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Abstract 

Visual impact assessment (VIA) concerns the identification and evaluation of the potential impacts that 

a proposed activity might have on the visual quality of a landscape and makes an important contribution 

to decision making in the environmental impact assessment (EIA) context. Visibility analysis is often 

used to assist in determining these impacts through a variety of approaches employing different 

techniques and data inputs. This paper identifies the visibility analysis approaches often used in VIA 

practice by reviewing a sample of VIA reports representing eleven (11) countries. The identified 

approaches were then evaluated for accuracy across differing landscapes through a total of 72 

simulations. Analysis of variance was used to determine the sensitivity of the identified approaches to 

different variables within different landscape contexts. The type of digital elevation model (DEM) used 

was found to be the most significant variable affecting accuracy across all landscapes, while the 

technique used had some significance and resolution little significance. 
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Highlights: 

• Type of digital elevation model (DEM) used has a significant impact on the accuracy of visibility 

analysis results across all landscapes.  

• The choice of DEM further has a significant effect on accuracy with digital surface models (DSM) 

resulting in the most accurate results across all landscapes. 

• The technique used showed some significance while resolution had no significant impact on 

accuracy. 

  



1. Introduction and aim 

Anticipating and pro-actively managing possible harmful impacts associated with development 

proposals is an important objective of environmental impact assessment (EIA) (IAIA, 1999). Impacts 

should be identified and considered prior to decision making to ensure that adverse effects are avoided. 

These include not only impacts related to the biophysical and socio-economic environment, but also 

impacts affecting the aesthetic value of a landscape. Approaches for dealing with the assessment of the 

latter have been applied since at least the early 1970s (Smardon, 2016) and were formalised into what 

has become known as visual impact assessment (VIA) in the 1980s (Palmer, 2019). VIA is now commonly 

applied as an important specialist input to EIA and is often also referred to as landscape and visual 

impact assessment (LVIA) and can be defined as the process of determining the possible impacts of a 

proposed development or activity on the visual quality of a landscape (Feimer et al., 1979; Knight & 

Therivel, 2017).  

 

Many regulators and institutions have drafted VIA guidelines (e.g., Landscape Institute, 2013; 

Oberholzer, 2005; AILA, 2018; HKEPD, 2019) describing techniques and approaches for use in VIA. One 

approach often mentioned in VIA Guidelines is the delineation of a so-called zone of theoretical visibility 

(ZTV) to support the impact assessment process. The ZTV, which can also be referred to as the zone of 

visual influence or the visual influence map (Knight & Therivel, 2017), represents the extent of the area 

from where a development proposal will potentially be observable. Delineating the ZTV is important 

because it is a necessary precursor to an evaluation of the impacts of a proposed development from 

specific viewpoints (Wood, 2000) that might be particularly important (e.g., from a popular footpath in 

a protected area, or looking towards a protected area). For some development types, where visual 

impacts are the major impact (e.g., power lines), accurate delineation of the ZTV would be essential for 

developing an optimal routing strategy (Marshall & Baxter, 2002). 

 

Different visibility analysis techniques can be used to determine a ZTV depending on factors such as 

landscape characteristics (Pardo García & Mérida Rodríguez, 2015) and availability of data (Bartie et al., 

2010; Nutsford et al., 2015). Examples of such techniques are viewshed analysis, cumulative viewshed 

analysis, fuzzy viewshed analysis and line of sight analysis (Chamberlain & Meitner, 2013; Garnero & 

Fabrizio, 2015; Nutsford et al., 2015; Murphy et al., 2018). One commonality between all visibility 

analysis techniques is that they rely on a computer-generated digital elevation model (Bartie et al., 

2010; Qiang et al., 2019) that represents the topographical characteristics of an area, to simulate 

theoretical visibility and determine a ZTV (Klouček et al., 2015; Kantner & Hobgood, 2016). Digital 

elevation models (DEMs) can be divided into two categories, namely, digital terrain models (DTMs), 



representing only the bare surface of the terrain, and digital surface models (DSMs), where surface 

features such as trees and buildings form part of the representation (Robert, 2018; Qiang et al., 2019). 

