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in Obsessive-Compulsive Disorder: Evidence
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ABSTRACT
BACKGROUND: A recent hypothesis has suggested that core deficits in goal-directed behavior in obsessive-
compulsive disorder (OCD) are caused by impaired frontostriatal function. We tested this hypothesis in OCD patients
and control subjects by relating measures of goal-directed planning and cognitive flexibility to underlying resting-
state functional connectivity.
METHODS: Multiecho resting-state acquisition, combined with micromovement correction by blood oxygen level–
dependent sensitive independent component analysis, was used to obtain in vivo measures of functional
connectivity in 44 OCD patients and 43 healthy comparison subjects. We measured cognitive flexibility (attentional
set-shifting) and goal-directed performance (planning of sequential response sequences) by means of well-validated,
standardized behavioral cognitive paradigms. Functional connectivity strength of striatal seed regions was related to
cognitive flexibility and goal-directed performance. To gain insights into fundamental network alterations, graph
theoretical models of brain networks were derived.
RESULTS: Reduced functional connectivity between the caudate and the ventrolateral prefrontal cortex was
selectively associated with reduced cognitive flexibility. In contrast, goal-directed performance was selectively
related to reduced functional connectivity between the putamen and the dorsolateral prefrontal cortex in OCD
patients, as well as to symptom severity. Whole-brain data-driven graph theoretical analysis disclosed that striatal
regions constitute a cohesive module of the community structure of the functional connectome in OCD patients as
nodes within the basal ganglia and cerebellum were more strongly connected to one another than in healthy control
subjects.
CONCLUSIONS: These data extend major neuropsychological models of OCD by providing a direct link between
intrinsically abnormal functional connectivity within dissociable frontostriatal circuits and those cognitive processes
underlying OCD symptoms.

Keywords: Cognitive flexibility, Frontostriatal circuits, Functional connectivity, Goal-directed planning, Obsessive-
compulsive disorder, Resting state
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Persistent intrusive thoughts and repetitive actions character-
ize the symptoms of obsessive-compulsive disorder (OCD).
Over and above these often highly specific clinical symptoms
is a general tendency toward poor performance on tasks
requiring flexible behavior (1–3). Preclinical and clinical evi-
dence indicates the integrity of the basal ganglia and their
connections with the frontal cortex to be crucial in enabling the
affective, cognitive, and motor flexibility necessary for goal-
directed behavior (4,5). These data are thus broadly consistent
with a leading neural model implicating frontostriatal circuits in
the pathogenesis of OCD (6–8). However, this model has not
been clearly linked to underlying cognitive or psychological
& 2016 Society of Biological Psychiatry. This is an open access a
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processes mediated by this circuitry. This link has recently
been provided by a major hypothesis concerning OCD (9,10),
which postulates that OCD symptoms arise from impairments
in goal-directed behavior, leading to autonomous habitual
behavior as a consequence of functional imbalances in
frontostriatal circuitry (11,12).

Resting-state activity derived from functional magnetic reso-
nance imaging (fMRI) enables inference of the strength of func-
tional connectivity between different brain regions. OCD patients
exhibit hyperconnectivity of ventrolimbic corticostriatal regions
that correlates with symptom severity as well as hypoconnectivity
of the caudate and putamen with cortical areas (13). However, the
rticle under the
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behavioral significance of this pattern of functional connectivity is
yet to be established.

Here, we focused on attentional set-shifting (cognitive
flexibility) as well as goal-directed planning. Deficits in these
executive functions represent candidate endophenotypes for
the disorder (14,15) and have been related to OCD symptoms
(16). Planning is measured as the ability to attain a goal via a
prepared series of actions controlled by a single instrumental
contingency (17). OCD patients are impaired in this goal-
directed capacity, especially at more demanding levels (18).
Compared with control subjects, OCD patients exhibit
decreased functional activation of the dorsolateral prefrontal
cortex (PFC), caudate, and putamen during planning (19),
consistent with other behavioral data suggesting an imbalance
between the control exerted by goal-directed and habit
systems over behavioral output in OCD (12,20).

