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Abstract
The accurate extraction of species- abundance information from DNA- based data 
(metabarcoding, metagenomics) could contribute usefully to diet analysis and food- 
web reconstruction, the inference of species interactions, the modelling of popula-
tion dynamics and species distributions, the biomonitoring of environmental state and 
change, and the inference of false positives and negatives. However, multiple sources 
of bias and noise in sampling and processing combine to inject error into DNA- based 
data sets. To understand how to extract abundance information, it is useful to distin-
guish two concepts. (i) Within- sample across- species quantification describes relative 
species abundances in one sample. (ii) Across- sample within- species quantification de-
scribes how the abundance of each individual species varies from sample to sample, 
such as over a time series, an environmental gradient or different experimental treat-
ments. First, we review the literature on methods to recover across- species abundance 
information (by removing what we call “species pipeline biases”) and within- species 
abundance information (by removing what we call “pipeline noise”). We argue that 
many ecological questions can be answered with just within- species quantification, 
and we therefore demonstrate how to use a “DNA spike- in” to correct for pipeline 
noise and recover within- species abundance information. We also introduce a model- 
based estimator that can be used on data sets without a physical spike- in to approxi-
mate and correct for pipeline noise.
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1  |  INTRODUCTION

The accurate extraction of species- abundance information from 
DNA- based data could contribute usefully to the reconstruction 
of diets and quantitative food webs, the inference of species in-
teractions, the modelling of population dynamics and species dis-
tributions, the biomonitoring of environmental state and change, 
and more prosaically the inference of false positives and negatives 
(Abrego et al., 2021; Carraro et al., 2020, 2021; Deagle et al., 2019; 
Peel et al., 2019; Rojahn et al., 2021; Thomas et al., 2016). Here we 
use the term “abundance” to mean any estimate of biomass or count 
of individuals.

However, there are four general obstacles to the extraction of 
abundance information from DNA- based data (Griffin et al., 2020 
for more formal treatments; see Shelton et al., 2016), which we will 
call here: (i) species capture biases, (ii) capture noise, (iii) species pipeline 
biases and (iv) pipeline noise.

1. Species capture biases. Different species are more or less likely 
to be captured by a given sampling method or via non- random 
sampling designs. For instance, Malaise traps preferentially cap-
ture Diptera (deWaard et al., 2019), and different fish species, 
body sizes and physiological conditions vary in their environ-
mental DNA (eDNA) shedding rates (Thalinger et al., 2021; 
Yates, Glaser, et al., 2021).

2. Capture noise. Steinke et al. (2021) have shown that Malaise traps 
separated by only 3 m fail to capture the same species compo-
sitions, from which we infer that abundances vary stochastically 
across traps. Levi et al. (2019) showed that counts of salmon could 
be estimated via qPCR of aquatic eDNA, but only after correcting 
for temporal fluctuations in streamflow. Other sources of capture 
noise include environmental variation in eDNA degradation rates, 
food availability, PCR inhibitors and transport rates (reviewed in 
Yates, Cristescu, & Derry, 2021).

3. Species pipeline biases. Species differ in body size (biomass 
bias), genome size, mitochondrial copy number, DNA extrac-
tion efficiency and PCR amplification efficiency (primer bias) 
(Amend et al., 2010; Bell et al., 2017; Elbrecht & Leese, 2015; 
Garrido- Sanz et al., 2021; Iwaszkiewicz- Eggebrecht et al., 2022; 
Krehenwinkel et al., 2017; McLaren et al., 2019; Pauvert 
et al., 2019; Piñol et al., 2015, 2019; Tang et al., 2015; Yang 
et al., 2021; Yu et al., 2012). Species can even differ in their pro-
pensity to survive a bioinformatic pipeline, such as when closely 
related species are clustered into one operational taxonomic unit 
(OTU) (Pauvert et al., 2019).

4. Pipeline noise. There is considerable noise in DNA- based pipelines, 
which breaks the relationship between starting sample biomasses 
and final numbers of reads per sample (Ji et al., 2020), caused in 
part by PCR stochasticity and the passing and pooling of small 
aliquots of liquid along wet- laboratory pipelines. In particular, it 
is common practice to deliberately equalize the amount of data per 
sample by “pooling samples in equimolar concentration” just be-
fore sequencing.

We do not consider species capture biases or capture noise fur-
ther, referring the reader to the literature on eDNA occupancy correc-
tion (Doi et al., 2019; e.g. Dorazio & Erickson, 2018; Erickson, 2019; 
Griffin et al., 2020; Lyet et al., 2021; Stauffer et al., 2021) and the 
review by Yates, Cristescu, and Derry (2021). Instead, our purpose 
is to review methods for the extraction of abundance information 
from already- collected samples, because even if species capture bi-
ases and capture noise can be corrected, the combination of species 
pipeline biases and pipeline noise still causes the number of DNA se-
quences assigned to a species in a sample to be an error- prone measure 
of the abundance of that species in that sample (McLaren et al., 2019).

To start, we illustrate in a simplified way how pipeline noise and 
species pipeline biases (hereafter, species biases) combine to inject 
error into DNA- based data sets. We start with a notionally true sam-
ple × species table or OTU table (Figure 1), where OTU stands for 
operational taxonomic unit (i.e., a species hypothesis). Let each cell 
represent the true abundance (biomass or count) of that OTU in that 
sample.

Pipeline noise affects the rows (samples) of an OTU table. Thus, 
even though in the true table, OTU1 is six times as abundant in sam-
ple 4 vs. sample 1 (green cells in Figure 1a), in the observed table, 
OTU1 is only two times as abundant in sample 4 (green cells in 
Figure 1b). Pipeline noise thus obscures how the abundance of each in-
dividual species varies across samples, where the samples could be a time 
series, an environmental gradient or different experimental treatments.

Species bias affects the columns (OTUs) of an OTU table. Thus, 
even though in the true table, OTU2 and OTU1 are equally abundant 
in sample 3 (orange cells in Figure 1a), in the observed OTU table, 
OTU2 is two times as abundant as OTU1 in sample 3 (orange cells 
in Figure 1b). Species bias thus obscures relative species abundances, 
which is important for diet analysis (Deagle et al., 2019) and when 
relative abundance within a sample provides information on species 
contribution to ecosystem functioning or services (e.g., relative fish 
species biomasses).

So how can we extract abundance information from DNA- based 
data? It is helpful to distinguish between two concepts from Ji et al. 
(2020; see also Garrido- Sanz et al., 2021; Ji et al., 2020):

1. Within- species quantification: for example, “Species A is more 
abundant in this sample than it is in that sample (e.g., two 
points on a time series).” This is achieved by removing pipeline 
noise (Figure 2a1,d).