The type of DEM used directly influences the visibility analysis result, e.g., theoretical visibility tends to 

be overestimated when based on a DTM which excludes surface features and their potential screening 

effects (Danese et al., 2011; Sullivan & Meyer, 2014; Verutes et al., 2014). Whilst this suggests that 

DSM should routinely be used in preference to DTM, the data are not always available to develop a 

DSM a high resolution, and there remains uncertainty over the extent to which a DSM can accurately 

portray screening effects due to assumptions needing to be made about the heights of different land 

cover elements. In addition to the type of DEM, the algorithm used to generate the DEM and the 

resolution at which this is done will affect the DEM’s accuracy (Anile et al., 2003; Fisher & Tate, 2006) 

and the visibility analysis result. Finally, the terrain complexity, which concerns the relief and rugosity 

of the area being studied (Huaxing, 2008; Zhou et al., 2006), will also affect the creation of a DEM 

(Fisher & Tate, 2006) and subsequently the visibility analysis results. The use of visibility analysis to 

determine a ZTV is, therefore, affected by a multitude of factors. Although a great deal of work has 

been done on viewshed analysis methods and approaches (e.g. Klouček et al., 2015; Zhao et al., 2013; 

Kim et al., 2004), as well as different aspects of VIA (e.g. Palmer, 2019; Corry, 2012; Landenburg et al., 

2013; Takacs & Golden, 2019), apart from the work by Wood (2000), very little has been done on the 

use of visibility analysis within the context of VIA specifically. Although Wood (2000) evaluated the 

accuracy of some approaches through case studies, details on the types of visibility analysis approaches 

often used in VIA and the suitability of approaches across different landscape contexts remains vague. 

An understanding of how a variety of variables influence overall accuracy across different landscapes 

can help in the identification of the most effective approach for undertaking a visibility analysis, taking 

into account the availability of, or access to, different data sets. This paper therefore aims to provide 

recommendations for the approach to visibility analysis that practitioners should take in different 

contexts of landscape complexity and data availability. To do this, we build on the work by Wood (2000) 

by identifying and evaluating the approaches often used in VIA.  

 

The following objectives inform the aim of the research: 

• Objective 1: Identify visibility analysis approaches often used in the VIA component of EIA. 

• Objective 2: Evaluate the accuracy of identified approaches and their sensitivity to key variables 

across different landscapes. 

• Objective 3: Provide recommendations to practitioners on the appropriate visibility analysis 

approaches to use based in different landscape contexts and data availability circumstances. 

 



To achieve this aim, the next section introduces key concepts pertaining to visibility analysis and its role 

in VIA, followed by a description of the method in section 3. The results of the research are presented 

in section 4, followed by recommendations is section 5 and finally, the conclusions in section 6. 

 

2. The role of visibility analysis in VIA 

VIA entails the part of the EIA process concerned with the assessments of landscape and visual impacts 

(Wilson, 2002) by considering and evaluating possible changes in the visual attributes of a landscape 

brought about by a proposed project (Manchado et al., 2014; Depellegrin, 2016). Once evaluated, the 

VIA can inform the EIA process to help avoid or minimise the potential negative effects of a 

development and, where appropriate, propose opportunities for landscape enhancement (Wilson, 

2002). As mentioned, the VIA process is often supported by computer-based tools for conducting 

visibility analysis (Chamberlain & Meitner, 2013; Manchado et al., 2014; Kim et al., 2004; Zhou et al., 

2006), which, according to Manchado et al. (2014) is one of the most important analyses informing the 

VIA process. 

 

2.1. Defining visibility analysis 

Visibility analysis applies the principle of intervisibility (Manchado et al., 2014) and, therefore, 

determines visibility through the principle of line-of-sight (LOS). For example, a straight line is generated 

between two points, and if at any point the line is obstructed, either by a landscape form or a surface 

feature, the target point is deemed not visible (Feng et al., 2015; Verutes et al., 2014; Zhao et al., 2013). 

One point represents an observer, while the other represents a target object for which visibility is 

determined (Verutes et al., 2014). During visibility analysis, the process described above is repeated 

numerous times for different observation and target points. Results are combined to generate what 

can be referred to as a viewshed or ZTV, that represents the areal extent from which a certain object 

will theoretically be visible (Feng et al., 2015; Qiang et al., 2019). Over the years, different visibility 

analysis techniques have been developed and although these techniques generally all rely on the LOS 

principle, they differ in the way visibility is presented (Llobera, 2007; Bartie et al., 2010; Domingo-

Santos et al., 2011; Chamberlain & Meitner, 2013; Nutsford et al., 2015). Techniques and approaches 

relevant to this research are briefly discussed below. 

