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INCOMPATIBLE BOUNDED CATEGORY FORCING AXIOMS

DAVID ASPERÓ AND MATTEO VIALE

Abstract. We introduce bounded category forcing axioms for well-behaved class-
es Γ. These are strong forms of bounded forcing axioms which completely decide
the theory of some initial segment of the universe Hλ

+

Γ

modulo forcing in Γ, for

some cardinal λΓ naturally associated to Γ. These axioms naturally extend pro-
jective absoluteness for arbitrary set-forcing—in this situation λΓ = ω—to classes
Γ with λΓ > ω. Unlike projective absoluteness, these higher bounded category
forcing axioms do not follow from large cardinal axioms, but can be forced under
mild large cardinal assumptions on V . We also show the existence of many classes
Γ with λΓ = ω1, and giving rise to pairwise incompatible theories for Hω2

.
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1. Introduction

Forcing axioms are principles asserting the existence of sufficiently generic filters
for all forcing notions in some reasonable class. In a general form they state, for a
given class Γ of forcing notions and a given cardinal κ, that for every P ∈ Γ and
every collection D of ≤κ-many dense subsets of P there is a filter G of P such that
G ∩ D 6= ∅ for each D ∈ D.1 We refer to this statement as FA(Γ)κ. These axioms
are successful in settling a wide range of problems undecidable on the basis of the
commonly accepted axioms for set theory. This is not surprising given that forcing
axioms can be often characterized, for reasonable classes Γ, as maximality principles
with respect to generic extensions via forcing notions coming from Γ; specifically,
the assertions that all statements in some reasonable class Σ that can be forced over
the universe by some forcing in Γ are in fact true.
For certain classes Σ of statements, such a maximality principle amounts to as-

serting generic absoluteness of the universe with respect to the relevant forcing
extensions, i.e., the assertion that for every P ∈ Γ, every P-generic filter G over V ,
and every σ ∈ Σ, V |= σ if and only if V [G] |= σ.2 This is the case, for example, if Σ
is the class of all Σ1 sentences with parameters in Hλ, for a fixed cardinal λ, and all
forcing notions in Γ preserve the cardinality of λ.3 Another example is given by the
class Σ of all projective sentences, i.e., all sentences of the form Hω1 |= σ, where σ is
any sentence with parameters in Hω1. It is a remarkable fact, due to Woodin, that
the mere presence in V of sufficiently strong large cardinals—for example a proper
class of Woodin cardinals, or a supercompact cardinal—outright implies this princi-
ple of generic absoluteness, known as Projective Absoluteness. Generic absoluteness
is a naturally attractive possible feature of the universe, at least for the set-theorist
with realist inclinations, in that it manages to neutralize, to some extent, the effects
of forcing on the universe (forcing being our prime method for proving independence
over our base set theory).
It turns out that if we avail ourselves of the expressive power provided by second

order set theory, we can make sense of hypotheses which in terms of consistency
strength lie way below the existence of Woodin cardinals and which nevertheless
suffice to produce models of Projective Absoluteness. To be specific, if we work in the
extension of Morse-Kelley set theory (MK) with the axiom saying that the class Ord
of all ordinals is Mahlo (i.e., every class of ordinals which is closed and unbounded

1This is equivalent to the axiom obtained by letting D consist of maximal antichains of P .
2There are of course interesting classes Σ for which the relevant notion of maximality does

not imply the corresponding notion of generic absoluteness. Take for example the class Σ of all
sentences of the form Hω2

|= σ, where σ is a Π2 sentence. Maximality for this class Σ relative to
all set-forcing extensions is consistent, as it follows from Woodin’s Pmax axiom (∗). On the other
hand, generic absoluteness for Σ is simply false as CH can be expressed by a sentence in Σ and
both CH and ¬CH are forcible.

3When λ is an infinite cardinal and Γ is a class of forcing axioms preserving the cardinality of all
cardinals µ ≤ λ, the bounded forcing axiom BFAκ(Γ) can often be in fact characterized as precisely
this form of generic absoluteness for κ = λ+. BFAκ(Γ) is the axiom saying that for every P ∈ Γ
and every collection A of maximal antichains of P , if |A| ≤ κ and |A| ≤ κ for every A ∈ A, then
there is a filter G ⊆ P such that G ∩ A 6= ∅ for each A ∈ A.
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contains an inaccessible cardinal), then we may find a set-forcing extension of V in
which Projective Absoluteness holds. In fact, for every set-generic extension V [G]
of V there is a set-generic extension of V [G] satisfying Projective Absoluteness. Of
course now we do not obtain Projective Absoluteness in V but only prove that it
is forcible. In order to even be able to state our starting hypothesis we need to
transcend first order logic—which of course was enough to express the existence
of a proper class of Woodin cardinals—and make use of the additional expressive
power of second order logic. This is arguably a drawback of the present situation.
Nevertheless, we will make free use of second order logic in this paper as doing so will
allow us to make sense of situations for which this would not be possible otherwise.
The construction referred to above originates in the classical argument for deriv-

ing Projective Absoluteness from large cardinals. The main observation is that if
Ord is Mahlo, then there are unboundedly many inaccessible cardinals δ with the

property that if G is Coll(ω,<δ)-generic over V , then H
V [G]
ω1 (= Vδ[G]) is an ele-

mentary substructure of V [H ] for some generic filter H over V for the class-forcing
Coll(ω,<Ord) (which of course is the same as Coll(ω,<Ord) as computed in V [G]).
Using the fact that every set-forcing extension can be absorbed in a forcing extension
via Coll(ω, κ), for some high enough cardinal κ, it follows that Projective Absolute-
ness holds in V [G] in the above situation. This analysis shows in fact the following:
If Ord is Mahlo, then Projective Absoluteness holds if and only if the identity on
Hω1 is an elementary embedding from this structure into V Coll(ω,<δ). This justifies
defining Projective Absoluteness to be precisely this axiom (which we do). We also
write PA for Projective Absoluteness.

This paper can be naturally split in two parts. The main goal of the first part is to
extend the above observation concerning PA and how to obtain it to fragments Hκ

of the universe beyond Hω1. Let us assume that κ is a successor cardinal, κ = λ+.4

Our guiding idea for obtaining analogues of PA applying to Hκ is to focus on some
class Γ of forcing notions preserving all cardinals µ ≤ λ and try to extend the
methods in the argument for the forcibility of Projective Absoluteness in a suitable
way to apply to forcings in Γ. We shall be dealing with fairly big classes Γ for
which there is an iterability theorem, for example the class of all proper forcings, or
the class of all semiproper forcings. For these classes one cannot possibly hope to
obtain generic absoluteness at the level of Hω2 relative to all extensions by members
of Γ. For example there is always a proper poset forcing CH and there is always
one forcing ¬CH and, as already mentioned, CH is expressible over Hω2. We will
instead aim at obtaining generic absoluteness relative to all forcing notions in a
suitable class Γ which, moreover, force the second order axiom corresponding to the
axiom, in the PA situation, asserting that Hω1 is an elementary substructure of the
Coll(ω,<Ord)-extension of V .
For technical reasons it will be convenient to deal with classes consisting of

complete Boolean algebras.5 The right analogue, in this context, of the collapse
Coll(ω,<Ord) in the PA argument turns out to be the class-forcing whose condi-
tions are all algebras in Γ, and where C ∈ Γ is stronger than B ∈ Γ, which we will

4As we will see, our methods naturally pertain to the theory of structures Hκ for κ being a
successor cardinal.

5See for example [28] for more details. There will be no real loss of generality in restricting the
discussion to classes of complete Boolean algebras thanks to the fact that all classes we will be
naturally interested in will be closed under taking regular open completions.
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denote by C ≤Γ B, if and only if there is a complete Boolean algebra homomorphism
i : B −→ C such that B forces the quotient algebra C/i[ĠB] to be in the class Γ as
interpreted in V B.6 Thus we are naturally seeing the category whose objects are all
algebras in Γ, and whose arrows are homomorphisms i : B −→ C of the above form,
as a class-sized forcing notion.7

Given a class Γ of complete Boolean algebras, we will associate to Γ a certain
cardinal λΓ. This will be the supremum of the class of all cardinals preserved by
all members of Γ.8 In all classes Γ we will consider in the second part of the paper,
λΓ = ω1 (and so Hλ+

Γ
will be Hω2). If Γ has suitable nice properties in all extensions

by members of Γ, then forcing with (Γ,≤Γ) preserves all cardinals µ ≤ λΓ and makes
Ord equal to λ+

Γ (i.e., it forces V = Hλ+
Γ
), and every set in the extension V [H ] is

already in V [H ∩ Vδ] for some ordinal δ such that (the regular open completion of)
Γ ∩ Vδ is in Γ and H ∩ Vδ is V -generic for Γ ∩ Vδ. Furthermore, under suitable mild
large cardinal assumptions—typically the same hypothesis we had for PA, namely
that Ord is Mahlo, suffices—we have that for every B ∈ Γ there is a B-name Q̇ for
an algebra in V B’s version of Γ such that C = B ∗ Q̇ is in Γ and is such that if

G is C-generic over V , then H
V [G]

λ+
Γ

is an elementary substructure of V [H ] for every

generic filter H over V for the category forcing (Γ,≤Γ) as computed in V [G]. We
will call classes Γ satisfying all the relevant nice properties in all generic extensions
by members of Γ absolutely well-behaved. By extending the PA argument we will
prove, in addition, that if Ord is Mahlo, Γ is absolutely well-behaved, and Hλ+

Γ
is an

elementary substructure of V [H ] for every generic filter H over V for (Γ,≤Γ), then
the following is the case.

(1) A strong form of the bounded forcing axiom BFAλΓ
(Γ) holds.9

(2) If G is a V -generic filter for some algebra in Γ and H
V [G]

λ+
Γ

is an elementary

submodel of V [H ] for some generic filter H over V [G] for the category forcing

(Γ,≤Γ) as computed in V [G], then HV
λ+
Γ

and H
V [G]

λ+
Γ

have the same theory.10

It follows, from (1) and (2) above, together with the discussion before (1), that
the second order axiom saying that Hλ+

Γ
is an elementary substructure of V [H ] for

some V -generic filter H over (Γ,≤Γ) is a strong form of the bounded forcing axiom
BFAλΓ

(Γ) which achieves our goal (and which can actually be forced). We therefore
call this second order axiom the bounded category forcing axiom for Γ, and denote
it by BCFA(Γ).11

Our results in the first part of the present paper turn forcing from a tool useful to
prove undecidability results into a tool useful to prove theorems: In order to show
that BCFA(λΓ), together with the ambient set theory, implies Hλ+

Γ
|= σ for a given

6We will in fact be working with definable classes Γ. In a statement like the one above we are
of course really referring to some official definition of Γ.

7As we will soon mention, we will call our axioms corresponding to these categories Γ bounded
category forcing axioms.

8λΓ could sometimes be all of Ord (for example if Γ is the class of forcings with the countable
chain condition), but in all classes we will consider λΓ will be an actual cardinal (in this case it is
of course the maximum cardinal preserved by all members of Γ).

9This part is easy.
10This is considerably more involved.
11There is no need to specify λΓ as this cardinal can be read off from Γ.
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sentence σ, it suffices to show that BCFA(Γ), together with the ambient set theory,
implies the existence of a forcing notion B in Γ which forces both BCFA(Γ) and
Hλ+

Γ
|= σ.

In the second part of the paper we isolate ℵ1-many absolutely well-behaved classes
Γ of complete Boolean algebras, all of them with λΓ = ω1. Among these we have
for example the class of all complete Boolean algebras which are proper forcing
notions, the class of all complete Boolean algebras which are semiproper forcing
notions, the class of all complete Boolean algebras which are proper forcing notions
preserving Suslin trees, etc. The main point in this second part is to prove that all the
corresponding bounded category forcing axioms are pairwise provably incompatible,
sometimes in the presence of extra mild large cardinal assumptions, regardless of
the fact that we have Γ0 ⊆ Γ1 for many choices of Γ0 and Γ1. For example, if Γ0

and Γ1 are, respectively, the class of semiproper forcing notions and the class of
proper forcing notions, we have that BCFA(Γ0) and BCFA(Γ1) are incompatible—
assuming there is, for example, a measurable cardinal and an inaccessible cardinal
δ such that Vδ ≺ V—despite the fact that Γ1 ⊆ Γ0 and therefore BFAℵ1(Γ0) (which
is implied by BCFA(Γ0)) implies BFAℵ1(Γ1) (which is implied by BCFA(Γ1)). Indeed,
for this choice of Γ0 and Γ1 we have that if BCFA(Γ0) holds and there is a measurable
cardinal, then Club Bounding holds,12 whereas if BCFA(Γ1) holds and there is an
inaccessible cardinal δ such that Vδ ≺ V , then Club Bounding fails.
Bounded category forcing axioms are to be seen as strong forms of bounded forcing

axioms providing a picture of the universe as being saturated by only forcing coming
from the relevant class Γ. For classes Γ0 ⊆ Γ1, even if it is of course true that
BFAλΓ

(Γ1) implies BFAλΓ
(Γ0), there will typically

13 be statements σ about Hλ+
Γ
such

that BFAλΓ
(Γ1) implies σ, whereas ¬σ can be forced by a forcing in Γ0 and, once

forced, will be preserved by subsequent forcing in Γ0. This explains why σ will follow
from BCFA(Γ1) whereas it will fail in the BCFA(Γ0) model.
One lesson to be learned from these incompatibility results is that natural forms

of (bounded) forcing axioms do not, by themselves, favour a universist conception of
set theory. There is unavoidable branching at the level of these axioms; in particular,
the set-theorist with a universist mindset will need additional criteria—beyond the
‘naive’ view on maximality provided by looking at the containment relation between
the classes Γ under consideration—to favour one of these axioms over the others.
This should be compared with the fact that, as an empirical fact, consistent large
cardinal axioms seem to be orderable under implication.14 A reasonable additional
criterion available to the universist when assessing bounded category forcing axiom—
consistent with the view that these axioms are indeed strong forms of bounded
forcing axioms—could be to focus on maximizing the class of Π2 sentences over Hλ+

Γ

12Club Bounding is the statement that for every function f : ω1 −→ ω1 there is some α < ω2

such that every canonical function for α bounds f on a club.
13Our results in the second part of the paper provide some evidence that this will be the case

for all choices of Γ0 and Γ1.
14At least upwards directed, in the sense that for any two large cardinal axioms A1 and A2 there

always seems to be a large cardinal axiom A3 subsuming both A1 and A2. This seems to apply
both to large cardinal axioms over ZFC and to the family of large cardinal axioms in the wider ZF
context.
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implied by the axiom.15 In this respect, when looking at classes Γ with λΓ = ω1,
the class that fares the best is of course the class of all forcing notions preserving
stationary subsets of ω1 (we will denote this class by SSP). This move of course
amounts to ignoring the completeness granted by the axioms and instead focusing
on the forcing axiom side of the axiom. When making it, we are probably taking the
Π2 maximality for Hλ+

Γ
secured by the axiom as the main object of interest of strong

(bounded) forcing axioms, and regard any possible completeness for the theory of
Hλ+

Γ
modulo forcing as a welcome extra feature, of foundational interest, that these

axioms may have if they are strong enough.

1.1. Model companionship versus bounded category forcing axioms. We
now point out the relevance of our results to the notions of model completeness
and model companionship introduced by Robinson. There is a growing body of
evidence relating forcing axioms, generic absoluteness results, and the generic multi-
verse to these model-theoretic notions. These notions describe, in a model-theoretic
terminology applicable to an arbitrary first order theory T , the closure properties of
algebraically closed fields and the way the elementary class given by such fields sits
inside the elementary class given by arbitrary fields. Applied to the set-theoretic
realm, the basic idea is that Hω1 plays with respect to the generic multiverse the
role C does for arbitrary fields, while (assuming forcing axioms) Hω2 plays this same
role with respect to the generic multiverse given by forcings in an appropriate class
(e.g. proper, SSP, etc).

A first key notion in this context is that of existentially closed structures in a
signature τ . A τ -structureM is existentially closed in a superstructure N ifM≺1

N . For a τ -structure M with domain M , let us write (M, τM ) as a shorthand for
(M,RM : R ∈ τ).

Consider a signature τST in which one adds a predicate symbol Rφ of arity n
for any ∆0 formula φ(x1, . . . , xn) and interprets in the models of set theory these
predicate symbols Rφ as the extension of the formula φ. In this set-up, one of the

key consequences of Shoenfield’s absoluteness is that (HV
ω1
, τVST) ≺1 (H

V [G]
κ , τ

V [G]
ST

)
whenever G is a forcing extension of V and κ is an uncountable cardinal in V [G];
actually Shoenfield’s absoluteness states that HV

ω1
is existentially closed in all of its

well-founded τST-superstructures which model ZFC− (i.e. ZFC minus the power-set
axiom).
Consider now bounded forcing axioms; these axioms state that (HV

ω2
, τVST) ≺1

(H
V [G]
κ , τ

V [G]
ST

) whenever G is V -generic for a forcing notion P in a given class of

forcings Γ (stationary set preserving, proper, semiproper, etc) and κ ≥ ω
V [G]
2 ; once

again, these axioms assert that HV
ω2

is existentially closed in its τST-superstructures

which model ZFC− and are obtained by certain types of forcings.
Let us explore briefly the notion of T -existentially closed structure and show how

such structures are produced in model theory. Given a first order theory T for a
signature τ , a τ -structureM is T -e.c. ifM ≺1 N whenever N is a superstructure
ofM which realizes T∀ (the universal fragment of T ).

15And, after all, the mathematical applicability of bounded forcing axioms is correlated to their
Π2 consequences for the theory of Hλ

+

Γ

.
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Note that neither M nor N may be models of T , the only sure thing is that
they model16 T∀. A key (and not so trivial) fact which will play an essential role in
our arguments is that whenever M is T -e.c., so is N if N ≺1 M. The standard
example of a T -e.c. structure is an algebraically closed field, where T is the theory
of fields in signature {+, ·, 0, 1}: if K is algebraically closed, for any L ⊇ K which
models17 T∀, any Σ1 formula with parameters in K (i.e. statements of the form

∃~y
[

∧n
i=1 pi(~y) = 0 ∧

∧m
j=1 qj(~y) 6= 0

]

with pi, qj polynomials with coefficients in K)

realized in L is already true in K.
How does one construct a T -e.c. structure? The simplest way is to start with a

modelM0 of T∀ and construct using some book-keeping device a chain (Mα : α < κ)
of models of T∀ in which at each stage α one tries to make true in Mα+1 some
existential formula with parameters in18 Mα. Note that there is tension between
the constraint given byMα |= T∀ and the requirement thatMα+1 realizes some Σ1

formula with parameters in Mα (for example this formula cannot be the negation
of some universal axiom of T ).
A key point is that an increasing chain of models of T∀ is still a model of T∀, hence

the construction does not stop at limit levels; now if κ is large enough, at stage κ
all existential formulae with parameters in someMα for α < κ have been realized
(if possible) in someMβ with β < κ, henceMκ is T -e.c.

Compare this procedure with the standard proof of the consistency of bounded
forcing axioms: for example to establish the consistency of BPFA one does exactly the
same, but now one starts fromM0 = (V,∈) and in passing fromMα = (V [Gα],∈)
to Mα+1 = (V [Gα+1],∈), one can use only forcings which are proper in V [Gα];
moreover, to catch one’s tail one must continue the iteration for a κ which is a
reflecting cardinal. Also, in this case there is tension between realizing some new Σ1

formula with parameters in H
V [Gα]
ω2 , and doing so by using a proper forcing (which

preserves the Π1 formula, for τST in parameter S ⊆ ω1, S is stationary).
Now one of the guiding ideas of this paper is: what happens if we continue

this iterated construction along all the ordinals? If the ordinals are long enough,
one should end up with a structure where all existential formulae which can be
consistently made true by a proper forcing have been made true. Note, in addition,
that V [G] should also be a structure which resembles Hω2 : on the one hand, every
ordinal above ωV

1 will have been collapsed to ωV
1 at some point in the iteration; on

the other hand, we should also expect that the regularity of Ord is preserved as all
iterands are set-sized and, moreover, ω1 is preserved as the iteration is proper. Hence,
the Ord-length iteration is <Ord-CC, ω1-preserving, and collapsing all uncountable
ordinals to size ℵ1, if things are properly organized.

16For example T is the theory of fields elementarily equivalent to Q in signature {+, ·, 0, 1}, K
is algebraically closed, L ⊇ K is a ring which is not a field. Then K is T -e.c., K ≺1 L, both are
models of T∀, but neither of them models T .

17Note that L may not even be a ring, it is just a structure with no-zero divisors, where +, ·
satisfy the commutativity, associatitvity, and distributivity laws, and 0 and 1 are the neutral
elements of +, ·. L is a ring if it satisfies the Π2-sentence stating that (L,+, 0) is a group.

18Much in the same way one builds the algebraic closure of a field L by passing from L = L0 to
L1 the field of fractions of L0[x]/p0(x) (with p0 an irreducible polynomial with coefficients in L),
and then inductively from Ln to the field of fractions of Ln[x]/pn(x) with the pns given by some
book-keeping device.
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In the above situation, we can look at whether there are stages α for which H
V [Gα]
ω2

is an actual elementary substructure of V [G]. And if the ordinals are long enough
(e.g., Ord is Mahlo), this will in fact be the case. We can pursue this approach not
only for proper forcings but for a variety of classes Γ including the class of proper
forcing notions, semiproper forcing notions, SSP, etc.
It turns out that if Γ is a sufficiently well-behaved class,19 then the corresponding

Ord-length iteration is equivalent to the category forcing (Γ,≤Γ). We can then
define the bounded category forcing axiom for Γ, BCFA(Γ), as the assertion that
HV

ω2
is an elementary substructure of V [H ], for some generic extension H of V by

(Γ,≤Γ). Working in Gödel-Bernays or in Morse-Kelley set theory, this is a perfectly
meaningful statement. Using again the fact that Γ is well-behaved, we can then
prove, in the presence of our (mild) large cardinal assumption, that for every forcing
extension V [G] via a member from Γ there is a further forcing extension V [G][g] via
a member from ΓV [G] satisfying BCFA(Γ);20 and furthermore, if V |= BCFA(Γ) and

G and g are as above, then HV
ω2

and H
V [G][g]
ω2 have the same theory.

