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a b s t r a c t

A new framework for the joint estimation and forecasting of dynamic value at risk
(VaR) and expected shortfall (ES) is proposed by our incorporating intraday information
into a generalized autoregressive score (GAS) model introduced by Patton et al., 2019
to estimate risk measures in a quantile regression set-up. We consider four intraday
measures: the realized volatility at 5-min and 10-min sampling frequencies, and the
overnight return incorporated into these two realized volatilities. In a forecasting study,
the set of newly proposed semiparametric models are applied to four international stock
market indices (S&P 500, Dow Jones Industrial Average, Nikkei 225 and FTSE 100) and
are compared with a range of parametric, nonparametric and semiparametric models,
including historical simulations, generalized autoregressive conditional heteroscedastic-
ity (GARCH) models and the original GAS models. VaR and ES forecasts are backtested
individually, and the joint loss function is used for comparisons. Our results show that
GAS models, enhanced with the realized volatility measures, outperform the benchmark
models consistently across all indices and various probability levels.

© 2020 The Author(s). Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

From the perspective of financial risk managers, a risk
measure can be considered a map from the space of
probability distributions to real numbers. Risk measures
can provide banks and financial institutions with specific
values of potential losses so that risk managers can adjust
their capital reserves against the downside risk. Value at
risk (VaR) and expected shortfall (ES) are two prevailing
measures of financial risk that dominate contemporary
financial regulation. VaR provides banks and investment

✩ For insightful and constructive comments, we thank Tim Boller-
slev, Isabel Casas, Mike Clements, Zhonghao Fu, Xiaochun Meng, James
Taylor, Shixuan Wang, Cheng Yan and seminar participants at the 12th
Annual SoFiE Conference, Shanghai, the 2019 Asian Meeting of the
Econometrics Society, Xiamen, and EEA-ESEM 2019, Manchester.

∗ Corresponding author.
E-mail addresses: e.lazar@icmacentre.ac.uk (E. Lazar),

x.xue@pgr.reading.ac.uk (X. Xue).

institutions with a loss level that occurs in the worst
situation at a given confidence level, and it can be defined
as

VaRα
t ≡ inf{yt ∈ R|FY (yt |Ft−1) ≥ α},

where FY (·|Ft−1) is the cumulative distribution function
of asset returns yt over a horizon given the information
set Ft−1, and α ∈ (0, 1) is a given significance level.
As a quantile, VaR can be expressed directly in terms
of the inverse cumulative distribution function, VaRα

t =

F−1
Y (α|Ft−1), and as a risk measure, it has the advantage
of being intuitive and easily understood.

However, VaR has inherent deficiencies as it ignores
the shape and structure of the tail and is not a coherent
risk measure in the sense of Artzner, Delbaen, Eber, and
Heath (1999). Thus, after the financial crisis of 2007–
2008, the Basel Committee on Banking Supervision (2013)
proposed a transition from VaR with a confidence level
of 99% to ES with a confidence level of 97.5%. ES is the
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expectation of returns, conditional on its realization lying
below VaR, and it can be defined as

ESα
t ≡E[yt |yt ≤ VaRα

t , Ft−1].

ES is a coherent risk measure (Roccioletti, 2015), and
it has been suggested as an alternative to VaR in risk
management applications because of its superior math-
ematical properties.

Normally, ES is estimated via a two-stage approach
based on VaR estimation. Although ES is itself not elic-
itable, Fissler, Ziegel, and Gneiting (2016) have shown that
the pair (VaRα

t , ES
α
t ) is elicitable (see also Acerbi & Székely,

2014). This means that ES can be estimated jointly with
VaR by minimizing a loss function (Fissler & Ziegel, 2016;
Ziegel, 2016).

Following the classification of Engle and Manganelli
(2004), models in the current literature on estimating and
forecasting risk measures can be divided into three main
categories: parametric, nonparametric and semiparamet-
ric models. Previous studies using parametric models to
predict VaR and ES assumed that financial returns fol-
low a certain distribution, such as the standard normal
(Gaussian) distribution. In reality, however, it is hardly
reasonable to make such strong assumptions. Nonpara-
metric models do not make assumptions about the dis-
tribution of financial returns, and have the advantage of
being model-free. Although it is not necessary for such
models to make a distributional assumption, an inherent
problem is the difficulty in finding the optimal size of
the estimation window (Engle & Manganelli, 2004). Semi-
parametric models impose a parametric structure on the
dynamics of VaR and ES through their relationship with
lagged information, but require no assumptions about
the conditional distribution of financial returns (Patton,
Ziegel, & Chen, 2019).

Quantile regression, as an approach for estimating risk
measures, has only recently been considered: Engle and
Manganelli (2004) extended the basic quantile regres-
sion model to conditional autoregressive VaR (CAViaR)
models; these models focus solely on the estimation of
VaR, and it is not obvious how they can be used for ES
estimation. To estimate ES jointly with VaR in a semipara-
metric framework, Taylor (2008) proposed conditional
autoregressive expectile (CARE) models, which are based
on a simple function of expectiles.1 Following this, Tay-
lor (2019) synthesized the quantile regression with the
maximum likelihood estimation based on an asymmetric
Laplace density proposed by Koenker and Machado (1999)
and estimated VaR and ES jointly. A growing literature
documents a significant improvement in VaR and ES esti-
mation in a quantile regression framework (Bayer, 2018;
Halbleib & Pohlmeier, 2012; Wang & Zhao, 2016; Žikeš &
Baruník, 2014).

Following the results of Fissler and Ziegel (2016), Pat-
ton et al. (2019) presented several novel dynamic models
for the joint estimation of VaR and ES. Specifically, they
proposed four dynamic semiparametric models for VaR

1 The connection between quantiles, expectiles and ES is originally
found in Aigner, Amemiya, and Poirier (1976), and was considered
further by Newey and Powell (1987).

and ES based on the generalized autoregressive score
(GAS) framework introduced by Creal, Koopman, and Lu-
cas (2013). This model has been successfully applied in
risk measure estimation (Patton, Ziegel, & Chen, 2019),
credit default swap spread modelling (Lange, Lucas, &
Siegmann, 2017; Oh & Patton, 2018), systemic risk mod-
elling (Bernardi & Catania, 2019; Cerrato, Crosby, Kim,
& Zhao, 2017; Eckernkemper, 2017) and high-frequency
data modelling (Gorgi, Hansen, Janus, & Koopman, 2018;
Lucas & Opschoor, 2018).2 However, no studies on risk
measures incorporating realized volatilities into the GAS
framework have been considered so far.3 This prompted
the research question of this article, namely whether
adding intraday measures of volatility into the GAS frame-
work increases the accuracy of joint VaR and ES forecasts.

The question whether intraday data can increase the
predictive accuracy of risk measures has already been
addressed by academics.4 Several studies extended quan-
tile regression methods and other semiparametric models
by using information variables generated from high-
frequency data.5 Many realized volatility measures have
been confirmed to perform efficiently. The realized volatil-
ity proposed by Andersen and Bollerslev (1998) and Al-
izadeh, Brandt, and Diebold (2002) is one of the most
widely used intraday volatility measures. Inspired by En-
gle and Manganelli (2004), Fuertes and Olmo (2013) pro-
posed a conditional quantile forecast method combining
an effective device to deal with the interday/intraday in-
formation. Meng and Taylor (2018) extended the CAViaR
model and the quantile regression heterogeneous au-
toregressive model (HAR) model with realized volatility,
overnight return and intraday range. In terms of ES es-
timation, the CARE models of Taylor (2008) have been
extended to allow intraday measures as explanatory vari-
ables (Gerlach & Chen, 2014, 2017; Gerlach & Wang,
2016a; Wang, Gerlach, & Chen, 2018).

Although the improvement from adding intraday vari-
ables into a semiparametric framework has been widely
documented, evidence for using the score-driven model
as the framework to estimate risk measures still remains
hard to come by. Therefore, in our study, the first con-
tribution is that we extend the set of semiparametric
GAS models of Patton et al. (2019) (the two-factor GAS
(GAS-2F) model, the one-factor GAS (GAS-1F) model, the
GARCH-FZ model and the hybrid GAS/GARCH model) to
investigate whether realized measures can increase the
predictive accuracy of GAS models. This study is the first
one to estimate and forecast VaR and ES jointly by using
intraday data in a GAS framework. We shed light on the
potential improvement in risk forecasting from adding

2 More studies related to the GAS model can be found at http:
//www.gasmodel.com/.
3 Salvatierra and Patton (2015) use measures of realized covariance

to build forecasts for copula models.
4 Both parametric models (see Giot & Laurent, 2004; Hansen, Huang,

& Shek, 2012; Louzis, Xanthopoulos-Sisinis, & Refenes, 2014) and
semiparametric models (see Clements, Galvão, & Kim, 2008; Fuertes
& Olmo, 2013; Gerlach & Wang, 2016b; Žikeš & Baruník, 2014).
5 See Clements et al. (2008), Fuertes and Olmo (2013), Žikeš and

Baruník (2014), Gerlach and Chen (2014, 2017), Gerlach and Wang
(2016a).
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intraday information in the GAS framework for four stock
indices using a long forecasting period (which includes
the financial crisis period). Then we perform a thorough
analysis to compare our forecasts with those generated
from prevailing benchmarks in the current literature. Our
results show that incorporating intraday data into the GAS
framework results in the forecasts outperforming other
(VaR, ES) forecasts in most cases.

