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Abstract  42 

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) transmission is 43 

uncontrolled in many parts of the world, compounded in some areas by higher 44 

transmission potential of the B1.1.7 variant now seen in 50 countries. It is unclear whether 45 

responses to SARS-CoV-2 vaccines based on the prototypic strain will be impacted by 46 

mutations found in B.1.1.7. Here we assessed immune responses following vaccination 47 

with mRNA-based vaccine BNT162b2. We measured neutralising antibody responses 48 

following a single immunization using pseudoviruses expressing the wild-type Spike 49 

protein or the 8 amino acid mutations found in the B.1.1.7 spike protein. The vaccine sera 50 

exhibited a broad range of neutralising titres against the wild-type pseudoviruses that 51 

were modestly reduced against B.1.1.7 variant. This reduction was also evident in sera 52 

from some convalescent patients.  Decreased B.1.1.7 neutralisation was also observed with 53 

monoclonal antibodies targeting the N-terminal domain (9 out of 10), the Receptor 54 

Binding Motif (RBM) (5 out of 31), but not in neutralising mAbs binding outside the RBM.  55 

Introduction of the E484K mutation in a B.1.1.7 background to reflect newly emerging 56 

viruses in the UK led to a more substantial loss of neutralising activity by vaccine-elicited 57 

antibodies and mAbs (19 out of 31) over that conferred by the B.1.1.7 mutations alone. 58 

E484K emergence on a B.1.1.7 background represents a threat to the vaccine BNT162b.  59 

 60 

Introduction 61 

The outbreak of a pneumonia of unknown cause in Wuhan, China in December 2019, 62 

culminated in a global pandemic due to a novel viral pathogen, now known to be SARS-CoV-63 

21. The unprecedented scientific response to this global challenge has led to the rapid 64 

development of vaccines aimed at preventing SARS-COV-2 infection and transmission. 65 

Continued viral evolution led to the emergence and selection of SARS-CoV-2 variants with 66 

enhanced infectivity/transmissibility2,3 4,5 and ability to circumvent drug6 and immune 67 

control7,8. 68 

SARS-CoV-2 vaccines have recently been licensed that target the spike (S) protein, 69 

either using mRNA or adenovirus vector technology with protection rates ranging from 62 to 70 

95%9-11. The BNT162b2 vaccine encodes the full-length trimerised S protein of SARS CoV-2 71 

and is formulated in lipid nanoparticles for delivery to cells12. Other vaccines include the 72 

Moderna mRNA-1273 vaccine, which is also a lipid nanoparticle formulated S glycoprotein13 73 

and the Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccine (AZD1222) which is a replication-74 

deficient chimpanzee adenoviral vector ChAdOx1, containing the S glycoprotein14. The 75 

duration of immunity conferred by these vaccines is as yet unknown. These vaccines were 76 

designed against the Wuhan-1 isolate discovered in 2019.  Concerns have been raised as to 77 

whether these vaccines will be effective against newly emergent SARS-CoV-2 variants, such 78 



as B.1.1.7 (N501Y.V1), B.1.351 (N501Y.V2) and P1 (N501Y.V3) that originated in the UK, 79 

South Africa, and Brazil and are now being detected all over the world15-17.  80 

In clinical studies of the Pfizer-BioNTech BNT162b2 vaccine, high levels of protection 81 

against infection and severe disease were observed after the second dose10. Neutralisating 82 

geometric mean titre (GMT) was below cut-off in most cases after prime dose, but as 83 

anticipated, titres substantially increased after boost immunization18. In older adults mean GMT 84 

was only 12 in a preliminary analysis of 12 participants19 and increased to 109 after the second 85 

dose. 86 

In this study, we assess antibody responses against the the B.1.1.7 variant after 87 

vaccination with the first and second doses of BNT162b2, showing modest reduction in 88 

neutralisation against pseudoviruses bearing B.1.1.7 Spike mutations (𝚫H69/V70, 𝚫144, 89 

N501Y, A570D, P681H, T716I, S982A and D1118H). In addition, by using a panel of human 90 

neutralising monoclonal antibodies (mAbs) we show that the B.1.1.7 variant can escape 91 

neutralisation mediated by most NTD-specific antibodies tested and by a fraction of RBM-92 

specific antibodies. Finally, we show that the recent emergence and transmission of B.1.1.7 93 

viruses bearing the Spike E484K mutation results in significant additional loss of neutralisation 94 

by BNT162b2 mRNA-elicited antibodies, convalescent sera and mAbs.  95 

 96 

Results 97 

Thirty seven participants had received the first dose of BNT162b2 mRNA vaccine three 98 

weeks prior to blood draw for serum and peripheral blood monocnulear cells (PBMC) 99 

collection. Median age was 63.5 years (IQR 47-84) and 33% were female. Serum IgG titres to 100 

Nucleocapsid (N) protein, S and the S receptor binding domain (RBD) were assayed by particle 101 

based flow cytometry on a Luminex analyser (Extended Data Fig. 1a). These data showed S 102 

and RBD antibody titres much higher than in healthy controls, but lower than in individuals 103 

recovered from COVID-19 and titres observed in therapeutic convalescent plasma. The raised 104 

N titres relative to control could be the result of non-specific cross reactivity that is increased 105 

following vaccination. However, the antibody response was heterogeneous with almost 100-106 

fold variation in IgG titres to S and RBD across the vaccinated participants.  107 

Using lentiviral pseudotyping we studied WT (wild type bearing D614G) and mutant 108 

B.1.1.7 S proteins (Fig. 1a) on the surface of enveloped virions in order to measure 109 

neutralisation activity of vaccine-elicited sera. This system has been shown to give results 110 

correlating with replication competent authentic virus20,21. Eight out of 37 participants exhibited 111 



no appreciable neutralisation against the WT pseudotyped virus following the first dose of 112 

vaccines. The vaccine sera exhibited a range of inhibitory dilutions giving 50% neutralisation 113 

(ID50) (Fig. 1c-d). The GMT against wild type (WT) following the second dose of vaccine was 114 

an order of magnitude higher than after the first dose (318 vs 77) (Fig 1c-f).There was 115 

correlation between full length S IgG titres and serum neutralisation titres (Extended Data Fig. 116 

1b). A broad range of T cell responses was measured by IFN gamma FluoroSpot against SARS-117 

CoV-2 peptides in vaccinees. These cellular responses did not correlate with IgG S antibody 118 

titres (Extended Data Fig. 1c-d).  119 

We then generated mutated pseudoviruses carrying S protein with mutations N501Y, 120 

A570D and the H69/V70 deletion. We observed no reduction in the ability of sera from 121 

vaccinees to inhibit either WT or mutant virus (Extended Data Fig. 2a, b). A panel of sera 122 

from ten recovered individuals also neutralised both wild type and the mutated viruses similarly 123 

(Extended Data Fig. 2c). We next completed the full set of eight mutations in the S protein 124 

present in B.1.1.7  variant (Fig. 1a), 𝚫H69/V70, 𝚫144, N501Y and A570D in the S1 subunit 125 

and  P681H, T716I, S982A and D1118H in the S2 subunit. All constructs also contained D614G. 126 

We found that among 29 individuals with neutralisation activity against the WT three weeks 127 

after receiving a single dose of the the BNT162b2 mRNA vaccine, 20 showed evidence of 128 

reduction in efficacy of antibodies against the B.1.1.7 mutant (Fig. 1b-c, Extended Data Fig. 129 

