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Background: Behavioural and language difficulties co-occur in multiple neurodevelopmental conditions. Our
understanding of these problems has arguably been slowed by an overreliance on study designs that
compare diagnostic groups and fail to capture the overlap across different neurodevelopmental disorders and
the heterogeneity within them. Methods: We recruited a large transdiagnostic cohort of children with complex
needs (N = 805) to identify distinct subgroups of children with common profiles of behavioural and language
strengths and difficulties. We then investigated whether and how these data-driven groupings could be
distinguished from a comparison sample (N = 158) on measures of academic and socioemotional functioning and
patterns of global and local white matter connectome organisation. Academic skills were assessed via
standardised measures of reading and maths. Socioemotional functioning was captured by the parent-rated
version of the Strengths and Difficulties Questionnaire. Results: We identified three distinct subgroups of
children, each with different levels of difficulties in structural language, pragmatic communication, and hot and
cool executive functions. All three subgroups struggled with academic and socioemotional skills relative to the
comparison sample, potentially representing three alternative but related developmental pathways to difficulties
in these areas. The children with the weakest language skills had the most widespread difficulties with learning,
whereas those with more pronounced difficulties with hot executive skills experienced the most severe difficulties
in the socioemotional domain. Each data-driven subgroup could be distinguished from the comparison sample
based on both shared and subgroup-unique patterns of neural white matter organisation. Children with the most
pronounced deficits in language, cool executive, or hot executive function were differentiated from the comparison
sample by altered connectivity in predominantly thalamocortical, temporal–parietal-occipital, and frontostriatal
circuits, respectively. Conclusions: These findings advance our understanding of commonly co-morbid
behavioural and language problems and their relationship to behavioural outcomes and neurobiological
substrates. Keywords: Neurodevelopmental disorders; communication; neural development; language;
behaviour problems.

Introduction
Difficulties with social communication, executive
functions (EF), and behaviour are common across
a range of neurodevelopmental conditions. Prag-
matic or social communication impairments are
included in the diagnostic criteria for autism
spectrum disorders (ASD) and social (pragmatic)
communication disorders. Difficulties with atten-
tion and/or behaviour are characteristic of atten-
tion deficit hyperactivity disorder (ADHD), and
structural language problems are the hallmark of
developmental language disorder (DLD) (American
Psychiatric Association, 2013). While typically
associated with separate disorders, these difficul-
ties commonly co-occur across diagnoses. For
example, children with ADHD often have prag-
matic language difficulties (Green, Johnson, &

Bretherton, 2014), and structural communication
problems are common in both children with
ADHD (Korrel, Mueller, Silk, Anderson, & Sciber-
ras, 2017) and ASD (Mandy, Wang, Lee, &
Skuse, 2017). Similarly, behavioural and atten-
tional difficulties occur in both ASD and DLD
(Henry, Messer, & Nash, 2012; Rommelse,
Geurts, Franke, Buitelaar, & Hartman, 2011).
These comorbidities suggest that problems with
social communication, EF and behaviour might
not be independent and disorder-specific.
Instead, they likely share common aetiological
origins and/or may interact dynamically, such
that difficulties in one area might cascade devel-
opmentally to trigger problems in another (Mas-
ten et al., 2005).

Comorbidity is one of the main challenges to the
current diagnostic system. This is further com-
pounded by high levels of symptom variability
within diagnostic categories: very different pro-
files of strengths and difficulties are common
among children with the same diagnostic label
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(e.g. Astle, Bathelt, & Holmes, 2019; Kushki
et al., 2019). For example, not all children with
ADHD have EF impairments, and there is sub-
stantial heterogeneity among those who do (Kofler
et al., 2019). This has led to widespread recogni-
tion of the limitations of diagnostic frameworks
for guiding research and support strategies, and
an increase in the application of transdiagnostic
approaches for understanding neurodevelopment
(see Astle, Holmes, Kievit, & Gathercole, 2021, for
a review).

Transdiagnostic approaches to neurodevelopment

The dominant method for studying neurodevelop-
mental disorders involves comparing groups of
children with a neurodevelopmental disorder to
another diagnostic/deficit group, or a typically
developing group, using univariate analytical
approaches to tease apart differences. Transdiag-
nostic approaches adopt alternative recruitment
and analytical strategies. In these studies, children
with a variety of neurodevelopmental disorders are
recruited, and/or diagnosis-based enrolment is
replaced with enrolment based on needs. In the
latter case, children who experience difficulties in
the studied realm(s) are sampled regardless of
whether their needs meet diagnostic thresholds
(Holmes, Bryant, & Gathercole, 2019). Alternatively,
large demographically representative cohorts,
including individuals spanning the full spectrum
of ability, are studied.

In terms of analyses, one goal is to identify
dimensional characteristics that can predict or
explain difficulties experienced across individuals
irrespective of diagnostic status (e.g. Brislin
et al., 2021). The relations between different
dimensions and their links to neural/genetic fac-
tors can then be studied to identify potential
mechanisms of shared or unique variance
(Holmes et al., 2020; Parkes et al., 2021). A com-
plementary analytical approach often described as
clustering or subtyping,1 focuses on deriving
homogenous data-driven groupings of children with
similar profiles of relative strengths and weak-
nesses along the studied dimensions (Feczko
et al., 2018). These novel groupings can then be
similarly used to facilitate the discovery of common
aetiological pathways to specific difficulties or to
stratify individuals to support strategies appropri-
ate for their needs.

Both approaches provide important and comple-
mentary insights into the aetiology of transdiagnos-
tic symptoms and their implications for functioning.
As one example, consider EFs. Dimensional
approaches provide support for two dimensions of
EF: cool EFs refer to the ability to regulate behaviour
and cognition in emotionally neutral contexts,
whereas hot EF skills are implicated in situations
of stronger motivational and emotional valence

(Castellanos, Sonuga-Barke, Milham, & Tan-
nock, 2006). Studies using dimensional analyses
reveal these dimensions of EF are related, but are
associated with relatively distinct neural networks
(Salehinejad, Ghanavati, Rashid, & Nitsche, 2021)
and have somewhat different predictive validity in
terms of cool EF being more closely related to
academic achievement and hot EF more predictive
of disruptive behaviours (e.g. Willoughby, Kuper-
smidt, Voegler-Lee, & Bryant, 2011).

Subgrouping approaches similarly reveal that dif-
ferent EF profiles have relatively distinct neural
correlates and are associated with different out-
comes. For example, Vaidya et al. (2020) identified
three data-driven EF-subgroups across typically
developing, autistic and ADHD children. These sub-
groups explained more variance in frontal–parietal
engagement (inferred via functional MRI) during a
sustained attention task than diagnostic groupings.
Similarly, Bathelt, Holmes, et al. (2018) identified
three distinct EF-subgroups in a transdiagnostic
sample of struggling youth. Each subgroup was
associated with different variations in white matter
connections in prefrontal regions, and there was
more within-group homogeneity in the behavioural
profiles of the derived subgroups than in groupings
based on the diagnosis. Both examples demonstrate
that studying subgroups in transdiagnostic samples
can facilitate the linking of behavioural phenotypes
to neurophysiological mechanisms.

