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One-dimensional particle chains are fundamental models to explain anomalous thermal conduction
in low-dimensional solids like nanotubes and nanowires. In these systems the thermal energy is
carried by phonons, i.e. propagating lattice oscillations that interact via nonlinear resonance. The
average energy transfer between the phonons is described by the wave kinetic equation (WKE),
derived directly from the microscopic dynamics. Here, we use the spatially nonhomogeneous WKE
of the prototypical β−Fermi-Pasta-Ulam-Tsingou (FPUT) model, equipped with thermostats able
to set different temperatures at the two ends. Our main findings are as follows: (i) The anomalous
scaling of the conductivity with the system size, in close agreement with the known results from
the microscopic dynamics, is due to a nontrivial interplay between high and low wavenumbers.
(ii) The high-wavenumber phonons relax to local thermodynamic equilibrium transporting energy
diffusively, à la Fourier. (iii) The low-wavenumber phonons are nearly noninteracting and transfer
energy ballistically; this latter phenomenon is the analogous of the second sound emission, observed
for example in superfluids.

That heat conduction in three-dimensional macro-
scopic solids is described effectively by Fourier’s law
has been known for two centuries [1]. This law estab-
lishes the existence of a size-independent property of the
material, the heat conductivity K, as a finite propor-
tionality constant between the heat flux and its driv-
ing thermodynamic force, the temperature gradient [2].
In low-dimensional solids this proportionality may break
down and size-dependent conduction effects arise. One-
dimensional (1D) particle chains characterized by har-
monic potential have a conductivity proportional to the
chain length L, that is K ∝ L1 [3]. The lattice excitations
propagate unperturbed as non-interacting wave packets;
this implies absence of relaxation. Therefore, energy is
transported by advection (or ballistically [4]), rather than
by diffusion as prescribed by Fourier’s law. Intermediate
behaviors in which K ∝ Lα, with 0 < α < 1, are observed
both in numerical simulations of more realistic particle
chains [5, 6] and in experiments involving nearly 1D sys-
tems such as carbon nanotubes and silicon nanowires [7–
12]. This type of transport, neither diffusive nor ballistic,
is referred to as anomalous and its investigation, moti-
vated by the relevance of the widespread technological
applications, has generated a large body of literature in
the last two decades [13].

A minimal model displaying anomalous transport is
the Fermi-Pasta-Ulam-Tsingou (FPUT) chain [14, 15], in
which a cubic (α−FPUT) or quartic (β−FPUT) anhar-
monic term is added to the harmonic potential. Physi-
cally, this term represents the lowest-order nonlinear cor-
rection to the linearized harmonic system, in a power-law
expansion of the potential around the equilibrium point.

Weak nonlinearity plays a crucial role in the derivation of
the so-called phonon Boltzmann equation, or wave kinetic
equation (WKE) [16–20]. The WKE is the statistical
closure of the deterministic equations of motion, for the
spectral action density n(k, t), i.e. the second moment of
the random wavefield in Fourier space; n(k, t) is related
to the spectral energy density e(k) via e(k) = ω(k)n(k),
where ω(k) is the linear dispersion relation. The WKE
contains the statistical description of the action/energy
transfers between the various wave modes. These trans-
fers are mediated by the collision integral, which incor-
porates the nonlinear terms in the WKE as wave-wave
resonant interactions between the eigenstates of the har-
monic chain, i.e. the linear waves. The time scales of
the resonant transfers, the kinetic time scales, are much
longer than the linear time scale of wave propagation,
where the scale separation is tied to the smallness of
the nonlinearity. For β−FPUT in the thermodynamic
limit (large system), the quartic term in the potential
yields a collision integral encoding 4−wave resonant in-
teractions [21–23] that exchange energy between quartets
of wave modes and, ultimately, lead to relaxation over the
kinetic time scales [24].

A kinetic interpretation of the numerically observed
anomalous exponent α ≃ 0.4 [25] in the β−FPUT sys-
tem was proposed in [26] and given rigorous justification
in [27, 28]. The result is based on an asymptotic approx-
imation of the collision integral for the acoustic modes,
as k → 0, and on a subsequent heuristic cut-off applied
to the linear-response Kubo integration of the correlation
function [5]. In [29], an analogous asymptotic result was
exploited to identify a critical scale kc determining a sep-
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aration between two sets of modes: those with ∣k∣ < kc es-
sentially behave as ballistic modes in an harmonic chain,
as they lack a sufficient level of interaction; the modes
with ∣k∣ > kc are diffusive and relax locally to the expected
Fourier profile. In this interpretation, the anomalous ex-
ponent is due to how the separation between the two sets
scales with the chain length, given by a certain function
kc(L). Rather than from an anomalous type of diffusion
(such as fractionary diffusion), the anomalous transport
properties thus arise from a coexistence of regular dif-
fusion and advective effects that persist on macroscopic
scales due to the properties of the collision integral.