Our second contribution to the literature is that we
provide empirical evidence that semiparametric models
enhanced with realized volatility measures outperform
other benchmark models via various backtesting meth-
ods. Our proposed models, especially the GAS-2F model,
extended with realized volatilities dominate other bench-
marks consistently. Thirdly, we compare four different
types of realized measures with regard to their forecasting
ability for risk measures when added to GAS models.

This article is structured as follows: Section 2 briefly
introduces the new GAS models that incorporate intraday
information; the data used in our empirical study and the
in-sample estimation results are presented in Section 3;
Section 4 presents the forecasting study and backtesting
results; and Section 5 concludes the article.

2. Models

2.1. GAS models for VaR and ES

Several extensions of the GAS models introduced by
Creal et al. (2013) are proposed in Patton et al. (2019),
and can be estimated by minimizing the loss function
of Fissler and Ziegel (2016) called FZ0:

LFZ0(Y , v, e; α) = −
1
αe

1{Y ≤ v}(v −Y )+
v

e
+ log(−e)−1,

(1)

where Y denotes the daily return, v and e represent the
values of VaR and ES, respectively, and 1 is an indicator
function which returns 1 when Y ≤ v (i.e. the VaR is
exceeded) and otherwise returns zero. Patton et al. (2019)
propose four models (the GAS-2F model, the GAS-1F
model, the GARCH-FZ model and the hybrid GAS/GARCH
model) to estimate VaR and ES jointly by minimizing the
loss function FZ0. The key novelty in their framework is
the use of the scaled score (which can be computed as the
first-order derivative of the objective function6) to drive
the time variation in the target parameter. Patton et al.
(2019) present a ‘‘news impact curve’’ to show the impact
of past observations on current forecasts of VaR and ES
through the score variable. When Y > v, the realized re-
turns do not affect the estimation. But when Y ≤ v, fore-
casts of ES and VaR react to realized returns through the
score variable. The GAS-FZ models are specified as below:

• GAS-1F model:
vt = a exp{κt},

et = b exp{κt}, b < a < 0,

κt = ω + βκt−1 + γH−1
t−1st−1,

(2)

6 Normally, the objective function is a probability density function,
but here the loss function FZ0 acts as the objective function.

where the score variable st is defined as

st ≡
∂LFZ0(Yt , a exp{κt}, b exp{κt}; α)

∂κ

= −
1
et

(
1
α
1{Yt ≤ vt}Yt − et

)
, (3)

and the Hessian factor Ht is set to 1 for simplicity.
• GAS-2F model:[

vt
et

]
= w + B

[
vt−1
et−1

]
+ A

[
λv,t−1
λe,t−1

]
, (4)

where w is a (2 × 1) vector, A is a (2 × 2) matrix, B
is defined as a diagonal matrix for parsimony and

λv,t ≡ −vt (1{Yt ≤ vt} − α), (5)

λe,t ≡
1
α
1{Yt ≤ vt}Yt − et . (6)

• GARCH-FZ model:
vt = a · σt ,

et = b · σt , b < a < 0,

σ 2
t = ω + βσ 2

t−1 + γ Y 2
t−1,

(7)

where σ 2
t is the conditional variance and is assumed

to follow a GARCH(1,1) process. The parameters of
this model are estimated by minimizing the loss
function FZ0 in (1) instead of using Quasi Maximum
Likelihood Estimation.

• Hybrid GAS/GARCH model (hybrid):

vt = a exp{κt},

et = b exp{κt}, b < a < 0,
κt = ω + βκt−1

+ γ

(
−

1
et−1

(
1
α
1{Yt ≤ vt}Yt−1 − et−1

))
+ δ log |Yt−1|,

(8)

where the variable κt is the log volatility, described
by the one-day-lagged log volatility, score factor and
the logarithm of absolute return.

2.2. Realized measures

This section provides a brief introduction to various
intraday realized measures used in this study. The most
popular measure is the realized volatility, defined as

RV∆t =

√ M∑
i=1

(Pt,i·∆ − Pt,(i−1)·∆)2,

∆ =
S
M

,

(9)

where RV∆t denotes the realized volatility calculated
from the sum of M intraday squared returns at frequency
∆ within day t . Here the intraday frequency ∆ divides
the whole span of market opening hours S into M equal
intervals, and Pt,i·∆ denotes the log price at time i·∆ of day
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t . However, the realized volatility ignores the information
from the market overnight return, which is defined as

overnightt = log(Pt,0) − log(Pt−1,S), (10)

where Pt,0 and Pt−1,S denote the opening price on day
t and the closing price on the previous day, respec-
tively. Several studies have proven that incorporating the
overnight return can lead to a more accurate realized
measure. In this article, we consider the approach of in-
corporating the overnight return in the realized volatility
of Blair, Poon, and Taylor (2001), Hua and Manzan (2013)
and Meng and Taylor (2018) as follows:

RN∆t =

√
RV∆2

t + (overnightt )2. (11)

In the following, we will use frequencies of ∆ = 5 min
and ∆ = 10 min. As such, in the next section, RM
can signify any of the four realized measures of volatility
RV5t , RV10t , RN5t and RN10t , and we extend the models
with these measures.

2.3. GAS models for VaR and ES with realized measures

Salvatierra and Patton (2015) propose a GAS model en-
hanced with high-frequency measures to obtain a Gener-
alized Realized Autoregressive Score (GRAS) model, which
has the equation for the dependence parameter, similar to
the last row of (2), replaced with

κt = ω + βκt−1 + γH−1
t−1st−1 + c log(RMt−1). (12)

They use the realized covariance as RMt , computed from
the intraday prices Pt,i·∆ of a set of assets. They find that
the inclusion of 5-min realized covariance significantly
improves the in-sample fit and out-of-sample forecasts of
the copula models.

Motivated by the set of GAS models and the GRAS
model, our new models are proposed as follows:

• GAS-1F model with realized measures (GAS-1F-Re):

vt = a exp{κt},

et = b exp{κt}, b < a < 0,
(13)

where κt is defined in (12), and the score variable
st is defined in (3). Here the Hessian factor Ht is
set to 1 for simplicity; log(RMt ) is the logarithm
of a realized measure, which can be the realized
volatility at 5-min and 10-min sampling frequencies
(RV5 and RV10), and these two realized volatilities
with the overnight return incorporated into them
(RN5 and RN10), as defined in Section 2.2.

• GAS-2F model with realized measures (GAS-2F-Re):

[
vt
et

]
= w+ B

[
vt−1
et−1

]
+A

[
λv,t−1
λe,t−1

]
+ C RMt−1,

(14)

where w and C are (2 × 1) vectors, A and B are
both (2 × 2) matrices and B is defined as a diagonal
matrix to simplify computation. Following Patton

et al. (2019), we also define the forcing variables λv,t
and λe,t as the partial derivatives of the given loss
function LFZ0 with respect to vt and et , as in (5) and
(6).
Hansen et al. (2012) and Hansen, Lunde, and Voev
(2014) introduced a new framework, realized (beta)
GARCH, where the variance follows a GARCH(1,1)
process, with the squared returns replaced with a
realized measure of volatility. Following this model,
we propose the following model:

• GARCH-FZ model with realized measures (GARCH-
FZ-Re):

vt = a · σt ,

et = b · σt , b < a < 0,

σ 2
t = ω + βσ 2

t−1 + cRM2
t−1,

(15)

where the daily return Yt−1 in the GARCH(1,1) vari-
ance equation in (7) is replaced with the realized
measure RMt−1. This model is estimated by minimiz-
ing the FZ0 loss function.

• Hybrid GAS/GARCH model with realized measures
(hybrid-Re):

vt = a exp{κt},

et = b exp{κt}, b < a < 0,

κt = ω + βκt−1 + γ (−
1

et−1
(
1
α
1{Yt ≤ vt}Yt−1 − et−1))

+ δ log |Yt−1| + c log(RMt−1),

(16)

where the log volatility κt follows the hybrid GARCH
model with one-day-lagged log volatility, score fac-
tor, realized measures and absolute daily return.

3. Data and empirical study

3.1. Data description

To evaluate the forecasting performance of the new
models and to compare them with benchmark models,
we collected daily opening and closing prices of four
international stock market indices (S&P 500, Dow Jones
Industrial Average (DJIA), Nikkei 225 and FTSE 100) from
January 2000 to June 2019 from DataStream. To ensure
the applicability of every model, we removed market-
specific nontrading days and exactly zero returns from
each index series. Part A of Table 1 presents the summary
statistics on the four daily equity return series over the
full sample period. From the top part of part A of Table 1,
the average annualized returns range from 0.544% for the
Nikkei 225 to 4.377% for the DJIA, and the annualized
standard deviation ranges from 18% for the DJIA to about
24% for the Nikkei 225. All daily return series exhibit
substantial kurtosis of around 10. The second and third
parts in part A of Table 1 show the sample VaR and ES for
four different α values: 1%, 2.5%, 5% and 10%. The Nikkei
225 proves to be different from the other indices since its
quantile and ES are lower than the sample risk measures
of the other three indices.
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Table 1
Summary statistics and marginal distribution estimates.