Transdiagnostic approaches to neurodevelopmental
comorbidities

The examples of transdiagnostic designs described so
far are typical of the field, with a focus on one domain
of function (e.g., EF). An important next step is to
apply these methods to multiple areas of functioning
to advance our understanding of the co-occurrence of
difficulties across multiple domains. We attempted to
do this in an earlier study by exploring how symptoms
of communication, behaviour, and EF difficulties
relate to one another in a transdiagnostic cohort of
children (Mareva & Holmes, 2019). Using a network
approach, we were able to investigate how specific
symptoms cluster together and start to understand
how these clusters of difficulties are linked.

Four densely interrelated clusters of symptoms
were identified relating to structural language and
learning, hot EF, pragmatic communication and peer
relationships, and cool EF. The symptoms within
each cluster did not align with the diagnostic
features of any diagnosis. Moreover, specific symp-
toms bridged these clusters (e.g., inappropriate
initiation of communication linked the pragmatic
communication and hot EF clusters), providing some
insight into the co-occurrence of symptoms across
domains of difficulty. It may be the case that these
bridging symptoms trigger difficulties through devel-
opmental cascades (Masten et al., 2005) or,
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alternatively, they may be particularly susceptible to
the influence of symptoms in other domains. It is
also possible that bridging symptoms do not signal
interacting areas of difficulties, but instead reflect
shared neural and/or genetic underpinnings.

Linking transdiagnostic profiles to aetiological
factors

Classifying individuals into heterogeneous and often
overlapping diagnostic categories makes it difficult
to understand the shared influence of aetiological
factors (Kapur, Phillips, & Insel, 2012), but identify-
ing groups of children with similar behavioural
profiles, irrespective of diagnostic status, may pro-
vide one way to map symptoms on to underlying
neurophysiology (e.g., Bathelt, Holmes, et al., 2018;
Vaidya et al., 2020). In the current study, we use this
approach to identify groups of children with similar
profiles across multiple domains of function and
explore group differences in neural white matter
organisation. Diffusion tensor imaging enabled us to
estimate the macroscopic organisation of the white-
matter connectivity of the brain in vivo. By analysing
what are known as structural connectomes (Basser,
Pajevic, Pierpaoli, Duda, & Aldroubi, 2000) we were
able to explore how brain connectivity varied across
children in the different subgroups. We focused on
white matter because its maturation is an important
aspect of post-natal neural development. White
matter architecture enables efficient communication
between discrete brain regions and shapes the
processes underlying brain function (Honey, Thi-
vierge, & Sporns, 2010). Variation in global white
matter organisation has been linked to differences in
general cognitive abilities, reading and mathematics
skills (Bathelt, Gathercole, Butterfield, &
Astle, 2018; Bathelt, Scerif, Nobre, & Astle, 2019;
Koenis et al., 2015). It has also been implicated in
neurodevelopmental disorders such as ADHD and
ASD (Beare et al., 2017; Cao et al., 2013; Qian
et al., 2021), with both shared and distinct differ-
ences reported in white matter organisation across
children with different neurodevelopmental disor-
ders (Ameis et al., 2016; Qian et al., 2021). Exam-
ples of structural neural substrate variation
implicated in multiple neurodevelopmental condi-
tions include the corticostriatal circuits, thalamic
radiations, and interhemispheric pathways (Ameis
et al., 2016; Aoki et al., 2017; Arnsten &
Rubia, 2012; Tung et al., 2021; Zhao, Yang, Gong,
Cao, & Liu, 2022).

The current study

The aim of the current study was to identify
homogenous subgroups of children with similar
behavioural, EF, and communication strengths/dif-
ficulties in a large transdiagnostic sample. We then
explored how the profiles of these transdiagnostic

subgroups related to measures of white matter
organisation, and academic and socioemotional
functioning. Our previous study included a subsam-
ple of the currently studied population, and
focussed on identifying clusters of symptoms that
characterised the sample (Mareva & Holmes, 2019).
Individual differences at the symptom level can drive
clusters or subgroups of individuals who share
similar symptom profiles. Therefore, here, we use a
complementary subgrouping approach to study how
this space is occupied by participants, enabling us to
further explore the associations between these pro-
files and academic and socioemotional functioning
and underlying neurobiology. In other words, we
searched for individuals with similar profiles across
the four previously identified clusters of difficulties.
The measures included in the subgrouping were
chosen to capture transdiagnostic features (i.e.,
those that have been previously implicated in several
disorders). These were measured by parent ratings
on scales commonly used across health and educa-
tional settings. To explore the external validity of the
subgroups and further characterise their profiles, we
investigated how they differed on external (i.e., not
included in the subgroup identification) measures of
nonverbal cognitive ability, and academic and
socioemotional functioning, which are theorised to
be related to interindividual differences in commu-
nication and EF (Arnold, Hodgkins, Kahle, Madhoo,
& Kewley, 2020; Harpin, Mazzone, Raynaud, Kahle,
& Hodgkins, 2016; Helland & Helland, 2017). We
did not formulate a hypothesis about the number of
groups, their specific profiles, or the neural and
external behavioural features that would differenti-
ate them. Instead, we designed the study as an
exploratory investigation aiming to address two
broad questions: (a) can we identify robust sub-
groups of children presenting with distinct profiles of
executive, language, and communication strengths/
difficulties within a large transdiagnostic sample of
struggling learners; (b) do such data-driven groups
show any differences in academic attainment,
socioemotional functioning, and white matter organ-
isation relative to a comparison sample.

Methods
The data presented here were collected as part of a cohort
study at the Centre for Attention, Learning, and Memory
(CALM). Data collection took part between 2014 and 2021.

Recruitment

Full details about the CALM cohort are available in the study
protocol (Holmes et al., 2019). Briefly, two groups of children
were recruited: (a) a cohort of children aged 5–18 years who
were referred by health and education practitioners for diffi-
culties with attention, memory, and/or learning; (b) a com-
parison group who were not referred for difficulties. The latter
group was recruited from the same schools attended by those

� 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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who were referred via an open study invitation targeting
children in the same age range. Children in both groups were
enrolled into the study irrespective of diagnostic status or
performance cut-offs, providing they met the following inclu-
sion criteria: (a) native English speaker, (b) no uncorrected
sensory impairments, and (c) no confirmed presence of genetic
or neurological conditions known to affect cognitive ability.

Participants

The referred cohort included 805 children (69% male,
Mage = 9.48, SDage = 2.38) and the comparison 158 children
(56% male, Mage = 10, SDage = 2.33). The majority (63%) of the
referred cohort were referred by education practitioners (e.g.,
educational psychologist, special educational needs coordina-
tor); 33% were referred by health professionals (e.g., clinical
psychologist, child psychiatrist); and 4% by speech and
language therapists. Diagnoses were reported by the referrer
and confirmed by parents. Most of the sample (60%) were
undiagnosed, despite being recognised by a professional as
having additional needs, and 8% had more than one diagnosis.
Among those with diagnoses ADHD was the most common
(N = 197), followed by ASD (N = 57), and diagnoses of learning
disorders (e.g., dyslexia, dyscalculia, DLD, N = 62). The non-
referred sample consisted mostly of children without any
diagnoses (96%), and among those with diagnoses one had
ADHD, two had DLD, and two had dyslexia. For the comparison
sample, diagnostic status was reported by parents/carers.