 

2.2. Selected approaches to visibility analysis that can be applied in ZTV determination 

2.2.1. Line of sight analysis 

Although the LOS principle underlies most visibility analysis techniques, it can also be employed as a 

standalone method. The biggest difference between LOS analysis and approaches such as viewshed 



analysis is that it does not result in a ZTV, but rather determines visibility along a line that is connecting 

two points (Feng et al., 2015; Verutes et al., 2014). The line is presented as obstructed and non-

obstructed sections, i.e., sections from where a target will not be visible and sections from where it will 

be visible. 

 

2.2.2.  Viewshed analysis 

Viewshed analysis is one of the most popular techniques used in visibility analysis (Nutsford et al., 2015) 

and essentially identifies the cells in an input DEM from where an object will be observable. This is 

achieved by generating lines between target objects and the cells contained in a DEM. The line-of-sight 

principle is applied to determine whether a cell will form part of the ZTV or not (Pardo García & Mérida 

Rodríguez, 2015). The technique is often used in VIA (Möller, 2006; Miller et al., 2011) and has been 

applied for various types of projects, e.g., photovoltaic power plants (Fernandez-Jimenez et al., 2015), 

light pollution analysis (Verutes et al., 2014), and land and marine-based wind park developments 

(Depellegrin, 2016; Klouček et al., 2015). 

 

2.2.3.  Cumulative viewshed analysis 

Cumulative viewshed analysis is based on the same principles as viewshed analysis but differs in that 

cumulative viewshed analysis combines the results from numerous individual viewsheds (Depellegrin, 

2016), i.e., it can be defined as the sum of individual viewsheds. When combined the resultant 

cumulative viewshed indicates the number of target objects that will be observable from a specific cell 

and not only whether the cell will be part of the ZTV or not (Llobera, 2003; Danese et al., 2011; Wheatley 

& Gillings, 2013). The areal extent of the ZTV generated through viewshed analysis will, therefore, be 

the same as that generated through cumulative viewshed analysis, with the difference being that the 

ZTV generated through a cumulative viewshed approach will reflect different levels of visibility. The 

technique is also frequently used in VIA, especially where the analysis involves multiple target objects 

(Depellegrin, 2016). 

 

2.2.4.  Fuzzy viewshed analysis 

Fuzzy viewshed analysis includes a distance decay function to account for the loss of visibility over 

distance (Murphy et al., 2018). It essentially goes one step beyond viewshed and cumulative viewshed 

analysis by indicating the probability that a cell falls inside a ZTV when considering distance decay 

(Loots, 1999). This inclusion of a distance decay function or a limit on visibility provides a more realistic 

representation of visibility, especially for observation points further away (Fisher, 1992; Murphy et al., 

2018). 



 

3. Method 

A mixed-methods design was employed to achieve the research aim and objectives as described below.  

3.1. Identify visibility analysis approaches often used in the VIA component of EIA (Objective 1) 

To determine which visibility analysis techniques are often used in practice, a sample of VIA reports 

were reviewed. A purposeful sampling approach was used, and an attempt made to access as many VIA 

reports as possible. VIA reports were sourced by searching keywords such as “Visual impact 

assessment”, “Visual impact statement” and “Landscape and visual impact assessment” using the 

Google search engine. Regional settings were changed throughout in attempts to obtain reports from 

different countries, e.g., the region was set to Australia and the keywords searched, then changed to 

Brazil and the keywords searched again. Where applicable, keywords were also translated into other 

languages, e.g., French for France, to find more reports. Only reports in which a ZTV was determined 

as part of the VIA and where details pertaining to the approach used were discussed, were considered 

for review. A total of 48 VIA reports from eleven countries, representing North America, South America, 

Europe, Africa, and Oceania were subsequently considered. The countries included were Argentina, 

Australia, Brazil, Canada, Chile, France, Ireland, South Africa, Spain, the UK, and the USA. The aim of the 

review was, however, not to do a country comparison, but to identify the approaches often used in 

practice to determine the ZTV, which were to inform Objective 2. These reports were not reviewed for 

quality, i.e., no attempt to determine the quality of the analysis and assessment was made. The 

documents were reviewed for a description of the visibility analysis technique used, the type of 

elevation model used, and the manner and extent to which the screening effects caused by surface 

features were considered. Findings from the review were tabulated and analysed to identify the 

approaches often used in VIA. 