S&P 500 DJIA Nikkei 225 FTSE 100

Part A: Summary statistics

Mean (annualized) 3.685 4.377 0.544 0.606
Std dev (annualized) 18.900 17.821 23.748 18.105
Skewness −0.208 −0.125 −0.429 −0.170
Kurtosis 11.176 10.980 9.341 9.487

VaR-0.01 −3.427 −3.294 −4.111 −3.264
VaR-0.025 −2.525 −2.361 −3.051 −2.409
VaR-0.05 −1.885 −1.777 −2.360 −1.788
VaR-0.10 −1.284 −1.182 −1.682 −1.233

ES-0.01 −4.849 −4.568 −6.021 −4.546
ES-0.025 −3.678 −3.453 −4.492 −3.457
ES-0.05 −2.922 −2.750 −3.576 −2.764
ES-0.10 −2.236 −2.096 −2.788 −2.120

Part B: Conditional mean

Constant −0.001 0.007 −0.021 −0.003
AR(1) – – – –
MA(1) −0.039 – – –

Part C: Conditional variance

Constant 0.010 0.010 0.025 0.014
ARCH 0.065 0.069 0.082 0.116
GARCH 0.926 0.922 0.910 0.874

Part D: Skew-t density

DoF 9.020 8.130 12.204 22.177
Skewness −0.092 −0.089 −0.089 −0.162

This table presents the summary statistics of the four daily equity return series studied over the full sample
period from January 2000 to June 2019 and marginal distribution estimates over the in-sample period. Part A
reports the annualized mean returns, standard deviation of the returns as percentages, skewness, kurtosis and
the sample VaR and ES estimates for four choices of α. Part B presents the parameter estimates for AR(m) models
of the conditional means of these returns. Part C shows parameter estimates for GARCH–skew-t(1,1) models
of the conditional variance. Part D presents parameter estimates for the skew-t density for the standardized
residuals.

Part B of Table 1 presents the estimated parameters
of the ARMA(p, q) models (where ‘‘ARMA’’ means ‘‘au-
toregressive moving average’’) where the lags (p, q) are
optimally selected via the Bayesian information criterion
(BIC) method. The ARMA models for the indices include
only a constant except for the S&P 500, which contains
a moving average (MA) term with one lag. Part C of Ta-
ble 1 shows the estimated parameters of the GARCH(1,1)
model, where the residuals are assumed to follow the
skew-t distribution. Part D of Table 1 presents the degrees
of freedom and skewness in the skew-t distribution.

The percentage log overnight returns are generated
as in (10). For the realized volatility, the data are ob-
tained at 5-min and 10-min sampling frequencies from
the Oxford-Man Institute of Quantitative Finance’s real-
ized library7(see Heber, Lunde, & Shephard, 2009). To
generate the new realized measure incorporating the
overnight return in realized volatility, we use (11).

The entire sample is divided into an in-sample for es-
timation and an out-of-sample to backtest the estimated
results. We use a rolling window approach, where each
model is re-estimated every five trading days using a
rolling window of 2000 observations. Then the rest of the
period until June 2019 of approximately 2900 days is the
out-of-sample period to evaluate one-day-ahead VaR and
ES estimates.

7 This realized library can be accessed at https://realized.oxford-
man.ox.ac.uk/.

3.2. Forecasting models

VaR and ES are predicted via the score forecast for
one trading day ahead in the out-of-sample period for
each series with use of the proposed GAS-realized models
and the GARCH-FZ-Re model, as well as nonparametric
models and parametric models as benchmarks. For non-
parametric models, historical simulations are widely used
because of their advantages of being model-free and easy
to implement. In our study, we select three commonly
used rolling window sizes to forecast VaR and ES: 125,
250 and 500 days. Two popular GARCH models are used in
this study, the Gaussian (GARCH-G) and skew-t (GARCH-
Skt) models, as parametric model benchmarks. We also
consider other established models that use high-frequency
data that are considered to be well suited to forecast VaR
and ES: the HAR model of Corsi, Mittnik, Pigorsch, and
Pigorsch (2008) and the HEAVY model of Shephard and
Sheppard (2010). In each model, we estimate VaR and ES
with Gaussian and skew-t distributions of the errors in
the second step, after the conditional volatility estimation.
We also take the semiparametric model of Taylor (2019)
based on the asymmetric Laplace distribution into our
benchmark set.

To evaluate the performance of the GAS models en-
hanced with realized measures, we also implement the
four models proposed by Patton et al. (2019) as bench-
marks. Differently from Patton et al. (2019), who used cer-
tain parameters estimated from a fixed in-sample period,

https://realized.oxford-man.ox.ac.uk/
https://realized.oxford-man.ox.ac.uk/
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we use a rolling window approach, where each model is
re-estimated every five trading days using a window of
size 2000 trading days. In this study, we consider four sets
of GAS models extended with different realized measures
(RV5, RV10, RN5 and RN10) as in Section 2.2. In the
following section, we provide estimation results obtained
with these proposed models.

3.3. In-sample estimation

The parameters of the GAS models and the proposed
four sets of GAS-realized models are estimated by our
minimizing the loss function in (1). It is hard to estimate
these models with a nonsmooth objective function, and
this algorithm is sensitive to the starting values used in
the search. We optimize the proposed models using the
following procedure: for each model, we first generate
105 vectors of parameters from predetermined intervals
randomly for the parameters of the GAS models. For ex-
ample, for the parameters (a and b) used to generate VaR
and ES in the GAS-1F, GARCH-FZ, and hybrid models, we
set the intervals as [−2, −3] and [−3, −4], respectively, to
ensure that ES is always less than VaR.8 We compute the
average loss for each vector, and then select the 10 vectors
that generate the lowest average loss as initial values for
the optimization routine. The vectors are selected as the
initial values of the search algorithm for all windows so
as to shorten the computational time. We compute the
optimal parameters by using a quasi-Newton method and
the function fminunc as optimization algorithms, which
are routines similar to the routine used by Engle and
Manganelli (2004).

Table 2 presents the estimated parameters together
with their standard errors of the GAS models for the S&P
500, estimated with an estimation period of 2000 days
from the beginning of January 2000 for α = 5%. The
parameters of the three two-factor GAS models (GAS-2F,
GAS-2F-RV5, and GAS-2F-RN5 models) are presented in
the upper part of Table 2; we separate the parameters of
VaR and ES. The b parameters are statistically significantly
different from zero at both the 1% significance level and
the 5% significance level for both VaR and ES,9 which can
be explained by the volatility clustering effect. Columns
4–7 in the upper part of Table 1 show the parameters
of the GAS-2F model extended with the 5-min realized
measures. Because of our adding 5-min realized measures,
the degree of clustering decreases for VaR and ES. Also,
the parameters av and ae experience a significant decrease
after addition of the realized measures. The parameters of
the one-day-lagged realized measures RMt−1, c are statis-
tically significantly negative at the 5% significance level
for both VaR and ES, indicating that larger values of these
realized variables will result in a lower estimated quantile
or ES, which is intuitive. The average loss generated by

8 For parameters in the GAS-2F models, the predetermined intervals
for w, b, av , ae and c are [−0.1, 0.1], [0.8, 1], [−0.1, 0.1], [−0.1, 0.1]
and [−1, 0], respectively. For parameters in the GAS-1F, GARCH-FZ and
hybrid models, the predetermined intervals for β , γ , δ, c , a and b are
[0.8, 1], [0, 0.1], [0, 0.1], [0, 0.5], [−2, −3] and [−3, −4], respectively.
9 We use Student’s t test for significance testing.

the GAS-2F model is 0.756, which is larger than the loss
of the GAS-2F models extended with realized measures
(0.735 and 0.734).

The lower part of Table 2 shows the estimated pa-
rameters of the other GAS models extended with the
5-min realized measures with an estimation period of
2000 days from the beginning of January 2000 for the
S&P 500 for α = 5%. Similarly to the b parameters of the
GAS-2F models, the β parameters of the other models are
also statistically significantly different from zero at both
the 1% significance level and the 5% significance level,
which means that the current estimated risk measures
rely heavily on the previous estimation. Also, we find that
the parameters of realized measures (c for the GAS-1F
model, the GARCH-FZ model and the hybrid model) are
all statistically significantly positive at both the 1% sig-
nificance level and the 5% significance level. Intuitively, a
large realized volatility will lead to a low quantile through
the score variable in these models. We find that the inclu-
sion of realized measures in the updating models results
in smaller coefficients of the GAS shocks (γ ), which is
intuitive. Later, we will see the role that the score variable
plays in forecasting VaR and ES. In the following sections
we compare the forecasting performance of these four
sets of extended models, which gives a total of 16 models,
with the 13 benchmark models listed above.

4. Out-of sample forecasting and backtesting

We evaluate one-day-ahead VaR and ES forecasts for
the four international stock indices and for the following
probability levels: 1%, 2.5%, 5% and 10%. One-day-ahead
VaR and ES forecasts are made with parameter values
estimated every 5 days for each model and probability
level with rolling windows of size 2000 (except for histor-
ical simulations). The forecasting sample period for each
index is approximately 2900 days. In this section, we
backtest the VaR and ES forecasts of the proposed models
and compare their performance with that of benchmark
models. First, we backtest VaR and ES individually via
the dynamic quantile (DQ) regression and the dynamic ES
(DES). Following these tests, we use a method based on
the FZ0 loss function to backtest VaR and ES jointly.

4.1. Backtesting VaR

The most popular procedures evaluating the perfor-
mance of VaR forecasts are based mainly on VaR failures;
that is,

It = 1{Yt ≤ VaRα
t }.

