pmrA 

(log2(FC)=3.24) and lsa genes (log2(FC)= 2.54) (Figure 5.6). Additional groups found 

to be non-persistently enriched after TD included several involved in MDR, such as 

cpxA (log2(FC)=2.74), baeR (log2(FC)=2.65), emrE (log2(FC)=2.64) and mdfA genes 

(log2(FC)=2.11), cat genes (log2(FC)=3.40), penicillin-binding protein genes of the 

pbp4b (log2(FC)=2.15) and ampH type (log2(FC)=1.57) as well as CFX group class A 

β-lactamase genes (log2(FC)=1.18). ARD groups more abundant in TD-negative 

participants included several involved in resistance to MLS, namely erm(G) 

(log2(FC)=7.19), erm(T) (log2(FC)=1.79), erm(F) (log2(FC)=3.74), lnuB 

(log2(FC)=5.52) and mphA genes (log2(FC)=0.79), in resistance to aminoglycosides, 

specifically acrS (log2(FC)=1.38), ant(9) (log2(FC)=4.94) and sat genes 

(log2(FC)=3.49), and in resistance to tetracyclines, namely tet(X) (log2(FC)=7.08) and 

tet(D) genes (log2(FC)=2.94). 
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Like TD, antimicrobial use did not have a significant effect on resistome diversity, with 

the 11 antibiotic-positive participants carrying a mean of 71.91±35.63 and the 37 

antibiotic-negative ones 65.57±39.69 individual ARDs immediately after travel. 

However, a significant separation of antimicrobial-positive from antimicrobial-negative 

post-travel resistomes was observed at the class (p=0.01), mechanism (p=7x10-3) 
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and group level (p=5x10-3) of the AmrPlusPlus output after CCA (Figure 5.7A). This 

separation was not apparent anymore at follow-up. 

Comparison of post-travel carriage rates between the two groups using chi-

squared tests provided little insight into which ARDs were responsible for the 
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separation. Only lnuC genes were found to be more prevalent after antimicrobial use, 

detected in 81.82% of antimicrobial-positive and 40.54% of antimicrobial-negative 

participants (p=0.04). Five antimicrobial users (45.45%) acquired mecB genes during 

travel, compared to eight antimicrobial-negative participants (21.62%). While the 

acquired genes were still detected in only three of the antimicrobial-negative 

travellers at follow-up, they persisted in all antimicrobial users. The association 

between antimicrobial use and persistent mecB gene acquisition was significant 

(p=0.01). The Bonferroni-corrected p-value for these tests was 5.26x10-4. 

Examining ARD abundance, glycopeptide ARDs were persistently enriched after 

antimicrobial use (log2(FC)=5.26). At the mechanism level, this change was driven by 

vanD-type regulator genes (log2(FC)=4.32). An enrichment in reads assigned to cfx 

class A beta-lactamase (log2(FC)=8.43) and tet(D) tetracycline efflux pump genes 

(log2(FC)=4.25), genes involved in resistance to MLS, such as erm(T) 

(log2(FC)=7.91), erm(G) (log2(FC)=7.02), erm(X) (log2(FC)=5.59) and lnuB 

(log2(FC)=5.44),  resistance to aminoglycosides, specifically sat (log2(FC)=3.73), 

aac(6’) (log2(FC)=3.70) and acrS (log2(FC)=1.64), in MDR, including adeC 

(log2(FC)=4.45), emrB (log2(FC)=2.73) and mdtL (log2(FC)=2.51), and in pmrF genes 

(log2(FC)=2.50), involved in lipid A modification, was observed in antimicrobial users 

at the group level (Figure 5.7B). Streptogramin resistance ATP-binding cassette 

ABC efflux pump genes of the lsa type (log2(FC)=7.85) and tet(44) tetracycline 

resistance ribosomal protection protein genes (log2(FC)=6.33) were more abundant 

in antimicrobial-negative participants. Only the changes in lsa genes persisted at 

follow-up (log2(FC)=7.36). 

5.5.4 Prevalence and persistence of changes in taxonomic 

composition after travel 

5.5.4.1 Taxonomic diversity of the microbiota 

The number of individual OTUs detected in the samples was used as an estimate of 

taxonomic diversity of the microbiota. A total of 2,685 different OTUs were identified 

by the Kraken taxonomic classifier, including bacteria, archaea and viruses/phages. 

Twenty-six participants (54.17%) carried a higher number of OTUs immediately after 
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travel than before. For 18 out of these 26 (69.23%), the number remained increased 

in the follow-up samples. The mean number of individual OTUs per sample increased 

slightly from a mean of 1,643.25±96.81 (range: 1,242-1,775) before travel to 

1,656.40±80.53 (range: 1,458-1,823) immediately after travel and reached 

1,676.21±66.10 (range: 1,541-1,854) at follow-up (Figure 5.8). The difference 

between the mean number of OTUs before and six months after travel was 

statistically significant as determined by paired t-tests (p=0.02). Again, repeat travel 

might play a part in this observation. 