 

3.2. Evaluate the sensitivity of identified visibility analysis approaches to key variables across different 

landscapes. (Objective 2) 

The visibility analysis approaches often used in VIA studies were tested and evaluated across different 

landscape contexts. It was recognised that terrain models will be more accurate at higher spatial 

resolutions, but different resolutions were tested also to examine the sensitivity of the approaches to 

this aspect; this provides important understanding for the credibility of the method where high 

resolution (e.g. 5m) data sets do not exist. The different approaches were, therefore, tested across 

different landscape types and using different input datasets.  

 

3.2.1. Study areas representing different landscape types 



The analysis was conducted in South Africa as control points had to be captured and, therefore, the 

study areas had to be accessible to the researchers. To conduct the evaluation across different types 

of landscapes, three study areas with different landscape characteristics and varying levels of terrain 

complexity were identified. One prerequisite was that the three study areas had to contain similar 

features that could be used as observation objects during the analysis. Possible observation objects 

were identified based on the following criteria: (1) must be an existing object suitable for use in visibility 

analysis; (2) must be a significant feature in the landscape offering a visual presence due to its overall 

height and size; (3) must be a common object present in many landscapes; and (4) must be accessible. 

Based on these criteria, grain silos were decided on as suitable objects for use in the study. Silos 

(typically used to store grains like maize or wheat) were treated as the midpoints for the study areas 

and 20 km buffers were used to demarcate study area boundaries (Murphy et al., 2018). A combination 

of a topographic position index (TPI) and a compound terrain complexity index (CTCI) was used to 

characterise and identify three study areas offering varying degrees of overall terrain complexity 

summarised in Table 1. TPI is the difference between the elevation of a cell and the average elevation 

of the surrounding cells (De Reu et al., 2013; Nair et al., 2018; Vinod, 2017) and classifies an area into 

different TPI classes which are valleys, lower slopes, flat slopes, middle slopes, upper slopes and ridges. 

For each study area the percentage coverage of each class was calculated. CTCI is a method that utilizes 

four terrain complexity indices to create a statistical representation of terrain complexity (Huaxing, 

2008; Véga et al., 2015). These are elevation range, elevation standard deviation, rugosity and 

curvature. Each index was calculated for the three study areas with higher values representing more 

complex terrain. The three areas showed significant variation in landscape complexity as seen in Table 

1. 

 

Table 1. Study areas 

 TPI Slope classifications CTCI 

Study area Slope position Percentage of 
area (%) 

Indices Mean value 

Grootpan Valley 6.18 Elevation range 0.21 

Lower slopes 9.00 Elevation standard deviation 0.07 

Flat slopes 70.85 Rugosity 1.00 

Middle slopes 0.29 Curvature 0.03 

Upper slopes 7.50 CTCI 0.01 

Ridge 6.19   

Syferbult Valley 8.25 Elevation range 0.77 

Lower slopes 7.96 Elevation standard deviation 0.25 

Flat slopes 63.30 Rugosity 1.01 

Middle slopes 5.82 Curvature 0.14 

Upper slopes 6.94 CTCI 0.02 



Ridge 7.73   

Swartruggens Valley 10.83 Elevation range 1.12 

Lower slopes 10.78 Elevation standard deviation 0.36 

Flat slopes 46.66 Rugosity 1.01 

Middle slopes 10.88 Curvature 0.22 

Upper slopes 10.07 CTCI 0.03 

Ridge 10.78   

 

3.2.2. Data 

Four key datasets were used during analysis and included both secondary and primary data. The four 

datasets were (1) elevation data, (2) land cover data, (3) reference points, and (4) silo dimensions.  