Assessments

Each child completed a battery of neuropsychological assess-
ments following the procedures documented in the assess-
ment’s testing kits (see Holmes et al., 2019 for details).
Parents/caregivers provided ratings of their child’s behaviour,
communication, and socioemotional functioning. All children
were invited to participate in an optional neuroimaging session
within six months of their behavioural assessment (referred
sample: N = 313, age at scan: M = 10.23, SD = 2.32; compar-
ison sample: N = 77, age at scan: M = 10.75, SD = 2.01). The
assessments included in the current study are described
below.

Community detection. Conners-3: The Conners Par-
ent Rating Short Form 3rd Edition (Conners, 2008) asks about
the child’s ADHD-related difficulties in the past month. Item
ratings are summarised into six subscales: Inattention, Hyper-
activity/Impulsivity, Learning problems, Executive function,
Aggression, and Peer relations. Raw scores were calculated,
but age was regressed from each subscale to ensure the
analyses were not biased by age.

Brief rating inventory of executive function
(BRIEF): The BRIEF (Gioia, Isquith, Guy, & Kenwor-
thy, 2000) captures behaviours related to EF. The 80 items
in the checklist cover eight domains: Inhibition, Shifting,
Emotional control, Initiation, Working memory, Planning,
Organisation, and Monitoring. Raw scores were calculated,
but age was regressed from each subscale to ensure the
analyses were not biased by age.

Children’s communication checklist (CCC-2): The
CCC-2 (Bishop, 2003) focuses on communication strengths
and weaknesses. Items are organised into 10 subscales:
Speech, Syntax, Semantics, Coherence, Inappropriate initia-
tion, Stereotyped language, Use of context, Nonverbal commu-
nication, Social relations, and Interests. Raw scores were

calculated, but age was regressed from each subscale to
ensure the analyses were not biased by age.

Subgroup validation. Strengths and difficulties
questionnaire (SDQ): The SDQ (Goodman, 1997) mea-
sures social and emotional functioning. Items are organised
into five subscales (only four were analysed in the current
study): Emotional Problems,Conduct Problems, Peer Problems,
and Prosocial. The final SDQ subscale was omitted because it
captures hyperactivity and overlaps with the Hyperactivity/
Impulsivity subscale of the Conners-3 that was included in the
community detection. Age-uncorrected SDQ scores were used
in all analyses to allow for easier comparisonswith other studies
using this measure. Analyses using age-regressed scores sup-
ported the same conclusions (Appendix S2).

Reading and mathematics: To assess children’s aca-
demic abilities the Word Reading and Numerical Operations
subtests of the Wechsler Individual Achievement Test-II
(Wechsler, 2005) were administered. Raw scores for each
subtest were converted to age-referenced standard scores to
enable performance to be compared to age-expected norms.

Nonverbal cognitive ability: The Matrix Reasoning
subtest of the Wechsler Abbreviated Scale of Intelligence
(Wechsler, 2011) was administered as an index of non-verbal
cognitive ability. The raw score, corresponding to the number
of correctly completed matrices, was converted into an age-
referenced T-score, allowing for straightforward interpretation
relative to age-expected levels.

MRI data acquisition

The magnetic resonance imaging (MRI) data were collected on a
Siemens 3T Prisma-fit system using a 32-channel quadrature
head coil. T1-weighted volume scans were acquired using a
whole-brain coverage 3D Magnetization Prepared Rapid Acqui-
sition Gradient Echo (MP RAGE) sequence acquired using
1 mm isometric image resolution. Echo time was 2.98 ms, and
repetition time was 2,250 ms. Diffusion scans were obtained
using echo-planar diffusion-weighted images with an isotropic
set of 68 noncollinear directions, using a weighting factor of
b = 1,000 s 9 mm�2, interleaved with 4 T2-weighted (b = 0)
volume. Whole brain coverage was based on 60 contiguous
axial slices and isometric image resolution of 2 mm. Echo time
was 90 ms and repetition time was 8,500 ms. Both MRI pre-
processing and reconstruction were performed using QSIPrep
0.13.0RC1, which is based on Nipype 1.6.0 (Gorgolewski
et al., 2011). All pre-processing steps are reported in the
Supporting Information (Appendix S3). Whole-brain white
matter connectivity matrices (i.e. connectomes) were con-
structed for each child based on the Brainnetome atlas (Fan
et al., 2016). For each pairwise combination of regions
(N = 246), the number of streamlines intersecting them was
estimated and transformed to a 246 9 246 streamline matrix.

Statistical analysis overview

A data-driven community detection algorithm was applied to
the child-by-child associations across the behaviour, EF, and
communication ratings in the referred sample to identify
subgroups of children with similar profiles of behavioural
and communication strengths and difficulties. The demo-
graphic and diagnostic characteristics, academic performance,
socioemotional ratings, and neural white matter connections
were then compared across the derived subgroups and the
comparison sample. The details for each step of the analysis
are presented below.

� 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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Community detection. A network was built to represent
thechild-by-childcorrelationsacrossthe24subscalesof theCCC-
2, Conners-3, and BRIEF questionnaires for those in the referred
sample. Child-by-child correlationswere the focus of the commu-
nity detection to capture similarities and differences in children’s
profiles across the subscales. This method has been previously
used to identify subgroups of children with similar neuropsycho-
logical profiles, temperaments, and EF-related behavioural prob-
lems (Bathelt, Holmes, et al., 2018; Fair, Bathula, Nikolas, &
Nigg, 2012; Karalunas et al., 2014). Before estimating the child-
by-child correlations, missing data were estimated and age was
regressed fromeach scale to ensure the community detectionwas
not biased by age (see Appendix S1 for details). The community
detection was based on the Louvain weight-conserving algorithm
(gamma set at default value of 1), as implemented in the Brain
Connectivity Toolbox (BCT: Rubinov & Sporns, 2010). The
strength of the community separation was quantified using the
asymmetric modularity (Q) index (Rubinov & Sporns, 2011),
which conceptually represents the overall segregation between
identified communities, with values above 0.3 considered evi-
dence for sufficient community separation (Blondel, Guillaume,
Lambiotte, & Lefebvre, 2008; Newman & Girvan, 2004). This
method performs well in recovering the true number of commu-
nities across a range of conditions and simulations suggest the
sample size of the referred cohort was suitable for this analysis
(Agelink van Rentergem, Bathelt, & Geurts, 2021; Gates, Henry,
Steinley,&Fair, 2016). To reachastable communityassignment,
weapplied the consensusclusteringmethodwith1,000 iterations
(Lancichinetti & Fortunato, 2012), a procedure that has demon-
strated robustness even at substantial levels of noise in the data
(Bathelt, Holmes, et al., 2018).

