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Abstract 15 

The accurate extraction of species-abundance information from DNA-based data 16 

(metabarcoding, metagenomics) could contribute usefully to diet analysis and food-web 17 

reconstruction, the inference of species interactions, the modelling of population dynamics 18 

and species distributions, the biomonitoring of environmental state and change, and the 19 

inference of false positives and negatives. However, multiple sources of bias and noise in 20 

sampling and processing combine to inject error into DNA-based datasets. To understand 21 

how to extract abundance information, it is useful to distinguish two concepts. (1) Within-22 

sample across-species quantification describes relative species abundances in one sample. 23 

(2) Across-sample within-species quantification describes how the abundance of each 24 

individual species varies from sample to sample, such as over a time series, an 25 

environmental gradient, or different experimental treatments. First, we review the literature 26 

on methods to recover across-species abundance information (by removing what we call 27 

‘species pipeline biases’) and within-species abundance information (by removing what we 28 

call ‘pipeline noise’). We argue that many ecological questions can be answered with just 29 

within-species quantification, and we therefore demonstrate how to use a ‘DNA spike-in’ to 30 

correct for pipeline noise and recover within-species abundance information. We also 31 
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introduce a model-based estimator that can be employed on datasets without a physical 32 

spike-in to approximately estimate and correct for pipeline noise.  33 

Keywords: Arthropoda, biomonitoring, community composition, environmental DNA, DNA 34 

barcoding, Insecta, internal standard, polymerase chain reaction, taxonomic bias 35 

Introduction 36 

The accurate extraction of species-abundance information from DNA-based data could 37 

contribute usefully to the reconstruction of diets and quantitative food webs, the inference of 38 

species interactions, the modelling of population dynamics and species distributions, the 39 

biomonitoring of environmental state and change, and more prosaically, the inference of 40 

false positives and negatives (Abrego et al., 2021; Carraro et al., 2020, 2021; Deagle et al., 41 

2019; Peel et al., 2019; Rojahn et al., 2021; Thomas et al., 2016). Here we use the term 42 

abundance to mean any estimate of biomass or count of individuals.  43 

However, there are four general obstacles to the extraction of abundance information from 44 

DNA-based data (Griffin et al., 2020 for more formal treatments; see Shelton et al., 2016), 45 

which we will call here: (1) species capture biases, (2) capture noise, (3) species pipeline 46 

biases, and (4) pipeline noise.  47 

1. Species capture biases. – Different species are more or less likely to be captured by 48 

a given sampling method or via non-random sampling designs. For instance, Malaise 49 

traps preferentially capture Diptera (deWaard et al., 2019), and different fish species, 50 

body sizes, and physiological conditions vary in their eDNA shedding rates (Thalinger 51 

et al., 2021; Yates, Glaser, et al., 2021).  52 

2. Capture noise. – Steinke et al. (2021) have shown that Malaise traps separated by 53 

only 3 m fail to capture the same species compositions, from which we infer that 54 

abundances vary stochastically across traps. Levi et al. (2019) showed that counts of 55 

salmon could be estimated via quantitative PCR of aquatic environmental DNA, but 56 

only after correcting for temporal fluctuations in streamflow. Other sources of capture 57 
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noise include environmental variation in eDNA degradation rates, food availability, 58 

PCR inhibitors, and transport rates (reviewed in Yates, Cristescu, et al., 2021). 59 

3. Species pipeline biases. – Species differ in body size (biomass bias), genome size, 60 

mitochondrial copy number, DNA extraction efficiency, and PCR amplification 61 

efficiency (primer bias) (Amend et al., 2010; Bell et al., 2017; Elbrecht & Leese, 2015; 62 

Garrido‐Sanz et al., 2021; Iwaszkiewicz-Eggebrecht et al., 2022; Krehenwinkel et al., 2017; 63 

McLaren et al., 2019; Pauvert et al., 2019; Piñol et al., 2015, 2019; Tang et al., 2015; Yang et 64 

al., 2021; Yu et al., 2012). Species can even differ in their propensity to survive a 65 

bioinformatic pipeline, such as when closely related species are clustered into one 66 

operational taxonomic unit (Pauvert et al., 2019).  67 

4. Pipeline noise. – There is considerable noise in DNA-based pipelines, which breaks 68 

the relationship between starting sample biomasses and final numbers of reads per 69 

sample (Ji et al., 2020), caused in part by PCR stochasticity and the passing and 70 

pooling of small aliquots of liquid along wet-lab pipelines. In particular, it is common 71 

practice to deliberately equalise the amount of data per sample by “pooling samples 72 

in equimolar concentration” just before sequencing.  73 

We do not consider species capture biases or capture noise further, referring the reader to 74 

the literature on eDNA occupancy correction (e.g. Doi et al., 2019; Dorazio & Erickson, 2018; 75 

Erickson, 2019; Griffin et al., 2020; Lyet et al., 2021; Stauffer et al., 2021) and the review by 76 

Yates et al. (2021). Instead, our purpose is to review methods for the extraction of 77 

abundance information from already-collected samples, because even if species capture 78 

biases and capture noise can be corrected, the combination of species pipeline biases and 79 

pipeline noise still causes the number of DNA sequences assigned to a species in a sample 80 

to be an error-prone measure of the abundance of that species in that sample (McLaren et 81 

al., 2019).  82 

To start, we illustrate in a simplified way how pipeline noise and species pipeline biases 83 

(hereafter, species biases) combine to inject error into DNA-based datasets. We start with a 84 
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notionally true sample X species table or OTU table (Figure 1), where OTU stands for 85 

Operational Taxonomic Unit, i.e. a species hypothesis. Let each cell represent the true 86 

abundance (biomass or count) of that OTU in that sample. 87 

Pipeline noise affects the rows (samples) of an OTU table. Thus, even though in the true 88 

table, OTU1 is six times as abundant in sample 4 versus sample 1 (green cells in Figure 1 89 

A), in the observed table, OTU1 is only two times as abundant in sample 4 (green cells in 90 

Figure 1 B). Pipeline noise thus obscures how the abundance of each individual species 91 

varies across samples, where the samples could be a time series, an environmental 92 

gradient, or different experimental treatments. 93 

Species bias affects the columns (OTUs) of an OTU table. Thus, even though in the true 94 

table, OTU2 and OTU1 are equally abundant in sample 3 (orange cells in Figure 1 A), in the 95 

observed OTU table, OTU2 is two times as abundant as OTU1 in sample 3 (orange cells in 96 

Figure 1 B). Species bias thus obscures relative species abundances, which is important for 97 

diet analysis (Deagle et al., 2019) and when relative abundance within a sample provides 98 

information on species contribution to ecosystem functioning or services (e.g. relative fish 99 

species biomasses).  100 

So how can we extract abundance information from DNA-based data? It is helpful to 101 

distinguish between two concepts from Ji et al. (see also Garrido-Sanz et al., 2021; 2020): 102 