We hypothesized that impairment of frontostriatal circuitry
entailing caudate and putamen and separate regions of PFC likely
disrupts implementation of flexible goal-directed behavior in OCD
patients. Notwithstanding overlap (21), the existence of topo-
graphic projections of different PFC regions to striatal regions in
monkeys (4,21) and humans (22) suggests that separate frontos-
triatal circuits are implicated in regulating cognitive control and
aspects of executive functioning (4). Thus, a lateral circuit including
the ventrolateral PFC has been suggested to mediate switches in
behavioral set (23–25) with a dorsolateral PFC circuit being related
to goal-directed planning (26). On the basis of its PFC inputs, the
ventral striatum has alternatively been implicated in affective
control and reward processing (27).

We used resting state to investigate functional connectivity in
OCD patients and to overcome limitations of task-related studies in
which case-control differences in activation might be the result of
task performance, effort, or strategy rather than the reflection of
underlying core abnormalities. Moreover, the topography of net-
works arising from synchronous spontaneous functional activity is
compatible with the underlying structural connectivity and consists
of regions known to share common functions (28). We leveraged
on a novel multiecho acquisition method with significantly increa-
sed signal-to-noise ratio and two complementary analytical appro-
aches. First, we formulated specific a priori hypotheses and used
seed-based analysis to test whether dysregulated resting-state
connectivity arising from caudate and putamen accounted for
impairments in cognitive flexibility and executive planning. We
hypothesized that if functional abnormalities in these circuits were
relevant to OCD, then we should find specific patterns of altered
connectivity being associated with cognitive flexibility and goal-
directed planning in patients. Consistent with previous evidence
(23–26), we predicted that ventrolateral and dorsolateral PFC
circuits would mediate cognitive flexibility and goal-directed plan-
ning, respectively. To overcome the limitation of exclusively focus-
ing on a priori regions, the second approach applied a whole-brain
data-driven graph theoretical analysis to identify novel features of
abnormal brain network organization in OCD patients (29).
METHODS AND MATERIALS

Participants

The study included 87 participants, consisting of 44 OCD
patients and 43 healthy control subjects matched for relevant
Biological P
demographic variables (Table 1, Supplement). The OCD
sample included 27 medicated and 17 unmedicated patients;
all but one of the medicated patients were taking selective
serotonin reuptake inhibitors (Supplement). OCD patients
reported higher levels of depressive symptoms and anxiety,
although well below clinical threshold (Table 1). Unless other-
wise reported, there were no differences between medicated
and unmedicated OCD patients in the results presented.

Procedure

Imaging Procedure. For resting-state data acquisition, we
used multiecho planar sequence with improved signal-to-
noise ratio (see Supplement for imaging variables). Partic-
ipants were instructed to lie quietly with their eyes open and
attend to a centrally presented white fixation cross on a black
projection screen for 10 minutes; we monitored their degree of
alertness by asking to complete the Stanford Sleepiness Scale
(30) ruling out differences in levels of arousal across partic-
ipants (Supplement).
Behavioral Testing Procedure. To elucidate the behav-
ioral significance of the functional abnormalities within fron-
tostriatal circuits in OCD patients, in a separate session
outside the scanner, the same participants were tested with
objective and well-validated CANTAB paradigms. We used the
intra-/extradimensional set shift (IED) and the One Touch
Stockings of Cambridge (OTS) to measure cognitive flexibility
and goal-directed planning, respectively. The IED is a nine-
stage task, and the rule for correct responding is modified at
the start of each stage. For the IED, crucial stages are the
intradimensional shift (IDs) testing for the ability to generalize a
rule to new stimuli and the extradimensional shift (EDs) testing
cognitive flexibility as the ability to shift attention to a
previously irrelevant dimension. On the OTS, planning abilities
are tested at different difficulty levels with problem difficulty
varying from 1 to 6 moves (see Supplement for description of
the paradigms).

Image Preprocessing

Imaging data were preprocessed and analyzed using Analysis
of Functional NeuroImages (AFNI) software (31). To denoise
the data, we used a novel integrated procedure taking
advantage of multiecho acquisition in combination with
Multi-Echo Independent Component Analysis (ME-ICA) (AFNI
tool meica.py, version 2.5 beta10) (32). The rationale behind
ME-ICA is to classify sources of variance in the fMRI time-
series scaling linearly with echo-time and thus confidently
regarded as indicative of blood oxygen level–dependent
(BOLD) contrast (Supplement). The retained independent
components, representing BOLD contrast, were optimally
recomposed and visually inspected (see Supplemental
Figure S1 for a representative subject). According to multiple,
complementary indices, patients and control subjects did not
differ for movement in the scanner; there were no significant
groups differences in the number of high- versus low-motion
subjects in each group or in the number of BOLD components
retained or motion as measured by framewise displacement
(Table 1).
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Table 1. Demographic and Clinical Characteristics and Imaging Motion Assessment of the Studied Sample