 

Elevation data used for deriving digital elevation models 

Elevation data was sourced from the Chief Directorate: National Geo-spatial Information (NGI) national 

mapping agency of South Africa. Point heights and 5 m contour data were sourced for each of the three 

study areas. Point heights represented locations for which vertical height was surveyed by the South 

African Surveyor General’s office and numbered 6,045 points for Grootpan, 1,513 points for Syferbult 

and 3,277 points for Swartruggens.  Contours reflected the landscape at 5 m vertical intervals and was 

also surveyed by the South African Surveyor General’s office. The point and contour datasets were 

projected into the WGS 1984 UTM Zone 35 S projected coordinate system and clipped to the applicable 

study area extent.  

 

Land cover data 

The South African National Land-Cover 2018 (SANLC 2018) dataset was obtained from the South African 

Department of Environment, Forestry and Fisheries (DEFF) for use in the study. The dataset contains 

73 land-cover classes at a 20 m spatial resolution and has a reported accuracy of 90.14 % based on 6, 

570 reference points (Thompson, 2019). The dataset was the most recent land-cover dataset available 

for the three areas. It was projected to the WGS 1984 UTM Zone 35 S projected coordinate system and 

clipped to each study area boundary. Fieldwork was conducted to determine the relative height of 

different features represented by land cover classes (Table 2). This information was later used to create 

DSMs representing not only elevation but also surface features. Relative height values were determined 

using a range finder and the Pythagorean theorem. A Nikon 550 rangefinder was used to determine 

the distance between the researcher and the bottom of a feature; additionally, the same procedure 

was repeated to measure the distance to the top of the feature. The researcher stood at a fixed location 

during both measurements, while maintaining a 90-degree angle between the observer and feature for 

the bottom distance measurement. The method presents some difficulty in certain areas, as the base 



of trees were not always visible as they would sometimes be screened by grass coverage. In the areas 

where these factors influenced measurements or the distance between the base and top measurement 

were insignificant, the average height values were estimated. Measurements for similar features were 

averaged to determine relative height values for each land cover class (Table 2). 

 

Table 2. Relative land cover heights 

Land cover classes  Relative heights 
allocated 

Natural rivers, Natural pans, Artificial dams, Artificial flooded mine pits, Temporary 
unplanted (clear-felled) plantation forest, Herbaceous wetlands (currently mapped), 
Herbaceous wetlands (previously mapped), Natural rock surfaces, Dry pans, Eroded 
lands, Bare riverbed material, Other bare, Fallow land & old fields (bare), Residential 
formal (bare), Residential informal (low veg / grass), Residential informal (bare), Village 
scattered (bare & low veg/ grass combo), Village dense (bare & low veg / grass combo), 
Smallholdings (low veg / grass), Smallholdings (bare), Urban recreational fields (grass), 
Urban recreational fields (bare), Industrial Roads & rails (major linear), Mines: surface 
infrastructure, Mines: extraction pits, quarries, Fallow land & old fields (wetlands) 

0 m 

Low shrubland (other), Sparsely wooded grassland, Natural grassland, Fallow land & 
old fields (grass), Fallow land & old fields (low shrub) 

1 m 

Cultivated commercial permanent orchards, Commercial annual crops pivot irrigated, 
Commercial annual crops non-pivot irrigated, Commercial annual crops rain-fed / 
dryland, Subsistence / small-scale annual crops, Fallow land & old fields (bush), 
Residential formal (bush), Residential informal (bush), Smallholdings (bush), Urban 
recreational fields (bush) 

2 m 

Commercial  4 m 

Contiguous low forest & thicket, Fallow land & old fields (trees), Residential formal 
(tree), Residential informal (tree), Smallholdings (tree), Urban recreational fields (tree) 

5 m 

Open woodland  8 m 

Dense forest & woodland 10 m 

Contiguous (indigenous) forest 12 m 

Contiguous & dense plantation forest, Open & sparse plantation forest, Mine: tailings 
and resource dumps 

15 m 

 

 

Reference points for determining the accuracy of visibility analysis results 

Reference points were collected to evaluate the accuracy of the different visibility analysis simulations. 

A total of 40 reference points from where an observer (eye level at 1.8m) faced the direction of the silo 

and the visibility of the silo was ascertained were collected for each study area. The 40 reference points 

for each study area were divided into three groups based on the following visibility and screening 

criteria:  

• Fifteen (15) reference points from where the silo was fully visible; 

• Fifteen (15) reference points from where the silo was not visible and screened because of the 

landscape form; and 



• Ten (10) reference points from where the silo was not visible and screened by surface features 

also present in the land cover dataset. 