1. Within-species quantification:  E.g. “Species A is more abundant in this sample than it 103 

is in that sample (e.g. two points on a time series).” This is achieved by removing 104 

pipeline noise (Figure 2 A1, D). 105 

2. Across-species quantification:  E.g. “Species A is more abundant than Species B in 106 

this sample (i.e. relative species abundance).” This is achieved by removing species 107 

biases.  108 

We can state this mathematically as: 109 

log%&!"' = )! + )" + +#$, + +#$,%  Eq. 1 110 



 5 

where &!" 	is the abundance of species j in sample i, )! is a measure of the overall abundance 111 

of a sample, )" is a measure of how abundant species j is across samples, and we assume a 112 

vector of environmental variables +! (whose transpose is +#$) have an effect on total 113 

abundance (via ,) as well as having a compositional effect, i.e. affecting different species in 114 

different ways (via ,"). The responses to environmental variables (, and ,") are typically the 115 

main quantities of biological interest, being used to model and monitor species distributions. 116 

Pipeline noise biases our estimate of )!, which would be zero for identical replicates in the 117 

absence of stochasticity, which in turn biases estimates of effects of environmental variables 118 

(, and ,"). Species pipeline biases affect our estimate of )", affecting across-species 119 

quantification. 120 

As we review and demonstrate below, some approaches remove pipeline noise, some 121 

remove species biases, and some remove both. Our take-home message is that removing 122 

only pipeline noise to achieve within-species quantification can be enough to improve the 123 

inference of species interactions, the modelling of population dynamics and species 124 

distributions, the biomonitoring of environmental state and change, and the inference of false 125 

positives and negatives (Abrego et al., 2021; Carraro et al., 2020, 2021; Rojahn et al., 2021, 126 

and Figure 2).  127 

Mini-review of methods to extract abundance information 128 

Multiplexed individual barcoding. – The most straightforward approach is to DNA-barcode all 129 

the individual organisms and count them up, which achieves both within- and across-species 130 

quantification. This method only works on taxa that have body sizes suitable for separating 131 

individuals, like bees (Gueuning et al., 2019). Once separated, individuals or portions thereof 132 

(like a leg) are placed in separate wells of a 96-well plate and individually PCR’d. Each PCR 133 

requires a uniquely tagged pair of PCR primers, which allows all the PCR products to be 134 

pooled and then sequenced en masse on Illumina (Creedy et al., 2020; Meier et al., 2016; 135 

Ratnasingham, 2019), PacBio (Hebert et al., 2018), or MinION (Srivathsan et al., 2021). This 136 
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method now costs much less than $1 per individual. Wührl et al. (2022) further increase 137 

throughput with a robotic pipettor and camera that visually identifies small insects to higher 138 

taxonomic rank and sorts them into 96-well plates. However, this method is difficult to apply 139 

to very large numbers of individuals and cannot be applied to trace DNA or microbial taxa. 140 

Note that this approach could also be carried out via machine-learning-accelerated visual 141 

identifications of photos of arthropods (Schneider et al., 2022).  142 

Presence-absence in multiple subsamples. – Presence-absence across multiple subsamples 143 

can be used as an index of within-species abundance. For instance, Abrego et al. (2021) 144 

summed all weekly detections (presences) per species in their mitogenomic arthropod 145 

dataset to estimate an annual abundance measure for each species. However, pipeline 146 

noise can still be reflected in presence/absence data, albeit more weakly, especially when 147 

many subsamples are used. This method can achieve partial within-species quantification 148 

but probably not across-species quantification. 149 

Design less biased PCR primers. – In some cases, the target taxon is nearly uniform in body 150 

size and DNA-extraction efficiency, and it can be possible to design PCR primers that bind 151 

similarly across species. For instance, Schenk et al. (2019) have reported that primers for the 152 

28S D3-D5 and 18S V4 regions return nematode read frequencies that accurately recover 153 

relative species abundances, Verkuil et al. (Verkuil et al., 2022) have reported that modified 154 

COI primers can recover the relative biomasses of insect orders from Pied Flycatcher faeces, 155 

and Ershova et al. (2021) have reported that increasing COI primer degeneracy (Leray-XT) 156 

can recover relative biomasses of marine zooplankton. This method achieves across-species 157 

quantification, albeit with error, but not within-species quantification. 158 

Quantitative/Digital-Droplet PCR. – qPCR and ddPCR (quantitative and digital droplet PCR) 159 

can be used to estimate the sample DNA concentration of one species per assay. ddPCR is 160 

more sensitive than is qPCR (Brys et al., 2021) and allows the detection of single copies of 161 

target DNA and absolute quantification through the partitioning of the PCR reaction into 162 

20,000 droplets and subsequent fluorescent detection of droplets that contain the target DNA 163 
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(Hindson et al., 2011). This paper does not review q/ddPCR except to note that single-164 

species q/ddPCR applied to aquatic trace DNA can achieve within-species quantification, 165 

provided that one corrects for capture bias and noise in the form of variation in water 166 

discharge rates, surface-area to mass ratio and/or eDNA transport and diffusion (Fukaya et 167 

al., 2021; Levi et al., 2019; Pochardt et al., 2020; Rourke et al., 2022; Shelton, Ramón-Laca, 168 

et al., 2022; Yates, Cristescu, et al., 2021; Yates, Glaser, et al., 2021). If applied to multiple 169 

species and if statistical models that relate DNA copy number to abundance can be fitted 170 

(Fukaya et al., 2021; Levi et al., 2019; Pochardt et al., 2020), then across-species 171 

quantification can also be achieved, albeit with non-trivial amounts of error. See also Rourke 172 

et al. (2022) for a recent, comprehensive review. 173 

Spike-in DNA. – To achieve within-species quantification, researchers have advocated 174 

adding a fixed amount of an arbitrary DNA sequence to each sample, after tissue lysis and 175 

before DNA extraction. This ‘spike-in’, also known as an internal standard (ISD, Harrison et 176 

al., 2021), must have a sequence that does not match any species that could be in the 177 

samples and be flanked by primer binding sequences that match the primers used to amplify 178 

the samples (Deagle et al., 2018; Harrison et al., 2021; Smets et al., 2016; Tkacz et al., 179 

2018; Tsuji et al., 2022; Ushio et al., 2018). By design, each sample receives the same 180 

amount of spike-in, and all samples should therefore return the same number of spike-in 181 

reads after PCR and sequencing. However, due to pipeline noise, some samples return more 182 

spike-in reads because more of the sample’s DNA made it through the metabarcoding 183 

pipeline; those samples have OTUs with ‘too many reads’. Some samples return fewer spike-184 

in reads because less of the sample’s DNA made it through the metabarcoding pipeline; 185 

those samples have OTUs with ‘too few reads’. The correction step is simple:  divide each 186 

sample’s OTU sizes by the number of spike-in reads in that sample (Abrego et al., 2021; Ji et 187 

al., 2020). OTUs in samples with large numbers of spike-in reads are reduced in size more 188 

than OTUs in samples with small numbers of spike-in reads. Alternatively, the number of 189 

spike-in reads per sample can be input as an offset term in a multivariate statistical model 190 
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(Wang et al., 2012). This latter approach can be understood as estimating )! in Eq. 1 using 191 

).! = ln∑ 1!"&
"'(  where we have spike-in reads (1!") for q species (or synthetic sequences).  192 