3). The mean fold change reduction in sensitivity to first dose vaccine sera of B.1.1.7 compared 130 

to WT was approximately 3.2 (SD 5.7). The variation is likely due to the low neutralisation 131 

titres following first dose. Following the second dose, GMT was markedly increased compared 132 

with first dose titres, and the mean fold change had reduced to 1.9 (SD 0.9) (Fig. 1d-e). Amongst 133 

sera from 27 recovered individuals, the GMT at 50% neutralisation was 1334 for WT, 134 

significantly higher than post second dose vaccination (Fig. 1f-g). The fold change in ID50 for 135 

neutralisation of B.1.1.7 versus wild type (D614G) was 4.5 (Fig. 1f-g and Extended Data Fig. 136 

4). 137 

B.1.1.7 with spike E484K mutation and neutralization by vaccine and convalescent sera 138 

The E484K substitution (Fig. 2a) is antigenically important, and has been reported as an escape 139 

mutation for several monoclonal antibodies including C121, C144, REGN10933  and Ly-140 

CoV555 22. E484K is also known to be present in the B.1.351 (501Y.V2) and P.1 (501Y.V3) 141 

lineages in combination with amino acid replacements at N501 and K417. As of 10th Feb 2021, 142 

twenty three English and two Welsh B.1.1.7 sequences from viral isolates contained the E484K 143 



substitution (Fig. 2b). The number of B.1.1.7 sequences has been increasing since the start of 144 

December 2020 (Fig. 2c). Phylogenetic analysis suggests that there have been multiple 145 

independent acquisitions, with one lineage appearing to expand over time, indicating active 146 

transmission (Fig. 2b). This has resulted in Public Health England naming this as a variant of 147 

concern (VOC 202102/02)23, triggering enhanced public health measures.  There are as yet no 148 

phenotypic data on the sensitivity to neutralisation for this virus or its spike protein. 149 

We therefore generated pseudoviruses bearing B.1.1.7 spike mutations with or without 150 

additional E484K and tested these against sera obtained after first and second dose mRNA 151 

vaccine as well as against convalescent sera. Following second dose, we observed a significant 152 

loss of neutralising activity for the pseudovirus with B.1.1.7 spike mutations and E484K (Fig 153 

3d-e). The mean fold change for the E484K B.1.1.7 Spike was  6.7 compared to  1.9 for B.1.1.7, 154 

relative to WT (Fig. 3a-c). Similarly when we tested a panel of convalescent sera with a range 155 

of neutralisation titres (Fig. 1f-g), we observed additional loss of activity against the mutant 156 

B.1.1.7 spike with E484K, with fold change of 11.4 relative to WT (Fig. 3f-g).  157 

B.1.1.7 variant escape from NTD- and RBM-specific mAb-mediated neutralization. 158 

To investigate the role of the full set of mutations in NTD, RBD and S2 present in the B.1.1.7 159 

variant, we tested 60 mAbs isolated from 15 individuals that recovered from SARS-CoV-2 160 

infection in early 2020 with an in-vitro pseudotyped neutralization assay using VeroE6 target 161 

cells expressing Transmembrane protease serine 2 (TMPRSS2, Extended Data Table 1). We 162 

found that 20 out of 60 (33.3%) mAbs showed a greater than 2-fold loss of neutralising 163 

activity of B.1.1.7 variant compared to WT SARS-CoV-2 (Fig. 4a,b and Extended Data Fig. 164 

5). Remarkably, the B.1.1.7 mutant virus was found to fully escape neutralization by 8 out of 165 

10 NTD-targeting mAbs (80%), and partial escape from an additional mAb (10%) (Fig. 4c). 166 

We previously showed that the deletion of residue 144 abrogates binding by 4 out of 6 NTD-167 

specific mAbs tested, possibly accounting for viral neutralization escape by most NTD-168 

specific antibodies24. Of the 31 RBM-targeting mAbs, 5 (16.1%) showed more than 100-fold 169 

decrease in B.1.1.7 neutralization, and additional 6 mAbs (19.4%) had a partial 2-to-10-fold 170 

reduction (Fig. 4d). Finally, all RBD-specific non-RBM-targeting mAbs tested fully retained 171 

B.1.1.7 neutralising activity (Fig. 4e).  172 

To address the role of B.1.1.7 N501Y mutation in the neutralization escape from RBM-173 

specific antibodies, we tested the binding of 50 RBD-specific mAbs to WT and N501Y mutant 174 

RBD by biolayer interferometry (Fig. 4f and Extended Data Fig. 6). The 5 RBM-specific 175 



mAbs that failed to neutralize B.1.1.7 variant (Fig. 4d) showed a complete loss of binding to 176 

N501Y RBD mutant (Fig. 4g-h), demonstrating a role for this mutation as an escape 177 

mechanism for certain RBM-targeting mAbs.  178 

 The decreased neutralising activity of the immune sera from vaccinees and 179 

convalescent patients against B.1.1.7, but not against 𝚫69/70-501Y-570D mutant (Fig. 1 and 180 

Extended Data Fig. 2), could be the result of a loss of neutralising activity of both RBD- and 181 

NTD-targeting antibodies, and suggests that the key mutation is 𝚫144. RBD antibodies against 182 

N501Y could play a role in decreased neutralisation by sera, with the overall impact possibly 183 

modulated by other mutations present in B.1.1.7, as well as the relative dominance of NTD 184 

versus RBM antibodies in polyclonal sera. 185 

To assess the effect of E484K on this panel of mAbs we generated a SARS-CoV-2 186 

pseudotype carrying the K417N, E484K and N501Y mutations (TM). The inclusion of the 187 

K417N substitution was prompted by the observation that substitutions at this position have 188 

been found  in 5 sequences from recent viral isolates within the B.1.1.7 lineage (K417 to N, E 189 

or R). This is in keeping with convergent evolution of the virus towards an RBD with N501Y, 190 

E484K and K417N/T as evidenced by B.1.351 and P.1 lineages (K417N or K417T, 191 

respectively) causing great concern globally. It is therefore important to assess this combination 192 

going forward. 193 

Importantly, mutations at K417 are reported to escape neutralization from mAbs, 194 

including the recently approved mAb LY-CoV016 22,25. Out of the 60 mAbs tested, 20 (33.3%) 195 

showed >10 fold loss of neutralising activity of TM mutant compared to WT SARS-CoV-2 196 

(Fig. 4 a-b and Extended Data Fig. 5), and of these 19 are RBM-specific mAbs. As above, 197 

we addressed the role of E484K mutation in escape from RBM-specific antibodies, by testing 198 

the binding of 50 RBD-specific mAbs to WT and E484K mutant RBD by biolayer 199 

interferometry (Fig. 4f and Extended Data Fig. 7). Out of the 19 RBM-specific mAbs that 200 

showed reduced or loss of  neutralization of  TM mutant (Fig. 4d), 16 showed a complete or 201 

partial loss of binding to E484K RBD mutant (Fig. 4g-h), consistent with findings that E484K 202 

is an important viral escape mutation26, 39, 27. Three of these 16 mAbs also lost binding to an 203 

RBD carrying N501Y, indicating that a fraction of RBM antibodies are sensitive to both 204 

N501Y and E484K mutations. Similarly, 3 of the 19 mAbs that lost neutralization of TM 205 

mutant (S2D8, S2H7 and S2X128) were previously shown to lose binding and neutralization 206 

to the K417V mutant, and here shown to be sensitive to either N501Y or E484K mutations.   207 