The commonly used VaR backtesting method, known as
the unconditional coverage (UC) test, was proposed by Ku-
piec (1995) and uses the proportion of failures as its main
tool. In this test, the hit percentage is defined as the
proportion of the returns below the estimated VaR, and
then the difference between the hit percentage and its
theoretical value of α is examined. Thus, the VaR model is
rejected or not rejected according to the null hypothesis



E. Lazar and X. Xue / International Journal of Forecasting 36 (2020) 1057–1072 1063

Table 2
Estimated parameters of the GAS models for the S&P 500 for α = 5%.

GAS-2F GAS-2F-RV5 GAS-2F-RN5

VaR ES VaR ES VaR ES

w −0.009 −0.012 −0.009 −0.016 −0.011 −0.023
(s.e.) (0.002) (0.003) (0.030) (0.053) (0.033) (0.045)
b 0.995 0.995 0.833 0.810 0.814 0.849
(s.e.) (0.105) (0.108) (0.084) (0.092) (0.098) (0.072)
av −0.129 −0.140 −0.125 −0.066 −0.114 −0.118
(s.e.) (0.070) (0.103) (0.304) (0.629) (0.416) (0.466)
ae 0.002 0.003 0.002 0.001 0.001 0.001
(s.e.) (0.003) (0.004) (0.011) (0.024) (0.015) (0.017)
c – – −0.323 −0.477 −0.353 −0.360
(s.e.) – – (0.148) (0.208) (0.190) (0.158)

Average loss 0.756 0.735 0.733

GAS-1F GCH-FZ Hybrid GAS-1F-RV5 GARCH-FZ-RV5 Hybrid-RV5 GAS-1F-RN5 GARCH-FZ-RN5 Hybrid-RN5

β 0.993 0.922 0.993 0.857 0.857 0.875 0.851 0.761 0.872
(s.e.) (0.002) (0.088) (0.002) (0.116) (0.081) (0.072) (0.143) (0.077) (0.096)
γ 0.008 0.032 0.008 0.004 – 0.004 0.004 – 0.004
(s.e.) (0.001) (0.007) (0.001) (0.009) – (0.007) (0.013) – (0.011)
δ – – 4.393 × 10−8 – – 0.010 – – 0.009
(s.e.) – – (1.552 × 10−9) – – (0.016) – – (0.018)
c – – – 0.127 0.095 0.141 0.133 0.084 0.142
(s.e.) – – – (0.013) (0.012) (0.056) (0.016) (0.009) (0.051)
a −1.774 −2.269 −1.752 −1.973 −2.818 −2.150 −1.962 −2.987 −2.053
(s.e.) (4.451) (0.393) (5.726) (2.529) (0.410) (2.160) (3.422) (0.430) (2.294)
b −2.401 −3.043 −2.355 −2.599 −3.610 −2.779 −2.601 −3.822 −2.709
(s.e.) (5.987) (0.765) (7.709) (3.310) (0.670) (2.819) (4.467) (0.672) (3.029)

Average loss 0.761 0.780 0.761 0.737 0.727 0.753 0.734 0.722 0.749

This table presents the parameter estimates and standard errors of the four GAS models proposed in Patton et al. (2019) and eight GAS models
enhanced with 5-min realized volatility (and overnight returns) for VaR and ES for the S&P 500 using the first rolling window of 2000 days starting
with January 2000. The upper part presents the estimated parameters of the two-factor GAS models. The lower part presents the parameters of the
GAS-1F model, the GARCH model and the hybrid-factor GAS model estimated with the FZ0 loss minimization. The bottom row of each part presents
the average (in-sample) losses from these models.

of the UC test below, on the basis of which the likelihood
ratio test is performed:

HVaR
UC : Et−1[It ] = α.

Table 3 presents the number of model rejections of
the above null hypothesis for four daily equity return
series over the out-of-sample period for the 29 different
forecasting models at significance levels of 1% and 5%,
respectively, and for different probability levels. To obtain
the data, we perform the UC test above for all indices, and
count the number of rejections for each model.

The third and fourth columns in Table 3 show that
the proposed GAS models extended with realized mea-
sures generally tend to have a lower number of UC test
rejections as compared with the number of rejections
of the GAS-FZ models of Patton et al. (2019) for α =

1%. The GARCH-Skt model and the HEAVY model with
a skew-t distribution (HEAVY-Skt) also tend to have a
lower number of rejections at the 1% significance level.
At the 5% significance level, several GAS-FZ models with
overnight returns incorporated in the realized volatility
have zero rejections in the UC test. In general, adding
realized measures into GAS models for predicting VaR
achieves a lower number of test rejections on the basis
of our results obtained with the hit percentage test.

However, the UC test is statistically weak for a small
sample size, and has been criticized in several studies (see
Nieto & Ruiz, 2016) because it ignores the clustering of

failures. To address these drawbacks, the conditional cov-
erage (CC) test is considered, in which the null hypothesis
is as follows:

HVaR
CC : Et−1[It |It−1] = α.

We use the DQ test proposed by Engle and Man-
ganelli (2004) to implement the CC test. The DQ test
has power against the misspecification of ignoring con-
ditionally correlated probabilities and can be extended to
examine other explanatory variables. The DQ test exam-
ines whether the hit variable defined as Hitv,t = 1{Yt ≤

VaRt} − α follows an independent and identically dis-
tributed Bernoulli distribution with probability level α
and whether it is independent of the VaR estimator; the
expected value of Hitv,t is 0. Furthermore, from the defini-
tion of the quantile function, the conditional expectation
of VaRt given any information known at t − 1 must also
be 0, which means that the hit function cannot be cor-
related with other lagged variables. Also, Hitv,t must not
be autocorrelated. If Hitv,t satisfies the conditions stated
above, then there will be no autocorrelation in the hits,
and no measurement error. We include one lag of Hitv,t
in the regression of the test. Consider the following DQ
regression:

Hitv,t = a0 + a1Hitv,t−1 + a2VaRt−1 + uv,t , (17)

where a = [a0, a1, a2] is the set of parameters of the
regression. On the basis of the null hypothesis, we test
whether all parameters in the set a are zero. Performing
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Table 3
Number of model rejections based on hit percentages of VaR forecasts (UC test) for the four indices for different α values.
Number Model 1% VaR 2.5% VaR 5% VaR 10% VaR

1% 5% 1% 5% 1% 5% 1% 5%

1 RW-125 3 3 0 0 0 0 0 0
2 RW-250 1 2 0 1 0 0 0 0
3 RW-500 0 2 1 1 0 1 0 0
4 GARCH-G 4 4 3 3 1 1 0 1
5 GARCH-Skt 0 1 0 3 0 0 0 0
6 HAR-Skt-RV5 4 4 4 4 4 4 4 4
7 HEAVY-N-RV5 4 4 4 4 0 3 0 0
8 HEAVY-Skt-RV5 0 1 0 0 0 0 0 0
9 AL-CAViaR-Sym 2 3 1 3 0 0 0 0
10 GAS-2F 3 3 2 2 0 0 1 2
11 GAS-1F 0 3 0 0 0 0 1 1
12 GARCH-FZ 1 2 1 3 0 0 0 1
13 Hybrid 2 2 0 1 0 0 1 1

14 GAS-2F-RV5 0 1 1 1 1 1 1 1
15 GAS-1F-RV5 0 1 0 1 0 1 0 0
16 GARCH-FZ-RV5 0 1 0 1 0 0 0 0
17 Hybrid-RV5 2 3 0 1 0 0 0 0
18 GAS-2F-RV10 1 1 1 1 1 1 1 1
19 GAS-1F-RV10 0 2 1 1 0 1 0 0
20 GARCH-FZ-RV10 1 1 1 1 0 0 0 0
21 Hybrid-RV10 2 3 1 1 0 0 0 1

22 GAS-2F-RN5 2 3 0 1 0 0 0 0
23 GAS-1F-RN5 0 1 0 0 0 0 0 1
24 GARCH-FZ-RN5 0 0 0 0 0 0 0 0
25 Hybrid-RN5 0 0 0 0 0 0 0 1

26 GAS-2F-RN10 0 1 0 0 0 0 0 0
27 GAS-1F-RN10 0 0 0 0 0 0 0 1
28 GARCH-FZ-RN10 0 0 0 0 0 0 0 0
29 Hybrid-RN10 0 1 0 0 0 0 1 1

This table presents the number of model rejections based on hit percentages of VaR forecasts (UC test) for the four daily equity
return series over the out-of-sample period for 29 different forecasting models. The first three rows (models 1–3) correspond
to rolling window historical forecasts, the next two rows (models 4 and 5) correspond to GARCH forecasts based on different
distributions for the standardized residuals, the next four rows (models 6–9) correspond to forecasts using high-frequency
data and the CAViaR model based on the asymmetric Laplace distribution, the next four rows (models 10–13) correspond to
GAS models proposed by Patton et al. (2019) and the last 16 rows (models 14–29) correspond to the GAS models extended
with the 5-min and 10-min realized measures.

this DQ test gives a test statistic which is distributed X 2(3)
asymptotically.