 

The majority of the 2,685 total OTUs were only detected in a few samples and at a 

very low abundance. To focus on the most abundant OTUs, those that were not 

present at a relative abundance of ≥0.01% in at least ten samples were removed 

before further analysis. The resulting number of remaining individual OTUs was 457.   
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5.5.4.2 Differences in pre- and post-travel taxonomic compositions 

CCA of the 457 most abundant OTUs was carried out, with OTUs aggregated at 

either the phylum, family, genus or species level. Travel impacted on overall 

taxonomic composition at the species level only (p=0.03) (Figure 5.9). This impact 

was still apparent at follow-up (p=1x10-3). 

 

5.5.4.3 Differences in specific gut microbiota taxa after travel 

In agreement with CCA results, no significant differences in the abundance of 

specific taxa were observed at the phylum level after travel. At the family level, the 

largest post-travel enrichment was observed for Enterobacteriaceae (log2(FC)=1.93) 

but again this change was non-significant. 

Carriage rates for potentially pathogenic genera of the Enterobacteriaceae family, 

with a relative abundance >0.01% being classed as positive carriage, were 

significantly higher after travel, increasing from 75% to 95.83% for Escherichia 

(p=9.38x10-3), 27.08% to 68.75% for Klebsiella (p=5.23x10-4), 39.58% to 72.92% for 

Salmonella (p=2.2x10-3) and 31.25% to 72.92% for Shigella (p=1.05x10-4) (Figure 
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5.10A). Campylobacter carriage rates also increased, albeit non-significantly, from 

89.58% to 97.92%. Carriage remained increased for these genera six months after 

travel at 95.83% (p=0.02), 66.67% (p=5.32x10-4), 77.08% (p=8.56x10-4), 52.08% 

(p=0.03) and 100%, respectively. The Bonferroni-corrected p-value for these tests 

was 0.01. 

 



5.5 Results 

 
 

 

 
157 

 

Several species from the above-mentioned genera were found to display the largest 

changes in abundance after travel, including S. flexneri (log2(FC)=2.71, p=0.02), S. 

boydii (log2(FC)=2.66, p=0.02), E. coli (log2(FC)=2.57), S. enterica (log2(FC)=1.24) 

and K. pneumoniae (log2(FC)=1.14) (Figure 5.10B). Significant enrichment of S. 

flexneri and S. boydii did not persist up to the follow-up period. Species less 

abundant in post- compared to pre-travel samples included members of the 

Lactobacillales order such as L. sakei (log2(FC)=1.60), L. casei (log2(FC)=1.50) and 

L. kimchii (log2(FC)=1.50). There were no significant differences in pre- or post-travel 

taxonomic compositions between the 15 participants who acquired CTX group genes 

during travel and those who did not. 

5.5.4.4 Effect of traveller’s diarrhoea and antimicrobial use on taxonomic 

composition after travel 

Neither TD nor antimicrobial use affected post-travel microbiota diversity with TD-

positive participants carrying a mean of 1,642.14±79.77 individual OTUs compared to 

1,668.46±80.72 in TD-negative ones and antimicrobial-positive participants carrying a 

mean of 1,626.82±69.55 individual OTUs compared to 1,665.19±82.31 in 

antimicrobial-negative participants. 

An impact on overall post-travel taxonomic composition at the family (p=4x10-3), 

genus (p=3x10-3) and species level (p=0.03) was observed after TD only (Figure 

5.11). Separation did not persist until follow-up. Significant changes in abundances of 

specific taxa were not detected, nor were differences in pre-travel microbiota 

composition between TD-positive and –negative participants. Furthermore, chi-

square tests did not reveal any differences in carriage rates of potentially pathogenic 

genera after either TD or antibiotic use. 
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5.6 Discussion 

5.6.1 Effect of travel on gut microbiota resistome and taxonomic 

composition  

In line with previous findings374,378, travel induced changes in the gut microbiota ARD 

pool in the present study cohort, including an overall enrichment in the number of 

ARDs detected. This enrichment could be due to ingestion of bacteria carrying the 

genes though contaminated food123 or water124 in regions where resistance rates are 

high. Exposure to a foreign environment and its microorganisms might also be 

expected to increase bacterial diversity383 but the number of OTUs was found to be 

relatively stable over time. It should be noted, however, that this metric is only a 

rough estimate of true diversity and measures that take into account abundance data 

and phylogenetic relationships between organisms are generally favourable. The 

range of 7-127 individual ARDs identified in the pre-travel samples indicates that 

some ARDs are already widespread in the UK community. Almost all participants 

carried ARDs conferring resistance to tetracyclines, MLS and trimethoprim before 

travel. Tetracyclines and MLS are amongst the antibiotics with the highest 

consumption rates in the UK384. Although all participants were UK residents at the 

time of recruitment only 54% are UK natives. More lenient prescription practices in 

other countries might mean that some participants are more likely to have been 

exposed to antimicrobials at a higher rate at some point in their lives, which could 

contribute to the varying number of ARDs observed before travel385. Nonetheless, the 

clear, and persistent, separation observed between pre- and post-travel resistomes 

at all levels indicates a large-scale shift in resistance potential after exposure to a 

foreign environment. Taxonomic changes, on the other hand, only became apparent 

at species level resolution. This suggests that while travel might open up a niche for 

specific organisms and lead to displacement of others, it does not cause large-scale 

imbalances in the gut microbiota. 