The reference points were captured on a Garmin eTrex Venture GPS, with a positional accuracy of 3 m 

(Vari, 2002). All points were mapped in the World Geodetic System (WGS) 1984 Geographic Coordinate 

System and later projected to the WGS 1984 UTM Zone 35 S projected coordinate system.  

 

Silo dimensions 

The silo dimensions were obtained from the general manager of each silo. This ensured the correct 

height and diameter values were incorporated into simulations. Boundary points were determined for 

each silo complex based on the number of silos and their diameters as illustrated in Figure 1 (blue dots). 

 

 

Figure 1: Examples of boundary points. 

 

 

3.2.3. Visibility analysis 

Digital elevation models 

Both DTMs and DSMs were derived for the three study areas. The elevation point data for each study 

area were randomly divided at an 80/20 ratio to create training and testing datasets. The training 

datasets (80 %) were used (along with contours) to generate digital terrain models (DTMs), while the 

testing datasets (20 %) were used to evaluate the accuracy of the DTMs using root means square error 

(RMSE) calculations. RMSE is a standard measurement of accuracy (Fisher & Tate, 2006) and is aimed 

at providing a statistical measurement of vertical accuracy (Razak et al., 2013): 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑧𝐷𝐸𝑀 − 𝑧𝑅𝑒𝑓)2

𝑛

𝑛

𝑖=1

 

Where ZDEM = the elevation value predicted by the DEM, and ZRef = the surveyed elevation value, i.e. 

the values from the 20 % of surveyed elevation points that was not considered in the creation of the 



DEM. The lower the RMSE score the closer the predicted and observed values and the more accurate 

the DEM. 

 

DTMs were generated in ArcMap 10.7 using the Topo to Raster tool which is based on an interpolation 

algorithm developed to specifically create hydrologically correct surfaces (Razak et al., 2013). Four 

DTMs were generated for each study area at four different resolutions (5 m, 10 m, 25 m and 50 m) to 

allow for testing sensitivity to resolution. RMSE scores were calculated for each of the twelve DTMs 

(Table 3). The Grootpan study area (lowest landscape complexity) had the lowest variation in RMSE 

scores across the different resolutions, while Syferbult (medium landscape complexity) and 

Swartruggens (highest landscape complexity) both showed larger variability. DTM accuracy increased 

as resolution increased, as expected, while intensity of elevation change and the frequency of elevation 

change further also affected accuracy values, especially at lower resolutions. Most DTMs showed 

acceptable RMSE scores except for the Syferbult 25 m, Syferbult 50 m, and Swartruggens 50 m DTMs. 

All DTMs were, however, used during visibility analysis simulations to determine the relationship 

between DTM accuracy and visibility analysis simulation accuracy. 

 

The method used to create DSMs for each study area were based on studies undertaken by Garnero 

and Fabrizio (2015) and Klouček et al. (2015). The method utilizes an existing DTM and adds land cover 

elevation values to the DTM through height values assigned to each land cover class (Table 2). The land 

cover dataset was resampled at 50 m, 25 m, 10 m and 5 m and combined with the relevant DTMs to 

generate the DSMs. 

 

Table 3. RMSE scores for DTMs 

Study area RMSE scores 

DTM 5 m DTM 10 m DTM 25 m DTM 50 m 

Grootpan (low complexity) 1.32 1.32 1.52 2.00 

Syferbult (medium complexity) 2.36 3.17 13.16 48.94 

Swartruggens (high complexity) 1.83 1.95 3.68 10.88 

 

 

Visibility analysis 

The visibility analysis techniques identified through the review were tested for the three study areas 

across different resolutions and DEMs. The three techniques often used in VIA were viewshed analysis, 

cumulative viewshed analysis and line of sight (LOS) analysis. A total of 72 simulations were conducted. 

Observer height was set at 1.8 m as this height conforms to the height value used to collect the 



reference points. All analysis was conducted in the ArcMap 10.7 software suite. As LOS analysis does 

not generate ZTVs by default, as in the case of viewshed and cumulative viewshed, but can be 

configured to do so. The study area boundary was converted into points at 10 m intervals. The distance 

of 10 m between points was decided on as it presents a close enough distance between points to 

generate enough sightlines to present visibility, and allowed for the results to be converted to a raster 

surface at a suitable resolution. The same was done for the silo boundaries after which both sets of 

points were converted to 3D point features based on the applicable DTM and then connected with sight 

lines. These sight lines, which subsequently covered the entire study area were used to conduct the 

LOS analysis and the results converted to raster format for display purposes. 