Columns 6–9 in Table 4 show the p values of the DQ
test of VaR forecasts for α = 1% for the four stock indices.
Values of p greater than 5% indicate no evidence against
optimality at the 5% significance level (in bold), and values
between 1% and 5% are in italics. For the S&P 500, all
of our newly proposed models pass the DQ test at the
1% significance level. When we consider the Nikkei 225
and the FTSE 100, we see significant improvements after
adding realized measures in the GAS models. For the DJIA,
using realized measures, we find that fewer models fail
the DQ test, whereas the historical simulations pass the
test, and the GARCH-Skt model performs well. However,
for this index, all of the GAS-1F models extended with
realized measures are able to pass the DQ test for all four
indices. Overall, adding realized measures enables GAS-FZ
models to reduce the number of rejections in the DQ test
for α = 1%.

For α = 2.5% (see Table 5), we obtain similar results,
namely that adding realized measures generally reduces
the number of rejections in the DQ test. For the DJIA, the
GAS-2F model can pass the test after addition of realized
measures RN5 and RN10. For α = 5%, in Table 6, we

can see that all original GAS-FZ models can pass the DQ
test across the four indices except the hybrid model for
the S&P 500. After addition of realized measures in the
GAS models, it can be seen that the p values increase
and the DQ test is generally passed. Table 7 presents the
number of model rejections at the 1% and 5% significance
levels for quantile regression VaR backtests across the
four indices for different probability levels. It can be con-
cluded that the set of GAS models extended with realized
measures tend to have a lower number of rejections than
the original GAS models and several other benchmarks.
It should be noted that the four GAS-1F models extended
with different realized measures have the least number of
rejections in the DQ test, especially for low values of α.

4.2. Backtesting ES

All models that we consider produce both VaR and ES
forecasts. From an economic point of view, for example,
when we compare the 2.5% ES forecasts of the GAS-1F-
RV5 model and the 2.5% ES forecasts of the GAS-1F model,
the first one has, on average, an ES forecast lower by
13.29% for the S&P 500, 17.49% for the DJIA, 8.40% for
the Nikkei 225 and 5.31% for the FTSE 100. The results
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Table 4
Out-of-sample average losses and dynamic regression tests (α = 1%) for the VaR and ES forecasts.

Average loss DQ test (VaR) p values DES test (ES) p values

S&P 500 DJIA Nikkei 225 FTSE 100 S&P 500 DJIA Nikkei 225 FTSE 100 S&P 500 DJIA Nikkei 225 FTSE 100

RW-125 1.479 1.400 1.864 1.298 0.063 0.109 0.017 0.087 0.032 0.056 0.008 0.082
RW-250 1.522 1.473 1.928 1.377 0.350 0.302 0.042 0.043 0.255 0.204 0.024 0.075
RW-500 1.633 1.550 1.998 1.464 0.128 0.159 0.017 0.028 0.170 0.162 0.049 0.058
GARCH-G 1.380 1.246 1.636 1.190 0.001 0.004 0.031 0.000 0.000 0.001 0.012 0.000
GARCH-Skt 1.246 1.128 1.565 1.105 0.043 0.114 0.550 0.265 0.036 0.049 0.433 0.268
HAR-Skt-RV5 1.306 1.118 2.735 1.132 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001
HEAVY-N-RV5 1.233 1.164 1.609 1.137 0.000 0.000 0.003 0.000 0.000 0.000 0.001 0.000
HEAVY-Skt-RV5 1.117 1.047 1.507 1.065 0.063 0.021 0.414 0.145 0.053 0.028 0.310 0.166
AL-CAViaR-Sym 1.306 1.158 1.529 1.102 0.004 0.095 0.255 0.296 0.007 0.131 0.182 0.314
GAS-2F 1.244 1.260 1.670 1.217 0.035 0.075 0.493 0.001 0.059 0.044 0.409 0.011
GAS-1F 1.222 1.184 1.650 1.184 0.209 0.219 0.019 0.629 0.371 0.274 0.025 0.832
GARCH-FZ 1.241 1.147 1.521 1.088 0.044 0.230 0.260 0.000 0.055 0.331 0.288 0.000
Hybrid 1.242 1.140 1.533 1.180 0.457 0.146 0.235 0.087 0.367 0.360 0.206 0.098
GAS-2F-RV5 1.106 1.016 1.562 1.080 0.687 0.000 0.121 0.000 0.675 0.000 0.198 0.000
GAS-1F-RV5 1.109 1.008 1.521 1.060 0.304 0.252 0.403 0.706 0.242 0.283 0.328 0.610
GARCH-FZ-RV5 1.118 1.031 1.518 1.113 0.349 0.525 0.296 0.112 0.253 0.268 0.251 0.089
Hybrid-RV5 1.141 1.087 1.575 1.069 0.253 0.000 0.033 0.324 0.205 0.000 0.036 0.364
GAS-2F-RV10 1.121 1.015 1.610 1.066 0.685 0.000 0.000 0.671 0.812 0.000 0.005 0.720
GAS-1F-RV10 1.117 1.024 1.557 1.071 0.239 0.450 0.327 0.538 0.212 0.391 0.248 0.510
GARCH-FZ-RV10 1.116 1.052 1.534 1.104 0.496 0.830 0.140 0.078 0.391 0.692 0.137 0.064
Hybrid-RV10 1.131 1.097 1.617 1.054 0.126 0.000 0.000 0.868 0.129 0.000 0.001 0.836
GAS-2F-RN5 1.165 1.001 1.553 1.076 0.028 0.000 0.006 0.499 0.019 0.000 0.023 0.703
GAS-1F-RN5 1.109 0.995 1.518 1.063 0.295 0.429 0.164 0.243 0.262 0.445 0.190 0.223
GARCH-FZ-RN5 1.123 1.012 1.598 1.109 0.250 0.000 0.659 0.058 0.157 0.000 0.435 0.050
Hybrid-RN5 1.118 1.026 1.582 1.071 0.319 0.000 0.286 0.286 0.237 0.000 0.262 0.269
GAS-2F-RN10 1.133 1.005 1.565 1.065 0.193 0.502 0.258 0.377 0.225 0.555 0.308 0.486
GAS-1F-RN10 1.102 1.014 1.586 1.060 0.790 0.696 0.548 0.340 0.717 0.702 0.371 0.334
GARCH-FZ-RN10 1.123 1.021 1.620 1.113 0.697 0.000 0.192 0.115 0.570 0.000 0.093 0.080
Hybrid-RN10 1.118 1.031 1.549 1.062 0.261 0.000 0.382 0.818 0.274 0.000 0.354 0.784

Columns 2–5 present the average losses, obtained with the FZ0 loss function, for the four daily equity return series over the out-of-sample period
for α=1%. The lowest average loss in each column is highlighted in bold, and the second lowest is highlighted in italics. Columns 6–9 and columns
10–13 present p values from dynamic regression tests for the VaR and ES forecasts, respectively. Values greater than 0.05 (indicating no evidence
against optimality at the 0.05 level) are in bold, and values between 0.01 and 0.05 are in italics.

indicate that ignoring realized measures overestimates
risk on average. Looking at the significance of these val-
ues, we follow the backtesting method of Patton et al.
(2019) to evaluate the ES estimates individually using a
DES regression test:

λs
e,t = b0 + b1λs

e,t−1 + b2ESt−1 + ue,t , (18)

where λs
e,t is the standardized version of λe,t defined in (6)

(λs
e,t =

λe,t
et

=
1
α
1{Yt ≤ VaRt}

Yt
et

− 1) and b = [b0, b1, b2]
is the set of parameters of the regression. On the basis of
the null hypothesis, we test whether all parameters in set
b are zero.

Columns 10–13 in Table 4 show the p values from
the DES test of the ES forecasts for α = 1% for the
four stock indices. Similarly to the results of the DQ test,
incorporating the realized measure RN10 in GAS models
seems to reduce the number of backtest rejections for the
Nikkei 225 and the FTSE 100. GAS-1F models with realized
measures can pass the DES test at the 5% significance
level for all indices, which is consistent with the results of
the DQ test. The GAS-2F model, after addition of the risk
measure RN10, passes the DES test for all indices. Almost
all of our new models pass the DES test across the four
indices for α = 2.5%, except the GAS-2F model for the
Nikkei 225, as can be seen in columns 10–13 in Table 5.
Table 6 presents similar results across the four indices

for α = 5%; some benchmarks also have p values higher
than 5% (e.g. the HEAVY-Skt model). Table 7 summarizes
the total number of model rejections at the 1% and 5%
significance levels for the DES regression backtests across
the four indices for different probability levels. The GAS-
1F models enhanced with realized measures have the
smallest number of backtest rejections.

4.3. Joint backtesting of the (VaR, ES) risk measures

To compare jointly the VaR and ES forecasts gener-
ated by different models, in this section, a loss function
proposed in Fissler and Ziegel (2016) is used. Fissler and
Ziegel (2016) discuss how VaR and ES are jointly elicitable
and present a group of loss functions for risk measure
estimation and backtesting. We follow the choice of Pat-
ton et al. (2019) for the loss function FZ0, as defined in
(1). To compare the performance of each model using the
FZ0 loss function, we calculate the average loss LFZ0 =
1
T

∑T
t=1 LFZ0,t for different α values across the four indices.

Columns 2–5 in Table 4 present the average losses
for the four equity return series over the out-of-sample
period for 13 different benchmark forecasting models and
16 newly proposed models that use the 5-min and 10-
min realized measures. The lowest average loss in each
column is highlighted in bold, and the second lowest is
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Table 5
Out-of-sample average losses and dynamic regression tests (α = 2.5%) for the VaR and ES forecasts.