Variable CTL (n 5 43) OCD (n 5 44)

Statistic

χ2 t df p Value

Demographic and Clinical Characteristics

Sex, male/female 22/21 21/23 0.103 1 .749

Hand, right/left 38/5 38/6 0.079 1 .778

Age, years 37.51 6 12.05 36.14 6 10.71 0.563 85 .575

Education, years 16.49 6 3.81 15.77 6 3.21 0.948 85 .346

Estimated verbal IQa 115.18 6 6.14 112.73 6 7.20 1.704 85 .092

OCI-R 4.56 6 4.34 33.64 6 11.79 215.198 85 .000

MADRS 0.77 6 1.32 8.41 6 5.29 29.189 85 .000

STAI-state 26.95 6 7.83 42.16 6 10.31 27.734 85 .000

STAI-trait 33.23 6 7.74 54.98 6 8.96 212.103 85 .000

Y-BOCS total — 22.00 6 5.31

Y-BOCS obsessions — 10.95 6 3.22

Y-BOCS compulsions — 11.02 6 2.66

Onset, years — 13.39 6 7.63

Age at diagnosis, years — 24.02 6 7.09

Duration of disease, years — 12.11 6 9.44

Imaging Motion Assessment

FD 0.11 6 .05 0.13 6 0.09 21.873 85 .065

Motion, high/lowb 19/24 24/20 0.934 1 .333

BOLD components 23.05 6 6.42 24.68 6 8.01 21.050 85 .297

Values are mean 6 SD or n/n.
BOLD, blood oxygen level–dependent; CTL, control subjects; FD, framewise displacement; MADRS, Montgomery–Åsberg Depression Rating

Scale (59); OCD, obsessive-compulsive disorder patients; OCI-R, Obsessive-Compulsive Inventory-Revised (60); STAI, State-Trait Anxiety
Inventory (61); Y-BOCS, Yale-Brown Obsessive Compulsive Scale (62).

aEstimated verbal IQ was measured with the National Adult Reading Test.
bMedian split of the main cohort of 87 subjects according to a measure of total motion computed as the sum of FD (32).
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Data Analysis

Behavioral Analysis. On the IED task, dependent meas-
ures at each stage were the number of subjects passing and
the number of errors. Data were square root-transformed to
stabilize variance and to reduce skewness in the distribution.
On the OTS task, we measured the mean number of attempts
made before obtaining the correct solution for easy (1–3
moves) and hard (4–6 moves) levels of difficulty (significance
threshold, p , .025) (18). Data were statistically analyzed using
χ2, analysis of variance, Student’s t test, and the Mann-
Whitney U test to detect group differences between control
subjects and OCD patients. Only the 44 OCD patients were
included for Pearson’s correlations between clinical scales
and measures of tasks yielding significant group differences.
Image Analysis. We tested differences in functional connec-
tivity strength between OCD patients and control subjects from a
priori anatomical regions of interest based on the known neuro-
biological profile of OCD and previous findings in the literature
(11,13). We examined connectivity from the dorsal caudate (DCd),
putamen (PUT), and nucleus accumbens (NAc), defined in both
hemispheres as 3-mm radial spheres located at Montreal Neuro-
logical Institute coordinates automatically provided by the AFNI-
supplied atlas, namely, DCd: 6 12 6 14 [labeled as the body
of the caudate and analogous to the dorsal striatal seed
previously described in the literature (13)]; PUT: 6 24 0 3;
NAc: 6 12 8 28.
710 Biological Psychiatry April 15, 2017; 81:708–717 www.sobp.org/j
Based on evidence of caudate and putamen involvement in
executive functions, we tested the a priori hypothesis that
dysregulated functional connectivity from the DCd and PUT
selectively accounted for impairment on relevant cognitive
domains in OCD patients. For the OCD patients only, we used
number of errors on the EDs stage and mean number of
problems attempted at the hardest level of difficulty (6 moves)
of the OTS task as a covariate of interest, to identify brain
regions for which significant connectivity with DCd and PUT
was significantly related to cognitive flexibility and goal-directed
planning. Post hoc analyses investigated NAc connectivity
relation with cognitive performance and clinical scores.