As an example, and following the pioneering work of Zhou et al. (2013), Ji et al. (2020) 193 

mapped whole-genome-sequenced (WGS, aka ‘shotgun sequencing’) datasets of insects to 194 

mitochondrial genomes and barcodes and achieved nearly perfect within-species 195 

quantification (barcodes R2 = 93%, mitogenomes R2 = 95%) and almost direct proportionality 196 

between mapped reads and input DNA-mass. The high accuracy was largely achieved by 197 

employing a spike-in correction. However, the regression lines that related read number to 198 

input DNA for each species all had different intercepts, reflecting uncorrected species biases, 199 

and thus across-species quantification was not achieved. Harrison et al. (2021) provide an 200 

excellent, complementary review of the recent literature on spike-ins and also describe an 201 

alternative approach for modelling non-spike-corrected (‘compositional’) datasets. Figure 1 202 

provides a worked example of spike-in correction, and the Excel spreadsheet used to 203 

produce Figure 1 is in Supplementary Materials.  204 

Model-based pipeline-noise estimation. – A related approach is to try to use the data itself to 205 

estimate the pipeline noise, rather than a physical spike-in. To do this we could fit the model 206 

stated in Eq. 1 to data. However, fitting this full model with row effects can be 207 

computationally intensive, especially for large datasets, so a simple alternative is to 208 

approximate )! using a one-step estimator (Warton, 2022): 209 

)3! = log∑ 4!")
"'( − log∑ &̂!"

(+))
"'(  Eq. 2 210 

where 4!" is the number of reads for OTU j in sample i, &̂!"
(+) is its predicted value from a 211 

model that does not include a row effect, and 7 is the total number of OTUs. We can then 212 

include )3! as an offset in future models to (approximately) correct for pipeline bias.  213 

The reason Equation 2 has two terms in it is that there are two reasons that a sample might 214 

end up generating many sequence reads: by chance (pipeline noise) and/or because some 215 

(or many) of the OTUs are abundant in the site where the sample was taken (ecology). Thus, 216 
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if one has informative predictors +! that can successfully predict which OTUs should be 217 

abundant in which samples, then it becomes possible to separate the two effects. log∑ 4!")
"'(  218 

is a function of both effects, log∑ &̂!"
(+))

"'(  estimates the effect of the predictors on the OTUs 219 

(ecology), and their difference isolates the row effect (pipeline noise). This is related to the 220 

spike-in approach, the main difference being that the spike-in formula (for ).!) has no second 221 

term involving &!" since, by design, the same amount of each spike-in species is included in 222 

every sample (the spike-in has no ecology). An important difference here however is that 223 

because the same data are being used to estimate both pipeline noise (8!) and ecological 224 

effects (,), it will be difficult to tease these effects apart if the two are correlated. In fact, the 225 

common practice of adjusting samples to equimolar concentration before sequencing 226 

confounds these two effects. This problem does not however affect estimation of 227 

compositional effects (,"), often the main quantity of interest.  228 

Unique Molecular Identifiers (UMIs). – A UMI is a series of ~7-12 random bases 229 

(‘NNNNNNN’) added to the forward primer as an ultra-high diversity tag (Hoshino & Inagaki, 230 

2017). Seven Ns produce 47 = 16 384 uniquely identified forward primer molecules. Species 231 

contributing abundant DNA to a sample will capture many of these primer molecules and 232 

thus amplify many unique UMIs, while species contributing scarce DNA will amplify a low 233 

number. The relationship between UMI richness and DNA abundance is roughly linear but 234 

asymptotes for species with very high DNA abundance. After sequencing, the number of 235 

UMIs per OTU correlates with the starting number of template DNA molecules per species in 236 

that sample (Hoshino et al., 2021; Hoshino & Inagaki, 2017). This method thus mimics 237 

q/ddPCR in that if statistical relationships between DNA copy number and true abundance 238 

can be estimated, across-species quantification can be achieved. Within-species 239 

quantification can be achieved by also adding a spike-in.  240 

Estimate and eliminate PCR bias. – Silverman et al. (2021) propose a straightforward way to 241 

estimate PCR bias, by pooling all samples to ensure that all species are present, and 242 

subjecting the pooled sample to different numbers of PCR cycles 9!, from low to high. For 243 
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any given pair of species 1 and 2, the ratio of their reads -!"-!#
 after a given number of cycles	is 244 

their starting DNA ratio .".# multiplied by their relative amplification bias :/"/#;
0!

, which increases 245 

with the number of cycles. This relationship can be linearised, and given the post-PCR 246 

relative read numbers at all cycle numbers, starting DNA ratios (and relative amplification 247 

biases) can be estimated.  248 

-!"
-!#

= ."
.#
:/"/#;

0!
 Eq. 3 249 

However, PCR is not the only source of species pipeline bias (e.g. Iwaszkiewicz-Eggebrecht 250 

et al., 2022), and McLaren et al. (2019) have pointed out that although it is not possible to 251 

estimate a priori the whole set of species biases in a given amplicon or metagenomic dataset 252 

(because an unknown number of factors of unknown strengths combine to create the 253 

biases), it is reasonable to assume that the ratio of the biases of every pair of species is 254 

fixed. Given this, Williamson et al. (; see also Clausen & Willis, 2022; 2021) showed that if 255 

first one is able to estimate the absolute abundances of a subset of species in the samples 256 

(via multiple, species-specific q/ddPCR assays or flow cytometry), it is possible to infer the 257 

absolute abundances of all the species by inferring their ratios with the q/ddPCR-quantified 258 

species, allowing one to achieve across-species quantification. The authors dub this a 259 

‘multiview data structure’ because there are two views into the community of interest:  260 

q/ddPCR and sequencing. Note that because q/ddPCR is carried out after many of the wet-261 

lab steps have been carried out, multiview modelling does not remove pipeline noise, and a 262 

spike-in is still needed to achieve within-species quantification. Shelton et al. (2022) 263 

advocate a similar approach but via the construction of a ‘mock community’ containing tissue 264 

of all species of interest and subjecting it to the same PCR protocol as the samples. From 265 

this mock community, species-specific PCR biases are calculated and used to extract 266 

across-species abundance information.  267 

Forward and reverse metagenomics. – Another way to achieve across-species quantification 268 

is to avoid PCR by using a metagenomic approach. For marine phytoplankton, Pierella 269 
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Karlusich et al. (2022) used shotgun-sequenced counts of the (mostly) single-copy psbO 270 

gene, which is part of the photosystem II complex, to estimate species relative abundances. 271 

For land plants, Lang et al. (2019) showed that WGS datasets from pollen samples mapped 272 

to the variable protein-coding regions in chloroplast genomes can achieve accurate across-273 

species quantification, finding that read frequency correlated strongly and linearly with pollen-274 

grain frequency in a nearly 1:1 relationship (R2 = 86.7%, linear regression). At the same time, 275 

Peel et al. (2019) showed that it is possible to skip the labour of assembling and annotating 276 

chloroplast genomes, by using long-read sequences produced by the MinION sequencers 277 

from Oxford Nanopore Technologies (ONT). In this protocol, unassembled genome skims of 278 

individual plant species, ideally sequenced at ≥1.0X depth, are used as reference databases. 279 