 208 

SARS-CoV-2 B.1.1.7 binds human ACE2 with higher affinity than WT  209 



SARS-CoV-2 and SARS-CoV enter host cells through binding of the S glycoprotein to 210 

angiotensin converting enzyme 2 (ACE2)1,28. Previous studies showed that the binding affinity 211 

of SARS-CoV for human ACE2 correlated with the rate of viral replication in distinct species, 212 

transmissibility and disease severity 29-31. However, the picure is unclear for SARS-CoV-2. To 213 

understand the potential contribution of receptor interaction to infectivity, we set out to 214 

evaluate the influence of the B.1.1.7 RBD substitution N501Y on receptor engagement. We 215 

used biolayer interferometry to study binding kinetics and affinity of the purified human ACE2 216 

ectodomain (residues 1-615) to immobilized biotinylated SARS-CoV-2 B.1.1.7 or WT RBDs. 217 

We found that ACE2 bound to the B.1.1.7 RBD with an affinity of 22 nM compared to 133 218 

nM for the WT RBD (Extended Data Fig. 8), in agreement with our previous deep-mutational 219 

scanning measurements using dimeric ACE232. Although ACE2 bound with comparable on-220 

rates to both RBDs, the observed dissociation rate constant was slower for B.1.1.7 than for the 221 

WT RBD (Table 1).  222 

 223 

To understand the impact of TM mutations (K417N, E484K and N501Y), we evaluated binding 224 

of ACE2 to the immobilized TM RBD using biolayer interferometry. We determined an ACE2 225 

binding affinity of 64 nM for the TM RBD which is driven by a faster off-rate than observed 226 

for the B.1.1.7 RBD but slower than for the WT RBD.  Based on our previous deep-mutational 227 

scanning measurements using dimeric ACE2, we propose that the K417N mutation is slightly 228 

detrimental to ACE2 binding explaining the intermediate affinity determined for the TM RBD 229 

compared to  the B.1.17 and WT RBDs, likely as a result of disrupting the salt bridge  formed 230 

with ACE2 residue D30. Enhanced binding of the B.1.1.7 RBD to human ACE2 resulting from 231 

the N501Y mutation might participate in the efficient ongoing transmission of this newly 232 

emergent SARS-CoV-2 lineage, and possibly reduced opportunity for antibody binding. 233 

Although the TM RBD mutations found in B.1.351 are known to participate in  immune 234 

evasion33,34, the possible contribution to transmissibility of enhanced ACE2 binding relative to 235 

WT remains to be determined for this lineage. 236 



Discussion   237 

Serum neutralising activity is a correlate of protection for other respiratory viruses, including 238 

influenza35 and respiratory syncytial virus where prohylaxis with monoclonal antibodies has 239 

been used in at-risk groups36,37. Neutralising antibody titres appeared to be highly correlated 240 

with vaccine protection against SARS-CoV-2 rechallenge in non-human primates, and 241 

importantly, there was no correlation between T cell responses (as measured by ELISpot) and 242 

protection38. Moreover, passive transfer of purified polyclonal IgGs from convalescent 243 

macaques protected naïve macaques against subsequent SARS-CoV-2 challenge39. Coupled 244 

with multiple reports of re-infection, there has therefore been significant attention placed on 245 

virus neutralisation.  246 

This study reports on the neutralisation by sera collected after both the first and second 247 

doses of the BNT162b2 vaccine. The participants of this study were older adults, in line with 248 

the targeting of this age group in the initial rollout of the vaccination campaign in the UK. 249 

Participants showed similar neutralising activity against wild type pseudovirus as in the phase 250 

I/II study12. This is relevant for the UK and other countries planning to extend the gap between 251 

doses of mRNA and adenovirus based vaccines from 3 to 12 weeks, despite lack of data for this 252 

schedule for mRNA vaccines in particular. 253 

The three mutations in S1 (N501Y, A570D, 𝚫H69/V70) did not appear to impact 254 

neutralisation in a pseudovirus assay, consistent with data on N501Y having little effect on 255 

nuetralisation by convalescent and post vaccination sera40. However, we demonstrated that a 256 

pseudovirus bearing S protein with the full set of mutations present in the B.1.1.7 variant (i.e., 257 

𝚫H69/V70, 𝚫144, N501Y, A570D, P681H, T716I, S982A, D1118H) did result in small 258 

reduction in neutralisation by sera from vaccinees that was more marked following the first 259 

dose than the second dose. This could be related to increased breadth/potency/concentration of 260 

antibodies following the boost dose. A reduction in neutralization titres from mRNA-elicited 261 

antibodies in volunteers who received two doses (using both mRNA-1273 and BNT162b2 262 

vaccines) was also observed by Wang et al.41 using pseudoviruses carrying the N501Y 263 

mutation. Other studies also reported small reduction of neutralization against the B.1.1.7 264 

variant against sera from individuals vaccinated with two doses of BNT162b242  and mRNA-265 

127343. Xie et al did not find an effect of N501Y alone in the context of BNT162b2 vaccine 266 

sera44.  267 



The reduced neutralising activity observed with polyclonal antibodies elicited by 268 

mRNA vaccines observed in this study is further supported by the loss of neutralising activity 269 

observed with human mAbs directed to both RBD and, to a major extent, to NTD. In the study 270 

by Wang et al., 6 out 17 RDB-specific mAbs isolated from mRNA-1273 vaccinated individuals 271 

showed more than 100-fold neutralisation loss against N501Y mutant, a finding that is 272 

consistent with the loss of neutralisation by 5 out 29 RBM-specific mAbs described in this 273 

study. However, the contribution of N501Y to loss of neutralisation activity of polyclonal 274 

vaccine and convalescent sera is less clear, and interactions with other mutations likely. 275 

Multiple variants, including the 501Y.V2 and B.1.1.7 lineages, harbor multiple 276 

mutations as well as deletions in NTD, most of which are located in a site of vulnerability that 277 

is targeted by all known NTD-specific neutralising antibodies24,45. The role of NTD-specific 278 

neutralising antibodies might be under-estimated, in part by the use of neutralization assays 279 

based on target cells over-expressing ACE2 receptor. NTD-specific mAbs were suggested to 280 

interfere with viral entry based on other accessory receptors, such as DC-SIGN and L-SIGN46, 281 

and their neutralization potency was found to be dependent on different in vitro culture 282 

conditions24. The observation that 9 out of 10 NTD-specific neutralising antibodies failed to 283 

show a complete or near-complete loss of neutralising activity against B.1.1.7 indicates that this 284 

new variant may have evolved also to escape from this class of antibodies, that may have a yet 285 

unrecognized role in protective immunity. Wibmer et al.34 have also recently reported the loss 286 

of neutralization of 501Y.V2 by the NTD-specific mAb 4A8, likely driven by the R246I 287 

mutation. This result is in line with the lack of neutralization of B.1.1.7 by the 4A8 mAb 288 

observed in this study, likely caused by 𝚫144 due to loss of binding24. Finally, the role of NTD 289 

mutations (in particular, L18F, 𝚫242-244 and R246I) was further supported by the marked loss 290 

of neutralization observed by Wibmer et al.34 against 501Y.V2 compared to the chimeric 291 

pseudotyped viral particle carrying only the RBD mutations K417N, E484K and N501Y. Taken 292 

together, the presence of multiple escape mutations in NTD is supportive of the hypothesis that 293 

this region of the spike, in addition to RBM, is also under immune pressure.   294 

