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A systems genomics approach to uncover patient-
specific pathogenic pathways and proteins
in ulcerative colitis
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We describe a precision medicine workflow, the integrated single nucleotide polymorphism

network platform (iSNP), designed to determine the mechanisms by which SNPs affect

cellular regulatory networks, and how SNP co-occurrences contribute to disease pathogen-

esis in ulcerative colitis (UC). Using SNP profiles of 378 UC patients we map the regulatory

effects of the SNPs to a human signalling network containing protein-protein, miRNA-mRNA

and transcription factor binding interactions. With unsupervised clustering algorithms we

group these patient-specific networks into four distinct clusters driven by PRKCB, HLA,

SNAI1/CEBPB/PTPN1 and VEGFA/XPO5/POLH hubs. The pathway analysis identifies cal-

cium homeostasis, wound healing and cell motility as key processes in UC pathogenesis.

Using transcriptomic data from an independent patient cohort, with three complementary

validation approaches focusing on the SNP-affected genes, the patient specific modules and

affected functions, we confirm the regulatory impact of non-coding SNPs. iSNP identified

regulatory effects for disease-associated non-coding SNPs, and by predicting the patient-

specific pathogenic processes, we propose a systems-level way to stratify patients.
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Precision medicine is a key clinical goal for the effective
treatment of heterogeneous, complex diseases such as
inflammatory bowel disease (IBD). Complex, multilayered,

integrative techniques are required to identify the individual
patients’ complex pathogenic pathways1,2. With IBD, the inter-
linked facets leading to disease are a dysfunctional immune
system and response to environmental triggers, including con-
stituents of the intestinal microbiota and dietary factors, in a
genetically susceptible host3. Focusing solely on genetic suscept-
ibility, genome-wide association studies (GWAS) and subsequent
fine mapping of identified regions defined causal disease-
associated single nucleotide polymorphisms (SNPs)4,5. However,
the clinical impact of these SNPs has yet to be realised. A pro-
mising approach to assess the functional role of SNPs, and advise
clinical practice, is to examine patient-specific sets in combination
with systems-level approaches6.

Exome sequencing and protein structural biology have already
contributed to the functional annotation of SNPs in protein-
coding regions (that alter the amino acid composition and the
function of the translated proteins), and how they impact diseases
such as obesity7, IBD5 and lung cancer8. Computational work-
flows prioritise such coding SNPs for further analysis9. These
approaches include artificial intelligence methodologies (such as
machine learning and deep neural networks) to identify and
quantify deleterious regulatory impacts of SNPs using chromatin
accessibility and transcription factor binding affinities10, and
high-throughput chromatin interaction studies11. This allows for
the identification of SNPs of interest. However, understanding the
function of SNPs in non-coding regions of the DNA remains
challenging, principally because many disease-causing SNPs are
in areas yet to be annotated5.

In ulcerative colitis (UC), a form of IBD, coding SNPs com-
prises less than 10% of the total UC-associated SNPs12. These
coding SNPs are not causally related to impaired intestinal barrier
function or inflammation that are hallmark pathognomic features
of UC13. Understanding of the phenotypic effects of SNPs in IBD
has involved the study of monogenic IBD in paediatrics that
analysed the deleterious nature of non-coding SNPs14, although
in adult-onset IBD these rare individual phenotypic SNPs have
not been identified15. A broader and deeper understanding of the
function of SNPs in this complex genetic disease is therefore
needed.

We propose that functional annotation at the molecular and
systems-level of the remaining 90% SNPs located in non-coding
regions would expand the utility of these disease-associated SNPs.
The proposed gap-filling systems-level analysis is essential, as
individual SNPs may have subtle phenotypic effects, but in
combination, they may have a pathological impact. Integrated
analysis of these non-coding SNPs allows the identification of
novel pathogenic pathways, and potentially patient-specific dis-
ease susceptibility, thus facilitating precision therapy.

For functional annotation of SNPs in non-coding regions, a key
question is whether the SNPs affect gene expression by, for
example, affecting long non-coding RNAs16–20, microRNA-target
sites (miRNA-TS)21, splicing22–25 or transcription factor (TF)
binding sites (TFBS)26 in promoter regions and within the first
introns27, which has been reported in complex diseases such as
diabetes, schizophrenia, coronary heart disease and Crohn’s
disease28–31. In this study, we focused on two regulatory effects as
examples; SNPs occurring in transcription factors binding sites
and in miRNA target sites as they can be validated by published
studies.

To identify the effect of non-coding SNPs, we have built on the
concepts identified by Boyle et al. to track the cumulative effects
of multiple regulatory SNPs as an ‘omnigenic’ model32. Using
network biology approaches that we have previously exploited to

uncover novel and important proteins in cancer biology33, we
aimed to further understand the pathogenic pathways of UC and
to identify novel and previously hidden disease-associated pro-
teins. These proteins are often undetected or hidden in conven-
tional mutation and expression screens as they mostly act as
direct interactors (first neighbours) of the proteins affected by a
disease-associated SNP. Using first neighbours gives an optimal
trade-off to keep specificity while reconstructing a connected
graph. Similar studies have utilised the concept of first neighbour
proteins in both type 2 diabetes34 and juvenile idiopathic
arthritis35. Systems biology approaches have been utilised with
predictive network models that identified proteins involved in the
pathogenesis of IBD in general36–38 but these approaches are
unable to account for regulatory and downstream effects of non-
coding SNPs. Therefore, by identifying first neighbour proteins in
UC, we aimed to expand current research and identify additional
pathogenic pathways of pharmacological use in UC that have
been previously undetected or hidden due to a lack of connection
with non-coding UC-associated SNPs. As UC is highly hetero-
geneous, we used individual patient data to identify patient
cohorts with similar or different pathogenic pathways of UC.