Mixed-species query samples of pollen are sequenced on MinIONs. The reads from each 280 

(reference) genome skim are mapped to each (query) long read, and each long read is 281 

assigned to the species whose skim maps at the highest percent coverage. This ‘reverse 282 

metagenomic’ (RevMet) protocol achieves across-species quantification, allowing biomass-283 

dominant species to be identified in mixed-species pollen samples (and potentially, in root 284 

masses). Because RevMet uses the whole genome, it avoids species biases and pipeline 285 

noise created by ratios of chloroplasts to cells varying across species, condition, tissues, and 286 

age, and it can potentially be applied to any taxon for which it is possible to generate large 287 

numbers of individual genome skims, potentially including soil fauna. However, 288 

metagenomics by itself does not remove pipeline noise and would have to be paired with a 289 

spike-in to achieve within-species quantification.  290 

To sum up, multiple methods exist to extract abundance information from DNA-based 291 

datasets (Table 1). Some achieve within-species quantification by removing pipeline noise, 292 

some achieve across-species quantification by removing species biases, and some achieve 293 

both or can be combined to achieve both.  294 

It is useful to understand that many ecological questions can be tackled with only within-295 

species quantification (Figure 2). In the second half of this paper, we therefore provide a 296 
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detailed protocol and experimental validation of spike-ins to achieve within-species 297 

quantification for metabarcoding datasets.  298 

We carry out two tests. First, we start with a sample of known composition (a ‘mock soup’ of 299 

52 OTUs), and from this, we create a dilution gradient of 7 samples with a spike-in. We show 300 

the successful use of the spike-in correction to remove pipeline noise and recover the dilution 301 

gradient. We then repeat the experiment with seven Malaise trap samples, which have the 302 

advantage of being more realistic but the disadvantage of having unknown compositions. 303 

Again, we show the successful use of the spike-in to recover the seven dilution gradients 304 

made from the seven samples.  305 
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Method Description Within-species abundance Across-species abundance 

Multiplexed individual barcoding DNA-barcode every individual in every sample ✓ ✓ 

Presence-absence in multiple sub-

samples 

Take multiple subsamples and count presences 
✓ ? 

Design less biased PCR primers Self-explanatory 
 

✓ 

Quantitative/Digital-Droplet PCR Quantify a species' DNA concentration per sample ✓ ✓ (with extra work) 

Spike-in DNA Add a fixed amount of external DNA to each sample 

to measure pipeline noise ✓ 
 

Model-based pipeline-noise 

estimation 
Estimate the effect of pipeline noise by removing the 

effect of environmental predictors ✓ 
 

Unique Molecular Identifiers (UMIs) Estimate the amount of starting DNA per sample and 

per species ✓ ? 

Estimate and eliminate PCR bias Use calibration samples and/or PCR time series to 

estimate species-specific PCR biases 
 

✓ 

Forward and reverse metagenomics Map and count shotgun reads to reference 

sequences   ✓ 

 306 

Table 1. Summary of reviewed methods for extracting abundance information from DNA-based data. Each method is scored for whether it can 307 

achieve within-species or across-species quantification or both. 308 

 309 

  310 
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 311 

Figure 1. Pipeline noise versus species bias in OTU tables. A. The true OTU table, with cell numbers representing the true abundance of DNA for 312 

each OTU (column) in each sample (row). The spikeOTU column shows that the same amount of DNA spike-in has been added to each sample. A1. 313 

OTU1 OTU2 OTU3 OTU4 spikeOTU OTU1 OTU2 OTU3 OTU4
Sample 1 10 40 0 0 10 0.2 0.4 0.0 0.0
Sample 2 0 100 20 50 10 0.0 1.0 0.7 0.5
Sample 3 40 40 5 50 10 0.8 0.4 0.2 0.5
Sample 4 50 0 30 100 10 1.0 0.0 1.0 1.0

=10*2*3 =60/60

OTU1 OTU2 OTU3 OTU4 spikeOTU OTU1 OTU2 OTU3 OTU4 OTU1 OTU2 OTU3 OTU4
Sample 1 60 120 0 0 60 3 180 1 2 0 0 0.2 0.4 0.0 0.0
Sample 2 0 300 240 900 60 3 1440 0 5 4 15 0.0 1.0 0.7 0.5
Sample 3 160 80 40 600 40 2 880 4 2 1 15 0.8 0.4 0.2 0.5
Sample 4 100 0 120 600 20 1 820 5 0 6 30 1.0 0.0 1.0 1.0

Species biases 2 1 4 6 2 2 1 4 6 2 1 4 6

=60/180

OTU1 OTU2 OTU3 OTU4 OTU1 OTU2 OTU3 OTU4
Sample 1 0.3 0.7 0.0 0.0 1 1 0 0
Sample 2 0.0 0.2 0.2 0.6 0 1 1 1
Sample 3 0.2 0.1 0.0 0.7 1 1 1 1
Sample 4 0.1 0.0 0.1 0.7 1 0 1 1

Species biases 2 1 4 6

OTU1 OTU2 OTU3 OTU4 OTU1 OTU2 OTU3 OTU4
Sample 1 1.0 1.0 0.0 0.0 Sample 1 10 40 0 0
Sample 2 0.0 0.3 1.0 0.9 Sample 2 0 100 20 50
Sample 3 0.5 0.1 0.3 0.9 Sample 3 40 40 5 50 Across-species
Sample 4 0.4 0.0 0.9 1.0 Sample 4 50 0 30 100

Species biases 2 1 4 6 Within-
species

C. Spike-corrected OTU table

G. Observed OTU table, divided 
by Observed rowSum,                        

each OTU rescaled to [0,1]

Within vs. Across-species 
abundance estimates

E. Presence-Absence OTU table

D.  Spike-corrected OTU table, 
each OTU rescaled to [0,1]

F. Observed OTU table, divided 
by Observed rowSum

A. True OTU table

B. Observed OTU table with pipeline noise 
and species pipeline biases

A1. True OTU table,                     
each OTU rescaled to [0,1]

Pipeline 
noise

Observed 
rowSum

Metabarcoding or 
metagenomic pipeline

otu[otu>0] <- 1

divide each row 
by its spikeOTU

DNA spike-in 
correction

or: mvabund::manyglm(OTUtable ~ 1 + offset(log(spikeOTU)))

Within-species (within-
column) frequencies recovered 

by spike-correction

otu[otu>0] <- 1

rescale each 
column to [0,1]

scales::rescale()

rescale each 
column to [0,1]

scales::rescale()

rescale each 
column to [0,1]

scales::rescale()
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The true OTU table after rescaling each OTU column to the interval [0,1]. B. The observed OTU table after amplicon sequencing, showing the 314 

combined effects of pipeline noise and species biases. Each cell in Table A is multiplied by the Pipeline noise and Species bias values in that cell’s 315 

row and column. For instance, OTU1’s true abundance in Sample 1 is 10 but appears as 60 (=10*2*3). Pipeline noise thus causes the original 10:50 316 

ratio of OTU1 in Samples 1 and 4 (blue cells) to appear as 60:100, while species bias causes the original 40:40 ratio of OTU1 and OTU2 (orange 317 

cells) to appear as 160:80. C. The observed OTU table after dividing each row by its observed spike-in reads, which removes pipeline noise. Note 318 

that species biases remain uncorrected. In statistical modelling, the observed spike-in values are an index of sampling (sequencing) effort and can be 319 

included as offset values. D. Table C after rescaling each column to the interval [0,1], to allow direct comparison with the rescaled true-OTU Table A1. 320 