2. Across- species quantification: for example, “Species A is more 
abundant than Species B in this sample (i.e., relative species abun-
dance).” This is achieved by removing species biases.
We can state this mathematically as:

 where �ij is the abundance of species j in sample i, ai is a measure 
of the overall abundance of a sample, aj is a measure of how abun-
dant species j is across samples, and we assume a vector of envi-
ronmental variables xi (whose transpose is x′

i
) haa an effect on total 

(1)log
(

�ij

)

= ai + aj + x�
i
b + x�

i
bj
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abundance (via b) as well as having a compositional effect, that is 
affecting different species in different ways (via bj). The responses 
to environmental variables (b and bj) are typically the main quantities 
of biological interest, being used to model and monitor species dis-
tributions. Pipeline noise biases our estimate of ai, which would be 
zero for identical replicates in the absence of stochasticity, which in 
turn biases estimates of effects of environmental variables (b and bj
). Species pipeline biases affect our estimate of aj, affecting across- 
species quantification.

As we review and demonstrate below, some approaches remove 
pipeline noise, some remove species biases and some remove both. 
Our take- home message is that removing only pipeline noise to achieve 
within- species quantification can be enough to improve the inference 
of species interactions, the modelling of population dynamics and 
species distributions, the biomonitoring of environmental state and 
change, and the inference of false positives and negatives (Abrego 
et al., 2021; Carraro et al., 2020, 2021; Rojahn et al., 2021, and 
Figure 2).

F I G U R E  1  Pipeline noise vs. species bias in OTU tables. (a) The true OTU table, with cell numbers representing the true abundance of 
DNA for each OTU (column) in each sample (row). The spikeOTU column shows that the same amount of DNA spike- in has been added 
to each sample. (a1) The true OTU table after rescaling each OTU column to the interval [0,1]. (b) The observed OTU table after amplicon 
sequencing, showing the combined effects of pipeline noise and species biases. Each cell in Table (a) is multiplied by the Pipeline noise and 
Species bias values in that cell's row and column. For instance, OTU1's true abundance in Sample 1 is 10 but appears as 60 (=10 × 2 × 3). 
Pipeline noise thus causes the original 10:50 ratio of OTU1 in Samples 1 and 4 (blue cells) to appear as 60:100, while species bias causes 
the original 40:40 ratio of OTU1 and OTU2 (orange cells) to appear as 160:80. (c) The observed OTU table after dividing each row by its 
observed spike- in reads, which removes pipeline noise. Note that species biases remain uncorrected. In statistical modelling, the observed 
spike- in values are an index of sampling (sequencing) effort and can be included as offset values. (d) Table (c) after rescaling each column to 
the interval [0,1], to allow direct comparison with the rescaled true- OTU Table (a1). Spike- in correction successfully recovers within- species 
abundance change from sample to sample. Species biases have not been removed but have now been ignored via rescaling. (e) If spike- in 
reads are not available, or if it is suspected that capture noise is uncorrectable and high, the observed OTU table can be transformed to 
presence/absence. However, this method loses ecological information (Figure 2c). (f) Pipeline noise cannot be reliably removed by using 
the total reads per sample as a proxy for sampling effort (Observed rowSum) because the observed rowSum is confounded by species 
composition. (g) Table (f) after rescaling each OTU column to the interval [0,1], to contrast with Tables (a1) and (d). Line graphs of the OTU 
tables are in the spreadsheet version of this table, in the Supporting Information. Code syntax from the R language (R Core Team, 2021), 
including the {mvabund} (Wang et al., 2012) and {scales} packages (https://scales.r- lib.org, accessed December 16, 2021)

(a)

(b)

(f)

(g)

(c) (d)

(e)

(a1)

https://scales.r-lib.org
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1.1  | Mini-­review­of­methods­to­extract­abundance­
information

1.1.1  |  Multiplexed individual barcoding

The most straightforward approach is to DNA- barcode all the 
individual organisms and count them up, which achieves both 
within-  and across- species quantification. This method only works 
on taxa that have body sizes suitable for separating individuals, 
such as bees (Gueuning et al., 2019). Once separated, individu-
als or portions thereof (e.g., a leg) are placed in separate wells 
of a 96- well plate and individually PCR'd. Each PCR requires a 
uniquely tagged pair of PCR primers, which allows all the PCR 
products to be pooled and then sequenced en masse on Illumina 
(Creedy et al., 2020; Meier et al., 2016; Ratnasingham, 2019), 
PacBio (Hebert et al., 2018) or MinION (Srivathsan et al., 2021) 
sequencers. This method now costs much less than $1 per in-
dividual. Wührl et al. (2022) further increase throughput with a 

robotic pipettor and camera that visually identifies small insects 
to higher taxonomic rank and sorts them into 96- well plates. 
However, this method is difficult to apply to very large numbers of 
individuals and cannot be applied to trace DNA or microbial taxa. 
Note that this approach could also be carried out via machine- 
learning- accelerated visual identifications of photos of arthropods 
(Schneider et al., 2022).

1.1.2  |  Presence– absence in multiple subsamples

Presence– absence across multiple subsamples can be used as 
an index of within- species abundance. For instance, Abrego 
et al. (2021) summed all weekly detections (presences) per spe-
cies in their mitogenomic arthropod data set to estimate an annual 
abundance measure for each species. However, pipeline noise can 
still be reflected in presence/absence data, albeit more weakly, es-
pecially when many subsamples are used. This method can achieve 

F I G U R E  2  The usefulness of within- species abundance information. (a) Imagine that a species is found in many sites but that only two 
sites are optimal (green cells) with high abundances, with the rest suboptimal (grey cells), with low abundances. (b) Even though species 
pipeline biases make it difficult to recover absolute abundances from DNA- based data, it is straightforward to use a spike- in to recover 
within- species abundance data (shown by rescaling to the interval [0,1]), still revealing that the green sites appear to be optimal habitat. (c) 
If the DNA- based data were converted to presence/absence, the distinction between green and grey habitat would be lost. (d) Along an 
environmental gradient from left to right, let species A decrease and species B increase in eDNA concentration (rescaled to [0,1]). (e) The two 
species are seen to be negatively correlated over the gradient, even though absolute abundance information is unavailable. Example adapted 
from Rojahn et al. (2021), who combined a similar result with additional information to infer the competitive exclusion of a native fish species 
by an invasive species. (f,g) Due to species pipeline biases, absolute abundances are not known, and either species A or B could be absolutely 
more abundant. (h) Two samples with different absolute and relative species abundances. (i) If only across- species quantification is achieved 
(e.g., via forward or reverse metagenomics), it is valid to compare species within each sample only, revealing that the dark orange species has 
the highest relative abundance in both samples 1 and 2. However, it would not be valid to conclude that the dark orange species has a greater 
absolute biomass in Sample 1 than in Sample 2, as can be seen by inspection of the true absolute abundances in (h). However, also achieving 
within- species quantification (via a spike- in) would make it possible to compare how each species' absolute abundances vary across samples

(a)

(b)

(c)

(d)

(e) (f) (g)
(i)

(h)
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partial within- species quantification but probably not across- 
species quantification.