Subgroup profiles and behavioural validation. A
series of two-tailed t-tests with Holm corrected p-values were
run to compare the profiles of the derived subgroups to each
other, and to the comparison group, to quantify variation in the
severity of difficulties across data-driven groups and to capture
differences relative to the non-referred children. To facilitate
the interpretation of the subgroup profiles, the communication
and behavioural data used in the community detection were
reduced via Principal Component analyses (PCA) and compo-
nent scores were extracted and compared across the groups.
Data from both the referred and comparison samples were
combined for the PCA, and the optimal number of components
to retain was chosen based on the results of parallel analyses
(see Appendix S2). Separate PCAs were run for the measure of
communication (CCC-2) and the two measures of behaviour
combined (BRIEF and Conners-3). Additional group compar-
isons were conducted on measures not included in the
community detection to externally validate and further char-
acterise the profiles of the subgroups.

Neuroimaging analysis. Neural white matter connec-
tome data were analysed using graph theory. The nodes of the
network were the 246 regions of the Brainnetome atlas (Fan
et al., 2016) and the connections (or edges) corresponded to the
number of streamlines intersecting each pair of regions. All
connectome analyses are based on weighted unthresholded
matrices. This choice was motivated by observing that the
application of consistency-thresholding (Roberts, Perry, Roberts,
Mitchell, & Breakspear, 2017) to retain the top 30% or 20% of
most consistent edges (on the assumption that the connections
with the highest inter-subject variability are spurious) fully
reproduced the results based on unthresholded matrices. We
explored whether and how each derived subgroup differed from
the comparison sample and did not compare the data-driven
subgroups to one another. This approach was chosen to reduce
the number of comparisons and to investigate both common and
subgroup-uniquedifferencesamongthereferredchildrenrelative
to thenon-referred children.Due to thepresence of outliers in the

data, the global and local metrics of the data-driven subgroups
were compared to the comparison group using 10% trimmed-
means pairwise t-tests with false-discovery rate correction.

Global and local metrics: At the whole-brain level, we
focussed on global efficiency and global clustering coefficients.
These metrics were chosen because they have been previously
linked to children’s educational attainment andgeneral cognitive
abilities (Bathelt, Gathercole, et al., 2018, Bathelt et al., 2019;
Koenis et al., 2015) and have been implicated in neurodevelop-
mental disorders such as ADHD (Cao et al., 2013). Global
efficiency describes the potential for information exchange in
thenetworkand istheaverage inversedistance fromanynode (i.e.
brain region) to any other node (Sporns, Honey, & K€otter, 2007).
Global clustering quantifies the fraction of each node’s neigh-
boursthatarealsoneighboursofeachother.Theglobalclustering
metric was normalised according to the average of 1,000 random
graphs using the algorithms for weighted undirected networks
implemented in the GRETNA toolbox (Wang et al., 2015). Subse-
quently, to explore the local properties of the connectomes with
theminimalnumber of comparisons, the 246brain regions in the
Brainnetome atlas (Fan et al., 2016) were grouped according to
their corresponding intrinsic connectivity networks (ICN) as
defined by Yeo et al. (2011): Default mode, Dorsal attention,
Frontoparietal, Limbic, Somatomotor, and Visual networks.
Subcortical regions were also grouped together. The sum of all
connections within each network (and the subcortex) of the
connectomewascalculated.Thisapproachisbasedontheknown
structuraland functionalorganisationpropertiesof thebrainand
was therefore favoured as a balanced alternative to hypothesis-
driven pre-specified regions of interest approach or a fully data-
driven reduction of the connectomes. For each data-driven
subgroup, networks that showed a significant difference from
the comparison group were selected for further analyses. Subse-
quently, thenodestrength (i.e., thesumofallconnections) ineach
region within the networks flagged as significantly different was
tested against the comparison group. The functional character-
isation of these regions was based on the behavioural domain
metadata labels of the BrainMapDatabase (www.brainmap.org/
taxonomy), which uses both forward and reverse inferences
(Eickhoff & Grefkes, 2011; Fox, Lancaster, Laird, & Eick-
hoff, 2014). Prior to the analyses, age, sex, and average frame
displacement were regressed from each graph metric using a
robustregressionapproachtoaccountforoutliers.Controlling for
these covariates is recommended and is standard practice in
neurodevelopmental neuroimaging research (Alexander-Bloch
et al., 2016; Jones et al., 2021; Luna et al., 2021).

Network-based statistics (NBS): To investigate differ-
ences in the connectionsbetween regionsweusedNBS,which in
many cases offers greater statistical power compared to tradi-
tional correctionmethods (Zalesky, Fornito, &Bullmore, 2010).
This is a whole-brain data-driven method and is described in
detail in Appendix S3. Briefly, each data-driven subgroup was
compared to the non-referred group to identify subnetworks
that differentiate the groups. The following parameters were
used: t-threshold 2.8, intensitymeasure of size, and family-wise
error (FWE) p < .01. Age, sex, and average frame displacement
were used as covariates in all analyses. To ensure the robust-
ness of the results, we repeated all procedures by varying the
target t-threshold, exploring the extent-based measure of size,
and setting a more liberal FWE-correction (p < .05).

RESULTS
Community detection

Community detection applied to the child-by-child
correlation network based on the Louvain algorithm

� 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
Child and Adolescent Mental Health.
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identified three subgroups of children (Q = .43; Fig-
ure S1). The value of the Q-metric was above 0.3,
suggesting a good level of community separation
(Blondel et al., 2008).

Subgroup profiles

The profiles of the subgroups identified by the
community detection and the comparison group
across the 24 subscales are displayed in Figure 1A.
Descriptive statistics and Cohen’s d effect size are
presented in Table S1. To aid the interpretation of
the differences across the groups, data were reduced
with two PCAs, one applied to the CCC-2 and a
second to the combined BRIEF and Conners-3 data
(see Figures S2 and S3 for correlations). This deci-
sion allowed us to consider communication and
behaviour separately. The CCC-2 data reduction
identified two components capturing structural and
pragmatic communication, which in combination
explained 80% of the variance. Two components
broadly corresponding to hot EF and cool EF sum-
marised the Conners-3 and BRIEF data, cumula-
tively explaining 68% of the variance (Figure 1B,C;
full report in the Appendix S2 and Figures S4 and
S5). As a sensitivity analysis, in Appendix S2 we also
report the results of parallel analysis and PCA
applied to the CCC-2, Conners-3, and BRIEF data
together. This approach supported broadly similar
conclusions, with the exception that hot EF and
pragmatic skills loaded on a single component. The
full details are available in the Supporting Informa-
tion (Figures S6 and S7).