Enterobacteriaceae, the focus of many previous studies368,369,372, were the taxon 

displaying the largest differences in this cohort. Carriage rates and abundances of 

Escherichia, Klebsiella, Salmonella and Shigella, all members of the family capable 
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of causing disease, were significantly higher immediately after travel. Along with 

changes in Enterobacteriaceae, carriage and abundance of CTX group ESBL genes 

also increased. Genes were detected in 12.5% of participants before travel and 

acquired by 31.25% of individuals whilst abroad. The rates are comparable to those 

observed by von Wintersdorff et al.374 in their study of 122 Dutch travellers. Acquired 

blaCTX genes persisted in 10.42% of participants, thus creating a pool for onward 

transmission in the community up to six months after return. Isolation of strains to 

prove ESBL production was not carried out, thus the genes detected might not 

necessarily be expressed. A previous study by Bengtsson-Palme et al.378 combining 

both metagenomics and culture found that in some cases ESBL-E could be isolated 

even when blaCTX-M genes were not detected in the metagenome, possibly 

because they were present below the detection limit. However, the same study also 

reported cases in which ESBL genes were detected without successful isolation of 

ESBL-E indicating that the genes might be carried by other organisms. 

This highlights the importance of recognising the entire gut microbiota community 

as an ARD reservoir. Use of an unbiased metagenomics approach allowed detection 

of an enrichment in sulphonamide and additional β-lactam ARDs after travel as well 

as increased carriage and abundance and high acquisition rates for cat genes 

involved in chloramphenicol resistance. Carriage rates of ARDs conferring resistance 

to CAPs were also elevated after travel. Antimicrobial peptides are part of the innate 

immune defence in many organisms and some are being investigated as promising 

alternatives to classical antibiotics for a more targeted treatment of infections in the 

era of AMR62. Mechanisms of CAP resistance, such as lipid A modification, have 

been described for many of the Enterobacteriaceae enriched after travel386. While 

potential pathogens were more abundant after travel, the abundance of several 

Lactobacillus and Leuconostoc species, generally thought to be beneficial to the 

host, was decreased. Many lactic acid bacteria are intrinsically resistant to the 

glycopeptide antibiotic vancomycin387,388, which likely contributed to the observed 

reduction in carriage and abundance of glycopeptide ARDs. 
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5.6.1.1 Risk factors for resistome and taxonomic changes 

TD and antimicrobial use, the most consistently identified risk factors for acquisition 

of resistant organisms, only had limited effects on the gut microbiota of participants in 

this study. Just under half of the participants experienced TD, which is in agreement 

with the proportion of 20-50% expected for travellers to developing regions383. TD 

and antimicrobial use have both been shown to decrease microbiota diversity383 but 

this could not be reproduced in the present cohort. Again, this might be due to the 

limitations of the diversity metric used. The effect of TD on overall taxonomic 

composition was more pronounced than that of antimicrobial use while the opposite 

was the case for resistome composition. This makes sense in the light of findings that 

antimicrobial exposure selects for resistant organisms125,126, especially those not 

susceptible to the particular drug used372. Only two of the eight participants who used 

ciprofloxacin acquired fluoroquinolone ARDs. MLS ARDs were already highly 

prevalent before travel so that an effect of azithromycin use in three participants 

could not be detected. The association between persistent acquisition of mecB genes 

and antimicrobial consumption is worrying as mecB is a homologue of mecA389, 

which is part of the resistance machinery of methicillin-resistant Staphylococcus 

aureus (MRSA), and has recently been described in a clinical MRSA isolate390. 

Duration of TD and antibiotic use was short in most participants and might have 

occurred early on in their travels so that microbiota balance had already been 

restored by the time they provided their post-travel sample. The majority of changes 

observed did not persist until follow-up, which is in line with findings that single, short 

insults to the system are not sufficient to cause long-term dysbiosis391. 