1.1.3  |  Design less biased PCR primers

In some cases, the target taxon is nearly uniform in body size and 
DNA- extraction efficiency, and it can be possible to design PCR 
primers that bind similarly across species. For instance, Schenk 
et al. (2019) have reported that primers for the 28S D3– D5 and 
18S V4 regions return nematode read frequencies that accurately 
recover relative species abundances, Verkuil et al. (2022) have re-
ported that modified COI primers can recover the relative biomasses 
of insect orders from pied flycatcher faeces, and Ershova et al. (2021) 
have reported that increasing COI primer degeneracy (Leray- XT) 
can recover relative biomasses of marine zooplankton. This method 
achieves across- species quantification, albeit with error, but not 
within- species quantification.

1.1.4  |  Quantitative/digital- droplet PCR

qPCR and ddPCR (quantitative and digital droplet PCR) can be used 
to estimate the sample DNA concentration of one species per assay. 
ddPCR is more sensitive than qPCR (Brys et al., 2021) and allows the 
detection of single copies of target DNA and absolute quantification 
through the partitioning of the PCR into 20,000 droplets and subse-
quent fluorescent detection of droplets that contain the target DNA 
(Hindson et al., 2011). The present paper does not review q/ddPCR 
except to note that single- species q/ddPCR applied to aquatic trace 
DNA can achieve within- species quantification, provided that one 
corrects for capture bias and noise in the form of variation in water 
discharge rates, surface- area to mass ratio, and/or eDNA trans-
port and diffusion (Fukaya et al., 2021; Levi et al., 2019; Pochardt 
et al., 2020; Rourke et al., 2022; Shelton, Ramón- Laca, et al., 2022; 
Yates, Cristescu, & Derry, 2021; Yates, Glaser, et al., 2021). If ap-
plied to multiple species and if statistical models that relate DNA 
copy number to abundance can be fitted (Fukaya et al., 2021; Levi 
et al., 2019; Pochardt et al., 2020), then across- species quantifica-
tion can also be achieved, albeit with nontrivial amounts of error. See 
also Rourke et al. (2022) for a recent, comprehensive review.

1.1.5  |  Spike- in DNA

To achieve within- species quantification, researchers have advo-
cated adding a fixed amount of an arbitrary DNA sequence to each 
sample, after tissue lysis and before DNA extraction. This “spike- in,” 
also known as an internal standard (ISD, Harrison et al., 2021), must 
have a sequence that does not match any species that could be in the 
samples and be flanked by primer binding sequences that match the 
primers used to amplify the samples (Deagle et al., 2018; Harrison 

et al., 2021; Smets et al., 2016; Tkacz et al., 2018; Tsuji et al., 2022; 
Ushio et al., 2018). By design, each sample receives the same amount 
of spike- in, and all samples should therefore return the same number 
of spike- in reads after PCR and sequencing. However, due to pipe-
line noise, some samples return more spike- in reads because more 
of the sample's DNA made it through the metabarcoding pipeline; 
those samples have OTUs with “too many reads.” Some samples re-
turn fewer spike- in reads because less of the sample's DNA made it 
through the metabarcoding pipeline; those samples have OTUs with 
“too few reads.” The correction step is simple: divide each sample's 
OTU sizes by the number of spike- in reads in that sample (Abrego 
et al., 2021; Ji et al., 2020). OTUs in samples with large numbers of 
spike- in reads are reduced in size more than OTUs in samples with 
small numbers of spike- in reads. Alternatively, the number of spike-
 in reads per sample can be input as an offset term in a multivariate 
statistical model (Wang et al., 2012). This latter approach can be un-
derstood as estimating ai in Equation 1 using âi = ln

∑q

j=1
zij where we 

have spike- in reads (zij) for q species (or synthetic sequences).
As an example, and following the pioneering work of Zhou 

et al. (2013), Ji et al. (2020) mapped whole- genome- sequenced 
(WGS, aka “shotgun sequencing”) data sets of insects to mito-
chondrial genomes and barcodes and achieved nearly perfect 
within- species quantification (barcodes R2 = 93%, mitogenomes 
R2 = 95%) and almost direct proportionality between mapped 
reads and input DNA mass. The high accuracy was largely achieved 
by using a spike- in correction. However, the regression lines 
that related read number to input DNA for each species all had 
different intercepts, reflecting uncorrected species biases, and 
thus across- species quantification was not achieved. Harrison 
et al. (2021) provide an excellent, complementary review of the 
recent literature on spike- ins and also describe an alternative ap-
proach for modelling nonspike- corrected (“compositional”) data 
sets. Figure 1 provides a worked example of spike- in correction, 
and the Excel spreadsheet used to produce Figure S1 is provided in 
the Supporting Information.

1.1.6  |  Model- based pipeline- noise estimation

A related approach is to try to use the data itself to estimate the 
pipeline noise, rather than a physical spike- in. To do this we could 
fit the model stated in Equation 1 to data. However, fitting this full 
model with row effects can be computationally intensive, especially 
for large data sets, so a simple alternative is to approximate ai using 
a one- step estimator (Warton, 2022):

where yij is the number of reads for OTU j in sample i, �̂(0)

ij
 is its pre-

dicted value from a model that does not include a row effect and p is 
the total number of OTUs. We can then include ̃ai as an offset in future 
models to (approximately) correct for pipeline bias.