Spike-in correction successfully recovers within-species abundance change from sample to sample. Species biases have not been removed but have 321 

now been ignored via rescaling. E. If spike-in reads are not available, or if it is suspected that capture noise is uncorrectable and high, the observed 322 

OTU table can be transformed to presence/absence. However, this method loses ecological information (Figure 2C). F. Pipeline noise cannot be 323 

reliably removed by using the total reads per sample as a proxy for sampling effort (Observed rowSum) because the observed rowSum is confounded 324 

by species composition. G. Table F after rescaling each OTU column to the interval [0,1], to contrast with Tables A1 and D. Line graphs of the OTU 325 

tables are in the spreadsheet version of this table, in Supplementary Information. Code syntax from the R language (R Core Team, 2021), including 326 

the {mvabund} (Wang et al., 2012) and {scales} packages (https://scales.r-lib.org, accessed 16 Dec 2021).  327 

  328 
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 329 

Figure 2. The usefulness of within-species abundance information. A. Imagine that a species is found in many sites but that only two sites are 330 

optimal (green cells) with high abundances, with the rest suboptimal (grey cells), with low abundances. B. Even though species pipeline biases make 331 

it difficult to recover absolute abundances from DNA-based data, it is straightforward to use a spike-in to recover within-species abundance data 332 
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(shown by rescaling to the interval [0,1]), still revealing that the green sites appear to be optimal habitat. C. If the DNA-based data were converted to 333 

presence/absence, the distinction between green and grey habitat would be lost. D. Along an environmental gradient from left to right, let species A 334 

decrease and species B increase in eDNA concentration (rescaled to [0,1]). E. The two species are seen to be negatively correlated over the 335 

gradient, even though absolute abundance information is unavailable. Example adapted from Rojahn et al. (2021) who combined a similar result with 336 

additional information to infer the competitive exclusion of a native fish species by an invasive species. F. G. Due to species pipeline biases, absolute 337 

abundances are not known, and either species A or B could be absolutely more abundant. H. Two samples with different absolute and relative 338 

species abundances. I. If only across-species quantification is achieved (e.g. via forward or reverse metagenomics), it is valid to compare species 339 

within each sample only, revealing that the dark orange species has the highest relative abundance in both samples 1 and 2. However, it would not 340 

be valid to conclude that the dark orange species has a greater absolute biomass in Sample 1 than in Sample 2, as can be seen by inspection of the 341 

true absolute abundances in H. However, also achieving within-species quantification (via a spike-in) would make it possible to compare how each 342 

species’ absolute abundances vary across samples. 343 
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Methods 344 

2.1 Mock soup construction. – 286 arthropods were collected in Kunming, China (25°8’23” N, 345 

102°44’17” E) (Luo et al., 2022). DNA was extracted from each individual using the DNeasy Blood 346 

& Tissue Kit (Qiagen GmbH, Germany). Genomic DNA concentration of each individual was 347 

quantified from three replicates using PicoGreen fluorescent dye. 658-bp COI barcoding 348 

sequences were PCR’d with Folmer primers (LCO1490 and HCO2198) (Folmer et al., 1994) and 349 

Sanger-sequenced. After the 658-bp COI sequences were trimmed to 313 bp based on our 350 

metabarcoding primers (see 2.4 Primer design), 286 arthropods were clustered to 168 OTUs at 351 

97% similarity. We selected 52 individuals with genomic DNA > 20 ng/µl, representing 52 OTUs.  352 

We created a mock-soup gradient of seven dilution levels. First, we created the highest 353 

concentration-level soup by pooling 61 ng of each of the 52 OTUs. The next soup was created by 354 

pooling 48.8 ng (= 0.8 x 61) of each of the 52 OTUs, and so on to create a gradient of seven mock 355 

soups of differing absolute abundances, stepping down 0.8X each time. To make it possible to 356 

check for mundane experimental error (as opposed to failure of the spike-in to recover the 357 

gradient), we independently created this mock-soup gradient three times, for ntot = 21 independent 358 

poolings (Figure 3 A). 359 

2.2 Preparation of Malaise-trap samples. – 244 Malaise-trap samples from 96 sites, using 99.9 % 360 

ethanol as the trapping liquid, were collected in and near a 384 km
2
 forested landscape containing 361 

the H.J. Andrews Experimental Forest (44.2° N, 122.2° W), Oregon, United States in July 2018 362 

(Luo et al., 2022). Traps were left for 7 non-rainy days. To equalize biomass across individuals, we 363 

only kept the heads of large individuals (body lengths >2 cm) and then transferred the samples to 364 

fresh 99.9% ethanol to store at room temperature until extraction. The samples were air dried 365 

individually on filter papers for less than an hour and then transferred to 50 ml tubes or 5 ml tubes 366 

according to sample volume. The samples were then weighed. DNA was non-destructively 367 

extracted by soaking the samples in lysis buffer, using the protocol from Ji et al. (2020) and 368 

Nielsen et al. (2019). For this study, we selected seven samples spread over the study area, each 369 

of which is an independent test of our ability to recover the dilution gradient. After completion of 370 
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lysis, we serially diluted the 7 samples by using 0.7X lysis buffer volume (500 µl, 350 µl, 245 µl, 371 

171.5 µl, 120 µl and 84 µl) to create six soups per sample (ntot = 42). We used QIAquick PCR 372 

purification kit (Qiagen GmbH, Germany) following the manufacturer instructions to purify lysis 373 

buffer on one spin column per soup (Figure 3 B). We used a shallower gradient (0.7X) because our 374 

starting DNA amount was lower than with the mock soups.  375 
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 376 

Figure 3. Preparation of mock and Malaise-trap soups. A. Mock soups. Each mock soup was 377 

constructed with equal masses of purified DNA from 52 OTUs. From soup “a” to soup “g”, the input 378 

genomic masses of each of the 52 OTUs were 61, 48.8, 39, 31.2, 25, 20 and 16 ng. The same 379 

mass of spike-in DNA was then added to each soup (green DNA molecule). Each of the seven 380 

soups was made in triplicate, and all 21 soups were PCR’d in triplicate following the Begum 381 

pipeline (Yang et al., 2021) to detect and remove false reads. B. Malaise-trap-sample protocol. 382 

Each bulk sample of arthropods was non-destructively DNA-extracted by soaking in 5X volume of 383 

lysis buffer. From each of the 7 samples, 500 µl, 350 µl, 245 µl, 171.5 µl, 120 µl, and 84 µl lysis 384 

buffer was used to create 6 dilution soups, a fixed amount of spike-in DNA was added, and the 385 

mixture was co-purified.  386 
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2.3 Adding spike-in DNA 387 