Here, we go beyond the asymptotic result for the acous-
tic modes and fully exploit the mesoscopic picture, by
direct numerical integration in time of the spatially-
nonhomogeneous WKE associated with the β−FPUT
model. We show that the first-principle description of
the WKE is able to reproduce accurately the anoma-
lous transport properties observed in the direct numer-
ical simulations of the microscopic dynamics [13]. We
also confirm results previously conjectured on the sepa-
ration between ballistic modes and diffusive modes [29],
and characterize the respective transport coefficients. Fi-
nally, we exploit the higher-level, and computationally
much cheaper picture of the WKE, to investigate in de-
tail the local relaxation properties of the different modes.

MODEL

To simulate thermal energy transfers through a one-
dimensional particle chain we solve the following space-
dependent WKE associated with the β−FPUT model in
the thermodynamic limit [24], for the spectral action den-
sity nk = n(x, k, t) [19, 30, 31]

∂nk
∂t

+ vk
∂nk
∂x

= Ik. (1)

We denote by x ∈ [0, L], k ∈ [0,2π) and t > 0 the (macro-
scopic) physical space, the Fourier space and the time
variables, respectively. The second term at the LHS of
(1) represents the advection of nk due to spatial inhomo-
geneities, where ωk = 2 sin(k/2) is the linear dispersion
relation and vk = dωk/dk = cos(k/2) is the group velocity;
the RHS of (1) is the 4−wave collision integral

Ik = 4π∫
2π

0
∣Tk123∣2nknk1nk2nk3(

1

nk
+ 1

nk1

− 1

nk2
− 1

nk3
)δ(∆K)δ(∆Ω)dk1dk2dk3,

(2)

where the arguments of the Dirac’s deltas are defined
as ∆K = k + k1 − k2 − k3, ∆Ω = ωk + ω1 − ω2 − ω3, and
∣Tk123∣2 = 9ωkω1ω2ω3/16 is the matrix element associ-
ated with the β−FPUT model [28, 32]. The integration
of (2) has only one degree of freedom, since the reso-
nance conditions imposed by the Delta functions con-
strain the integration to the so-called resonant manifold,

i.e. the subset of possible combinations of k1, k2, k3 that
are in resonance with mode k, representing all the res-
onant wave quartets. We provide an explicit expression
of this one-dimensional integration in the Materials and
Methods section.

The resonant interactions contained in the collision in-
tegral represent the mechanism responsible for the local
(i.e. at fixed x) relaxation to the equilibrium distribution
of nk which, given the two conserved quantities of (1), is
given by the Rayleigh-Jeans (RJ) solution

n
(RJ)
k = T

ωk + µ
. (3)

Here, T plays the role of the temperature of the system
and µ of the chemical potential; these quantities are asso-
ciated with the conservation of the harmonic energy and
of the action (or number of particles), respectively. The
spatial energy density profile can be computed multiply-
ing nk by ωk and integrating in k:

e(x, t) = ∫
2π

0
ωkn(x, k, t)dk. (4)

To avoid confusion, we recall that due to the discrete-
ness of the physical space the Fourier space is periodic
and therefore the modes in the interval [π,2π) can be
equivalently interpreted as in [−π,0). For this reason,
hereafter we refer to the modes near 0 or 2π as the
low wavenumbers and to the modes near π as the high
wavenumbers.

RESULTS

In what follows, we will discuss results achieved from
two types of numerical simulations of the nonhomoge-
neous wave kinetic equation: case (A) corresponds to the
classical problem of a chain in between two thermostats
at different temperatures and case (B) corresponds to the
free evolution of an initial energy density narrow Gaus-
sian profile in x. The latter is the typical experiment used
to asses the diffusive (or not) properties of the system.