ME-ICA denoised data were entered in 3dGroupInCorr to
estimate functional connectivity: time-series were extracted
from each dataset averaging locally per the seed’s radius and
connectivity maps computed with Pearson’s correlation; Fish-
er’s r-to-z transform for the appropriate degrees of freedom
(i.e., number of BOLD components identified for each subject)
was used to derive standard scores. Whole-brain analyses
were conducted in combination with cluster-based correction.
We applied voxel-level height threshold of p , .01 and used
3dClustSim to determine the corrected p values that corre-
sponded to the resulting clusters (Supplement).

Network Analysis. To perform data-driven network analy-
sis, for each subject, time-series were extracted by averaging
voxel time-series within each of equal-sized cortical and
subcortical defined regions (nodes) (see Supplement for
ournal
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parcellation template and detailed procedure). Analysis focused on
data at frequency interval 0.049–0.101 Hz at 10% cost, which is
compatible with prior studies (33). We identified modular com-
munity structure, which is a feature of many complex networks,
including nervous system. The identification of modules, subsets
of nodes densely intraconnected (number of connections between
nodes within the module) and sparsely interconnected with nodes
in other modules, may uncover functional units (34). The Louvain
algorithm (35) as implemented in the Brain Connectivity Toolbox
(36) was used to identify modules. Default modularity resolution
(gamma 5 1) was used in the Louvain algorithm for data
presented in the main text and further validated at different
gamma levels (Supplement).
RESULTS

Functional Striatal Connectivity

Within-group striatal connectivity patterns overlapped with
previously described neuro-functional maps. Both groups
showed maps of connectivity consistent with models relating
the caudate and putamen to cognitive and motor control (4)
and the nucleus accumbens to motivational and emotional
responses (27) (Supplement, Supplemental Figure S2).
Figure 1. Cognitive flexibility and role of striatal connectivity in obsessive-co
extradimensional set shift (IED) task testing cognitive flexibility in which stimuli
(B) Mean number of errors by learning stage on the IED task. OCD patients show
extradimensional shift (EDs) stage compared with matched healthy subjects (CT
Brodmann area [BA] 10/11/47), for which significant reduced connectivity with t
cognitive flexibility in OCD patients (cluster size after applying a per voxel thre
correlation plot shows that reduced functional connectivity between the left do
number of errors at the EDs stage in OCD patients. Regression line and 95% confi
between the left dorsal caudate and the left ventrolateral PFC (BA 10/11/47) in OC
SEM. **p # .01, ***p # .001. CD, superimposed compound discrimination; C
discrimination reversal; CTL, control subjects; EDr, extradimensional shift reversa
discrimination; SDr, simple discrimination reversal.

Biological P
Between-Group Differences in Striatal Connectivity

Compared with control subjects, OCD patients showed
decreased connectivity strength from DCd and PUT to frontal
and parietal regions, whereas ventral striatal-frontal connectivity
was increased, in line with previous findings (13) (Supplement,
Supplemental Figure S3, Supplemental Table S1).

Cognitive Flexibility and Frontostriatal Connectivity

OCD patients exhibited a profound impairment on cognitive
flexibility as tested with the IED (Figure 1A). More OCD
patients failed to complete all stages of the task (χ21 5

7.975, p 5 .005), with patients more likely than control
subjects to fail selectively at the EDs stage. All subjects
attempted the EDs stage (Supplemental Figure S4). There
was a highly significant interaction of stage (IDs, EDs) and
group (F1,84 5 7.128, p 5 .009) in the number of errors.
Simple-effect analyses revealed significantly more errors at the
EDs stage (t84 5 22.649, p 5 .01) in OCD patients than control
subjects, but no difference at the IDs stage (t84 5 0.742, p 5