(2)ãi = log
∑p

j=1
yij − log

∑p

j=1
�̂
(0)

ij
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The reason Equation 2 has two terms in it is that there are two 
reasons that a sample might end up generating many sequence 
reads: by chance (pipeline noise) and/or because some (or many) 
of the OTUs are abundant in the site where the sample was taken 
(ecology). Thus, if one has informative predictors xi that can suc-
cessfully predict which OTUs should be abundant in which samples, 
then it becomes possible to separate the two effects. log

∑p

j=1
yij is 

a function of both effects, log
∑p

j=1
�̂
(0)

ij
 estimates the effect of the 

predictors on the OTUs (ecology) and their difference isolates the 
row effect (pipeline noise). This is related to the spike- in approach, 
the main difference being that the spike- in formula (for âi) has no 
second term involving �ij because, by design, the same amount of 
each spike- in species is included in every sample (the spike- in has 
no ecology). An important difference here however is that because 
the same data are being used to estimate both pipeline noise (ai) 
and ecological effects (b), it will be difficult to tease these effects 
apart if the two are correlated. In fact, the common practice of 
adjusting samples to equimolar concentration before sequencing 
confounds these two effects. This problem does not however af-
fect estimation of compositional effects (bj), often the main quan-
tity of interest.

1.1.7  |  Unique molecular identifiers (UMIs)

A UMI is a series of ~7– 12 random bases (“NNNNNNN”) added 
to the forward primer as an ultrahigh- diversity tag (Hoshino & 
Inagaki, 2017). Seven Ns produce 47 = 16,384 uniquely identified 
forward primer molecules. Species contributing abundant DNA to 
a sample will capture many of these primer molecules and thus am-
plify many unique UMIs, while species contributing scarce DNA will 
amplify a low number. The relationship between UMI richness and 
DNA abundance is roughly linear but asymptotes for species with 
very high DNA abundance. After sequencing, the number of UMIs 
per OTU correlates with the starting number of template DNA mol-
ecules per species in that sample (Hoshino et al., 2021; Hoshino & 
Inagaki, 2017). This method thus mimics q/ddPCR in that if statistical 
relationships between DNA copy number and true abundance can 
be estimated, across- species quantification can be achieved. Within- 
species quantification can be achieved by also adding a spike- in.

1.1.8  |  Estimate and eliminate PCR bias

Silverman et al. (2021) propose a straightforward way to estimate PCR 
bias, by pooling all samples to ensure that all species are present, and 
subjecting the pooled sample to different numbers of PCR cycles xi
, from low to high. For any given pair of species 1 and 2, the ratio of 
their reads wi1

wi2

 after a given number of cycles is their starting DNA ratio 
a1

a2
 multiplied by their relative amplification bias 

(

b1

b2

)xi
, which increases 

with the number of cycles. This relationship can be linearized, and 
given the post- PCR relative read numbers at all cycle numbers, start-
ing DNA ratios (and relative amplification biases) can be estimated.

However, PCR is not the only source of species pipeline bias (e.g., 
Iwaszkiewicz- Eggebrecht et al., 2022), and McLaren et al. (2019) have 
pointed out that although it is not possible to estimate a priori the whole 
set of species biases in a given amplicon or metagenomic data set (be-
cause an unknown number of factors of unknown strengths combine to 
create the biases), it is reasonable to assume that the ratio of the biases of 
every pair of species is fixed. Given this, Williamson et al. (2021); see also 
Clausen & Willis, 2022) showed that if first one is able to estimate the 
absolute abundances of a subset of species in the samples (via multiple, 
species- specific q/ddPCR assays or flow cytometry), it is possible to infer 
the absolute abundances of all the species by inferring their ratios with 
the q/ddPCR- quantified species, allowing one to achieve across- species 
quantification. The authors dub this a “multiview data structure” because 
there are two views into the community of interest: q/ddPCR and se-
quencing. Note that because q/ddPCR is carried out after many of the 
wet- laboratory steps have been carried out, multiview modelling does 
not remove pipeline noise, and a spike- in is still needed to achieve within- 
species quantification. Shelton, Gold, et al., 2022) advocate a similar ap-
proach but via the construction of a “mock community” containing tissue 
of all species of interest and subjecting it to the same PCR protocol as 
the samples. From this mock community, species- specific PCR biases are 
calculated and used to extract across- species abundance information.

1.1.9  |  Forward and reverse metagenomics

Another way to achieve across- species quantification is to avoid 
PCR by using a metagenomic approach. For marine phytoplankton, 
Pierella Karlusich et al. (2022) used shotgun- sequenced counts of 
the (mostly) single- copy psbO gene, which is part of the photosystem 
II complex, to estimate species relative abundances. For land plants, 
Lang et al. (2019) showed that WGS data sets from pollen samples 
mapped to the variable protein- coding regions in chloroplast ge-
nomes can achieve accurate across- species quantification, finding 
that read frequency correlated strongly and linearly with pollen- 
grain frequency in a nearly 1:1 relationship (R2 = 86.7%, linear regres-
sion). At the same time, Peel et al. (2019) showed that it is possible to 
skip the labour of assembling and annotating chloroplast genomes, 
by using long- read sequences produced by the MinION sequencers 
from Oxford Nanopore Technologies (ONT). In this protocol, unas-
sembled genome skims of individual plant species, ideally sequenced 
at ≥1.0× depth, are used as reference databases. Mixed- species 
query samples of pollen are sequenced on MinIONs. The reads from 
each (reference) genome skim are mapped to each (query) long read, 
and each long read is assigned to the species whose skim maps at the 
highest percentage coverage. This “reverse metagenomic” (RevMet) 
protocol achieves across- species quantification, allowing biomass- 
dominant species to be identified in mixed- species pollen samples 
(and potentially, in root masses). Because RevMet uses the whole 
genome, it avoids species biases and pipeline noise created by ratios 

(3)
wi1

wi2

=
a1

a2

(

b1

b2

)xi
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of chloroplasts to cells varying across species, condition, tissues and 
age, and it can potentially be applied to any taxon for which it is pos-
sible to generate large numbers of individual genome skims, poten-
tially including soil fauna. However, metagenomics by itself does not 
remove pipeline noise and would have to be paired with a spike- in to 
achieve within- species quantification.

To sum up, multiple methods exist to extract abundance infor-
mation from DNA- based data sets (Table 1). Some achieve within- 
species quantification by removing pipeline noise, some achieve 
across- species quantification by removing species biases, and some 
achieve both or can be combined to achieve both.

It is useful to understand that many ecological questions can be 
tackled with only within- species quantification (Figure 2). In the sec-
ond half of this paper, we therefore provide a detailed protocol and 
experimental validation of spike- ins to achieve within- species quan-
tification for metabarcoding data sets.

We carry out two tests. First, we start with a sample of known 
composition (a “mock soup” of 52 OTUs), and from this we create 
a dilution gradient of seven samples with a spike- in. We show the 
successful use of the spike- in correction to remove pipeline noise 
and recover the dilution gradient. We then repeat the experiment 
with seven Malaise trap samples, which have the advantage of being 
more realistic but the disadvantage of having unknown composi-
tions. Again, we show the successful use of the spike- in to recover 
the seven dilution gradients made from the seven samples.