Group profiles across the four components are
displayed in Figure 1D. The data-driven subgroups
had significantly more difficulties across all compo-
nents relative to the comparison sample, except for
Subgroup 2 (S2) who had similar hot EF to the
comparison sample. The children in each subgroup
had different patterns of specific strengths and
difficulties. Subgroup 1 (S1) were characterised by
poor structural language, children in S2 had weak-
nesses in cool EF, and children in Subgroup 3 (S3)
had pronounced difficulties with hot EF and prag-
matics (Table S2). The same patterns were evident in
the subgroup profiles on the subscales that most
strongly loaded on the respective principal compo-
nents (Table S1 and Figure 1A). One-way ANOVA
suggested no significant differences in age across the
subgroups (F (1,803) = 3.138, p = .08, Table 1), but
pairwise t-tests with Holm correction for multiple
comparisons suggested that children in S2 were
significantly older than children in S3 (t = 2.56,
pcorrected = .03), with an average difference of
6.34 months. Using a chi-square test, which com-
pared the overall proportion of boys and girls in the
non-referred sample to the proportion observed in
each subgroup, we observed that girls were overrep-
resented in S1, while boys were overrepresented in S3
(Table 1). The same chi-square analyses were used to

investigate whether there were differences in the
prevalence of different diagnoses across subgroups.
We focused on children with ADHD and ASD
because overall numbers for other diagnoses were
too low to make meaningful comparisons. Children
with ADHD and ASD were represented in each
subgroup, but children with ADHD were overrepre-
sented in S3 and underrepresented in S1, and
children with ASD were underrepresented in S2 and
overrepresented in S3 (Table 1). Analyses compar-
ing the prevalence of ADHD subtypes across clus-
ters were not pursued due to most children with
ADHD having a diagnosis of Combined type ADHD.
Only one child had a diagnosis of predominantly
Hyperactive/ Impulsive ADHD (included in S3) and
only 14 a diagnosis of the predominantly Inattentive
type (two cases included in S1, seven in S2, and five
in S3). Finally, children who had recently received
Speech and Language Therapy were overrepre-
sented in S1 and underrepresented in the other
two subgroups (Table 1).

Subgroup profiles: Behavioural validation

The groups were compared on external measures not
used in the community detection (Figure 2). In terms
of socioemotional functioning and cognitive and
academic performance, all three subgroups derived
from the referred sample had significantly more
difficulties than the comparison sample (Figure 2).
There were differences in the patterns of severity
among the subgroups. Children in S1 had the most
pronounced difficulties with maths, reading, and
non-verbal reasoning, scoring significantly lower
than the other two data-driven groups. Children in
S3 had better performance than the other two
subgroups in math and reading, but significantly
more difficulties with emotion, conduct, peer rela-
tions, and prosocial behaviour (Figure 2).

Overall, three subgroups were identified captur-
ing children with principal difficulties with struc-
tural communication (S1), cool EFs (S2), and hot
EFs and pragmatics (S3). Considering measures,
which were not included in the community detec-
tion, there was a consistent pattern in which
children in S3 had more pronounced socioemo-
tional difficulties, whereas children in S1 and S2
showed more difficulties with cognitive and aca-
demic skills.

Subgroup profiles: Neural white matter

Graph measures. At the global level, S1 and S2 had
significantly lower global efficiency relative to the
comparison sample (S1, Nimaging = 110:
pcorrected = .04; S2, Nimaging = 121: pcorrected = .04).
The difference between the comparison sample and
S3 (Nimaging = 82) was not significant (pcorrected = .10).
There were no differences in global clustering
between the comparison sample and any of the

� 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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subgroups (uncorrected p-s > 0.25). These results
are presented in Figure S8. At the ICN-level, all
subgroups had weaker overall connections in the
limbic network and subcortical areas relative to the

comparison sample (Figure S9). Follow-up analyses
showed that relative to the non-referred sample all
subgroups had reduced regional strength in the same
sub-regions of the basal ganglia (BG), hippocampus,

Figure 1 Profiles of the data-driven subgroups and the comparison group. Panel A shows group profiles across all BRIEF, Conners-3, and
CCC-2 subscales used in the community detection. To put all measures on the same scale, age-referenced subscale scores were converted
to z-scores where higher values indicate strengths and lower values indicate difficulties. Panel B shows the varimax loadings from
Principal component analyses (PCA) of the CCC-2 subscales based on combined data from the referred and comparison samples. The first
principal component (PC1) explained 46% of the variance and was labelled Pragmatic communication, the second principal component
(PC2) explained additional 34% of the variance and was labelled Structural language. Panel C shows the loadings from the same analyses
applied to the BRIEF and Conners-3 data. PC1 explained 37% of the variance and was labelled Cool EF and PC2 explained additional 31%
of the variance and was labelled Hot EF. Panel D shows group performance across the four components identified in the PCA: higher
values indicate strengths and lower values indicate difficulties. Comparisons are based on two-tailed t-tests, p-values are Holm-corrected.
***p < .001; **p < .01, *p < .05. S1 = Subgroup 1; S2 = Subgroup 2; S3 = Subgroup 3; Conners-3 (Conners Parent Rating Short Form 3rd
Edition) subscales; EF = Executive function; INT = Inattention; HYP = Hyperactivity/Impulsivity; LRN = Learning Problems; AGG = Aggres-
sion; PEER = Peer Relationships; BRIEF (Brief Rating Inventory of Executive Function) subscales: INH = Inhibition; SHIF =Shifting;
EMO = Emotional Control; INIT = Initiation; WM = Working memory; PLAN = Planning/Organisation; ORG = Organisation of Materials;
MONT = Monitoring; CCC-2 (Children’s Communication Checklist 2) subscales: SYN = Syntax; SEM = Semantics; COH = Coherence;
INAP = Inappropriate Initiation; STER = Stereotyped Language; CONT = Use of Context; NVER = Nonverbal Communication;
SOC = Social Relations; INTR = Interests

� 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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thalamus, inferior temporal gyrus (ITG), and fusiform
gyrus (FFG). Some unique patterns of reduced
regional strength were observed for each subgroup
relative to the comparison group (Figure 3; Tables S3
and S4). For children in S1, unique differences were

observed in sub-regions of the BG and ITG, which the
BrainMap taxonomy labels as primarily implicated in
cognition, emotion, and action execution. For chil-
dren in S2, unique differences were within the
parahippocampal gyrus (PHG), superior temporal

Table 1 Subgroup demographics

Subgroup

Age Sex ADHD ASD SLT

N M SD Nboys v2 p NADHD (%) v2 p NASD (%) v2 p NSLT (%) v2 p

S1 300 9.6 2.5 184 7.3 0.007 42 (21) 17.8 <.001 20 (35) 0.1 0.78 93 (57) 21.5 <.001
S2 261 9.7 2.4 174 0.4 0.51 56 (28) 1.3 0.26 7 (12) 7.7 0.006 36 (22) 6.7 0.009
S3 244 9.2 2.2 194 13.5 <.001 99 (50) 34.2 <.001 30 (53) 10.1 0.001 34 (21) 6.02 0.014

ADHD, Attention-deficit hyperactivity disorder; ASD, Autism spectrum disorder; SLT, Speech and Language therapy in the last two
years or ongoing. S1, Subgroup 1 (most severe structural language difficulties); S2, Subgroup 2 (most severe cool executive
difficulties); S3, Subgroup 3 (most severe difficulties with hot executive skills and pragmatic communication).