Connecting non-coding SNPs to pathways, especially in a
patient-specific manner, is a much needed but highly challenging
approach. To achieve this, we developed a workflow, named the
integrative SNP Network Platform (iSNP) by combining systems
genomics and network biology approaches into a scalable system.
We demonstrated its applicability by analysing a UC-associated
signalling network and by identifying patient clusters with dis-
tinct pathomechanisms contributing to UC. Within these clusters,
we highlighted cluster-specific key players, identifying known and
additional proteins as well as patient-specific pathways to the
disease. These predicted pathogenic effects were then validated
using transcriptomic data from an independent patient cohort39.
Integrating systems genomics and network biology data and
analysis offers unique biological insights and enables the scalable
examination of patient-specific datasets for precision medicine.

Results
Constructing the UC-associated signalling network. The inte-
grative SNP Network Platform (iSNP) was developed to assess the
regulatory effects of non-coding SNPs. The iSNP workflow con-
structs an integrated network based on identifying the proteins
whose expression could be directly affected by the SNPs (termed
as SNP-affected proteins) and their interactors (first neighbours)
through protein–protein interactions. (Fig. 1, Supplementary
Fig. 1). We used the UK East Anglia cohort of 378 patients from
the UK IBD genetics consortium for this analysis.

Patients from this cohort had a total of 40 individual UC-
associated SNPs from which we identified 22 UC-associated
regulatory SNPs localised within TFBS or miRNA-TS. These
SNPs were annotated to occur within 20 TFBSs and 4 individual
miRNA-TSs (Table 1, Supplementary Data 1). 11 of the affected
TFBSs were in enhancer regions and 3 were in both enhancer and
promoter regions. Each of this affected TFBS and miRNA-TS has
multiple TFs and miRNAs binding to them resulting in 264
transcription factors and 405 miRNAs whose regulatory function
is affected by these non-coding SNPs (Supplementary Data 1).
These regulators are involved in a total of 1490 regulatory
interactions (923 TF-TFBS and 550 miRNA-miRNA-TS interac-
tions). The identified regulatory interactions affected by the non-
coding SNPs led us to determine the genes whose expression
could be impacted by a SNP. These regulatory interactions
potentially affected 48 genes.

The products of the genes predicted to be affected by the SNPs
were filtered for proteins present in the OmniPath network, an
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integrated and comprehensive resource for manually curated
signalling interaction databases. Of the 48 SNP-affected proteins,
33 were in the OmniPath network40,41 and were regulated by 169
TFs and 247 miRNAs. To uncover the larger effect space of the
non-coding SNPs, we identified the first neighbour interactors of
the 33 SNP-affected proteins. In total, the UC-associated
signalling network consisted of 686 protein nodes, 6808
protein–protein interactions resulting in 758 regulatory interac-
tions (Fig. 2a).

The UC-associated signalling network contains three major
parts or modules, each over-represented with functions relevant
in UC: (1) calcium homeostasis; (2) cell motility and adhesion; (3)
stress regulation. Two additional modules were identified, one
containing HLA receptors involved in antigen-presentation and
one containing other proteins such as MAPKs or HDAC7.

The network visualisation shown in Fig. 2 highlights the
weighting of each SNP in the iSNP workflow; if a single
nucleotide polymorphism is in a miRNA-TS, enhancer or
promoter of a hub protein, which has a high number of
neighbours, then it has a larger effect on the network compared to
other proteins. This is particularly apparent for the two main
SNPs that are the driving force behind the constructed network:
rs7404095 and rs913678. rs7404095 affects PRKCB gene through
a miRNA -TS whereas rs913678 affects PTPN1, CEBPB and
SNAI1 genes through a TFBS in an enhancer region.

The UC-associated signalling network uncovered interesting
regulatory feedback loops (Fig. 2a). In these loops, TFs (Fig. 2a,
listed in Supplementary Data 2A) are regulatory genes encoding
proteins that interact with the same TF at the protein–protein
level. The TFs include key stress response regulators, such as
MYC, JUN, PPARA, PPARG, CEBPA and HIF1A. By using the
whole feedback loop for a Gene Ontology biological process
enrichment test, they were enriched in relation to cell prolifera-
tion, wound healing, angiogenesis regulation, stress response and

Table 1 Affected SNPs in the UC-associated signalling
network, their target genes and interactionsa.