A. Anomalous conduction

To demonstrate numerically anomalous conduction, we
consider a domain of size L with two thermostats at its
ends at different temperature T1 and T2. For normal
conduction, at the steady state one expects a linear tem-
perature, T , profile (Fourier’s law) and the conductivity,
K, to be independent of the size of the domain, L. By
defining the net spectral energy current as

j(k, x, t) = ωkvk[n(k, x, t) − n(−k, x, t)]/2, (5)

the conductivity can be computed as

K = JL

∆T
(6)
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FIG. 1: (a) Thermal conductivity K as function of non-dimensional time for several values of L; (b) Steady state
thermal conductivity K as a function of L. For small L most of the modes are non-interacting and the ballistic

scaling K ∝ L1 is recovered. For larger L, we observe excellent asymptotic agreement with the scaling K ∝ L0.4. The
inset of panel (b) reports the thermal conductivity K in panel (a) normalized by L0.4 as a function of

non-dimensional time.

with

J = 1

L
∫

L

0
∫

2π

0
j(k, x, t)dkdx, (7)

being the spatial average of the integral of j(k, x, t) and
∆T = T1−T2 the temperature difference between the two
thermostats. The term ∆T /L represents the mean tem-
perature gradient and one can recognize the definition of
K as given by Fourier’s law. Note that, at the steady
state, the energy current is independent of x.

In Fig. 1a, we report the time history of the conduc-
tivity for several values of the domain size L, keeping
fixed ∆T . The initial (t = 0) distribution is set to be a
RJ distribution at the average temperature between the
two thermostats; subsequently, there is an initial tran-
sient during which the energy flux starts growing (and
consequently also K ), until a stationary state is reached.
Note that time is made non-dimensional with the refer-
ence time L/V, with V = vk=0 = 1 being the maximal
ballistic velocity. In Fig. 1b, instead, we report the mea-
sured conductivity as a function of the domain size L:
the results clearly indicate that for small L the station-
ary value of the conductivity tends to be proportional to
L, as in the purely harmonic system; on the other hand,
for L → ∞ the exponent α tends to the constant value
of 0.4, consistent with the value measured in the micro-
scopic simulations [25]. In the inset of the figure, the time
history of the conductivity K divided by L0.4 is drawn to
highlight that for large values of L the curves overlap.

Via integration of the deterministic microscopic equa-
tions, a recent work [29] provided evidence that the col-
lision integral Ik brings the system to local equilibrium
down to a critical kc whereas, for lower k’s advection is

predominant and waves travel in the domain transported
by the group velocity vk interacting too weakly in order
to relax locally to a RJ spectrum. Here, we observe this
clearly by looking at the evolution of the color map of the
temperature in Fig. 2, where the temperature spectral
density T (x, k, t) = (ωk +µ)n(x, k, t) is defined by invert-
ing (3), using the fact that µ is constant throughout the
evolution. Note that for k < π the velocity vk is positive,
while it is negative for k > π. The initial condition at

t = 0 is a homogeneous field, with n(x, k, t = 0) = n(RJ)k
at temperature (T1 + T2)/2. Due to the presence of the
thermostats, as t > 0 the waves going to the right start
to propagate a hot front from the left thermostat, while
the waves going to the left start propagating a cold front
from the right thermostat. The edge of the front propa-
gates at the maximal speed allowed, which is the speed
of the acoustic modes v(k → 0±) = ±1. For L = 1, the en-
ergy flows in a ballistic way for almost the entire domain
and the collision integral is not strong enough to bring
the system to local equilibrium. As a result, at large
times and at any fixed point x, the right-going waves
are at temperature T1 and the left-going waves are at
temperature T2, far from local equipartition. For larger
system size, L = 10, instead, advection is predominant
only in a small range of k, with the remaining part of
the domain dominated by diffusion: in this region, at
large time and at any fixed point x, the energetic con-
tent of the left- and right-going waves is equipartitioned,
and there is a constant smooth temperature gradient be-
tween the two thermostats. This is reflected in the profile
in k of the spatial integral of the spectral energy current
⟨j⟩x = 1