Apart from TD and antibiotic use, the exact travel destination, has been identified 

as a risk factor for AMR acquisition during travel, with the highest rates reported for 

South Asia, in particular India369,380. Differences between travel destinations were not 

evaluated in this study as stratification of results by geographic region was not 

feasible due to the low sample number. Inconsistently identified risk factors include 

old age375,377,378, chronic disease392 and consumption of certain foods such as ice 

cream, streetfood, raw vegetables and fruits368,393. While these aspects were 

captured by the study questionnaires, statistical analysis of their influence was again 

hindered by the low sample number. 
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5.6.2 Clinical relevance of study results 

A survey of travellers recently found that, while the majority were aware of the AMR 

problem, only few realised that travel was associated with a high risk of acquiring 

resistant organisms and the potential of transferring them to others394. The growing 

body of evidence this study feeds into provides a useful resource for healthcare 

practitioners providing pre-travel consultations. They should promote measures 

proven to be effective in preventing TD, such as regular hand washing and 

avoidance of specific drink and food items. Depending on the extent of distress the 

illness causes and the degree to which it interferes with planned activities, TD is 

categorised as either mild, moderate or severe354. Bismuth subsalicylate and 

loperamide should be advertised as potent alternatives to antimicrobials for treatment 

of mild and moderate cases of TD395. Antibiotic prophylaxis, although highly efficient 

at preventing TD396, is not recommended anymore for healthy travellers. Even 

provision of stand-by antibiotics might be an issue: their availability did not prevent 

travellers from seeking healthcare abroad and indeed increased antibiotic use397. 

Interestingly, most participants in this study who consumed antibiotics used 

ciprofloxacin despite reported fluoroquinolone resistance rates of 93.1% in China and 

70-80% in Nepal and Thailand for Campylobacter398 and of 65% for ETEC and EAEC 

isolated in India399. Patients presenting with travel-related diarrhoea were found to be 

less likely to respond to fluoroquinolone treatment than those who acquired the 

infection at home400. Furthermore, there is evidence that ciprofloxacin use favours 

acquisition of fluoroquinolone-resistant strains372, which further exacerbates the 

problem. 

The results also highlight the importance of gathering information on travel history, 

ideally along with other travel-related factors, when a patient presents with 

gastrointestinal disease that requires antimicrobial treatment. Depending on this 

travel history, clinicians can then assess which antimicrobials are more likely to be 

ineffective due to acquired resistance. The present study suggests that patients 

might not respond to sulphonamides and β-lactams after recent travel. 
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5.7 Conclusions 

Although limited by its sample size, this proof-of-concept study highlights the 

usefulness of a metagenomics approach to assess the resistance potential in 

travellers outside a healthcare setting, taking into account not just pathogenic 

species but the entire gut microbiota community as a reservoir for AMR. A 

surveillance system based on healthy travellers could contribute to advancing our 

understanding of AMR dissemination in the community in countries like the UK where 

resistance is on the rise. Information gathered from this surveillance could then lead 

to updated policies for medical professionals providing pre-travel consultations.
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6.1 Summary of findings 

6.1.1 Diagnosis of gastrointestinal infections via ‘–omics’ 

approaches 

The use of culture-free metataxonomic, metabolomic and metagenomic approaches 

for identification of aetiological agents of gastroenteritis was explored in chapters 2 

and 3. Direct detection of bacterial enteropathogens by 16S rRNA gene sequencing 

seemed to depend heavily on sample quality, pathogen load and the type of 

pathogen present. Only a subset of samples testing positive for Campylobacter 

during conventional diagnostics contained the pathogen at a relative abundance 

detectable by the taxonomic classifier used and Salmonella could not be identified at 

genus level in any of the Salmonella enterica-positive samples. Similarly, S. enterica 

was not identified in all samples from patients diagnosed with salmonellosis using a 

shotgun sequencing approach and relative abundances of the pathogen in positive 

samples varied widely. Some of these results could be due to the sequence 

clustering algorithms and the databases that the taxonomic classifiers, which were 

chosen for analysis, rely on. While QIIME 2173, Kraken260 and MetaPhlAn2258 are all 

widely used in the field, none of them will achieve 100% classification accuracy. 

Almeida et al. (2018)401 evaluated the performance of four of the most commonly 

used tools for 16S rRNA gene sequencing data analysis with the help of mock 

communities of known composition. While the use of QIIME 2 resulted in the lowest 

number of unclassified sequences and the most accurate representation of taxon 

abundances, it also yielded a higher proportion of misclassified reads. It is therefore 

possible that additional Campylobacter- or S. enterica-derived sequences were 

present in the study samples but were falsely assigned to other taxa. An equivalent 

study comparing tools for the analysis of metagenomic sequencing data found that 

the accuracy of taxonomic assignments by both Kraken and MetaPhlAn2 decreased 

beyond the family level402. 