SNP Target gene name Regulatory annotation of
the SNP

rs11041476 LSP1 TFBS in an enhancer,
miRNA-TS in the
first intron

TNNI2 TFBS in an enhancer
rs11168249 RAPGEF3 TFBS in an enhancer

HDAC7 TFBS in an enhancer,
miRNA-TS in the
first intron

rs11676348 ARPC2 TFBS in an enhancer
CXCR1
CXCR2
SLC11A1
CTDSP1

rs12254167 CCNY TFBS in an enhancer
rs1598859 NFKB1 TFBS in an enhancer

CISD2
rs17085007 RPL21 TFBS in an enhancer

GTF3A
rs1801274 FCGR2A miRNA-TS in an exon
rs3774937 NFKB1 miRNA-TS in an intron
rs477515 HLA-DQA2 TFBS in an enhancer

HLA-DQB1
HLA-DQB2
C4A
HSPA1B
HLA-DPA1
AGER
NOTCH4

rs543104 CCDC82 TFBS in an enhancer
rs559928 RPS6KA4 TFBS in an enhancer
rs6087990 DNMT3B TFBS in a promoter
rs7404095 PRKCB miRNA-TS in a intron
rs907611 LSP1 TFBS in a promoter
rs913678 SNAI1 TFBS in an enhancer

CEBPB
PTPN1

rs943072 VEGFA TFBS in an enhancer
XPO5
POLH

aDetails of each interaction are provided in Supplementary Table 1. Cluster-driving SNPs
affecting the regulation of a high number of proteins directly or through their first neighbours are
shown in bold.
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Fig. 1 The iSNP workflow and its application to reconstruct a ulcerative
colitis-associated signalling network for non-coding single nucleotide
polymorphisms. Single nucleotide polymorphisms (SNP) identified in
patients were annotated based on those occurring within transcription
factor binding sites (TFBS) localised in enhancer or promoter regions of
genes, or within microRNA-target sites (miRNA-TS) that are in first intronic
regions or untranslated regions. After identifying the proteins whose
transcription or translation could be affected by these non-coding SNPs,
their protein interactors (first neighbours) were determined to construct a
ulcerative colitis-associated signalling network. (UK: United Kingdom, IBD:
Inflammatory Bowel Disease).
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cytokine response (Supplementary Data 2C). Thus, these feed-
back loops are affected by UC-associated regulatory SNPs and
systematically perturb cellular processes critical in UC
pathogenesis.

Identification of patient-specific clusters based on the UC-
associated network. We then investigated how the UC-associated
signalling network was different in each of the 378 UC patients.
Based on the set of SNPs present in each patient, we defined
patient-specific UC-associated signalling networks, called ‘net-
work footprints’. Unsupervised hierarchical clustering using dif-
ferent linkage algorithms of 378 patients stratified the patient-
specific network footprints into four distinct clusters (Fig. 3a).
The distribution of patients in the four clusters is presented in
Supplementary Table 1.

SNP-affected proteins with many protein interactions drove
the clustering of patients, often designated as hub proteins in
network biology. In our analysis, we defined these proteins as
‘cluster driving proteins’ and the SNPs affecting them are
identified in Table 1 (bold text). The SNP rs7404095 affecting
PRKCB gene had the largest effect in clustering the patients, as it
has 305 interactor partners in the network. PRKCB has been
implicated in the pathogenesis of IBD due to its effects on the

colonic mucosa42, colonic microbiota43 and cell junction
complexes44,45. This SNP divides the patient cohort into two
different clusters (Fig. 3a, b). The secondary divider for clusters is
the SNP rs913678, which is in the enhancer region of SNAI1,
PTPN1 and CEBPB. SNAI1 is a transcription factor involved in
epithelial-mesenchymal transition46. In dextran sulphate sodium
(DSS)-induced colitis, it was shown that SNAI1 augmented the
effects of MIST1 on the inflammasome protein NLRP3,
promoting inflammation47. PTPN1 is a phosphatase that inhibits
many tyrosine phosphate receptors such as EGFR48 or
PDGFR49,50. Inhibiting PTPN1 increases angiogenesis and
decreases inflammation51. CEBPB is a transcription factor
overexpressed in both DSS- and beta caryophyllene-induced
colitis52. Tertiary drivers are the SNP rs477515 affecting TFBSs in
the enhancer region of HLA genes, and the SNP rs943072
affecting TFBS in a shared enhancer region of VEGFA, XPO5 and
POLH.

We used two additional network resources (Reactome53 and
STRING54) to validate the clustering of the patients. From the 48
SNP-affected proteins 23 were present in Reactome and 33 in
STRING. The UC-associated signalling networks were not
similar, due to the complementarity of the three used networks
(Supplementary Fig. 2). The clusters were driven by the primary
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Fig. 2 Visualisation and modularisation of the ulcerative colitis-associated signalling network. a The ulcerative colitis (UC)-associated signalling
network contains proteins affected by—associated single nucleotide polymorphisms (SNPs), their interactor partners as well as the transcription
factors(TF) and micro-RNAs(miRNA) whose binding or target sites are affected by a SNP. Circles represent proteins and squares represent regulators
(red= TFs, blue=miRNAs). Nodes are coloured according to network modules. The modules are named by their representative function. At the top right
side of the network are TFs involved in potential regulatory feedback loops in UC pathogenesis. b Visualisation of the two regulatory modules. The module
on the left represents the transcription factor binding sites based effects on the downstream network, which affects almost the entire signalling network.
The module on the right represents the microRNA-target site based effects that mainly happen by regulating PRKCB.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29998-8

4 NATURE COMMUNICATIONS |         (2022) 13:2299 | https://doi.org/10.1038/s41467-022-29998-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


hubs in the networks that were the various HLA proteins in
Reactome and STRING, and the secondary drivers were the
VEGFA, XPO5 and POLH proteins (Supplementary Data 4).
These SNP-affected proteins divided the patient clusters tertiary
and quaternary in the OmniPath network-based clustering
(Supplementary results). The similarity of the patient clusters

was low (adjusted rand index <0.05; Supplementary Fig. 1) but
the Gene Ontology Biological Processes enriched in the networks
were similar in all three networks, highlighting various immune
functions (Supplementary Fig. 3, Supplementary Data 5).