L ∫x j(k, x)dx, once a steady state is reached, see
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FIG. 2: Color map of T (x, k, t) = (ωk + µ)n(x, k, t). Top row: L = 1; bottom row: L = 10. Color ranges from T2
(white) to T1 (red). For t > 0, two fronts start propagating the temperature of the thermostats, perturbing the initial
homogeneous state. The modes in [0, π] propagate to the right (vk > 0) and the modes in [π,2π] propagate to the
left (vk < 0). The upper panels depict a predominantly ballistic situation also at the stationary state (right panel),
since L is not sufficiently large for most of the modes to interact. For the larger system in the lower panels, once a

steady state is reached the diffusive modes (around k = π) have equipartitioned at fixed x and are accompanied by a
k−independent constant gradient between the two thermostats. On the other hand, the ballistic modes (around
k = 0 and k = 2π) carry the energy density of their originating thermostat all the way to the opposite side without

interactions with other modes. Here we observe that the width of the ballistic region becomes thinner as L increases
(see Fig. 4).

figure 3a. For modes with small k, ⟨j⟩x is independent of
the system size since the behavior is purely ballistic [3].
For modes with large k the energy current flattens as L
increases, accompanied by a reduction of the peak value.
In particular, Fig. 3b shows how for these modes the en-
ergy current is in inverse proportionality with the chain
length L as one would expect from Fourier’s law, i.e. (6)
when K does not depend on L. There shoud be, then, a
critical value kc above which the evolution of the energy
is diffusion-dominated and below which the predominant
transport mechanism is the purely ballistic one. Con-
sidering that at equilibrium the transport term and the
collision integral should balance, and using dimensional
arguments, one can find that kc ≈ L−3/10 [29]. A scaling
consistent with this estimation can be found, in our sim-
ulations, for the value of k for which ⟨j⟩x is maximal, as
reported in figure 4, suggesting that this criterion could
be used as a proxi for the determination of kc(L), to
distinguish between diffusive and ballistic modes.

B. Ballistic and diffusive propagation

In nonequilibrium statistical physics, the transport
coefficients characterizing nonequilibrium steady states

that are not too far from equilibrium can be com-
puted in terms of space-time correlations in an equilib-
rium ensemble of realizations of the microscopic dynam-
ics [2, 5, 27, 33, 34], via the so-called Kubo integral. Like-
wise, for the mesoscopic model of (1), let us now con-
sider an initial background equilibrium state with con-
stant T = T0 and chemical potential µ. Let us then con-
sider an initial narrow bell-shaped perturbation δT (x)
in the center of the domain, such that δT ≪ T0. We ini-
tialize n(x, k, t = 0) with a RJ distribution, see (3), with
T (x) = T0 + δT (x), in a domain going from −L to L.

The evolution of ⟨n⟩k(x, t) = ∫
2π
0 n(x, k, t)dk is shown

in Fig. 5, where we considered a perturbation having an
initial amplitude of δT (x = 0)/T0 = 0.1. One can recog-
nize the familiar behavior of a central peak (heat peak)
and two traveling peaks (acoustic peaks) which corre-
spond to the emission of the second sound. This configu-
ration has been studied using the the microscopic dynam-
ics [5, 33] and the stochastic model known as fluctuating
hydrodynamics [34]. For t > 0, two peaks separate and
propagate in opposite directions with constant velocity
about ±1; the central peak, instead, evolves diffusively in
time (Fig. 5a). This is clearly visible by looking at the
time evolution of the variance of the distribution, com-
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FIG. 3: (a) Energy current ⟨j⟩x as function of k for different domain size, once a steady state has been reached.
While for the high wavenumbers the energy current contribution decreases as L increases, the low-wavenumber
contribution is independent of L, in agreement with a ballistic behavior. In the inset, one can appreciate this

invariance as k → 0. (b) The energy current ⟨j⟩x is multiplied by the size of the domain L. Now, the renormalized
curves tend to converge onto each other independently of L for the high wavenumbers. This behavior is in

agreement with Fourier’s law (see (6)) prescribing inverse proportionality between energy current and system size.
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maximum in Fig. 3a) as function of L. The observed
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anomalous exponent α = 0.4.

puted as follows:

σ2 = ∫x,k
n(k, x, t)ω(k)x2dxdk

∫x,k n(k, x, t)ω(k)dxdk
. (8)

Indeed, as shown in Fig. 5b, after the acoustic peaks exit
the domain (at about tV/L = 1) and the central peak is
left alone, the variance starts to grow linearly in time.
The time evolution of the central peak follows regular

diffusion, with diffusion coefficient given by half the slope
of the asymptote on the right hand-side of Fig. 5b. This
particular result may sound controversial in the face of
notable results advocating for a heat peak that follows
fractional diffusion (of super-diffusive type). We address
this further in the Discussion section.