Average loss DQ test (VaR) p values DES test (ES) p values

S&P 500 DJIA Nikkei 225 FTSE 100 S&P 500 DJIA Nikkei 225 FTSE 100 S&P 500 DJIA Nikkei 225 FTSE 100

RW-125 1.198 1.120 1.522 1.063 0.147 0.014 0.067 0.013 0.113 0.025 0.069 0.036
RW-250 1.238 1.167 1.550 1.128 0.025 0.059 0.024 0.030 0.145 0.212 0.054 0.110
RW-500 1.347 1.281 1.623 1.235 0.001 0.005 0.006 0.000 0.018 0.018 0.025 0.020

GARCH-G 1.080 0.982 1.341 0.989 0.026 0.028 0.305 0.000 0.003 0.005 0.086 0.000
GARCH-Skt 1.034 0.942 1.320 0.950 0.179 0.215 0.794 0.095 0.128 0.234 0.551 0.088
HAR-Skt-RV5 1.044 0.925 2.053 0.959 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.002
HEAVY-N-RV5 0.964 0.898 1.327 0.946 0.018 0.016 0.016 0.021 0.002 0.003 0.003 0.006
HEAVY-Skt-RV5 0.926 0.863 1.291 0.918 0.253 0.274 0.235 0.095 0.127 0.158 0.164 0.091
AL-CAViaR-Sym 1.064 0.957 1.311 0.945 0.075 0.172 0.530 0.067 0.035 0.235 0.434 0.072
GAS-2F 1.057 1.001 1.414 0.979 0.383 0.004 0.103 0.004 0.178 0.032 0.017 0.014
GAS-1F 1.041 0.971 1.356 0.970 0.765 0.316 0.073 0.873 0.654 0.284 0.083 0.899
GARCH-FZ 1.033 0.929 1.308 0.956 0.091 0.201 0.468 0.084 0.067 0.264 0.387 0.070
Hybrid 1.020 0.943 1.300 0.954 0.651 0.305 0.348 0.166 0.478 0.533 0.358 0.138
GAS-2F-RV5 0.947 0.851 1.331 0.909 0.378 0.356 0.001 0.886 0.740 0.360 0.000 0.977
GAS-1F-RV5 0.936 0.844 1.319 0.913 0.517 0.519 0.207 0.152 0.434 0.543 0.139 0.194
GARCH-FZ-RV5 0.924 0.855 1.297 0.919 0.785 0.642 0.185 0.193 0.605 0.407 0.123 0.185
Hybrid-RV5 0.950 0.871 1.315 0.912 0.419 0.338 0.185 0.862 0.367 0.343 0.147 0.896
GAS-2F-RV10 0.934 0.846 1.338 0.908 0.528 0.772 0.000 0.792 0.800 0.722 0.000 0.789
GAS-1F-RV10 0.934 0.869 1.305 0.914 0.174 0.491 0.154 0.733 0.237 0.489 0.101 0.621
GARCH-FZ-RV10 0.931 0.856 1.311 0.915 0.795 0.695 0.103 0.130 0.631 0.465 0.075 0.120
Hybrid-RV10 0.946 0.883 1.306 0.913 0.339 0.714 0.137 0.775 0.416 0.704 0.112 0.756
GAS-2F-RN5 0.942 0.845 1.311 0.910 0.085 0.362 0.411 0.751 0.206 0.335 0.171 0.787
GAS-1F-RN5 0.939 0.843 1.320 0.914 0.419 0.536 0.588 0.717 0.449 0.559 0.395 0.650
GARCH-FZ-RN5 0.925 0.844 1.330 0.917 0.816 0.876 0.738 0.224 0.696 0.659 0.516 0.220
Hybrid-RN5 0.942 0.870 1.305 0.912 0.229 0.679 0.571 0.814 0.306 0.654 0.406 0.804
GAS-2F-RN10 0.937 0.831 1.305 0.907 0.029 0.804 0.429 0.855 0.116 0.839 0.210 0.824
GAS-1F-RN10 0.929 0.845 1.318 0.911 0.391 0.493 0.730 0.233 0.402 0.508 0.506 0.245
GARCH-FZ-RN10 0.930 0.840 1.330 0.913 0.810 0.860 0.793 0.120 0.737 0.721 0.542 0.118
Hybrid-RN10 0.938 0.881 1.305 0.914 0.286 0.401 0.644 0.545 0.381 0.457 0.452 0.438

Columns 2–5 present the average losses, obtained with the FZ0 loss function, for the four daily equity return series over the out-of-sample period for
α = 2.5%. The lowest average loss in each column is highlighted in bold, and the second lowest is highlighted in italics. Columns 6–9 and columns
10–13 present p values from dynamic regression tests for the VaR and ES forecasts, respectively. Values greater than 0.05 (indicating no evidence
against optimality at the 0.05 level) are in bold, and values between 0.01 and 0.05 are in italics.

highlighted in italics. For α = 1%, the GAS-FZ models en-
hanced with the realized volatility using overnight returns
and the HEAVY-Skt model perform well overall.

For α = 2.5% (see Table 5), the GAS-2F model using
the 10-min realized volatility and overnight returns (GAS-
2F-RN10) outperforms the other models, with lower loss
than most of the other models for most series, and is
consistently ranked well, being the best model for the
DJIA and the FTSE 100. In Table 6 (α = 5%), the GAS-
2F-RN5 and GAS-2F-RN10 models outperform the other
models, with the lowest loss for the DJIA and the FTSE
100, respectively. The HEAVY-Skt model has the lowest
loss for the S&P 500.

Table 8 presents the rankings (with the best-
performing model ranked 1 and the worst ranked 29)
based on average losses using the FZ0 loss function for
the four index return series over the out-of-sample period
for the 29 different forecasting models. Columns 6 and 12
give the average rank across the four series and columns
7 and 13 give the rank of the average. For α = 1%, the
best-performing model is the GAS-1F model with the 5-
min realized volatility and overnight returns, followed by
the GAS-1F models extended with the other two realized
measures. For α = 2.5%, the GAS-2F-RN10, GARCH-
FZ-RV5 and GAS-1F-RN10 models are the three models
having the lowest average losses. For α = 5% and α =

10%, our proposed models have a relatively higher rank
than the benchmarks, except for the HEAVY-Skt model,
which is ranked second for α = 5%.

Another observation here is that the losses gener-
ated from the GAS-FZ models with realized measures
are generally lower than the loss generated from most
benchmark approaches. However, the HEAVY-Skt model
is always one of best five models considered in the overall
ranking for all four probability levels. This suggests that
the variables extracted from intraday data provide useful
information for risk measure forecasting.

To analyse the relative performance of each model,
we use the Diebold–Mariano (DM) test to compare any
two models using differences in average losses. In this
study, t statistics from the DM test compare the average
losses, using the FZ0 loss function, for the indices and
for different probability levels over the out-of-sample pe-
riod. A negative t statistic indicates that the row model
outperforms the column model with a significant loss dif-
ference. Absolute values greater than 1.96 (2.575 or 1.64)
indicate that the average loss difference is significantly
different from zero at the 95% (99% or 90%) confidence
level. In Fig. 1, we present the results for the S&P 500
with the null hypothesis that the row model and the
column model have equal values for the loss function. The
numbering of the models used in Fig. 1 is given in the first
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Table 6
Out-of-sample average losses and dynamic regression tests (α = 5%) for the VaR and ES forecasts.

Average loss DQ test (VaR) p values DES test (ES) p values

S&P 500 DJIA Nikkei 225 FTSE 100 S&P 500 DJIA Nikkei 225 FTSE 100 S&P 500 DJIA Nikkei 225 FTSE 100

RW-125 0.977 0.894 1.282 0.876 0.008 0.075 0.000 0.002 0.074 0.200 0.045 0.014
RW-250 1.011 0.950 1.288 0.931 0.008 0.065 0.072 0.001 0.093 0.213 0.113 0.007
RW-500 1.104 1.058 1.348 0.993 0.003 0.001 0.000 0.000 0.006 0.003 0.004 0.001