Worryingly, we have shown that there are multiple B.1.1.7 sequences in the UK bearing 295 

E484K with early evidence of transmission as well as independent aquisitions. We measured 296 

further reduction neutralisation titers by vaccine sera when E484K was present alongside the 297 

B.1.1.7 S mutations. Wu and co-authors43 have also shown that variants carrying the E484K 298 

mutation resulted in 3-to-6 fold reduction in neutralization by sera from mRNA-1273 299 



vaccinated individuals. Consistently, in this study we found that approximately 50% of the 300 

RBM mAbs tested lost neutralising activity against SARS-CoV-2 carrying E484K. E484K has 301 

been shown to impact neutralisation by monoclonal antibodies or convalescent sera, especially 302 

in combination with N501Y and K417N16,26,47-49. Wang et al also showed reduced neutralisation 303 

by mRNA vaccine sera against E484K bearing pseudovirus34.  304 

Evidence for the importance role of NTD deletions in combination with E484K in immune 305 

escape is provided by Andreano et al.27 who describe the emergence of Δ140 in virus co-306 

incubated with potently neutralising convalescent plasma, causing a 4-fold reduction in 307 

neutralization titre. This Δ140 mutant subsequently acquired E484K which resulted in a further 308 

4-fold drop in neutralization titre indicating a two residue change across NTD and RBD 309 

represents an effective pathway of escape that can dramatically inhibit the polyclonal response. 310 

Our study was limited by modest sample size. Although the spike pseudotyping system has 311 

been shown to faithfully represent full length infectious virus, there may be determinants 312 

outside the S that influence escape from antibody neutralization either directly or indirectly in 313 

a live replication competent system. On the other hand live virus systems allow replication and 314 

therefore mutations to occur, and rigorous sequencing at multiple steps is needed. 315 

Vaccines are a key part of a long term strategy to bring SARS-CoV-2 transmission under 316 

control. Our data suggest that vaccine escape to current Spike directed vaccines designed 317 

against the Wuhan strain will be inevitable, particularly given that E484K is emerging 318 

independently and recurrently on a B.1.1.7 (501Y.V1) background, and given the rapid global 319 

spread of B.1.1.7. Other major variants with E484K such as 501Y.V2 and V3 are also spreading 320 

regionally. This should be mitigated by designing next generation vaccines with mutated S 321 

sequences and using alternative viral antigens.  322 
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 365 

MATERIALS AND METHODS 366 

Participant recruitment and ethics 367 

Participants who had received the first dose of vaccine and individuals with COVID-19 368 

(Coronavirus Disease-19) were consented into the COVID-19 cohort of the NIHR Bioresource. 369 

The study was approved by the East of England – Cambridge Central Research Ethics 370 

Committee (17/EE/0025). 371 

 372 

SARS-CoV-2 serology by multiplex particle-based flow cytometry (Luminex):   373 

Recombinant SARS-CoV-2 N, S and RBD were covalently coupled to distinct carboxylated 374 

bead sets (Luminex; Netherlands) to form a 3-plex and analyzed as previously described (Xiong 375 

et al. 2020). Specific binding was reported as mean fluorescence intensities (MFI). Linear 376 

regression was used to explore the association between antibody response, T cell response and 377 

serum neutralisation in Stata 13. The Pearson correlation coefficient was reported. 378 

 379 

Recombinant expression of SARS-CoV-2-specific mAbs. 380 

Human mAbs were isolated from plasma cells or memory B cells of SARS-CoV-2 immune 381 

donors, as previously described 50-52. Recombinant antibodies were expressed in ExpiCHO cells 382 

at 37°C and 8% CO2. Cells were transfected using ExpiFectamine. Transfected cells were 383 

supplemented 1 day after transfection with ExpiCHO Feed and ExpiFectamine CHO Enhancer. 384 

Cell culture supernatant was collected eight days after transfection and filtered through a 0.2 385 

µm filter. Recombinant antibodies were affinity purified on an ÄKTA xpress fast protein liquid 386 

chromatography (FPLC) device using 5 mL HiTrap™ MabSelect™ PrismA columns followed 387 

by buffer exchange to Histidine buffer (20 mM Histidine, 8% sucrose, pH 6) using HiPrep 388 

26/10 desalting columns 389 

 390 

Generation of S mutants 391 

Amino acid substitutions were introduced into the D614G pCDNA_SARS-CoV-2_S plasmid 392 

as previously described53 using the QuikChange Lightening Site-Directed Mutagenesis kit, 393 



following the manufacturer’s instructions (Agilent Technologies, Inc., Santa Clara, CA). 394 

Sequences were checked by Sanger sequencing. 395 

Preparation of B.1.1.7 or TM SARS-CoV-2 S glycoprotein-encoding-plasmid used to produce 396 

SARS-CoV-2-MLV based on overlap extension PCR. Briefly, a modification of the overlap 397 

extension PCR protocol54 was used to introduce the nine mutations of the B.1.1.7 lineage or 398 

the three mutations in TM mutant in the SARS-CoV-2 S gene. In a first step, 9 DNA 399 

fragments with overlap sequences were amplified by PCR from a plasmid (phCMV1, 400 

Genlantis) encoding the full-length SARS-CoV-2 S gene (BetaCoV/Wuhan-Hu-1/2019, 401 

accession number mn908947). The mutations (del-69/70, del-144, N501Y, A570D, D614G, 402 

P681H, S982A, T716I and D1118H or K417N, E484K and N501Y) were introduced by 403 

amplification with primers with similar Tm. Deletion of the C-terminal 21 amino acids was 404 

introduced to increase surface expression of the recombinant S55. Next, 3 contiguous 405 

overlapping fragments were fused by a first overlap PCR (step 2) using the utmost external 406 

primers of each set, resulting in 3 larger fragments with overlapping sequences. A final overlap 407 

PCR (step 3) was performed on the 3 large fragments using the utmost external primers to 408 

amplify the full-length S gene and the flanking sequences including the restriction 409 

sites KpnI and NotI. This fragment was digested and cloned into the expression plasmid 410 

phCMV1. For all PCR reactions the Q5 Hot Start High fidelity DNA polymerase was used 411 

(New England Biolabs Inc.), according to the manufacturer’s instructions and adapting the 412 

elongation time to the size of the amplicon. After each PCR step the amplified regions were 413 

separated on agarose gel and purified using Illustra GFX™ PCR DNA and Gel Band 414 

Purification Kit (Merck KGaA). 415 

 416 

Pseudotype virus preparation 417 

Viral vectors were prepared by transfection of 293T cells by using Fugene HD transfection 418 

reagent (Promega). 293T cells were transfected with a mixture of 11ul of Fugene HD, 1µg of 419 

pCDNA19spike-HA, 1ug of p8.91 HIV-1 gag-pol expression vector56,57, and 1.5µg of 420 

pCSFLW (expressing the firefly luciferase reporter gene with the HIV-1 packaging signal). 421 

Viral supernatant was collected at 48 and 72h after transfection, filtered through 0.45um filter 422 

and stored at -80˚C. The 50% tissue culture infectious dose (TCID50) of SARS-CoV-2 423 

pseudovirus was determined using Steady-Glo Luciferase assay system (Promega).  424 