We can therefore identify the second sound emission
with the non-decaying transport of the ballistic modes,
and the heat peak with the regular diffusion of the modes
that thermalize locally. Further confirmation of this is
found in Fig. 6, where we plot the time evolution of
the small initial Gaussian perturbation on homogeneous
background, and we show that the numerical simulation
of the WKE follows closely a diffusive solution with dif-
fusion coefficients around 0.24, for this condition. Thus,
we can simply refer to the heat and the acoustic peaks as
to the diffusive and the ballistic (or second-sound) peaks,
respectively, without ambiguity. Fig. 7 shows the energy
density e(x, k, t) at various times of the evolution of the
perturbation. The low modes, with k ≈ 0 and k ≈ 2π,
are the ones with the highest ballistic velocity. Hence,
they will leave the domain in a timescale of the order of
L/V. For longer times, the higher modes start to diffuse
thanks to the collision integral and the distribution will
start to follow a diffusive evolution.

DISCUSSION

Our direct numerical simulation of the WKE shows
that two phononic states coexist in the β-FPUT chain.
The first, involving the low modes, is equivalent to the
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FIG. 6: Heat peak evolution as predicted by WKE (–), and pure diffusion (- -).

FIG. 7: Color map of e(x, k, t) = ωkn(x, k, t) at four non-dimensional time instants. The second sound emission is
clearly seen in the central maps where perturbations at k ≃ 0 and k ≃ 2π (the low modes) are detaching from the
central diffusive peak involving the high modes. The interacting and diffusive character of these modes is evident

from the fact that the shape of the central peak remains close to a rectangle during the evolution, tending to
populate all modes k with the same energy density at fixed position x.



7

emission of second sound; the second, involving the
higher modes, is purely diffusive. This has been analyzed
under the following different points of view.

• The anomalous scaling of the energy conductivity
K ∝ Lα, with α ≃ 0.4, is confirmed in Figs. 1a-1b.
This is due to the scaling kc(L) of the separation
between the ballistic modes (low wavenumbers) and
the diffusive modes (high wavenumbers), individu-
ally contributing towards α = 1 and α = 0, respec-
tively. We find that kc varies consistently with L
by the scaling kc(L)∝ L−3/10, as shown in Fig. 4.

• The spatial integral of the spectral energy current
modal density ⟨j⟩x(k) is independent of L for the
low modes, as predicted for the purely harmonic
chain [3], while it is proportional to L−1 for the
higher modes, in agreement with Fourier’s law.
This was shown in Fig. 3.

• A complementary way to analyze energy transport
is to look at the evolution of a small localized per-
turbation of the thermal equilibrium condition. By
doing that, we confirm the presence of two acous-
tic peaks shooting off in opposite directions and
a central heat peak (figure 5a) evolving in agree-
ment with standard Fourier diffusion, as confirmed
in Figs. 5b and 6a-6c.

• Existence of the two types of heat transfer, ballis-
tic and diffusive, is cleanly demonstrated in Figs. 2
and 7. In Fig. 2 the qualitative difference between
these two types is most evident near the stationary
nonequilibrium state, where the horizontal separa-
tion between the two different regions gives an in-
tuitive visualization of kc. Finally, in Fig. 7 we see
an x − k representation of the evolution of a per-
turbed equilibrium state. Again, the sharp separa-
tion wavenumber, kc, can be observed by eye. Not
surprisingly, we discover that the acoustic peaks are
made exclusively of noninteracting ballistic modes
with low wavenumber, while the heat peak is made
exclusively of modes with high wavenumber.

Although the separation of scales at kc observed in the
x − k plots is slightly smeared, the two-state ballistic-
diffusive picture analyzed above under these four differ-
ent angles is robust and does not include super-diffusive
propagation with fractionary exponents. A fractionary
diffusion equation with space derivative of order 8/5 in-
stead of 2, is an alternative explanation compatible with
the conductivity scaling K ∝ L2/5, rigorously derived in
[35]. However, this scaling would predict the propagation
of a single peak that does not find correspondence in our
observations. The apparent disagreement may have dif-
ferent origins. For example, the assumption of having
only two conserved quantities (energy and action) made
in [35] is partially violated by the ballistic modes, which
effectively preserve momentum and whose propagation

is not a part of the heat peak. Although we have as-
sessed overall compatibility of the heat peak evolution
with a diffusive behavior, providing a definitive study of
this issue is not the aim of the current manuscript. In
close analogy with second sound propagation in superflu-
ids [36], our results show that, if the ballistic phonons are
recognized as noninteracting traveling waves [29, 37, 38],
the two-state ballistic-diffusive picture is compatible with
the main observable aspects of energy transport.