These bounded category for axiom for Γ not only imply the corresponding bounded
forcing axioms but also strengthen the resurrection axioms introduced by Johnstone
and Hamkins [11] and their iterated version introduced by Audrito and the second
author [5]. We are now in a position to briefly outline how these results compare to
the notion of model completeness and model companionship.
A first order theory T is model complete if and only ifM ≺ N whenever N is a

superstructure ofM and they are both models of T ; equivalently if and only if any
model of T is T∀-e.c.. T is the model companion of S if T is model complete and if
every model of T embeds into a model of S and vice versa; equivalently, if T∀ = S∀

and any model of T is S-e.c.
A standard example is obtained by taking S to be the theory of rings with no

zero divisors in signature {+, ·, 0, 1} and T the theory of algebraically closed fields
in the same signature.
Now let us look at the Γ-generic multiverse (for a sufficiently well-behaved class

Γ):
{

HV [G]
κ : κ ≥ ω

V [G]
2 , G is V -generic for a forcing in Γ

}

.

The above considerations show that the class
{

HV [G]
ω2

: V [G] |= BCFA(Γ), G is V -generic for a forcing in Γ
}

sits inside the Γ-generic multiverse much in the same way the elementary class of
models of T sits inside the elementary class of models of S, whenever T is the model
companion of S.
These considerations do not establish that the theory of Hω2 is model complete if

V |= BCFA(Γ). However, much stronger connections between generic absoluteness,
forcing axioms, and model companionship can be obtained if one works with richer
signatures. For instance, [24] shows that the theory ofHV

ω1
is the model companion of

the theory of V in the signature τUB = τST∪UB
V where UBV is the class of universally

Baire sets, and each B ∈ UB
V defines a predicate symbol for τUB. Using the result

of the first author and Schindler establishing that Woodin’s axiom (*) follows from
MM

++ [2], the second author [25] has shown that in models of MM
++ where UB

♯

19All of the above class are.
20We are of course identifying Γ with some reasonable definition of it.
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is invariant across forcing extensions, the theory of Hω2 is the model companion
of the theory of V in signature τNSω1 ,UB

= τUB ∪ {NSω1} (where NSω1 is the non-
stationary ideal on ω1, and is the canonical interpretation of its associated unary
predicate symbol in τNSω1 ,UB

). Note that assuming large cardinals, the τUB-theory of
Hω1 is generically invariant, while in [25] it is also shown that the universal fragment
of the τNSω1 ,UB

-theory of V is invariant across the generic multiverse. Also, the model
completeness results of [25] entail that the τNSω1 ,UB

-theory of Hω2 is invariant across

forcing extension of V which model MM
++. In particular, the results of the present

paper are weaker than those obtained in [25] when predicated about the class Γ of
SSP-forcings, but as we will see below, they can also be asserted for a variety of
classes Γ other than SSP (for example proper, semiproper, etc); finally the present
paper generalizes and improves results appearing in [11, 26, 27, 6], where appropriate
strengthenings of forcing axioms are introduced with the aim of achieving similar
goals.

1.2. Unbounded category forcing axioms. It is worth pointing out that bounded
category forcing axioms are natural bounded forms of much stronger axioms, which
we call category forcing axioms. Given an absolutely well-behaved class Γ of com-
plete Boolean algebras, the category forcing axiom for Γ, CFA(Γ), asserts that the
class of certain pre-saturated towers of ideals whose regular open completion is in Γ
and which have certain ‘rigidity’ properties is dense in the category forcing (Γ,≤Γ).

21

The theory of category forcing axioms, developed by the authors of the present paper,
generalizes the theory of the strong form of Martin’s Maximum know as MM

+++.
The axiom MM

+++, isolated by the second author, is in fact CFA(SSP).
In the presence of sufficiently strong large cardinals,22 we obtain the following.

(1) CFA(Γ) can always be forced by a forcing in Γ, and in fact by the intersection
of (Γ,≤Γ) with Vδ for some supercompact cardinal δ.

(2) CFA(Γ) implies a strong form of the forcing axiom FAλΓ
(Γ).

(3) If B ∈ Γ, G is V -generic for B, and V [G] |= CFA(Γ), then CV
λ+
Γ

, the λ+
Γ -Chang

model as computed in V , is an elementary substructure of CV [G]

λ+
Γ

.

In (3) above, given an infinite cardinal λ, the λ-Chang model, denoted by Cλ,
is the ⊆-minimal transitive model of ZF containing all ordinals and closed under
λ-sequences. It can be construed as Cλ = L(Ordλ).23 In particular, L(P(λ)) is a
definable inner model of Cλ, and Hλ+ ⊆ Cλ is definable in Cλ from λ. As is well-
known, Cλ need not satisfy AC. For instance, by a result of Kunen [14, Thm. 1.1.6
and Rmk. 1.1.28], if there are λ+-many measurable cardinals, then Cλ |= ¬AC.
It is not difficult to see that if Γ is an absolutely well-behaved class, then CFA(Γ)

implies BCFA(Γ) (again, assuming sufficiently strong large cardinals). In particular,

21By ‘tower of ideals’ we mean the forcing notion resulting from naturally relativizing the defi-
nition of the stationary tower forcing to some given family of ideals of sets with suitable properties.
Forcing with such a forcing gives rise to an elementary embedding j : V −→ M , for a certain
subclass M of the generic extension. In the current situation, j has critical point λ+Γ .

22The relevant large cardinals—typically in the region of the existence of a proper class of
supercompact cardinals together and one almost super-huge cardinal—are now much stronger
than the ones we need for our analysis of bounded category forcing axioms.

23Where L(Ordλ) =
⋃

α∈Ord L(Ordλ ∩ Vα) =
⋃

α∈Ord L[Ordλ ∩ Vα].



10 D. ASPERÓ AND M. VIALE

all axioms CFA(Γ) obtained from considering the classes Γ from the second part of
the present paper are provably pairwise incompatible.
We should point out that, unlike the bounded category forcing axioms we will be

studying in the present paper, the stronger category forcing axioms we are referring
to here admit a first order definition. In fact, given that the relevant classes Γ admit
a ∆2 definition, possibly with some parameter, it is easy to see that CFA(Γ) can be
expressed as a Π3 sentence (in the same parameter).
We should clarify that, despite the more attractive aspects of category forcing ax-

ioms, compared to their bounded forms, we have opted to present in this paper only
the theory of the latter. The reason for this is that the theory of their unbounded
counterparts is much more involved and would require a longer article. This work
will appear elsewhere.

2. Forcing with forcings

The aim of this section is to develop a general theory of category forcings i.e. class
forcings (Γ,≤Γ) with Γ a definable class of forcings and P ≤Γ Q if whenever G is
V -generic for P , in V [G] there is H V -generic for Q such that V [G] is a generic
extension of V [H ] by a forcing in ΓV [H]. It will become apparent that such an
analysis can be systematically carried out if one focuses on the subclass of Γ given
by the complete boolean algebras in Γ. First of all this is no loss of information since
our analysis will identify properties of elements of Γ which are invariant with respect
to boolean completions. For example “whenever G is V -generic for P , in V [G] there
is H V -generic for Q” can be formulated in algebraic terms as “there is a (possibly
non-injective) complete homomorphism i : RO(Q) → RO(P )”. We hope that this
example makes transparent that, by focusing on cbas rather than posets, we will
be able to leverage the algebraic structure of complete boolean algebra to greatly
simplify the formulation of certain concepts, as well as many proofs. However most
of the forcings in Γ we will consider are not naturally presented as cbas; for example
one of our main result will be to show that (Γ ∩ Vδ,≤Γ ∩Vδ), which is not even
separative, is in Γ for most inaccessible cardinals δ. So we will feel free to decide
depending on the issue under examination whether to focus on Γ as a class of cbas
or rather as a class of partial orders, keeping in mind that our results applie equally
well in both set-ups.

Notation 2.1. Given a cba B ∈ V and a family A of elements of V B,

A◦ = {〈τ, 1B〉 : τ ∈ A} .24

For a partial order P and p ∈ P , P ↾ p = {q ∈ P : q ≤ p}.

Definition 2.2. Let B be an infinite complete boolean algebra and κ̇ ∈ V B be such
that

Jκ̇ is a regular cardinalK
B
= 1B.

We define

HB
κ̇ =

{

τ : τ ∈ V B, Jtrcl(τ) is hereditarily of size less than κ̇K
B
= 1B

}

(HB
κ̇ )

◦ ∈ VB is a canonical name for H
V [G]
κ̇G

whenever G is V -generic for B. More
precisely:

24This very convenient notational trick is due to Asaf Karagila.
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Assume G is V -generic for B. Then

(HB
κ̇ )

◦
G =

{

τG : τ ∈ HB
κ̇

}

= H
V [G]
κ̇G

.

On the face of its definition HB
κ̇ is a proper class. To avoid unnecessary complica-

tions we can use Scott’s trick and consider just its elements whose rank is bounded
by some sufficiently large fixed α. As we will see, in many cases of interest it suffices
to take α = |B|.

Definition 2.3. Given a complete boolean algebra B, we denote by ω̇1 a canonically
chosen member of V B such that

Jω̇1 is the first uncountable cardinalK
B
= 1B.

There is of course a dependence on B in the above definition of ω̇1. However, we
will not need to make this dependence explicit in the notation.

2.1. Projective absoluteness. We want to sketch the reason why Solovay’s model
for set theory obtained by forcing with Coll(ω,<δ) gives the “correct” theory of
projective sets. While doing so we outline how these results could be generalized
to larger fragment of the universe sets. The following is a weakening of Woodin’s
generic absoluteness results for the ω-Chang model:

Theorem 2.4. [14, Cor. 3.1.7] (Woodin). Assume V is a ZFC model in which
there are class-many Woodin cardinals. Let φ(x1, . . . , xn) be any formula for the
signature {∈} and a1, . . . , an ∈ Hω1. TFAE:

(1) HV
ω1
|= φ(a1, . . . , an).

(2) V |= JHω̇1 |= φ(ǎ1, . . . , ǎn)KB = 1B for some cba B.
(3) V |= JHω̇1 |= φ(ǎ1, . . . , ǎn)KB = 1B for all cbas B.

In particular, the second order theory of the natural numbers is provably invariant
under set-sized forcing.
We will prove a weak form of the above theorem (considerably weakening the

large cardinal assumptions); this will be a first approximation to the type of axiom
we will introduce to get generic absoluteness for the theory of Hλ+ with respect to
arbitrary infinite cardinals λ.

Notation 2.5. For δ an ordinal

• p ∈ Coll(ω,<δ) if and only if p : ω × δ → δ is such that dom(p) is finite and
p(n, α) ∈ α for all α ∈ dom(p).
• Bδ denotes the boolean completion of the forcing notion Coll(ω,<δ).
• In models (V,V) of MK, Coll(ω,<Ord),BOrd ∈ V are the class forcings ob-
tained replacing δ with Ord.

BOrd is a well defined element of V because Coll(ω,<Ord) is <Ord-CC, hence the
suprema needed to define BOrd are suprema of set-sized antichains, and therefore
BOrd is a proper class.
Generically Coll(ω,<δ) adds bijections between ω and all ordinals less than δ,

while making δ the first uncountable cardinal; Coll(ω,<Ord) therefore makes all
sets existing in the generic extension hereditarily countable.
Solovay realized that these forcings produce natural models of the theory of pro-

jective sets (equivalently of the first order theory of (Hω1,∈)).
The following are well-known properties of Bδ (which hold also for δ = Ord by a

straightforward generalization of the proofs).
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Theorem 2.6. Let (V,V) be a model of MK. Assume δ is an inaccessible cardinal
or δ = Ord. Then:

Bδ is <δ-CC: [12, Theorem 15.17(iii)] Hence HBδ

ω̇1
= Vδ ∩ V Bδ .

Universality: [12, Lemma 26.9] Bδ contains as a complete subalgebra an iso-
morphic copy of any cba of size smaller than δ.

Factor Lemma: [12, Cor. 26.11] For all cbas B ∈ Vδ,

B ∗ ˙Coll(ω̌, <δ̌) ∼= Coll(ω,<δ).

Logical Completeness: Bδ is homogeneous [12, Thm 26.12].
Hence

Tδ ={φ(a1, . . . , an) : a1, . . . , an ∈ Hω1,

JHω̇1 |= φ(ǎ1, . . . , ǎn)KBδ
= 1Bδ

}

is a complete first order theory.

Definition 2.7. PA (Projective Absoluteness)

Hω1 |= TOrd.

PA states that for all formulae φ(x1, . . . , xn) and a1, . . . , an ∈ Hω1 we have that

Hω1 |= φ(a1, . . . , an) if and only if Jφ(ǎ1, . . . , ǎn)KBOrd
= 1BOrd

.

A complete boolean algebra C ∈ V satisfies PA if and only if (viewing it as a
complete subalgebra of BOrd) for all τ1, . . . , τn ∈ HC

ω̇1
and formulae φ(x1, . . . , xn)

without class quantifiers, we have that

Jφ(τ1, . . . , τn)KBOrd
=

q
(HC

ω̇1
)◦ |= φ(τ1, . . . , τn)

y
C
.

Theorem 2.8. Assume

(V,V) |= MK+Ord is Mahlo.

(i.e. every club subclass of the ordinals in V contains a regular cardinal).
Let (Ω,→Ω) be the category given by the class of cbas as objects and the class of

complete homomorphisms between them as arrows.25

Set C ≤Ω B if there is i : B→ C in →Ω.
Then

DPA = {B ∈ Ω : B satisfies PA}

is dense in the class partial order (Ω,≤Ω).

In particular PA is a consistent axiom.

Proof. Since B ≥Ω Bδ for any inaccessible δ > |B|, it suffices to show that there are
stationarily many δ such that Bδ satisfies PA.
We need to put together three separate observations on the properties of Bγ:

(1) For any ordinal γ

Coll(ω,<γ) ⊑ Coll(ω,<Ord),

(i.e. the inclusion map is a complete embedding of partial orders).

25Note that the homomorphism may not be injective. The key point is that the preimage i−1[G]
by a complete (possibly non-injective) homomorphism i : B→ C of a V -generic filter G for C is a
V -generic filter for B.
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(2) Assume δ is an inaccessible cardinal . Since Bδ is <δ-CC and has size δ, it
is not hard to check that

(Hδ
ω̇1
)◦G =

{

τG : τ ∈ Vδ ∩ VB, Jtrcl(τ) is countableK
Bδ

= 1B
}

= HV [G]
ω1

= Vδ[G]

whenever G is V -generic for Bδ.
Observe also that Coll(ω,<δ) is a definable class forcing in the ZFC-model

(Vδ,∈), which the MK-model (Vδ, Vδ+1,∈) proves to be <δ-CC.
By the forcing theorem26 applied in Vδ to the definable class forcing Coll(ω,<δ),

we get that for all V -generic filters G for Bδ, all formulae φ(x1, . . . , xn), and
all τ1, . . . , τn ∈ Vδ ∩ VB,

(Hδ
ω̇1
)◦G = Vδ[G] |= φ(τ1, . . . , τn)

if and only if for some p ∈ G ∩ Coll(ω,<δ),

Vδ |= p 
 φ(τ1, . . . , τn).

(3) Since 〈V,V〉 is a model of MK, the class

C = {γ : (Vγ,∈) ≺ (V,∈)}

is a club subset of Ord.
Now for each γ ∈ C, each formula φ(x1, . . . , xn) without class quantifiers,

and each τ1, . . . , τn ∈ Vγ ∩ V B,

Vγ |= p 
Coll(ω,<γ) φ(τ1, . . . , τn)

if and only if

V |= p 
Coll(ω,<Ord) φ(τ1, . . . , τn).

This is the case since the classes involved in the definition of

p 
Coll(ω,<Ord) φ(τ1, . . . , τn)

are all definable in V using parameters in Vγ.

Since Ord is Mahlo in 〈V,V〉, there are stationarily many inaccessible cardinals δ
in C, and for any inaccessible δ ∈ C the three properties outlined above for Bδ hold
simultaneously.
The following claim suffices to complete the proof of the theorem.

Claim 1. Assume δ ∈ C is inaccessible. Then for all formulae φ(x1, . . . , xn) without

class quantifiers and τ1, . . . , τn ∈ HBδ

ω̇1
= Vδ ∩ V Bδ ,

JHω̇1 |= φ(τ1, . . . , τn)KBδ
= Jφ(τ1, . . . , τn)KBOrd

.

26The forcing theorem applies in Vδ to the class forcing (relative to Vδ) Coll(ω,<δ) because
Coll(ω,<δ) is definably <δ-CC, in the sense that any definable antichain over (Vδ ,∈) belongs to
Vδ.
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Proof. Since δ ∈ C is inaccessible, φ does not have class quantifiers, and Coll(ω,<δ) ⊑
Coll(ω,<Ord), we have that:

JHω̇1 |= φ(τ1, . . . , τn)KBδ
=

=
∨

Coll(ω,<δ)

{

p ∈ Coll(ω,<δ) : 〈Vδ,∈〉 |= p 
Coll(ω,<δ) φ(τ1, . . . , τn)
}

=

=
∨

Coll(ω,<δ)

{

p ∈ Coll(ω,<Ord) : 〈V,∈〉 |= p 
Coll(ω,<Ord) φ(τ1, . . . , τn)
}

=

=
∨

Coll(ω,<Ord)

{

p ∈ Coll(ω,<Ord) : 〈V,∈〉 |= p 
Coll(ω,<Ord) φ(τ1, . . . , τn)
}

=

= Jφ(τ1, . . . , τn)KBOrd
.

The first and last equalities hold by definition (for the first observe that Ḣδ
ω1

=

Vδ∩V Bδ is a canonical Bδ-name forH
V [G]
ω1 for G V -generic for Bδ); the second equality

holds because (Vδ,∈) ≺ (V,∈); the third equality holds because Coll(ω,<δ) ⊑
Coll(ω,<Ord). �

The theorem is proved. �

Remark 2.9. If γ ∈ C is not inaccessible, then Coll(ω,<γ) is not <γ-cc and collapses

γ to become countable. Hence H
Bγ

ω̇1
6= Vγ ∩ V Bγ . This gives that PA may not be

satisfied by Bγ in this case, since the boolean value of Jφ(τ1, . . . , τn)KBOrd
may require

some p 6∈ Coll(ω,<γ) to be computed if there is some τi which is not in Vγ.

Corollary 2.10. Assume (V,V) |= MK and i : B→ C is a complete homomorphism.
Assume B and C both satisfy PA. Then for any G V -generic for C, letting H =
i−1[G], we get that

HB
ω̇1
[H ] = HV [H]

ω1
≺ HV [G]

ω1
= HC

ω̇1
[G].

Proof. The Corollary is an immediate consequence of the following basic model-
theoretic observation:

Fact 2.11. AssumeM0,M1 and N are L-structures such that the following diagram
is realized:

M0 N

M1

Σω

Σω⊑

Then
M0 ≺M1.

Notice that if K is V -generic for BOrd, G ∈ V [K] is V -generic for C, and H ∈ V [G]
is V -generic for B, we obtain the above configuration:

H
V [H]
ω1 H

V [K]
ω1

H
V [G]
ω1

Σω

Σω⊑

�
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Corollary 2.12. Assume

(V,V) |= MK+ PA+Ord is Mahlo.

TFAE:

(1) Hω1 |= φ(a1, . . . , an).
(2)

q
HB

ω1
|= φ(ǎ1, . . . , ǎn)

y
B
= 1B for some cba B which satisfies PA.

(3)
q
HB

ω1
|= φ(ǎ1, . . . , ǎn)

y
B
= 1B for all cbas B which satisfy PA.

Woodin’s generic absoluteness results for projective sets provide significant strength-
enings of the conclusion of the theorem above in the presence of stronger hypotheses.
The following is a weakening of [14, Theorem 3.1.2] which has the same flavor of
what we have been showing so far:

Theorem 2.13 (Woodin). Assume δ is a Woodin cardinal which is a limit of Woodin
cardinals and B ∈ Vδ is a cba.

Then

HB
ω̇1
≺ HBδ

ω̇1
.

Now observe that the fact whether or not δ is Woodin is detected at stage Vδ+1:

V |= δ is a Woodin cardinal ⇐⇒ Vδ+1 |= δ is a Woodin cardinal.

In particular ‘Ord is Woodin’ is expressible in any model of MK.

Corollary 2.14. Assume

(V,V) |= MK + Ord is Woodin + there are class many Woodin cardinals.

Then every B in Ω satisfies PA.
Hence TFAE:

(1) Hω1 |= φ(a1, . . . , an).
(2)

q
HB

ω1
|= φ(ǎ1, . . . , ǎn)

y
B
= 1B for some cba B.

(3)
q
HB

ω1
|= φ(ǎ1, . . . , ǎn)

y
B
= 1B for all cbas B.

We observe the following:

Remark 2.15. The key steps in the proof of the density of

DPA =
{

B : HB
ω̇1
≺ V Coll(ω,<Ord)

}

for the preorder given by the class category (Ω,→Ω) in a model of

MK+Ord is Mahlo

rely on the following crucial properties:

• Coll(ω,<δ) preserves the regularity of δ for any regular cardinal δ and makes
δ the first uncountable cardinal;
• Coll(ω,<δ) ⊑ Coll(ω,<Ord) for all regular cardinals δ;
• any cba B ∈ Vδ embeds as a complete suborder in Coll(ω,<δ) for any inac-
cessible δ;

We want to replicate the above proof pattern for arbitrary classes of forcings Γ
closed under two-step iterations. The guiding idea will be that projective absolute-
ness is just BCFA(Γ) for Γ = Ω, the class of all forcing notions. We will show that for
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a variety of definable classes of forcings Γ there is a (uniformly) definable cardinal
λΓ associated to Γ such that

DΓ =
{

B ∈ Γ : HB

λ̇+
Γ
≺ V Γ↾B

}

is dense in the class forcing induced by the category (Γ,→Γ).
Our analysis of projective absoluteness in the previous section shows that λΩ = ω.
We will focus in section 5 on the analysis of classes Γ for which λΓ = ω1. However,

the machinery we will present below is modular and shows that for any class of
forcings Γ satisfying certain reasonable properties, λΓ is well defined and DΓ is
dense in the class forcing induced by the category (Γ,→Γ).
First of all we need to introduce the terminology and notation required to formu-

late precisely what is meant by the class forcing induced by the category (Γ,→Γ),
by BCFA(Γ), etc.