2.3.1 Spike-in DNA. – For our spike-ins, we used three insect species from China 388 

(Lepidoptera:Bombycidae, Coleoptera:Elateridae, Coleoptera:Mordellidae), none of which is 389 

expected to appear in the Oregon Malaise-trap samples. An alternative is to use one or more 390 

synthetic, random DNA sequences (Tkacz et al., 2018). Each of our three spike-ins is represented 391 

by a 658-bp COI fragment (Table S1) with primer binding sites that match the Folmer primers 392 

HCO2198 and LCO1490. For long-term storage, we inserted the COI fragments as plasmids into 393 

monoclonal bacteria. Plasmids were extracted using TIANprep Mini Plasmid Kit (Beijing, China) 394 

following manufacturer’s instructions. 395 

2.3.2 Adding spike-in to the mock soups. – Adding too much spike-in wastes sequencing data, 396 

while adding too little risks loss of abundance information in at least some samples when the 397 

number of spike-in reads is too low to use as a reliable correction factor. Thus, we quantified the 398 

COI copy numbers of the mock soups and the spike-in DNA by qPCR (Table S2, Figure S1) and 399 

chose a volume so that spike-in reads should make up 1% of the total number of COI copies in the 400 

lowest-concentration mock soups, balancing efficiency with reliability. We used all three spike-in 401 

species here and mixed them (Bombycidae:Elateridae:Mordellidae) in a ratio of 1:2:4, which was 402 

added directly to the mock soups’ DNA since they were already purified.  403 

2.3.3 Adding spike-in to the Malaise-trap samples. – From the 244 Malaise-trap samples, we first 404 

extracted 17 Malaise-trap samples without adding spike-ins, and then we used qPCR to quantify 405 

the mean COI concentrations of these 17 samples in order to decide how much spike-in to add. 406 

Before adding the spike-ins, we discovered that the Bombycid DNA spike-in had degraded, and so 407 

we used only two spike-in species for the Malaise trap samples, at a ratio of 1:9 408 

(Mordellidae:Elateridae). We then chose 7 other samples for this study. In these samples, lysis 409 

buffer (500 µl, 350 µl, 245 µl, 171.5 µl, 120 µl, 84 µl) from each sample was transferred into clean 410 

1.5 ml tubes, and the spike-in DNA was added. We then purified the DNA with the Qiagen 411 

QIAquick PCR purification kit, following the manufacturer instructions. DNA was eluted with 200 µl 412 

of elution buffer. In this way, the spike-in DNA was co-purified, co-amplified, and co-sequenced 413 
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along with the sample DNA (Figure 3 B). We also recorded the total lysis buffer volume of each 414 

sample, for downstream correction.  415 

2.4 Primer design. – For this study, we simultaneously tested two methods for extracting 416 

abundance information:  spike-ins and UMIs (Unique Molecular Identifiers). UMI tagging requires a 417 

two-step PCR procedure (Hoshino & Inagaki, 2017; Lundberg et al., 2013), first using tagging 418 

primers and then using amplification primers (Figure S2). The tagging primers include (1) the 419 

Leray-FolDegenRev primer pair to amplify the 313-bp COI amplicon of interest, (2) a 1- or 2-420 

nucleotide heterogeneity spacer on both the forward and reverse primers to increase sequence 421 

entropy for the Illumina sequencer, (3) the same 6-nucleotide sequence on both the forward and 422 

reverse primers to ‘twin-tag’ the samples for downstream demultiplexing, (4) a 5N random 423 

sequence on the forward primer and a 4N random sequence on the reverse primer (9N total) as 424 

the UMI tags, (5) and parts of the Illumina universal adapter sequences to anneal to the 3’ ends of 425 

the forward and reverse primers for the second PCR. By splitting the 9N UMI into 5N + 4N over the 426 

forward and reverse primers, we avoid primer dimers. The amplification primers include (1) an 427 

index sequence on the forward primer pair for Illumina library demultiplexing, and (2) the full length 428 

of the Illumina adapter sequences. For further explanation of the design of the tagging primers 429 

(except for the UMI sequences), see Yang et al. (2021).  430 

2.5 PCR and the Begum pipeline. – The first PCR amplifies COI and concatenates sample tags 431 

and UMIs and runs for only two cycles using KAPA 2G Robust HS PCR Kit (Basel, Roche KAPA 432 

Biosystems). We used the mlCOIintF-FolDegenRev primer pair (Leray et al., 2013; Yu et al., 2012, 433 

p. 2012), which amplifies a 313-bp fragment of the COI barcode; and we followed the Begum 434 

protocol (Yang et al., 2021; Zepeda-Mendoza et al., 2016), which is a wet-lab and bioinformatic 435 

pipeline that combines multiple independent PCR replicates per sample, twin-tagging and false 436 

positive controls to remove tag-jumping and reduce erroneous sequences. Twin-tagging means 437 

using the same tag sequence on both the forward and reverse primers in a PCR, and we use this 438 

design because during library index PCR for Illumina sequencing, occasional incomplete 439 

extensions can create new primers that already contain the tag of one amplicon, resulting in 440 

chimeric sequences with tags from two different amplicons (Schnell et al., 2015). Tag jumps thus 441 
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almost always result in non-matching tag sequences, and these are identified and removed in the 442 

Begum pipeline. We performed 3 PCR replicates per sample, which means we used 3 different 443 

twin-tags to distinguish the 3 independent PCR replicates. Begum removes erroneous sequences 444 

by filtering out the reads that appear in a low number of PCR replicates (e.g. only one PCR) at a 445 

low number of copies per PCR (e.g. only 2 copies), because true sequences are more likely to 446 

appear in multiple PCRs with higher copy numbers per PCR. The 20 µl reaction mix included 4 µl 447 

Enhancer, 4 µl Buffer A, 0.4 µl dNTP (10 mM), 0.8 µl per primer (10 mM), 0.08 µl KAPA 2G 448 

HotStart DNA polymerase (Basel, Roche KAPA Biosystems), 5 µl template DNA and 5 µl water. 449 

PCR conditions were initial denaturation at 95°C for 3 minutes, followed by two cycles of 450 

denaturation at 95°C for 1 minute, annealing at 50°C for 90 seconds, and extension at 72°C for 2 451 

minutes. Then the products were purified with 14 µl of KAPA pure beads (Roche KAPA 452 

Biosystems, Switzerland) to remove the primers and PCR reagents and were eluted into 16 µl of 453 

water.  454 

The second PCR amplifies the tagged templates for building the libraries that can be sequenced 455 

directly on Illumina platform. The 50 µl reaction mix included 5 µl TAKARA buffer, 4 µl dNTP (10 456 

mM), 1.2 µl per primer (10 mM), 0.25 µl TAKARA Taq DNA polymerase, 15 µl DNA product from 457 

the first PCR, and 23.35 µl water. PCR conditions were initial denaturation at 95°C for 3 minutes, 5 458 

cycles of denaturation at 95°C for 30 seconds, annealing at 59°C for 30 seconds (-1 °C per cycle), 459 

extension at 72°C for 30 seconds, followed by 25 cycles of denaturation at 95°C for 30 seconds, 460 

annealing at 55°C for 30 seconds, extension at 72°C for 30 seconds; a final extension at 72°C for 5 461 

minutes, and cool down to 4°C. 462 

From all second PCR products, 2 µl was roughly quantified on 2% agarose gel with Image Lab 2.0 463 