.460) (Figure 1B). Thus, OCD patients were able to form an
attentional set and generalize to new stimuli as shown by
intact performance up to the EDs stage, but they were
selectively impaired when they had to shift attention to
a previously irrelevant dimension. There was no significant
mpulsive disorder (OCD) patients. (A) Schematic illustration of the intra-/
comprising two dimensions (i.e., line and color-filled shape) are presented.
ed impaired cognitive flexibility, evidenced by selectively more errors at the
L). (C) Set of brain areas, including left ventrolateral prefrontal cortex (PFC;
he left dorsal caudate (DCd) was found to be significantly related to worse
shold of p , .01; cluster-corrected significance at least p , .01). (D) The
rsal caudate and the left ventrolateral PFC (BA 10/11/47) predicted higher
dence interval are shown. (E) Bar plot showing mean functional connectivity
D patients (mean split according to EDs performance). Error bars represent
_D, separated compound discrimination; CDr, superimposed compound
l; IDs, intradimensional shift; IDr, intradimensional shift reversal; SD, simple
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correlation between the number of errors at the EDs stage and
any of the clinical scales, including symptom subtypes and
depression severity (all p . .203).

To test whether functional connectivity in specific frontos-
triatal circuits predicted patients’ cognitive flexibility, we used
number of errors at the EDs stage as a covariate of interest in
the connectivity maps generated from DCd and PUT. In OCD
patients, a higher number of errors at the EDs stage was
associated with reduced functional connectivity between the
left DCd and a set of brain regions, including caudate and
putamen bilaterally, right medial frontal gyrus (Brodmann area
[BA] 9), and a cluster peaking at BA 10 and extending to the
left lateral PFC (BA 10/11/47) (Figure 1C). Specifically, for the
left BA 10/11/47, lower connectivity with the left DCd was
strongly associated with impaired cognitive flexibility in the
OCD sample (Figure 1D, Supplement) and when including
control subjects as well (Supplement). Covariation for age and
verbal IQ did not alter the results (p , .001). Mean split of OCD
patients according to the number of EDs stage errors showed
that patients severely impaired in cognitive flexibility (high
number of EDs stage errors) had significantly reduced func-
tional connectivity between left DCd and left BA 10/11/47
compared with OCD patients with better performance
(t42 5 5.338, p , .001) (Figure 1E); the two subgroups were,
however, indistinguishable in terms of severity on any of the
clinical scales. Similar results were found when testing func-
tional connectivity from the right DCd (Supplemental Table S2)
but not when testing functional connectivity from left and right
PUT and NAc (Supplemental Table S2, Supplemental Figure
S5), revealing the specific relevance of caudate connectivity to
cognitive flexibility in OCD patients.
Goal-Directed Planning and Frontostriatal
Connectivity

OCD patients showed impaired goal-directed planning abilities
at the hard levels of difficulty as tested with the OTS
(Figure 2A) and indexed by the increased number of attempts
to obtain the correct response (t83 5 22.427, p 5 .017;
Figure 2B) compared with control subjects. There was no
group difference for the easy problems. In the medicated
patients, increased self-reported severity of OCD symptoms
and anxiety positively correlated with poor goal-directed
performance at the hardest level of difficulty (Obsessive-
Compulsive Inventory-Revised: r 5 .6, p , 0.001; State-Trait
Anxiety Inventory-State: r 5 .531, p , .005, both surviving
Bonferroni correction) (Figure 3).

Functional connectivity within a specific frontostriatal circuit
predicted patients’ goal-directed planning ability. A higher
number of attempts at the most difficult level of the task (6
moves) was associated with reduced functional connectivity
between the right PUT and the right dorsolateral PFC (BA 46).
In addition, a positive relation was found for the angular gyrus
bilaterally (BA 39), whereby better performance was associ-
ated with increased functional connectivity from the right PUT
(Figure 2C, Supplemental Table S3). Specifically, for the right
BA 46, lower connectivity with the right PUT was strongly
associated with poor goal-directed planning in the OCD
sample (Figure 2D, Supplement) and when including control
subjects as well (Supplement). Covariation for age and verbal
712 Biological Psychiatry April 15, 2017; 81:708–717 www.sobp.org/j
IQ did not alter the results (p 5 .007). A mean split according
to mean number of attempts revealed significantly reduced
functional connectivity between the right PUT and right BA
46 in severely impaired patients (t41 5 3.599, p , .001)
(Figure 2E). Those patients also exhibited increased anxiety
(t41 5 22.126, p 5 .04) compared with patients performing
better on the task. These results were specific to the PUT and
not to DCd or NAc (Supplemental Table S3), revealing the
specific relevance of putaminal connectivity to goal-directed
executive planning in OCD patients.