Looking at the distribution of affected proteins in the patient
cohort (Fig. 3c), we identified processes and proteins frequently
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affected in UC patients as well as more specific processes that
were affected only in a smaller group of patients. In particular, we
found that 63 proteins were affected in 79.5% of the patients (300
patients) that were involved in various immune system processes,
autophagy and NFKB signalling (Supplementary Fig. 4, Supple-
mentary Data 6). Also, 114 proteins were affected in less than 170
patients (Supplementary Fig. 4 and Supplementary Data 6) that
were involved in cellular adhesion, angiogenesis and transmem-
brane receptor tyrosine kinase activity.

Validating the iSNP clusters using an independent cohort. To
validate the iSNP methodology, we used the TAMMA resource55,
which is the largest available transcriptomic resource in IBD
where the origin of the patient biopsy is available. We identified
the study GSE10914239 containing 206 juvenile, treatment-naive
UC samples from their index colonoscopy (at diagnosis with
active disease) and 20 juvenile controls. The data were coming
from the PROTECT study56. We defined whether a gene is dif-
ferentially expressed in the UC patients compared to controls
using fold change as a simple metric and developed three vali-
dation approaches (Fig. 4a): (1) Using the SNP-affected genes to
determine whether they are differentially expressed in the tran-
scriptomic dataset; (2) Examining differentially expressed genes
from the UC-associated signalling network in the transcriptomic
dataset; (3) Comparing overlapping Gene Ontology Biological
Processes of the SNP-affected proteins with the Gene Ontology
Biological Processes of the differentially expressed genes from the
transcriptomic dataset.

The first validation approach revealed that the SNP-affected
genes were differentially expressed on average in 63.24% patients
(SD= 39.58%) (Fig. 4b). Of the cluster-driving SNP-affected
genes, PRKCB and two HLA genes, HLA-DQB1 and HLA-DPA1,
were differentially expressed in all patients in the validation
cohort, whereas VEGFA and CEBPB were differentially expressed
in 97.6% and 93.2% of the patients, respectively. This validation
analysis demonstrated that the SNP-affected genes we have
functionally annotated (predicted) were also differentially
expressed in an independent cohort of UC patients.

The second approach (Fig. 4c) used the cluster-driving proteins
and their first neighbour’s gene expression to compare the patient
clusters generated from the transcriptomic measurements with
the patient clusters generated from the iSNP pipeline. Two
clusters were similar between the transcriptomic and the genomic
datasets derived analyses. The first had all the SNP-affected genes
and their first neighbours differentially expressed (the red cluster
on Figs. 3b, 4c), with the second one containing only a few
differentially expressed genes (the purple cluster on Figs. 3b, 4c).
These clusters matched clusters 1 and 4 in the iSNP study
analysis, respectively. The most differentially expressed genes in
the analysis were genes that were first neighbours of more than
one cluster-driving proteins, or the NFKB1-related first neigh-
bours impacting the clustering of the transcriptome analysis.
These results imply that the cluster-driving proteins highlighted
by the iSNP workflow are also identified as being important in an

independent cohort of UC patients. Moreover, we replicated the
patient clustering with an independent cohort, and using only
transcriptomic data with no genotype (SNP) data, further
validating the power of the iSNP approach.

The third validation approach showed that the biological
functions which we have identified using the UC-associated
signalling network were also differentially regulated in the
independent cohort. We identified the Gene Ontology biological
processes that were overlapping between the differentially
expressed genes and first neighbours of SNP-affected proteins
(Fig. 4d, Supplementary Data 3). These included unspecific
functions, such as metabolic process, regulation of signalling or
cell motility. The overlapping biological processes which were not
differentially expressed were upstream regulatory functions, such
as MAPK cascade or response to insulin. Specific over-
represented processes from the iSNP network analysis were
upstream processes such as interleukin-6 mediated signalling,
wound healing, and Notch signalling. The specific processes over-
represented based on the differentially expressed genes from the
validation cohort were downstream, inflammation-related pro-
cesses including immune cell activation (e.g. T cell differentiation,
neutrophil activation, macrophage activation). We also compared
the over-represented gene ontology biological processes in the
differentially expressed genes with those biological processes
which were over-represented in the first neighbours of the
cluster-driving proteins (side stacked bar chart in Fig. 4d). On
average, 37.7% of the enriched biological processes were similar
between the differentially expressed genes and the first neigh-
bours of the cluster-driving SNPs.

Our validation approaches confirmed that the iSNP analysis
identified the known genes involved in active UC. Moreover, with
the increased coverage from the first neighbours of the SNP-
affected proteins, iSNP enabled the identification of those genes
and proteins that are involved in UC pathogenesis that would not
have been identified by conventional genetic or transcriptomic
analysis alone.