(Bio-Rad, USA). For each set of PCR reactions with the same index, amplicons were mixed at 464 

equimolar ratios to make a pooled library. One PCR negative control were set for each library. We 465 

sent our samples to Novogene (Tianjin, China) to do PE250 sequencing on Illumina NovaSeq 466 

6000, requiring a 0.8 GB raw data from each PCR reaction. 467 

2.6 Bioinformatic processing. – AdapterRemoval 2.1.7 was used to remove any remaining 468 

adapters from the raw data (Schubert et al., 2016). Sickle 1.33 was used to trim away low-quality 469 
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bases at the 3’ends. BFC V181 was used to denoise the reads (Li, 2015). Read merging was 470 

performed using Pandaseq 2.11 (Masella et al., 2012). Begum was used to demultiplex the reads 471 

by sample tag and to filter out erroneous reads (https://github.com/shyamsg/Begum, accessed 07 472 

Sep 2021). We allowed 2-bp primer mismatches to the twin-tags while demultiplexing, and we 473 

filtered at a stringency of accepting only reads that appeared in at least two PCRs at a minimum 474 

copy number of 4 reads per PCR, with minimum length of 300 bp. This stringency minimized the 475 

false positive reads in the negative PCR control. 476 

For mock-soup data, we need to compare the UMI and read numbers in each PCR set. However, 477 

Begum cannot recognize UMIs. Also because of our complicated primer structure, there is no 478 

software available for our data to count the UMIs per OTU in each PCR set. Thus, we wrote a 479 

custom bash script to process the mock-soup data from the Pandaseq output files, which include 480 

all the UMIs, tags, and primers. First, we used Begum-filtered sequences as a reference to filter 481 

reads for each PCR set and put the UMI information on read headers. Then we carried out 482 

reference-based OTU clustering for each PCR set with QIIME 1.9.1 (pick_otus.py -m 483 

uclust_ref -s 0.99) (Caporaso et al., 2010; Edgar, 2010), using the OTU representative 484 

sequences from barcoding Sanger sequencing as the reference, counted UMIs and reads for each 485 

OTU in each PCR set, and generated two OTU tables, separately with UMI and read numbers.  486 

For the Malaise-trap data, we directly used the Begum pipeline. After Begum filtering, vsearch 487 

2.14.1 (--uchime_denovo) (Rognes et al., 2016) was used to remove chimeras. Sumaclust 488 

1.0.2 was used to cluster the sequences of Malaise-trap samples into 97% similarity OTUs. The 489 

python script tabulateSumaclust.py from the DAMe toolkit was used to generate the OTU table. 490 

Finally, we applied the R package LULU 0.1.0 with default parameters to merge oversplit OTUs 491 

(Frøslev et al., 2017). The OTU table and OTU representative sequences were used for 492 

downstream analysis.  493 

2.7 Statistical analyses. – All statistical analyses were carried out in R 4.1.0 (R Core Team, 2021), 494 

and we used the {lme4} 1.1-27 package (Bates et al., 2015) to fit linear mixed-effects models, 495 

using OTU, soup replicate, and PCR replicates as random factors, to isolate the variance 496 

explained by the sole (fixed-effect) predictor of interest:  OTU size. Model syntax is given in the 497 
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legend of Figure 4. We used the {MuMIn} 1.43.17 package (CRAN.R-project.org/package=MuMIn, 498 

accessed 2 Jan 2022) to calculate the variance explained by fixed effects only (marginal R
2
). To 499 

carry out spike-in correction, we first calculated a weighted mean from the added spike-ins (e.g. 500 

mean(Bombycidae + Elateridae/2 + Mordellidae/4)), rescaled the new mean spike-in so that the 501 

smallest value is equal to 1, and divided each row’s OTU size and UMI number by the weighted, 502 

scaled spike-in.  503 

Results 504 

3.1 Bioinformatic processing of the Malaise-trap samples and the mock soups. – Five libraries 505 

yielded a total of 283,319,770 paired-end reads, of which 247,285,097 were merged successfully 506 

in Pandaseq. After Begum sorting and demultiplexing, which removed a large number of tag-507 

jumped reads and some reads <300 bp length, we retained 106,649,397 reads. After Begum’s 508 

filtering of erroneous reads, we retained 76,289,802 reads, and after de-novo chimera removal, we 509 

retained 73,818,971 reads. Sequences were clustered at 97% similarity into 1,188 OTUs, and 510 

LULU combined the OTUs of the Malaise-trap samples into 435 OTUs. After removing the spike-in 511 

OTUs, the seven Malaise-trap samples contained a total of 432 OTUs. All 52 OTUs of the 7 mock 512 

soups were recovered.  513 

3.2 Mock soups, COI copy number. – Without spike-in correction, OTU size (numbers of reads per 514 

OTU) predicts almost none of the within-species (dilution-gradient-caused) variation in COI copy 515 

number (R
2
 = 0.04, all values marginal R

2
), but with spike-in correction, OTU size predicts 42.0% of 516 

the variation (Figure 4 AB). As expected, UMI number by itself does not predict input COI copy 517 

number (R
2
 = 0.05), but with spike-in correction, UMI number does predict COI copy number (R

2
 = 518 

0.42) (Figure S3 AB). Also as expected, spike-in correction does not achieve across-species 519 

quantification, as shown by the orders of magnitude variation in intercepts across the 52 OTUs. 520 

Note that this experiment pooled DNA extracts with equalised concentrations of genomic DNA 521 

mass per species, which suggests that PCR bias is the main source of species bias in this dataset.  522 

3.3 Mock soup within-species abundance in input genomic DNA mass. – Of course, our goal is to 523 

estimate not COI copy number but specimen biomass. We thus tested how well OTU size and UMI 524 
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numbers predicted genomic DNA concentration. Non-spike-corrected OTU size and UMI number 525 

both failed to predict input genomic DNA mass (R
2
 < 0.02 for both, Figure 4 C and Figure S3 C), 526 

but spike-corrected OTU size and UMI number again both successfully predicted input genomic 527 

DNA mass (R
2
 = 0.53 and 0.52, Figure 4 D and Figure S3 D).  528 

3.4 Malaise-trap within-species abundance recovery. – Recall that each of the 7 selected Malaise-529 

trap samples was serially diluted by 0.7X to create six soups per sample. Non-spike-corrected 530 

OTU size did not predict within-species variation in input genomic-DNA mass (p = 0.33) (Figure 5 531 