GARCH-G 0.849 0.775 1.142 0.808 0.715 0.840 0.949 0.024 0.243 0.273 0.448 0.004
GARCH-Skt 0.836 0.764 1.135 0.794 0.857 0.968 0.979 0.255 0.722 0.738 0.830 0.201
HAR-Skt-RV5 0.826 0.733 1.613 0.791 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.002
HEAVY-N-RV5 0.755 0.698 1.123 0.779 0.477 0.265 0.299 0.144 0.079 0.046 0.048 0.032
HEAVY-Skt-RV5 0.743 0.686 1.110 0.768 0.624 0.548 0.582 0.432 0.497 0.490 0.344 0.364
AL-CAViaR-Sym 0.854 0.770 1.133 0.794 0.573 0.452 0.959 0.125 0.221 0.367 0.692 0.090
GAS-2F 0.861 0.801 1.151 0.796 0.624 0.455 0.703 0.264 0.206 0.200 0.562 0.456
GAS-1F 0.848 0.782 1.140 0.786 0.059 0.280 0.131 0.560 0.028 0.159 0.121 0.659
GARCH-FZ 0.839 0.762 1.134 0.793 0.441 0.456 0.973 0.255 0.388 0.417 0.732 0.218
Hybrid 0.853 0.770 1.113 0.794 0.046 0.108 0.986 0.507 0.016 0.155 0.897 0.319
GAS-2F-RV5 0.748 0.679 1.120 0.764 0.237 0.503 0.002 0.782 0.136 0.580 0.000 0.934
GAS-1F-RV5 0.744 0.684 1.113 0.769 0.779 0.945 0.286 0.177 0.822 0.908 0.174 0.275
GARCH-FZ-RV5 0.746 0.689 1.109 0.771 0.931 0.914 0.617 0.538 0.957 0.718 0.322 0.417
Hybrid-RV5 0.765 0.693 1.118 0.767 0.677 0.801 0.424 0.474 0.937 0.784 0.258 0.577
GAS-2F-RV10 0.747 0.676 1.119 0.766 0.078 0.520 0.004 0.410 0.063 0.593 0.001 0.666
GAS-1F-RV10 0.751 0.683 1.109 0.774 0.589 0.909 0.230 0.374 0.786 0.863 0.156 0.314
GARCH-FZ-RV10 0.750 0.689 1.123 0.773 0.808 0.821 0.655 0.386 0.857 0.743 0.294 0.265
Hybrid-RV10 0.754 0.696 1.108 0.767 0.561 0.578 0.435 0.349 0.750 0.887 0.274 0.563
GAS-2F-RN5 0.749 0.671 1.116 0.767 0.317 0.755 0.921 0.648 0.221 0.770 0.660 0.573
GAS-1F-RN5 0.747 0.681 1.123 0.766 0.641 0.838 0.983 0.424 0.904 0.824 0.866 0.454
GARCH-FZ-RN5 0.745 0.679 1.137 0.770 0.788 0.779 0.972 0.492 0.887 0.822 0.780 0.394
Hybrid-RN5 0.753 0.702 1.117 0.771 0.668 0.820 0.998 0.445 0.923 0.813 0.815 0.599
GAS-2F-RN10 0.748 0.674 1.118 0.763 0.082 0.261 0.904 0.611 0.087 0.370 0.644 0.862
GAS-1F-RN10 0.751 0.682 1.115 0.769 0.596 0.775 0.856 0.384 0.923 0.830 0.966 0.379
GARCH-FZ-RN10 0.746 0.676 1.134 0.771 0.729 0.621 0.990 0.378 0.923 0.826 0.900 0.277
Hybrid-RN10 0.765 0.709 1.112 0.768 0.272 0.563 0.546 0.428 0.777 0.837 0.975 0.626

Columns 2–5 panel present the average losses, obtained with the FZ0 loss function, for the four daily equity return series over the out-of-sample
period for α = 5%. The lowest average loss in each column is highlighted in bold, and the second lowest is highlighted in italics. Columns 6–9 and
columns 10–13 present p values from dynamic regression tests for the VaR and ES forecasts, respectively. Values greater than 0.05 (indicating no
evidence against optimality at the 0.05 level) are in bold, and values between 0.01 and 0.05 are in italics.

column in Table 3. Positive test statistics corresponding
to darker colours mean that the row model has larger
losses than the column model. The white blocks mean
that the row model dominates the column model in loss
comparison at the 95% significance level; the light-green
(below white in the colour bar) blocks mean that the row
model has lower average loss than the column model, but
not significantly so; and the dark-red blocks mean that
the row model has higher loss than the column model at
the 95% significance level. In Fig. 1, at the 1% level, the
rows for model 8 (HEAVY-Skt-RV5), model 23 (GAS-1F-
RN5) and model 27 (GAS-1F-RN10) have lighter blocks
than the other rows; therefore, these are the three best-
performing models for the S&P 500 at the 1% level. For the
2.5% level, model 8, model 24 (GARCH-FZ-RN5) and model
27 outperform the others. At the 5% and 10% levels, model
3, model 24 and model 28 (GARCH-FZ-RN10) are the three
best-performing models for the S&P 500.

Following Wang et al. (2018) and Taylor (2019), we
use the model confidence set (MCS) test introduced by
Hansen, Lunde, and Nason (2011) to compare the fore-
casting models via the FZ0 loss function. This approach
builds MCSs using one-sided elimination based on the
DM test. In this study, we consider the 75% confidence

level10 and use two methods: the R method using sums of
absolute values for calculating the test statistic for MCS,
and the SQ method, which uses the summed squares.11

Table 9 presents the number of models within the MCS
test using the block bootstrap with a block length of 12
and 10,000 replications based on the losses generated
from the FZ0 loss function. The GAS-2F-RN10 model is
the best-performing model overall, and the GAS mod-
els extended with realized measures perform better than
most of the benchmark models. The main finding from
the MCS test echoes the results from the other backtesting
methods. The result that some GAS models enhanced with
realized measures end up more often in the MCS than
the HAR and HEAVY models highlights the usefulness of
the score function that the GAS models build on, and we
also provide evidence that the use of realized measures
enhances the risk forecasts of GAS models.

10 The 95% confidence level was considered as well with similar
results (results are available on request).
11 Details can be found on page 465 in Hansen et al. (2011); and
the MATLAB code for MCS testing can be downloaded from https:
//github.com/bashtage/mfe-toolbox/.

https://github.com/bashtage/mfe-toolbox/
https://github.com/bashtage/mfe-toolbox/
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Table 7
Rejections at the 1% and 5% significance levels for DQ and DES regression backtests across the four indices.

α = 1% α = 2.5% α = 5% α = 10%

VaR ES VaR ES VaR ES VaR ES

1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

RW-125 0 1 1 2 0 2 0 2 3 3 0 2 3 4 1 2
RW-250 0 2 0 1 0 3 0 0 2 2 1 1 1 3 1 2
RW-500 0 2 0 1 4 4 0 4 4 4 4 4 3 4 4 4

GARCH-G 3 4 3 4 1 3 3 3 0 1 1 1 0 2 0 0
GARCH-Skt 0 1 0 2 0 0 0 0 0 0 0 0 0 1 0 0
HAR-Skt-RV5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
HEAVY-N-RV5 4 4 4 4 0 4 4 4 0 0 0 3 0 0 0 0
HEAVY-Skt-RV5 0 1 0 1 0 0 0 0 0 0 0 0 0 2 0 1
AL-CAViaR-Sym 1 1 1 1 0 0 0 1 0 0 0 0 0 1 0 0
GAS-2F 1 2 0 2 2 2 0 3 0 0 0 0 0 1 1 1
GAS-1F 0 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1
GARCH-FZ 1 2 1 1 0 0 0 0 0 0 0 0 1 2 0 0
Hybrid 0 0 0 0 0 0 0 0 0 1 0 1 2 2 0 1

GAS-2F-RV5 2 2 2 2 1 1 1 1 1 1 1 1 2 3 1 3
GAS-1F-RV5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
GARCH-FZ-RV5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Hybrid-RV5 1 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0
GAS-2F-RV10 2 2 2 2 1 1 1 1 1 1 1 1 1 3 3 3
GAS-1F-RV10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
GARCH-FZ-RV10 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
Hybrid-RV10 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0
GAS-2F-RN5 2 3 1 3 0 0 0 0 0 0 0 0 2 2 0 2
GAS-1F-RN5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
GARCH-FZ-RN5 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 1
Hybrid-RN5 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
GAS-2F-RN10 0 0 0 0 0 1 0 0 0 0 0 0 2 2 1 2
GAS-1F-RN10 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1
GARCH-FZ-RN10 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 1
Hybrid-RN10 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0

This table presents the number of data series (out of four) with model rejections at the 1% and 5% significance levels for the DQ (VaR) and DES (ES)
backtests across the four indices for four probability levels. Smaller numbers of model rejections are preferable (value of 0 in bold).

Table 8
Out-of-sample performance rankings for various values of α.

α = 1% α = 2.5%

S&P 500 DJIA Nikkei 225 FTSE 100 Average Rank S&P 500 DJIA Nikkei 225 FTSE 100 Average Rank

RW-125 27 27 26 27 26.8 27 27 27 26 27 26.8 27
RW-250 28 28 27 28 27.8 28 28 28 27 28 27.8 28
RW-500 29 29 28 29 28.8 29 29 29 28 29 28.8 29

GARCH-G 26 25 23 25 24.8 25 26 25 23 26 25.0 25
GARCH-Skt 23 19 14 17 18.3 21 21 21 17 20 19.8 22

HAR-Skt-RV5 24 18 29 21 23.0 24 23 19 29 23 23.5 23
HEAVY-N-RV5 19 23 19 22 20.8 22 18 18 18 19 18.3 20
HEAVY-Skt-RV5 7 14 1 7 7.3 4 3 12 1 16 8.0 4
AL-CAViaR-Sym 25 22 6 15 17.0 19 25 23 11 18 19.3 21

GAS-2F 22 26 25 26 24.8 26 24 26 25 25 25.0 26
GAS-1F 18 24 24 24 22.5 23 22 24 24 24 23.5 24
GARCH-FZ 20 21 4 14 14.8 17 20 20 9 22 17.8 19
Hybrid 21 20 7 23 17.8 20 19 22 3 21 16.3 18

GAS-2F-RV5 2 8 12 13 8.8 5 16 9 21 3 12.3 15
GAS-1F-RV5 3 4 5 3 3.8 2 9 4 15 9 9.3 8
GARCH-FZ-RV5 8 12 3 19 10.5 10 1 10 2 17 7.5 2
Hybrid-RV5 16 16 15 9 14.0 16 17 15 13 7 13.0 17