Figure 2 Group comparisons across measures of socioemotional functioning, cognitive, and academic skills. The top panel includes the
Emotion problems, Conduct problems, Peer problems, and Prosocial subscales derived from the Strengths and difficulties questionnaire
(SDQ, parent-report). Higher scores indicate more difficulties, except the Prosocial scale, which has the reverse interpretation. The bottom
panel shows performance on the Word reading and Numerical operations subsets of the Wechsler Individual Achievement Test-II, and the
Matrix reasoning subset of Wechsler Abbreviated Scale of Intelligence II. All scores are based on the age-referenced norms: higher scores
indicate better performance. The grey-dotted line represents the age-expected mean. For both panels, the observed mean in each group
is represented by the large dot within each boxplot. All comparisons are based on two-tailed t-tests, p-values are Holm-corrected. S1 =
Subgroup 1 (most severe structural language difficulties); S2 = Subgroup 2 (most severe cool executive difficulties); S3 = Subgroup 3 (most
severe difficulties with hot executive skills & pragmatic communication). ***p < .001; **p < .01, *p < .05

� 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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gyrus (STG), ITG, BG, and amygdala, areas that have
previously been implicated in social cognition, emo-
tion, and perception. Finally, for children in S3, these
differences were in the BG, cingulate gyrus, and
thalamus, which are linked to action execution,
perception, somesthesis, and cognition (Figure 3;
Tables S3 and S4).

NBS. Subnetworks that were significantly different
for each subgroup relative to the comparison group
are displayed in Figure 4. There was greater connec-
tivity in the non-referred group relative to S1 in a
subnetwork comprising five connections across lim-
bic—subcortical and subcortical–subcortical areas
(pcorrected = .001). This subnetwork involved six
regions located within the BG, orbital gyrus, and
thalamus (Table S5). For S2, there was reduced
connectivity relative to the comparison group in a
subnetwork spanning nine connections across 10
regions (pcorrected = .003). This subnetwork included
connections across the following networks: somato-
motor — dorsal attention, limbic — dorsal attention,
dorsal attention — visual, frontoparietal — somato-
motor, visual — visual, and dorsal attention —
subcortical. The involved regions fell within the
lateral occipital cortex (LOC), medioventral occipital
cortex, orbital gyrus, PHG, precuneus, superior
parietal lobule, STG, and thalamus (Table S6).
Finally, S3 had reduced connection strength relative
to the comparison group in a subnetwork comprised
of eight links (pcorrected = .002) across limbic —
subcortical, limbic — visual, visual — subcortical,
and subcortical — subcortical regions. The eight
regions involved formed part of the BG, LOC, middle
frontal gyrus, orbital gyrus, precuneus (this region
was also part of the network that differentiated S2),
and thalamus (Table S7). Results based on the more
liberal FWE-corrected threshold of p < .05 suggested
further differences for S3 (Figure S10). Sensitivity
analyses supported the robustness of the findings:
taking the extent-based measure of size fully repro-
duced the results; and setting the t-threshold in the
range of 2.6 to 3, produced similar results, which
followed the expected tendency to discover larger
subnetworks at lower t-thresholds (Figure S11; for
an investigation of the influence of the t-threshold,
see Beare et al., 2017).

Overall, the three subgroups showed a mix of
similar and subgroup-unique patterns of differenti-
ation from the comparison sample. At the global
level, the two groups (S1 and S2) with the most
pronounced difficulties with academic achievement
showed reduced global efficiency compared to the
non-referred group. At the ICN-level, all subgroups
showed reduced connection strengths in the limbic
network and the subcortex relative to the compar-
ison sample. There were both common and
subgroup-specific differences in the connection
strength of regions within the limbic network and
the subcortex. Finally, at a whole-connectome level,

we identified subnetworks that differentiated each
subgroup from the comparison sample.

Discussion
The current study adopted a data-driven approach to
identify subgroups of children with homogeneous
profiles across different domains of function as
measured by ratings of communication, behaviour,
and EF. A transdiagnostic approach was used:
enrolment was based on cognitive and academic
needs rather than diagnostic status. Differences in
brain structure and behaviour were compared
across the subgroups in relation to a comparison
group. Three subgroups of children were identified.
Each performed more poorly than the comparison
group across measures of communication, beha-
viour, and EF, and was distinguished from the other
subgroups by different profiles of strengths and
weaknesses in these areas. These differences
extended to measures of cognitive, academic, and
socioemotional functioning that were not included in
the identification of the subgroups. Shared and
specific patterns of differences in neural white mat-
ter organisation were observed across the groups.
These results are discussed below.

Subgroups

Three data-driven subgroups were identified
based on parent/carer ratings of behaviour, com-
munication, and EF in a large transdiagnostic sam-
ple of children referred by practitioners for
difficulties in attention, learning, and/or memory.
One subgroup (S1) was characterised by relative
difficulties in structural language use, a second by
cool cognitive difficulties (S2), and a third by co-
occurring pragmatic communication difficulties and
hot affective cognitive problems (S3). All three sub-
groups had greater difficulties in behaviour, com-
munication, EF, socioemotional functioning, and
academic attainment relative to a demographically
matched comparison group of non-referred children.

There were both similarities and differences in the
way neural white matter was organised in the three
subgroups relative to the comparison group. The two
subgroups with the most pronounced difficulties in
cognitive and academic skills (S1 & S2) showed
reduced global efficiency, which has been previously
linked to educational attainment (e.g., Bathelt
et al., 2019; Lou et al., 2019). However, no differ-
ences were observed in global clustering coefficients.
At the ICN-level, all groups showed reduced connec-
tivity within the subcortex and the limbic network
relative to the comparison group. Exploring differ-
ences in the connectivity of specific regions within
these areas, all three subgroups showed reduced
regional strength relative to the comparison sample
in subregions of the hippocampus, BG, ITG, thala-
mus, and FFG, which the BrainMap taxonomy labels

� 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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as being involved in cognition, memory, action
execution, language, interoception, and emotion.
These findings demonstrate that the subgroups of
referred children identified by the data-driven
approach have shared and distinct behavioural and
neural features relative to a non-referred comparison
group. In the following sections, the detailed profiles
of the three subgroups are considered.

S1

The children in S1 were characterised by elevated
difficulties with structural language skills relative to
the other subgroups, and those who had attended
Speech and Language Therapy in the past two years
were overrepresented in this group. They also had
the most severe difficulties in learning. Finding

Figure 3 Comparison of the regional strength of connections across groups. Panel A shows regions within the subcortex and the limbic
network that showed reduced connection strength in all data-driven subgroups relative to the comparison group. Panel B shows
subcortical and limbic regions that had reduced connection strength in two subgroups relative to the comparison group. Note that non-
significant comparisons are omitted from the figure. Panel C1 shows subcortical and limbic regions that were significantly different
between S1 and the comparison group. Panel C2 shows subcortical and limbic regions that were significantly different between S2 and
the comparison group. Panel C3 shows subcortical and limbic regions that were significantly different between S3 and the comparison
group. S1 = Subgroup 1 (most severe structural language difficulties); S2 = Subgroup 2 (most severe cool executive difficulties); S3 =
Subgroup 3 (most severe difficulties with hot executive skills & pragmatic communication). See Tables S3 and S4 in the Supporting
Information for descriptive statistics, p-values, and effect sizes.