 

3.2.4. Accuracy assessment 

The accuracy of the 72 simulations was assessed through cross-validation conducted between the 

visibility results and the reference points (40 points per site) collected during the field visit as suggested 

by Sullivan and Meyer (2014). The Extract multi values to points tool in ArcMap 10.7 was used to extract 

the visibility results for each of the reference points across the 72 simulations, i.e., for each of the 40 

reference points the prediction (visible or not visible) was extracted for all 72 simulations. The extracted 

values were exported to Microsoft Excel where the predicted visibility for each point could be 

compared to the observed visibility and an accuracy percentage for each simulation determined 

expressed as a percentage: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑝/𝑛) ∗ 100 

 

where p = the number of correctly predicted reference points (could be visible or not visible) and n = 

the total number of referenced points in the sample. For example, a score of 80 % would indicate that 

the viewshed had an 80 % accuracy as it predicted 80 % of the 40 reference points correctly. Analysis 

of variance (ANOVA) was used to determine if different techniques, DEMs and resolutions had any 

significant effect on accuracy. ANOVA determines if there is a statistically significant difference between 

the means of two or more groups of data (e.g. results from different terrain models). The ANOVA 

analysis were conducted in Microsoft Excel with the significance level set to 0.05. 

 

3.2.5. Determine sensitivity to key variables across different landscape types 

To determine the sensitivity of the tested approaches to key variables across different landscape types, 

multivariate analysis of variance (MANOVA) was applied to the accuracy results. MANOVA is an 

extension of ANOVA and allows for the simultaneous assessment of the effect of multiple explanatory 

variables. MANOVA was conducted for different terrain types treating accuracy as the dependant 



variable and DEM, resolution, and technique as explanatory variables. The MANOVA analysis was 

conducted using the XLSTAT plugin in Microsoft Excel with the significance level also set to 0.05. 

 

3.3. Provide recommendations to practitioners on the appropriate visibility analysis approaches to use 

based on different landscape contexts and data availability circumstances (Objective 3) 

Based on the findings of the analyses, the extent to which different variables are essential to deliver 

accurate results can be evaluated. Recommendations are provided on the importance of variables to 

ensure accuracy. This then acts as the basis for practitioners to make choices about the visibility analysis 

approaches based on their study area, data availability and cost. 

 

4. Results 

4.1. Common approaches to visibility analysis in VIA 

The VIA reports reviewed included a wide variety of activities, including renewable energy projects, 

residential developments, and commercial developments. From the VIA reports reviewed, viewshed 

analysis was by far the most frequently used technique for determining the ZTV (72.9 %). The second 

and third most used techniques were cumulative and line of sight analysis (14.6 % and 12.5 % 

respectively). In terms of the digital elevation models used, digital terrain models were used most often 

(77.1 %), followed by digital surface models (14.6 %). A few reports did not reveal the type of model 

used (8.3 %). Very few VIA reports reported considering land cover screening during the ZTV phase, 

which was considered in only seven reports (18.8 %).  Viewshed analysis based on a DTM without the 

consideration of screening effects was the approach most often used in the VIAs reviewed (Table 4). 

This was followed by cumulative viewshed analysis based on the same inputs.  

 

Table 4: Visibility analysis approaches used in VIA 

 Techniques 

Viewshed Cumulative viewshed Line of sight (LOS) 

D
EM

 a
n

d
 s

cr
ee

n
in

g 

DTM with land 

cover screening 

0 % 0 % 4.2 % 

DTM without land 

cover screening 

58.3 % 10.4 % 4.2 % 

DSM with land 

cover screening 

3 % 4.2 % 4.2 % 

DSM without land 

cover screening 

0 % 0 % 0 % 

 



4.2. Accuracy results 

Both the DEM type and the visual analysis technique used had a significant (p < 0.05) effect on the 

accuracy of the analysis with scores of 0.000 and 0.028 respectively. The DEM type that produced more 

accurate results was the DSM while LOS proved to be the more accurate technique to use. Resolution 

did not have a significant effect on accuracy results. 