2  | METHODS

2.1  | Mock­soup­construction

In total, 286 arthropods were collected in Kunming, China 
(25°8′23″ N, 102°44′17″ E) (Luo et al., 2022). DNA was extracted 
from each individual using the DNeasy Blood & Tissue Kit (Qiagen). 
Genomic DNA concentration of each individual was quantified from 

three replicates using PicoGreen fluorescent dye. Then, 658- bp COI 
barcoding sequences were PCR'd with Folmer primers (LCO1490 
and HCO2198) (Folmer et al., 1994) and Sanger- sequenced. After 
the 658- bp COI sequences were trimmed to 313 bp based on our 
metabarcoding primers (see 2.4 Primer design), 286 arthropods 
were clustered to 168 OTUs at 97% similarity. We selected 52 indi-
viduals with genomic DNA >20 ng μl−1, representing 52 OTUs.

We created a mock- soup gradient of seven dilution levels. First, 
we created the highest concentration- level soup by pooling 61 ng of 
each of the 52 OTUs. The next soup was created by pooling 48.8 ng 
(=0.8 × 61) of each of the 52 OTUs, and so on to create a gradient of 
seven mock soups of differing absolute abundances, stepping down 
0.8× each time. To make it possible to check for mundane exper-
imental error (as opposed to failure of the spike- in to recover the 
gradient), we independently created this mock- soup gradient three 
times, for ntot = 21 independent poolings (Figure 3a).

2.2  |  Preparation­of­Malaise­trap­samples

In total, 244 Malaise trap samples from 96 sites, using 99.9% etha-
nol as the trapping liquid, were collected in and near a 384- km2 for-
ested landscape containing the H.J. Andrews Experimental Forest 
(44.2° N, 122.2° W), Oregon, USA, in July 2018 (Luo et al., 2022). 
Traps were left for seven nonrainy days. To equalize biomass across 
individuals, we only kept the heads of large individuals (body lengths 
>2 cm) and then transferred the samples to fresh 99.9% ethanol to 
store at room temperature until extraction. The samples were air 
dried individually on filter papers for less than 1 h and then trans-
ferred to 50- ml tubes or 5- ml tubes according to sample volume. The 
samples were then weighed. DNA was nondestructively extracted 
by soaking the samples in lysis buffer, using the protocols from Ji 
et al. (2020) and Nielsen et al. (2019). For this study, we selected 
seven samples spread over the study area, each of which is an in-
dependent test of our ability to recover the dilution gradient. After 

TA B L E  1  Summary of reviewed methods for extracting abundance information from DNA- based data. Each method is scored for whether 
it can achieve within- species or across- species quantification or both

Method Description
Within-­species­
abundance

Across- species 
abundance

Multiplexed individual barcoding DNA- barcode every individual in every sample ✓ ✓

Presence– absence in multiple subsamples Take multiple subsamples and count presences ✓ ?

Design less biased PCR primers Self- explanatory ✓

Quantitative/digital- droplet PCR Quantify a species' DNA concentration per sample ✓ ✓ (with extra work)

Spike- in DNA Add a fixed amount of external DNA to each sample to 
measure pipeline noise

✓

Model- based pipeline- noise estimation Estimate the effect of pipeline noise by removing the 
effect of environmental predictors

✓

Unique molecular identifiers (UMIs) Estimate the amount of starting DNA per sample and 
per species

✓ ?

Estimate and eliminate PCR bias Use calibration samples and/or PCR time series to 
estimate species- specific PCR biases

✓

Forward and reverse metagenomics Map and count shotgun reads to reference sequences ✓
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completion of lysis, we serially diluted the seven samples by using 
0.7× lysis buffer volume (500, 350, 245, 171.5, 120 and 84 μl) to 
create six soups per sample (ntot = 42). We used a QIAquick PCR 
purification kit (Qiagen) following the manufacturer instructions to 
purify lysis buffer on one spin column per soup (Figure 3b). We used 
a shallower gradient (0.7×) because our starting DNA amount was 
lower than with the mock soups.

2.3  | Adding­spike-­in­DNA

2.3.1  |  Spike- in DNA

For our spike- ins, we used three insect species from China 
(Lepidoptera: Bombycidae, Coleoptera: Elateridae, Coleoptera: 
Mordellidae), none of which is expected to appear in the Oregon 
Malaise trap samples. An alternative is to use one or more synthetic, 
random DNA sequences (Tkacz et al., 2018). Each of our three spike- 
ins is represented by a 658- bp COI fragment (Table S1) with primer 
binding sites that match the Folmer primers HCO2198 and LCO1490. 
For long- term storage, we inserted the COI fragments as plasmids 
into monoclonal bacteria. Plasmids were extracted using a TIANprep 
Mini Plasmid Kit following the manufacturer's instructions.

2.3.2  |  Adding spike- in to the mock soups

Adding too much spike- in wastes sequencing data, while adding too 
little risks loss of abundance information in at least some samples 

when the number of spike- in reads is too low to use as a reliable 
correction factor. Thus, we quantified the COI copy numbers of the 
mock soups and the spike- in DNA by qPCR (Table S2, Figure S1) and 
chose a volume so that spike- in reads should make up 1% of the total 
number of COI copies in the lowest- concentration mock soups, bal-
ancing efficiency with reliability. We used all three spike- in species 
here and mixed them (Bombycidae/Elateridae/Mordellidae) in a ratio 
of 1:2:4, which was added directly to the mock soups' DNA since 
they were already purified.

2.3.3  |  Adding spike- in to the Malaise trap samples

From the 244 Malaise trap samples, we first extracted 17 Malaise 
trap samples without adding spike- ins, and then we used qPCR to 
quantify the mean COI concentrations of these 17 samples in order 
to decide how much spike- in to add. Before adding the spike- ins, we 
discovered that the Bombycid DNA spike- in had degraded, and so 
we used only two spike- in species for the Malaise trap samples, at 
a ratio of 1:9 (Mordellidae/Elateridae). We then chose seven other 
samples for this study. In these samples, lysis buffer (500, 350, 245, 
171.5, 120, 84 μl) from each sample was transferred into clean 1.5- 
ml tubes, and the spike- in DNA was added. We then purified the 
DNA with the Qiagen QIAquick PCR purification kit, following the 
manufacturer's instructions. DNA was eluted with 200 μl of elution 
buffer. In this way, the spike- in DNA was co- purified, co- amplified 
and co- sequenced along with the sample DNA (Figure 3b). We also 
recorded the total lysis buffer volume of each sample, for down-
stream correction.