� 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
Child and Adolescent Mental Health.

10 Silvana Mareva et al. J Child Psychol Psychiatr 2022; 0(0): 1–17

 14697610, 0, D
ow

nloaded from
 https://acam

h.onlinelibrary.w
iley.com

/doi/10.1111/jcpp.13685 by T
est, W

iley O
nline L

ibrary on [19/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



concurrent difficulties in structural language use
and academic achievement is consistent with previ-
ous reports (Dockrell, Lindsay, & Palikara, 2011;
Mareva & Holmes, 2019), and might reflect under-
lying phonological processing difficulties that have
been implicated in language, reading, and maths
difficulties (e.g., Amland, Lerv�ag, & Melby-
Lerv�ag, 2021).

The neural subregions that showed significantly
reduced connectivity only for children in S1 relative to
thecomparisongroupwere in the right ITGand the left
ventromedial putamen. A left-lateralised subnetwork

of primarily limbic-subcortical connections that
involved subregions of medial orbitofrontal cortex,
thalamus, and BG also distinguished this group.
Consistent with their language and learning difficul-
ties, corticostriatal and thalamocortical pathways are
involved in procedural learning, language develop-
ment, goal-directed behaviour, and reward process-
ing (Arnsten & Rubia, 2012; Krishnan, Watkins, &
Bishop, 2016). Furthermore,most connections in the
identified subnetwork involved left medial area 11,
which the BrainMap taxonomy labels as functionally
implicated in language and orthography.

Figure 4 Subnetworks of the neural white matter connectome identified as significantly weaker in each data-driven subgroup relative to
the comparison group. Subgroup 1: most severe structural language difficulties; Subgroup 2: most severe cool executive difficulties;
Subgroup 3: most severe difficulties with hot executive skills & pragmatic communication. Nodal labels in Tables S5-S7

� 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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S2

Themost pronounced area ofweakness for the second
subgroup (S2) was in cool EF where their scores were
lower than those of children in the other two sub-
groups. These difficulties encompassed everyday dif-
ficulties in attention, planning, andworkingmemory -
skills that have been implicated in classroom learning
(Peng, Wang, & Namkung, 2018). Consistent with
this, children in this subgroup had difficulties in
maths and reading, although these were not as severe
as those for children in S1. Relative to the other two
subgroups, children in S2 had relative strengths in
social skills and affective cognition, with comparable
hot EF ratings to the comparison group.

Subregions that uniquely deviated in S2 included
regions within the caudate, PHG, ITG, STG, and
lateral amygdala. The subnetwork that differentiated
them from the comparison group was relatively
widespread and involved right-lateralised temporal–
parietal pathways and medioventral and lateral
occipital regions. Some of the implicated subregions
of these dorsal attention and visual networks are
known to interact to suppress attention to irrelevant
stimuli (Castellanos & Proal, 2012; Shulman
et al., 2009), and as such reduced connectivity in
this neural circuit might contribute to the cool EF-
related difficulties characteristic of this subgroup. In
particular, seven of the nine connections within the
identified subnetwork involved right caudal area 7,
which is implicated in cool EFs such as attention,
working memory, inhibition, and spatial cognition
(for details, see http://atlas.brainnetome.org/, Fan
et al., 2016).

S3

The children in S3 were characterised by having the
most severe difficulties with hot EF and pragmatic
communication, but relative strengths in structural
language skills, maths and reading, compared to the
children in the other two subgroups. Strong associ-
ations between social communication skills and
affective behavioural problems have been reported
previously (e.g., Hawkins, Gathercole, Astle, &
Holmes, 2016; Mareva & Holmes, 2019), and diffi-
culties in these areas commonly co-occur in ADHD
and ASD (Green et al., 2014) alongside socioemo-
tional difficulties (Staikova, Gomes, Tartter, McCabe,
& Halperin, 2013). Indeed, a disproportionate num-
ber of autistic children and children with an ADHD
diagnosis were assigned to this subgroup, and they
had substantial problems with behavioural conduct,
emotion, peer relationships, and prosocial beha-
viour. Identifying a subgroup with this profile and
composition suggests the intersection of pragmatic
communication, hot EF, and socioemotional difficul-
ties may be relevant for understanding some of the
comorbidity between ADHD and ASD.

The neural characteristics that specifically differ-
entiated children in S3 from the comparison group
were regions within the putamen, thamalus, and
cingulate gyrus. They had reduced connectivity
strength in a left-lateralised, primarily frontostriatal
subnetwork, which also included regions of the
visual network (precuneus and LOC). Consistent
with the severity of their hot EF difficulties, these
circuits play a role in goal-directed behaviours
related to reward, affect, and motivation (Arnsten &
Rubia, 2012).

Summary of profiles

In summary, we identified three subgroups of
children with distinct communication, behavioural,
and EF profiles. These subgroups were charac-
terised by primary difficulties in structural lan-
guage, cool EF, or hot EF and pragmatics,
respectively, and provide initial evidence for three
alternative but related pathways to academic and
socioemotional difficulties. While a greater number
of children receiving speech and language therapy
were assigned to the structural language subgroup,
and more autistic children and those with ADHD to
the hot EF and pragmatics subgroup, none of the
subgroup profiles aligned with the diagnostic fea-
tures of a particular disorder, and children with
each of these diagnoses were present in each of the
three subgroups. This finding suggests the sub-
groups were not synonymous with disorder-based
categories, adding to growing support for transdi-
agnostic approaches to understanding neurodevel-
opment (Astle et al., 2021).

The three subgroups were further distinguished by
patterns of differences in the connectivity of circuits
previously implicated in language, executive and
visual attention, and reward processing. These differ-
ences partially correspond to previously reported
neurobiological correlates of the behavioural difficul-
ties of the subgroups, suggesting they may be distin-
guished at the neural level. That said, not all regions
that uniquely differentiated the subgroups from the
non-referred sample had clear links to their beha-
vioural profiles. It should also be noted that all
subgroups had reduced connection strength within
the limbic network and the subcortex, relative to the
comparison group, and shared several atypicalities
within the samesubcortical and temporal subregions.
Furthermore, their profiles of behavioural weak-
nesses were all relative, meaning the correspondence
between brain and behaviour was not one-to-one.

Theoretical and practical implications

Following decades of research shaped by diagnostic
categories, the field of neurodevelopmental difficul-
ties is currently undergoing a transition in which
exploratory research into how children and their

� 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
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characteristics are clustered is taking priority (Astle
et al., 2021). Such research is key for testing, and
where necessary accordingly modifying, predomi-
nant assumptions about diagnostic boundaries or
common factors that explain the associations
between symptoms (Astle & Fletcher-
Watson, 2020). While the current study was not
designed to explicitly test or falsify a given theory,
the finding that children with different diagnoses
were represented in all data-driven clusters chal-
lenges “core deficit” theories that assume that a
single mechanistic impairment can explain the pro-
file of a particular diagnostic group. Instead, our
results are more consistent with accounts empha-
sising the possibility that multiple causal pathways
can lead to the same behavioural phenotype (Cic-
chetti & Rogosch, 1996). Relatedly, we found little
evidence for neat or direct mappings between iso-
lated neural structures and behavioural phenotypes.
Most brain atypicalities associated with a given
behavioural phenotype were also observed across
the other phenotypes, casting doubt on claims that
focal neural deficits underlie a given neurodevelop-
mental disorder. Our findings are instead consistent
with the predictions of neuro-constructivist theories
that assume developmental difficulties have wide-
spread effects that result from a brain that has
developed differently over a number of years (John-
son, 2011; Karmiloff-Smith, 2009).