Discussion
We have designed an integrated systems genomics workflow
(Fig. 1, Supplementary Fig. 1), termed iSNP, to layer patient data
from population-wide genomics with network biology and tran-
scriptomics using UC as a model of a complex genetic disease.
Our aim was to resolve the complex genetic background con-
tributing to disease pathogenesis for an individual patient. To
achieve this, we first identified so far hidden proteins involved in
UC pathogenesis, second we identified key pathogenic pathways
for UC and third we determined if patients had similar or dif-
ferent pathological processes in disease development. This was
done with a view to providing insights that could advance per-
sonalised medicine for patients with UC. This study used func-
tional annotation of non-coding SNPs with the integration of
transcriptomics and protein–protein interactions at an individual
patient level.

Fig. 3 Unsupervised clustering of ulcerative colitis patients based on their network footprint. a Heatmap of directly or indirectly affected proteins in
each patient. Each column represents a patient, and each row is a protein. Yellow colouring indicates specific proteins affected in individual patients while
blue means the opposite. The hierarchical clustering of the patients is shown above the heatmap and was generated using Hamming distance with the
average clustering method in which colours represent the patient clusters. The left of the heatmap identifies the proteins in various patient-specific
modules, while cluster-driving proteins are shown on the right side of the heatmap. b Representative networks from the four patient clusters. Yellow colour
indicates directly or indirectly affected proteins, while blue colour indicates not affected proteins. c Histograms depict the number of patients in which a
given protein is affected. The horizontal red line demarcates affected proteins in more than 300 patients. The green line defines the cut-off of proteins
affected in 170 patients or less. Both cut-offs were defined based on the distribution. The colours of the proteins are from the representative network
modules from Fig. 2 (HLA human leucocyte antigen).
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There are significant challenges in designing and executing
computational pipelines for functional analysis of genetic data,
particularly on an individual patient basis (see Supplementary
Discussion for more detailed discussion). To overcome input
challenges, we accessed high-quality individual patient genetic
information from the UK IBD Genetic Consortium. This

comprises preprocessed and quality-controlled immunochip
data57, giving individual patient alleles present at SNP sites. This
allowed us to functionally annotate UC-associated SNPs on a
patient-by-patient basis. A binary approach was used for deter-
mining whether a SNP-affected the regulation of a gene or pro-
tein, allowing us to identify when a SNP weakly affects the
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binding of a transcription factor (TFBS) or miRNA target site
(miRNA-TS), but does not eliminate the site completely, giving a
broader overview of SNP functional annotation.

For functional annotation of SNPs within TFBS, we utilised the
two widely cited, validated tools, Regulatory Sequence Analysis
tools (RSAT)58,59 and Find Individual Motif Occurrences
(FIMO)60. We considered the length of the TFBS query sequence
to include promoters and enhancers. We acknowledge that not all
TFBS in enhancer regions will be active, and that recently arti-
ficial intelligence techniques have integrated predictions of
chromatin interaction with SNP data to identify SNPs in areas of
active chromatin10,11. A switch mechanism to identify which
TFBS were active or inactive was not available during the
development or expansion of the iSNP workflow so we adopted a
simple approach: If a TFBS was affected in an enhancer site by a
SNP with a target gene in the Human Enhancer Disease Database
(HEDD) it was retained within the network.

In terms of the miRNA-TS identification algorithm, both
MIRANDA61 and TargetScan62 were trialled for inclusion in the
pipeline. Both performed well; however, as TargetScan requires
genome assembly to work, it was not plausible to integrate it into
a functional annotation pipeline. Although SNPs may impact
other parts of miRNA biogenesis and action, we utilised the site of
SNP impact with the largest wealth of experimental data.

The UC-associated signalling network identified mechanisms
of transcriptional and post-transcriptional regulation impacted by
non-coding SNPs. There was more transcriptional regulation of
SNP-affected genes than miRNA-based regulation (Fig. 2b) due
to the significant number of SNPs annotating within TFBS in
enhancer regions (Table 1). Each enhancer influences multiple
genes and multiple transcription factors were predicted to bind to
any given enhancer, meaning that each SNP had a pleiotropic but
individually minor effect on the expression of various genes.

In contrast, the SNPs in miRNA-TSs have a specific effect on
their individual target genes. Due to the fine-tuning role of miR-
NAs, the gain or loss of a miRNA-TS by itself has a small effect on
the regulation of a cell63. iSNP mapped both the specific and
pleiotropic regulatory changes one step further using a
protein–protein interaction network. This has an inherent risk of
increased noise within the network, and to reduce this we utilised
the sparse OmniPath which integrates experimentally validated
protein–protein interactions from 44 sources40. From studies of
cancer-related signalling networks, we have shown that informa-
tion regarding pathogenic pathways to disease can be gleaned from
the direct protein–protein interactors for a protein of interest33. By
integrating the protein–protein interaction and regulatory SNP
effects, the iSNP method highlighted key pathogenesis pathways
including calcium homeostasis, cell adhesion, stress response and
cytokine signalling (Fig. 2a, b). We also compared the results we
got using the OmniPath network with two other protein–protein

interaction networks, and we found similar functions affected by
SNPs. This confirmed that our findings did not depend on the
specific network resource we used in the study.