F I G U R E  3  Preparation of mock and 
Malaise trap soups. (a) Mock soups. 
Each mock soup was constructed with 
equal masses of purified DNA from 52 
OTUs. From soup “a” to soup “g,” the 
input genomic masses of each of the 
52 OTUs were 61, 48.8, 39, 31.2, 25, 
20 and 16 ng. The same mass of spike- 
in DNA was then added to each soup 
(green DNA molecule). Each of the seven 
soups was made in triplicate, and all 21 
soups were PCR'd in triplicate following 
the begum pipeline (Yang et al., 2021) to 
detect and remove false reads. (b) Malaise 
trap sample protocol. Each bulk sample 
of arthropods was nondestructively 
DNA- extracted by soaking in 5× volume 
of lysis buffer. From each of the seven 
samples, 500, 350, 245, 171.5, 120 and 
84 μl lysis buffer was used to create six 
dilution soups, a fixed amount of spike- in 
DNA was added, and the mixture was 
copurified

(a)

(b)
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2.4  |  Primer­design

For this study, we simultaneously tested two methods for extract-
ing abundance information: spike- ins and UMIs. UMI tagging requires 
a two- step PCR procedure (Hoshino & Inagaki, 2017; Lundberg 
et al., 2013), first using tagging primers and then using amplifica-
tion primers (Figure S2). The tagging primers include (i) the Leray- 
FolDegenRev primer pair to amplify the 313- bp COI amplicon of 
interest, (ii) a 1-  or 2- nucleotide heterogeneity spacer on both the for-
ward and reverse primers to increase sequence entropy for the Illumina 
sequencer, (iii) the same 6- nucleotide sequence on both the forward 
and reverse primers to “twin- tag” the samples for downstream demul-
tiplexing, (iv) a 5 N random sequence on the forward primer and a 4 N 
random sequence on the reverse primer (9 N total) as the UMI tags, 
and (v) parts of the Illumina universal adapter sequences to anneal to 
the 3′ ends of the forward and reverse primers for the second PCR. 
By splitting the 9 N UMI into 5 N + 4 N over the forward and reverse 
primers, we avoid primer dimers. The amplification primers include (i) 
an index sequence on the forward primer pair for Illumina library de-
multiplexing, and (ii) the full length of the Illumina adapter sequences. 
For further explanation of the design of the tagging primers (except 
for the UMI sequences), see Yang et al. (2021).

2.5  |  PCR­and­the­begum pipeline

The first PCR amplifies COI and concatenates sample tags and 
UMIs and runs for only two cycles using a KAPA 2G Robust HS 
PCR Kit (Roche KAPA Biosystems). We used the mlCOIintF– 
FolDegenRev primer pair (Leray et al., 2013; Yu et al., 2012, p. 
2012), which amplifies a 313- bp fragment of the COI barcode; 
and we followed the begum protocol (Yang et al., 2021; Zepeda- 
Mendoza et al., 2016), which is a wet- laboratory and bioinformatic 
pipeline that combines multiple independent PCR replicates per 
sample, twin- tagging and false positive controls to remove tag- 
jumping and reduce erroneous sequences. Twin- tagging means 
using the same tag sequence on both the forward and reverse 
primers in a PCR, and we use this design because during library 
index PCR for Illumina sequencing, occasional incomplete exten-
sions can create new primers that already contain the tag of one 
amplicon, resulting in chimeric sequences with tags from two 
different amplicons (Schnell et al., 2015). Tag jumps thus almost 
always result in nonmatching tag sequences, and these are identi-
fied and removed in the begum pipeline. We performed three PCR 
replicates per sample, which means we used three different twin- 
tags to distinguish the three independent PCR replicates. begum 
removes erroneous sequences by filtering out the reads that ap-
pear in a low number of PCR replicates (e.g., only one PCR) at a 
low number of copies per PCR (e.g., only two copies), because 
true sequences are more likely to appear in multiple PCRs with 
higher copy numbers per PCR. The 20- μl reaction mix included 
4 μl Enhancer, 4 μl Buffer A, 0.4 μl dNTP (10 mm), 0.8 μl per primer 
(10 mm), 0.08 μl KAPA 2G HotStart DNA polymerase (Roche KAPA 
Biosystems), 5 μl template DNA and 5 μl water. PCR conditions 

were initial denaturation at 95°C for 3 min, followed by two cycles 
of denaturation at 95°C for 1 min, annealing at 50°C for 90 s,and 
extension at 72°C for 2 min. Then the products were purified with 
14 μl of KAPA pure beads (Roche KAPA Biosystems) to remove the 
primers and PCR reagents and were eluted into 16 μl of water.

The second PCR amplifies the tagged templates for building the 
libraries that can be sequenced directly on the Illumina platform. The 
50- μl reaction mix included 5 μl TAKARA buffer, 4 μl dNTP (10 mm), 
1.2 μl per primer (10 mm), 0.25 μl TAKARA Taq DNA polymerase, 
15 μl DNA product from the first PCR and 23.35 μl water. PCR condi-
tions were initial denaturation at 95°C for 3 min, five cycles of dena-
turation at 95°C for 30 s, annealing at 59°C for 30 s (−1°C per cycle), 
extension at 72°C for 30 s, followed by 25 cycles of denaturation at 
95°C for 30 s, annealing at 55°C for 30 s, extension at 72°C for 30 s; 
a final extension at 72°C for 5 min, and cool down to 4°C.

From all second PCR products, 2 μl was roughly quantified on a 
2% agarose gel with image lab 2.0 (Bio- Rad). For each set of PCRs 
with the same index, amplicons were mixed at equimolar ratios to 
make a pooled library. One PCR- negative control was set for each 
library. We sent our samples to Novogene for PE250 sequencing on 
an Illumina NovaSeq 6000, requiring 0.8 GB raw data from each PCR.

2.6  |  Bioinformatic­processing

adapterremoval 2.1.7 was used to remove any remaining adapters 
from the raw data (Schubert et al., 2016). sickle 1.33 was used to trim 
away low- quality bases at the 3′ ends. bfc version 181 was used to 
denoise the reads (Li, 2015). Read merging was performed using pan-
daseq 2.11 (Masella et al., 2012). begum was used to demultiplex the 
reads by sample tag and to filter out erroneous reads (https://github.
com/shyam sg/Begum, accessed September, 2021). We allowed 2- bp 
primer mismatches to the twin- tags while demultiplexing, and we 
filtered at a stringency of accepting only reads that appeared in at 
least two PCRs at a minimum copy number of four reads per PCR, 
with minimum length of 300 bp. This stringency minimized the false 
positive reads in the negative PCR control.