 

Table 5: Summary of accuracy results 

Variable Average accuracy score Significance (p) 

DEM Type DSM 72.8 % 0.000 

DTM 60.6 % 

Resolution 5m 69.0 % 0.190 

10m 68.5 % 

25m 66.4 % 

50m 63.1 % 

Technique VS 65.9 % 0.028 

CVS 65.9 % 

LOS 70.4 % 

 

 

 

4.3. Sensitivity of identified visibility analysis approaches to key variables across different landscapes 

Table 6 contains the results for the MANOVA analysis and shows the effect of different variables on the 

accuracy of the visibility analysis for different landscape types. The type of DEM used has the most 

significant effect (p < 0.05) on the accuracy of the visibility analysis. When considered against the 

accuracy results, this confirms that a DSM will result in a more accurate result across all landscape 

types. The significance decreases slightly, however, as landscape complexity increases. The selection of 

technique only had a significant impact on the accuracy of results in areas of medium complexity. This 

might be ascribed to the fact that different visibility analysis techniques all rely on the same underlying 

principle of line-of-sight analysis. When considered against accuracy results, however, the LOS analysis 

approach as applied in the study generally resulted in more accurate results than viewshed and 

cumulative viewshed analysis. Although higher resolution results in more accurate DEMs, the analysis 

did not find resolution to have a significant impact on accuracy results for any of the landscape contexts. 

Its contribution to accuracy did however seem to decrease with increased terrain complexity. 

 

Table 6: MANOVA results 



Variable         |   Terrain: Low complexity Medium complexity High complexity 

DEM Type 0.0004 0.0003 0.010 

Resolution 0.121 0.455 0.581 

Technique 0.149 0.001 0.131 

 

 

5. Recommendations 

The determination of a ZTV is a critical input to VIA processes. The results suggest that, although often 

used in visual impact assessment, viewshed analysis and cumulative viewshed analysis are not the 

optimal and most accurate approaches for the determination of the ZTV, but rather an optimised LOS 

analysis. The accuracy achieved through the latter is further substantially higher than the accuracy 

scores obtained in similar studies, e.g. Maloy and Dean (2001) that reported accuracy scores in the mid 

50 % range, Berry and Kidner (2005) in the mid 60% range, and Wood (2000) in the lower 60 % range. 

The type of DEM should further be a key consideration across all landscape types. Practitioners should 

prioritise the use of DSM’s, something which the review results suggest is not currently the case. Where 

resolutions higher than readily available DSMs such as the 30m SRTM are needed, landcover datasets 

can be used to derive a DSM, especially where budget for more sophisticated datasets such as LiDAR is 

not available. It is, therefore, recommended that LOS analysis applied as a study area wide analysis, i.e., 

sightlines covering the full extent of the study area, and based on a DSM should be considered by 

practitioners to obtain the most accurate results across all study area types. Although resolution did 

not prove to have a significant impact on accuracy, higher resolutions should be considered, especially 

in areas of lower terrain complexity where changes is the landscape is more subtle and might ‘get lost’ 

at courser resolutions. 

 

6. Conclusion 

The research aimed to identify and evaluate visibility analysis approaches often used in VIA and provide 

recommendations for the approach to visibility analysis that practitioners should take in different 

contexts of landscape complexity and data availability. Approaches were identified and evaluated 

across varying landscapes and using different input variables. The main conclusions drawn from the 

results are: 

• The type of DEM used has a significant impact on the accuracy of the visibility analysis results 

across all landscapes.  

• DSMs resulted in the most accurate results across all landscapes. 



• The technique used has some significance, while LOS analysis provides more accurate results 

than viewshed or cumulative viewshed, which are currently the favoured approaches in VIA 

practice. 

• DEM resolution had no significant impact on the accuracy of results; however, the findings 

suggests that resolution becomes increasingly important at lower resolutions. 

 

With this research we hope to contribute to VIA best practice, especially as it relates to the best 

approaches to ZTV determination. However, going forward we would also recommend similar research 

into the less often used approaches such as fuzzy viewshed analysis and probability viewshed analysis, 

but also research into the quality of VIA reports and more specifically the viewshed analysis component. 

It is only by applying and continually evaluating different approaches that the practice of VIA can be 

improved towards better decision making.  
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