Notation 2.16. Let i : B→ C be a complete homomorphism of cbas.

ker(i) =
∨

{b ∈ B : i(b) = 0C} ,

coker(i) = ¬ ker(i),

i is a regular embedding if it is injective and complete.
For any b ∈ B

kb :B→ B ↾ b

c 7→ c ∧ b.

ĠB =
{

〈b̌, b〉 : b ∈ B
}

is the canonical B-name for the V -generic filter.

Remark 2.17. All complete homomorphisms i : B → C are of the form i0 ◦ kb with
i0 : B ↾ b→ C a regular embedding and b = coker(i).

Notation 2.18. Let i : B → C a complete homomorphism and κ̇ ∈ VB, δ̇ ∈ VC be
such that

Jκ̇ is a regular uncountable cardinalK
B
= 1B

and r
δ̇ is a regular uncountable cardinal

z
C
= 1C,

where r
î(κ̇) ≤ δ̇

z
= 1C.

We say that
HB

κ̇ ≺ HC

δ̇

if and only if for all τ1, . . . , τn ∈ HB
κ̇ and formulae φ(x1, . . . , xn) without class quan-

tifiers, we have that

i(JHκ̇ |= φ(τ1, . . . , τn)KB) =
r
Hδ̇ |= φ(̂i(τ1), . . . , î(τn))

z
C
.

Here,

î :VB → VC

τ 7→
{

〈̂i(σ), i(b)〉 : 〈σ, b〉 ∈ τ
}
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Our analysis of projective absoluteness covers the situation in which

i : B = RO(Coll(ω,<δ))→ C = RO(Coll(ω,<γ))

is the inclusion, δ < γ are both in C (hence they both force PA), and κ̇ = ω̇B
1 and

δ̇ = ω̇C
1 are the canonical names for the first uncountable cardinal, for B and C,

respectively.

Notation 2.19. Given the standard model (V,V) of MK, a definable class Γ denotes
an element of V defined by a first order formula φΓ(x, aΓ) with aΓ ∈ V and φΓ(x, y)
a formula without class quantifiers.

Note that we allow the free variable x to also take values in V, since one of our
objective will be to infer that φΓ(Γ, a) holds in (V,V,∈) for a wide range of classes
Γ.

Definition 2.20. Let Γ be a definable class of pre-orders.

• (Γ,→Γ) is the category whose objects are cbas in Γ, and whose arrows are
the Γ-correct homomorphisms (not necessarily injective).
• For cbas B,C, we write

– B ≥Γ C if there is a Γ-correct i : B→ C, and
– B ≥∗

Γ C if there is a Γ-correct i : B→ C which is also injective (i.e. i is
regular).

For any ordinal δ, Γδ = Γ ∩ Vδ.

Definition 2.21. Let Γ be a definable class of pre-orders.

• Γ is stable under forcing if for any P ∈ Γ, any pre-orderQ such that RO(P ) ∼=
RO(Q) is also in Γ.
• A complete (not necessarily injective) homomorphism of cbas i : B → C is
Γ-correct ifr

φΓ(C/i[ĠB]
, ǎΓ)

z
B
=

r
C/i[ĠB]

∈ Γ̇
z
B
≥ coker(i).27

• Γ is closed under two-step iterations if C ∈ Γ whenever B ∈ Γ and i : B→ C

is Γ-correct.
• (Γ,→Γ) is the category whose objects are cbas in Γ, and whose arrows are
the Γ-correct homomorphisms (not necessarily injective).
• For cbas B,C, we write

– B ≥Γ C if there is a Γ-correct i : B→ C, and
– B ≥∗

Γ C if there is a Γ-correct i : B→ C which is also injective (i.e. i is
regular).

For any ordinal δ, Γδ = Γ ∩ Vδ.

Remark 2.22. Stability under forcing in Γ asserts that Γ is closed with respect to
the equivalence relation on preorders given by P ∼ Q iff RO(P ) ∼= RO(Q). All the
properties of Γ we are interested in are invariant under this equivalence relation,
and each equivalence class according to ∼ has a canonical representative given by
the unique (modulo isomorphism) cba B belonging to it. In particular, we can
restrict our analysis of Γ concentrating just on its subclass given by the cbas in
it. It will be however sometimes convenient to allow as elements of Γ also partial

27This set-up provides an algebraic expression of the condition that whenever G is V -generic
for C with i(coker(i)) ∈ G and H = i−1[G], C/i[H] is a cba in V [H ] which is in ΓV [H].
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orders P ∈ V which are not cbas but are such that φΓ(P, aγ) holds: specifically,
we will need to infer that for well-behaved classes Γ, Γδ ∈ Γ for many inaccessible
cardinals δ; (Γδ,≤Γ) is a pre-order but not a cba, and it is much simpler to describe
the combinatorial properties of Γδ than those of its boolean completion.

• If (Γ,→Γ) has lower bounds for its finite subsets, then ≤Γ is a trivial forcing
notion since all conditions are compatible.
• For any cba B there is a regular embedding i : B → RO(Coll(ω, δ)) for any
large enough δ; consequently the class (Ω,→Ω) of all cbas and all complete
homomorphisms between them has lower bounds for its finite subsets, hence
≤∗

Ω and ≤Ω are trivial forcing notions.

Definition 2.23. A partial order P is in SSP if for any stationary S ⊆ ω1,

P 
 Š is stationary.

Fact 2.24. (SSP,≤Ω) (hence also (SSP,≤SSP)) is an atomless partial order.

Proof. Assume

• P is Namba forcing on ℵ2,
• Q is Coll(ω1, ω2).

Then RO(P ) and RO(Q) are incompatible conditions in (SSP,≤Ω) (and therefore also in
(SSP,≤SSP)): Assume R ≤SSP RO(P ),RO(Q), and H is V -generic for R. Then

• ω
V [H]
1 = ω1,

• there are G,K ∈ V [H] V -generic filters for P and Q respectively (since R ≤Ω

RO(P ),RO(Q)).

G gives in V [H] a sequence cofinal in ωV
2 of type ω.

K gives in V [H] a sequence cofinal in ωV
2 of type ωV

1 .
Contradiction with the preservation of ω1 in V [H] (which holds since R ∈ SSP).
This argument can be repeated in V B for any B ∈ SSP. �

Remark 2.25. Similar arguments show that ≤Γ defines an atomless partial order for a
variety of Γ ⊆ SSP (for example for Γ being the class of proper posets, or the class of
semiproper posets).

2.2. BCFA(Γ) and how to get it. First of all we define the cardinal λΓ we attach to a
given class Γ of forcing notions. λΓ could actually be Ord. However, in all cases of interest
λΓ will in fact exist as a cardinal. It will be needed to formulate BCFA(Γ) properly (it will
also be a key parameter in the proper formulation of the iteration theorem we will later
require to hold for forcings in Γ).

Definition 2.26. Given a definable class of forcings Γ, λΓ is the supremum of all cardinals
η ∈ V such that all forcings in Γ preserve η.

Remark 2.27. λΩ = ω, λSSP = ω1, and the same holds for all Γ ⊆ SSP such that every
countably closed forcing is in Γ (e.g. the class of proper forcings and the class of semiproper
forcings). It is easy to see that λΓ is either Ord or the maximum of the set of cardinals
of which it is a supremum. We will be interested just in the case in which λΓ is an
uncountable regular cardinal (and the reader can safely assume throughout the paper that
λΓ = ω1).

Definition 2.28. Let (V,V) be the standard model of MK and Γ ∈ V be a definable class
of forcings closed under two-step iterations and such that λΓ ∈ Ord. We say that the
Bounded Category Forcing Axiom for Γ, BCFA(Γ), holds if

Hλ+
Γ
≺ V Γ,
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and

DΓ =
{

B ∈ Γ : HB

λ̇+
Γ
≺ V Γ↾B

}

is dense in (Γ,≤Γ).
28

As we will see, the density of DΓ can be proved right away in MK for many classes of
forcings Γ, hence BCFA(Γ) holds once we force with some element of DΓ.

Assume we have a definable class of forcings (Γ,→Γ) with the following properties.29

• Pretameness: V Γ |= Ord = λ+Γ .

• Factor Lemma: Γ is closed under two-step iterations; therefore30 B ∗ Γ̇ ∼= Γ ↾ B

holds for all cbas B ∈ Γ;
• Self-similarity: For stationarily many inaccessible cardinals α,

– Γ∩Vα = Γα is such that (Γα,≤Γ) ∈ Γ, and (as in the case α = Ord) (Γα,≤Γ)
preserves the regularity of α making it the successor of λΓ, and

– the map B 7→ Γα ↾ B regularly embeds Γα into Γ ↾ Γα.
• Universality: For stationarily many inaccessible cardinals α, every B ∈ Γα regu-
larly embeds into Γα ↾ C for some C ≤Γ B in Γα.

Then we would be able to replicate the same proof pattern we used to establish the
consistency of projective absoluteness replacing Coll(ω,<Ord) by Γ and Coll(ω,<α) by
Γα to infer that

DΓ =
{

B ∈ Γ : HB

λ̇+
Γ
≺ V Γ

}

is dense in (Γ,≤Γ), as witnessed by the forcings Γα ↾ C for α inaccessible with Γα ∈ Γ,
Vα ≺ V , and C ∈ Γα.

We also want to observe some other basic facts concerning the above conditions.

Fact 2.29. Assume Γ is pretame, satisfies the Factor Lemma, the Self-similarity

condition, and the Universality condition. Then whenever K is V-generic for Γ and
C ∈ K, in V [K] there is a V -generic filter for C.

Proof. This is easily granted if C = Γα ∈ K (K∩Vα is V -generic for Γα by self-similarity).
Now assume B ≥Γ Γα ↾ C for some Γα ↾ C ∈ K. Let i : B → Γα ↾ C witness B ≥Γ Γα ↾ C

(i exists by universality). Then i−1[K] ∈ V [K] is V -generic for B. �

The following observation is a first indication that these properties are closely related
to generic absoluteness results and to forcing axioms.

Fact 2.30. Assume Γ is pretame, satisfies the Factor Lemma, the Self-similarity

condition, and the Universality condition. Let B ∈ DΓ, and let H be V -generic for B.
Then

H
V [H]

λ+
Γ

≺Σ1 V [H]C

for all C ∈ ΓV [H].

28Hλ
+

Γ

≺ V Γ means that HV

λ
+

Γ

≺ V [G] for every Γ-generic filter G over V , whereas HB

λ̇
+

Γ

≺ V Γ↾B

means that whenever G is V-generic for Γ ↾ B, in V [G] there is H , V -generic for B, such that

H
V [H]

λ̇
+

Γ

≺ V [G].

29While parsing through these items, the reader should keep in mind the case Γ being SSP or
the class of (semi)proper forcings with λΓ = ω1.

30As we will see below, it will be rather delicate to define Γ̇ and to infer that B ∗ Γ̇ and Γ ↾ B

define equivalent class forcings in V ; this despite the intuition that closure of Γ under two-step
iterations should grant it.
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Proof. Notice that if C ≤Γ B, K is V-generic for Γ, with H ∈ V [K] V -generic for C, and
G ∈ V [H] is V -generic for B, we obtain the configuration:

H
V [G]
λΓ

V [K]

V [H]

Σω

⊑⊑

This gives that any Σ1-property with parameters in H
V [G]
λΓ

true in V [H] remains true in

V [K] and thus reflects to H
V [G]
λΓ

. �

In particular, the elements of DΓ are forcing strong versions of the corresponding
bounded forcing axiom for Γ.

We now give rigorous definitions and outline how to infer the above properties of (Γ,→Γ)
for a wide family of classes of forcings which includes the classes of proper, semiproper,
and SSP forcings.

3. Forcing with forcings: definitions

3.1. The Factor Lemma for Γ. In Subsection 3.4 we will define the notion of absolutely
well-behaved class. One of the things we will prove about such classes is the following.

Lemma 3.1 (The Factor Lemma for Γ). Let 〈V,V〉 |= MK, and let Γ ∈ V be a definable
absolutely well-behaved class of forcings. Let B ∈ Γ and

ΓB =
{

Ċ ∈ VB :
r
φΓ(Ċ, ǎΓ)

z
B
= 1B

}

,

→Γ
B=

{

k̇ ∈ VB :
r
k̇ : Ċ→ Ḋ is Γ-correct

z
B
= 1B

}

.

Then whenever G is V -generic for B, we have that (ΓB)
◦
G = ΓV [G] and (→Γ

B
)◦G = (→Γ)V [G].

Moreover, for any C ≤Γ B fix in V iC : B→ C witnessing this. Then the map:

ΘB :Γ ↾ B→ B ∗ Γ◦
B

C 7→ B ∗ (C/iC[ĠB]
)

defines a dense embedding of (Γ ↾ B,≤Γ) into the class partial order B ∗ Γ◦
B

with order

given by (d, Ḋ) ≤ (c, Ċ) if and only if d ≤B c and
r
∃k̇ : Ċ→ Ḋ Γ-correct

z
B
≥ d.

We defer the proof to Section 4.3. We don’t need the Factor Lemma for any of the
proofs occurring in Sections 3.2, 3.3, 4.1, 4.2. On the other hand, this lemma is needed in
the proof of Theorem 3.14, which will be an easy corollary of all the results obtained in the
above sections combined with the Factor Lemma, and it is also needed in the derivation
of Corollary 4.10.

Despite the apparent self-evidence of the Factor Lemma, its proof requires a careful

formulation and unfolding of the relation existing between elements of ΓV [G] and →ΓV [G]

and their corresponding B-names ΓB,→
Γ
B
. To appreciate the difficulties one may encounter

when proving this lemma, observe that the following set of equalities holds true31 for all

31Given a B-name Ċ ∈ V B for a forcing notion, iĊ : B → RO(B ∗ Ċ), b 7→ 〈b, 1
Ċ
〉 denotes the

canonical embedding of B in the boolean completion of the two-step iteration B ∗ Ċ.
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V -generic filters G for B:

(ΓB)
◦
G =

{

ĊG : Ċ ∈ ΓB

}

=

=
{

ĊG :
r
Ċ ∈ (ΓB)

◦
z
B
= 1B

}

=

=
{

ĊG :
r
Ċ ∈ (ΓB)

◦
z
B
∈ G

}

=

=
{

C/i
Ċ
[G] : C = RO(B ∗ Ċ) and

r
φΓ(Ċ, ǎΓ)

z
B
= 1B

}

=

=
{

C/i[G] : C ∈ Γ ↾ B, i : B→ C is Γ-correct
}

.

Nonetheless, the equality between the terms in the second and third lines is a bit delicate
to prove, and requires a careful reformulation of Cohen’s forcing theorem.

It will be even more delicate to prove the corresponding set of equalities for the canonical

B-name (→Γ
B)

◦ for →ΓV [G]
, and to infer the other desired properties of the B-names (ΓB)

◦,

(→Γ
B
)◦.

3.2. Γ-iterability. There are two further key properties of Γ we need to outline in order to
infer the nice properties for Γ needed to establish the consistency of BCFA(Γ). Formulated
in categorial terms, we need to have that Γ is closed under set sized products and that
many Γ-valued diagrams have a colimit. Formulated in the forcing terminology, we need
the closure of Γ under lottery sums, and an iteration theorem for Γ.

Let’s first focus on the definition of the iterability property for forcings in Γ:

Definition 3.2. Assume Γ is a definable class of pre-orders closed under two-step itera-
tions, and λΓ is a regular uncountable cardinal.32

• Γ has the Baumgartner property if whenever δ is inaccessible and

F = {iαβ : Bα → Bβ : α ≤ β < δ} ⊆→Γ ∩Vδ

is an iteration system with Bα = lim−→F ↾ α ∈ Γ for stationarily many α < δ, then
lim−→F ∈ Γ.
• Γ is iterable if Γ has the Baumgartner property and Player II has a winning
strategy Σ(Γ) in the game G(Γ) of length Ord between players I and II defined
as follows:

– players I and II alternate playing Γ-correct injective homomorphism iα,α+1 :
Bα → Bα+1;

– player I plays at odd stages, player II at even stages (0 and all limit ordinals
are even);

– at stage 0, II plays the identity on the trivial cba 2.
– at limit stages η, II must play33 a Bη ∈ Γ which admits for each α < η a

Γ-correct iαη : Bα → Bη such that iβ,η◦iα,β = iβ,η for all α ≤ β < η; moreover
II must play lim

−→
{Bα : α < η} at stage η if:

∗ either cof(η) = λΓ,
∗ or η is inaccessible and {iαβ : Bα → Bβ : α ≤ β < η} ⊆ Γ ∩ Vη;

– II wins G(Γ) if she can play at all stages.

Remark 3.3.

32The reader may keep in mind λΓ = ω1 and Γ being the class of semiproper forcings while
parsing through the definition.

33lim
−→
{Bα : α < η} is the direct limit of the iteration system given by the maps iγβ : Bγ → Bβ

which are built along the play of G(Γ) (see appendix 6 for the definition of direct and inverse limit
of an iteration system).
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• If Γ has the Baumgartner property, δ > λΓ is inaccessible, and

F = {iαβ : Bα → Bβ : α ≤ β < δ} ⊆→Γ ∩Vδ

is a play of G(Γ), lim−→F ∈ Γ is <δ-CC, since:
– All Bα are <δ-CC having size less than δ, and for all α < δ of cofinality λΓ,

Bα is the direct limit of F ↾ α, and therefore Baumgartner’s theorem 6.10
applies.

– lim−→F ∈ Γ by the Baumgartner property.
In particular, if Γ is closed under two-step iterations but is not iterable, and Σ is
a strategy for player II, a play

F = {iαβ : Bα → Bβ : α ≤ β < δ}

of the game G(Γ) which II cannot win using Σ is such that either
– cof(δ) < δ, or
– cf(δ) = λΓ and lim

−→
(F) /∈ Γ, or

– cf(δ) 6= λΓ and there is no lower bound in Γ to the cbas played in the game
before stage δ, or

– some Bα has size bigger than δ.
Moreover II can always play at successor stages of G(Γ).
• The class Γ of proper forcings is iterable: II plays the identity at all non-limit
stages, the full limit at limit stages of countable cofinality, and the direct limit at
limit stages of uncountable cofinality.
• With slightly more refined strategies one can prove that also the class of semiproper
forcings is iterable, and that so is the class of stationary set preserving forcings
assuming the existence of class many supercompact cardinals. We will address
this issue with more care in Section 5.

3.3. Universality of (Γ,≤Γ) and Γ-rigidity. What conditions grant that (Γ,≤Γ) ab-
sorbs as a complete suborder any set sized P ∈ Γ?

The optimal case is that there is a complete embedding

iB : B→ Γ ↾ B

for a dense set of B ∈ Γ.
If this is the case, take Q ∈ Γ, find B ≤Γ Q in the above dense set and i : Q→ B in →Γ

witnessing this.
Then iB ◦ i : Q→ Γ ↾ B will witness that Γ ↾ B absorbs Q as well.
Now, given B ∈ Γ, we have a natural candidate for a complete embedding iB : B→ Γ ↾ B:

iB :B→ Γ ↾ B

b 7→ B ↾ b.

• iB is order preserving:

If b1 ≤ b0, the map

ib1 :B ↾ b0 → B ↾ b1

c 7→ c ∧ b1

is Γ-correct and witnesses that B ↾ b0 ≥Γ B ↾ b1.
• iB preserves sups:

If {ai : i ∈ I} ⊂ B+ is a maximal antichain in B, the product algebra
∏

i∈I

(B ↾ ai)

(the lottery sum of {B ↾ ai : i ∈ I}) is isomorphic to B, the top element of Γ ↾ B

in (Γ ↾ B,≤Γ).
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• PROBLEM: Does this map preserve incompatibility? In general NO!
Assume B is homogeneous (for example B is the boolean completion of Cohen’s

forcing 2<ω). Assume s, t are incompatible conditions in B; by homogeneity, B ↾ s
is isomorphic to B ↾ t; therefore the incompatible s, t ∈ B are mapped to the
compatible conditions B ↾ s, B ↾ t in (Γ,≤Γ).

To overcome this problem we need to find densely many highly inhomogeneous B ∈ Γ.
Suppose for the moment that the map

iB :B→ Γ ↾ B

b 7→ B ↾ b.

defines a complete embedding (i.e. preserves the incompatibility relation), and pick a
V-generic H for Γ such that B ∈ H. Then G = i−1

B
[H] is V -generic for B.

Suppose now that

{B : iB defines a complete embedding}

is dense in (Γ,≤ Γ). Assume H is V-generic for Γ. Pick Q ∈ H. By density there is B ∈ H
refining Q and such that iB defines a complete embedding of B into Γ ↾ B. Let i : Q→ B

witness B ≤Γ Q. Then K = (iB ◦ i)
−1[H] is V -generic for Q.

In particular we get the following:

Fact 3.4. Assume

EΓ = {B ∈ Γ : iB : b 7→ B ↾ b defines a complete embedding of B into Γ ↾ B}

is dense in (Γ,≤Γ).
Then any V-generic filter H for Γ adds a V -generic filter for any Q ∈ H.

How do we get to the density of EΓ? The key step is to reformulate properly the
condition that iB is a complete embedding.

Definition 3.5. Let Γ be a definable class of cbas closed under two-step iterations, and
let B ∈ Γ. B ∈ Γ is Γ-rigid if for i0, i1 : B→ Q in →Γ we have that i0 = i1.

Remark 3.6. Γ-rigid cbas B are absorbed by (Γ ↾ B,≤Γ) using the map iB : b 7→ B ↾ b. See
the Lemma below.