Clinical Scores and Ventral Striatal Connectivity

In OCD patients, NAc connectivity was related to clinical
scores of anxiety and depression (Supplemental Table S4,
Supplement).

Network Modularity

Data-driven network analysis disclosed that, in the OCD
sample, nodes corresponding to caudate and putamen as
well as the cerebellum were clustered together in a single
module (Supplemental Table S5), suggestive of a cohesive
functional unit. In contrast, in control subjects, the same
striatal and cerebellar regions were distributed among large
cortico-subcortical modules (Figure 4A, B). For all the partic-
ipants, we computed number of connections for each of these
nodes; in OCD patients these nodes were more strongly
connected to one another (intraconnections) compared with
control subjects (t85 5 2.029, p 5 .046), with no difference for
the total number of connections (t85 5 0.338, p 5 .736) or for
number of connections directed toward other nodes (inter-
connections) (t85 5 0.049, p 5 .9614) (Figure 4C). Although
modularity algorithms are nondeterministic, clustering of these
nodes in the same module in OCD and their splitting among
different modules in the network of healthy volunteers was
robustly observed over multiple runs and several implementa-
tions of the analysis (Supplement, Supplemental Figure S6).
There were no correlations between network modularity
measures and cognitive or clinical measures that survived
multiple comparisons (Supplement).
DISCUSSION

A double dissociation of cognitive deficits contributing to
candidate endophenotypes in OCD of goal-directed behavior
and cognitive flexibility was identified for separate frontostria-
tal circuits. A selective deficit in cognitive flexibility (attentional
set-shifting) in OCD was associated with reduced functional
connectivity between the ventrolateral PFC and the DCd, but
not the PUT. In contrast, impaired goal-directed planning was
associated with reduced functional connectivity between the
dorsolateral PFC and the PUT, but not the DCd. The latter
deficit predicted severity of self-reported OCD symptoms and
anxiety state and is consistent with recent hypotheses pro-
posing fundamental goal-directed learning impairments in
OCD (12). Data-driven network analysis provided evidence in
OCD patients of denser connectivity within a group of nodes,
including the caudate and putamen, as well as the cerebellum.

Considerable evidence has shown the ventrolateral PFC to
be necessary for attentional set-shifting. Excitotoxic lesions of
ournal
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Figure 2. Goal-directed planning and role of striatal connectivity in obsessive-compulsive disorder (OCD) patients. (A) Schematic illustration of the One-
Touch Stockings of Cambridge (OTS) task testing executive planning. Examples from easy (2 moves) and difficult (5 moves) problems are shown.
(B) Mean number of attempts to reach correct solution at different difficulty levels on the OTS task. OCD patients show impairment in goal-directed planning
compared with matched control subjects (CTL) by requiring more attempts to reach the correct solution at the hard levels of difficulty; there was no group
difference for the easy problems. (C) Set of brain areas, including right dorsolateral prefrontal cortex (PFC; Brodmann area [BA] 46), for which significant
connectivity with the right putamen (PUT) was found to be significantly related to goal-directed executive planning in OCD patients (cluster size after applying
a per voxel threshold of p , .01; cluster-corrected significance at least p , .01). Blue and yellow coloration for weakened and increased connectivity
predicting worse or better performance, respectively. (D) The correlation plot shows that reduced functional connectivity between the right PUT and the right
dorsolateral PFC (BA 46) predicted higher number of attempts at the most difficult level of goal-directed planning (6 moves) in OCD patients. Regression line
and 95% confidence interval are shown. (E) Bar plot showing mean functional connectivity between the right PUT and the right dorsolateral PFC (BA 46) in
OCD patients (mean split according to OTS performance at the most difficult level). Error bars represent SEM. *p # .05, ***p # .001.
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lateral PFC in marmosets produced selective impairments in
attentional set-shifting, whereas lesions to the orbitofrontal
cortex impaired another form of cognitive flexibility, reversal
learning (24). In a human fMRI paradigm, attentional set-
shifting selectively recruited the ventrolateral PFC (25).
Involvement of the striatum in set-shifting however has
hitherto been less clear. Healthy volunteers exhibit caudate
activation for reversal in rule classification, but not for extra-
dimensional set-shifting (37). However, set-shifting–related
cortical activity was mirrored by activity in the caudate nucleus
and dorsal thalamus (38). Recently, resting-state functional
connectivity between the ventral striatum and a priori-selected
dorsolateral PFC was reported to be associated with atten-
tional set-shifting in a large sample of healthy volunteers (39).
By contrast, the present study used unbiased whole-brain
analysis to demonstrate that functional connectivity between
the caudate and ventrolateral PFC was associated with EDs
performance in OCD patients (whether or not combined with
the control group for this analysis). It is however possible that
additional circuitry, including the ventral striatum, may be
associated with EDs performance because we did find some
associations in the OCD group with this circuit, although these
analyses were post hoc and constrained by multiple compar-
ison. It is nevertheless clear that separate circuits relate to
Biological P
cognitive flexibility and goal-directed planning. A limitation of
the present study was the insufficient variability in EDs (and
also planning) performances in the control subjects to dem-
onstrate the same relation in that group alone.