The calcium homeostasis signalling pathway has not been
identified previously as a driver of inflammation in UC. Intra-
cellular calcium levels were described as altered in ulcerative
colitis64 and described as a mechanism involved in DSS induced
colitis in vitro65. However, closely linked with calcium home-
ostasis are Vitamin D signalling pathways, which have been
hypothesised as a link between aberrant colonic mucosal vitamin
D metabolism and the development of IBD66,67. Calcium
homeostasis is likely linked to osteopenia and osteoporosis in
IBD. Further investigation is required to decide what part of the
intracellular or systematic calcium metabolism is affected in UC.
There was not enough granularity in the clinical data, or a large
enough population size, to determine if the cohorts of patients
with affected calcium homeostasis had alterations in their bone
mineral density compared to those patients without this pathway
involvement, or to remove confounders such as recurrent corti-
costeroid therapy.

Pathways involved in the regulation and cellular response to
stress, including wound healing and stress-related TFs, such as
PPARs, were identified via NFKB1. Wound healing is complex
and in the intestine involves multiple cell types, including
immune cells, macrophages, fibroblasts, endothelial cells, intest-
inal epithelial cells and stem cells. Intracellularly, these pathways
are also complex, but within the UC-associated signalling net-
work, we identified the involvement of proteins integral to
inflammasomes and peroxisomes. Specifically, within the UC-
associated signalling network, we identified SNAI1, which is a
regulator of the NLRP3 inflammasome47. There has been exten-
sive analysis of the NLRP3 inflammasome and its role in IBD in
both animal and in vitro studies, but the results are inconsistent,
with the NLRP3 inflammasome being deleterious or protective
depending on the colitis model used, the gut microbiota, or the
means of inducing colitis in animal models68.

Pathways impacting immune cell motility and cellular adhe-
sion in UC form the basis of therapeutic management with
vedolizumab (a4b7 integrin inhibitor) and etrolizumab (b7
integrin subunit inhibitor). Neither gene was affected by a SNP
within the network, nor in the first neighbours, but cell motility
and adhesion pathways feature in a distinct subset of patients
indicating a potential mechanism and explanation by which
therapies that impact these pathways may be more or less suc-
cessful in certain subsets of patients. This needs to be examined
more closely and validated in a large clinical cohort, as it may be a
means for personalising therapeutic strategies based on patient-
specific underlying pathogenic mechanisms in UC.

From the individual patient networks, we undertook unsu-
pervised clustering, which was driven by the highest degree nodes

Fig. 4 Validation of the iSNP method with transcriptomic data from an independent cohort of ulcerative colitis patients. a Flow chart depicting the
validation approaches. b Single nucleotide polymorphism (SNP) affected genes differentially expressed in ulcerative colitis (UC) patients from biopsy
samples of the GSE109142 dataset. Absolute log2 fold change > 1 was used as a cut-off. c The percentage of differentially expressed genes from the first
neighbours of the cluster-driving proteins using the same dataset. Analysis of the patients in the independent cohort produced two clusters similar to those
generated by iSNP (red and purple cluster on Fig. 3B). The most differentially expressed genes from the UC-associated signalling network in the validation
cohort were the first neighbours of multiple SNP-affected proteins. d Similarities between the over-represented Gene Ontology Biological Processes
between first neighbours of cluster-driving proteins and differentially expressed genes. Gene Ontology terms were considered enriched based on a
Benjamini-Hochberg corrected hypergeometric test p < 0.05. A gene was considered differentially expressed based on |FC| > 1 and q < 0.05 Benjamini-
Hochberg corrected moderate t-test There are two main groups of Gene Ontology Biological Processes: common and specific. The common processes
include regulation of signalling or metabolic processes while the specific processes represent the cluster-driving protein and its cluster function or the
transcriptomic effect of inflammation. Differentially expressed genes, first neighbours, or functions are represented in yellow and the cluster-driving genes
are represented by their respective colours: pink—SNAI1, CEBPB, PTPN1; blue—PRKCB; orange—VEGFA, XPO5, POLH; purple—NFKB1, turquoise—HLA
proteins.
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(hub) using distance metrics within a hierarchical agglomeration
method. This allows us to identify structures within the networks,
which were hitherto unknown. One limitation of this approach is
a potential bias towards promiscuous hubs, which have high
numbers of curated interactions within the interactome networks.
An example of this is PRKCB. Conversely, these large hub pro-
teins are very important to the network69 as they identify where a
SNP has a wider effect on signalling pathways, and from this, we
can identify particular pathways unique to clusters of patients
which aim to correlate with therapeutic response or disease
process. However, no significant differences based on the cohorts
(Chi-square tests p > 0.05, One way ANOVA p > 0.05, Supple-
mentary Table 1) were found. This is not unexpected as it
required nearly 30,000 patients for Cleynen and colleagues to
identify NOD2, MHC and 3p21 as being associated with the age
of disease onset and disease location in IBD70.

Our analysis identified multiple genes whose translated pro-
teins were hubs within the network including NFKB1 which is a
central player in inflammatory signalling cascades, immune-
mediated processes and in tight junctions regulation, but in our
network was shown not to be a cluster-driving protein. The HLA
proteins were cluster-driving proteins within the network, but did
not include the known IBD HLA serotypes71 (HLA-DQB1 with
Crohn’s72) with HLA-DQB2 and HLA-DPA1 being associations
identified here. Unexpected cluster-driving proteins were identi-
fied that have clear links with IBD such as PRKCB, and
VEGFA73,74 as well as proteins that have not been previously
associated with UC including Exportin 5 and DNA polymerase
eta. The involvement of Exportin 5 (a required protein for
canonical miRNA biogenesis75), as well as the multitude of
miRNA-TSs identified, adds weight to UC being a disease whose
pathogenesis is intrinsically complex, with multiple small impacts
on upstream gene regulation as opposed to singular high impact
phenotypic mutations.