Colonisation of the gastrointestinal (GI) tract with foreign enteropathogens is 

expected to cause a disturbance of the usual metabolic activity of microorganisms in 

the gut, which should be reflected in measurable differences in the concentrations of 
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gut microbiota-derived metabolites. When direct detection of the pathogen is not 

possible, metabolic biomarkers of infection, established using a metabolomics 

approach, could therefore support differential diagnoses. In this study, identification 

of individual pathogen-specific biomarkers was not entirely successful. The same 

applied for taxonomic biomarkers. This was due to the fact that, within sample 

groups, relative bacterial abundances and concentrations of potential metabolic and 

taxonomic biomarkers ranged widely, possibly due to pre-infection interindividual 

variations in microbiota composition. Different communities might vary in their 

response to the same insult caused by an invading pathogen. Zaneveld et al. 

(2017)403 proposed that, rather than adhering to a predictable pattern, changes 

induced by gut microbiota perturbations are stochastic, following the so-called ‘Anna 

Karenina principle’. Based on this suggestion, dysbiotic microbiotas will be more 

dissimilar to one another than healthy, balanced ones. The tight clustering of control 

samples compared to the dispersal of infection samples observed when analysing 

overall taxonomic and metabolic profiles supports this hypothesis. Interestingly, 

protozoal infections appeared to result in less severe disturbances than bacterial 

ones. Whether this is because they are eukaryotes from a different domain of life that 

only makes up a small proportion of the normal microbiota, and commensal activity is 

affected more strongly by competition from organisms that share a closer 

phylogenetic relationship, remains to be elucidated.  

While direct detection of aetiological agents of gastroenteritis and pathogen-

specific biomarkers was of limited success, the use of a supervised learning 

algorithm, which takes into account changes in a multitude of features from 

metataxonomic and metabolomics datasets, yielded more promising results. 

Prediction accuracy could probably be increased even further by analysing the same 

number of samples per group. It has to be kept in mind, however, that correct 

classification of samples into groups using a supervised learning approach strongly 

depends on the quality of the training data set. Samples were labelled according to 

the results of conventional culture- or PCR-based diagnostics, which in this case was 

deemed the gold standard. Appropriate training of the classifier can therefore only be 

assumed in the absence of misdiagnoses but, as discussed in chapter 2, current 

diagnostic methods for gastroenteritis are imperfect. An undetected co-infection with 
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a second enteropathogen could also distort the results. Whilst evaluating a multiplex 

PCR panel targeting thirteen GI bacteria, Martín et al. (2018)144 detected co-

infections in 15% of samples that were missed by culture. Similar studies reported 

co-infections in 14.1%-33.5% of samples404,405, with Campylobacter and EPEC being 

the enteropathogens most frequently encountered together. Training datasets would 

therefore have to be curated carefully to exclude or account for such samples before 

implementing a Random Forest classifier as a diagnostic tool. 

6.1.2 Use of ‘–omics’ technologies for surveillance of 

gastrointestinal pathogens 

The advent of high throughput sequencing technologies has revolutionised how 

infectious diseases are tracked throughout the population and vastly increased the 

resolution of genome-based surveillance.  Since the first complete bacterial genome 

of a Haemophilus influenza strain was published in 1995 based on traditional Sanger 

sequencing406, turnaround times and costs of pathogen genome sequencing have 

decreased steadily. Nowadays, a complete genome can be generated for 

approximately £50 in less than a day. Along with the sequencing technologies, 

computational tools needed to evolve to deal with the large amount of data produced 

by the new approaches. Public Health England (PHE) was among the pioneer public 

health laboratories that validated whole genome sequencing (WGS) for subtyping 

and further characterisation of pathogen isolates to replace laborious, more time-

consuming traditional methods based on, for example, restriction fragment length 

polymorphisms407,  pulsed-field gel electrophoresis408, phage409 or multilocus 

sequence typing410. Salmonella was the first enteropathogen, for which surveillance 

was moved to a WGS basis in April 2015254, followed by Escherichia coli 411, 

Shigella412, Listeria413, Campylobacter414 and Yersinia415. By now, a multitude of 

other countries, including the USA416 and many EU member states417 have 

surveillance systems based on WGS. The technology is not limited to enteric 

pathogens but has also proven successful for, amongst others, Mycobacterium 

tuberculosis418, Neisseria meningitidis419 and N. gonorrhoeae420. 

Initial studies using WGS for outbreak detection were retrospective, analysing 

archived isolates, for example from a Shiga toxin-producing E. coli (STEC) O157 
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outbreak in 2013 associated with the consumption of watercress421 or an outbreak of 

enterohaemorrhagic E. coli on an open farm in 2009422. Today, the established 

surveillance system at PHE, along with the bioinformatic analysis pipelines 

developed in-house254,315, allows detection in real time: A STEC O157 outbreak in 

South West England was successfully traced back to consumption of raw cow’s milk 

and WGS-based single nucleotide polymorphism typing was able to link a further four 

cases, who did not recall drinking the contaminated milk when questioned initially, to 

the outbreak423. WGS also aided the discovery of an S. Enteritidis outbreak caused 

by reptile feeder mice that would not have been picked up by conventional 

surveillance methods due to the geographical and temporal spread of cases97. 