 425 

Serum/plasma pseudotype neutralization assay 426 



Spike pseudotype assays have been shown to have similar characteristics as neutralisation 427 

testing using fully infectious wild type SARS-CoV-220. Virus neutralisation assays were 428 

performed on 293T cell transiently transfected with ACE2 and TMPRSS2 using SARS-CoV-2 429 

spike pseudotyped virus expressing luciferase58. Pseudotyped virus was incubated with serial 430 

dilution of heat inactivated human serum samples or sera from vaccinees in duplicate for 1h at 431 

37˚C. Virus and cell only controls were also included. Then, freshly trypsinized 293T 432 

ACE2/TMPRSS2 expressing cells were added to each well. Following 48h incubation in a 5% 433 

CO2 environment at 37°C, luminescence was measured using the Steady-Glo or Bright-Glo 434 

Luciferase assay system (Promega). Neutralization was calculated relative to virus only 435 

controls. Dilution curves were presented as a mean neutralization with standard error of the 436 

mean (SEM). ID50 values were calculated in GraphPad Prism. The ID50 withing groups were 437 

summarised as a geometric mean titre and statistical comparison between groups were made 438 

with Wilxocon ranked sign test. In addition, the impact of the mutations on the neutralising 439 

effect of the sera were expressed as fold change (FC) of ID50 of the wild-type compared to 440 

mutant pseudotyped virus. Statistical difference in the mean FC between groups was 441 

determined using a 2-tailed t-test. 442 

IFNγ FluoroSpot assays 443 

Frozen PBMCs were rapidly thawed, and the freezing medium was diluted into 10ml of 444 

TexMACS media (Miltenyi Biotech), centrifuged and resuspended in 10ml of fresh media 445 

with 10U/ml DNase (Benzonase, Merck-Millipore via Sigma-Aldrich), PBMCs were 446 

incubated at 37°C for 1h, followed by centrifugation and resuspension in fresh media 447 

supplemented with 5% Human AB serum (Sigma Aldrich) before being counted. PBMCs 448 

were stained with 2ul of each antibody: anti-CD3-fluorescein isothiocyanate (FITC), clone 449 

UCHT1; anti-CD4-phycoerythrin (PE), clone RPA-T4; anti-CD8a-peridinin-chlorophyll 450 

protein - cyanine 5.5 (PerCP Cy5.5), clone RPA-8a (all BioLegend, London, UK), 451 

LIVE/DEAD Fixable Far Red Dead Cell Stain Kit (Thermo Fisher Scientific). PBMC 452 

phenotyping was performed on the BD Accuri C6 flow cytometer. Data were analysed with 453 

FlowJo v10 (Becton Dickinson, Wokingham, UK). 1.5 to 2.5 x 105 PBMCs were incubated 454 

in pre-coated Fluorospot plates (Human IFNγ FLUOROSPOT (Mabtech AB, Nacka Strand, 455 

Sweden)) in triplicate with peptide mixes specific for Spike, Nucleocapsid and Membrane 456 

proteins of SARS-CoV-2 (final peptide concentration 1µg/ml/peptide, Miltenyi Biotech) and 457 

an unstimulated and positive control mix (containing anti-CD3 (Mabtech AB), 458 



Staphylococcus Enterotoxin B (SEB), Phytohaemagglutinin (PHA) (all Sigma Aldrich)) at 459 

37ºC in a humidified CO2 atmosphere for 48 hours. The cells and medium were decanted 460 

from the plate and the assay developed following the manufacturer’s instructions. Developed 461 

plates were read using an AID iSpot reader (Oxford Biosystems, Oxford, UK) and counted 462 

using AID EliSpot v7 software (Autoimmun Diagnostika GmbH, Strasberg, Germany). All 463 

data were then corrected for background cytokine production and expressed as spot forming 464 

units (SFU)/Million PBMC or CD3 T cells. The association between spike Tcell response, 465 

spike specific antibody response and serum neutralisation was deterimined using linear 466 

regression and the Pearson correlation coefficient between these variables were determined 467 

using Stata 13. 468 

 469 

Ab discovery and recombinant expression 470 

Human mAbs were isolated from plasma cells or memory B cells of SARS-CoV or SARS-471 

CoV-2 immune donors, as previously described 48,56-58. Recombinant antibodies were 472 

expressed in ExpiCHO cells at 37°C and 8% CO2. Cells were transfected using 473 

ExpiFectamine. Transfected cells were supplemented 1 day after transfection with ExpiCHO 474 

Feed and ExpiFectamine CHO Enhancer. Cell culture supernatant was collected eight days 475 

after transfection and filtered through a 0.2 µm filter. Recombinant antibodies were affinity 476 

purified on an ÄKTA xpress FPLC device using 5 mL HiTrap™ MabSelect™ PrismA 477 

columns followed by buffer exchange to Histidine buffer (20 mM Histidine, 8% sucrose, pH 478 

6) using HiPrep 26/10 desalting columns.   479 

 480 

MAbs pseudovirus neutralization assay 481 

MLV-based SARS-CoV-2 S-glycoprotein-pseudotyped viruses were prepared as previously 482 

described (Pinto et al., 2020). HEK293T/17cells were cotransfected with a WT, B.1.1.7 or 483 

TM SARS-CoV-2 spike glycoprotein-encoding-plasmid, an MLV Gag-Pol packaging 484 

construct and the MLV transfer vector encoding a luciferase reporter using X-tremeGENE 485 

HP transfection reagent (Roche) according to the manufacturer’s instructions. Cells were 486 

cultured for 72 h at 37°C with 5% CO2 before harvesting the supernatant. VeroE6 stably 487 

expressing human TMPRSS2 were cultured in Dulbecco’s Modified Eagle’s Medium 488 

(DMEM) containing 10% fetal bovine serum (FBS), 1% penicillin–streptomycin (100 I.U. 489 

penicillin/mL, 100 µg/mL), 8 µg/mL puromycin and plated into 96-well plates for 16–24 h. 490 

Pseudovirus with serial dilution of mAbs was incubated for 1 h at 37°C and then added to the 491 

wells after washing 2 times with DMEM. After 2–3 h DMEM containing 20% FBS and 2% 492 

https://www.sigmaaldrich.com/catalog/product/sigma/d5796


penicillin–streptomycin was added to the cells. Following 48-72 h of infection, Bio-Glo 493 

(Promega) was added to the cells and incubated in the dark for 15 min before reading 494 

luminescence with Synergy H1 microplate reader (BioTek). Measurements were done in 495 

duplicate and relative luciferase units were converted to percent neutralization and plotted 496 

with a non-linear regression model to determine IC50 values using GraphPad PRISM 497 

software (version 9.0.0). 498 

 499 

Antibody binding measurements using bio-layer interferometry (BLI) 500 

MAbs were diluted to 3 µg/ml in kinetic buffer (PBS supplemented with 0.01% BSA) and 501 

immobilized on Protein A Biosensors (FortéBio).  Antibody-coated biosensors were incubated 502 

for 3 min with a solution containing 5 µg /ml of WT, N501Y or E484K SARS-CoV-2 RBD  in 503 

kinetic buffer, followed by a 3-min dissociation step. Change in molecules bound to the 504 

biosensors caused a shift in the interference pattern that was recorded in real time using an 505 

Octet RED96 system (FortéBio).  The binding response over time was used to calculate the 506 

area under the curve (AUC) using GraphPad PRISM software (version 9.0.0). 507 

 508 

Production of SARS-CoV-2 and B.1.1.7 receptor binding domains and human ACE2  509 