Our results provide new evidence that, in OCD patients, the
inability to switch attention from a previously relevant dimen-
sion to form a new attentional set is intimately related to
weakened underlying resting-state connectivity between the
DCd and a network of brain regions including the ventrolateral
PFC. Consistent with previous data, OCD patients formed
attentional sets, as indexed by intact performance on discrim-
ination and intradimensional stages, but showed selective
impairment in shifting attention between stimulus dimensions
(40,41). We augmented previous investigations by showing
this effect to be independent of medication, in agreement with
evidence in animals and humans that serotoninergic mecha-
nisms are not implicated in EDs performance (42,43).
The set-shifting deficit was also independent of clinical
severity, in agreement with evidence that it may be an
endophenotype (14).

A separate circuit was relevant for the ability to attain goals
via single-contingency, instrumental response sequences.
Reduced functional connectivity between the putamen and
the dorsolateral PFC was associated with inferior performance
sychiatry April 15, 2017; 81:708–717 www.sobp.org/journal 713
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Figure 3. Relation between obsessive-compulsive disorder (OCD) sever-
ity and goal-directed performance. Impoverished goal-directed perfor-
mance at the hardest level of goal-directed planning positively correlated
with (A) self-reported severity of OCD symptoms (OCI-R: r24 5 .6,
p 5 .001, surviving Bonferroni correction) and (B) anxiety (STAI-State:
r24 5 .531, p 5 .005, surviving Bonferroni correction) in OCD-medicated
patients. OCI-R, Obsessive-Compulsive Inventory-Revised (59); STAI,
State-Trait Anxiety Inventory (61).
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in OCD patients alone, as well as in the combined sample
including control subjects. In task-related imaging studies, the
dorsolateral PFC has been classically implicated in executive
planning together with parietal and cingulate cortices (26).
Anatomical data also support our findings; rich reciprocal
connections exist between the dorsolateral PFC and the
posterior parietal cortex, which project onto overlapping areas
of the putamen (44). In OCD patients, a direct positive
association was found such that increased functional con-
nectivity between the PUT and the parietal cortex was
predictive of better performance. Goal-directed impairment
at the hardest planning levels replicated previous data (14),
with no differences between medicated and unmedicated
patients. Goal-directed planning failures were associated with
self-reported symptom severity and anxiety only in medicated
OCD patients, probably because their underlying symptoms
were more severe and mitigated by medication. Further
714 Biological Psychiatry April 15, 2017; 81:708–717 www.sobp.org/j
studies of first-degree unaffected relatives will clarify whether
goal-directed impairment represents a state or trait marker for
OCD (45).