Sharing of national surveillance data, coordinated by the European Centre for 

Disease Prevention and Control (ECDC), even allows outbreak investigation across 

borders, as illustrated by an S. Enteritidis outbreak traced from cases in England and 

other European countries to an egg producer in Germany309,424. As discussed in 

Chapter 3, culture-free metagenomic sequencing of Salmonella-positive stool 

samples did not result in the phylogenetic resolution provided by culture-dependent 

WGS that is required for outbreak investigations of this scale. This was mainly due to 

the fact that an insufficient number of Salmonella-specific reads could be identified 

over the background noise from the remaining gut microbiota community, leading to 

recovery of incomplete genomes and low genome coverage. Sufficient genome 

coverage can often only be obtained from the strains dominating the microbiota and 

the results presented in this study suggest that the pathogen does not necessarily 

become one of the major taxa, although its load is clearly sufficient to cause 

gastroenteritis symptoms, which complicates culture-independent methods of 

diagnosis. 

Apart from tracking the exact identity of enteropathogens, some of their functional 

properties can also be inferred from WGS-based surveillance. Given the threat posed 

by antimicrobial resistance (AMR)120, identification of antimicrobial resistance 

determinants (ARDs) in the sequenced genomes is one of the major pieces of 

additional information public health reference laboratories make use of. All EU 

member states as well as Iceland and Norway submit national AMR surveillance data 

to the European Antimicrobial Resistance Surveillance Network coordinated by the 
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ECDC. Based on this data, an annual report is issued detailing trends in AMR for 

different organisms, which helps countries to adapt treatment recommendations in 

order to minimise treatment failures, which is of particular importance in the case of 

invasive disease. It also allows a rapid response to the emergence of new resistance 

mechanisms. As discussed in Chapter 4, prediction of AMR profiles in non-typhoidal 

S. enterica (NTS) from WGS data is suitable as a replacement for traditional 

antimicrobial susceptibility testing, with predicted profiles being in very good 

agreement with isolate phenotypes. Similar results were obtained for a variety of 

other enteropathogens, including S. sonnei274, E. coli337 and typhoidal 

Salmonellae273. If turnaround times from initial diagnosis to availability of surveillance 

were decreased further, it would be plausible for WGS-based AMR profiling to guide 

treatment decisions. Again, for the reasons outlined above, metagenomic sequencing 

of S. enterica-positive stool samples did not provide sufficient resolution for the 

generation of AMR profiles matching those derived from the corresponding WGS. 

While surveillance of AMR is generally based on data from infectious disease 

cases, the metagenomic study presented in Chapter 5, with a cohort of healthy 

travellers, illustrates that the gut microbiome can be a reservoir for ARDs even in the 

absence of disease. Since the colon is densely populated by microorganisms, 

horizontal gene transfer is facilitated by spatial proximity so that ARDs carried by 

commensals could be transferred to invading pathogens. Import of newly acquired 

ARDs by travellers could lead to their dissemination in the community. With 

international travel being commonplace, containing pathogens and their 

pathogenicity factors in their endemic environment is almost impossible in this day 

and age, as is sadly currently illustrated by the Coronavirus pandemic. Investigating 

transmission networks before they become an obvious public health concern, 

however, could lead to appropriate interventions being put into place in time and 

unbiased metagenomics is a useful tool for such studies. 

6.1.3 Completion of thesis objectives 

A summary of the five thesis objectives designed to achieve the thesis aim and the 

extent to which they were completed can be found below: 
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1. Use of 16S rRNA gene sequencing of the gut microbiota of patients with 

symptoms of acute gastroenteritis for culture-independent detection of 

aetiological agents of disease. 

Direct detection of aetiological agents of gastroenteritis by 16S rRNA gene 

sequencing was partially successful for Campylobacter only.   

2. Identification of pathogen-specific taxonomic and metabolic biomarkers of GI 

disease with the help of 16S rRNA gene sequencing and nuclear magnetic 

resonance spectroscopy. 

Individual taxonomic and metabolic biomarkers associated with a specific pathogen 

could not be identified. A supervised learning approach, however, making use of 

various taxonomic and metabolic features, was able to distinguish controls, samples 

from patients diagnosed with a bacterial and those from patients diagnosed with a 

protozoal infection with an accuracy of 81.61%. Prediction of the exact aetiological 

agent was less accurate. 

3. Detection and characterisation of S. enterica strains in stool samples derived 

from patients diagnosed with salmonellosis using metagenomic sequencing. 

S. enterica was detected in 70% of samples by metagenomic sequencing. 

Sequencing resolution was neither high enough to establish phylogenetic 

relationships with corresponding isolate WGS or reference genomes nor for the 

generation of AMR profiles. 

4. Evaluation of the sensitivity and specificity of WGS-derived AMR profile 

predictions compared to phenotypic AST for NTS isolates. 