A), but spike-corrected OTU size again did predict within-species variation in input genomic-DNA 532 

mass (R
2
 = 0.53) (Figure 5 B). 533 

 534 

Figure 4. Recovery of within-species abundance change in COI copy number and in 535 

genomic DNA concentration in the mock-soup experiment. For visualisation, all data points 536 

are shown (including all soup and PCR replicates), each thin line is fit to one of the OTUs across 537 

the seven serially diluted mock-soup samples, and the thick line represents the fitted model in 538 

which OTUs were treated as a random factor. A. Non-spike-corrected OTU size (number of reads 539 

per OTU per soup) poorly predicts within-species variation in input COI copy number (linear mixed-540 

effects model, marginal R
2
 = 0.04, conditional R

2
 = 0.85). B. Spike-corrected OTU size 541 

successfully predicts within-species variation in input COI copy number (mixed-effects linear 542 

model, marginal R
2
 = 0.42, conditional R

2
 = 0.96), but species bias remains, as can be seen in the 543 

orders-of-magnitude variation in intercepts. C. Non-spike-corrected read number poorly predicts 544 
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within-species variation in input genomic DNA concentration (linear mixed-effects model, marginal 545 

R
2
 = 0.01, conditional R

2
 = 0.01). D. Spike-corrected read number successfully predicts within-546 

species variation in input genomic DNA concentration but more poorly for species represented by 547 

small OTUs (linear mixed-effects model, marginal R
2
 = 0.52, conditional R

2
 = 0.95) despite species 548 

bias (Figure 1). Model syntax: lme4::lmer(log.input_gDNA or log.inputCOI_copynumber 549 

~ log.OTUsize + (log.OTUsize | OTUID) +  550 

(1 |soupRep/pcrRep)) (Bates et al., 2015). Marginal R
2
 is variance explained by the fixed effect, 551 

and conditional R
2
 is variance explained by the whole model.  552 

 553 

 554 

 555 

Figure 5. Prediction of within-species variation in genomic DNA concentration in the 556 

Malaise-trap samples. For visualisation, each thin line is fit to an OTU’s serial dilution made from 557 

each of the seven Malaise-trap samples, and the thick lines are the fitted model with sample and 558 

OTU as random factors. There are 176, 113, 111, 104, 196, 110, and 82 OTUs in samples 1-7, 559 

respectively. A. Non-spike-corrected OTU size (read number per OTU and sample) does not 560 

predict within-species variation in genomic DNA concentration (marginal R
2
 = 0.0, conditional R

2
 = 561 

0.0). B. Spike-corrected OTU size successfully predicts within-species variation in genomic DNA 562 

concentration (marginal R
2
 = 0.53, conditional R

2
 = 0.98) despite species bias, represented by the 563 

different intercepts. A similar protocol was followed in Ji et al. (2020), where it was called “FSL 564 

correction”. Full model syntax: lme4::lmer(log.input_gDNA ~ log.OTUsize + (1 | 565 

sample/OTUID)).  566 
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Discussion 567 

We propose that there is a useful distinction to be made between within-species and across-568 

species abundance information (Figures 1, 2). Within-species abundance information can be 569 

enough to improve the inference of species interactions, the modelling of population dynamics and 570 

species distributions, the biomonitoring of environmental state and change, and the inference of 571 

false positives and negatives (Abrego et al., 2021; Carraro et al., 2020, 2021; Rojahn et al., 2021, 572 

and Figure 2). We thus recommend that future quantitative eDNA studies should make clear which 573 

abundance measure is being estimated.  574 

We experimentally show that spike-ins allow the recovery of within-species abundance change, by 575 

removing pipeline noise (Figures 4, 5), even given the equimolar pooling step before library prep. 576 

In both experiments, we used a multi-species spike-in. The potential benefit of multiple species is 577 

the option to detect experimental error, which could be exposed by the spike-ins deviating strongly 578 

from their input ratios (Ji et al., 2020), but the cost is usage of sequence data on spike-in reads. 579 

Ushio et al. (2018) have also shown that spike-ins recover within-species abundance change, and 580 

they moreover showed that a spike-in can be used on trace fish eDNA in water samples. We note 581 

that Ushio et al.’s method is more complex than our method of counting the number of spike-in 582 

reads per sample, and so the optimal method for trace DNA remains an open research question.  583 

In our first test, we serially diluted 52 OTUs into seven mock soups, and after spike-in correction 584 

(Figure 3), we were able to recover within-species abundance change in both input COI copy 585 

number and input genomic DNA (Figure 4), the latter of which should be more closely correlated 586 

with organism biomass. In our second test, we serially diluted each of the seven Malaise-trap 587 

soups into six soups (Figure 3), and we were able to recover within-species abundance change in 588 

input genomic DNA (Figure 5).  589 

Finally, our experimental protocol included Unique Molecular Identifiers (UMIs), and we find that 590 

they can also recover within-species abundance change (Figure S3), but UMIs require a laborious 591 

two-step PCR protocol for no additional quantification benefit over the spike-in (Figure S3). On the 592 

other hand, UMIs have other advantages that could recommend them over a physical spike-in, 593 

such as not taking up sequencing data, which could make them more suitable for trace DNA 594 
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sample types, contamination detection, and error correction. Contaminant and erroneous 595 

sequences should be present at low abundances and thus capture few UMIs (Fields et al., 2021). 596 

Additional alternatives to external spike-ins include a method introduced by Lundberg et al. (2021), 597 

who describe a two-step PCR method to use a single-copy host gene as a built-in spike-in. Also, in 598 

the Supplementary Information code for Figure 4 (S4), we apply the model-based pipeline-noise 599 

estimator to the mock-soup dataset and achieve an R
2
=11.8% for prediction of COI copy number, 600 

which lies between the R
2
 values achieved for the non-physical-spike-corrected (R

2
=0.04) and 601 

physical-spike-corrected values (R
2
=0.42) (Figure 4 B). We also achieve an R

2
=21.3% for 602 

prediction of genomic DNA, again intermediate between the non- physical-spike-corrected (R
2
=0.0) 603 

and physical-spike-corrected values (R
2
=0.53) (Figure 4 D). In the Malaise-trap data 604 

(Supplementary Information S5), the model-based approach performed poorly at recovering 605 

genomic concentration. The issue was that samples had been pooled to equimolar concentration, 606 

which led to strong confounding of pipeline noise and differences in total abundance across 607 

samples. The model-based approach did however correctly infer that there were no compositional 608 

effects in this dataset, consistent with a dilution gradient. This behaviour is as expected for the 609 

model-based method – it will recover relative not absolute DNA concentrations, hence is a tool 610 

best used to study effects on compositional not total abundance. 611 

Statistical analysis of DNA-based datasets will also need to exploit better within-species 612 

abundance information. The most straightforward method is to incorporate spike-in counts as an 613 

offset term in general linear models. For species distribution modelling, there is a need for software 614 

packages to utilise abundance data that ranges continuously over the interval [0,1], whereas to our 615 

knowledge, practitioners can effectively now only choose between presence/absence and 616 

absolute-abundance data.  617 

We conclude with the acknowledgment that relative species abundance remains the more difficult 618 

abundance-estimation problem, given the many hidden sources of species bias along 619 

metabarcoding and metagenomic pipelines (McLaren et al., 2019), but promising solutions are now 620 

starting to be available for amplicon (Shelton, Gold, et al., 2022; Silverman et al., 2021; Williamson 621 

et al., 2021) and metagenomic datasets (Lang et al., 2019; Peel et al., 2019). Note that even if 622 
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species biases can be corrected by using one of these techniques, it is still necessary to use a 623 

spike-in to correct for pipeline noise.  624 
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