Our whole-brain network analysis revealed that, in OCD
patients but not in control subjects, nodes belonging to the basal
ganglia and cerebellum were more strongly intraconnected, thus
corresponding to a unit or “conglomerate.” Results were consis-
tent with previous investigations revealing a higher degree of local
connectivity for the putamen in OCD patients (46) and with
frequent observations of elevated metabolism of those regions
in PET studies during resting state (6). In other words, the stronger
intraconnectivity of basal ganglia plus cerebellar nodes drives their
separation into a distinct autonomous unit as a function of
diagnosis, analogous to that of high impulsive subjects in a
comparable study (47). Together with the functional connectivity
analysis, this evidence parsimoniously suggests that the PFC
exerts less top-down control of these subcortical regions. In
general, our complementary imaging analyses suggest that
increased connectivity within the striatum might coexist with its
decreased functional connectivity to frontoparietal cortical regions,
being associated with less flexible and impoverished goal-directed
forms of behavior. Although the cerebellum has not hitherto been
a major focus of interest in OCD, previous (48–50) and present
findings suggest that it merits further study. In line with anatomical
evidence of cerebellar frontostriatal circuitry overlapping (51,52),
we found clustering of striatum and cerebellum in our graph
analysis. Much clinical and experimental evidence implicate the
cerebellum in executive functions, attentional set-shifting, and
motor sequencing (53), consistent with our evidence that striatal-
cerebellar connectivity is implicated in attentional set-shifting. We
saw no involvement of the cerebellum in relation to planning,
perhaps because planning relates to goal-directed rather than
habitual/skilled, or what may become just perfect behavior in
OCD. Imbalances in corticostriatal connectivity with increased and
decreased functional connectivity within the ventral and dorsal
striatal networks, respectively, are consistent with previous inves-
tigations (13). Existing studies of unmedicated patients, however,
only provide mixed findings (54,55). We directly compared
medicated with unmedicated patients, showing that hypercon-
nectivity of the NAc and PUT to non-PFC cortical areas was more
evident in medicated patients. This hyperconnectivity does not
necessarily result from medication per se, because the medicated
patients might have had more severe underlying symptoms; the
hyperconnectivity may therefore reflect OCD symptoms.

PFC regions found here to be functionally connected to
basal ganglia and relevant for specific functions, namely
ventrolateral PFC for cognitive flexibility and dorsolateral
PFC for goal-directed planning, overlapped with those
observed in corresponding task-related fMRI studies (25,26).
This adds to the burgeoning literature establishing a close
relation between resting-state and task-related functional
connectivity in a healthy population (56), and with findings of
resting-state functional connectivity related to response inhib-
ition in an OCD population (57). Despite specific neural
changes to be expected during the execution of the task,
connectivity at rest appears to represent a functional predis-
position that enables task execution. Indeed, our results
suggest that the observed behavioral deficits depend on this
trait-like predisposition, associated with objective behavioral
measures heralding symptom manifestation. Thus, resting-state
ournal
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Figure 4. Network modular organization in obsessive-compulsive disorder (OCD) and healthy subjects (CTL). (A) Differences in modular organization in
OCD and healthy volunteers represented by an alluvial diagram. Each module is separated by white gaps. The flows indicate the nodes for which community
structure changes as a function of diagnosis. Red-highlighted module in OCD patients correspond to nodes of the basal ganglia and cerebellum. These nodes
are clustered in one module on their own in OCD patients; the same nodes are integrated within separate large cortico-subcortical modules in CTL. (B) Nodes
for OCD and healthy subjects in anatomical space, color-coded according to module membership. The size of the nodes depends on their number of
connections. Respectively, for CTL and OCD patients, lower panels highlight the nodes identified by the modularity algorithm as being part of an independent
functional unit in OCD patients (and corresponding to basal ganglia and cerebellum). Nodes are colored according to module membership, highlighting that
nodes corresponding to different parts of the basal ganglia (caudate, putamen) and cerebellum are clustered in one single module in OCD patients. In
contrast, in healthy subjects the same brain areas are integrated within separate modules. (C) Box plot summarizing mean number of connections for nodes
identified as being part of an independent functional unit in OCD patients and corresponding to the basal ganglia and the cerebellum. For those nodes, there
were no group differences in total number of connections or in the number of interconnections. However, they were significantly more intraconnected in OCD
patients than in healthy CTL. *p # .05.
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connectivity might serve as a biomarker predicting individual
variability in behavioral performance, as shown here. Resting
state is a promising practical tool, considering its relative ease
and simplicity of data collection and its potential for providing
reliable brain mapping from relatively short durations of scan-
ning. We suggest that coupling of well-standardized behavioral
indices and brain measures derived from an easily applicable
resting-state sequence is a valuable approach for identifying
neurobehavioral markers for severe psychiatric disorders, in line
with the recent Research Domain Criteria initiative aimed at
identifying the biological bases of mental disorders (58).

In conclusion, the present data represent the first identi-
fication of discrete striatal-cortical circuits associated with key
cognitive endophenotypes for OCD. The data extend the
Biological P
neurobiological model of OCD centered on dysfunction of
frontostriatal brain circuits (11). Our study shows that these
alterations have a direct link to cognitive processes severely
impaired in OCD and of relevance for its symptoms and
diagnosis.
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