Predicted and phenotypic AMR profiles were in complete agreement for 97.82% of 

NTS isolates. Sensitivity of prediction exceeded 95% and specificity 98% for fourteen 

antimicrobials tested. 

5. Examination of the prevalence and persistence of changes in gut microbiota 

composition and resistome induced by exposure to a foreign environment by 

conducting a longitudinal metagenomic study involving international travellers. 
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A 1.27-fold increase in the number of ARDs as well as increased carriage of 

potentially pathogenic species was detected after travel. Some of the changes 

persisted up to six months. 

6.1.4 Study limitations and future work 

Limitations of the study and suggestions for future work were discussed in detail in 

the previous chapters and are summarised again below: 

The technology used to assess culture-free detection of enteropathogens in 

chapter 2, 16S rRNA gene sequencing, specifically targets a region in the prokaryotic 

genome. The study samples, however, were comprised of faeces from patients 

diagnosed with both bacterial and protozoal gastroenteritis, which excluded the 

possibility of direct pathogen detection for almost half of the samples. The results 

could therefore be complemented by sequencing the eukaryotic equivalent of the 

16S rRNA marker gene, the 18S rRNA region. In addition to this, storage and 

processing of stool samples after collection was not identical, which could both mask 

or falsely attribute importance of certain taxonomic and metabolic features during 

biomarker discovery and Random Forest classification, only four of the many 

aetiological agents capable of causing gastroenteritis were studied in detail and 

sample numbers for these four aetiological agents were not equal. Furthermore, no 

information about the composition of the patient’s pre- and post-infection microbiota 

was available and no information about patient demographics or lifestyle was 

recorded. Repeating the study with longitudinal sampling and further 

enteropathogens, ensuring identical sample storage and processing, matching 

sample numbers and accounting for factors other than infection that could influence 

microbiota composition would make the results more robust. 

The limited success of using metagenomic sequencing for detection and 

characterisation of S. enterica, detailed in Chapter 3, is most likely due to the inability 

of the method to resolve the low-abundance pathogen signal in the presence of other 

high-abundance constituents of the microbiota. Enrichment of S. enterica, for 

example with the help of RNA baits, could amplify the pathogen-specific signal. In 

addition, a DNA extraction protocol developed specifically for metagenomic 

sequencing could improve results. 
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The validation of WGS-based AMR profiling in NTS described in Chapter 4 did not 

include azithromycin or colistin resistance, which are of increasing clinical relevance. 

Routine surveillance of resistance to these antimicrobials should be carried out to 

ensure that its prevalence is monitored. 

Evaluation of ARD acquisition during international travel in Chapter 5 was purely 

genome-based. It is therefore uncertain whether the genetic potential for AMR is 

translated into functional proteins that confer resistance to antimicrobials. The results 

could therefore be corroborated using a transcriptomics approach or phenotypic AST. 

The study cohort was relatively small so that further stratification of samples to 

investigate the impact of the exact travel destination and of demographic and lifestyle 

factors on the results could not be carried out. Furthermore, some of the initial 

exclusion criteria had to be relaxed in order not to exclude too many volunteers from 

follow up. Future studies should therefore seek to recruit a larger number of 

volunteers. 

In general, all parts of this thesis focussed on bacterial members of the gut 

microbiota community. However, the importance of the mycobiome425,426 and the 

virome427 is increasingly recognised and further work should include an analysis of 

the contribution of these microorganisms to GI health. 

6.2 The role of next-generation sequencing technologies in 

healthcare 

Although the results presented in this thesis suggest further work is needed before 

next-generation sequencing (NGS) technologies can replace culture- and PCR-

based methods for diagnosis of gastrointestinal infections, they are already in routine 

use in other areas of the healthcare sector. While the Human Genome Project took 

almost fifteen years to complete, providing a first draft of the human genome at a 

price of approximately $2.7 billion428, now a complete genome sequence can be 

generated within a day. Instead of targeting individual mutation-prone exons, the 

UK’s National Health Service (NHS) offers whole gene screens, currently sequenced 

with Illumina® technology, to look for pathogenic variants in any region of a gene. The 

most recent National Genomic Test Directory for both rare and inherited disease and 

cancer specifies whole exome or even whole genome sequencing as the method of 
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choice for a variety of conditions including, for example, congenital muscular 

dystrophy and leukaemia. In 2019, Health Secretary Matt Hancock even suggested 

that WGS would routinely be offered to all children at birth in the near future to 

predict susceptibility to inherited diseases. The estimated cost of sequencing a 

human genome in an NHS laboratory ranges from £2,350-£3,420429. 