Lemma 3.7. The following are equivalent characterizations of Γ-rigidity for an algebra
B ∈ Γ:

(1) for all b0, b1 ∈ B such that b0 ∧B b1 = 0B, B ↾ b0 is incompatible with B ↾ b1 in
(Γ,≤Γ).

(2) For every C ≤Γ B and every V -generic filter H for C, there is just one Γ-correct
V -generic filter G ∈ V [H] for B.

(3) For all C ≤Γ B in Γ there is only one Γ-correct homomorphism i : B→ C.

Proof. We prove these equivalences by contraposition as follows:

2 implies 1: Assume 1 fails as witnessed by ij : B ↾ bj → Q for j = 0, 1 with b0
incompatible with b1 in B. Pick H, a V -generic filter for Q. Then Gj = i−1

j [H] ∈
V [H] (for j = 0, 1) are distinct and Γ-correct V -generic filters for B in V [H], since
bj ∈ Gj \G1−j .

1 implies 3: Assume 3 fails for B as witnessed by i0 6= i1 : B → C. Let b be such
that i0(b) 6= i1(b). W.l.o.g. we can suppose that r = i0(b) ∧ i1(¬b) > 0C. Then
j0 : B ↾ b → C ↾ r and j1 : B ↾ ¬b → C ↾ r given by jk(a) = ik(a) ∧ r for k = 0, 1
and a in the appropriate domain witness that B ↾ ¬b and B ↾ b are compatible in
(Γ,≤Γ), i.e. that 1 fails.
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3 implies 2: Assume 2 fails for B as witnessed by some C ≤Γ B, a V -generic filter
H for C, and Γ-correct V -generic filters G1 6= G2 ∈ V [H] for B. Let Ġ1, Ġ2 ∈ V

C

be such that (Ġ1)H = G1 6= (Ġ2)H = G2 are Γ-correct V -generic filters for B

in V [H] for both j = 1, 2. Find q ∈ G forcing that b ∈ Ġ1 \ Ġ2 for some fixed
b ∈ B. Then for some r ∈ H refining q, we have that both homomorphisms

ij = iĠj ,r
: B → C ↾ r defined by a 7→

r
ǎ ∈ Ġj

z
C
∧ r are Γ-correct. However

i1(b) = r = i2(¬b), and hence i1 6= i2 witness that 3 fails for B and C ↾ r.

�

Fact 3.8. The class of Γ-rigid cbas is closed under set-sized products (i.e. lottery sums),
and the restriction operation B 7→ B ↾ b for b ∈ B+.

Proof. We leave to the reader to check that for all b ∈ B+, B ↾ b is Γ-rigid if so is B.
Assume now that {Bi : i ∈ I} is a family of Γ-rigid cbas.
Towards a contradiction, assume kj : (

∏

i∈I Bi) → C are distinct and Γ-correct for
j = 0, 1. if k0 ↾ Bi = k1 ↾ Bi for all i ∈ I, we get that k0 = k1, which is a contradiction.
Hence for some i ∈ I, k0 ↾ Bi 6= k1 ↾ Bi.

Then for some a ∈ Bi, k0(a) 6= k1(a), therefore k0(a)∆k1(a) > 0C. So either k0(a) ∧
k1(¬a) = c > 0C or k1(a) ∧ k0(¬a) = c > 0C. In either cases we get that Bi is not Γ-rigid
as witnessed by the distinct Γ-correct maps (for i = 0, 1) k∗i : b 7→ ki(b) ∧ c with domain
Bi and range C ↾ c. �

Lemma 3.9. Let Γ be closed under set-sized products (i.e. set-sized lottery sums) and
such that the Γ-rigid forcings are dense in (Γ,≤Γ). Assume D is a dense open class of
(Γ,≤Γ).

Then for all B ∈ Γ, there is a Γ-rigid C ≤∗
Γ B and a maximal antichain A of C such

that kC[A] ⊆ D.

Proof. Given B ∈ Γ, find a Γ-rigid C0 ≤Γ B with C0 ∈ D, with k0 : B→ C0 a witness that
C0 ≤Γ B and

b0 = coker(k0).

Then

k0 ↾ b0 :B ↾ b0 → C0

b 7→ k0(b)

is injective and Γ-correct and witnesses B ↾ b0 ≥
∗
Γ C0.

Now find C1 ≤Γ B ↾ ¬b0 Γ-rigid and in D with k1 : B ↾ ¬b0 → C1 a witness that C0 ≤Γ B

and

b1 = coker(k1) ≤ ¬Bb0.

Then k1 ↾ b1 : B ↾ b1 → C1 is injective.
Continuing this way we construct by induction a maximal antichain E = {bα : α < γ}

of B such that for all α < γ there is bα ≤ ¬
∨

β<α bβ, Cα ∈ D, and kα : B ↾ bα → Cα

witnessing Cα ≤
∗
Γ B ↾ bα.

Let

k :B→
∏

α<γ

Cα

b 7→ 〈kα(b ∧ bα) : α < γ〉.

Then C ≤∗
Γ B as witnessed by k, and A = {cα = k(bα) : α < γ} = k[E] is a maximal

antichain of C such that for all α < γ:

• k(bα) = 〈0C0 , . . . , 0Cη , . . . , 1Cα , 0Cα+1 , . . . , 0Cξ
, . . . . . .〉 ∈ A;

• Cα
∼= C ↾ k(bα) = kC(cα) ∈ D.
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Finally notice that C is Γ-rigid, being the lottery sum of Γ-rigid forcings. �

It can also be shown that Γ-rigidity is preserved by passing to generic quotients; i.e.

Assume C ∈ V is Γ-rigid, G is V -generic for B, and i : B → C is a
Γ-correct homomorphism. Then C/i[G] is ΓV [G]-rigid in V [G].

But this fact (which we don’t need) has a very convoluted proof (it essentially amounts
to a different proof of the Factor Lemma), so we omit it.

3.4. Well-behaved classes Γ. We can now give the key definitions and state the main
theorem which will be repeatedly used in Section 5.

Definition 3.10. Let (V,V) be the standard model of MK. Given a definable class of
cbas Γ ∈ V closed under two-step iterations:

• (Γ,≤Γ) is strategically <Ord-closed if λΓ is a regular uncountable cardinal, and Γ
is iterable with an iteration strategy Σ(Γ) definable in the ZFC-model (V,∈).
• Γ is closed under lottery sums if any set-sized product of cbas in Γ is in Γ.
• Γ is closed under isomorphisms if C ∈ Γ whenever B ∈ Γ and C ∼= B.
• Γ is closed under restrictions and complete subalgebras if for every B ∈ Γ:

– for every b ∈ B, the map

kb :B→ B ↾ b

c 7→ c ∧ b

is Γ-correct, and
– any complete subalgebra of B is in Γ.

The following is the key definition of the paper.

Definition 3.11. Assume (V,V) is a model of MK+ Ord is Mahlo.
A definable class Γ is well-behaved in V if:

(1) λΓ is a regular uncountable cardinal.
(2) Γ is closed under isomorphisms, two-step iterations, lottery sums, restrictions, and

complete subalgebras.
(3) For all B ∈ Γ and G V -generic for B, V [G] models that ΓV [G] is strategically

<Ord-closed.
(4) Γ contains as elements all < λΓ-closed forcings.
(5) For all inaccessible cardinals δ > |aΓ| and for all B ∈ Vδ,

Vδ |= φΓ(B, aΓ) if and only if V |= φΓ(B, aΓ).

(6) The Γ-rigid cbas are dense in (Γ,≤Γ).

Γ is absolutely well-behaved if ΓV [G] is well-behaved in V [G] for any V -generic filter G
for some B ∈ Γ.

Remark 3.12. In all classes Γ we will consider, clause 5 in Definition 3.11 will be proved
by showing that Γ can be defined both by a Σ2 formula and by a Π2 formula, possibly
with parameters.

Remark 3.13.

• We will show that SSP, proper, semiproper and many other well-known classes
of forcings contained in SSP are absolutely well-behaved (in some cases assuming
large cardinals in V ).

The key point is that being well-behaved for all these Γ is provable in ZFC (+
large cardinals). The only property of well-behavedness not covered elsewhere in
the literature for these classes of forcings is the density of Γ-rigid forcings.
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• The class Γ given by CCC forcings is not well-behaved; for example it is not closed
under lottery sums (easy), and it does not have Γ-rigid elements (less straightfor-
ward).

The following is one of the main results of this paper.

Theorem 3.14. Assume 〈V,V〉 satisfies

• MK,
• λΓ is a regular uncountable cardinal, and
• Γ is absolutely well-behaved.

Then

V Γ models that Ord is the successor of λΓ.

Moreover, for all inaccessible δ such that Vδ ≺ V :

(1) Γδ ∈ Γ is Γ-rigid, and is such that for all B ∈ Γδ there is C ∈ Γδ such that
Γδ ↾ C ≤Γ B.

Hence the class of Γ-rigid forcings is pre-dense as witnessed by the forcings Γδ

as δ ranges on the inaccessible cardinals with Vδ ≺ V .
(2) Γδ preserves the regularity of δ and forces it to become the successor of λΓ.
(3) If λΓ = ω1, Γδ forces BFA(Γ), and if δ is supercompact, it forces also FAω1(Γ).
(4) For all G V -generic for Γ with Γδ ∈ V [G], letting Gδ = G ∩ Vδ we have that

H
V [Gδ]
(λΓ)+

= Vδ[Gδ ] ≺ V [G] = H
V [G]
(λΓ)+

.

Corollary 3.15. Assume 〈V,V〉 satisfies

• MK,
• Ord is Mahlo,
• λΓ is a regular uncountable cardinal, and
• Γ is absolutely well-behaved.

Then

DΓ =

{

B ∈ Γ : HB

λ̇+
Γ
≺ HΓ↾B

λ̇+
Γ

}

is dense as witnessed by Γδ ↾ C as δ ranges among the inaccessible cardinals γ with

(Vγ ,∈) ≺ (V,∈)

and C among the elements of Γδ.
In particular, for every B ∈ Γ there is some C ≤Γ B such that C forces BCFA(Γ).

The next section is devoted to the proof of Theorem 3.14. We will pay special attention
to giving detailed proofs of 3.14(1) and 3.14(2). The reader familiar with these proofs will
be able to fill in the details needed to prove the remaining assertions of Theorem 3.14.

The key result is 3.14(1).

Notation 3.16. Given a category forcing (Γ,≤Γ) with Γ a definable class of complete
boolean algebras and ≤Γ the order induced on Γ by the Γ-correct homomorphisms between
elements of Γ, we denote the incompatibility relation with respect to ≤Γ by ⊥Γ, and the
subclass of Γ given by its Γ-rigid elements by RigΓ.

4. Forcing with forcings: proofs

4.1. Why Γδ ∈ Γ?

Notation 4.1. Given a Γ-rigid forcing B:

• kB : b 7→ B ↾ b is the canonical embedding of B into Γ ↾ B.
• if C ≤Γ B, kBC denotes the unique Γ-correct homomorphism of B into C.
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Theorem 4.2. Assume Γ is absolutely well-behaved, and δ is inaccessible and such that
Vδ ≺ V . Then Γδ ∈ Γ preserves the regularity of δ making it the successor of λΓ.

Notice that Theorem 4.2 proves Theorem 3.14(1) (except for the assertion that for all
B ∈ Γδ there is C ∈ Γδ such that Γδ ↾ C ≤Γ B) and Theorem 3.14(2).

Proof. Let P δ
Γ be the set of F = {iα,β : Bα → Bβ : α ≤ β < η} subsets of →Γ ∩Vδ such

that:

• F ∈ Vδ is a partial play of Gδ(Γ) according to Σδ(Γ);
• all the moves of I in F are Γ-rigid forcings;
• G ≤ F if G is an end-extension of F .

Since Γ is iterable, it is immediate to check that P δ
Γ is <δ-closed, hence in Γ, since

δ ≥ λΓ and Γ is well-behaved (by clause 3.11(4)).
Moreover, let G = {Bα : α < δ} be (the union of) a V -generic G filter for P δ

Γ. Then G
is an iteration system in V [G], and it is clear that V [G] = V [G].

Since P δ
Γ is <δ-closed, V

V [G]
δ = Vδ ≺ V . In particular δ is inaccessible in V [G], hence

Γ
V [G]
δ = ΓV [G] ∩ V

V [G]
δ = Γ ∩ Vδ

where the equalities hold because of clause 3.11(5) in the definition of well-behaved class
applied in V and in V [G].

Now ΓV [G] is iterable in V [G] (by clause 3.11(3)), hence it has the Baumgartner property
in V [G]. Observe that for all ξ < δ of cofinality λΓ, Bξ is the direct limit of G ↾ ξ, and the

set of such ξ is stationary in δ in V [G] since P δ
Γ is <δ-closed.

By the Baumgartner property of ΓV [G] and Theorem 6.10 applied in V [G], letting BG ∈
V [G] be the direct limit of the iteration system G,

V [G] |= BG is in ΓV [G] and is <δ-CC.

Therefore V |= P δ
Γ ∗ BĠ is in Γ (by clause 3.11(2)) and preserves the regularity of δ,

being a two-step iteration of a <δ-closed forcing with a <δ-CC forcing.

Claim 2. Let H be V [G]-generic for BG. Then

{Bα ↾ f(α) : f ∈ H, α < δ}

is V -generic for Γδ.

By the Claim we get that Γδ ⊑ P
δ
Γ ∗ Ḃ, hence Γδ is in Γ by clause 3.11(2).

Therefore it suffices to prove the Claim to conclude that Γδ is in Γ and preserves the
regularity of δ.

Proof. We leave to the reader to check that

{Bα ↾ f(α) : f ∈ H, α < δ}

is a filter on Γδ. We need to prove that this filter is V -generic.
The key to the proof is the following:

Subclaim 1. For any D dense open subset of Γδ, the set of partial plays F = {Bη : η < α} ∈
P δ
Γ such that there is ξ < α and A maximal antichain of Bξ with

{Bξ ↾ a : a ∈ A} = kBξ
[A] ⊆ D

is dense open in P δ
Γ.

Assume the subclaim holds. Then for D dense open subset of Γδ, there is F =
{Bη : η < α} ∈ G, ξ < α and A maximal antichain of Bξ such that

{Bξ ↾ a : a ∈ A} ⊆ D.
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Now
{f(ξ) : f ∈ H}

is V [G]-generic for Bξ, and A is still a maximal antichain of Bξ in V [G]. Therefore for
some a ∈ A and f ∈ H, f(ξ) ≤ a. Hence Bξ ↾ a ∈ D ∩H, proving the claim.

We prove the subclaim:

Proof. Assume {Bξ : ξ < α} ∈ P δ
Γ and D is dense open in Γδ.

Then {Bξ : ξ < α} is a play according to Σ(Γ). Notice that there is some freedom to
decide what Bξ is only for odd ξ and for B0, because the even stages are decided by the
winning strategy Σ(Γ) for player II. W.l.o.g. (by prolonging {Bξ : ξ < α} if necessary) we
may assume that α is odd so that it is I’s turn to play. This gives that α = β + 1. Then
(by Lemma 3.9) there is Bβ+1 ≤

∗
Γ Bβ which is Γ-rigid and such that some A ⊆ Bβ+1 is a

maximal antichain with kBβ+1
[A] ⊆ D. By definition of P δ

Γ, {Bξ : ξ ≤ β} ∪ {Bβ+1} ∈ P
δ
Γ

and
{

BBβ+1
↾ a : a ∈ A

}

= kBβ+1
[A] ⊆ D.

�

The Claim is proved. �

To conclude the proof of the Theorem, we are left with proving the following.

Claim 3. Γδ makes δ the successor of λΓ.

Proof. Since λΓ is preserved by all forcings in Γ, we get that λΓ is preserved by Γδ. We
also know that δ is a regular cardinal of V [G] whenever G is V -generic for Γδ.

We must show that δ is the successor of λΓ in V [G].

For any ordinal α ≥ λΓ and B ∈ Γ, V models that B ∗ ˙Coll(λΓ, α) ∈ Γ (since Γ contains
all λΓ-closed forcings and is closed under two-step iterations); we easily get (since δ is

inaccessible) that B ∗ ˙Coll(λΓ, α) ∈ Γδ for all λΓ ≤ α < δ.
In particular, for any λΓ ≤ α < δ, the set Dα of C ∈ Γδ which collapse α to have size

λΓ is dense open in Γδ.
Since Vδ ≺ V , also the set RigΓ ∩Dα is dense in Γδ for all α < δ. By Remark 3.6 (and

using Vδ ≺ V ) b 7→ B ↾ b is a complete embedding34 of B into Γδ ↾ B for any B ∈ RigΓ. In
particular, if G is V -generic for Γδ, in V [G] there is a V -generic filter H for some B ∈ Dα

for any α < δ; any such generic filter H adds a surjection of λΓ onto α existing in V [G].
We are done. �

The theorem is proved. �

4.2. Γ-freezeability versus Γ-rigidity. It will be convenient in order to establish that
a certain class is well-behaved to prove that it satisfies a clause weaker than 3.11(6): the
Γ-freezing property.

Definition 4.3. Let Γ be a definable class of cbas closed under two-step iterations, and
B ∈ Γ. A Γ-correct k : B → C is Γ-freezing if for all i0, i1 : C → Q in →Γ we have that
i0 ◦ k = i1 ◦ k (i.e. if the map b 7→ C ↾ k(b) is incompatibility preserving for ≤Γ).

We can give the following characterizations of Γ-freezeability, the proof of which is along
the same lines of the proof of Lemma 3.7 and is left to the reader.

Lemma 4.4. Let k : B→ Q be a Γ-correct homomorphism. The following are equivalent:

(1) For all b0, b1 ∈ B such that b0 ∧B b1 = 0B we have that Q ↾ k(b0) is incompatible
with Q ↾ k(b1) in (Γ,≤Γ).

34We do not as yet say that it is also a Γ-correct embedding; this is indeed the case but to infer
it we need the Factor Lemma, whose proof is not as yet granted.
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(2) For every R ≤Γ Q and every V -generic filter H for R, there is just one Γ-correct
V -generic filter G ∈ V [H] for B such that G = k−1[K] for all Γ-correct V -generic
filters K ∈ V [H] for Q.

(3) For all R ≤Γ Q in Γ and i0, i1 : Q → R witnessing that R ≤Γ Q we have that
i0 ◦ k = i1 ◦ k.

Theorem 4.5. Assume Γ is a definable class of forcings sastisfying clauses 3.11(1),
3.11(2), 3.11(3), 3.11(4), 3.11(5) of Def. 3.11. Assume further that for all B ∈ Γ there is
iB : B→ C injective and Γ-freezing B. Then the class of Γ-rigid partial orders is dense in
(Γ,≤∗

Γ).

Proof. Fix B0 ∈ Γ and ΣλΓ
(Γ) be a winning strategy for player II in GλΓ

(Γ).
Define

F = {kαβ : Bα → Bβ : α ≤ β < λΓ}

by recursion on λΓ as follows:

• at stage 0, II plays k0 : 2→ B0;
• at odd stages α, I plays kα,α+1 : Bα → Bα+1 Γ-correct and injective which freezes
Bα;
• at even stages α, II plays according to ΣλΓ

.

By iterability of Γ, BλΓ
is the direct limit of F and belongs to Γ. Clearly k0λΓ

: B0 → BλΓ

witnesses BλΓ
≤∗

Γ B0. It suffices to prove the following:

Claim 4. BλΓ
is Γ-rigid.

Proof. Assume BλΓ
↾ f is compatible with BλΓ

↾ g in (Γ,≤Γ) for some threads f, g incom-
patible in BλΓ

.
Let R ≤Γ BλΓ

↾ f,BλΓ
↾ g.

Since BλΓ
is a direct limit, f , g are threads with support bounded by some β < λΓ.

Hence: f(α) and g(α) are incompatible 35 in Bα for all λΓ ≥ α ≥ β.
Now kββ+2 freezes Bβ, hence Bβ+2 ↾ kββ+2(f(β)) is incompatible with Bβ+2 ↾ kββ+2(g(β)).
But kββ+2(f(β)) = f(β + 2) and kββ+2(g(β)) = g(β + 2), since both threads f, g have

support at most β. Hence

Bβ+2 ↾ g(β + 2)⊥ΓBβ+2 ↾ f(β + 2).

We reached a contradiction:

• On the one hand, for all α < λΓ:

Bα ↾ f(α) ≥Γ BλΓ
↾ f ≥Γ R,

and
Bα ↾ g(α) ≥Γ BλΓ

↾ g ≥Γ R.

• On the other hand,

Bβ+2 ↾ g(β + 2)⊥ΓBβ+2 ↾ f(β + 2).

�

The theorem is proved. �

Notice the following:

Fact 4.6. Assume Γ ⊆ ∆ are definable classes of forcings. Then ≤Γ⊆≤∆ and ⊥∆ ⊆ ⊥Γ.
Hence, if i : B → C is Γ-correct and ∆-freezes B, we also have that i is ∆-correct and
Γ-freezes B.

35Here we use crucially use that BλΓ
is a direct limit! For inverse limits it is well possible that

two incompatible threads f , g are such that f(α) and g(α) are compatible in Bα for all α.
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This fact will be repeatedly used to show that various classes of forcings ∆ have the
∆-freezeability property providing for some Γ ⊆ ∆ an i : B → C which is Γ-correct and
∆-freezes B. As we will see, all our freezeability results proceed by proving the existence,
given B ∈ Γ, of a B-name Q̇ for a forcing in Γ such that C = B ∗ Q̇ codes the generic filter
ĠB for B as a subset AĠB

of ω1 in some absolute manner, in the sense that in every outer

model M of V C preserving stationary subsets of ω1, AĠB
is the unique subset of P (ω1)

satisfying some given property. It will thus follow that C SSP-freezes B, which will be an
instance of the above since we will always have SSP ⊇ Γ for the Γ of interest to us.

4.3. Proof of the Factor Lemma for a well-behaved Γ.

Notation 4.7. Given a well-behaved Γ, for each R ∈ RigΓ let

kR : R→ Γ ↾ R

be given by r 7→ R ↾ r. Then kR is an order and incompatibility preserving embedding
of R in the class forcing Γ ↾ R which maps maximal antichains to maximal antichains.
Moreover, for every B ≥Γ C with B ∈ RigΓ, let

iB,C : B→ C

denote the unique Γ-correct homomorphism from B into C.