The SARS-CoV-2 RBD (BEI NR-52422) construct was synthesized by GenScript into CMVR 510 

with an N-terminal mu-phosphatase signal peptide and a C-terminal octa-histidine tag 511 

(GHHHHHHHH) and an avi tag. The boundaries of the construct are N-328RFPN331 and 512 

528KKST531-C59. The B.1.1.7 RBD gene was synthesized by GenScript into pCMVR with the 513 

same boundaries and construct details with a mutation at N501Y. These plasmids were 514 

transiently transfected into Expi293F cells using Expi293F expression medium (Life 515 

Technologies) at 37°C 8% CO2 rotating at 150 rpm. The cultures were transfected using PEI 516 

cultivated for 5 days. Supernatants were clarified by centrifugation (10 min at 4000xg) prior to 517 

loading onto a nickel-NTA column (GE). Purified protein was biotinylated overnight using 518 

BirA (Biotin ligase) prior to size exclusion chromatography (SEC) into phosphate buffered 519 

saline (PBS). Human ACE2-Fc (residues 1-615 with a C-terminal thrombin cleavage site and 520 

human Fc tag) were synthesized by Twist. Clarified supernatants were affinity purified using 521 

a Protein A column (GE LifeSciences) directly neutralized and buffer exchanged. The Fc tag 522 

was removed by thrombin cleavage in a reaction mixture containing 3 mg of recombinant 523 

ACE2-FC ectodomain and 10 μg of thrombin in 20 mM Tris-HCl pH8.0, 150 mM NaCl and 524 

2.5 mM CaCl2.The reaction mixture was incubated at 25°C overnight and re-loaded on a 525 

Protein A column to remove uncleaved protein and the Fc tag. The cleaved protein was further 526 



purified by gel filtration using a Superdex 200 column 10/300 GL (GE Life Sciences) 527 

equilibrated in PBS. 528 

 529 

Protein affinity measurement using bio-layer interferometry 530 

Biotinylated RBD (WT, N501Y, or TM) were immobilized at 5 ng/uL in undiluted 10X 531 

Kinetics Buffer (Pall) to SA sensors until a load level of 1.1nm. A dilution series of either 532 

monomeric ACE2 or Fab in undiluted kinetics buffer starting at 1000-50nM was used for 300-533 

600 seconds to determine protein-protein affinity. The data were baseline subtracted and the 534 

plots fitted using the Pall FortéBio/Sartorius analysis software (version 12.0). Data were plotted 535 

in Prism.  536 

  537 

Statistical analysis 538 

Linear regression was used to explore the association between antibody response, T cell 539 

response and serum neutralisation in Stata 13. The Pearson correlation coefficient was reported. 540 

 541 

Neutralisation data analysis 542 

Neutralization was calculated relative to virus only controls. Dilution curves were presented as 543 

a mean neutralization with standard error of the mean (SEM). IC50 values were calculated in 544 

GraphPad Prism. The inhibitory dilution (ID50) within groups were summarised as a geometric 545 

mean titre and statistical  comparison between groups were made with Wilxocon ranked sign 546 

test. In addition, the impact of the mutations on the neutralising effect of the sera were 547 

expressed as fold change of ID50 of the wild-type compared to mutant pseudotyped virus. 548 

Statistical difference in the mean FC between groups was determined using a 2-tailed t-test 549 

   550 

For antibody level  551 

IFNγ FluoroSpot assay data analysis  552 

The association between spike Tcell response, spike specific antibody response and serum 553 

neutralisation was determined using linear regression and the Pearson correlation coefficient 554 

between these variables were determined using Stata 13. 555 

 556 

Data availability.  557 

The neutralization and BLI data shown in Fig. 4 and Extended Data Fig. 5-7 can be found in 558 

Source Data Fig. 4. Other data are available from the corresponding author on request. 559 

 560 

  561 



 562 

 563 

Table 1. Kinetic analysis of human ACE2 binding to SARS-CoV-2 Wuhan-1, N501Y and 564 

N501Y/ E484K/ K417N (TM) RBDs by biolayer interferometry. Values reported represent 565 

the global fit to the data shown in Extended Data Fig. 8.  566 

 567 

  SARS-CoV-2 RBD WT SARS-CoV-2 RBD N501Y SARS-CoV-2 RBD TM 

KD (nM) 

kon (M
-1.s-1) 

koff (s
-1) 

 

hACE2 

133 

1.3*105 

1.8*10-2 

22 

1.4*105 

3*10-3 

64 

1.3*105 

8.5*10-3 

 568 

 569 
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Extended Data Table 1. Neutralization, V gene usage and other properties of tested mAbs. 
mAb Domain 

(site) 

VH usage (% 

id.) 

Source 

(DSO) 

IC50 

WT 

(ng/ml) 

IC50 

B.1.1.7 

(ng/ml) 

ACE2 

blocking 

SARS-

CoV 

Escape residues Ref. 

4A8 NTD (i) 1-24 N/A 38 - Neg. - S12P; C136Y; 

Y144del; H146Y; 

K147T; R246A 

60
 

S2L26 NTD (i) 1-24 (97.2) Hosp. (52) 70 - Neg. - N/A 24
 

S2L50 NTD (i) 4-59 (95.4) Hosp. (52) 264 50 Neg. - N/A 24
 

S2M28 NTD (i) 3-33 (97.6) Hosp. (46) 295 12'207 Neg. - P9S/Q; S12P; 

C15F/R; L18P; 

Y28C; A123T; 

C136Y; G142D; 

Y144del; 
K147Q/T; 

R246G; P251L; 

G252C 

24
 

S2X107 NTD (i) 4-38-2 (97) Sympt. (75) 388 - Neg. - N/A 24
 

S2X124 NTD (i) 3-30 (99) Sympt. (75) 221 - Neg. - N/A 24
 

S2X158 NTD (i) 1-24 (96.3) Sympt. (75) 56 - Neg. - N/A 24
 

S2X28 NTD (i) 3-30 (97.9) Sympt. (48) 1'399 - Neg. - P9S; S12P; 

C15W; L18P; 

C136G/Y; F140S; 

L141S; G142C/D; 
Y144C/N; 

K147T/Q/E; 

R158G; L244S; 

R246G 

24
 

S2X303 NTD (i) 2-5 (95.9) Sympt. 
(125) 

69 - Neg. - N/A 24
 

S2X333 NTD (i)  

3-33 (96.5) 

Sympt. 