Metagenomic sequencing is already in routine use for diagnosis of meningitis and 

encephalitis from cerebrospinal fluid at a clinical laboratory in the United States239,242 

and similar assays are currently being developed for diagnosis of sepsis and 

pneumonia as well as Lyme disease and other tickborne infections. The first genome 

sequence of SARS-CoV-2, the virus causing the current global COVID-19 pandemic, 

was made publicly available on 10th January 2020430, less than two weeks after an 

outbreak of pneumonia of unknown aetiology had first been reported in China. The 

genome forms the basis of research efforts aimed at developing a vaccine and 

appropriate treatments and it could not have been made available at such 

unprecedented speed without the use of NGS. Recently, the COVID-19 Genomics 

UK Consortium was announced, a collaboration between the NHS, public health 

agencies, the Wellcome Sanger Institute and academic institutions in 13 UK cities, 

which promises rapid, large-scale sequencing of the virus from confirmed national 

cases to monitor its spread and evolution. 

6.2.1 Challenges associated with the use of next-generation 

sequencing in routine healthcare 

Although they can be of great use, the biggest hurdle for the use of NGS approaches 

in all diagnostic laboratories is the infrastructure required for their implementation431. 

Not only the sequencing platforms themselves but also the computational 

infrastructure for data analysis requires space. Quite often, efficient data analysis can 

only be guaranteed when a high-performance computing cluster is available. A 

shared resource, similar to the Medical Research Council’s Cloud Infrastructure for 

Microbial Bioinformatics used by researchers to perform microbial bioinformatics34, 

for computing and storage of clinical data might be a solution. On top of this, 

although sequencing costs have decreased vastly compared to initial use, they are 

still prohibitive to widespread use in many healthcare settings432. This holds true 
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especially for developing regions, where the incidence of infectious disease is higher 

than in industrialised countries and often associated with increased mortality rates 

due to insufficient provision of healthcare. Thus, areas that would benefit the most 

from good surveillance systems are the ones most likely to not have access to them. 

Some of these caveats could be overcome by using the Oxford Nanopore instead of 

Illumina® technology: The Nanopore MinION is a portable device that can be plugged 

into a laptop for real-time display of sequencing results, making it suitable for 

processing samples in the field, and can be purchased for a fraction of the price of an 

Illumina® machine. The technology has successfully been used for rapid on-site 

sequencing during the Ebola outbreak in Africa433 and the Zika virus outbreak in 

Brazil434. In the UK, Nanopore sequencing of the gut microbiota of preterm infants 

allowed detection of enteropathogens and associated AMR profiles within 1 hour of 

sequencing435. However, the Nanopore approach is prone to sequencing errors and 

has a lower throughput, which increases its per-read cost compared to other 

platforms436. 

The amount of data generated by next generation sequencing poses another 

problem: Unlike a simple PCR, where a signal indicates a positive sample, patterns in 

sequencing data cannot be visualised without complex processing. This requires 

skilled, bioinformatically trained staff. Only a few clinical laboratories have such staff 

at their disposal. Implementation of NGS-based assays therefore needs to be 

accompanied by either building a bioinformatics workforce or training existing staff in 

data analysis. Alternatively, analysis workflows could be automated so that laboratory 

staff only see the final, simplified output, which means that they would not be 

equipped to troubleshoot any issues with the process. On top of this, while 

bioinformaticians might have the skills to detect patterns in the data, their clinical 

relevance can only be determined by staff with knowledge of other areas such as 

microbiology and physiology. As such, the so-called genomic revolution has probably 

encouraged interaction between scientific disciplines like few other advances in 

technology. 

Finally, the results of an NGS-based assay might vary depending on the analysis 

pipeline used and the database this pipeline bases its output on. Common clinically 

relevant pathogens tend to be over-represented in reference databases so that their 
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detection and profiling is likely to be more reliable than that of less frequently 

encountered ones135. New algorithms for processing of NGS data are constantly 

being developed. To ensure that results are comparable between laboratories, both 

nationally and internationally, regulatory bodies need to provide guidance on 

appropriate validation of assays, similar to the report issued on the role of WGS in 

AST of bacteria by a EUCAST subcommittee349. Again, a shared computational 

resource for clinical laboratories could ensure that the same analysis tools are 

available to all. 

6.3 Conclusion 

The research presented in this thesis highlights that, while ‘–omics’ technologies hold 

great potential for the future of diagnosis and surveillance of gastrointestinal 

infections, some approaches need further development work before they can be put 

into routine clinical use. Genome-based resistance profiling of enteropathogen 

isolates has already successfully replaced phenotypic testing for monitoring trends in 

AMR and metagenomic sequencing and can be utilised to study AMR transmission 

networks in healthy populations.  When it comes to clinical decision making, 

however, culture-independent testing currently still fails to achieve the performance 

of the gold standard methods. Since technologies and data analysis tools are 

constantly under development to address their shortfalls, it is highly plausible that    

‘–omics’ technologies will soon find their way into the frontline clinical diagnostic 

setting, even for conditions affecting such complex microbial communities as the gut 

microbiota. 
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