The categorisation of neurodevelopmental difficul-
ties into discrete disorders has practical merits in
providing health and education practitioners with a
pragmatic system for selecting and allocating sup-
port. It also provides many young people with a
sense of identity. Receiving a diagnosis can prove a
pivotal moment in someone’s life, enabling them to
identify with their community. Yet our data, and that
of others, highlight that current diagnostic
approaches do not capture what it is like to have
additional needs: the clusters of behavioural symp-
toms that children experience do not map on the
diagnostic criteria currently used to identify and
support children’s needs. As such, a more flexible,
child-centred approach is needed in which interven-
tion decisions are based on individual needs and not
primary diagnoses (Finlay-Jones et al., 2019).
Attempts to integrate the neurodevelopmental trans-
diagnostic framework into clinical settings are just
emerging, and in due course we will start to gain
insights into their efficacy and feasibility (Boulton
et al., 2021). For now, we advocate transdiagnostic
approaches, which align with the neurodiversity
paradigm (Fletcher-Watson, 2022), as a means of
promoting more inclusive research and practice.

Limitations and future directions

There were several caveats to the current subgroup-
ing approach. First, the community detection was
based on parent ratings, which are prone to

subjective bias. However, the differences between
the subgroups identified through these ratings were
reflected in differences in performance-based mea-
sures of cognition and learning, providing some
validity to the ratings and suggesting the algorithm
was not overfitting the data. Second, the wide age
range and cross-sectional nature of the cohort did
not allow us to explore questions about age-related
heterogeneity or developmental continuity. Nonethe-
less, we did observe a significant age difference
between S2 and S3, suggesting the S3 phenotype
which was associated with greater social and emo-
tional problems may be more prevalent in younger
children. Finally, despite the sample being substan-
tially larger than that typically used in the develop-
mental neuroimaging literature, sample size
considerations did not allow us to directly compare
the neural profiles of the identified subgroups to one
another. Equally important differences in white
matter organisation across subgroups might exist,
but larger datasets would be needed to identify
them.

Conclusions
This study demonstrates the value of data-driven
subgrouping approaches for understanding com-
mon, complex and co-occurring neurodevelopmental
difficulties across multiple domains and their rela-
tionships to behavioural outcomes and neurobiol-
ogy. It shows that homogeneous groups can be
identified and differentiated in terms of distinct
profiles of relative strengths and difficulties across
communication, executive function, and behaviour.
The identified subgroups provide initial evidence for
three alternative but related developmental path-
ways to difficulties with academic and socioemo-
tional functioning.

Supporting information
Additional supporting information may be found online
in the Supporting Information section at the end of the
article:

Appendix S1. Community detection.

Appendix S2. Data reduction: Principal component
analyses.

Appendix S3. Magnetic resonance imaging pre-pro-
cessing.

Figure S1. Child-by-child correlation matrix in
Fruchterman-Reingold layout color-coded according to
the results of the community detection algorithm.

Figure S2. Pearson correlations across all subscales of
Conners. BRIEF, and CCC-2.

Figure S3. Pearson correlations across all subscales of
Conners, BRIEF, and CCC-2 after regressing age from
each variable.

Figure S4. Parallel analysis of the CCC-2 subscales.

Figure S5. Parallel analysis of the Conners and BRIEF
subscales.
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Figure S6. Parallel analysis of the CCC-2, Conners and
BRIEF subscales.

Figure S7. Varimax loadings from Principal component
analyses (PCA) of the Conners, CCC-2, and BRIEF
subscales based on combined data from the referred
and comparison samples.

Figure S8. Comparison of the global organisation of the
white matter connectome between the data-driven
subgroups and the comparison sample.

Figure S9. For each subgroup the overall network
connectivity strength within the intrinsic connectivity
networks (defined by Yeo et al., 2011) and the subcortex
was compared to connectivity observed in the compar-
ison sample.

Figure S10. Subnetworks identified as significantly
weaker in Subgroup 3 relative to the comparison
sample when a more liberal family-wise error correction
(p < .05) was applied.

Figure S11. Subnetworks identified as significantly
different from the comparison sample in Subgroup 1,
Subgroup 2, and Subgroup 3 across several t-value
thresholds.

Table S1. Descriptive statistics of raw scores derived
from the CCC-2, Conners-3, and BRIEF questionnaires
and Cohen’s d effect size for comparisons across the
data-driven subgroups and the comparison sample.

Table S2. Descriptive statistics across the data-driven
subgroups and the comparison sample for all beha-
vioural measures and principal components.

Table S3. Subcortical and limbic network sub-regions
that showed a significant reduction in connection
strength relative to the comparison sample in only one
of the data-driven subgroups.

Table S4. Subcortical and limbic network sub-regions
that showed a significant reduction in connection
strength relative to the comparison sample in multiple
data-driven subgroups.

Table S5. Edges within significant subnetwork identi-
fied for Subgroup 1.

Table S6. Edges within significant subnetwork identi-
fied for Subgroup 2.

Table S7. Edges within significant subnetwork identi-
fied for Subgroup 3.
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Key points

� Difficulties with communication, behaviour, and executive function co-occur within and across different
neurodevelopmental disorders.

� Our understanding of these co-occurrences, and how they relate to developmental outcomes and neural
mechanisms, has arguably been limited by study designs that do not incorporate the heterogeneity within
and homogeneity across diagnostic categories.

� We looked at a transdiagnostic cohort of children referred by health and educational professionals and used
data-driven community detection to identify three subgroups with distinct profiles of behavioural and
communication strengths and difficulties.

� All three data-driven subgroups had more difficulties with academic and socioemotional functioning relative
to a demographically matched non-referred group.

� The subgroups could be differentiated from the non-referred sample based on both shared and unique
features of neural white matter organisation.

� The three communication and behavioural profiles potentially represent three alternative but related
pathways to difficulties with academic and socioemotional functioning.

� 2022 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for
Child and Adolescent Mental Health.

14 Silvana Mareva et al. J Child Psychol Psychiatr 2022; 0(0): 1–17

 14697610, 0, D
ow

nloaded from
 https://acam

h.onlinelibrary.w
iley.com

/doi/10.1111/jcpp.13685 by T
est, W

iley O
nline L

ibrary on [19/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Note
1. Subtyping is usually used in the context of
applying clustering techniques within a sample of
children with the same diagnosis to uncover different
presentations of the same disorder (e.g., ADHD-
combined and ADHD-inattentive). For clarity, we use
the term clustering or subgrouping from this point
forward to refer to data-driven clustering approaches
applied in diverse samples rather than within a
diagnostic category.
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