For mock- soup data, we need to compare the UMI and read num-
bers in each PCR set. However, begum cannot recognize UMIs. Also 
because of our complicated primer structure, there is no software 
available for our data to count the UMIs per OTU in each PCR set. 
Thus, we wrote a custom bash script to process the mock- soup data 
from the pandaseq output files, which include all the UMIs, tags and 
primers. First, we used begum- filtered sequences as a reference to 
filter reads for each PCR set and put the UMI information on read 
headers. Then we carried out reference- based OTU clustering for 
each PCR set with qiime 1.9.1 (pick_otus.py - m uclust_ref - s 0.99) 
(Caporaso et al., 2010; Edgar, 2010), using the OTU representative 
sequences from barcoding Sanger sequencing as the reference, 
counted UMIs and reads for each OTU in each PCR set, and gener-
ated two OTU tables, separately with UMI and read numbers.

For the Malaise trap data, we directly used the begum pipeline. 
After begum filtering, vsearch 2.14.1 (−- uchime_denovo) (Rognes 
et al., 2016) was used to remove chimeras. sumaclust 1.0.2 was used 

https://github.com/shyamsg/Begum
https://github.com/shyamsg/Begum
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to cluster the sequences of Malaise trap samples into 97% similarity 
OTUs. The python script tabulateSumaclust.py from the dame toolkit 
was used to generate the OTU table. Finally, we applied the r pack-
age {LULU} 0.1.0 with default parameters to merge oversplit OTUs 
(Frøslev et al., 2017). The OTU table and OTU representative se-
quences were used for downstream analysis.

2.7  |  Statistical­analyses

All statistical analyses were carried out in R 4.1.0 (R Core Team, 2021), 
and we used the {lme4} 1.1– 27 package (Bates et al., 2015) to fit 
linear mixed- effects models, using OTU, soup replicate and PCR 
replicates as random factors, to isolate the variance explained by 
the sole (fixed- effect) predictor of interest: OTU size. Model syn-
tax is given in the legend of Figure 4. We used the {MuMIn} 1.43.17 
package (CRAN.R- proje ct.org/packa ge=MuMIn, accessed January 

2, 2022) to calculate the variance explained by fixed effects only 
(marginal R2). To carry out spike- in correction, we first calculated a 
weighted mean from the added spike- ins (e.g., mean[Bombycidae + 
Elateridae/2 + Mordellidae/4]), rescaled the new mean spike- in so 
that the smallest value is equal to 1, and divided each row's OTU size 
and UMI number by the weighted, scaled spike- in.

3  |  RESULTS

3.1  |  Bioinformatic­processing­of­the­Malaise­trap­
samples­and­the­mock­soups

Five libraries yielded a total of 283,319,770 paired- end reads, of 
which 247,285,097 were merged successfully in pandaseq. After 
begum sorting and demultiplexing, which removed a large number 
of tag- jumped reads and some reads <300 bp length, we retained 

F I G U R E  4  Recovery of within- species abundance change in COI copy number and in genomic DNA concentration in the mock- soup 
experiment. For visualization, all data points are shown (including all soup and PCR replicates), each thin line is fit to one of the OTUs across 
the seven serially diluted mock- soup samples, and the thick line represents the fitted model in which OTUs were treated as a random factor. 
(a) Nonspike- corrected OTU size (number of reads per OTU per soup) poorly predicts within- species variation in input COI copy number 
(linear mixed- effects model, marginal R2 = .04, conditional R2 = .85). (b) Spike- corrected OTU size successfully predicts within- species 
variation in input COI copy number (mixed- effects linear model, marginal R2 = .42, conditional R2 = .96), but species bias remains, as can 
be seen in the orders- of- magnitude variation in intercepts. (c) Nonspike- corrected read number poorly predicts within- species variation in 
input genomic DNA concentration (linear mixed- effects model, marginal R2 = .01, conditional R2 = .01). (d) Spike- corrected read number 
successfully predicts within- species variation in input genomic DNA concentration but more poorly for species represented by small 
OTUs (linear mixed- effects model, marginal R2 = .52, conditional R2 = .95) despite species bias (Figure 1). Model syntax: lme4::lmer(log.
input_gDNA or log.inputCOI_copynumber ~ log.OTUsize + (log.OTUsize | OTUID) + (1 |soupRep/pcrRep)) (Bates et al., 2015). Marginal R2 is 
variance explained by the fixed effect, and conditional R2 is variance explained by the whole model

(a)

(c) (d)

(b)

http://cran.r-project.org/package=MuMIn
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106,649,397 reads. After begum's filtering of erroneous reads, we 
retained 76,289,802 reads, and after de novo chimera removal, we 
retained 73,818,971 reads. Sequences were clustered at 97% simi-
larity into 1188 OTUs, and LULU combined the OTUs of the Malaise 
trap samples into 435 OTUs. After removing the spike- in OTUs, the 
seven Malaise trap samples contained a total of 432 OTUs. All 52 
OTUs of the seven mock soups were recovered

3.2  | Mock­soups,­COI­copy­number

Without spike- in correction, OTU size (numbers of reads per OTU) 
predicts almost none of the within- species (dilution- gradient- caused) 
variation in COI copy number (R2 = .04, all values marginal R2), but 
with spike- in correction, OTU size predicts 42.0% of the variation 
(Figure 4a,b). As expected, UMI number by itself does not predict 
input COI copy number (R2 = .05), but with spike- in correction, UMI 
number does predict COI copy number (R2 = .42) (Figure S3a,b). Also 
as expected, spike- in correction does not achieve across- species 
quantification, as shown by the orders of magnitude variation in in-
tercepts across the 52 OTUs. Note that this experiment pooled DNA 
extracts with equalized concentrations of genomic DNA mass per 
species, which suggests that PCR bias is the main source of species 
bias in this data set

3.3  | Mock­soup­within-­species­abundance­in­input­
genomic DNA mass

Of course, our goal is to estimate not COI copy number but specimen 
biomass. We thus tested how well OTU size and UMI numbers pre-
dicted genomic DNA concentration. Nonspike- corrected OTU size 
and UMI number both failed to predict input genomic DNA mass 
(R2 < .02 for both, Figure 4c and Figure S3c), but spike- corrected 
OTU size and UMI number again both successfully predicted input 
genomic DNA mass (R2 = .53 and .52, Figure 4d and Figure S3d).