(125) 

66 - Neg. - P9L; S12P; 

C15S/Y; L18P; 

C136G/Y; F140C; 
G142D; K147T 

24
 

S2D106 RBD 

(I/RBM) 

1-69 (97.2) Hosp. (98) 27 20 Strong - N/A 8
 

S2D19 RBD 

(I/RBM) 

4-31 (99.7) Hosp. (49) 128 75'200 Moderate - N/A 8
 

S2D32 RBD 

(I/RBM) 

3-49 (98.3) Hosp. (49) 26 11 Strong - N/A 8
 

S2D65 RBD 

(I/RBM) 

3-9 (96.9) Hosp. (49) 24 12 Weak - N/A 8
 

S2D8 RBD 
(I/RBM) 

3-23 (96.5) Hosp. (49) 27 58'644 Strong - N/A 8
 

S2D97 RBD 

(I/RBM) 

2-5 (96.9) Hosp. (98) 20 17 Weak - N/A 8
 

S2E11 RBD 

(I/RBM) 

4-61 (98.3) Hosp. (51) 27 16 Weak - N/A 8
 

S2E12 RBD 

(I/RBM) 

1-58 (97.6) Hosp. (51) 27 31 Strong - G476S (3x) 8,61
 

S2E13 RBD 

(I/RBM) 

1-18 (96.2) Hosp. (51) 34 77 Strong - N/A 8
 

S2E16 RBD 
(I/RBM) 

3-30 (98.3) Hosp. (51) 36 38 Strong - N/A 8
 

S2E23 RBD 

(I/RBM) 

3-64 (96.9) Hosp. (51) 139 180 Strong - N/A 8
 

S2H14 RBD 

(I/RBM) 

3-15 (100) Sympt. (17) 460 64'463 Weak - N/A 8,62
 

S2H19 RBD 

(I/RBM) 

3-15 (98.6) Sympt. (45) 239 - Weak - N/A 8
 

S2H58 RBD 

(I/RBM) 

1-2 (97.9) Sympt. (45) 27 14 Strong - N/A 8
 

S2H7 RBD 
(I/RBM) 

3-66 (98.3) Sympt. (17) 492 573 Weak - N/A 8
 

S2H70 RBD 

(I/RBM) 

1-2 (99) Sympt. (45) 147 65 Weak - N/A 8
 

S2H71 RBD 

(I/RBM) 

2-5 (99) Sympt. (45) 36 9 Moderate - N/A 8
 

S2M11 RBD 

(I/RBM) 

1-2 (96.5) Hosp. (46) 11 4 Weak - Y449N; L455F; 

E484K; E484Q; 

F490L; F490S; 

S494P 

8,61
 



S2N12 RBD 

(I/RBM) 

4-39 (97.6) Hosp. (51) 76 40 Strong - N/A 8
 

S2N22 RBD 

(I/RBM) 

3-23 (96.5) Hosp. (51) 32 21 Strong - N/A 8
 

S2N28 RBD 

(I/RBM) 

3-30 (97.2) Hosp. (51) 72 21 Strong - N/A 8
 

S2X128 RBD 
(I/RBM) 

1-69-2 (97.6) Sympt. (75) 50 112 Strong - N/A 8
 

S2X16 RBD 

(I/RBM) 

1-69 (97.6) Sympt. (48) 45 103 Strong - N/A 8
 

S2X192 RBD 

(I/RBM) 

1-69 (96.9) Sympt. (75) 326 - Weak - N/A 8
 

S2X227 RBD 

(I/RBM) 

1-46 (97.9) Sympt. (75) 26 14 Strong - N/A 
 

S2X246 RBD 

(I/RBM) 

3-48 (96.2) Sympt. (75) 35 30 Strong - N/A 
 

S2X30 RBD 
(I/RBM) 

1-69 (97.9) Sympt. (48) 32 53 Strong - N/A 8
 

S2X324 RBD 

(I/RBM) 

2-5 (97.3) Sympt. 

(125) 

8 23 Strong - N/A 
 

S2X58 RBD 

(I/RBM) 

1-46 (99) Sympt. (48) 32 47 Strong - N/A 8
 

S2H90 RBD (II) 4-61 (96.6) Sympt. (81) 77 32 Strong + N/A 8
 

S2H94 RBD (II) 3-23 (93.4) Sympt. (81) 123 144 Strong + N/A 8
 

S2H97 RBD (V) 5-51 (98.3) Sympt. (81) 513 248 Weak + N/A 
 

S2K15 RBD (II) 2-26 (99.3) Sympt. (87) 361 235 0 + N/A 
 

S2K21 RBD (II) 3-33 (96.2) Sympt. 
(118) 

201 189 0 + N/A 
 

S2K30 RBD (II) 1-2 (97.2) Sympt. (87) 185 134 0 + N/A 
 

S2K63v2 RBD (II) 3-30-3 (95.6) Sympt. 

(118) 

144 215 0 + N/A 
 

S2L17 RBD (?) 5-10-1 (98.3) Hosp. (51) 313 127 Moderate + N/A 8
 

S2L49 RBD (?) 3-30 (97.9) Hosp. (51) 24 32 Neg. + N/A 8
 

S2X259 RBD 

(IIa) 

1-69 (94.1) Sympt. (75) 145 91 Moderate + N/A 
 

S2X305 RBD (?) 1-2 (95.1) Sympt. 
(125) 

34 21 Strong - N/A 
 

S2X35 RBD 

(IIa) 

1-18 (98.6) Sympt. (48) 140 143 Strong + N/A 62
 

S2X450 RBD (?) 2-26 (96.9) Sympt. 

(271) 

368 198 Strong + N/A 
 

S2X475 RBD (?) 3-21 (93.8) Sympt. 

(271) 

1'431 851 Strong + N/A 
 

S2X607 RBD (?) 3-66 (95.4) Sympt. 

(271) 

41 23 Strong - N/A 
 

S2X608 RBD (?) 1-33 (93.2) Sympt. 
(271) 

21 35 Strong - N/A 
 

S2X609 RBD (?) 1-69 (93.8) Sympt. 

(271) 

47 35 Strong - N/A 
 

S2X613 RBD (I) 1-2 (91.7) Sympt. 

(271) 

28 19 Strong - N/A 
 

S2X615 RBD (I) 3-11 (94.8) Sympt. 

(271) 

23 17 Strong - N/A 
 

S2X619 RBD (?) 1-69 (92.7) Sympt. 

(271) 

36 60 Strong - N/A 
 

S2X620 RBD (?) 3-53 (95.1) Sympt. 
(271) 

34 45 Strong - N/A 
 

id., identity. DSO, days after symptom onset.  * as described in Piccoli et al and McCallum et al. N/A, not available; -, not neutralising 
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Figure 1. Neutralization by first and second dose mRNA vaccine sera against wild type and B.1.1.7 Spike 

mutant SARS-CoV-2 pseudotyped viruses. a, Spike in open conformation with a single erect RBD (PDB: 6ZGG) in 

trimer axis vertical view with the locations of mutated residues highlighted in red spheres and labelled on the monomer 

with erect RBD. Vaccine first dose (b-c, n=37), second dose (d-e, n=21) and convalescent sera, Conv. (f-g,n=27) 

against WT and B.1.1.7 Spike mutant with N501Y, A570D, 𝚫H69/V70, 𝚫144/145, P681H, T716I, S982A and D1118H. 

GMT with s.d presented of two independent experiments each with two technical repeats. Wilcoxon matched-pairs 

signed rank test p-values * <0.05, ** <0.01, ***<0.001, **** <0.0001, ns not significant HS – human AB serum control. 

Limit of detection for 50% neutralization set at 10. 
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Figure 2. E484K appearing in background of B.1.1.7 with evidence of transmission a. 