By the results of the previous sections, RigΓ is a dense subclass of Γ and is a separative
partial order. Hence, in order to simplify our calculations slightly, we focus on RigΓ rather
than on Γ when analyzing this class forcing.

Definition 4.8. Given B0 ∈ Γ, fix k0 : B0 → B Γ-freezing B0 and such that B ∈ RigΓ. Let
iC = iB,C ◦ k0 and

k = kB ◦ k0 :B0 → Γ ↾ B

b 7→ B ↾ k0(b)

Given G a V -generic filter for B0, define in V [G] the class quotient forcing

PB0 = ((RigΓ ↾ B)V /k[G],≤Γ /k[G])

as follows:

C ∈ PB0

if and only if C ∈ (RigΓ ↾ B)V and, letting J be the dual ideal of G, we have that 1C 6∈ iC[J ]
(or, equivalently, if and only if coker(iC) ∈ G).

We let

C ≤Γ/k[G]
R

if C ≤Γ R holds in V .

Theorem 4.9. Suppose Γ is absolutely well-behaved. Let B0 ∈ Γ, and let k0 : B0 → B be
a Γ-freezing homomorphism for B0 with B ∈ RigΓ. Set k = kB ◦ k0 and iC = iB,C ◦ k0 for
all C ≤Γ B in Γ.

V

B0 B Γ ↾ B
k0 kB

k

Let G be V -generic for B0. Then:
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(1) The class forcing

PB0 = ((RigΓ ↾ B)V /k[G],≤Γ /k[G])

is in V [G] forcing equivalent to the class forcing

QB = (ΓV [G] ↾ (B/k0[G]),≤ΓV [G])

via the map

i∗ :PB → QB

C 7→ C/iC[G].

V [G]

B0/G B/k[G] (Γ ↾ B)/k[G]

2 ΓV [G] ↾ (B/k0[G])

C

C/iC[G]

k0

∼=

kB

∼=

(2) Moreover let δ > |B| be inaccessible and such that (Vδ ,∈) ≺ (V,∈). Then:

(a) Γ
V [G]
δ ↾ (B/k0[G]) is forcing equivalent in V [G] to (Γδ ↾ B)

V /k[G] via the same
map.

(b) V models that kB : B→ Γδ ↾ B is Γ-correct.

Notice that this theorem proves the missing part of Theorem 3.14(1), i.e. the assertion:

For all B ∈ Γδ there is C ∈ Γδ such that Γδ ↾ C ≤Γ B.

In particular this theorem and Theorem 4.2 give a completely self-contained and detailed
proof of Theorem 3.14(1) and Theorem 3.14(2).

Proof. Part 2a of the theorem follows immediately from its part 1 relativizing every as-
sumption in part 1 to Vδ+1. To prove part 2b, first observe that if B = B0, k0 is necessarily
the identity map, G is V -generic for B, and this gives that (B/k0[G]) is the trivial complete
boolean algebra 2 = {0, 1}, i.e.:

Γ
V [G]
δ ↾ (B/k0[G]) = Γ

V [G]
δ .

Now

• δ is inaccessible in V [G];
• Vδ ≺ V grants that Vδ[G] ≺ V [G], since G ∈ Vδ[G];

hence the set of ΓV [G]-rigid forcings is dense in ΓV [G] ∩ Vδ[G], since it is dense in ΓV [G],

being ΓV [G] well-behaved in V [G]. By Theorem 4.2 applied in V [G], (Γδ)
V [G] ∈ ΓV [G].

By part 2a (applied in Vδ+1[G]) for the case B0 = B (so that k = kB), we get that

(Γδ ↾ B)/kB[G]
∼= (Γδ)

V [G] holds in V [G] for all G V -generic for B. This concludes the proof
of 2b in case B = B0. The desired conclusion 2b for an arbitrary B0 ∈ Γδ follows using the
fact that the set of B ≤Γ B0 in RigΓ is dense in Γδ and applying 2b to all such B.

We are left with proving part 1: Following the notation introduced in 4.8, we let iR
denote the Γ-correct homomorphism iB,R ◦ k0 for any R ≤Γ B, and we let k denote the
map kB ◦ k0 : B0 → Γ ↾ B given by b 7→ B ↾ k0(b).
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Let G be V -generic for B0 and J denote its dual prime ideal. We first observe that in
V [G],

↓ k[J ] = {R ∈ ΓV : ∃q ∈ J R ≤V
Γ B ↾ k0(q)}.

We show that in V [G] the map i∗ is total, order and incompatibility preserving, and
with a dense target. This suffices to prove this part of the theorem.

i∗ is total and with a dense target: By Theorem 6.2, any Q ∈ QB is isomorphic
to C/iC[G] for some C ∈ (Γ ↾ B)V such that 1C /∈↓ iC[J ], since Q is a non-trivial

complete boolean algebra in V [G]. Let in V R ∈ RigΓ refine C in the ≤∗
Γ-order.

We claim that R/iR[G]
refines Q in QB.

Assume towards a contradiction that R/iR[G]
6∈ QB. Then we would get that

1R ∈ iR[J ]. Therefore for any Γ-correct injective u : C → R witnessing that
R ≤∗

Γ C, we would have that iC[J ] = u−1[iR[J ]]. This gives that 1C ∈ iC[J ], and
contradicts our assumption that 1C /∈↓ iC[J ].

Therefore 1R /∈ iR[J ], and

u/J : C/iC[G] → R/iR[G]

witnesses that i∗(R) refines Q in QB. Hence i
∗ has a dense image.

Moreover for any R ∈ PB0 , 1R 6∈ iR[J ], hence R/iR[G] is a non-trivial complete

boolean algebra in ΓV [G]. Thus i∗ is also well defined on all of (RigΓ ↾ B)V /k[G].
i∗ is order and compatibility preserving: Let iQ0Q : Q0 → Q be a Γ-correct

complete homomorphism in V with Q0,Q ∈ PB0 witnessing that Q ≤Γ /k[G]Q0.
This occurs only if 1Q /∈ iQ[J ]. By Lemma 6.5, iQ0Q/J : Q0/iQ0

[J ] → Q/iQ[J ] is

ΓV [G]-correct and witnesses that Q0/iQ0
[J ] ≥Γ Q/iQ[J ] holds in V [G]. This shows

that i∗ is order preserving and maps non-trivial conditions to non-trivial condi-
tions. In particular we can also conclude that i∗ maps compatible conditions to
compatible conditions.

i∗ preserves the incompatibility relation: We prove this by contraposition. As-
sume jh : Qh/iQh

[G]
∼= Rh → Q for h = 0, 1 witness that Q0/iQ0

[G] and Q1/iQ1
[G]

are compatible in (Γ)V [G]. We can assume that Q ∼= C/iC[G].
By Proposition 6.6 applied for both h = 0, 1 to B, iQh

, jh we have that jh = lh/G
for some Γ-correct homomorphism lh : Qh → Ch in V such that:
• lh ◦ iQh

= iCh
for both h = 0, 1,

• C1/iC1[G]
∼= Q ∼= C0/iC0[G]

in V [G],

• 0Ch
6∈ iCh

[G] for both h = 0, 1.
By Proposition 6.4, we can find sj /∈ iCj

[J ] such that C1 ↾ s1 and C0 ↾ s0 are
isomorphic. Without loss of generality we can suppose that Ch ↾ sh = C ∈ Γ. This
gives that (modulo the refinement via sh) lh ◦ iQh

= iC for both h = 0, 1, since
both lh ◦ iQh

factor through k0 which is Γ-freezing B0.
In particular each lh witnesses in V that Qh ≥Γ C and are both such that

1C 6∈ iC[J ]. Find in V R ≤∗
Γ C with R ∈ RigΓ. Then iR[J ] = u◦ iC[J ] for some (any)

Γ-correct injective u : C→ R. Hence 1R 6∈ iR[J ], else 1C ∈ u
−1[iR[J ]] = iC[J ].

This grants that R is a non-trivial condition in (RigΓ ↾ B)V /k[G] refining Qh for
both h = 0, 1.

The proof of the theorem is completed. �

We also obtain the following completeness result as a corollary of Theorems 3.14 and
4.9.

Corollary 4.10. Assume 〈V,V〉 satisfies

• MK,
• λΓ is a regular uncountable cardinal, and
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• Γ is absolutely well-behaved.

Suppose B, C ∈ Γ are such that V B |= BCFA(Γ) and V C |= BCFA(Γ). If G and H are

generic filters over V for, respectively, B and C, then H
V [G]

λ+
Γ

and H
V [H]

λ+
Γ

have the same

theory.

5. Absolutely well-behaved classes

We organize this part of the paper as follows:

• We start giving the necessary definitions in 5.1.
• We state our main results in 5.2. Specifically we assert that there are uncountably
many absolutely well-behaved definable classes of forcing notions with λΓ = ω1,
whose bounded category forcing axioms yield pairwise incompatible theories for
Hω2 (this is incompatibility in first order logic).
• In 5.3 we give the proofs, specifically:

– In 5.3.1 we isolate four types of freezing posets which will be used to establish
the freezeability property.

– In 5.3.2 we present the iteration lemmas that will be used to establish the
iterability property (all of which were already known).

– In 5.3.3 we give the proof that there are ℵ1-many definable classes Γ of forcing
notions which are absolutely well-behaved with λΓ = ω1.

– In 5.3.4 we prove that bounded category forcing axioms for the uncountably
many absolutely well-behaved classes we produced in 5.3.3 yield pairwise
incompatible theories for Hω2 .

5.1. Forcing classes. We will now define the main classes of forcing notions considered
in this paper. Most of these classes are completely standard, but we nevertheless include
their definition here for the benefit of some readers.

Definition 5.1. A poset has the countable chain condition (is c.c.c., for short) if and only
if it has no uncountable antichains.

Given an ordinal ρ, we will call a sequence (Xi)i≤ρ a continuous chain (or a continuous
ρ-chain, if we want to bring in the length) if

• (Xk)k≤i ∈ Xi+1 whenever i+ 1 ≤ ρ and
• Xi =

⋃

k<iXk for every nonzero limit ordinal i ≤ ρ.

An ordinal ρ is said to be indecomposable if ρ = ωτ for some ordinal τ .36 Equivalently,
ρ is indecomposable if ot(ρ\η) = ρ for every η < ρ. 1 is of course the first indecomposable
ordinal.

Definition 5.2. Given a countable indecomposable ordinal ρ, a poset P is ρ-proper if
and only if there is a cardinal θ such that P ∈ Hθ and there is a club D ⊆ [Hθ]

ℵ0 with
the property that for every continuous chain (Ni)i≤ρ of countable elementary submodels
of Hθ containing P and every p ∈ N0 ∩ P, there is an extension q of p such that q is
(Ni,P)-generic for all i ≤ ρ, i.e., for every i ≤ ρ and every dense subset D of P, D ∈ Ni,

q 
P D ∩ Ġ ∩Ni 6= ∅.

Remark 5.3. P is ρ-proper if and only if for every cardinal θ such that P ∈ Hθ there is
such a club D ⊆ [Hθ]

ℵ0 as in the above definition.

ρ-PR denotes the class of ρ-proper posets. We write <ω1-PR to denote the class of those
posets that are in ρ-PR for every indecomposable ρ < ω1. We say that P is proper if it is
1-proper, and denote 1-PR also by PR.

The following is a simple but crucial observation:

36Here, and elsewhere in the remainder of the paper, ωτ denotes ordinal exponentiation.
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Fact 5.4. For any countable indecomposable ordinal ρ, ‘RO(P ) is ρ-proper’ is both a Σ2

property in parameters ρ and ω1 and a Π2 property in the same parameters, and the same
holds for ‘RO(P ) is <ω1-proper’.

Proof. Let θ be large enough such that RO(P ) ∈ Hλ for some λ < θ. Then ‘RO(P ) is
ρ-proper ’ holds in V if and only if it holds in any (some) transitive set X ⊇ Hθ. Hence,
RO(P ) is ρ-proper if and only if there is some regular cardinal θ and some transitive
X ⊇ Hθ such that (X,∈) |= ‘RO(P ) is ρ-proper’.

Now:

• The formulae (X,∈) |= RO(P ) is ρ-proper and X is transitive are ∆1 in the
parameters X, P , ρ, ω1.
• The formula θ is a regular cardinal is Π1 in parameter θ.
• The formula X ⊇ Hθ is Π1 in parameters X, θ since it can be stated as

∀w(|trcl(w)| < θ → w ∈ X),

where trcl(w) is the ∆1-definable operation assigining to the set w its transitive
closure.

It is now easy to check that RO(P ) is ρ-proper is a Σ2 property in parameters ρ and ω1.
We leave it to the reader to check that it is also Π2 in the same parameters. �

Being ρ-proper, for a forcing P, is equivalent to P preserving a certain combinatorial
property: Given a set X, we say that S ⊆ ρ([X]ℵ0) is ρ-stationary if for every club
D ⊆ [X]ℵ0 there is a continuous ρ-chain σ of members of D such that σ ∈ S.

Recalling the standard characterization of properness, the following is not difficult to
see.

Fact 5.5. Given an indecomposable ordinal ρ < ω1, the following are equivalent for every
poset P.

(1) P is ρ-proper.
(2) For every set X, P preserves ρ-stationary subsets of ρ([X]ℵ0); i.e., if S ⊆ ρ([X]ℵ0)

is ρ-stationary, then 
P S is ρ-stationary.

Using the above fact we can prove:

Fact 5.6. For every countable indecomposable ordinals ρ, ρ-PR and <ω1-PR are closed un-
der isomorphisms, two-step iterations, lottery sums, restrictions and complete subalgebras,
and contain all countably closed forcings.

Definition 5.7. A forcing notion P is ρ-semiproper iff there is a cardinal θ such that
P ∈ Hθ for which there is a club D ⊆ [Hθ]

ℵ0 with the property that for every continuous
chain (Ni)i≤ρ of countable elementary submodels of Hθ containing P and every p ∈ N0∩P,
there is an extension q of p such that q is (Ni,P)-semi-generic for all i ≤ ρ. This means
now that for every i ≤ ρ and every P-name α̇ ∈ Ni for an ordinal in ωV

1 , q 
P α̇ ∈ Ni.

Remark 5.8. P is ρ-semiproper if and only if for every cardinal θ such that P ∈ Hθ there
is a club D ⊆ [Hθ]

ℵ0 as in the above definition.

ρ-SP denotes the class of ρ-semiproper posets. Also, we write <ω1-SP to denote the
class of those posets that are in ρ-SP for every indecomposable ordinal ρ < ω1. We say
that P is semiproper if it is 1-semiproper, and denote 1-SP also by SP.

As before we have:

Fact 5.9. ‘RO(P ) is ρ-semiproper’ is both a Σ2 property in parameters ρ and ω1 and a
Π2 property in the same parameters. The same holds for ‘RO(P ) is <ω1-semiproper’.
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Let X be a set such that ω1 ⊆ X. We say that S ⊆ ρ([X]ℵ0) is ρ-semi-stationary if for
every club D ⊆ [X]ℵ0 there are continuous ρ-chains σ = (xi : i ≤ ρ) and σ′ = (x′i : i ≤ ρ)
such that

• σ ∈ S,
• range(σ′) ⊆ D, and
• for each i ≤ ρ, xi ⊆ x

′
i and xi ∩ ω1 = x′i ∩ ω1.

We have the following characterization of ρ-semiproperness (for any given indecompos-
able ρ < ω1).

Fact 5.10. Given an indecomposable ordinal ρ < ω1, the following are equivalent for every
poset P.

(1) P is ρ-semiproper.
(2) P preserves ρ-semi-stationary subsets of ρ([X]ℵ0) for every set X; i.e., if S ⊆

ρ([X]ℵ0) is ρ-semi-stationary, then S remains ρ-semi-stationary after forcing with
P.

Again we get that:

Fact 5.11. For all countable indecomposable ordinals ρ, ρ-SP and <ω1-SP are closed under
isomorphisms, two-step iterations, lottery sums, restrictions and complete subalgebras, and
contain all countably closed forcings.

Definition 5.12. Given a regular cardinal κ ≥ ω1, a poset P preserves stationary subsets
of κ if every stationary subset of κ remains stationary after forcing with P.

SSP denotes the class of partial orders preserving stationary subsets of ω1. More gen-
erally, given a cardinal λ, SSP(λ) denotes the class of partial orders preserving stationary
subsets of κ for every uncountable regular cardinal κ ≤ λ.

Recall that a Suslin tree is an ω1-tree T (i.e., T is a tree of height ω1 all of whose
levels are countable) without uncountable chains or antichains (a subset of T is called
an antichain iff it consists of pairwise incomparable nodes). We will consider the above
properties in conjunction with the preservation of some combination of the two following
properties.

Definition 5.13. A poset P preserves Suslin trees if 
P T is Suslin for every Suslin tree
T in the ground model.

Definition 5.14. A poset P is ωω-bounding iff every function f : ω −→ ω added by P
is bounded by a function g : ω −→ ω in the ground model; i.e., iff for every P-generic
filter G and every f : ω −→ ω, f ∈ V [G], there is some g : ω −→ g, g ∈ V , such that
f(n) < g(n) for all n.

STP denotes the class of all posets preserving Suslin trees and ωω-bounding the class
of ωω-bounding posets.

By the same arguments we gave for ρ-properness one gets:

Fact 5.15. ‘RO(P ) preserves Suslin trees’ and ‘P is ωω-bounding’ are Σ2 properties in
parameters ω1 and ωω, and also Π2 properties in the same parameters. Moreover, STP

and ωω-bounding are both closed under isomorphisms, two-step iterations, lottery sums,
restrictions and complete subalgebras, and contain all countably closed forcings.

In [21, XI] Shelah isolates a property he calls S-condition, and for which he proves the
following.

Lemma 5.16. Assume P is a forcing notion satisfying the S-condition. Then:
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(1) P preserves stationary subsets of ω1;
37

(2) if CH holds, then P adds no new reals.

As shown in [21, XI–4], among the forcing notions satisfying the S-condition are Namba
forcing (and natural variations thereof), all countably closed forcing notions, and the
natural poset which, for a fixed stationary S ⊆ {α < ω2 : cf(α) = ω}, adds an ω1-club
through S with countable conditions.

Given a tree T and a node η of T , let succT (η) denote the set of immediate successors
of η in T . It will be convenient to define the following game PP

p (for a partial order P and
a P-condition p).

Definition 5.17. Given a partial order P such that |P| ≥ ℵ2, G
P is the following game

of length ω between players I and II, with player I playing at even stages and player II
playing at odd stages.

(1) At any given stage n of the game, the corresponding player picks a pair T n,
(pnη )η∈Tn , where T n is a tree consisting of finite sequences of ordinals in |P| without
infinite branches and where (pnη )η∈Tn is a sequence of conditions in P extending p
such that pnν extends pnη in P whenever ν extends η in T n.

(2) If n > 0, then
(a) T n and (pnη )η∈Tn end-extend T n−1 and (pn−1

η )η∈Tn−1 , respectively,

(b) every terminal node in T n−1 has a proper extension in T n, and
(c) every node in T n \ T n−1 extends a unique terminal node in T n−1.

(3) Player I starts by playing T0 = {∅} and p
0
∅ ∈ P.

(4) At any given even stage n > 0 of the game, player I picks, for every terminal node
η of T n−1, a finite sequence νη of ordinals in |P| such that νη extends η properly.
He then builds T n as

T n−1 ∪ {νη ↾ k : k ≤ |νη|, η a terminal node of T n−1}.

Player I also has to choose of course (pnη )η∈Tn in such a way that (1) and (2) are
satisfied.

(5) At any given odd stage n of the game, player II chooses, for every terminal node η
of T n−1, a regular cardinal κnη ∈ [ℵ2, |P|], and builds T n from T n−1 by adding to

T n−1 a next level where, for each terminal node η of T n−1, the set of immediate
successors of η in T n is {ηa〈α〉 : α < κnη}. Player II also has to choose of course
(pnη )η∈Tn in such a way that (1) and (2) are satisfied.

After ω moves, the players have naturally built a tree T =
⋃

n T
n of height ω whose

nodes are finite sequences of ordinals in |P|, together with a sequence (pη)η∈T =
⋃

(pnη )η∈Tn

of P-conditions such that for all nodes η, ν in T , if ν extends η in T , then pν extends pη in P.
Finally, player II wins the game iff for every subtree T ′ of T in V , if |succT ′(η)| = |succT (η)|
for every η ∈ T ′, then there is a condition in P forcing that there is an ω-branch b through
T ′ such that pb↾n ∈ Ġ for all n < ω.

The definition of the S-condition is the following.38

Definition 5.18. A partial order P satisfies the S-condition if and only if |P| ≥ ℵ2 and
player II has a winning strategy σ in the game GPsuch that for every partial run of the
game, the output of σ at any given sequence η ∈ <ω|P| depends only on η, (pη↾k)k≤|η| and
{k < |η| : |succT (η ↾ k)| > 1}, where T denotes the tree built by the players up to that
point.

37See [21, XI–Thm. 3.6]. This theorem says that forcing notions with the S-condition do not
collapse ω1. However, its proof actually establishes that such forcings in fact preserve stationary
subsets of ω1.

38Shelah’s definition is more general, but the present form suffices for our purposes.
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S-cond is the class of complete boolean algebras B satisfying the S-condition.
One has:

Fact 5.19. ‘RO(P ) satisfies the S-condition’ is a Σ2 property in parameter ω2 and also
a Π2 property in the same parameter.
S-cond is closed under isomorphisms, two-step iterations, lottery sums, restrictions and

complete subalgebras, and contains all countably closed forcings.

Proof. As in the case of all other classes dealt with in this section, if RO(P ) ∈ Hθ, then
Hθ |= ‘RO(P ) satisfies the S-condition’ if and only if RO(P ) satisfies the S-condition.

The remaining properties of S-cond other than the closure under complete subalgebras
are left to the reader.

We prove now that S-cond is a class closed under complete subalgebras; it will be con-
venient for this to resort to the algebraic properties of complete injective homomorphisms
with adjoints outlined in Theorem 6.7 of the appendix.