Finally, it is worth noticing that second sound in di-
electric solids was predicted a long time ago [39–41], and
later observed for instance in solid He3 and He4 below
4 K and in NaF below 20 K, at extremely low temper-
ature. In a dielectric crystal, second sound can be ob-
served when Umklapp resonances are very small, and by
lowering the temperature enough, the scattering level is
reduced to a point where noninteracting wavelike trans-
port becomes visible on macroscopic scales. It is now
well-known that reducing the dimensionality of the ma-
terial is another way to reduce drastically the number of
interactions, in part explaining why it was recently possi-
ble to observe second-sound propagation in 2D graphite
at temperatures above 100 K [42, 43]. Our results further
indicate that reducing the dimensionalty to (quasi-)1D
structures such as nanotubes may give a hope to finally
observe second-sound propagation at room temperature.

MATERIALS AND METHODS

Integration on the resonant manifold

In (2), the equality coming from the momenta Dirac
delta has to be interpreted mod I, I = [0,2π), to include
possible Umklap resonances. The resonant manifold is
the subset of I × I × I × I satisfying at the same time the
two conditions

ωk+ωk1−ωk2−ωk3 = 0 , k3 = (k+k1−k2) mod I . (9)

The constraint imposed by integration on the resonant
manifold reduces the triple integral of (2) to a one-
dimensional integral. Here, we briefly report some im-
portant rigorous results from Ref. [28] (see also [26, 33]).
The solutions of the collisional constraints (9) are of three
types:

• k1 = k3, k2 = k4 ;

• k1 = k4, k2 = k3 ;

• k2 = h(k1, k3) mod I, where

h(x, y) = y − x
2

+ 2 arcsin(tan
∣y − x∣

4
cos

y + x
4

) . (10)
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The first two types (perturbative solutions) are trivial
resonances that contribute to nonlinear frequency shift
and broadening [24]. The third type of solutions (non-
perturbative) represents non-trivial resonances that are
responsible for irreversible spectral transfers. By inte-
grating analytically in k3, the collision integral of (2)
can be written as

Ik = ∫
2π

0
dk1dk2 g(k, k1, k2)δ(Ω(k, k1, k2)) , (11)

with

g(k, k1, k2) = ∣Tk,k1,k2,k+k1−k2 ∣2nknk1nk2nk+k1−k2

× ( 1

nk
+ 1

nk1
− 1

nk2
− 1

nk+k1−k2
) ,

Ω(k, k1, k2) = ωk + ωk1 − ωk2 − ωk+k1−k2 .

(12)

In order to integrate out the frequency delta, we exploit
the following property of the Dirac delta function:

∫ dx G(x)δ(f(x)) = ∫ dx G(x)∑
i

δ(x − x⋆i )
∣f ′(x⋆i )∣

, (13)

where x⋆i are all the zeros of f . In (11), integrating
in the variable k1, we know that all of the zeros of
Ω = 2[sin(k/2)+sin(k1/2)−sin(k2/2)−sin(∣k+k1−k2∣/2)]
are of one of the three types above. The trivial solu-
tions give Ω′(k1) = 0 identically, which implies singlular
denominators. Though, as discussed in Ref. [28] these
terms come in pairs of opposite sign (this can be seen
easily looking at the symmetries of the integrand of (2)),
which cancel each other and do not contribute. There-
fore, the non-vanishing contributions come from the non-

trivial resonances, and we obtain

Ik = ∫
2π

0
dk2 ∫

2π

0
dk1 g(k, k1, k2)

δ(k1 − h(k, k2))
∣∂k1Ω(k, h(k, k2), k2)∣

= ∫
2π

0
dk2

g(k, h(k, k2), k2)√
(cos k

2
+ cos k2

2
)2 + 4 sin k

2
sin k2

2

.

(14)

Numerical details

(1) is solved by finite difference approximation in time
and space, using the expression of Ik given in (14). In
all simulations we used 100 grid points in x and 1001
points in k; the chemical potential is set to µ = 0.05.
The adopted discretization guarantees the conservation
of energy and wave action. In Case A of the Results we
used T1 = 0.4, T2 = 0.2. In Case B of the Results we used
T0 = 0.3, δT (x = 0)/T0 = 0.1.
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