Representation of Spike RBM:ACE2 interface (PDB: 6M0J) with residues E484, N501 and K417 

highlighted as spheres coloured by element b. Maximum likelihood phylogeny of a subset of 

sequences from the United Kingdom bearing the E484K mutation (green) and lineage B.1.1.7 (blue), 

with background sequences without RBD mutations in black. As of 11th Feb 2021, 30 sequences from 

the B.1.1.7 lineage (one cluster of 25 at top of phylogenetic tree) have acquired the E484K mutation 

(red). c. Sequence accumulation over time in GISAID for UK sequences with B.1.1.7 and E484K. RBD 

– receptor binding domain; NTD – N terminal domain. 
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Figure 3. Neutralization potency of mRNA vaccine sera and convalescent sera (pre SARS-CoV-2 B.1.1.7) 

against pseudotyped virus bearing Spike mutations in the B1.1.7 lineage with and without E484K in the 

receptor binding domain (all In Spike D614G background). a, Example neutralization curves for vaccinated 

individuals. Data points represent mean of technical replicates with standard error and are representative of two 

independent experiments (b-g). 50% neutralisation titre for each virus against sera derived (b,c, n=37) following first 

vaccination (d,e, n=21) following second vaccination and (f,g, n=20) convalescent sera (CS) expressed as fold 

change relative to WT. Data points are mean fold change of technical replicates and are representative of two 

independent experiments. Central bar represents mean with outer bars representing s.d. Wilcoxon matched-pairs 

signed rank test p-values *<0.05, **<0.01, ***<0.001, ****<0.0001; ns not significant. Limit of detection for 50% 

neutralization set at 10. 
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Figure 4. Neutralization and binding by a panel of NTD- and RBD-specific mAbs against 

WT, B.1.1.7 and RBD mutant SARS-CoV-2 viruses. a, Neutralization of WT D614G (black), 

B.1.1.7 (blue) and a triple mutant (TM, carrying RBD mutations K417N/E484K/N501Y) (red) 

pseudotyped SARS-CoV-2-MLVs by 3 selected mAbs (S2E12, S2X333 and S2H14) from one 

representative experiment. Shown is the mean ± s.d. of 2 technical replicates. b, Neutralization of 

WT (D614G), B.1.1.7 and TM SARS-CoV-2-MLVs by 60 mAbs targeting NTD (n=10), RBM (n=31) 

and non-RBM sites in the RBD (n=19). Shown are the mean IC50 values (ng/ml) of n=2 

independent experiments. c-e, Neutralization shown as mean IC50 values (upper panel) and 

mean fold change of B.1.1.7 (blue) or TM (red) relative to WT (lower panel) of NTD (c), RBM (d) 

and non-RBM (e) mAbs. Lower panel shows IC50 values from 2 independent experiments. f-h, 

Kinetics of binding of mAbs to WT (black), N501Y (blue) and E484K (red) RBD as measured by 

bio-layer interferometry (BLI). Shown in (f) are the 4 RBM-targeting mAbs with no reduced binding 

to N501Y or E484K RBD. Area under the curve (AUC) (g) and AUC fold change (h) of 50 mAbs 

tested against WT, N501Y and E484K RBD. mAbs with a >1.3 AUC fold change shown in blue 

and red.  mAbs: monoclonal antibodies. NTD: N- terminal domain 

Figure 4 
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Extended Data Figure 1: Immune responses three weeks after first dose of Pfizer SARS-

CoV-2 vaccine BNT162b2 a, Serum IgG responses against N protein, Spike and the Spike 

Receptor Binding Domain (RBD) from first vaccine participants (green), recovered COVID-19 

cases (red), 3 convalescent plasma units and healthy controls (grey) as measured by a flow 

cytometry based Luminex assay. MFI, mean fluorescence intensity. Geometric mean titre (GMT 

with standard deviation (s.d) of two technical repeats presented. b, Relationship between serum 

IgG responses as measured by flow cytometry and serum neutralisation ID50. c, Relationship 

between serum neutralisation ID50 and T cell responses against SARS-CoV-2 by IFN gamma 

ELISpot. SFU: spot forming units. d, Relationship between serum IgG responses and T cell 

responses.  Simple linear regression is presented with Pearson correlation (r), P-value (p) and 

regression coefficient/slope (β). 
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Extended data Fig 2. Neutralization by first dose BNT162b2 vaccine and convalescent sera against wild type and mutant 

(N501Y, A570D, 𝚫H69/V70) SARS-CoV-2 pseudotyped viruses: (a-b) Vaccine sera dilution for 50% neutralization against WT and 

Spike mutant with N501Y, A570D, 𝚫H69/V70. Geometric mean titre (GMT) + s.d of two independent experiments with two technical 

repeats presented. (c-d) Convalescent sera dilution for 50% neutralization against WT and Spike mutant with N501Y, A570D, 𝚫
H69/V70. GMT + s.d of representative experiment with two technical repeats presented. e, Representative curves of convalescent 

serum log10 inverse dilution against % neutralization for WT v N501Y, A570D, 𝚫H69/V70. Where a curve is shifted to the right this 

indicates the virus is less sensitive to the neutralizing antibodies in the serum. Data are means of technical replicates and error bars 

represent standard error of the mean. Data are representative of 2 independent experiments.  Limit of detection for 50% neutralization 

set at 10. 
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Extended Data Fig. 3. Representative neutralization curves of  BNT162b2 vaccine 

sera against pseudovirus virus bearing eight Spike mutations present in B.1.1.7 

versus wild type (all In Spike D614G background). Indicated is serum log10 inverse 

dilution against % neutralization. Where a curve is shifted to the right this indicates the virus 

is less sensitive to the neutralizing antibodies in the serum. Data are for first dose of vaccine 

(D1). Data points represent means of technical replicates and error bars represent standard 

error of the mean. Limit of detection for 50% neutralization set at 10. 
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Extended Data Fig. 4. Representative neutralization curves of convalescent sera 

against wild type and B.1.1.7 Spike mutant SARS-CoV-2 pseudoviruses. Indicated is 

serum log10 inverse dilution against % neutralization. Where a curve is shifted to the right 

this indicates the virus is less sensitive to the neutralizing antibodies in the serum. Data 

points represent means of technical replicates and error bars represent standard error of 

the mean. Limit of detection for 50% neutralization set at 10. 

Extended Data Fig. 4 



Extended Data Fig. 5. Neutralisation of WT (D614G), B.1.1.7  and TM (N501Y, 

E484K, K417N) SARS-CoV-2 Spike pseudotyped virus by a panel of 

57 monoclonal antibodies (mAbs). a-c, Neutralisation of WT (black), B.1.1.7 

(blue) and TM (red) SARS-CoV-2-MLV by 9 NTD-targeting (a), 29 RBM-targeting 

(b) and 19 non-RBM-targeting (c) mAbs.  

Extended Data Fig. 5 



Extended Data Fig. 6. Kinetics of binding to WT and N501Y SARS-CoV-2 RBD of 43 

RBD-specific mAbs. a-b, Binding to WT (black) and N501Y (blue) RBD by 22 RBM-

targeting (a) and 21 non-RBM-targeting (b) mAbs. An antibody of irrelevant specificity 

was included as negative control.  mAbs: monoclonal antibodies  

Extended Data Fig. 6 
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Extended Data Fig. 7 

Extended Data Fig. 7. Kinetics of binding to WT and E484K SARS-CoV-2 RBD of 

46 RBD-specific mAbs. a-b, Binding to WT (black) and E484K (red) RBD by 27 RBM-

targeting (a) and 19 non-RBM-targeting (b) mAbs. An antibody of irrelevant specificity 

was included as negative control.  mAbs: monoclonal antibodies  



Extended Data Fig. 8. Binding of human ACE2 to SARS-CoV-2 WT, N501Y, TM 

(N501Y, E484K, K417N) RBDs. a-b. BLI binding analysis of the human ACE2 

ectodomain (residues 1-615) to immobilized SARS-CoV-2 WT RBD (a) and B.1.1.7 

RBD (b). Black lines correspond to a global fit of the data using a 1:1 binding 

model. RBD: receptor binding domain. 

Extended Data Fig. 8 
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