Assume B is a complete subalgebra of some C satisfying the S-condition. Let π : C→ B

be the adjoint map of the inclusion map of B into C. Let σ be the winning strategy for

player II in GC
+
. Define σ′ to be the strategy for player II in GB

+
obtained by the following

procedure:

• Player I and II build partial plays 〈Tn, {bη : η ∈ Tn}〉 in G
B+

and partial plays

〈Tn, {cη : η ∈ Tn}〉 in G
C+

according to these prescriptions:
– for all η ∈ Tn and all n we have that π(cη) = bη;
– for all terminal nodes η ∈ T2n with η = 〈γ0, . . . , γm〉, we have that

cη = bη ∧ c〈γ0,...,γm−1〉;

– 〈T2n+1, {cη : η ∈ T2n+1}〉 = σ(〈T2n, {cη : η ∈ T2n}〉);
• Player II defines σ′(〈T2n, {bη : η ∈ T2n}〉) = 〈T2n+1, {bη : η ∈ T2n+1}〉.

Now assume 〈T, {bη : η ∈ T}〉 is built according to a play of GB
+
in which II follows σ′.

Fix a subtree T ′ ⊆ T as given by the winning condition for II in GB
+
. Given a V -generic

filterH for B, we must find some infinite branch η of T ′ in V [H] such that bη↾n ∈ H for all n.
To find this branch let 〈T, {cη : η ∈ T}〉 be the tree built in tandem with 〈T, {bη : η ∈ T}〉
according to the rules we used to define σ′. Fix G ⊇ H V -generic for C. Since C satisfies
the S-condition, we can find some infinite branch η of T ′ in V [G] such that cη↾n ∈ G for all
n. This gives that bη↾n = π(cη↾n) ∈ H for all n. Hence, in V [G] there is an infinite branch
η of T ′ such that bη↾n ∈ H for all n. Therefore the tree T ∗ = {η ∈ T ′ : bη ∈ H} ∈ V [H] is
ill-founded in V [G]. But then the same is true in V [H] by absoluteness of ill-foundedness.
Finally, any infinite branch of T ∗ witnesses the winning condition for II using σ′ relative
to T, T ′,H.

Since this can be done for all possible choices of T ⊇ T ′ in V with T constructed using
σ′, and for all V -generic filters H for B, we have that B satisfies the S-condition. �

5.2. Incompatible bounded category forcing axioms. In this section we isolate ℵ1-
many classes Γ of forcing notions with λΓ = ω1, all of which are absolutely well-behaved
(in some cases modulo the existence of unboundedly many measurable cardinals), and
which are pairwise incompatible. Our main results are the following.

Theorem 5.20. (1) Each of the following classes Γ is absolutely well-behaved and
such that λΓ = ω1.
(a) PR

(b) PR ∩ STP

(c) PR ∩ ωω-bounding
(d) PR ∩ STP∩ ωω-bounding
(e) ρ-PR for every countable indecomposable ordinal ρ such that 1 < ρ < ω1.
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(f) <ω1-PR
(g) S-cond

(2) Suppose there is a proper class of measurable cardinals. Then each of the following
classes Γ is absolutely well-behaved and such that λΓ = ω1.
(a) ρ-SP for every countable indecomposable ordinal ρ < ω1.
(b) (ρ-SP) ∩ STP for every countable indecomposable ordinal ρ < ω1.
(c) (ρ-SP) ∩ ωω-bounding for every countable indecomposable ordinal ρ < ω1.
(d) (ρ-SP) ∩ STP∩ ωω-bounding for every countable indecomposable ordinal ρ <

ω1.
(e) <ω1-SP
(f) (<ω1-SP) ∩ STP

(g) (<ω1-SP) ∩
ωω-bounding

(h) (<ω1-SP) ∩ STP∩ ωω-bounding

Theorem 5.21. Suppose there is a supercompact cardinal δ such that Vδ ≺ V . Suppose Γ
and Γ′ are any two different classes of forcing notions mentioned in Theorem 5.20. Then
BCFA(Γ) implies ¬BCFA(Γ′).

Remark 5.22. For some choices of Γ and Γ′, the incompatibility of BCFA(Γ) and BCFA(Γ′)
can be proved just assuming the existence of an inaccessible cardinal δ such that Vδ ≺ V ,
or just the existence of an inaccessible δ such that Vδ ≺ V together with the existence of
a proper class of Woodin cardinals.

As will be clear from the proofs, Theorems 5.20 and 5.21 are just selected samples of
a zoo of possibly incompatible instances of BCFA(Γ). In particular, it should be possible
to combine (some of) the classes mentioned in Theorem 5.20 with other classes of forcing
notions, besides STP and ωω-bounding, so long as these classes have a suitable iteration
theory and reasonable closure properties, are both Σ2 definable and Π2 definable, and the
resulting classes contain SSP-freezing posets.

We should point out that the following natural question—in the present context—
remains open.

Question 5.23. Is there, under any reasonable large cardinal, any indecomposable ρ < ω1,
ρ > 1, for which any of the following classes is absolutely well-behaved?

(1) (ρ-PR) ∩ STP

(2) (ρ-PR) ∩ ωω-bounding
(3) (ρ-PR) ∩ STP∩ ωω-bounding
(4) (<ω1-PR) ∩ STP

(5) (<ω1-PR) ∩
ωω-bounding

(6) (<ω1-PR) ∩ STP∩ ωω-bounding

The following question, of a more foundational import, addresses the possibility of there
being absolutely well-behaved classes Γ such that λΓ > ω1.

Question 5.24. Are there, under some reasonable large cardinal assumption, any cardinal
λ ≥ ω2 and any class Γ of forcing notions such that Γ is absolutely well-behaved and such
that λΓ = λ? Are there, again under some reasonable large cardinal assumption, any
cardinal λ ≥ ω2 and any class Γ of forcing notions with λΓ = λ and such that Γ is
absolutely well-behaved and such that BCFA(Γ) is compatible with—or, even, implies—
BCFA(Γ′) for any absolutely well-behaved class Γ′ with λΓ′ = ω1?

5.3. Proof of theorems 5.20 and 5.21.

5.3.1. Four freezing posets. In this section we introduce four instances of SSP-freezing
posets. We feel free to confuse posets with complete boolean algebras, as the context



Incompatible bounded category forcing axioms 39

will dictate which is the correct intended meaning of the concept. When proving SSP-
freezability, we will actually be showing the following sufficient condition (for λ = ω1).

Lemma 5.25. Let λ ≥ ω1 be a cardinal, B a forcing notion, and Ċ a B-name for a forcing
notion. Suppose that p is a set, and that if G is a B-generic filter, then C = ĊG forces
that there is some AG ⊆ λ coding G in an absolute way mod. SSP(λ), in the sense that

there is some Σ1 formula ϕ(x, y, z) such that, if H is a B ∗ Ċ-generic filter over V such
that H ∩ B = G, then

(1) (Hλ+ ;∈,NSλ)
V [H] |= ϕ(G,AG, p), and

(2) in every outer model M of V [H] such that P(λ)V [H] ∩ (NSλ)
M = (NSλ)

V [H], if

(Hλ+ ;∈,NSλ)
M |= ϕ(G0, AG0 , p)

and

(Hλ+ ;∈,NSλ)
M |= ϕ(G1, AG1 , p),

then G0 = G1.

Then the natural inclusion

i : B −→ B ∗ Ċ

SSP(λ)-freezes B.

Proof. Suppose, towards a contradiction, that b0, b1 ∈ B are incompatible, D is a complete
boolean algebra, k0 : (B ∗ Ċ) ↾ b0 −→ D, k1 : (B ∗ Ċ) ↾ b1 −→ D are complete homomor-
phisms, K is D-generic and, for each ǫ ∈ {0, 1}, Hǫ = k−1

ǫ (K) and every stationary subset
of λ in V [Hǫ] remains stationary in V [K]. For each ǫ ∈ {0, 1}, let Gǫ be the filter on B

generated by Hǫ ∩ (B ↾ bǫ), and let Aǫ ⊆ λ be such that

(Hλ+ ;∈,NSλ)
V [Hǫ] |= ϕ(Gǫ, Aǫ, p)

Since

(Hλ+ ;∈,NSκ)
V [K] |= ϕ(G0, A0, p) ∧ ϕ(G1, A1, p),

we have that G0 = G1 by (2). But this is impossible since b0 ∈ G0, b1 ∈ G1, and since b0
and b1 are incompatible conditions in B. �

Our first freezing poset comes essentially from [18].
Given a setX, the Ellentuck topology on [X]ℵ0 is the topology on [X]ℵ0 generated by the

sets of the form [s, Y ], for Y ∈ [X]ℵ0 and s ∈ [Y ]<ω, where [s, Y ] = {Z ∈ [Y ]ℵ0 : s ⊆ Z}.
The following lemma, except for the conclusion that P preserves Suslin trees, is due to

Moore [18]. The conclusion that P preserves Suslin trees is due to Miyamoto [15].

Lemma 5.26. Let X be a set, θ a cardinal such that X ∈ Hθ, and Σ a function with
domain [Hθ]

ℵ0 such that for every countable M 4 [Hθ]
ℵ0 ,

• Σ(M) ⊆ [X]ℵ0 is open in the Ellentuck topology, and
• Σ(M) is M -stationary (meaning that for every function F : [X]<ω −→ X, if
F ∈M , then there is some Z ∈ Σ(M) ∩M such that F“[Z]<ω ⊆ Z).

Let P = PX,θ,Σ be the set, ordered by reverse inclusion, of all countable ⊆-continuous
∈-chains p = (Mp

i )i≤ν of countable elementary substructures of Hθ such that for every
limit ordinal i ≤ ν there is some i0 < i with the property that Mp

k ∩X ∈ Σ(Mp
i ) for all k

such that i0 < k < i.
Then

(1) P is proper, preserves Suslin trees, and does not add new reals.
(2) Whenever G is P-generic over V and MG

i = Mp
i for p ∈ G and i ∈ dom(p),

(MG
i )i<ω1 is in V [G] the ⊆-increasing enumeration of a club of [HV

θ ]ℵ0 and is
such that:
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For every limit ordinal i < ω1 there is some i0 < i with the property that
MG

k ∩X ∈ Σ(MG
i ) for all k such that i0 < k < i.

Remark 5.27. In most interesting cases, the forcing PX,θ,Σ in the above lemma is not
ω-proper.

In [18], Moore defines the Mapping Reflection Principle (MRP) as the following state-
ment: Given X, θ, and Σ as in the hypothesis of Lemma 5.26, there is a ⊆-continuous
∈-chain (Mi)i<ω1 of countable elementary substructures of Hθ such that for every limit
ordinal i < ω1 there is some i0 < i with the property that Mk ∩X ∈ Σ(Mi) for every k
such that i0 < k < i.

It follows from Lemma 5.26 that MRP is a consequence of PFA, and of the forcing
axiom for the class of forcing notions in PR ∩ STP not adding new reals.

We will call a partial order R an MRP-poset if there are X, θ and Σ as in the hypothesis
of Lemma 5.26 such that R = PX,θ,Σ.

Proposition 5.28. Given a forcing notion P, there is P-name Q̇ for a forcing notion
such that

(1) Q̇ is forced to be of the form Coll(ω1,P) ∗ Ṙ, where Ṙ is a Coll(ω1,P)-name for
an MRP-poset, and

(2) P ∗ Q̇ SSP-freezes P, as witnessed by the inclusion map.

Proof. By Lemma 5.25, it suffices to prove that P forces that in V Coll(ω1,P) there is anMRP-
poset Ṙ such that Coll(ω1,P) ∗ Ṙ codes the generic filter for P in an absolute way mod.

SSP in the sense of that lemma. For this, let us work in V P∗Coll(ω1,P). Let ḂG be a subset

of ω1 coding the generic filter for P in some canonical way, let ~C = (Cδ : δ ∈ Lim(ω1)) ∈ V
be a ladder system on ω1 (i.e., every Cδ is a cofinal subset of δ of order type ω), and let
(Sα)α<ω1 ∈ V be a partition of ω1 into stationary sets. Given X ⊆ Y , countable sets of
ordinals, such that Y ∩ ω1 and ot(Y ) are both limit ordinals and such that X is bounded
in sup(Y ), let c(X,Y ) mean

|Cot(Y ) ∩ sup(πY “X)| < |CY ∩ω1 ∩X ∩ ω1|,

where πY is the collapsing function of Y .
Let θ be a large enough cardinal and let Σ be the function sending a countable N 4 Hθ

to the set of Z ∈ [ω2 ∩ N ]ℵ0 such that c(X,ω2 ∩ N) iff the unique α < ω1 such that
N ∩ ω1 ∈ Sα is in BĠ. Now, X = ω2, θ and Σ satisfy the hypothesis of Lemma 5.26

(s. [18]).39 Let R = Pω2,θ,Σ. By Lemma 5.26, R adds (ZĠ
i )i<ω1 , a strictly ⊆-increasing

enumeration of a club of [ωV
2 ]

ℵ0 , such that for every limit ordinal i < ω1, if Z
Ġ
i ∩ ω1 ∈ Sα,

then there is a tail of k < i such that c(ZĠ
k , Z

Ġ
i ) if and only if α ∈ BĠ.

Let κ = ω2, let H be (P ∗ Coll(ω1,P)) ∗ Ṙ-generic, let G = H ∩ P, and let AG be a
subset of ω1 which canonically codes BG and (ZG

i )i<ω1 . If M is any outer model such that
every stationary subset of ω1 in V [H] remains stationary in M , then BG is the unique
subset B of ω1 for which there is, in M , a set A ⊆ ω1 coding B together with an ⊆-
increasing enumeration (Zi)i<ω1 of a club of [κ]ℵ0 with the property that for every limit
ordinal i < ω1, if Zi ∩ ω1 ∈ Sα, then there is a tail of k < i such that c(Zk, Zi) if and only
if α ∈ B. Indeed, If B′ ∈ M were another such set, as witnessed by A′ ⊆ M , α ∈ B∆B′,
and (Z ′

i)i<ω1 ∈ M were an ⊆-increasing enumeration of a club of [κ]ℵ0 with the property
that for every limit ordinal i < ω1, if Z

′
i ∩ ω1 ∈ Sα, then there is a tail of k < i such that

c(Zk, Zi) if and only if α ∈ B′, then we would be able to find some i such that Zi = Z ′
i,

Zi ∩ ω1 ∈ Sα, and such that Zk = Z ′
k for all k in some cofinal subset J of i. But then we

would have that c(Zk, Zi), for all k in some final segment of J , both holds and fails.

39Σ is in essence the mapping used by Moore in [18] to prove that BPFA implies 2ℵ1 = ℵ2.



Incompatible bounded category forcing axioms 41

Finally, it is immediate to see that there is a Σ1 formula ϕ(x, y, z) such that ϕ(G,AG, p)
expresses the above property of G and AG over (Hω2 ;∈)

M for any M as above, for p =

(κ, ~C, (Sα)α<ω1). �

Using coding techniques from [7], one can prove the following stronger version of Lemma
5.28. However, we do not have any use for this stronger form, so we will not give the proof
here.

Lemma 5.29. Given a partial order P there is P-name Q̇ for a partial order with the
following properties.

(1) Q̇ is forced to be of the form Coll(ω1,P) ∗ Ṙ where Ṙ is a Coll(ω1,P)-name for a

forcing of the form Ṙ0 ∗ Ṙ1, where Ṙ0 has the countable chain condition and Ṙ1

is forced to be an MRP-poset.
(2) Suppose b0, b1 ∈ RO(P) are incompatible, B is a complete boolean algebra, and

kǫ : RO(P ∗ Q̇) ↾ bǫ −→ B are complete homomorphisms for ǫ ∈ {0, 1}. Then B

collapses ω1.

Our second freezing poset comes from [23, Section 1], where the following is proved,
using a result of Todorčević from [22].

Lemma 5.30. There is a sequence ((Kξ
0 ,K

ξ
1) : ξ < ω1) of colourings of [κ]2, for κ =

cf(2ℵ0), with the property that in any ω1-preserving outer model in which |κ| = ℵ1, if B ⊆
ω1, then there is a c.c.c. partial order R forcing the existence of ℵ1-many decompositions

κ =
⋃

n<ωX
ξ
n, for ξ < ω1, such that for all ξ < ω1:

• for some fixed iξ = 0, 1, Xξ
n is Kξ

iξ
-homogeneous for all n < ω;

• ξ ∈ B if and only if iξ = 0.

Proposition 5.31. Given a forcing notion P, there is P-name Q̇ for a forcing notion
with the following properties.

(1) Letting µ = |P| + cf(2ℵ0), Q̇ is forced to be a forcing of the form Coll(ω1, µ) ∗ Ṙ,
where Ṙ is a Coll(ω1, µ)-name for a c.c.c. forcing.

(2) P ∗Q̇ SSP-freezes P, as witnessed by the inclusion map. In fact, if b0, b1 ∈ RO(P)
are incompatible, B is a complete boolean algebra, and kǫ : RO(P ∗ Q̇) ↾ bǫ −→ B

is a complete homomorphism for ǫ ∈ {0, 1}, then B collapses ω1.

Proof. Let us work in V P∗Coll(ω1, µ). Let ḂG be a subset of ω1 coding the generic filter for

P in some canonical way, let ~K = ((Kξ
0 ,K

ξ
1) : ξ < ω1) be a sequence of colourings of [κ]2,

for κ = cfV (2ℵ0), as given by Lemma 5.30, and let R be a c.c.c. partial order forcing the

existence of ℵ1-many decompositions κ =
⋃

n<ωX
ξ
n such that for all ξ < ω1,

• there is iξ such that [Xξ
n]2 ⊆ K

ξ
iξ

for all n < ω and

• ξ ∈ B if and only if for all n < ω, [Xξ
n]2 ⊆ K

ξ
0 .

Let AG be a subset of ω1 which canonically codes BG and
{

(Xξ
n)n<ω : ξ < ω1

}

. If M

is any outer model in which ωV
1 has not been collapsed, then BG is the unique B ⊆ ω1

for which there is, in M , a set A ⊆ ω1 coding B together with ℵ1-many decompositions
{

(Xξ
n)n<ω : ξ < ω1

}

of κ such that for all n < ω and ξ < ω1, ξ ∈ B if and only if

[Xξ
n]2 ⊆ K

ξ
0 . Indeed, if B

′ ∈M were another such set, as witnessed by A′ ⊆M , ξ ∈ B∆B′,

and ℵ1-many decompositions
{

(Y ξ
n )n<ω : ξ < ω1

}

∈M of κ, then there would be some n

and m such that Xξ
n ∩ Y

ξ
m has more than one element, and is in fact uncountable. But

then, for every s ∈ [Xξ
n ∩ Y

ξ
m]2, we would have that s is both in Kξ

0 and Kξ
1 , which is

impossible.
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Finally, it is immediate to see that there is a Σ1 formula ϕ(x, y, z) such that ϕ(G,AG, p)
expresses the above property of G and AG over (Hω2 ;∈)

M for any M as above, for p =
~K. �

The following principle, as well as Lemma 5.33, are due to Woodin ([30]).

Definition 5.32. ψAC is the following statement: Suppose S and T are stationary and
co-stationary subsets of ω1. Then there are α < ω2 and a club C of [α]ℵ0 such that for
every X ∈ C, X ∩ ω1 ∈ S if and only if ot(X) ∈ T .

The AC-subscript in the above definition hints at the fact that ψAC implies L(P(ω1)) |=
AC (which comes from an argument similar to the one in the proof of Lemma 5.34).

Our third freezing poset is essentially the following forcing for adding a suitable instance
of ψAC by initial segments, using a measurable cardinal κ (i.e., turning κ into an ordinal
α as required by the conclusion of ψAC).

Lemma 5.33. Let κ be a measurable cardinal and let S and T be stationary and co-
stationary subsets of ω1. Let Q = Qκ,S,T be the set, ordered by reverse inclusion, of all
countable ⊆-continuous ∈-chains p = (Mp

i )i≤ν of countable elementary substructures of
Hκ such that for every i ≤ ν, Mp

i ∩ ω1 ∈ S if and only if ot(Mp
i ∩ κ) ∈ T .

(1) Q is <ω1-semiproper, preserves Suslin trees, and does not add new reals.
(2) if G is Q-generic over V and MG

i = Mp
i whenever p ∈ G and i ∈ dom(p), then

(MG
i )i<ω1 is the ⊆-increasing enumeration of a club of [HV

κ ]ℵ0 such that for every
limit ordinal i < ω1, M

G
i ∩ ω1 ∈ S if and only if ot(MG

i ∩ κ) ∈ T .

Proof. The proofs of all assertions, except the fact that Q preserves Suslin trees, are
standard. For the reader’s convenience, we sketch the proof that Q is <ω1-semiproper,
though. We also prove that Q preserves Suslin trees.

We get the <ω1-semiproperness of Q as follows: the main point is that if U is a normal
measure on κ, N is an elementary submodel of some Hθ such that U ∈ N and |N | < κ,
and η ∈

⋂

(U ∩N), then

N [η] := {f(η) : f ∈ N, f a function with domain κ}

is an elementary submodel of Hθ such that N ∩ κ is a proper initial segment of N [η] ∩ κ
(η ∈ N [η] is above every ordinal in N∩κ, and any γ ∈ N [η]∩η is of the form f(η), for some
regressive function f : κ −→ κ in N which, by normality of U , is constant on some set in
U ∩N). If N is countable, then by iterated applications of this construction, taking unions
at nonzero limit stages, one obtains a ⊆-continuous and ⊆-increasing sequence (Nν)ν<ω1

of elementary submodels of Hθ such that N0 = N and such that Nν′ ∩ κ is a proper
end-extension of Nν ∩ κ for all ν < ν ′ < ω1. Since (ot(Nν ∩ κ) : ν < ω1) is then a strictly
increasing and continuous sequence of countable ordinals, we may find, by stationarity of
S and ω1 \ S, some ν < ω1 such that N ∩ ω1 ∈ S if and only if ot(Nν) ∈ T .