3.4  | Malaise­trap­within-­species­
abundance­recovery

Recall that each of the seven selected Malaise trap samples was 
serially diluted by 0.7× to create six soups per sample. Nonspike- 
corrected OTU size did not predict within- species variation in input 
genomic- DNA mass (p = .33) (Figure 5a), but spike- corrected OTU 
size again did predict within- species variation in input genomic- DNA 
mass (R2 = .53) (Figure 5b)

4  | DISCUSSION

We propose that there is a useful distinction to be made between 
within- species and across- species abundance information (Figures 1 

and 2). Within- species abundance information can be enough to 
improve the inference of species interactions, the modelling of 
population dynamics and species distributions, the biomonitoring 
of environmental state and change, and the inference of false posi-
tives and negatives (Abrego et al., 2021; Carraro et al., 2020, 2021; 
Rojahn et al., 2021; Figure 2). We thus recommend that future quan-
titative eDNA studies should make clear which abundance measure 
is being estimated.

We experimentally show that spike- ins allow the recovery of 
within- species abundance change, by removing pipeline noise 
(Figures 4 and 5), even given the equimolar pooling step before li-
brary prep. In both experiments, we used a multispecies spike- in. 
The potential benefit of multiple species is the option to detect ex-
perimental error, which could be exposed by the spike- ins deviat-
ing strongly from their input ratios (Ji et al., 2020), but the cost is 
usage of sequence data on spike- in reads. Ushio et al. (2018) have 
also shown that spike- ins recover within- species abundance change, 
and they moreover showed that a spike- in can be used on trace fish 
eDNA in water samples. We note that Ushio et al.'s method is more 
complex than our method of counting the number of spike- in reads 
per sample, and so the optimal method for trace DNA remains an 
open research question.

In our first test, we serially diluted 52 OTUs into seven mock 
soups, and after spike- in correction (Figure 3), we were able to re-
cover within- species abundance change in both input COI copy num-
ber and input genomic DNA (Figure 4), the latter of which should 
be more closely correlated with organism biomass. In our second 
test, we serially diluted each of the seven Malaise trap soups into six 
soups (Figure 3), and we were able to recover within- species abun-
dance change in input genomic DNA (Figure 5).

Finally, our experimental protocol included UMIs, and we 
find that they can also recover within- species abundance change 
(Figure S3), but UMIs require a laborious two- step PCR protocol for 
no additional quantification benefit over the spike- in (Figure S3). On 
the other hand, UMIs have other advantages that could recommend 
them over a physical spike- in, such as not taking up sequencing data, 
which could make them more suitable for trace DNA sample types, 
contamination detection and error correction. Contaminant and er-
roneous sequences should be present at low abundances and thus 
capture few UMIs (Fields et al., 2021).

Additional alternatives to external spike- ins include a method 
introduced by Lundberg et al. (2021), who describe a two- step PCR 
method to use a single- copy host gene as a built- in spike- in. Also, 
in the Supporting Information code for Figure 4 (S4), we apply the 
model- based pipeline- noise estimator to the mock- soup data set 
and achieve an R2 = 11.8% for prediction of COI copy number, 
which lies between the R2 values achieved for the nonphysical- 
spike- corrected (R2 = .04) and physical- spike- corrected values 
(R2 = .42) (Figure 4b). We also achieve an R2 = 21.3% for pre-
diction of genomic DNA, again intermediate between the non- 
physical- spike- corrected (R2 = .0) and physical- spike- corrected 
values (R2 = .53) (Figure 4d). In the Malaise trap data (Supporting 
Information S5), the model- based approach performed poorly at 
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recovering genomic concentration. The issue was that samples 
had been pooled to equimolar concentration, which led to strong 
confounding of pipeline noise and differences in total abundance 
across samples. The model- based approach did however correctly 
infer that there were no compositional effects in this data set, 
consistent with a dilution gradient. This behaviour is as expected 
for the model- based method— it will recover relative not absolute 
DNA concentrations, and hence is a tool best used to study effects 
on compositional rather than total abundance.

Statistical analysis of DNA- based data sets will also need to 
exploit better within- species abundance information. The most 
straightforward method is to incorporate spike- in counts as an off-
set term in general linear models. For species distribution modelling, 
there is a need for software packages to utilize abundance data that 
ranges continuously over the interval [0,1], whereas to our knowl-
edge, practitioners can effectively now only choose between pres-
ence/absence and absolute- abundance data.

We conclude with the acknowledgment that relative species 
abundance remains the more difficult abundance- estimation prob-
lem, given the many hidden sources of species bias along metabarcod-
ing and metagenomic pipelines (McLaren et al., 2019), but promising 

solutions are now starting to be available for amplicon (Shelton, Gold, 
et al., 2022; Silverman et al., 2021; Williamson et al., 2021) and metag-
enomic data sets (Lang et al., 2019; Peel et al., 2019). Note that even if 
species biases can be corrected by using one of these techniques, it is 
still necessary to use a spike- in to correct for pipeline noise.

ACKNOWLEDG EMENTS
We thank Sarah Bourlat, Nathan Geraldi, Lucie Zinger and three 
anonymous reviewers for very helpful comments on the manu-
script. The authors were supported by the Key Research Program 
of Frontier Sciences, Chinese Academy of Sciences (QYZDY- SSW- 
SMC024), the Strategic Priority Research Program, Chinese Academy 
of Sciences (XDA20050202), the State Key Laboratory of Genetic 
Resources and Evolution (GREKF19- 01, GREKF20- 01, GREKF21- 01) 
at the Kunming Institute of Zoology, the sCom Working Group at 
iDiv.de, the University of East Anglia, and the University of Chinese 
Academy of Sciences.

CONFLIC T OF INTERE S T
DY is a cofounder of Nature Metrics, which provides commercial 
eDNA services.

F I G U R E  5  Prediction of within- species variation in genomic DNA concentration in the Malaise trap samples. For visualization, each thin 
line is fit to an OTU's serial dilution made from each of the seven Malaise trap samples, and the thick lines are the fitted model with sample 
and OTU as random factors. There are 176, 113, 111, 104, 196, 110 and 82 OTUs in samples 1– 7, respectively. (a) Nonspike- corrected 
OTU size (read number per OTU and sample) does not predict within- species variation in genomic DNA concentration (marginal R2 = .0, 
conditional R2 = .0). (b) Spike- corrected OTU size successfully predicts within- species variation in genomic DNA concentration (marginal 
R2 = .53, conditional R2 = .98) despite species bias, represented by the different intercepts. A similar protocol was followed in Ji et al. (2020), 
where it was called “FSL correction.” Full model syntax: lme4::lmer(log.input_gDNA ~ log.OTUsize + [1 | sample/OTUID])
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