Whilst we have used UC as a use case study for iSNP, the
pipeline is not disease-specific. We have made iSNP accessible and
tailorable, accounting for the importance of functional annotation
and downstream analysis of non-coding SNP effects for complex
genetic diseases. iSNP is a dockerised pipeline that can be inter-
faced using the command line. Each of the analytical modules of
the pipeline can be run independently of each other or run from
start to finish. The parameters for each analytical module can be
tuned by the user based on the input data. It is available on
GitHub at https://github.com/korcsmarosgroup/iSNP.

The integrative SNP Network Platform (iSNP) is a workflow to
functionally annotate non-coding SNPs, identify the first neigh-
bour interactions within a disease-specific network and identify
signalling pathways in which these SNPs and interactors are over-
represented. iSNP has the functionality to allow this to be done
on a broad scale to identify disease-associated pathways, and on
an individual level to identify patient-specific affected pathways.
Using UC as an example of a complex genetic disease, iSNP has
identified how patients have differing mechanisms of pathogen-
esis. We identified pathways regulating the cellular response to
stress, cell motility and calcium homeostasis as being over-
represented in the UC-associated signalling network. Further
work now needs to be done on larger cohorts and with multi-
omics datasets to confirm the potential for iSNP to be used for
precision therapy based on patient-specific genetics.

Methods
Sources of SNP data. UC-associated index SNPs were identified from the UK IBD
Genetics Consortium Immunochip data12 and the Broad Institute Repository76. If
no fine mapping was available for an index SNP (the immunochip finemapped
SNP had an R2 < 0.8), then the highest proxy partners (based on tightest linkage
disequilibrium and distance) were assessed using a SNP proxy search and were

included in the analysis. Each SNP was annotated using Ensembl from the rsID
using the genome map GRCH38.p7. Disease-associated SNPs were retrieved from
the original data source.

After obtaining ethics approval from the University of East Anglia Faculty of
Medicine and Health Science ethics committee (ref 02-01-16), anonymised
individual patient immunochip data and clinical parameters for 378 patients were
retrieved from the UK IBD Genetics Consortium from seven centres across East
Anglia, UK (Cambridge, Norwich, Ipswich, Stevenage, Luton, Bedford and West-
Suffolk). Informed consent of the patients was obtained by the IBD Bio-resource
team. The patients have consented to the IBD Bio-resource consent form version 2.
We included patients between 16 years and 83 years of age at diagnosis to account
for the bimodal age prevalence of UC (See Supplementary Table 1 for patient
demographics). SNPs were characterised into different types depending on their
location in the genome: exonic (missense, synonymous), intronic/untranslated
regions and intergenic. Flanking nucleotide sequences were obtained from the
downloaded September 2017 version of dbSNP77. For the list of analysed SNPs and
their effect, see Supplementary Data 1.

Assessing the effect of SNPs on transcription factor binding sites and
miRNA-TS. From the JASPAR database, 746 human transcription factors’ binding
profiles represented by Position Specific Scoring Matrices (PSSMs) were
downloaded78. The JASPAR format PSSMs were converted to the TRANSFAC
format to ease handling of results. To assess the effect of the SNP on the gain or
loss of putative TF binding sites, flanking sequences 50 bases upstream and
downstream of the SNPs were extracted. The Regulatory Sequence Analysis Tool
(RSAT) matrix-scan58 was used to search for potential TFBS in the ancestral and
patient-specific mutant alleles. The background model estimation was determined
by using residue probabilities from the genome version GRCH38.p7 sequences of
all promoters based on the UCSC genome table browser79 5KB before the TSS and
all enhancers from the HEDD database80. In calculating the background prob-
abilities we used a Markov order of 1. The search was subject to both strands of the
sequences. Hits with a P-value ≤1e-05 were considered binding sites. Other
parameters were set at default values.

As a complementary TF binding sites prediction algorithm, FIMO was used60.
FIMO predicts the transcription factor targets sites using a matrix-based sequence
scanning algorithm without a hidden Markov model, unlike the previous tool
RSAT matrix-scan. It calculates the log-odds scores comparing random and test
sequences followed by a Benjamini-Hochberg-based false discovery correction of
the P-value. The false discovery rate cut-off was 0.1.