This observation yields the <ω1-semiproperness of Q since, given α < ω1 and an ∈-chain
(N ξ)ξ<α of countable elementary submodels of some Hθ such that U , S, T ∈ N0, one can

run the above construction for each N ξ by working inside N ξ+1.
The preservation of Suslin trees can be proved by the following version of the argument

in [15] for showing that MRP-forcings preserve them. Suppose U is a Suslin tree, Ȧ is
a Q-name for a maximal antichain of U , and N is a countable elementary submodel of
some large enough Hθ containing U , Ȧ, and all other relevant objects. By moving to an
ω1-end-extension of N if necessary as in the proof of <ω1-semiproperness, we may assume
that N ∩ ω1 ∈ S if and only if ot(N ∩ κ) ∈ T . Let (un)n<ω enumerate all nodes in U of
height N ∩ ω1. Given a condition p ∈ Q in N , we may build an (N,Q)-generic sequence
(pn)n<ω of conditions in N extending p and such that for every n there is some v ∈ U

below un such that pn+1 forces v ∈ Ȧ. By the choice of N , we have in the end that
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p∗ =
⋃

n pn ∪ {(N ∩ ω1, N ∩ κ)} is a condition in Q extending p. But, by construction of

(pn)n<ω, p
∗ forces Ȧ to be contained in the countable set U ∩N : If u ∈ Ȧ \N , and un is

the unique node of height N ∩ ω1 such that un ≤U u, then un is forced to extend some
node in Ȧ of height less than N ∩ω1, which is a contradiction since Ȧ was supposed to be
a name for an antichain.

It remains to show how to find pn+1 given pn. Working in N , we first extend pn to some
p′n in some suitable dense subset D ∈ N of Q. Since U is a Suslin tree, we have that un
is totally (U,N)-generic, in the sense that for every antichain B of U in N , un extends a
unique node in B. Also, the set E ∈ N of u ∈ U for which there is some v ∈ U below u
and some q ∈ Q extending p′n and forcing that v ∈ Ȧ is dense in U . It follows that we
may find some u ∈ E ∩N below un, as witnessed by some q ∈ Q∩N and some v ∈ U ∩N .
But then we may let pn+1 = q. �

Given a measurable cardinal κ, we will call a partial order R a ψκ
AC

-poset if R is of the
form Qκ,S,T for stationary and co-stationary subsets S, T of ω1.

Proposition 5.34. Given a forcing notion P and a measurable cardinal κ, there is P-
name Q̇ for a forcing notion such that

(1) Q̇ is forced to be of the form Coll(ω1,P) ∗ Ṙ, where Ṙ is a Coll(ω1,P)-name for
a ψκ

AC-poset, and

(2) P ∗ Q̇ SSP-freezes P, as witnessed by the inclusion map.

Proof. Let (Sα : α < ω1) be a partition of ω1 into stationary sets and let T be a stationary

and co-stationary subset of ω1. Working in V P∗Coll(ω1,P), let BĠ 6= ∅ be a subset of ω1

coding Ġ in a canonical way. We may assume that BĠ 6= ω1. Let Ṙ be Qκ,S,T for

S =
⋃

α∈B
Ġ
Sα. By Lemma 5.33, Ṙ adds a club CĠ of [κ]ℵ0 with the property that for

each X ∈ CĠ, X ∩ ω1 ∈
⋃

α∈B
Ġ
Sα if and only if ot(X) ∈ T . Now it is easy to see that

P ∗ Ṙ codes Ġ in an absolute way in the sense of Lemma 5.25. The main point is that
if H is a (P ∗ Coll(ω1, P)) ∗ Ṙ-generic filter, G = H ∩ P, and M is an outer model such
that every stationary subset of ω1 in V [H] remains stationary in M , then in M there is
no B′ ⊆ ω1 such that B′ 6= BG and such that there is a club C of [κ]ℵ0 with the property
that for all X ∈ C, X∩ω1 ∈

⋃

α∈B′ Sα if and only if ot(X) ∈ T . Otherwise, if α ∈ B′∆BG,
then there would be some X ∈ C ∩ CG such that X ∩ ω1 ∈ Sα. But then we would have
that ot(X) is both in T and in ω1 \ T . �

Let us move on now to our fourth freezing poset.
Given cardinals µ < λ with µ regular, let

Sλ
µ = {ξ < λ : cf(ξ) = µ}

Let ~S = (Sα)α<ω1 be a sequence of pairwise disjoint stationary subsets of Sω2
ω , let U ⊆ Sω3

ω

be such that both U and Sω3
ω \U are stationary, and let B ⊆ ω1. Then S~S,U,B is the partial

order, ordered by end-extension, consisting of all strictly ⊆-increasing and ⊆-continuous
sequences (Zν)ν≤ν0 , for some ν0 < ω1, such that for all ν ≤ ν0 and all α < ω1,

• Zν ∈ [ω3]
ℵ0 , and

• if sup(Zν ∩ ω2) ∈ Sα, then sup(Zν) ∈ U if and only if α ∈ B.

The proof of the following lemma appears in [9] essentially.40

Lemma 5.35. Let ~S = (Sα)α<ω1 be a sequence of pairwise disjoint stationary subsets of
Sω2
ω , let U ⊆ Sω3

ω be such that both U and Sω3
ω \ U are stationary, and let B ⊆ ω1. Then

S~S,U,B preserves stationary subsets of ω1, as well as the stationarity of all Sα, and forces

the existence of strictly ⊆-increasing and ⊆-continuous enumeration (Zν : ν < ω1) of a

40See also the argument in the proof of Proposition 5.36 that Q̇ satisfies the S-condition.
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club of [ωV
3 ]

ℵ0 such that for all ν, α < ω1, if sup(Zν ∩ ω
V
2 ) ∈ Sα, then sup(Zν) ∈ U if and

only if α ∈ B.

Proposition 5.36. For every partial order P and for all cardinals κ1 > κ0 ≥ δ ≥ |P|,
if 
P∗Coll(ω1, δ) κ

0 = ω2, 
P∗Coll(ω1, δ) κ
1 = ω3, (Sα)α<ω1 ∈ V is a sequence of pairwise

disjoint stationary subsets of Sκ0

ω , and U ⊆ Sκ1

ω is a a stationary set in V such that Sκ1

ω \U
is also stationary in V , then there is a P ∗Coll(ω1, δ)-name Ḃ for a subset of ω1 such that

(1) P forces Coll(ω1, δ) ∗ Ṡ~S,U,Ḃ to have the S-condition, and such that

(2) P ∗ (Coll(ω1, δ) ∗ Ṡ~S,U,Ḃ) SSP-freezes P, as witnessed by the inclusion map

i : P −→ P ∗ (Coll(ω1, δ) ∗ Ṡ~S,U,Ḃ)

Proof. Working in V P∗Coll(ω1, δ), let (Sα)α<ω1 ∈ V and U ∈ V be as stated, and let BĠ be

a subset of ω1 coding the generic filter G for P in a canonical way. Let Ṙ be a P-name
for Coll(ω1, δ) ∗ Ṡ~S,U,B

Ġ
.

Claim 5. P forces that Ṙ has the S-condition.

Proof. Since Coll(ω1, δ) has the S-condition, it suffices to prove that P ∗Coll(ω1, δ) forces

Ṡ~S,U,Ḃ to have the S-condition. Let us work in V P∗Coll(ω1, δ). Let σ be the following

strategy for player II in GṘ: Whenever it is her turn to play, player II will alternate
between the following courses of action (a), (b) (i.e., she will opt for (a) or (b) depending
on the parity of the finite set {k < |η| : |succT (η ↾ k)| > 1}, with the notation used in
Definition 5.18).

(a) Player II chooses κη = κ0, succT (η) = {ηa〈α〉 : α < κ0}, and (pηa〈α〉)α<κ0

where, for each α < κ0, pηa〈α〉 is a condition extending pη and such that α ∈
⋃

range(pηa〈α〉).

(b) Player II chooses κη = κ1, succT (η) = {ηa〈α〉 : α < κ1}, and (pηa〈α〉)α<κ1

where, for each α < κ1, pηa〈α〉 is a condition extending pη and such that α ∈
⋃

range(pηa〈α〉).

Let now T be the tree built along a run of GṘ in which player II has played according
to σ, let T ′ be a subtree of T such that |succT ′(η)| = |succT (η)| for every η ∈ T

′, and let N
be a countable elementary substructure of some large enough Hθ containing all relevant

objects (which includes our run of GṘ and T ′), such that sup(N ∩κ0) ∈ S0, and such that
sup(N ∩ κ1) ∈ U if 0 ∈ BĠ and sup(N ∩ κ1) /∈ U if 0 /∈ BĠ.

Such an N can be easily found (s. [9]): Indeed, suppose, for concreteness, that 0 ∈ BĠ.
Then, letting F : [Hθ]

<ω −→ Hθ be a function generating the club of countable elementary
submodels of Hθ containing all relevant objects, we may find, using the stationarity of U ,
an ordinal α ∈ U such that the closure X0 of [α]<ω under F is such that X0 ∩ κ

1 = α.
We may of course assume that α > κ0. Since cf(α) = ω, we may pick a countable cofinal
subset Y of α. Using now the stationarity of S0, we may find β ∈ S0 with the property
that the closure X1 of [β ∪ Y ]<ω under F is such that X1 ∩ κ

0 = β. Since cf(β) = ω, we
may now pick a countable subset Z of β. But then, letting N be the closure of Y ∪ Z
under F , we have that sup(N ∩ κ0) = β and sup(N ∩ κ1) = α, and so N is as desired.

Letting (pη)η∈T ′ be the tree of Ṙ-conditions corresponding to T ′, it is now easy to find
a cofinal branch b through T ′ such that for all n < ω, b ↾ n ∈ N , and such that

sup(
⋃

n<ω

(∪ range(pb↾n) ∩ κ
0)) = sup(N ∩ κ0)

and
sup(

⋃

n<ω

(∪ range(pb↾n))) = sup(N ∩ κ1).
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Let

ν = sup{dom(pb↾n) : n < ω}41

and

X =
⋃

n<ω

(∪ range(pb↾n) ∩ κ
1).

It follows now that, letting pb =
⋃

n pb↾n∪{〈ν,X〉}, pb is a condition in Ṙ forcing that pb↾n
is in the generic filter for all n.

�

Going back to V , the proof that P∗(Coll(ω1, δ)∗Ṡ~S,U,Ḃ) SSP-freezes P (as witnessed by

the inclusion map) is very much like the proofs of Propositions 5.28 and 5.34. Suppose H

is a generic filter for P ∗ (Coll(ω1, δ)∗ Ṡ~S,U,Ḃ), G = H ∩P, and M is any outer model such

that every stationary subset of ω1 in V [H] remains stationary in M . Suppose, towards
a contradiction, that in M there is some subset B′ 6= BG of ω1 for which there is an
⊆-increasing and ⊆-continuous enumeration (Z ′

ν : ν < ω1) of a club of [κ1]ℵ0 such that
for all ν, α < ω1, if sup(Z ′

ν ∩ κ
0) ∈ Sα, then sup(Z ′

ν) ∈ U if and only if α ∈ B′. If
α ∈ B′∆BG, there is some ν such that Zν = Z ′

ν and sup(Zν ∩κ
0) ∈ Sα. But then we have

both sup(Zν) ∈ U and sup(Zν) /∈ U .

Finally, the existence of a Σ1 definition—with p = (λ, ~S,U) as parameter—as required
by Lemma 5.25 is easy. �

5.3.2. Iteration Lemmas. We need the following preservation lemmas, due to Shelah ([21,
III, resp. VI], see also [10]).

Lemma 5.37. Suppose ρ < ω1 is an indecomposable ordinal and

(Pα, Q̇β : α ≤ γ, β < γ)

is a countable support iteration such that for all β < γ,


Pβ
Q̇β ∈ ρ-PR

Then Pγ ∈ ρ-PR.

Lemma 5.38. Suppose ρ < ω1 is an indecomposable ordinal and

(Pα, Q̇β : α ≤ γ, β < γ)

is a countable support iteration such that for all β < γ,


Pβ
Q̇β ∈ (ρ-PR) ∩ ωω-bounding

Then Pγ ∈ (ρ-PR) ∩ ωω-bounding.

We will also use the following preservation result due to Miyamoto.

Lemma 5.39. Suppose ρ < ω1 is an indecomposable ordinal and

(Pα, Q̇β : α ≤ γ, β < γ)

is a countable support iteration such that for all β < γ,


Pβ
Q̇β ∈ (ρ-PR) ∩ STP

Then Pλ ∈ (ρ-PR) ∩ STP.

41Incidentally, note that we cannot guarantee that ν = N ∩ ω1.



46 D. ASPERÓ AND M. VIALE

Shelah defines a certain variant of the notion of countable support iteration, which he
calls revised countable support (RCS) iteration. Variants of the notion of RCS iteration
have been proposed by Miyamoto and others (for example a detailed account of RCS-
iterations in line with Donder and Fuchs’ approach is given in [4]).42 In the following, any
mention of revised countable support iteration will refer to either Shelah’s or Miyamoto’s
version.

The first preservation result involving RCS iterations we will need is the following lemma,
proved in [21, XI].

Lemma 5.40. Suppose 〈Pα, Q̇β : α ≤ γ, β < γ〉 is an RCS iteration such that the
following holds for all β < γ.

(1) If β is even, 
Pβ
Q̇β = Coll(2|Pβ |, ω1).

(2) If β is odd, 
Pβ
Q̇β has the S-condition.

Then Pγ has the S-condition.

The following is a well-known result of Shelah.

Lemma 5.41. Suppose ρ < ω1 is an indecomposable ordinal and

(Pα, Q̇β : α ≤ γ, β < γ)

is a revised countable support iteration such that for all β < γ,


Pβ
Q̇β ∈ ρ-SP

Then Pγ ∈ ρ-SP.

We will also need the following lemmas due to Miyamoto [16, 17].

Lemma 5.42. Suppose CH holds, ρ < ω1 is an indecomposable ordinal, and

(Pα, Q̇β : α ≤ γ, β < γ)

is a revised countable support iteration such that for all β < γ,


Pβ
Q̇β ∈ (ρ-SP) ∩ ωω-bounding

Then Pγ ∈ (ρ-SP) ∩ ωω-bounding.

Lemma 5.43. Suppose ρ < ω1 is an indecomposable ordinal and

(Pα, Q̇β : α ≤ γ, β < γ)

is a revised countable support iteration such that for all β < γ,


Pβ
Q̇β ∈ (ρ-SP) ∩ STP

Then Pγ ∈ (ρ-SP) ∩ STP.

5.3.3. Absolutely well-behaved classes.

Lemma 5.44. The following classes Γ are absolutely well-behaved and such that λΓ = ω1.

(1) ρ-PR for every countable indecomposable ordinal ρ.
(2) <ω1-PR
(3) PR ∩ STP

(4) PR ∩ ωω-bounding
(5) PR ∩ STP∩ ωω-bounding

42It is not clear whether these notions are equivalent in any reasonable sense.
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Proof. Given any of these classes Γ, all conditions in the definition of absolutely well-
behaved class—except for the fact that Γ has the Γ-freezability property—are clearly
satisfied for Γ. In particular, Γ is defined by both a Σ2 property and a Π2 property by
Fact 5.4,43 it is closed under isomorphisms, two-step iterations, lottery sums, restrictions
and complete subalgebras, and it contains all countably closed forcings by Fact 5.6. The
iterability property follows from Lemmas 5.37, 5.38 and 5.39: the winning strategy for
player II is to play the countable support limit at all limit stages (notice that at stages of
cofinality ω1 this limit is the direct limit). As to the freezability property, it turns out that
Γ has in fact the SSP-freezability property. This follows immediately from Proposition
5.28 together with Lemma 5.26 for PR, as well as for the classes in (3), (4) and (5), and
from Proposition 5.31 for ρ-PR, for any given indecomposable ordinal ρ < ω1 such that
ρ > 1, and for <ω1-PR. Finally, it is clear that λΓ = ω1 holds for each of these classes
Γ. �

We move on now to our first class not contained in PR.

Lemma 5.45. S-cond is an absolutely well-behaved class Γ with λΓ = ω1.

Proof. Let Γ = S-cond. Except for the freezability condition, all conditions in the defini-
tion of absolutely well-behaved class are clearly satisfied by Γ: Γ is defined by both a Σ2

property and a Π2 property, it is closed under isomorphisms, two-step iterations, lottery
sums, restrictions and complete subalgebras, and it contains all countably closed forcings
by Fact 5.19. The iterability condition follows immediately from Lemma 5.40: the win-
ning strategy for player II is to play the revised countable support limit at all limit stages
(notice that at stages of cofinality ω1 this limit is the direct limit), and to play at all non-

limit stages α+ 2n the algebra Bα+2n = Bα+2n−1 ∗ Ċ, where Ċ is a Bα+2n−1-name for the
boolean completion of Coll(ω1, 2

|Bα+2n−1|). As to the freezability condition, we have that
S-cond has in fact, by Proposition 5.36, the SSP-freezability condition—which implies the
Γ-freezability condition by Lemma 5.16 (1). Finally, it is clear that λΓ = ω1. �

Lemma 5.46. Suppose there is a proper class of measurable cardinals. Given any inde-
composable ordinal ρ < ω1, each of the following classes Γ is absolutely well-behaved and
such that λΓ = ω1.

(1) ρ-SP
(2) (ρ-SP) ∩ STP

(3) (ρ-SP) ∩ ωω-bounding
(4) (ρ-SP) ∩ STP∩ ωω-bounding

Also, each of the following classes is ω1-suitable with respect to the same theory.

(1) <ω1-SP
(2) (<ω1-SP) ∩ STP

(3) (<ω1-SP) ∩
ωω-bounding

(4) (<ω1-SP) ∩ STP∩ ωω-bounding

Proof. Each of these Γ is defined both by a Σ2 property and by a Π2 property by Fact 5.9,
and is closed under preimages by complete injective homomorphisms, two-step iterations
and products, and contains all countably closed forcings by Fact 5.11. The iterability
condition for each of these classes follows from (some combination of) Lemmas 5.41, 5.42,
and 5.43: the winning strategey for player II is to play the revised countable support limit
at all limit stages (notice that at stages of cofinality ω1 this limit is the direct limit). The
freezability condition follows from Lemma 5.33, together with Proposition 5.34 (for the
case ρ = 1, one could as well invoke Lemma 5.26 together with Proposition 5.28 instead).
Finally, the fact that λΓ = ω1 is again immediate. �

43By Remark 3.12 this is enough to guarantee clause (5) in the definition of well-behaved class.
And of course the same applies in the proofs of Lemmas 5.45 and 5.46.
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The standard proof, due to Shelah ([20]), that SPFA implies SSP = SP actually shows
the following.

Proposition 5.47. FA((<ω1-SP) ∩ STP∩ ωω-bounding) implies SSP = SP.

Proof. This follows from the fact that the natural semiproper forcing QP (s. [20]) such
that an application of FAℵ1({QP}) yields the semiproperness of a given SSP P is in fact
<ω1-semiproper, does not add new reals, and preserves Suslin trees. The proof of the
first two assertions is straightforward, and the preservation of Suslin trees follows by an
argument as in the final part of the proof of Lemma 5.33. �

Corollary 5.48. Suppose FA((<ω1-SP) ∩ STP∩ ωω-bounding) holds. Then:

(1) BCFA(SSP) holds iff BCFA(SP) does.
(2) BCFA(SSP ∩ STP) holds iff BCFA(SP ∩ STP) does.
(3) BCFA(SSP ∩ ωω-bounding) holds iff BCFA(SP ∩ ωω-bounding) does.
(4) BCFA(SSP ∩ STP∩ ωω-bounding) holds iff BCFA(SP ∩ STP∩ ωω-bounding) does.

5.3.4. Pairwise incompatibility of BCFA(Γ) for absolutely well-behaved Γ. Each one of the
incompatibilities contained in Theorem 5.21 follows from two or more of the lemmas in
this subsection put together.

Given an ordinal α < ω2, a function g : ω1 −→ ω1 is a canonical function for α if there
is a surjection π : ω1 −→ α and a club C ⊆ ω1 such that for all ν ∈ C, g(ν) = ot(π“ν). Let
Club Bounding denote the following statement: For every function f : ω1 −→ ω1 there is
some α < ω2 such that {ν < ω1 : f(ν) < g(ν)} contains a club whenever g is a canonical
function for α.

Lemma 5.49. Suppose δ is an inaccessible cardinal such that Vδ ≺ V . Let Γ be any
absolutely well-behaved class, defined with a parameter in Vδ, and such that λΓ = ω1.
Suppose Γ ⊆ PR holds after forcing with Add(ω1, 1). If BCFA(Γ) holds, then Club Bounding
fails.

Proof. To see that Club Bounding fails in V , we first force with Add(ω1, 1). Let G be

the corresponding generic filter. We then force with Γ
V [G]
δ . By Theorem 3.14, it holds in

V [G] that Γ
V [G]
δ forces BCFA(Γ). Also, it is immediate to check that G adds a function

f : ω1 −→ ω1 such that

{X ∈ [α]ℵ0 : X ∩ ω1 ∈ ω1, ot(X) < f(X ∩ ω1)}

is a stationary subset of [α]ℵ0 for every ordinal α. Since every proper forcing will preserve

the stationarity of these sets and since Γ
V [G]
δ is proper in V [G] by our assumption, it follows

that Club Bounding fails in (V [G])Γδ . Since the failure of Club Bounding is expressible

over Hω2 , and since we have that HV Γδ

ω2
= HV Add(ω1,1)∗Γ̇δ

ω2
≺ HV Γ

ω2
and HV

ω2
≺ HV Γ

ω2
, it follows

that Club Bounding fails in V . �

Lemma 5.50. BFAℵ1((<ω1-PR) ∩
ωω-bounding) implies that there are no Suslin trees.

Proof. Suppose, towards a contradiction, that T is a Suslin tree and the forcing axiom
BFAℵ1((<ω1-PR)∩

ωω-bounding) holds. Without loss of generality we may assume that T
is a normal Suslin tree. We have that T is a c.c.c. forcing which is ωω-bounding as in fact
it does not add new reals. But forcing with T adds an ω1-branch through T . Hence, by
BFAℵ1(T ), T has an ω1-branch and so it is not Suslin, which is a contradiction. �

Recall that d is the minimal cardinality of a family F ⊆ ωω with the property that for
every f : ω −→ ω there is some f ∈ F such that g(n) < f(n) for a tail of n < ω.