GAS-2F-RV10 11 7 20 8 11.5 12 8 8 22 2 10.0 10
GAS-1F-RV10 6 10 11 11 9.5 8 7 13 4 12 9.0 7
GARCH-FZ-RV10 5 15 8 16 11.0 11 6 11 12 14 10.8 12
Hybrid-RV10 14 17 21 1 13.3 14 15 17 8 10 12.5 16

(continued on next page)
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Table 8 (continued).
GAS-2F-RN5 17 2 10 12 10.3 9 14 6 10 4 8.5 5
GAS-1F-RN5 4 1 2 5 3.0 1 12 3 16 13 11.0 13
GARCH-FZ-RN5 12 5 18 18 13.3 15 2 5 19 15 10.3 11
Hybrid-RN5 10 11 16 10 11.8 13 13 14 6 6 9.8 9

GAS-2F-RN10 15 3 13 6 9.3 7 10 1 5 1 4.3 1
GAS-1F-RN10 1 6 17 2 6.5 3 4 7 14 5 7.5 3
GARCH-FZ-RN10 13 9 22 20 16.0 18 5 2 20 8 8.8 6
Hybrid-RN10 9 13 9 4 8.8 6 11 16 7 11 11.3 14

α = 5% α = 10%

S&P 500 DJIA Nikkei 225 FTSE 100 Average Rank S&P 500 DJIA Nikkei 225 FTSE 100 Average Rank

RW-125 27 27 26 27 26.8 27 27 27 27 27 27.0 27
RW-250 28 28 27 28 27.8 28 28 28 26 28 27.5 28
RW-500 29 29 28 29 28.8 29 29 29 28 29 28.8 29

GARCH-G 23 24 24 26 24.3 25 23 26 25 25 24.8 26
GARCH-Skt 20 21 21 24 21.5 21 20 23 23 22 22.0 23

HAR-Skt-RV5 19 19 29 20 21.8 22 15 15 29 16 18.8 18
HEAVY-N-RV5 16 16 16 18 16.5 18 5 14 14 10 10.8 12
HEAVY-Skt-RV5 1 11 4 8 6.0 2 1 10 9 7 6.8 4
AL-CAViaR-Sym 25 23 18 22 22.0 23 24 21 22 24 22.8 25

GAS-2F 26 26 25 25 25.5 26 16 18 16 26 19.0 20
GAS-1F 22 25 23 19 22.3 24 26 20 20 18 21.0 22
GARCH-FZ 21 20 19 21 20.3 20 22 22 24 21 22.3 24
Hybrid 24 22 7 23 19.0 19 21 16 10 17 16.0 16

GAS-2F-RV5 9 5 14 2 7.5 6 6 7 5 4 5.5 2
GAS-1F-RV5 2 10 6 11 7.3 5 7 1 2 5 3.8 1
GARCH-RV5 4 12 2 15 8.3 7 3 11 6 12 8.0 8
Hybrid-RV5 18 14 12 6 12.5 15 18 24 3 23 17.0 17

GAS-2F-RV10 6 4 13 3 6.5 3 14 9 11 3 9.3 10
GAS-1F-RV10 12 9 3 17 10.3 11 11 8 1 8 7.0 5
GARCH-FZ-RV10 11 13 17 16 14.3 17 9 12 17 14 13.0 14
Hybrid-RV10 15 15 1 5 9.0 9 19 19 4 19 15.3 15

GAS-2F-RN5 10 1 9 7 6.8 4 8 3 12 2 6.3 3
GAS-1F-RN5 7 7 15 4 8.3 8 13 13 8 9 10.8 13
GARCH-FZ-RN5 3 6 22 12 10.8 13 2 2 19 11 8.5 9
Hybrid-RN5 14 17 10 13 13.5 16 17 25 18 15 18.8 19

GAS-2F-RN10 8 2 11 1 5.5 1 10 6 13 1 7.5 6
GAS-1F-RN10 13 8 8 10 9.8 10 12 5 7 6 7.5 7
GARCH-FZ-RN10 5 3 20 14 10.5 12 4 4 21 13 10.5 11
Hybrid-RN10 17 18 5 9 12.3 14 25 17 15 20 19.3 21

This table presents the rankings (with the best-performing model ranked 1 and the worst ranked 29) based on the average losses obtained with the
FZ0 loss function for four daily equity return series over the out-of-sample period for 29 different forecasting models. Columns 7 and 13 present
the average rank across the four equity return series.

5. Conclusions

Patton et al. (2019) proposed a set of semiparametric
models (GAS-FZ) in a GAS framework to estimate risk
measures. This study provides an extension of this, using
exogenous information from high-frequency data to im-
prove on the prediction of VaR and ES. This provides a
new semiparametric framework named GAS-FZ-realized,
which is proposed for estimating and forecasting VaR
and ES jointly. Through incorporation of four realized
measures (5-min and 10-min realized volatility with or
without the overnight return) into the GAS-FZ models,
we observe an improvement in forecasting risk measures
over both in-sample and out-of-sample periods.

We use the newly proposed models to estimate the
VaR and ES of four international stock indices empirically
over the period from 2000 to 2019. The parameters of
the models are estimated by our minimizing the FZ loss
function of Fissler and Ziegel (2016). Then VaR and ES

forecasts are generated and individually backtested with
use of the UC test and DQ (and DES) regression tests, and
the joint loss function is computed. The main finding is
that forecasts generated from the GAS-FZ-realized models
outperform forecasts based on GARCH models or histori-
cal simulations, even those based on the original GAS-FZ
models. The only exception is the HEAVY-Skt-RV5 model,
which is difficult to beat.

To conclude, the GAS-FZ-realized models, especially
the GAS-2F model combined with the 10-min realized
volatility and the overnight return, can provide more ac-
curate risk measures for risk management across differ-
ent stock indices and probability levels when compared
with the other models. This work could be potentially
extended by improving the ES component, as the dy-
namics of VaR may not change simultaneously with ES,
for example by modelling an autoregressive relationship
between VaR and ES or by assuming a dynamic omega
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Fig. 1. Colour map based on the DM test comparing the average losses obtained with the FZ0 loss function over the out-of-sample period for 29
different models for the S&P 500: (a) 1% level; (b) 2.5% level; (c) 5% level; (d) 10% level. White blocks mean that the row model has lower average
loss than the column model at the 5% significance level; light-green (below white in the colour bar) blocks mean that the row model has lower
average loss than the column model, but is not significantly different from it, and so on. Darker-colour blocks mean that the row model has higher
average loss than the column model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Table 9
The 75% model confidence set for the R and SQ methods across the four stock indices.

Summed absolute values (R method) Summed squares (SQ method)

1% 2.5% 5% 10% Total 1% 2.5% 5% 10% Total

RW-125 0 0 0 0 0 0 0 0 0 0
RW-250 0 0 0 0 0 0 0 0 0 0
RW-500 0 0 0 0 0 0 0 0 0 0

(continued on next page)
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Table 9 (continued).
Summed absolute values (R method) Summed squares (SQ method)

1% 2.5% 5% 10% Total 1% 2.5% 5% 10% Total

GARCH-N 0 0 0 0 0 0 0 0 0 0
GARCH-Skt 0 0 0 0 0 0 1 0 0 1

HAR-Skt-RV5 0 0 0 0 0 0 0 0 0 0
HEAVY-N-RV5 0 0 0 0 0 0 1 2 1 4
HEAVY-Skt-RV5 3 3 3 2 11 3 3 3 2 11
AL-CAViaR-Sym 2 1 0 0 3 2 2 0 0 4

GAS-2F 0 0 0 0 0 0 0 0 0 0
GAS-1F 0 0 0 0 0 0 0 0 0 0
GARCH-FZ 2 1 0 0 3 2 1 0 0 3
Hybrid 1 1 1 0 3 1 1 1 0 3

GAS-2F-RV5 4 1 3 3 11 4 2 3 2 11
GAS-1F-RV5 4 2 3 2 11 4 3 3 2 12
GARCH-FZ-RV5 2 3 3 3 11 3 3 3 2 11
Hybrid-RV5 1 1 2 1 5 2 2 2 1 7

GAS-2F-RV10 3 2 4 2 11 3 2 4 2 11
GAS-1F-RV10 2 3 2 2 9 2 3 2 2 9
GARCH-FZ-RV10 2 2 1 1 6 3 3 3 1 10
Hybrid-RV10 2 2 2 1 7 2 2 3 1 8

GAS-2F-RN5 2 2 4 2 10 2 3 4 2 11
GAS-1F-RN5 4 2 2 0 8 4 3 3 1 11
GARCH-FZ-RN5 2 2 2 2 8 2 2 2 2 8
Hybrid-RN5 2 3 3 0 8 2 3 3 0 8

GAS-2F-RN10 2 4 4 2 12 3 4 4 2 13
GAS-1F-RN10 2 2 3 1 8 3 3 3 1 10
GARCH-FZ-RN10 1 2 3 1 7 2 2 3 2 9
Hybrid-RN10 3 3 2 0 8 3 3 2 0 8

This table presents the number of indices for which each method is within the MCS at the 75% confidence level based on the
FZ0 loss function. The highest value (in bold) means that the model is the most favoured one across the four stock indices
and for different probability levels.

ratio to describe the relationship between the two mea-
sures (Taylor, 2019). Moreover, this study can be extended
by using realized volatility at different frequencies or
via other proposed realized measures, for example those
found in Meng and Taylor (2018).
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