To increase the coverage of the TF binding sides, enhancer regions were added
using the Human Enhancer Disease Database (HEDD)81. HEDD contains the
enhancers from ENCODE82, FANTOM583,84 and the Epigenomics RoadMap85. To
assess the effect of the SNPs on miRNA-TSs, the 22 bp sequences of mature
miRNAs were retrieved from miRBase86,87. The flanking sequences of SNPs were
assessed for the presence of miRNA-TSs using miRanda88. Hits occurring in the
seed region (2’–8’) of the miRNAs, and with alignment scores ≥90 and energy
threshold ≤−16 kcal/mol were considered as TS. Other parameters were set to
default settings. TSs in the coding region or in the first intronic region were kept. A
final manual check was performed to ensure that the SNPs overlapped with the
predicted TFBS or miRNA target sites. For the miRNA-TS predictions, miRanda
was chosen as it predicts and characterises miRNA binding sites using entropy-
based binding energy scores instead of traditional conservation-based methods88.
Gain or loss of the regulatory interactions between TFs and protein-coding genes
were also considered where the protein-coding gene was in the promoter or in the
enhancer region. We defined the promoter regions as 5 kb upstream from the
transcription start site and downstream to the first exon of the gene. This
information was retrieved using the feature retrieval function of the UCSC genome
table browser79. The effect of SNPs on the uncovered TFBS or miRNA-TSs was
classified into either a gain or loss of binding site/target site or a neutral change.
Only those sites identified as loss or gain regarding sites corresponding to the
ancestral allele were considered for subsequent analysis. We referred to genes
corresponding to such SNPs as ‘SNP-affected genes’.

Network construction and analysis. Protein–protein interactions of the proteins
encoded by SNP-affected genes were obtained from OmniPath on 10 January
202040,41. For the STRING network, we used stringent parameters using only the
physical protein–protein interactions: values >0 in the experimental and database
channel in the physical links downloaded on 28 October 202154. For the Reactome
interactions, we used the Homo sapiens mitab interaction file downloaded on 28
October 202189. All interactions were translated to UniProt Accession numbers90

using the UniProt mapping tool with a python script. For each patient, the set of
proteins encoded by SNP-affected genes and their first interactors (first neigh-
bours) were defined as the UC-associated network footprint of a particular patient.
The union of all network footprints, the UC-associated signalling network, was
analysed and visualised in Cytoscape 3.3.091 using the inverted self-organising map
layout. We retained only those SNP-affected genes which were present in the
OmniPath resource and which formed a giant component with their interactors.
Patient-specific networks were constructed using the Cytoscape CyRestClient 0.6 in
Python 3.692.
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Module analysis was carried out using the Clustermaker2 1.1.0 Cytoscape app93

implementing the GLay clustering method94, which is an implementation of the
Girvan-Newman clustering algorithm95. Briefly, the clustering method deletes the
highest betweenness edges from the network until the network collapses to non-
connected components and these components form the clusters. We used this
clustering method due to being algorithmically quick and giving biologically
meaningful clusters. (For further discussion see Supplementary Discussion). We
call the network clusters ‘modules’, to distinguish them from patient clusters.

Hierarchical clustering and statistical analysis. The scikit-learn (v 0.23.) package
was used for hierarchical clustering of the patient-specific clusters96. The con-
structed distance matrix between patients was based on the Hamming distance97. If
a protein was directly or indirectly affected by a SNP, it was assigned a value of “1”
for a patient. If the protein was not affected, it was scored as “0”. The cluster
similarity was measured using the adjusted rand index from the python Scikit-learn
package96.

Gene Ontology analysis. The Gene Ontology analysis was performed using the
GORILLA tool98. The gene ontology biological processes were visualised using
REVIGO99. For the overrepresentation test, the background was the giant com-
ponent of the specific network resource (OmniPath, Reactome, or STRING). The
tests were false discoveries corrected by the Benjamini-Hochberg method. We
considered a Gene Ontology Biological Process term representative for a cluster if it
was enriched with a corrected q < 0.05.

Validation cohort analysis. The TAMMA transcriptomics collection datasets were
downloaded on 14 June 202155. After examining the metadata, the study
GSE10914239 was used as it had annotated source tissue and an adequate number
of patients and controls (206 and 20, respectively). Expression tables were
assembled from the gene-specific expression values remaining those genes
expressed in 10 or more read counts and the samples were normalised using the
limma package (version 3.50.1)100 which implemented voom101. The log2 normed
counts were used for further analysis. On a patient to patient basis, the fold change
values were calculated by comparison with the average of the control samples. If
the absolute differential expression was >1 then the gene was considered to be
differentially expressed in that patient. This binary matrix was used for clustering
and visualisation.

For case one, only the SNP-affected genes in the OmniPath database were used
(Table 1). For case two, the UC-associated signalling network was used with the
proteins grouped by the hub SNPs. For case three, differentially expressed genes in
GSE109142 were used to compare the SNP-affected genes’ first neighbours
enriched gene ontology biological processes. The definition of differentially
expressed genes was |FC| > 1 and q < 0.05 Benjamini-Hochberg corrected moderate
t-test using the standard limma analysis pipeline100.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The immunochip SNP data were retrieved from the IBD bioresource database https://
www.ibdbioresource.nihr.ac.uk/. The data are available under restricted access due to
the clinical and so sensitive nature of the data. Access can be obtained by applying to
the IBD Bio-resource through https://www.ibdbioresource.nihr.ac.uk/index.php/
resources/applying-for-access-to-the-ibd-bioresource-panel-2/. The outcome of the
pipeline is available in Supplementary Data 7 containing internal patient IDs, SNP-
affected genes and the transcription factors and miRNAs. The transcriptomic data
were downloaded from the GEO database accession: GSE109142.

Code availability
The iSNP pipeline is available in the project GitHub page: https://github.com/
korcsmarosgroup/iSNP, https://doi.org/10.5281/zenodo.6346651.
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