Lemma 5.51. Suppose δ is an inaccessible cardinal such that Vδ ≺ V . Let Γ be any
absolutely well-behaved class, defined with a parameter in Vδ, and such that λΓ = ω1.
Suppose Γ ⊆ ωω-bounding. If BCFA(Γ) holds, then d = ω1.
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Proof. We know that Γδ forces BCFA(Γ), and collapses (2ℵ0)V to ℵ1. Since Γ ⊆
ωω-bounding,

we thus have that V Γδ |= d = ω1 . But ‘d = ω1’ is expressible over Hω2 , and therefore
V |= d = ω1 by the same absoluteness argument as in the proof of Lemma 5.49. �

Lemma 5.52. BFAℵ1((<ω1-PR) ∩ STP) implies d > ω1.

Proof. This is immediate since Cohen forcing, being countable, preserves Suslin trees. �

Lemma 5.53. Suppose BFAℵ1((<ω1-SP) ∩ STP∩ ωω-bounding) holds and there is a mea-
surable cardinal. Then ψAC holds, and therefore Club Bounding holds as well.

Proof. BFAℵ1((<ω1-SP) ∩ STP∩ ωω-bounding) implies ψAC by Lemma 5.33. To see that
ψAC implies Club Bounding, see for example Fact 3.1 in [3]. �

The following lemma is an immediate consequence of Lemma 5.53.

Lemma 5.54. Suppose δ is an inaccessible cardinal such that Vδ ≺ V . Suppose there is a
proper class of measurable cardinals. Let Γ be an absolutely well-behaved class with λΓ = ω1

defined from a parameter in Vδ and such that (<ω1-SP)∩ STP∩
ωω-bounding ⊆ Γ holds in

any generic extension by a member of Γ. If BCFA(Γ) holds, then ψAC , and therefore also
Club Bounding, hold as well.

Proof. Γδ forces BFAℵ1(Γ) and therefore also BFAℵ1((<ω1-SP)∩STP∩
ωω-bounding). Hence,

HV Γδ

ω2
|= ψAC by Lemma 5.53. But then V |= ψAC by the usual absoluteness argument. �

Remark 5.55. The conclusion, in Lemma 5.54, that Club Bounding holds is equiconsistent
with the existence of an inaccessible limit of measurable cardinals [8]. In fact, if there is
no inner model with an inaccessible limit of measurable cardinals, then Club Bounding
fails.

Lemma 5.56 follows trivially from the fact that BFAℵ1(<ω1-PR) implies MAω1 .

Lemma 5.56. BFAℵ1(<ω1-PR) implies 2ℵ0 = 2ℵ1 .

A partial order P is said to have the σ-bounded chain condition if P =
⋃

n<ω Pn and for

each n there is some kn < ω such that for every X ∈ [Pn]
kn there are distinct p, p′ ∈ Pn

which are compatible in P. Also, a partial order P is Knaster if every uncountable subset
of P contains an uncountable subset consisting of pairwise compatible conditions in P.

It is easy to see, and a well-known fact, that random forcing preserves Suslin trees. This
follows from the fact that random forcing has the σ-bounded chain condition, that every
forcing with the σ-bounded chain condition is Knaster, and that every Knaster forcing
preserves Suslin trees.

Lemma 5.57 follows from the above, together with the fact that random forcing is
ωω-bounding and adds a new real.

Lemma 5.57. BFAℵ1((<ω1-PR) ∩ STP∩ ωω-bounding) implies ¬CH.

Lemma 5.58. Suppose δ is an inaccessible cardinal such that Vδ ≺ V . Let Γ be any
absolutely well-behaved class, defined with a parameter in Vδ, and such that λΓ = ω1.
Suppose Γ ⊆ S-cond holds after forcing with Add(ω1, 1). If BCFA(Γ) holds, then so does
CH.

Proof. Let G be Add(ω1, 1)-generic, and note that V [G] satisfies CH. Then force BCFA(Γ)
over V [G] via Γδ. Let V1 be this extension. Since, in V [G], Γδ has the S-condition, forcing

with Γ
V [G]
δ over V [G] did not add new reals thanks to Lemma 5.16 (2). In particular,

V1 |= CH. But then CH holds in V by the usual absoluteness argument. �

It tuns out that BCFA(Γ), where Γ is any absolutely well-behaved class such that λΓ = ω1

and Γ ⊆ S-cond holds after adding a Cohen subset of ω1 actually implies ♦. The proof is
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essentially the same as above, using the following recent result due to Magidor, together
with the fact that if V ⊆ V1 ⊆W are models with the same ω1 and ~X ∈ V is a ♦-sequence
in W , then ~X is also a ♦-sequence in V1.

Theorem 5.59. (Magidor) Suppose ♦ holds. Then there is a ♦-sequence that remains a
♦-sequence after any forcing with the S-condition.

The following well-known fact can be proved by an argument as in the final part of the
proof of Lemma 5.33.

Fact 5.60. If P is countably closed, then P preserves Suslin trees.

The proof of the following lemma is like the proofs of Lemmas 5.49, 5.51, and 5.58,
using the well-known fact that Add(ω1, 1) adds a Suslin tree T .

Lemma 5.61. Suppose δ is an inaccessible cardinal such that Vδ ≺ V . Let Γ be any
absolutely well-behaved class, defined with a parameter in Vδ, and such that λΓ = ω1.
Suppose Γ ⊆ STP holds after forcing with Add(ω1, 1). If BCFA(Γ) holds, then there is a
Suslin tree.

It will be convenient to consider the following families of Club-Guessing principles on
ω1 (s. [1]).

Definition 5.62. Let τ < ω1 be a nonzero ordinal.

(1) τ -TWCG denotes the following statement: There is a a sequence

~C = (Cδ : δ = ωτ · η for some nonzero η < ω1)

such that |{Cδ ∩ γ : γ < ω1}| ≤ ℵ0 for every δ ∈ dom( ~C), and such that for every

club C ⊆ ω1 there is some δ ∈ dom( ~C) with ot(Cδ ∩ C) = ωτ .
(2) τ -TCG denotes the following statement: There is a a sequence

~C = (Cδ : δ = ωτ · η for some nonzero η < ω1)

such that |{Cδ ∩ γ : γ < ω1}| ≤ ℵ0 for every δ ∈ dom( ~C), and such that for every

club C ⊆ ω1 there is some δ ∈ dom( ~C) with Cδ ⊆ C.

In the above definition, TWCG and TCG stand for thin weak club-guessing and thin
club-guessing, respectively.

Lemma 5.63. Let τ < ω1 be a nonzero ordinal. Then

BFAℵ1((ω
τ -PR) ∩ STP∩ ωω-bounding)

implies the failure of τ ′-TWCG for every τ ′ such that τ < τ ′ < ω1.

Proof. Let us consider the following natural forcing P ~C for killing an instance

~C = (Cδ : δ = ωτ · η for some nonzero η < ω1)

of τ ′-TWCG: P ~C is the set, ordered by reverse end-extension, of countable closed subset

c of ω1 such that ot(Cδ ∩ c) < ωτ ′ for every δ ∈ dom( ~C). It is proved in [1] that P ~C
is

ωτ -proper, does not add new reals, and adds a club C ⊆ ω1 such that ot(Cδ ∩ C) < ωτ ′

for every δ ∈ dom( ~C). Hence, it only remains to prove that P ~C preserves Suslin trees.
This can be shown by an argument similar to the main argument in the proof in [15]
that MRP-posets preserve Suslin tree. We present the argument here for the reader’s
convenience.

Suppose U is a Suslin tree, Ȧ is a Q-name for a maximal antichain of U , and N is a
countable elementary submodel of some large enough Hθ containing U , Ȧ, and all other
relevant objects. Let δ = N ∩ ω1. As in the last part of the proof of Lemma 5.33, let
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(un)n<ω enumerate all nodes in U of height δ. Given a condition c ∈ P ~C ∩ N , we aim to
build an (N,P ~C)-generic sequence (cn)n<ω of conditions in N extending c such that for

every n there is some v ∈ U below un such that cn+1 forces v ∈ Ȧ. We will make sure that
Cδ ∩

⋃

n<ω cb ⊆ c, which will guarantee that c∗ =
⋃

N<ω cn ∪ {δ} ∈ P ~C . But this will be

enough, as then c∗ will be an extension of c in P ~C forcing Ȧ ⊆ U ∩N .
It thus remains to show how to find cn+1 given cn. Working in N , we may first fix

some countable M 4 Hχ (for some large enough χ) containing cn and all other relevant
objects (including some relevant dense set D ⊆ P ~C that we need to meet), and such that
[η, δM ] ∩ Cδ = ∅, where δM = M ∩ ω1. In order to find M , we first consider a strictly
⊆-increasing and continuous sequence (Mν)ν<ω1 ∈ N of elementary submodels containing

all relevant objects. Since (Mν ∩ω1)ν<δ is a club of δ of order type δ and ot(Cδ) = ωτ ′ < δ,
we can then find some ν < δ such that M = Mν is as desired. Now, working in M , we
may, first, extend cn to a condition c′n such that max(c′n) > η and [max(cn), η] ∩ c

′
n = ∅,

and then extend c′n to a condition c′′n in D. Let now ū be the unique node in U below un
of height δM . Since U is a Suslin tree, we have that un is totally (U,M)-generic. Also, the
set E ∈ N of u ∈ U for which there is some v ∈ U below u and some c̄ ∈ P ~C

extending

c′′n and forcing that v ∈ Ȧ is dense in U . It follows that we may find some u ∈ E ∩M
below un, as witnessed by some c̄ ∈ P ~C

∩N and some v ∈ U ∩M . But then we may let
cn+1 = c̄. �

Lemma 5.64. Suppose δ is an inaccessible cardinal such that Vδ ≺ V . Let Γ be any
absolutely well-behaved class, defined with a parameter in Vδ, and such that λΓ = ω1.

Let τ < ω1 be a nonzero ordinal, and suppose Γ ⊆ ωτ -SP holds in any generic extension
by countably closed forcing. If BCFA(Γ) holds, then so does τ -TCG.

Proof. By a result in [31], there is a countably closed forcing notion adding a τ -TCG-
sequence. The rest of the argument is as in the proof of Lemma 5.49 (and subsequent
lemmas), using the preservation of τ -TCG-sequences by any ωτ -semiproper forcing, which
is a completely standard fact. �

5.4. Bounded category forcing axioms and stronger large cardinal assumptions.

As we know, the theory of Hω2 given by the bounded category forcing axioms we have
explored in this section is invariant, in the presence of reasonable large cardinals, relative
to extensions via members in the corresponding class forcing CFA(Γ). In this final subsec-
tion we show that the combinatorial theory of Hω2 given by these axioms is nevertheless
sensitive to additional background large cardinal assumptions.44

Recall that δ12 is the supremum of the the set of lengths of ∆1
2-definable pre-well-

orderings on R.

Proposition 5.65. Suppose δ is an inaccessible cardinal such that Vδ ≺ V . Suppose there
is a proper class of Woodin cardinals. Let Γ be any absolutely well-behaved class, defined
with a parameter in Vδ, such that λΓ = ω1 and Γ ⊆ PR. Suppose BCFA(Γ) holds. Then
δ12 < ω2.

Proof. By a result of Neeman and Zapletal [19], the existence of a proper class of Woodin
cardinals yields that if P is a proper poset and G is P-generic over V , then the identity
on L(R)V is an elementary embedding between L(R)V and L(R)V [G]. Since Γδ is proper,
it follows that V Γδ |= δ12 < ω2. Since ‘δ12 < ω2’ is expressible over Hω2 , we then have that
V |= δ12 < ω2 by the usual absoluteness argument. �

Recall that the Strong Reflection Principle (SRP) is the following assertion: For every
set X such that ω1 ⊆ X and every S ⊆ [X]ℵ0 there is a strong reflecting sequence (xi)i<ω1

44See also Remark 5.55.
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for S, i.e., xi ∈ [X]ℵ0 , (xi)i<ω1 is strictly ⊆-increasing and ⊆-continuous, and for all i,
xi /∈ S if and only if there is no y ∈ S such that xi ⊆ y and y ∩ ω1 = xi ∩ ω1.

Lemma 5.66. FAℵ1(SP ∩ STP∩ ωω-bounding) implies δ12 = ω2.

Proof. We have that FAℵ1(SP ∩ STP∩ ωω-bounding) implies SRP since, given S ⊆ [X]ℵ0 ,
the standard forcing for adding a strong reflecting sequence for S is semiproper, does not
add reals, and preserves Suslin trees, where the last fact follows from an argument as in
the final part of the proof of Lemma 5.33. Also, SRP implies ¬�κ, for every cardinal
κ ≥ ω1, and hence implies that the universe is closed under sharps. Since it also implies
the saturation of NSω1 , by a classical result of Woodin ([30]) it implies δ12 = ω2. �

Corollary 5.67. Suppose δ is a supercompact cardinal such that Vδ ≺ V . Let Γ be any
absolutely well-behaved class, defined with a parameter in Vδ, such that λΓ = ω1 and such
that SP ∩ STP∩ ωω-bounding ⊆ Γ forces in every generic extension via any member from
Γ. Suppose BCFA(Γ) holds. Then δ12 = ω2.

Proof. We know that Γδ forces FAℵ1(Γ) and therefore, by our assumption, it also forces
FAℵ1(SP∩ STP∩

ωω-bounding). But then V |= δ12 = ω2 by Lemma 5.66 together with the
usual absoluteness argument. �

Question 5.68. Does FAℵ1(ω-SP) imply δ12 = ω2?

6. Appendix

We collect here a few results (without proofs) translating the approach to forcing and
iterations via posets to that done via complete boolean algebras; for details see the forth-
coming [4] or [29] (the latter is available on ArXiv).

Given a boolean algebra B and a prefilter G on B (i.e., a family such that
∧

F >
0B for all finite F ⊆ G), we denote by B/G the quotient algebra obtained using the

ideal J = {b : b ∧ c = 0B for all c ∈ G}. B+ denotes the positive elements of B and ĠB =
{

〈b̌, b〉 : b ∈ B
}

is the canonical B–name for the V –generic filter.

Theorem 6.1. Assume (P,≤) is a partial order. Let RO(P ) denote the family of regular
open sets for the topology τP whose open sets are the downward closed subsets of P . The
function ip : P → RO(P ) given by iP : p 7→ Reg (↓ p) (where ↓ p = {q ∈ P : q ≤ p} and
Reg (A) is the interior of the closure of A for the topology generated by the sets ↓ p) is
an order and incompatibility preserving map of (P,≤) into RO(P )+ with image dense in
RO(P )+, and is such that p 
P φ(τ1, . . . , τn) if and only if iP (p) ≤ Jφ(τ1, . . . , τn)KRO(P ).

6.1. Two-step iterations. Given Ċ, a B-name for a forcing notion, by B ∗ Ċ we intend
the two-step iteration as defined in [13, Section VIII.5] (or, equivalently—when Ċ is a
B-name for a cba—according to [12, Lemma 16.3], which is actually more in line with the
approach pursued in [4] or [29]). To simplify notation we also feel free to confuse (in some
occasions) a partial order with its boolean completion.

Theorem 6.2. If i : B → C is an injective complete homomorphism of complete boolean
algebras, then

B ∗ (C/i[ĠB]
) ∼= C.

Conversely, if Q̇ ∈ V B is a B-name for a complete boolean algebra and G is V -generic
for B, then

(B ∗ Q̇)/i
B∗Ċ

[G]
∼= Q̇G.
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Proposition 6.3. Let Ċ0, Ċ1 be B-names for complete boolean algebras, and let k̇ be a
B-name for a complete homomorphism from Ċ0 to Ċ1. Then there is a complete homo-
morphism i : B ∗ Ċ0 → B ∗ Ċ1 such that

r
k̇ = i/ĠB

z
= 1B.

Moreover if k̇ is a B name for an injective homomorphism, i is injective.

In the following diagrams we assume G is V -generic for B.

V [G] :

(Ċ0)G

(Ċ1)G

(k̇)G V :

B B ∗ Ċ0

B ∗ Ċ1

i

i0

i1
V [G] :

(B ∗ Ċ0)/i0[GB]

(B ∗ Ċ1)/i1[GB]

(Ċ0)G

(Ċ1)G

(k̇)Gi/GB

∼=

∼=

Proposition 6.4. Let G be V -generic for B, I be its dual ideal, and ij : B → Cj be
complete homomorphisms for j = 0, 1.

Assume C0/i0[G] and C1/i1[G] are isomorphic complete boolean algebras in V [G].

V [G] :V :

B C0

C1

i0

i1

C0/i0[G]

C1/i1[G]

k ∼=

Then C0 ↾ i0(b) and C1 ↾ i1(b) are isomorphic in V for some b ∈ G and k ∼= l/G.

V [G] :

C0 ↾ i0(b)/i0[G]

C1 ↾ i1(b)/i1[G]

C0/i0[G]

C1/i1[G]

l/G ∼=

=

=

k ∼=

V :

B C0

C1

i0

i1

C0 ↾ i0(b)

C1 ↾ i1(b)

l ∼=

rest

rest

Lemma 6.5. Assume Γ is a definable class of forcings. Let B, C0, C1 be complete boolean
algebras, and let G be any V -generic filter for B. Let i0, i1, j be Γ-correct complete homo-
morphisms in V forming a commutative diagram of injective complete homomorphisms of
complete boolean algebras as in the following picture:

B C0

C1

i0

i1
j

Then in V [G], j/G : C0/G → C1/G is still a ΓV [G]-correct complete homomorphism.

Proposition 6.6. Assume Γ is a definable class of forcings. Let G be V -generic for some
complete boolean algebra B. Assume k : B → R is a Γ-correct homomorphism in V and
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h : R/k[G] → Q is a Γ-correct homomorphism in V [G].

B RV :
k

R/k[G]

Q

V [G] :

h

Then there are in V :

• C ∈ Γ,
• a Γ-correct homomorphism l : B→ C,
• a Γ-correct homomorphism h̄ : R→ C,

such that:

• Q is isomorphic to C/l[G] in V [G],

• h̄/G ∼= h (modulo the isomorphism of Q with C/l[G]) holds in V [G],

• h̄ ◦ k = l holds in V ,
• 0C 6∈ l[G].

B R

C

V :
k

h̄
l

2 ∼= B/G R/k[G]

C/l[G] ∼= Q

V [G] :

h̄/G∼=h

k/G∼=Id

l/G∼=Id

6.2. Limit length iterations.

Theorem 6.7. Assume i : B → C is a complete injective homomorphism of complete
boolean algebra. Then the following holds:

(1) i has an adjoint πi : C→ B defined by πi(c) =
∧

{b ∈ B : i(b) ≥ c}
(2) For any b ∈ B and c, d ∈ C, we have that:

(a) πi is order preserving;
(b) (πi ◦ i)(b) = b, hence πi is surjective;
(c) (i ◦ πi)(c) ≥ c; in particular, πi maps C+ to B+;
(d) πi preserves joins, i.e., πi(

∨

X) =
∨

πi[X] for all X ⊆ C for which the supre-
mum

∨

X exists in C;
(e) i(b) =

∨

{e : πi(e) ≤ b};
(f) πi(c ∧ i(b)) = πi(c) ∧ b =

∨

{πi(e) : e ≤ c, πi(e) ≤ b};
(g) πi preserves neither meets nor complements whenever i is not surjective, but

πi(d ∧ c) ≤ πi(d) ∧ πi(c) and πi(¬c) ≥ ¬πi(c).

Definition 6.8. F = {iαβ : Bα → Bβ | α ≤ β < λ} is a complete iteration system of
complete boolean algebras iff for all α ≤ β ≤ γ < λ:

(1) Bα is a complete boolean algebra and iαα is the identity on it;
(2) iαβ is a complete injective homomorphism and παβ : Bβ → Bα, given by c 7→

∧

{b ∈ B : iαβ(b) ≥ c}, is its associated adjoint;
(3) iβγ ◦ iαβ = iαγ .

Let F be a complete iteration system of length λ. Then:
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• The inverse limit of the iteration is

lim←−(F) =

{

f ∈
∏

α<λ

Bα : ∀α∀β > α (παβ ◦ f)(β) = f(α)

}

and its elements are called threads.
• The direct limit is

lim−→(F) =
{

f ∈ lim←−(F) : ∃α∀β > α f(β) = iαβ(f(α))
}

and its elements are called constant threads. The support of a constant thread,
supp(f), is the least α such that (iαβ ◦ f)(α) = f(β) for all β ≥ α.
• The revised countable support limit is45

lim
rcs

(F) =
{

f ∈ lim
←−

(F) : f ∈ lim
−→

(F) ∨ ∃α f(α) 
Bα cof(λ̌) = ω̌
}

.

Theorem 6.9. Assume
{

Pα, Q̇β : α ≤ λ, β < λ
}

is an iteration of posets. Let iαβ :

RO(Pα) → RO(Pβ) be the complete homomorphism induced by the natural inclusion of
Pα into Pβ . Then:

• F = {iα,β : α ≤ β < λ} is an iteration system of complete injective homomor-
phisms of complete boolean algebras.
• If λ = ω, lim←−(F) is isomorphic to the boolean completion of the full limit of
{

Pα, Q̇β : α ≤ λ, β < λ
}

.

• For any regular λ, lim−→(F) is isomorphic to the boolean completion of the direct

limit of
{

Pα, Q̇β : α ≤ λ, β < λ
}

.

Theorem 6.10 (Baumgartner). Let λ be a regular cardinal and F = {iαβ : α ≤ β < λ} be
an iteration system such that Bα is <λ-cc for all α and S =

{

α : Bα
∼= RO(lim−→(F ↾α))

}

is stationary. Then lim
−→

(F) is <λ-cc.

These results suffice to prove all the needed equivalences (used in this paper) between
results on forcing and iterations proved in the language of partial orders and their corre-
sponding formulation in terms of complete boolean algebras.
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